WO2015076157A1 - Method for producing conductive composition - Google Patents

Method for producing conductive composition Download PDF

Info

Publication number
WO2015076157A1
WO2015076157A1 PCT/JP2014/079872 JP2014079872W WO2015076157A1 WO 2015076157 A1 WO2015076157 A1 WO 2015076157A1 JP 2014079872 W JP2014079872 W JP 2014079872W WO 2015076157 A1 WO2015076157 A1 WO 2015076157A1
Authority
WO
WIPO (PCT)
Prior art keywords
tellurium
glass
composition
conductive composition
electrode
Prior art date
Application number
PCT/JP2014/079872
Other languages
French (fr)
Japanese (ja)
Inventor
高橋 洋祐
Original Assignee
株式会社ノリタケカンパニーリミテド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ノリタケカンパニーリミテド filed Critical 株式会社ノリタケカンパニーリミテド
Priority to JP2015519676A priority Critical patent/JP6114389B2/en
Publication of WO2015076157A1 publication Critical patent/WO2015076157A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/14Conductive material dispersed in non-conductive inorganic material
    • H01B1/16Conductive material dispersed in non-conductive inorganic material the conductive material comprising metals or alloys
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/064Glass compositions containing silica with less than 40% silica by weight containing boron
    • C03C3/066Glass compositions containing silica with less than 40% silica by weight containing boron containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C3/00Glass compositions
    • C03C3/04Glass compositions containing silica
    • C03C3/062Glass compositions containing silica with less than 40% silica by weight
    • C03C3/07Glass compositions containing silica with less than 40% silica by weight containing lead
    • C03C3/072Glass compositions containing silica with less than 40% silica by weight containing lead containing boron
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/04Frit compositions, i.e. in a powdered or comminuted form containing zinc
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/02Frit compositions, i.e. in a powdered or comminuted form
    • C03C8/10Frit compositions, i.e. in a powdered or comminuted form containing lead
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C8/00Enamels; Glazes; Fusion seal compositions being frit compositions having non-frit additions
    • C03C8/14Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions
    • C03C8/16Glass frit mixtures having non-frit additions, e.g. opacifiers, colorants, mill-additions with vehicle or suspending agents, e.g. slip
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/20Conductive material dispersed in non-conductive organic material
    • H01B1/22Conductive material dispersed in non-conductive organic material the conductive material comprising metals or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • H01L31/022441Electrode arrangements specially adapted for back-contact solar cells
    • H01L31/02245Electrode arrangements specially adapted for back-contact solar cells for metallisation wrap-through [MWT] type solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy

Definitions

  • the present invention relates to a method for producing a conductive composition for forming an electrode of a solar cell, a conductive composition obtained by such a production method, and a solar cell.
  • a solar cell that converts solar light energy into electric power a solar cell that uses crystalline silicon (single crystal or polycrystal) as a semiconductor substrate, a so-called crystalline silicon solar cell is known.
  • a crystalline silicon solar cell for example, a single-sided light receiving type solar cell (single cell) 110 as shown in FIG. 2 is known.
  • This solar cell 110 includes an n-Si layer 116 formed by pn junction formation on the light-receiving surface (upper surface in FIG. 2) side of a p-type silicon substrate (Si wafer: p-Si layer made of p-type crystalline silicon) 111.
  • An aluminum electrode 120 having a (BSF; Back Surface Field) effect and a p + layer (BSF layer) 124 formed by diffusing aluminum into the p-Si layer 111 are provided.
  • Patent Documents 1 to 7 and the like can be cited.
  • the light receiving surface electrode of the silicon-based solar cell typically includes a linear bus bar electrode (connecting electrode) and a plurality of fine linear grid electrodes (collecting electrodes) connected to the bus bar. It is comprised by. Since these light receiving surface electrodes are formed on the light receiving surface of the solar cell, shadow loss (light blocking loss) can be generated. For this reason, thinning (fine line) of light receiving surface electrodes, especially the grid electrodes with a large number, is performed in order to increase the light receiving area per unit area of the cell and improve the output per unit cell area, that is, the photoelectric conversion efficiency. It is required to plan. For example, the width of the grid electrode, which was about 130 ⁇ m in a conventional solar cell, is required to be 110 ⁇ m or less.
  • the present invention has been made in the background of the circumstances as described above, and the object of the present invention is to provide a conductive composition capable of realizing good electrical bonding when forming an electrode of a solar cell.
  • An object is to provide a manufacturing method. Also, excellent electrical properties (eg, open-circuit voltage, fill factor and energy conversion efficiency) provided with a conductive composition formed using such a conductive composition, and an electrode formed with this conductive composition. It is another object to provide a solar cell comprising:
  • the tellurium is contained in the conductive composition in the form of a compound such as an oxide, or It is known that the ohmic contact and the like can be improved by containing it as a glass constituent component.
  • the solar cell since the solar cell may differ depending on the product form, for example, the configuration of the substrate itself or the required characteristics may be slightly different. For this reason, the detailed composition of each constituent material in the conductive composition is determined. The fact was that the guidelines were lacking.
  • the same tellurium source for example, a tellurium-containing glass composition, tellurium oxide, etc.
  • a conductive composition containing tellurium containing tellurium.
  • the valence of tellurium that is, the electronic state of Te atom
  • the valence of tellurium affects the solar cell characteristics, particularly the ohmic contact between the substrate and the electrode, regardless of the form of the tellurium source, and the present invention has been completed.
  • the present invention provides a method for producing a conductive composition for forming an electrode of a solar cell.
  • This manufacturing method is characterized by including the following steps (1) and (2).
  • (1) To prepare silver powder, a tellurium-containing composition, and a tellurium valence adjusting material.
  • the average valence of tellurium (Te) contained in the interface between the substrate and the conductive composition is 4.3 or more and 5 Adjusting the blending of the silver powder, the tellurium-containing composition and the tellurium valence adjusting material so as to be 1 or less, to prepare a conductive composition.
  • the composition of each constituent material constituting the conductive composition is adjusted so that tellurium contained in the conductive composition can exist in an optimal electronic state (electronic configuration) in the electrode after formation. Is done. For example, in an electrode obtained by firing a conductive composition under general firing conditions, tellurium is oxidized to a state close to hexavalent (typically in the range of 5.2 to 5.5). However, in the present invention, the valence of tellurium in the electrode after firing on the substrate or the like to be used is maintained in a more reduced state as described above by adjusting the composition of each constituent material. I have control.
  • the blend of the tellurium-containing composition and the tellurium valence adjusting material in the conductive composition is mainly prepared, and the average of tellurium (Te) while satisfying the charge neutrality condition as the whole conductive composition.
  • Te tellurium
  • a blend having a valence within the above range is realized.
  • the means for measuring the valence of tellurium is not particularly limited.
  • the X-ray absorption fine structure (XAFS) analysis method or the X-ray photoelectron spectroscopy (XPS) method is used as a suitable method for measuring the valence of tellurium.
  • XAFS X-ray absorption fine structure
  • XPS X-ray photoelectron spectroscopy
  • XAFS more specifically, the X-ray Absorption Near Edge Structure (XANES) analysis method is used to excite the inner electrons of tellurium atoms to unoccupied and quasi-continuous levels. From the X-ray absorption spectrum based on energy, the chemical state (electronic state) of the tellurium atom can be grasped.
  • XANES X-ray Absorption Near Edge Structure
  • the valence of tellurium is the average valence calculated from the shift amount of the peak near 4350 eV of the XANES spectrum measured by the transmission method using the XAFS analyzer in the beam line BL14B2 of SPring-8 as described later. Is adopted.
  • the absorbed energy used for calculating the average valence is not limited to the one near 4350 eV, and for example, absorbed energy at the Te-K end, L end, etc. can be used.
  • information on the elemental composition and chemical state of the surface can be obtained by observing the kinetic energy of photoelectrons emitted by irradiating the sample surface under ultra-high vacuum with X-rays. Specifically, by analyzing the energy spectrum of photoelectrons, the tellurium atoms present on the material surface are identified, and information on the valence and bonding state is obtained from the chemical shift of the tellurium peak based on narrow scan analysis. Can do.
  • the results obtained by calculating the average valence of tellurium from the relationship between the valence of tellurium and the shift amount of the binding energy using the Te-3d 5/2 peak near the binding energy of 576 eV as an index are adopted. be able to.
  • the peak used for calculating the average valence is not limited to Te-3d 5/2 , and may be another peak such as Te-3d 3/2 (586 eV).
  • the tellurium-containing composition is a tellurium compound powder containing tellurium (Te) as a constituent element.
  • Te tellurium
  • the tellurium-containing composition is a glass composition containing tellurium (Te) as a constituent element.
  • Te tellurium
  • an electrode having high adhesive strength can be formed by using a conductive composition having a glass composition containing tellurium.
  • the glass composition is a mixture of a basic glass component not containing tellurium and a tellurium-containing glass component containing tellurium. . According to this configuration, the valence of tellurium after firing can be controlled more easily, and a conductive composition having a high effect of improving ohmic contact can be more easily produced.
  • the tellurium valence adjusting material is at least one selected from the group consisting of Ti, V, Mn, Fe, Co, Ni, Cu and Zn. It is characterized by being a metal or metal compound containing a seed metal element. In the electrode after firing, the metal element has a characteristic that the electronic state is likely to vary depending on the environment. According to such a configuration, the valence of tellurium contained in the tellurium-containing composition can be more suitably controlled. Further, by including these metals or metal compounds, it is possible to improve the adhesion strength of the formed electrode and reduce the contact resistance.
  • the present invention provides a conductive composition produced by any one of the production methods described above.
  • the compounded tellurium component can exist in a state that can sufficiently contribute to the formation of a good (low resistance) ohmic contact in the electrode after firing, and an electrode having excellent adhesion can be formed.
  • a conductive composition is provided.
  • Such a conductive composition is adjusted so that tellurium can exist in an optimal electronic state (electronic configuration) depending on the substrate used, so that it is open when used to form solar cell electrodes.
  • a solar cell excellent in electrical characteristics such as voltage, fill factor and energy conversion efficiency can be realized.
  • the present invention also provides a solar cell having excellent electrical characteristics and reliability by including an electrode formed using this conductive composition.
  • FIG. 1 is a cross-sectional view schematically showing an example of the structure of a solar cell configured using the conductive composition of the present invention.
  • FIG. 2 is a cross-sectional view schematically showing an example of the structure of a solar cell configured using a conventional conductive composition.
  • the method for producing a conductive composition disclosed herein is intended for production of a conductive composition for forming an Ag electrode used for forming a silver (Ag) electrode in a solar cell.
  • the production method includes (1) preparing silver powder that is a constituent material of the conductive composition, a tellurium-containing composition, and a tellurium valence adjusting material, and (2) the conductive composition. So that the average valence of tellurium (Te) contained in the interface between the substrate and the conductive composition when it is applied to the substrate of the solar cell and baked is 4.3 or more and 5.1 or less. Adjusting the compounding of the silver powder, the tellurium-containing composition and the tellurium valence adjusting material to prepare a conductive composition.
  • the silver powder contained as the main solid content in the conductive composition disclosed herein is an aggregate of particles mainly composed of silver (Ag), and is typically an aggregate of particles composed of Ag alone. .
  • Ag silver
  • the silver powder may be produced by a conventionally known production method and does not require special production means.
  • the shape of the particles constituting such silver powder is not particularly limited. Although it is typically spherical, it is not limited to a so-called true spherical shape.
  • Such silver powder may be composed of particles having such various shapes.
  • Such silver powder is composed of particles having a small average particle size (typically several ⁇ m size)
  • a silver powder in which 70% by mass or more of the particles constituting the silver powder has an aspect ratio (that is, the ratio of the major axis to the minor axis) of 1 to 1.5 is preferable.
  • the silver powder suitable for forming the light-receiving surface electrode of the solar cell is not particularly limited, but those having an average particle diameter of 20 ⁇ m or less of the particles constituting the powder are suitable.
  • the thickness is preferably 0.01 ⁇ m or more and 10 ⁇ m or less, more preferably 0.3 ⁇ m or more and 5 ⁇ m or less, for example, 2 ⁇ m ⁇ 1 ⁇ m.
  • the average particle diameter means a particle diameter at a cumulative volume of 50% in a particle size distribution measured by a laser diffraction / scattering method, that is, D50 (median diameter).
  • D50 medium diameter
  • a silver (mixed) powder in which a plurality of silver powders (typically two types) having different average particle diameters are mixed and the average particle diameter of the mixed powder is within the above range. it can.
  • a dense Ag electrode suitable as a light-receiving surface electrode can be formed.
  • the content of the silver powder in the conductive composition disclosed herein is not particularly limited, but when the total amount of the conductive composition (solid content) is 100% by mass, 50% by mass to 99% thereof. It is preferable to adjust the content so that the silver powder is not more than mass%, more preferably not less than 65 mass% and not more than 98 mass%, for example, not less than 75 mass% and not more than 95 mass%.
  • the silver powder content rate in the manufactured electroconductive composition exists in the said range, Ag electrode (film
  • any powdered material containing tellurium (Te) as a constituent element can be used without particular limitation.
  • it may be a tellurium (Te) simple substance, an organic compound containing tellurium as a constituent element, a compound powder such as an inorganic compound, a powdery glass composition, or the like.
  • Te tellurium
  • organic compounds include various tellurols, tellurides, telluroxides, tellurons and derivatives thereof.
  • Tellurium-containing inorganic compounds include tellurium and other metal compounds, oxides, oxoacids, hydroxides, halides, sulfates, phosphates, nitrates, carbonates, acetates, metal complexes (coordination compounds) And the like.
  • tellurium oxide such as tetratellurafulvalene (TTeF), TeO 2 , Te 2 O 3 , Te 2 O 5 , TeO 3 , Te (OH), etc.
  • Telluric acid salt represented by 6 such as telluric acid, potassium metatellate, sodium metatellurate, zinc telluride, aluminum telluride, cobalt telluride, tin telluride, tungsten telluride, titanium telluride, copper telluride, tellurium
  • metal telluride compounds such as lead iodide, bismuth telluride, manganese telluride, and molybdenum telluride.
  • tellurium can have values such as 0, 3, 4, 5, and 6.
  • the tellurium-containing composition used here is preferably a compound in which tellurium is pentavalent or hexavalent, and examples thereof include Te 2 O 5 , TeO 3 , and Te (OH) 6 .
  • tellurium-containing glass component various glass compositions containing tellurium as a glass constituent component, and tellurium compound-supported glass compositions in which a tellurium compound is supported on the surface of a glass composition substantially free of tellurium Etc. can be considered. That is, in the tellurium-containing glass component, the tellurium component is not present as a component that is separated from the glass composition, but is present as a component that constitutes the glass composition itself or without being liberated from the glass composition. ing.
  • Such a tellurium-containing glass component can be a component that effectively acts to form an Ag electrode as a light-receiving surface electrode of a solar cell from above the antireflection film by a fire-through method. It can also be an inorganic additive that improves the adhesion strength of the formed electrode to the substrate.
  • the softening temperature of the glass composition can be lowered, and a conductive composition with higher adhesion can be realized.
  • the composition of the glass composition containing tellurium as a glass component is not particularly limited.
  • a glass composition having the following composition oxygen conversion composition; the entire glass frit is 100 mol%) is used.
  • TeO 2 can be a component (glass network former) constituting a glass skeleton together with other elements, and has a function of lowering the softening point of glass. Moreover, the effect which suppresses the excessive corrosion of the board
  • Such TeO 2 can be contained, for example, in a ratio of about 70 mol% or less in the glass composition (in the glass composition not containing tellurium described later, it can be 0 mol%). Since TeO 2 is relatively expensive, if the amount is too large, the cost increases, which is not preferable. TeO 2 is preferably in a proportion of about 5 to 65 mol%, more preferably 10 to 50 mol%.
  • SiO 2 is a component constituting a glass skeleton (glass network former), and can be contained in the glass composition at a ratio of about 0 to 70 mol%, for example. As the amount of SiO 2 increases, the solubility of the glass decreases and the softening point increases. For example, if SiO 2 exceeds 70 mol%, the fire-through characteristic is deteriorated, which is not preferable.
  • a glass network former in place of SiO 2 is contained in the glass composition, the content of SiO 2 may be 0 mol% (that is, SiO 2 is not substantially contained).
  • SiO 2 it is preferable that SiO 2 is in a proportion of about 5 to 65 mol%, more preferably 10 to 50 mol%, from the viewpoint of the chemical stability, durability and handling properties of the glass structure. It is desirable that
  • B 2 O 3 has a function of suppressing the thermal expansion of the glass composition and lowering the viscosity and the melting temperature, and can be contained in the glass composition at a ratio of about 0 to 40 mol%.
  • B 2 O 3 can cause a decrease in long-term durability (particularly long-term high-temperature durability), the content of B 2 O 3 is 0 mol% (that is, B 2 O 3 is not substantially contained). It may be.
  • B 2 O 3 is preferably in a ratio of about 1 to 30 mol%, more preferably about 5 to 25 mol%.
  • Bi 2 O 3 is an optional additive component that adjusts the thermal expansion coefficient. Moreover, physical stability can also be improved because a glass bonding material is comprised by a multi-component system.
  • the ratio of Bi 2 O 3 in the glass composition is preferably about 1 to 30 mol%, and more preferably about 5 to 25 mol%.
  • PbO is an optional additive component and can be contained, for example, in a ratio of about 0 to 65 mol% for the purpose of lowering the softening point of the glass.
  • the content of PbO may be 0 mol% (that is, B 2 O 3 is not substantially included) in consideration of the influence on human health and the environment.
  • the proportion of PbO is preferably about 10 to 50 mol%, and more preferably about 30 to 40 mol%.
  • Alkaline earth metal component (MO: specifically, at least one of MgO, CaO, ZnO, SrO and BaO) is not necessarily a necessary component, but as a network modifier oxide (network modifier) It is a component that contributes to control of the thermal stability of the glass composition. When these are included, for example, any one or more of them can be included in a total ratio of about 1 to 25 mol%, and the total ratio is more preferably about 1 to 10 mol%.
  • An alkali metal component (RO: specifically, at least one of Li 2 O, Na 2 O, and K 2 O) is also a component that increases the meltability of the glass composition, although it is not necessarily a necessary component. Any one or more can be included. These components can be included in a ratio of about 1 to 15 mol% in total, for example, and more preferably about 1 to 7 mol%.
  • the conductive composition contained in the conductive composition disclosed herein may be composed only of typical glass components as described above, or as long as the effect of the present invention is not significantly impaired, Arbitrary components other than the above may be included.
  • additional components include oxides such as Al 2 O 3 , TiO 2 , ZrO 2 , WO 3 , V 2 O 5 , Nb 2 O 5 , FeO, CuO, SnO 2 , P 2 O. 5 , La 2 O 3 , CeO 2 and the like.
  • the additive a well-known clarifying agent, coloring agent, etc. generally used conventionally for this kind of glass bonding material as needed can also be included.
  • the ratio of these additional components and various additives is preferably less than about 5 mol% (typically less than 4 mol%, for example, less than 1 mol%) of the entire glass composition.
  • it can be set as the mixing
  • Arsenic components and lead components are not preferable from the viewpoints of environmental performance, workability, and safety because they can adversely affect the human body and the environment.
  • the following glass L, glass M, and glass N are shown as preferred examples.
  • any of glass L and glass M, which are lead-containing glasses, and glass N, which is lead-free glass, is suitable for forming a light-receiving surface electrode of a solar cell. Can be performed.
  • the tellurium compound inseparably integrated with the glass composition as a carrier, but is mainly included as a crystalline phase, not as a component constituting the glass.
  • one or a plurality of tellurium compound particles may be bonded to one flaky or powdery glass frit and supported on the glass frit.
  • a plurality of glass frit carrying tellurium compound particles may be further bonded.
  • the relative sizes of the glass frit and the tellurium compound particles are not particularly limited, and either of them may be larger or the same size. It is sufficient that the relative positional relationship between the two is maintained.
  • the tellurium compound-supported glass composition has a glass composition (glass phase) and a crystalline tellurium compound phase (crystal phase) integrated via an interface. It has a structure.
  • the glass phase is mainly composed of glass that does not substantially contain tellurium (Te). That is, the glass phase may contain Te, but may be contained as a secondary component, not as a component that forms the main glass skeleton.
  • the tellurium compound phase is crystalline with the tellurium compound as a main component (for example, it is intended that 50% by mass or more is occupied by the tellurium compound), and the glass phase clearly has a crystal structure. Can be distinguished.
  • the glass phase may be composed of one type of glass phase, or a plurality of types of glass phases may be present.
  • the tellurium compound phase may be composed of one kind of tellurium compound phase, or a plurality of kinds of tellurium compound phases may be present.
  • a plurality of tellurium compound phases having different compositions may be integrated into one glass phase, or a plurality of glass phases having different compositions and a plurality of tellurium compound phases having different compositions may be integrated. good.
  • these glass phase and tellurium compound phase may diffuse each other at the bonding interface, for example, they may contain each other in the vicinity of the interface. In other words, the components may be unevenly distributed in the vicinity of the interface.
  • the glass phase may contain Te near the interface with the tellurium compound phase.
  • Te may not be included in the vicinity of the center of the glass phase.
  • a form containing Te in the vicinity of the center is also conceivable, but in such a case, it can be understood that Te does not exist as a main glass network former (ie, glass skeleton).
  • the tellurium compound phase may include a constituent component of the glass phase in the vicinity of the interface with the glass phase.
  • the constituent component of the glass phase is locally contained as one constituent component of the tellurium compound. That is, in the tellurium-supported glass frit, the glass phase and the tellurium compound phase are bonded via the interface, and the components of each other can diffuse near the interface, but one phase is not completely taken into the other phase, In essence, it exists as a separate and distinct phase.
  • the shape of the glass composition supporting the tellurium compound (which may be a glass phase; the same shall apply hereinafter) is not particularly limited, and is typically obtained by pulverizing glass or the like.
  • the glass may be in the form of flakes or powder.
  • the composition is not particularly limited, and can be the same as the glass frit or the like conventionally used for this type of conductive composition. Examples of such glass frit include, for example, lead-based, zinc-based, borosilicate-based, alkaline-based glass, glass containing barium oxide, bismuth oxide, or a combination of two or more of these. Is done.
  • the composition of the glass frit can be considered according to the configuration of the tellurium-containing glass composition (other than TeO 2 ). More specifically, for example, a glass composition having a representative composition as shown below (an oxide conversion composition; the entire glass frit is 100 mol%) is given as a preferred example.
  • composition is representative, and various kinds of materials are used for the purpose of obtaining good adhesion to the substrate, electrode film formability, erosion to the reaction antireflection film, and good ohmic contact. It goes without saying that the components may be adjusted and further glass modifying components (alkali metal elements, alkaline earth metal elements and other various glass forming components) may be added.
  • the various tellurium compounds illustrated above can be considered.
  • the ratio of the tellurium compound supported on the glass frit is not particularly limited.
  • the tellurium compound is converted to tellurium oxide (TeO 2 ) with respect to 100 parts by mass of the glass frit, as an approximate guideline. It is preferably carried at a ratio of 20 parts by mass to 60 parts by mass, more preferably about 30 parts by mass to 50 parts by mass.
  • the tellurium compound is present in a suitable state in the conductive composition without being too uniform without being too uniform with the glass composition, without being too close without being too close. It is thought that. This preferred positional relationship is continuously maintained from the preparation of the conductive composition to the time when the glass component is melted by firing as well as during the application and drying of the conductive composition.
  • the conductive composition containing such a tellurium-supported glass composition it is possible to form an electrode capable of realizing high energy conversion efficiency with low resistance compared to a silver paste containing a tellurium compound as a single paste constituent. it can.
  • an electrode with high adhesive strength can be formed compared with the electroconductive composition containing the glass frit which contains tellurium as a network former. That is, an electrode having high adhesive strength (for example, solder strength) and low contact resistance can be formed.
  • the tellurium-containing glass disclosed herein does not necessarily have to be various glass compositions and / or tellurium-supported glass compositions containing tellurium as a glass constituent, as described above.
  • various glass compositions and / or tellurium-supported glass compositions containing tellurium as glass constituent components may be used as basic glass components that do not contain the tellurium component conventionally used in this type of conductive composition (containing non-tellurium). It may be used by mixing with glass.
  • the composition of such a basic glass components for example, it can be considered according to the arrangement of the tellurium-containing glass composition (other than TeO 2).
  • a glass having any composition of the above glass L ′, glass M ′ and glass N ′ can be mentioned as a suitable example.
  • the ratio between the tellurium-containing glass and the basic glass component can be appropriately determined in consideration of the total amount of the glass components in the conductive composition and the tellurium content of the tellurium-containing glass.
  • a preferable ratio of the whole glass component in the conductive composition (solid content) is not limited to this, but is approximately 0.5% by mass or more and 5% by mass or less, preferably 0.5% by mass or more and 3% by mass. The mass% or less, more preferably 1 mass% or more and 3 mass% or less is appropriate.
  • the tellurium-containing composition content depends on the form of the tellurium-containing composition to be used, it cannot be generally stated, but the conductive composition is applied to the substrate of the solar cell and fired.
  • the blending ratio of the silver powder and the tellurium valence adjusting material is determined so that the average valence of tellurium (Te) contained in the interface with the conductive composition is 4.3 or more and 5.1 or less.
  • the tellurium-containing glass described in the examples described later is used as the tellurium-containing composition, as an approximate guide, when the entire conductive composition (solid content) is 100% by mass, the tellurium-containing composition It is preferable to adjust appropriately in the range of 0.5 mass% to 50 mass%, more preferably 1 mass% to 35 mass%, for example, 5 mass% to 25 mass%.
  • tellurium valence adjusting material a powder made of a compound containing an element whose oxidation number is relatively easy to change can be preferably used.
  • a transition metal, a typical metal and a metal containing a rare earth element or a compound thereof that can be an ion having a valence of +3 or more can be considered.
  • it may be a metal of an element belonging to Group 3A to Group 3B of the periodic table or a compound thereof, typically a transition metal element belonging to Group 3A to Group 2B of the periodic table, particularly Preferably, scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel, which are first transition elements (3d transition elements)
  • the powder of the metal which consists of (Ni), copper (Cu), and zinc (Zn) or its compound can be considered. More preferably, it is a powder of a metal composed of Fe, Co, Ni, Ti or its oxide, and more limited may be Ni or NiO.
  • any one of these powders may be included alone, or two or more thereof may be included.
  • the average particle diameter of the particles constituting these powders is suitably 1 nm or more and 200 nm or less, preferably 5 nm or more and 200 nm or less, more preferably 15 nm or more and 200 nm or less.
  • the average valence of tellurium (Te) contained in the interface between the substrate and the conductive composition when the conductive composition is applied to the substrate of the solar cell and baked is 4. It is determined as a blending ratio of the silver powder and the tellurium-containing composition so as to be 3 or more and 5.1 or less. The average number of tellurium can be controlled effectively by adjusting the content of the tellurium valence adjusting material.
  • the content of the tellurium valence adjusting material is not strictly limited, but as an approximate guide, the tellurium valence adjusting material occupies when the entire conductive composition (solid content) is 100% by mass.
  • the ratio can be about 0.5% by mass or less. Preferably they are 0.001 mass% or more and 0.3 mass% or less, More preferably, they are 0.001 mass% or more and 0.2 mass% or less.
  • the conductive composition formulated as described above may be provided in the form of a solid powder (typically in the form of a mixture) containing silver powder, a tellurium-containing composition, and a tellurium valence adjusting agent, For example, it may be provided in a state dispersed in an organic medium. That is, the conductive composition can contain an organic medium as a component other than the above-described solid content. Any organic medium may be used as long as it can disperse the above-described solid content, particularly silver powder, and any of those used in conventional pastes of this type can be used without particular limitation. Typically, an organic vehicle in which an organic binder is dispersed in a solvent can be considered.
  • a solvent constituting the organic medium one or a combination of high-boiling organic solvents such as ethylene glycol and diethylene glycol derivatives (glycol ether solvents), toluene, xylene, butyl carbitol (BC), and terpineol are used. can do.
  • various resin components can be included as an organic binder. Any resin component may be used as long as it can provide a conductive composition with good viscosity and film-forming ability (adhesiveness to a substrate), and those used in conventional pastes of this type can be used without any particular limitation. can do.
  • Examples thereof include those mainly composed of acrylic resin, epoxy resin, phenol resin, alkyd resin, cellulosic polymer, polyvinyl alcohol, rosin resin and the like.
  • cellulosic polymers such as ethyl cellulose are particularly preferable.
  • the proportion of the organic medium in the entire conductive composition is suitably 5% by mass to 60% by mass, preferably 7% by mass to 50% by mass, and more preferably Is 10 mass% or more and 40 mass% or less.
  • the organic binder contained in the vehicle is preferably contained in a proportion of about 1% by mass to 10% by mass, more preferably about 1% by mass to 7% by mass of the entire conductive composition.
  • the conductive composition in a form in which a solid content is dispersed in an organic medium can be suitably adjusted by, for example, the following method. That is, the silver powder prepared above, a tellurium-containing composition, and a tellurium valence adjusting material are dispersed in an organic medium.
  • the dispersion of the solid content in the organic medium is typically performed by using, for example, a three-roll mill or other kneader to add silver powder having a predetermined blending ratio, a tellurium-containing composition, and a tellurium valence adjusting material. Mix and agitate with vehicle.
  • all the materials may be mixed at the same time or may be added in two or more times.
  • silver powder and tellurium-containing composition (excluding tellurium-supported glass) may be mixed in advance, and then tellurium-supported glass and tellurium valence adjusting material may be added.
  • a part of the materials may be mixed in the form of a dispersion liquid previously dispersed in a medium such as an aqueous solvent or alcohol.
  • distributed to the organic medium can be prepared suitably.
  • the tellurium-supported glass can be prepared, for example, by mixing a predetermined glass powder and a tellurium compound and firing the mixture.
  • the firing is preferably carried out in a temperature range of (Tm ⁇ 35) ° C. to (Tm + 20) ° C. typically in an oxidizing atmosphere (eg, air atmosphere) when the melting point of the glass powder is Tm ° C.
  • Tm + 20 oxidizing atmosphere
  • the firing temperature is more preferably (Tm + 15) ° C.
  • the firing temperature is lower than (Tm-35) ° C., the possibility that the tellurium compound cannot be reliably supported increases, which is not preferable.
  • the firing temperature is preferably (Tm-30) ° C. or higher, more preferably (Tm-20) ° C. or higher.
  • the tellurium-supported glass as a fired product obtained after firing may be sintered as a whole to form large aggregates.
  • such agglomerate is crushed and sieved as necessary so that a particle size suitable for the preparation of the conductive composition (for example, about 0.01 ⁇ m to 10 ⁇ m) is used.
  • a particle size suitable for the preparation of the conductive composition for example, about 0.01 ⁇ m to 10 ⁇ m
  • the glass powder and the tellurium compound are combined to form a neck.
  • this bond is stronger than adhesion by adsorption or the like, the glass powder and the tellurium compound are sintered in a mixed state without being compacted.
  • the conductive composition obtained as described above can be handled in the same manner as, for example, a silver paste that has been conventionally used for forming an Ag electrode as a light-receiving surface electrode on a substrate. That is, a conventionally known method can be employed without any particular limitation for the formation of the electrode from the conductive composition disclosed herein.
  • an antireflection film 14 is formed on almost the entire surface of the silicon substrate 11, and a silver paste is applied to a portion where the light receiving surface electrode 12 is formed on the antireflection film 14.
  • a so-called fire-through method may be used in which the anti-reflection film 14 under the silver paste is melted by direct coating and baking to make electrical contact between the silver paste and the silicon substrate 11.
  • the n + layer 16 and the antireflection film 14 are formed on the light-receiving surface of the substrate as in the conventional case.
  • the conductive composition of the present invention is supplied (applied) on the antireflection film 14 so as to have a desired film thickness (for example, about 20 ⁇ m) and a desired coating film pattern.
  • the conductive composition can be typically supplied by a screen printing method, a dispenser coating method, a dip coating method, or the like.
  • a silicon (Si) substrate 11 is suitable, and typically a Si wafer.
  • the thickness of the substrate 11 includes a desired solar cell size, film thicknesses of the Ag electrode 12, the back electrode 20, the antireflection film 14 and the like formed on the substrate 11, and the strength (for example, destruction) of the substrate 11. (Strength) and the like can be set.
  • the thickness of the substrate 11 is, for example, generally 100 ⁇ m or more and 300 ⁇ m or less, preferably 150 ⁇ m or more and 250 ⁇ m or less, and may be 160 ⁇ m or more and 200 ⁇ m, for example.
  • the conductive composition can also be used for the substrate 11 having a shallow emitter structure in which the n + layer 16 is thin and the dopant concentration is low.
  • the conductive composition disclosed herein can be constituted, for example, by mainly dispersing silver powder and a glass component as a tellurium-containing composition in an organic medium.
  • a conductive composition an ohmic contact between the silver component in the composition and the n-Si layer 16 is realized by the glass component in the composition breaking the antireflection film 14 in the firing process. is there.
  • the number of steps can be reduced as compared with an electrode formation method that involves partial removal of the antireflection film 14, and a deviation occurs between the removal portion of the antireflection film 14 and the formation position of the light receiving surface electrode 12. There is no worry. Therefore, such a fire-through method can be preferably used for forming the light receiving surface electrode 12.
  • the following method can be employed. That is, first, the n + layer 16 and the antireflection film 14 are formed on the light receiving surface by CVD or the like over almost the entire surface of the silicon substrate 11. Thereafter, the formation portion of the light-receiving surface electrode 12 in the antireflection film 14 is peeled (removed) with a desired electrode pattern using hydrofluoric acid (HF) or the like. And supplying a conductive composition with the desired film thickness to this peeling part is mentioned. Next, the conductive composition coating (coating film) supplied to the substrate 11 is dried at an appropriate temperature (eg, room temperature or higher, typically about 100 ° C.).
  • an appropriate temperature eg, room temperature or higher, typically about 100 ° C.
  • the dried coating film is baked by heating in an appropriate baking furnace (for example, a high-speed baking furnace) under appropriate heating conditions (for example, 600 ° C. to 900 ° C., preferably 700 ° C. to 800 ° C.) for a predetermined time. I do. Thereby, the coated material is baked on the substrate 11 to form a silver electrode 12 as shown in FIG.
  • an appropriate baking furnace for example, a high-speed baking furnace
  • appropriate heating conditions for example, 600 ° C. to 900 ° C., preferably 700 ° C. to 800 ° C.
  • the conductive composition for forming the light-receiving surface electrode 12 is printed on the light-receiving surface, and the conductive composition for forming the back-side external connection electrode 22 is also formed on the back surface (disclosed here).
  • a conductive composition prepared by a manufacturing method may be printed on a desired area and dried.
  • the aluminum electrode paste material is printed and dried so as to overlap a part of the printing region of the conductive composition for the backside external connection electrode, and all the coating films are fired.
  • the aluminum electrode 20 is baked and a P + layer (BSF layer) 24 is also formed.
  • the aluminum electrode 20 to be the back electrode 20 is formed on the p-type silicon substrate 11 by firing, and the aluminum atoms are diffused into the substrate 11 to form the p + layer 24 containing aluminum as an impurity.
  • the Rukoto In this way, the solar battery (cell) 10 can be manufactured.
  • the conductive composition disclosed herein is controlled so that the average valence of tellurium contained in the interface between the substrate and the electrode after firing is 4.3 or more and 5.1 or less. .
  • the tellurium in the electronic state is present at the interface between the substrate and the electrode, so that the contact between the substrate and the electrode becomes good, and the power generated in the substrate 11 of the solar cell 10 is lost via the electrode. Can be taken out to the outside in a low state. Thereby, it becomes possible to produce a solar cell with high energy conversion efficiency.
  • this electrically conductive composition essentially contains a tellurium component, it is possible to produce a solar cell with high adhesive strength and high durability and reliability. Therefore, according to such a conductive composition, a solar cell having excellent solar cell characteristics (for example, FF of 0.78 or more and power generation efficiency of 16.5% or more) can be provided.
  • the performance of the solar cell 10 formed by the fire-through method such as energy conversion efficiency, largely depends on the quality of the ohmic contact formed as described above. That is, high energy conversion efficiency can be achieved by reducing the contact resistance between the formed light receiving surface electrode 12 and the silicon substrate 11.
  • the conductive composition disclosed herein can improve ohmic contact, and thus contributes favorably to the realization of the solar cell 10 with enhanced fill factor (FF) and energy conversion efficiency. Can do.
  • the thickness of the n-Si layer 16 (for the purpose of increasing the photoelectric conversion efficiency by delivering light having a shorter wavelength to the pn junction portion with as high an intensity as possible. The depth may be reduced to reduce heat loss.
  • the thickness of the n-Si layer 16 can be, for example, about 300 nm to 500 nm as in the conventional case. However, for example, the thickness can be reduced to 300 nm or less, more preferably about 250 nm or less.
  • the n-Si layer itself increases in resistance and increases in sheet resistance, and it is necessary to lower the dopant concentration in order to suppress surface recombination. For this reason, it is difficult to obtain a good ohmic contact between the light-receiving surface electrode and the n-Si layer, and there is a concern that the problem of increased contact resistance may occur.
  • the electrode paste not only reaches the n-Si layer, but also erodes to the vicinity of the pn junction interface beyond the n-Si layer.
  • the ohmic contact can be reliably improved as described above. Therefore, for example, even when the thickness of the n-Si layer 16 is reduced to 250 nm or less or the firing conditions are adjusted so as not to erode the pn junction, an increase in contact resistance can be suppressed and a good junction can be realized. Is possible.
  • Conductive compositions 1 to 10 including silver powder (average particle size 1.6 ⁇ m), Ni powder (average particle size 0.15 ⁇ m) and the glass composition shown below were prepared. These conductive compositions are dispersed in an organic vehicle composed of a binder (ethylcellulose) and an organic solvent (terpineol), and the viscosity is 160 to 180 Pa ⁇ s (20 rpm, 25 ° C.) by adding the organic solvent. Adjusted. A three-roll mill was used for preparing the paste.
  • the composition of the paste-like conductive composition thus obtained was as follows: silver powder: 77 to 88% by mass, Ni powder: 0.01 to 0.2% by mass, glass composition: 1 to 10% by mass, The organic vehicle was 4 to 14% by mass and the organic solvent was 2 to 8% by mass.
  • the tellurium amount which occupies the basic glass frit which does not contain tellurium, and the tellurium containing glass frit containing tellurium in an electroconductive composition is shown in "Te addition amount" of the following Table 1 It mixed and used so that it might become a value.
  • the basic glass frit a glass having an average particle diameter of 1.1 ⁇ m and having the following composition A or composition B was used.
  • the tellurium-containing glass frit a glass having the following composition was used as the tellurium-containing glass frit.
  • ⁇ Basic glass frit Composition A> Bi 2 O 3: 20mol%, B 2 O 3: 29mol%, SiO 2: 4mol%, ZnO: 30mol%, Li 2 O: 17mol% ⁇ Basic glass frit: Composition B> PbO: 29mol%, B 2 O 3: 12mol%, SiO 2: 47mol%, Li 2 O: 12mol% ⁇ Glass frit containing tellurium> Te 2 O: 30mol%, PbO : 29mol%, B 2 O 3: 5mol%, SiO 2: 36mol%
  • solar cells for evaluation were produced according to the following procedure. That is, first, a commercially available p-type single crystal silicon substrate (plate thickness 180 ⁇ m) for a solar cell having a size of 156 mm square was prepared, and its surface was acid-etched using a mixed acid obtained by mixing hydrofluoric acid and nitric acid. . Next, a phosphorus-containing solution is applied to the light receiving surface of the silicon substrate on which the fine uneven structure is formed by the etching process, and heat treatment is performed, so that the thickness of the light receiving surface of the silicon substrate is about 0.5 ⁇ m.
  • a -Si layer (n + layer) was formed (see FIG. 1).
  • an antireflection film silicon nitride film having a thickness of about 80 nm was formed by plasma CVD (PECVD).
  • PECVD plasma CVD
  • a coating film (thickness of 10 ⁇ m or more and 30 ⁇ m or less) to be a light receiving surface electrode (Ag electrode) was formed on the antireflection film by screen printing.
  • a coating film to be a back electrode (Ag electrode) was formed in a pattern.
  • a predetermined aluminum paste for back electrode is screen printed so as to overlap a part of the Ag electrode pattern on the back side of the silicon substrate (SUS screen mesh, # 325, wire diameter 23 ⁇ m, emulsion thickness 20 ⁇ m, the same applies hereinafter).
  • the printing conditions were set so that the firing width of the grid line was 100 ⁇ m.
  • this silicon substrate was baked at a temperature of about 700 ° C. or higher and 800 ° C. or lower in an air atmosphere using a near infrared high-speed baking furnace. Thereby, the solar cell for evaluation provided with the Ag electrode (light-receiving surface electrode) was obtained.
  • solar cells produced using the conductive compositions 1 to 10 will be referred to as samples 1 to 10, respectively.
  • TeO 2 and TeO 3 are used as tetravalent and hexavalent standard samples, respectively, and from the amount of shift of the absorbed energy in the vicinity of 4350 eV in the XANES spectrum of the standard sample, it is included in the measurement sample.
  • the average valence of tellurium was calculated.
  • the measurement results of the average valence of tellurium are shown in Table 1.
  • the fill factor (FF) is basically an index that is a measure of the quality of a solar cell, and a typical FF value falls within a range of 0.7 to 0.8. In the latter half region where the FF value is 0.7, the performance as a solar cell is greatly improved by increasing the FF value even by 0.01%. From the results in Table 1, it was confirmed that there was a large difference in the FF values obtained depending on the valence of tellurium in the conductive composition.

Abstract

[Problem] To provide a method for producing a conductive composition which enables good electrical bonding when an electrode of a solar cell is formed. [Solution] A method for producing a conductive composition for forming an electrode of a solar cell, which comprises: a step for preparing a silver powder, a tellurium-containing composition and a tellurium valence adjustment material; and a step for producing a conductive composition by adjusting the blending ratio of the silver powder, the tellurium-containing composition and the tellurium valence adjustment material so that the average valence of tellurium (Te) contained in the interface between a substrate of a solar cell and the conductive composition is from 4.3 to 5.1 (inclusive) if the conductive composition is applied over the substrate and fired thereon.

Description

導電性組成物の製造方法Method for producing conductive composition
 本発明は、太陽電池の電極を形成するための導電性組成物の製造方法と、かかる製造方法により得られる導電性組成物ならびに太陽電池に関する。
 本出願は、2013年11月20日に出願された日本国特許出願2013-240014号に基づく優先権を主張しており、その出願の全内容は本明細書中に参照として組み入れられている。
The present invention relates to a method for producing a conductive composition for forming an electrode of a solar cell, a conductive composition obtained by such a production method, and a solar cell.
This application claims priority based on Japanese Patent Application No. 2013-240014 filed on Nov. 20, 2013, the entire contents of which are incorporated herein by reference.
 太陽の光エネルギーを電力に変換する太陽電池の典型例として、結晶性のシリコン(単結晶または多結晶)を半導体基板として利用する太陽電池、いわゆる結晶シリコン系太陽電池が知られている。かかる結晶シリコン系太陽電池としては、例えば図2に示すような片面受光タイプの太陽電池(単セル)110が知られている。
 この太陽電池110は、p型シリコン基板(Siウエハ:p型結晶シリコンからなるp-Si層)111の受光面(図2では上面)側にpn接合形成により形成されたn-Si層116を備え、n-Si層116上には酸化チタンや、二酸化ケイ素、窒化シリコンから成る反射防止膜114と、銀(Ag)から成る表面電極(受光面電極)112とを備えている。一方、p型シリコン基板(p-Si層)111の裏面(図2では下面)側には、受光面電極112と同様に銀(Ag)から成る裏面側外部接続用電極122と、いわゆる裏面電界(BSF;Back Surface Field)効果を奏するアルミニウム電極120と、アルミニウムがp-Si層111に拡散することで形成されるp層(BSF層)124とを備えている。ここで、受光面電極112を形成するために用いられる導電性組成物に関する先行技術として、例えば、特許文献1~7等が挙げられる。
As a typical example of a solar cell that converts solar light energy into electric power, a solar cell that uses crystalline silicon (single crystal or polycrystal) as a semiconductor substrate, a so-called crystalline silicon solar cell is known. As such a crystalline silicon solar cell, for example, a single-sided light receiving type solar cell (single cell) 110 as shown in FIG. 2 is known.
This solar cell 110 includes an n-Si layer 116 formed by pn junction formation on the light-receiving surface (upper surface in FIG. 2) side of a p-type silicon substrate (Si wafer: p-Si layer made of p-type crystalline silicon) 111. And an antireflection film 114 made of titanium oxide, silicon dioxide, or silicon nitride, and a surface electrode (light-receiving surface electrode) 112 made of silver (Ag). On the other hand, on the back surface (bottom surface in FIG. 2) side of the p-type silicon substrate (p-Si layer) 111, a back-side external connection electrode 122 made of silver (Ag) as well as the light-receiving surface electrode 112 and a so-called back-surface electric field. An aluminum electrode 120 having a (BSF; Back Surface Field) effect and a p + layer (BSF layer) 124 formed by diffusing aluminum into the p-Si layer 111 are provided. Here, as prior arts related to the conductive composition used for forming the light-receiving surface electrode 112, for example, Patent Documents 1 to 7 and the like can be cited.
日本国特許出願公開2001-303400号公報Japanese Patent Application Publication No. 2001-303400 日本国特許出願公開2006-302890号公報Japanese Patent Application Publication No. 2006-302890 日本国特許出願公開2011-96747号公報Japanese Patent Application Publication No. 2011-96747 日本国特許第4754655号Japanese Patent No. 4754655 国際公開第2012/020694号International Publication No. 2012/020694 国際公開第2012/141187号International Publication No. 2012/141187 国際公開第2012/144335号International Publication No. 2012/144335
 ところで、上記のシリコン系太陽電池の受光面電極は、典型的には、線状のバスバー電極(接続用電極)と、該バスバーに接続する多数本の細線状のグリッド電極(集電用電極)とにより構成されている。これらの受光面電極は太陽電池の受光面に形成されるため、シャドウロス(遮光損失)を発生させ得る。そのため、セルの単位面積あたりの受光面積を拡大し、セル単位面積あたりの出力、すなわち光電変換効率を向上させる目的で、受光面電極、とりわけ本数の多いグリッド電極の細線化(ファインライン化)を図ることが求められている。例えば、従来の太陽電池において130μm程度であったグリッド電極の幅を、110μm以下とすることが求められている。しかしながら、例えば、グリッド電極の幅を細くすると、受光面電極とn層とのオーミックコンタクトが悪化して接触抵抗が高くなり、電流密度の低下が起こるため、単純には変換効率を高くすることができないという問題があった。 By the way, the light receiving surface electrode of the silicon-based solar cell typically includes a linear bus bar electrode (connecting electrode) and a plurality of fine linear grid electrodes (collecting electrodes) connected to the bus bar. It is comprised by. Since these light receiving surface electrodes are formed on the light receiving surface of the solar cell, shadow loss (light blocking loss) can be generated. For this reason, thinning (fine line) of light receiving surface electrodes, especially the grid electrodes with a large number, is performed in order to increase the light receiving area per unit area of the cell and improve the output per unit cell area, that is, the photoelectric conversion efficiency. It is required to plan. For example, the width of the grid electrode, which was about 130 μm in a conventional solar cell, is required to be 110 μm or less. However, for example, if the width of the grid electrode is reduced, the ohmic contact between the light-receiving surface electrode and the n layer deteriorates and the contact resistance increases and the current density decreases, so that the conversion efficiency can be simply increased. There was a problem that I could not.
 本発明は、上記のとおりの事情を背景として為されたものであって、その目的とするところは、太陽電池の電極を形成するに際し、良好な電気的接合を実現し得る導電性組成物の製造方法を提供することを目的とする。また、かかる導電性組成物を用いて形成された導電性組成物、ならびに、この導電性組成物により形成された電極を備えた、優れた電気特性(例えば、開放電圧、曲線因子やエネルギー変換効率)を備える太陽電池を提供することを他の目的とする。 The present invention has been made in the background of the circumstances as described above, and the object of the present invention is to provide a conductive composition capable of realizing good electrical bonding when forming an electrode of a solar cell. An object is to provide a manufacturing method. Also, excellent electrical properties (eg, open-circuit voltage, fill factor and energy conversion efficiency) provided with a conductive composition formed using such a conductive composition, and an electrode formed with this conductive composition. It is another object to provide a solar cell comprising:
 太陽電池の電極を形成するための導電性組成物については、例えば、上記特許文献3~7に開示されるように、導電性組成物中にテルルを、酸化物等の化合物の形態で、あるいはガラス構成成分として含有させることで、オーミックコンタクト等が改善され得ることが知られている。しかしながら、太陽電池はその商品形態により、例えば基板そのものの構成が異なったり、求められる特性等が若干異なったりし得るため、上記の導電性組成物における各構成材料の詳細な配合を決定するための指針に欠けているのが実情であった。
 このような状況下、本発明者が鋭意研究を重ねてきた結果、テルルを含む導電性組成物については、たとえ同一の形態のテルル源(例えば、テルル含有ガラス組成物、酸化テルル等)を用いて導電性組成物を作成した場合であっても、形成後の電極におけるテルルの価数(すなわち、Te原子の電子状態)が変化され得ることを見出した。そしてテルル源の形態に関わることなく、かかるテルルの価数が、太陽電池特性、特には、基板と電極とのオーミックコンタクトに影響を与えることを知見し、本願発明を完成するに至った。
As for the conductive composition for forming the electrode of the solar cell, for example, as disclosed in Patent Documents 3 to 7, the tellurium is contained in the conductive composition in the form of a compound such as an oxide, or It is known that the ohmic contact and the like can be improved by containing it as a glass constituent component. However, since the solar cell may differ depending on the product form, for example, the configuration of the substrate itself or the required characteristics may be slightly different. For this reason, the detailed composition of each constituent material in the conductive composition is determined. The fact was that the guidelines were lacking.
Under such circumstances, as a result of intensive studies by the inventor, the same tellurium source (for example, a tellurium-containing glass composition, tellurium oxide, etc.) is used for a conductive composition containing tellurium. It was found that the valence of tellurium (that is, the electronic state of Te atom) in the electrode after formation can be changed even when the conductive composition is prepared. And it was discovered that the valence of tellurium affects the solar cell characteristics, particularly the ohmic contact between the substrate and the electrode, regardless of the form of the tellurium source, and the present invention has been completed.
 すなわち、本発明により、太陽電池の電極を形成するための導電性組成物の製造方法が提供される。かかる製造方法は、以下の工程(1)(2)を包含することを特徴としている。
(1)銀粉末と、テルル含有組成物と、テルル価数調整材とを用意すること。
(2)該導電性組成物を上記太陽電池の基板に塗布して焼成したときの当該基板と上記導電性組成物との界面に含まれるテルル(Te)の平均価数が4.3以上5.1以下となるように、上記銀粉末、上記テルル含有組成物および上記テルル価数調整材の配合を調整して導電性組成物を調製すること。
That is, the present invention provides a method for producing a conductive composition for forming an electrode of a solar cell. This manufacturing method is characterized by including the following steps (1) and (2).
(1) To prepare silver powder, a tellurium-containing composition, and a tellurium valence adjusting material.
(2) When the conductive composition is applied to the substrate of the solar cell and fired, the average valence of tellurium (Te) contained in the interface between the substrate and the conductive composition is 4.3 or more and 5 Adjusting the blending of the silver powder, the tellurium-containing composition and the tellurium valence adjusting material so as to be 1 or less, to prepare a conductive composition.
 本発明の製造方法によると、導電性組成物に含まれるテルルが形成後の電極において最適な電子状態(電子配置)で存在し得るよう、導電性組成物を構成する各構成材料の配合が調整される。例えば、導電性組成物を一般的な焼成条件で焼成して得られる電極において、テルルは6価に近い状態(典型的には、5.2~5.5の範囲)まで酸化される。しかしながら、本発明においては、使用する基板等に焼成した後の電極における、テルルの価数を、各構成材料の配合を調整することにより、上記の通りのより還元された状態に維持されるよう制御している。具体的には、主として、導電性組成物中におけるテルル含有組成物とテルル価数調整材との配合を調製し、導電性組成物全体として電荷中性条件を満たしつつ、テルル(Te)の平均価数が上記範囲となる配合を実現する。詳細な機構は明らかではないものの、かかる電子状態のテルルが基板と電極との界面近傍に存在していることにより、電極と基板との電気的接合状態が好適に改善され得る。これによって、導電性組成物中のテルルの形態および配合量に関わらず、これらのテルル原子が電極中で低抵抗のオーミックコンタクトの実現に有効に寄与し得る電子状態で存在することが可能とされる。 According to the production method of the present invention, the composition of each constituent material constituting the conductive composition is adjusted so that tellurium contained in the conductive composition can exist in an optimal electronic state (electronic configuration) in the electrode after formation. Is done. For example, in an electrode obtained by firing a conductive composition under general firing conditions, tellurium is oxidized to a state close to hexavalent (typically in the range of 5.2 to 5.5). However, in the present invention, the valence of tellurium in the electrode after firing on the substrate or the like to be used is maintained in a more reduced state as described above by adjusting the composition of each constituent material. I have control. Specifically, the blend of the tellurium-containing composition and the tellurium valence adjusting material in the conductive composition is mainly prepared, and the average of tellurium (Te) while satisfying the charge neutrality condition as the whole conductive composition. A blend having a valence within the above range is realized. Although the detailed mechanism is not clear, the presence of such tellurium in the electronic state in the vicinity of the interface between the substrate and the electrode can favorably improve the electrical bonding state between the electrode and the substrate. This makes it possible for these tellurium atoms to exist in an electronic state that can effectively contribute to the realization of a low-resistance ohmic contact in the electrode, regardless of the form and amount of tellurium in the conductive composition. The
 なお、本明細書においてテルルの価数の測定手段は特に制限されない。例えば、テルルの価数の好適な測定手法として、X線吸収微細構造(XAFS:X-ray absorption fine structure)解析法またはX線光電子分光分析法(XPS:X-ray Photoelectron Spectroscopy)により実施することが挙げられる。
 XAFSについて、より具体的には、エックス線吸収端近傍構造(XANES:X-ray Absorption Near Edge Structure)解析法により、テルル原子の内殻電子が非占有準位および準連続準位へ励起する際のエネルギーに基づくX線吸収スペクトルから、テルル原子の化学状態(電子状態)を把握することができる。本明細書においてテルルの価数は、後述するように、SPring-8のビームラインBL14B2におけるXAFS分析装置を用いて透過法により測定したXANESスペクトルの4350eV近傍のピークのシフト量から算出した平均価数を採用している。なお、平均価数の算出に利用する吸収エネルギーは4350eV近傍のものに限定されることなく、例えばTe-K端、L端等の吸収エネルギーを利用することもできる。
In the present specification, the means for measuring the valence of tellurium is not particularly limited. For example, as a suitable method for measuring the valence of tellurium, the X-ray absorption fine structure (XAFS) analysis method or the X-ray photoelectron spectroscopy (XPS) method is used. Is mentioned.
For XAFS, more specifically, the X-ray Absorption Near Edge Structure (XANES) analysis method is used to excite the inner electrons of tellurium atoms to unoccupied and quasi-continuous levels. From the X-ray absorption spectrum based on energy, the chemical state (electronic state) of the tellurium atom can be grasped. In this specification, the valence of tellurium is the average valence calculated from the shift amount of the peak near 4350 eV of the XANES spectrum measured by the transmission method using the XAFS analyzer in the beam line BL14B2 of SPring-8 as described later. Is adopted. The absorbed energy used for calculating the average valence is not limited to the one near 4350 eV, and for example, absorbed energy at the Te-K end, L end, etc. can be used.
 また、XPSについては、超高真空下の試料表面にX線を照射して放出される光電子の運動エネルギーを観測することで、かかる表面の元素組成や化学状態に関する情報を得ることができる。具体的には、光電子のエネルギースペクトルを解析することで、物質表面に存在するテルル原子を同定するとともに、ナロースキャン分析に基づくテルルのピークの化学シフトから価数や結合状態に係る情報を得ることができる。テルルの価数は、XPS分析装置(アルバック・ファイ株式会社製、PHI5000)を用い、線源として例えば、Al-Kα線(hv=1486.6eV励起)を用いて得られたXPSスペクトルにおいて、例えば、結合エネルギーが576eV近傍のTe-3d5/2のピークを指標とし、テルルの価数と結合エネルギーのシフト量との関係から、テルルの平均価数を算出することで得た結果を採用することができる。なお、平均価数の算出に利用するピークはTe-3d5/2に限定されることなく、例えば、Te-3d3/2(586eV)等の他のピークとすることもできる。 As for XPS, information on the elemental composition and chemical state of the surface can be obtained by observing the kinetic energy of photoelectrons emitted by irradiating the sample surface under ultra-high vacuum with X-rays. Specifically, by analyzing the energy spectrum of photoelectrons, the tellurium atoms present on the material surface are identified, and information on the valence and bonding state is obtained from the chemical shift of the tellurium peak based on narrow scan analysis. Can do. The valence of tellurium is, for example, in an XPS spectrum obtained using an XPS analyzer (manufactured by ULVAC-PHI Co., Ltd., PHI5000) and using, for example, an Al—Kα ray (hv = 1486.6 eV excitation) as a radiation source. The results obtained by calculating the average valence of tellurium from the relationship between the valence of tellurium and the shift amount of the binding energy using the Te-3d 5/2 peak near the binding energy of 576 eV as an index are adopted. be able to. Note that the peak used for calculating the average valence is not limited to Te-3d 5/2 , and may be another peak such as Te-3d 3/2 (586 eV).
 ここに開示される導電性組成物の製造方法の好ましい一態様において、上記テルル含有組成物は、テルル(Te)を構成元素として含むテルル化合物粉末であることを特徴としている。
 かかる構成によると、テルルの配合方法や、配合割合の調整が容易となるために好ましい。
In a preferred embodiment of the method for producing a conductive composition disclosed herein, the tellurium-containing composition is a tellurium compound powder containing tellurium (Te) as a constituent element.
Such a configuration is preferable because the method for blending tellurium and the blending ratio can be easily adjusted.
 ここに開示される導電性組成物の製造方法の好ましい一態様において、上記テルル含有組成物は、テルル(Te)を構成元素として含むガラス組成物であることを特徴としている。
 かかる構成によると、ファイヤースルー時にガラス成分と共にテルルが基板にまで良好に到達し、低抵抗のオーミックコンタクトの実現に有効に寄与し得る。また、テルルを含むガラス組成物を有する導電性組成物を用いることで、接着強度の高い電極を形成することもできる。
In a preferred embodiment of the method for producing a conductive composition disclosed herein, the tellurium-containing composition is a glass composition containing tellurium (Te) as a constituent element.
According to such a configuration, tellurium can reach the substrate satisfactorily together with the glass component at the time of fire-through, and can contribute to the realization of a low-resistance ohmic contact. In addition, an electrode having high adhesive strength can be formed by using a conductive composition having a glass composition containing tellurium.
 ここに開示される導電性組成物の製造方法の好ましい一態様において、上記ガラス組成物は、テルルを含まない基本ガラス成分と、テルルを含むテルル含有ガラス成分との混合物であることを特徴としている。
 かかる構成によると、焼成後のテルルの価数の制御をより容易に行うことができ、オーミックコンタクトの改善効果の高い導電性組成物をより簡便に製造することができる。
In a preferred embodiment of the method for producing a conductive composition disclosed herein, the glass composition is a mixture of a basic glass component not containing tellurium and a tellurium-containing glass component containing tellurium. .
According to this configuration, the valence of tellurium after firing can be controlled more easily, and a conductive composition having a high effect of improving ohmic contact can be more easily produced.
 ここに開示される導電性組成物の製造方法の好ましい一態様において、上記テルル価数調整材は、Ti,V,Mn,Fe,Co,Ni,CuおよびZnからなる群から選択される少なくとも1種の金属元素を含む金属または金属化合物であることを特徴としている。
 焼成後の電極において、上記の金属元素は電子状態が環境によって変動しやすいという特性を有している。かかる構成によると、テルル含有組成物に含まれるテルルの価数をより好適に制御することができる。また、これらの金属または金属化合物を含むことで、形成される電極の接着強度の向上と、接触抵抗の低減をも図ることができる。
In a preferred embodiment of the method for producing a conductive composition disclosed herein, the tellurium valence adjusting material is at least one selected from the group consisting of Ti, V, Mn, Fe, Co, Ni, Cu and Zn. It is characterized by being a metal or metal compound containing a seed metal element.
In the electrode after firing, the metal element has a characteristic that the electronic state is likely to vary depending on the environment. According to such a configuration, the valence of tellurium contained in the tellurium-containing composition can be more suitably controlled. Further, by including these metals or metal compounds, it is possible to improve the adhesion strength of the formed electrode and reduce the contact resistance.
 他の側面において、本発明は、上記のいずれかの製造方法で製造された導電性組成物を提供する。これによると、配合されたテルル成分が焼成後の電極において良好な(低抵抗な)オーミックコンタクトの形成に十分寄与し得る状態で存在し得て、なおかつ、接着性に優れた電極が形成できる、導電性組成物が提供される。かかる導電性組成物は、使用する基板に応じてテルルが最適な電子状態(電子配置)で存在し得るよう配合が調整されているため、太陽電池の電極を形成するために用いた場合、開放電圧、曲線因子およびエネルギー変換効率等の電気特性に優れた太陽電池を実現し得る。かかる側面から、本発明は、この導電性組成物を用いて形成された電極を備えていることで、電気特性および信頼性に優れた太陽電池をも提供する。 In another aspect, the present invention provides a conductive composition produced by any one of the production methods described above. According to this, the compounded tellurium component can exist in a state that can sufficiently contribute to the formation of a good (low resistance) ohmic contact in the electrode after firing, and an electrode having excellent adhesion can be formed. A conductive composition is provided. Such a conductive composition is adjusted so that tellurium can exist in an optimal electronic state (electronic configuration) depending on the substrate used, so that it is open when used to form solar cell electrodes. A solar cell excellent in electrical characteristics such as voltage, fill factor and energy conversion efficiency can be realized. From this aspect, the present invention also provides a solar cell having excellent electrical characteristics and reliability by including an electrode formed using this conductive composition.
図1は、本発明の導電性組成物を用いて構成された太陽電池の構造の一例を模式的に示した断面図である。FIG. 1 is a cross-sectional view schematically showing an example of the structure of a solar cell configured using the conductive composition of the present invention. 図2は、従来の導電性組成物を用いて構成された太陽電池の構造の一例を模式的に示した断面図である。FIG. 2 is a cross-sectional view schematically showing an example of the structure of a solar cell configured using a conventional conductive composition.
 以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事項であって本発明の実施に必要な事柄(例えば導電性組成物の基板への付与方法や焼成方法、太陽電池の構成等)は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。 Hereinafter, preferred embodiments of the present invention will be described. In addition, matters other than the matters specifically mentioned in the present specification and matters necessary for carrying out the present invention (for example, a method of applying a conductive composition to a substrate, a baking method, a configuration of a solar cell, etc.) It can be grasped as a design matter of a person skilled in the art based on the prior art in the field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.
 ここで開示される導電性組成物の製造方法は、太陽電池における銀(Ag)電極を形成する用途に用いられるAg電極形成用の導電性組成物の製造を対象としている。かかる製造方法は、上記の通り、(1)導電性組成物の構成材料である銀粉末と、テルル含有組成物と、テルル価数調整材とを用意すること、(2)該導電性組成物を上記太陽電池の基板に塗布して焼成したときの当該基板と上記導電性組成物との界面に含まれるテルル(Te)の平均価数が4.3以上5.1以下となるように、上記銀粉末、上記テルル含有組成物および上記テルル価数調整材の配合を調整して導電性組成物を調製すること、を包含している。 The method for producing a conductive composition disclosed herein is intended for production of a conductive composition for forming an Ag electrode used for forming a silver (Ag) electrode in a solar cell. As described above, the production method includes (1) preparing silver powder that is a constituent material of the conductive composition, a tellurium-containing composition, and a tellurium valence adjusting material, and (2) the conductive composition. So that the average valence of tellurium (Te) contained in the interface between the substrate and the conductive composition when it is applied to the substrate of the solar cell and baked is 4.3 or more and 5.1 or less. Adjusting the compounding of the silver powder, the tellurium-containing composition and the tellurium valence adjusting material to prepare a conductive composition.
  [銀粉末]
 ここで開示される導電性組成物に主たる固形分として含まれる銀粉末は、銀(Ag)を主体とする粒子の集合体であり、典型的には、Ag単体からなる粒子の集合体である。しかし、かかる銀粉末が、Ag以外の不純物やAg主体の合金を微量含むものであっても、全体としてAg主体の粒子の集合体であれば、ここでいう「銀粉末」に包含され得る。なお、かかる銀粉末は、従来公知の製造方法によって製造されたものでよく、特別な製造手段を要求するものではない。
 かかる銀粉末を構成する粒子の形状については特に限定されない。典型的には球状であるが、いわゆる真球状のものに限られない。球状以外には、例えばフレーク形状や不規則形状のものが挙げられる。かかる銀粉末はこのような種々の形状の粒子から構成されていてもよい。かかる銀粉末が平均粒径の小さい(典型的には数μmサイズ)粒子から構成される場合には、該粒子(一次粒子)の70質量%以上が球状またはそれに類似する形状を有することが好ましい。例えば、かかる銀粉末を構成する粒子の70質量%以上がアスペクト比(すなわち、粒子の短径に対する長径の比)1~1.5であるような銀粉末が好ましい。
[Silver powder]
The silver powder contained as the main solid content in the conductive composition disclosed herein is an aggregate of particles mainly composed of silver (Ag), and is typically an aggregate of particles composed of Ag alone. . However, even if such silver powder contains a small amount of impurities other than Ag and Ag-based alloys, it can be included in the “silver powder” as long as it is an aggregate of Ag-based particles as a whole. The silver powder may be produced by a conventionally known production method and does not require special production means.
The shape of the particles constituting such silver powder is not particularly limited. Although it is typically spherical, it is not limited to a so-called true spherical shape. Other than spherical shapes, for example, flake shapes and irregular shapes can be mentioned. Such silver powder may be composed of particles having such various shapes. When such silver powder is composed of particles having a small average particle size (typically several μm size), it is preferable that 70% by mass or more of the particles (primary particles) have a spherical shape or a similar shape. . For example, a silver powder in which 70% by mass or more of the particles constituting the silver powder has an aspect ratio (that is, the ratio of the major axis to the minor axis) of 1 to 1.5 is preferable.
 なお、太陽電池を構成する基板(例えばSi基板)の一つの面(典型的には受光面であるが、裏面であっても良い)にAg電極を形成する場合、所望の寸法(線幅、膜厚など)および形状を実現し得るよう導電性組成物の塗布量および塗布形態等を考慮することができる。ここで、かかる太陽電池の受光面電極を形成するのに好適な銀粉末として、特に制限されるものではないが、該粉末を構成する粒子の平均粒径が20μm以下であるものが適当であり、好ましくは0.01μm以上10μm以下であり、より好ましくは0.3μm以上5μm以下であり、例えば2μm±1μmである。なお、ここでいう平均粒径とは、レーザー回折・散乱法により計測される粒度分布における累積体積50%時の粒径、すなわちD50(メジアン径)をいう。
 例えば、平均粒径の差が互いに異なる複数の銀粉末(典型的には2種類)同士を混合し、混合粉末の平均粒径が上記範囲内にあるような銀(混合)粉末を用いることもできる。上記のような平均粒径の銀粉末を用いることにより、受光面電極として好適な緻密なAg電極を形成することができる。
In addition, when forming an Ag electrode on one surface (typically a light-receiving surface, but may be the back surface) of a substrate (for example, a Si substrate) constituting a solar cell, a desired dimension (line width, The coating amount and the coating form of the conductive composition can be taken into consideration so that the film thickness and the like can be realized. Here, the silver powder suitable for forming the light-receiving surface electrode of the solar cell is not particularly limited, but those having an average particle diameter of 20 μm or less of the particles constituting the powder are suitable. The thickness is preferably 0.01 μm or more and 10 μm or less, more preferably 0.3 μm or more and 5 μm or less, for example, 2 μm ± 1 μm. Here, the average particle diameter means a particle diameter at a cumulative volume of 50% in a particle size distribution measured by a laser diffraction / scattering method, that is, D50 (median diameter).
For example, it is also possible to use a silver (mixed) powder in which a plurality of silver powders (typically two types) having different average particle diameters are mixed and the average particle diameter of the mixed powder is within the above range. it can. By using silver powder having an average particle diameter as described above, a dense Ag electrode suitable as a light-receiving surface electrode can be formed.
 ここで開示される導電性組成物中の上記銀粉末の含有量としては、特に制限されないが、該導電性組成物(固形分)の全体を100質量%としたとき、その50質量%以上99質量%以下、より好ましくは65質量%以上98質量%以下、例えば75質量%以上95質量%以下が銀粉末となるように含有率を調整することが好ましい。製造された導電性組成物中の銀粉末含有率が上記範囲内にあるような場合には、導電性が高く、緻密性がより向上されたAg電極(膜)を形成することができる。 The content of the silver powder in the conductive composition disclosed herein is not particularly limited, but when the total amount of the conductive composition (solid content) is 100% by mass, 50% by mass to 99% thereof. It is preferable to adjust the content so that the silver powder is not more than mass%, more preferably not less than 65 mass% and not more than 98 mass%, for example, not less than 75 mass% and not more than 95 mass%. When the silver powder content rate in the manufactured electroconductive composition exists in the said range, Ag electrode (film | membrane) with high electroconductivity and the further improved compactness can be formed.
  [テルル含有組成物]
 テルル含有組成物としては、テルル(Te)を構成元素として含む粉末状の材料であれば特に制限なく使用することができる。例えば、具体的には、テルル(Te)の単体あるいはテルルを構成元素として含む有機化合物、無機化合物等の化合物粉末、粉末状のガラス組成物等であってよい。これらは、以下に例示するいずれか2種以上の混合物や複合化物であってもよい。
   [テルル含有有機物または無機物]
 有機化合物としては、各種のテルロール、テルリド、テルロキシド、テルロンおよびその誘導体等が例示される。テルル含有無機化合物としては、テルルと他の金属との化合物、酸化物、オキソ酸、水酸化物、ハロゲン化物、硫酸塩、リン酸塩、硝酸塩、炭酸塩、酢酸塩、金属錯体(配位化合物)等が例示される。これら無機または有機のテルル含有組成物としては、代表的には、テトラテルラフルバレン(TTeF)、TeO,Te,Te,TeO等のテルル酸化物、Te(OH)で表されるテルル酸、メタテルル酸カリウム、メタテルル酸ナトリウム等のテルル酸塩、テルル化亜鉛、テルル化アルミニウム、テルル化コバルト、テルル化スズ、テルル化タングステン、テルル化チタン、テルル化銅、テルル化鉛、テルル化ビスマス、テルル化マンガン、テルル化モリブデン等のテルル化金属化合物が例示される。これらのテルル含有組成物において、テルルは例えば0価、3価、4価、5価および6価等の値をとり得る。ここで用いるテルル含有組成物としては、好ましくは、テルルが5価ないしは6価で存在する化合物であり、例えば、Te、TeO、Te(OH)等が例示される。
[Tellurium-containing composition]
As the tellurium-containing composition, any powdered material containing tellurium (Te) as a constituent element can be used without particular limitation. For example, specifically, it may be a tellurium (Te) simple substance, an organic compound containing tellurium as a constituent element, a compound powder such as an inorganic compound, a powdery glass composition, or the like. These may be a mixture or composite of any two or more types exemplified below.
[Tellurium-containing organic or inorganic substances]
Examples of organic compounds include various tellurols, tellurides, telluroxides, tellurons and derivatives thereof. Tellurium-containing inorganic compounds include tellurium and other metal compounds, oxides, oxoacids, hydroxides, halides, sulfates, phosphates, nitrates, carbonates, acetates, metal complexes (coordination compounds) And the like. As these inorganic or organic tellurium-containing compositions, typically, tellurium oxide such as tetratellurafulvalene (TTeF), TeO 2 , Te 2 O 3 , Te 2 O 5 , TeO 3 , Te (OH), etc. Telluric acid salt represented by 6 , such as telluric acid, potassium metatellate, sodium metatellurate, zinc telluride, aluminum telluride, cobalt telluride, tin telluride, tungsten telluride, titanium telluride, copper telluride, tellurium Examples thereof include metal telluride compounds such as lead iodide, bismuth telluride, manganese telluride, and molybdenum telluride. In these tellurium-containing compositions, tellurium can have values such as 0, 3, 4, 5, and 6. The tellurium-containing composition used here is preferably a compound in which tellurium is pentavalent or hexavalent, and examples thereof include Te 2 O 5 , TeO 3 , and Te (OH) 6 .
   [テルル含有ガラス成分]
 また、テルル含有ガラス成分としては、ガラス構成成分としてテルルを含む各種のガラス組成物や、テルルを実質的に含まないガラス組成物の表面にテルル化合物が担持された形態のテルル化合物担持ガラス組成物等を考慮することができる。すなわち、テルル含有ガラス成分において、テルル成分は、ガラス組成物から乖離して存在する成分としてではなく、ガラス組成物そのものを構成する成分、あるいは、ガラス組成物から遊離することなく一体的に存在している。かかるテルル含有ガラス成分は、太陽電池の受光面電極としてのAg電極をファイヤースルー法により反射防止膜の上から形成するために有効に作用する成分となり得る。また、形成された電極の基板への接着強度を向上させる無機添加材でもあり得る。
[Tellurium-containing glass component]
In addition, as the tellurium-containing glass component, various glass compositions containing tellurium as a glass constituent component, and tellurium compound-supported glass compositions in which a tellurium compound is supported on the surface of a glass composition substantially free of tellurium Etc. can be considered. That is, in the tellurium-containing glass component, the tellurium component is not present as a component that is separated from the glass composition, but is present as a component that constitutes the glass composition itself or without being liberated from the glass composition. ing. Such a tellurium-containing glass component can be a component that effectively acts to form an Ag electrode as a light-receiving surface electrode of a solar cell from above the antireflection film by a fire-through method. It can also be an inorganic additive that improves the adhesion strength of the formed electrode to the substrate.
 ガラス構成成分としてテルルを含むガラス組成物を用いることで、ガラス組成物の軟化温度を低下させることができ、より密着性の高い導電性組成物を実現することができる。ガラス構成成分としてテルルを含むガラス組成物としては、特に組成が限定されるものではないが、例えば、下記に示す組成(酸化物換算組成;ガラスフリット全体を100mol%とする。)のガラス組成物を好ましく用いることができる。 By using a glass composition containing tellurium as a glass constituent component, the softening temperature of the glass composition can be lowered, and a conductive composition with higher adhesion can be realized. The composition of the glass composition containing tellurium as a glass component is not particularly limited. For example, a glass composition having the following composition (oxide conversion composition; the entire glass frit is 100 mol%) is used. Can be preferably used.
 かかるテルル含有ガラス組成物の構成(酸化物換算組成)について以下に詳細に説明する。
 TeOは他の元素と共にガラスの骨格を構成する成分(ガラスネットワークフォーマー)となり得、ガラスの軟化点を低下させる機能を有する。また、太陽電池の電極形成用の導電性組成物中に含まれることで、ファイヤースルー時の過度な基板の浸食を抑制する効果が発揮される。かかるTeOは、例えば、ガラス組成物中に70mol%以下程度の割合で含むことができる(なお、後述のテルルを含まないガラス組成物においては、0mol%であり得る)。TeOは比較的高価であるため、配合量が多すぎる場合はコスト高となるために好ましくない。TeOは5~65mol%程度の割合であるのが好ましく、より好ましくは10~50mol%であるのが望ましい。
The structure (oxide conversion composition) of such tellurium-containing glass composition will be described in detail below.
TeO 2 can be a component (glass network former) constituting a glass skeleton together with other elements, and has a function of lowering the softening point of glass. Moreover, the effect which suppresses the excessive corrosion of the board | substrate at the time of a fire through is exhibited by being contained in the electroconductive composition for electrode formation of a solar cell. Such TeO 2 can be contained, for example, in a ratio of about 70 mol% or less in the glass composition (in the glass composition not containing tellurium described later, it can be 0 mol%). Since TeO 2 is relatively expensive, if the amount is too large, the cost increases, which is not preferable. TeO 2 is preferably in a proportion of about 5 to 65 mol%, more preferably 10 to 50 mol%.
 SiOはガラスの骨格を構成する成分(ガラスネットワークフォーマー)であり、例えば、ガラス組成物中に0~70mol%程度の割合で含むことができる。SiOの配合量が増大するにつれて、ガラスの溶解性が低下するとともに軟化点が上昇する。SiOが、例えば70mol%を超過すると、ファイヤースルー特性が低下するため好ましくない。ガラス組成物中にSiOに代わるガラスネットワークフォーマーが含まれる場合には、SiOの含有量は0mol%(すなわち、SiOは実質的に含まれない)であっても良い。SiOが含まれる場合には、ガラス構造の化学的安定性、耐久性やハンドリング性等の観点から、SiOは5~65mol%程度の割合であるのが好ましく、より好ましくは10~50mol%であるのが望ましい。 SiO 2 is a component constituting a glass skeleton (glass network former), and can be contained in the glass composition at a ratio of about 0 to 70 mol%, for example. As the amount of SiO 2 increases, the solubility of the glass decreases and the softening point increases. For example, if SiO 2 exceeds 70 mol%, the fire-through characteristic is deteriorated, which is not preferable. When a glass network former in place of SiO 2 is contained in the glass composition, the content of SiO 2 may be 0 mol% (that is, SiO 2 is not substantially contained). When SiO 2 is contained, it is preferable that SiO 2 is in a proportion of about 5 to 65 mol%, more preferably 10 to 50 mol%, from the viewpoint of the chemical stability, durability and handling properties of the glass structure. It is desirable that
 Bは、ガラス組成物の熱膨張を抑制するとともに粘度および溶融温度を低下させる機能を示し、ガラス組成物中に0~40mol%程度の割合で含むことができる。Bが多すぎると、ガラス組成物を調整する際の溶解および冷却中に結晶析出が起こりやすくなるために好ましくない。Bは長期耐久性(特には長期高温耐久性)の低下を引き起こす要因となり得るため、Bの含有量は0mol%(すなわち、Bは実質的に含まれない)であっても良い。Bは、1~30mol%程度の割合であるのが好ましく、より好ましくは5~25mol%程度である。 B 2 O 3 has a function of suppressing the thermal expansion of the glass composition and lowering the viscosity and the melting temperature, and can be contained in the glass composition at a ratio of about 0 to 40 mol%. When there is too much B 2 O 3 , crystal precipitation is likely to occur during melting and cooling when adjusting the glass composition, which is not preferable. Since B 2 O 3 can cause a decrease in long-term durability (particularly long-term high-temperature durability), the content of B 2 O 3 is 0 mol% (that is, B 2 O 3 is not substantially contained). It may be. B 2 O 3 is preferably in a ratio of about 1 to 30 mol%, more preferably about 5 to 25 mol%.
 Biは任意の添加成分であって、熱膨張係数を調整する成分である。また、ガラス接合材が多成分系で構成されることで、物理的安定性を向上することもできる。ガラス組成物中のBiの割合は、例えば、1~30mol%程度の割合であるのが好ましく、より好ましくは5~25mol%程度である。 Bi 2 O 3 is an optional additive component that adjusts the thermal expansion coefficient. Moreover, physical stability can also be improved because a glass bonding material is comprised by a multi-component system. The ratio of Bi 2 O 3 in the glass composition is preferably about 1 to 30 mol%, and more preferably about 5 to 25 mol%.
 PbOは任意の添加成分であって、ガラスの軟化点を低下させる目的で、例えば、0~65mol%程度の割合で含むことができる。PbOの含有量は、人的健康および環境への影響を配慮して0mol%(すなわち、Bは実質的に含まれない)であっても良い。PbOを含む配合では、PbOの割合は、例えば、10~50mol%程度の割合であるのが好ましく、より好ましくは30~40mol%程度である。 PbO is an optional additive component and can be contained, for example, in a ratio of about 0 to 65 mol% for the purpose of lowering the softening point of the glass. The content of PbO may be 0 mol% (that is, B 2 O 3 is not substantially included) in consideration of the influence on human health and the environment. In the blend containing PbO, the proportion of PbO is preferably about 10 to 50 mol%, and more preferably about 30 to 40 mol%.
 アルカリ土類金属成分(MO:具体的には、MgO、CaO、ZnO、SrOおよびBaOのうちの少なくとも1種)については、必ずしも必要な成分ではないものの、網目修飾酸化物(ネットワークモディファイア)としてガラス組成物の熱的安定性の制御に寄与する成分である。これらを含有させる場合は、例えば、いずれか1種以上を合計で1~25mol%程度の割合で含ませることができ、合計で1~10mol%程度の割合であるのがより好ましい。 Alkaline earth metal component (MO: specifically, at least one of MgO, CaO, ZnO, SrO and BaO) is not necessarily a necessary component, but as a network modifier oxide (network modifier) It is a component that contributes to control of the thermal stability of the glass composition. When these are included, for example, any one or more of them can be included in a total ratio of about 1 to 25 mol%, and the total ratio is more preferably about 1 to 10 mol%.
 アルカリ金属成分(RO:具体的には、LiO、NaOおよびKOのうちの少なくとも1種)についても、必ずしも必要な成分ではないものの、ガラス組成物の溶融性を増大させる成分としていずれか1種以上を含むことができる。これらの成分は、例えば、合計で1~15mol%程度の割合で含ませることができ、例えば、1~7mol%程度であるのがより好ましい。 An alkali metal component (RO: specifically, at least one of Li 2 O, Na 2 O, and K 2 O) is also a component that increases the meltability of the glass composition, although it is not necessarily a necessary component. Any one or more can be included. These components can be included in a ratio of about 1 to 15 mol% in total, for example, and more preferably about 1 to 7 mol%.
 ここに開示される導電性組成物に含まれるガラス組成物としては、上述したような典型的なガラス構成成分のみから構成されていてもよく、あるいは、本発明の効果を著しく損なわない限りにおいて、上記以外の任意の成分を含むものであってもよい。そのような添加成分としては、酸化物の形態で、例えば、Al、TiO、ZrO、WO、V、Nb、FeO、CuO、SnO、P、La、CeO等が挙げられる。また、必要に応じて従来この種のガラス接合材に一般的に使用されている添加剤(公知の清澄剤、着色剤等)をも含むことができる。これら付加的な構成成分や各種添加剤の割合は、ガラス組成物全体のおよそ5mol%未満(典型的には4mol%未満、例えば1mol%未満)とすることが好ましい。その他、上記組成に示す以外の成分であって、原料や製造工程に由来する不可避的な不純物の混入が許容されることは言うまでもない。
 その一方で、必ずしもこれに限定されるものではないが、好適な一態様では、上記鉛(Pb)成分に加えて、ヒ素(As)成分を実質的に含まない配合とすることができる。ヒ素成分や鉛成分は、人体や環境に対して悪影響となり得るため、環境性や作業性、安全性の観点から好ましくない。
As a glass composition contained in the conductive composition disclosed herein, it may be composed only of typical glass components as described above, or as long as the effect of the present invention is not significantly impaired, Arbitrary components other than the above may be included. Examples of such additional components include oxides such as Al 2 O 3 , TiO 2 , ZrO 2 , WO 3 , V 2 O 5 , Nb 2 O 5 , FeO, CuO, SnO 2 , P 2 O. 5 , La 2 O 3 , CeO 2 and the like. Moreover, the additive (a well-known clarifying agent, coloring agent, etc.) generally used conventionally for this kind of glass bonding material as needed can also be included. The ratio of these additional components and various additives is preferably less than about 5 mol% (typically less than 4 mol%, for example, less than 1 mol%) of the entire glass composition. In addition, it is needless to say that inevitable impurities other than those shown in the above composition, which are derived from raw materials and manufacturing processes, are allowed.
On the other hand, although not necessarily limited to this, in a suitable one aspect | mode, it can be set as the mixing | blending which does not contain an arsenic (As) component substantially in addition to the said lead (Pb) component. Arsenic components and lead components are not preferable from the viewpoints of environmental performance, workability, and safety because they can adversely affect the human body and the environment.
 以上の通りのテルル含有ガラス組成物として、より具体的には、例えば、下記のガラスL、ガラスMおよびガラスNが好ましい例として示される。
[ガラスL]
  SiO2 :  9mol%以上53mol%以下
  B3  :  1mol%以上 7mol%以下
  PbO  : 10mol%以上57mol%以下
  TeO2 : 10mol%以上70mol%以下
[ガラスM]
  SiO2 :  9mol%以上65mol%以下
  B3  :  1mol%以上18mol%以下
  PbO  :  9mol%以上65mol%以下
  LiO :0.6mol%以上18mol%以下
  TeO2 : 10mol%以上70mol%以下
As the tellurium-containing glass composition as described above, more specifically, for example, the following glass L, glass M, and glass N are shown as preferred examples.
[Glass L]
SiO 2 : 9 mol% or more and 53 mol% or less B 2 O 3 : 1 mol% or more and 7 mol% or less PbO: 10 mol% or more and 57 mol% or less TeO 2 : 10 mol% or more and 70 mol% or less [Glass M]
SiO 2 : 9 mol% or more and 65 mol% or less B 2 O 3 : 1 mol% or more and 18 mol% or less PbO: 9 mol% or more and 65 mol% or less Li 2 O: 0.6 mol% or more and 18 mol% or less TeO 2 : 10 mol% or more and 70 mol% or less
[ガラスN]
  Bi: 10mol%以上29mol%以下
  B  : 10mol%以上33mol%以下
  SiO :  0mol%以上20mol%以下
  ZnO  : 10mol%以上30mol%以下
  TeO : 10mol%以上60mol%以下
  LiO、NaOおよびKOの合計:8mol%以上21mol%以下
 本発明の導電性組成物は、上記のガラスL、ガラスMおよびガラスNの何れかを用いたとき、太陽電池の電気特性を特に好適に向上させることができる。すなわち、ファイヤースルー効果を発現するガラス組成物として、例えば、鉛含有ガラスであるガラスLおよびガラスMや、無鉛ガラスであるガラスNの何れを用いても、太陽電池の受光面電極の形成を好適に行うことが可能となる。
[Glass N]
Bi 2 O 3 : 10 mol% or more and 29 mol% or less B 2 O 3 : 10 mol% or more and 33 mol% or less SiO 2 : 0 mol% or more and 20 mol% or less ZnO: 10 mol% or more and 30 mol% or less TeO 2 : 10 mol% or more and 60 mol% or less Li 2 Total of O, Na 2 O and K 2 O: 8 mol% or more and 21 mol% or less When the conductive composition of the present invention uses any one of the above glass L, glass M and glass N, the electrical characteristics of the solar cell Can be improved particularly preferably. That is, as a glass composition that exhibits a fire-through effect, for example, any of glass L and glass M, which are lead-containing glasses, and glass N, which is lead-free glass, is suitable for forming a light-receiving surface electrode of a solar cell. Can be performed.
 一方で、テルル化合物担持ガラス組成物において、テルル化合物は、担体としてのガラス組成物と不可分一体的に結合された状態でありながら、ガラスを構成する成分としてではなく、主として結晶相として含まれている。例えば、具体的には、一個のフレーク状または粉末状のガラスフリットに対し、一個のあるいは複数個のテルル化合物粒子が結合し、ガラスフリットに担持された状態であり得る。テルル化合物粒子を担持したガラスフリットが更に複数結合するなどしていても良い。ここで、ガラスフリットとテルル化合物粒子の相対的な大きさについては特に制限はなく、いずれの方が大きくても良く、また同程度の大きさであって良い。両者の相対的な位置関係が保たれていれば良い。 On the other hand, in the tellurium compound-supported glass composition, the tellurium compound is inseparably integrated with the glass composition as a carrier, but is mainly included as a crystalline phase, not as a component constituting the glass. Yes. For example, specifically, one or a plurality of tellurium compound particles may be bonded to one flaky or powdery glass frit and supported on the glass frit. A plurality of glass frit carrying tellurium compound particles may be further bonded. Here, the relative sizes of the glass frit and the tellurium compound particles are not particularly limited, and either of them may be larger or the same size. It is sufficient that the relative positional relationship between the two is maintained.
 かかるテルル化合物担持ガラス組成物の構造に着目すると、テルル化合物担持ガラス組成物は、ガラス組成物(ガラス相)と、結晶質のテルル化合物相(結晶相)とが界面を介して一体化された構造を有している。ここで、ガラス相は、テルル(Te)を実質的に含まないガラスを主成分としている。すなわち、ガラス相はTeを含んでいても良いが、主たるガラス骨格を形成する成分としてではなく、副次的な成分として含み得る。また、テルル化合物相は、テルル化合物を主成分(例えば、50質量%以上がテルル化合物で占められることを意図する。)とする結晶質であり、ガラス相とは結晶構造を有する点で明瞭に区別することができる。ガラス相は、1種類のガラス相で構成されていても良いし、複数種のガラス相が存在していても良い。また、テルル化合物相は、1種類のテルル化合物相で構成されていても良いし、複数種のテルル化合物相が存在していても良い。例えば、一つのガラス相に、組成の異なる複数のテルル化合物相が一体化されていても良いし、組成の異なる複数のガラス相と組成の異なる複数のテルル化合物相とが一体化されていても良い。 Paying attention to the structure of the tellurium compound-supported glass composition, the tellurium compound-supported glass composition has a glass composition (glass phase) and a crystalline tellurium compound phase (crystal phase) integrated via an interface. It has a structure. Here, the glass phase is mainly composed of glass that does not substantially contain tellurium (Te). That is, the glass phase may contain Te, but may be contained as a secondary component, not as a component that forms the main glass skeleton. The tellurium compound phase is crystalline with the tellurium compound as a main component (for example, it is intended that 50% by mass or more is occupied by the tellurium compound), and the glass phase clearly has a crystal structure. Can be distinguished. The glass phase may be composed of one type of glass phase, or a plurality of types of glass phases may be present. Further, the tellurium compound phase may be composed of one kind of tellurium compound phase, or a plurality of kinds of tellurium compound phases may be present. For example, a plurality of tellurium compound phases having different compositions may be integrated into one glass phase, or a plurality of glass phases having different compositions and a plurality of tellurium compound phases having different compositions may be integrated. good.
 これらのガラス相とテルル化合物相とは、接合界面において互いの成分が拡散することもあり得るため、例えば、界面近傍においては互いの成分を含んでいても良い。すなわち、界面近傍においては互いの成分が偏在した形態であり得る。典型的には、例えば、ガラス相は、Teをテルル化合物相との界面近傍に含み得る。しかしながら、ガラス相の中心付近においてはTeを含まない形態であり得る。なお、ガラス相の大きさによっては中心付近においてTeを含む形態も考えられるが、かかる場合も、Teは主たるガラスネットワークフォーマー(すなわちガラス骨格)としては存在しないと理解できる。また、テルル化合物相は、ガラス相との界面近傍においてガラス相の構成成分を含み得る。この場合、ガラス相の構成成分は、テルル化合物の一構成成分として局所的に含まれることとなる。
 すなわち、テルル担持ガラスフリットにおいて、ガラス相とテルル化合物相は界面を介して接合し、界面近傍において互いの成分が拡散し得るものの、一方の相が他方の相に完全に取り込まれることはなく、本質的には独立した異なる相として存在している。
Since these glass phase and tellurium compound phase may diffuse each other at the bonding interface, for example, they may contain each other in the vicinity of the interface. In other words, the components may be unevenly distributed in the vicinity of the interface. Typically, for example, the glass phase may contain Te near the interface with the tellurium compound phase. However, Te may not be included in the vicinity of the center of the glass phase. Depending on the size of the glass phase, a form containing Te in the vicinity of the center is also conceivable, but in such a case, it can be understood that Te does not exist as a main glass network former (ie, glass skeleton). In addition, the tellurium compound phase may include a constituent component of the glass phase in the vicinity of the interface with the glass phase. In this case, the constituent component of the glass phase is locally contained as one constituent component of the tellurium compound.
That is, in the tellurium-supported glass frit, the glass phase and the tellurium compound phase are bonded via the interface, and the components of each other can diffuse near the interface, but one phase is not completely taken into the other phase, In essence, it exists as a separate and distinct phase.
 かかるテルル担持ガラス組成物において、テルル化合物を担持するガラス組成物(ガラス相であり得る。以下同じ。)の形状については特に制限はなく、典型的には、ガラスを粉砕する等して得られる、フレーク状または粉末状のガラスであって良い。また、組成についても特に制限はなく、従来より、この種の導電性組成物に用いられているガラスフリット等と同様のものとすることができる。
 このようなガラスフリットとしては、例えば、鉛系、亜鉛系、ホウケイ酸系、アルカリ系のガラス、および酸化バリウムや酸化ビスマス等を含有するガラス、またはこれら2種以上の組合せ等からなるものが例示される。かかるガラスフリットの組成については、上記のテルル含有ガラス組成物の構成(TeO以外)に準じて考慮することができる。より具体的には、例えば、以下に示すような代表組成(酸化物換算組成;ガラスフリット全体を100mol%とする。)を有するガラス組成物が好ましい例として挙げられる。
In such a tellurium-supported glass composition, the shape of the glass composition supporting the tellurium compound (which may be a glass phase; the same shall apply hereinafter) is not particularly limited, and is typically obtained by pulverizing glass or the like. The glass may be in the form of flakes or powder. The composition is not particularly limited, and can be the same as the glass frit or the like conventionally used for this type of conductive composition.
Examples of such glass frit include, for example, lead-based, zinc-based, borosilicate-based, alkaline-based glass, glass containing barium oxide, bismuth oxide, or a combination of two or more of these. Is done. The composition of the glass frit can be considered according to the configuration of the tellurium-containing glass composition (other than TeO 2 ). More specifically, for example, a glass composition having a representative composition as shown below (an oxide conversion composition; the entire glass frit is 100 mol%) is given as a preferred example.
[ガラスL’]
  SiO2 :  9mol%以上53mol%以下
  B3  :  1mol%以上 7mol%以下
  PbO : 46mol%以上57mol%以下
[ガラスM’]
  SiO2 : 20mol%以上65mol%以下
  B3  :  1mol%以上18mol%以下
  PbO : 20mol%以上65mol%以下
  LiO :0.6mol%以上18mol%以下
[Glass L ']
SiO 2 : 9 mol% or more and 53 mol% or less B 2 O 3 : 1 mol% or more and 7 mol% or less PbO: 46 mol% or more and 57 mol% or less [Glass M ′]
SiO 2: 20 mol% or more 65 mol% or less B 2 O 3: more than 1 mol% 18 mol% or less PbO: 20 mol% or more 65 mol% or less Li 2 O: 0.6mol% or more 18 mol% or less
[ガラスN’]
  Bi: 10mol%以上29mol%以下
  B : 20mol%以上33mol%以下
  SiO :  0mol%以上20mol%以下
  ZnO : 15mol%以上30mol%以下
  LiO、NaOおよびKOの合計:8mol%以上21mol%以下
[Glass N ']
Bi 2 O 3 : 10 mol% or more and 29 mol% or less B 2 O 3 : 20 mol% or more and 33 mol% or less SiO 2 : 0 mol% or more and 20 mol% or less ZnO: 15 mol% or more and 30 mol% or less Li 2 O, Na 2 O and K 2 O Total: 8 mol% or more and 21 mol% or less
 なお、上記の組成は代表的なものであって、基板との良好な付着性や、電極膜の形成性、反応反射防止膜への浸食性、良好なオーミックコンタクトを得る目的等で、各種の成分が調整されたり、更なるガラス修飾成分(アルカリ金属元素、アルカリ土類金属元素やその他の各種のガラス形成成分)が添加されてよいことは言うまでもない。 The above composition is representative, and various kinds of materials are used for the purpose of obtaining good adhesion to the substrate, electrode film formability, erosion to the reaction antireflection film, and good ohmic contact. It goes without saying that the components may be adjusted and further glass modifying components (alkali metal elements, alkaline earth metal elements and other various glass forming components) may be added.
 また、上記ガラス組成物に担持されるテルル化合物についても特に制限はなく、例えば上記に例示した各種のテルル化合物を考慮することができる。ガラスフリットに担持されるテルル化合物の割合についても特に制限はないが、例えば、おおよその目安として、上記のテルル化合物が、ガラスフリット100質量部に対して、酸化テルル(TeO)に換算した時の質量で20質量部~60質量部の割合で担持されているのが好ましく、より好ましくは30質量部~50質量部程度である。 Moreover, there is no restriction | limiting in particular also about the tellurium compound carry | supported by the said glass composition, For example, the various tellurium compounds illustrated above can be considered. The ratio of the tellurium compound supported on the glass frit is not particularly limited. For example, when the tellurium compound is converted to tellurium oxide (TeO 2 ) with respect to 100 parts by mass of the glass frit, as an approximate guideline. It is preferably carried at a ratio of 20 parts by mass to 60 parts by mass, more preferably about 30 parts by mass to 50 parts by mass.
 以上の構成のテルル担持ガラス組成物によると、導電性組成物中においてテルル化合物はガラス組成物と均一すぎることなく不均一すぎることなく、近すぎることなく離れすぎることなく、好適な状態で存在していると考えられる。この好適な位置関係は、導電性組成物の調製時から、かかる導電性組成物の塗布、乾燥の間はもちろんのこと、焼成によりガラス成分が溶融してしまう迄の間、継続して維持される。このようなテルル担持ガラス組成物を含む導電性組成物によると、テルル化合物を単独のペースト構成成分として含む銀ペーストに比べて、低抵抗で高いエネルギー変換効率を実現し得る電極を形成することができる。また、かかるテルル担持ガラス組成物を含む導電性組成物によると、テルルをネットワークフォーマーとして含むガラスフリットを含む導電性組成物に比べて、接着強度の高い電極を形成することができる。すなわち、高い接着強度(例えば、ハンダ強度)を備え、かつ、接触抵抗の低い電極を形成することができる。 According to the tellurium-supported glass composition having the above structure, the tellurium compound is present in a suitable state in the conductive composition without being too uniform without being too uniform with the glass composition, without being too close without being too close. It is thought that. This preferred positional relationship is continuously maintained from the preparation of the conductive composition to the time when the glass component is melted by firing as well as during the application and drying of the conductive composition. The According to the conductive composition containing such a tellurium-supported glass composition, it is possible to form an electrode capable of realizing high energy conversion efficiency with low resistance compared to a silver paste containing a tellurium compound as a single paste constituent. it can. Moreover, according to the electroconductive composition containing this tellurium carrying | support glass composition, an electrode with high adhesive strength can be formed compared with the electroconductive composition containing the glass frit which contains tellurium as a network former. That is, an electrode having high adhesive strength (for example, solder strength) and low contact resistance can be formed.
   [基本ガラス成分]
 なお、ここに開示されるテルル含有ガラスは、必ずしも全てが上記のような、ガラス構成成分としてテルルを含む各種のガラス組成物および/またはテルル担持ガラス組成物である必要はない。例えば、ガラス構成成分としてテルルを含む各種のガラス組成物および/またはテルル担持ガラス組成物を、従来よりこの種の導電性組成物に用いられているテルル成分を含有しない基本ガラス成分(非テルル含有ガラスである)と混合して用いるようにしても良い。かかる基本ガラス成分の組成については特に制限はないが、例えば、上記のテルル含有ガラス組成物の構成(TeO以外)に準じて考慮することができる。より具体的には、上記のガラスL’、ガラスM’およびガラスN’の何れかの組成を有するガラスを好適な例として挙げることができる。この場合のテルル含有ガラスと基本ガラス成分との割合は、導電性組成物に占めるガラス成分の総量と、テルル含有ガラスが含むテルル量とを勘案して適宜決定することができる。
 かかる導電性組成物(固形分)に占めるガラス成分全体の好ましい割合は、これに限定されるものではないが、およそ0.5質量%以上5質量%以下、好ましくは0.5質量%以上3質量%以下、より好ましくは1質量%以上3質量%以下が適当である。
[Basic glass components]
The tellurium-containing glass disclosed herein does not necessarily have to be various glass compositions and / or tellurium-supported glass compositions containing tellurium as a glass constituent, as described above. For example, various glass compositions and / or tellurium-supported glass compositions containing tellurium as glass constituent components may be used as basic glass components that do not contain the tellurium component conventionally used in this type of conductive composition (containing non-tellurium). It may be used by mixing with glass. There is no particular limitation on the composition of such a basic glass components, for example, it can be considered according to the arrangement of the tellurium-containing glass composition (other than TeO 2). More specifically, a glass having any composition of the above glass L ′, glass M ′ and glass N ′ can be mentioned as a suitable example. In this case, the ratio between the tellurium-containing glass and the basic glass component can be appropriately determined in consideration of the total amount of the glass components in the conductive composition and the tellurium content of the tellurium-containing glass.
A preferable ratio of the whole glass component in the conductive composition (solid content) is not limited to this, but is approximately 0.5% by mass or more and 5% by mass or less, preferably 0.5% by mass or more and 3% by mass. The mass% or less, more preferably 1 mass% or more and 3 mass% or less is appropriate.
 また、テルル含有組成物の含有量は、使用するテルル含有組成物の形態にもよるため一概には言えないものの、導電性組成物を太陽電池の基板に塗布して焼成したときの基板と導電性組成物との界面に含まれるテルル(Te)の平均価数が4.3以上5.1以下となるように、銀粉末およびテルル価数調整材との配合割合として決定される。例えば、テルル含有組成物として後述の実施例に記載のテルル含有ガラスを用いる場合には、おおよその目安として、導電性組成物(固形分)の全体を100質量%としたとき、テルル含有組成物の占める割合が、0.5質量%以上50質量%以下、より好ましくは1質量%以上35質量%以下、例えば5質量%以上25質量%以下の範囲で適切に調整することが好ましい。 In addition, although the tellurium-containing composition content depends on the form of the tellurium-containing composition to be used, it cannot be generally stated, but the conductive composition is applied to the substrate of the solar cell and fired. The blending ratio of the silver powder and the tellurium valence adjusting material is determined so that the average valence of tellurium (Te) contained in the interface with the conductive composition is 4.3 or more and 5.1 or less. For example, when the tellurium-containing glass described in the examples described later is used as the tellurium-containing composition, as an approximate guide, when the entire conductive composition (solid content) is 100% by mass, the tellurium-containing composition It is preferable to adjust appropriately in the range of 0.5 mass% to 50 mass%, more preferably 1 mass% to 35 mass%, for example, 5 mass% to 25 mass%.
  [テルル価数調整材]
 テルル価数調整材としては、酸化数が比較的変化し易い元素を含む化合物からなる粉末を好ましく用いることができる。例えば、+3価以上のイオンになり得る遷移金属、典型金属および希土類元素を含む金属またはその化合物を考慮することができる。より好ましくは、周期律表の第3A族から第3B族に属する元素の金属もしくはその化合物であってよく、典型的には周期律表の第3A族から第2B族に属する遷移金属元素、特に好ましくは、第一遷移元素(3d遷移元素)であるスカンジウム(Sc),チタン(Ti),バナジウム(V),クロム(Cr),マンガン(Mn),鉄(Fe),コバルト(Co),ニッケル(Ni),銅(Cu)および亜鉛(Zn)からなる金属もしくはその化合物の粉末を考慮することができる。より好ましくは、Fe,Co,Ni,Tiからなる金属あるいはその酸化物の粉末であり、さらに限定的には、NiまたはNiOであり得る。これらの粉末は、いずれか1種が単独で含まれても良いし、2種以上が含まれていても良い。
 これらの粉末を構成する粒子の平均粒径としては、1nm以上200nm以下であることが適当であり、好ましくは5nm以上200nm以下であり、より好ましくは15nm以上200nm以下である。
[Tellurium valence adjusting material]
As the tellurium valence adjusting material, a powder made of a compound containing an element whose oxidation number is relatively easy to change can be preferably used. For example, a transition metal, a typical metal and a metal containing a rare earth element or a compound thereof that can be an ion having a valence of +3 or more can be considered. More preferably, it may be a metal of an element belonging to Group 3A to Group 3B of the periodic table or a compound thereof, typically a transition metal element belonging to Group 3A to Group 2B of the periodic table, particularly Preferably, scandium (Sc), titanium (Ti), vanadium (V), chromium (Cr), manganese (Mn), iron (Fe), cobalt (Co), nickel, which are first transition elements (3d transition elements) The powder of the metal which consists of (Ni), copper (Cu), and zinc (Zn) or its compound can be considered. More preferably, it is a powder of a metal composed of Fe, Co, Ni, Ti or its oxide, and more limited may be Ni or NiO. Any one of these powders may be included alone, or two or more thereof may be included.
The average particle diameter of the particles constituting these powders is suitably 1 nm or more and 200 nm or less, preferably 5 nm or more and 200 nm or less, more preferably 15 nm or more and 200 nm or less.
 テルル価数調整材の含有量は、導電性組成物を太陽電池の基板に塗布して焼成したときの基板と導電性組成物との界面に含まれるテルル(Te)の平均価数が4.3以上5.1以下となるように、銀粉末およびテルル含有組成物との配合割合として決定される。テルル価数調整材の含有量を調整することで、テルルの平均化数を効果的に制御することができる。テルル価数調整材の含有量は、厳密に制限されるものではないが、おおよその目安として、導電性組成物(固形分)の全体を100質量%としたとき、テルル価数調整材が占める割合が、およそ0.5質量%以下程度を目安とすることができる。好ましくは0.001質量%以上0.3質量%以下、より好ましくは0.001質量%以上0.2質量%以下である。 As for the content of the tellurium valence adjusting material, the average valence of tellurium (Te) contained in the interface between the substrate and the conductive composition when the conductive composition is applied to the substrate of the solar cell and baked is 4. It is determined as a blending ratio of the silver powder and the tellurium-containing composition so as to be 3 or more and 5.1 or less. The average number of tellurium can be controlled effectively by adjusting the content of the tellurium valence adjusting material. The content of the tellurium valence adjusting material is not strictly limited, but as an approximate guide, the tellurium valence adjusting material occupies when the entire conductive composition (solid content) is 100% by mass. The ratio can be about 0.5% by mass or less. Preferably they are 0.001 mass% or more and 0.3 mass% or less, More preferably, they are 0.001 mass% or more and 0.2 mass% or less.
  [有機媒体]
 以上のようにして配合された導電性組成物は、銀粉末、テルル含有組成物およびテルル価数調整材を含む固体粉末状(典型的には、混合物の状態)で提供されても良いが、例えば、有機媒体に分散された状態で提供されても良い。即ち、導電性組成物は、上記の固形分以外の成分として、有機媒体を含むことができる。かかる有機媒体としては、上記の固形分、とりわけ銀粉末を良好に分散させ得るものであればよく、従来のこの種のペーストに用いられているものを特に制限なく使用することができる。典型的には、有機バインダが溶剤に分散された有機ビヒクルを考慮することができる。例えば、有機媒体を構成する溶剤としては、エチレングリコールおよびジエチレングリコール誘導体(グリコールエーテル系溶剤)、トルエン、キシレン、ブチルカルビトール(BC)、ターピネオール等の高沸点有機溶剤を一種類または複数種組み合わせて使用することができる。また、有機バインダとしては、種々の樹脂成分を含むことができる。かかる樹脂成分は導電性組成物に良好な粘性および塗膜形成能(基板に対する付着性)を付与し得るものであればよく、従来のこの種のペーストに用いられているものを特に制限なく使用することができる。例えば、アクリル樹脂、エポキシ樹脂、フェノール樹脂、アルキド樹脂、セルロース系高分子、ポリビニルアルコール、ロジン樹脂等を主体とするものが挙げられる。このうち、特にエチルセルロース等のセルロース系高分子が好ましい。
[Organic medium]
The conductive composition formulated as described above may be provided in the form of a solid powder (typically in the form of a mixture) containing silver powder, a tellurium-containing composition, and a tellurium valence adjusting agent, For example, it may be provided in a state dispersed in an organic medium. That is, the conductive composition can contain an organic medium as a component other than the above-described solid content. Any organic medium may be used as long as it can disperse the above-described solid content, particularly silver powder, and any of those used in conventional pastes of this type can be used without particular limitation. Typically, an organic vehicle in which an organic binder is dispersed in a solvent can be considered. For example, as a solvent constituting the organic medium, one or a combination of high-boiling organic solvents such as ethylene glycol and diethylene glycol derivatives (glycol ether solvents), toluene, xylene, butyl carbitol (BC), and terpineol are used. can do. Moreover, as an organic binder, various resin components can be included. Any resin component may be used as long as it can provide a conductive composition with good viscosity and film-forming ability (adhesiveness to a substrate), and those used in conventional pastes of this type can be used without any particular limitation. can do. Examples thereof include those mainly composed of acrylic resin, epoxy resin, phenol resin, alkyd resin, cellulosic polymer, polyvinyl alcohol, rosin resin and the like. Among these, cellulosic polymers such as ethyl cellulose are particularly preferable.
 かかる有機媒体が導電性組成物全体(固形分+有機媒体)に占める割合は、5質量%以上60質量%以下であるのが適当であり、好ましくは7質量%以上50質量%以下、より好ましくは10質量%以上40質量%以下である。また、ビヒクルに含まれる有機バインダは、導電性組成物全体の1質量%以上10質量%以下程度、より好ましくは1質量%以上7質量%以下程度の割合で含まれるのがよい。かかる構成とすることで、基板上に電極(膜)として均一な厚さの塗膜を形成(塗布)し易く、取扱いが容易であり、また電極膜を焼成する前の乾燥に長時間を要することなく好適に乾燥させることができるために好ましい。 The proportion of the organic medium in the entire conductive composition (solid content + organic medium) is suitably 5% by mass to 60% by mass, preferably 7% by mass to 50% by mass, and more preferably Is 10 mass% or more and 40 mass% or less. Further, the organic binder contained in the vehicle is preferably contained in a proportion of about 1% by mass to 10% by mass, more preferably about 1% by mass to 7% by mass of the entire conductive composition. By adopting such a configuration, it is easy to form (apply) a coating film having a uniform thickness on the substrate as an electrode (film), it is easy to handle, and it takes a long time to dry before firing the electrode film. It is preferable because it can be suitably dried without any problems.
 なお、固形分が有機媒体に分散された形態(いわゆる、ペースト、インク等の状態であり得る。)の導電性組成物は、例えば、以下の手法により好適に調整することができる。
 すなわち、上記で用意した銀粉末と、テルル含有組成物と、テルル価数調整材とを有機媒体に分散させる。かかる固形分の有機媒体への分散は、典型的には、例えば、三本ロールミルあるいはその他の混練機等を用いて、所定の配合比の銀粉末、テルル含有組成物およびテルル価数調整材をビヒクルとともに混合・撹拌するとよい。なお、以上の材料を混合するにあたり、全ての材料を同時に混合するようにしても良いし、2回以上に分けて投入しても良い。例えば、予め、銀粉末およびテルル含有組成物(テルル担持ガラスを除く)を混合しておき、その後にテルル担持ガラスやテルル価数調整材を添加するようにしてもよい。さらには、予め一部の材料を、例えば水系溶媒やアルコール類等の媒体に分散させた分散液の形態で混合する等してもよい。これにより、固形分が有機媒体に分散された形態の導電性組成物を好適に調製することができる。
In addition, the conductive composition in a form in which a solid content is dispersed in an organic medium (which may be in a state of so-called paste, ink, etc.) can be suitably adjusted by, for example, the following method.
That is, the silver powder prepared above, a tellurium-containing composition, and a tellurium valence adjusting material are dispersed in an organic medium. The dispersion of the solid content in the organic medium is typically performed by using, for example, a three-roll mill or other kneader to add silver powder having a predetermined blending ratio, a tellurium-containing composition, and a tellurium valence adjusting material. Mix and agitate with vehicle. In mixing the above materials, all the materials may be mixed at the same time or may be added in two or more times. For example, silver powder and tellurium-containing composition (excluding tellurium-supported glass) may be mixed in advance, and then tellurium-supported glass and tellurium valence adjusting material may be added. Furthermore, a part of the materials may be mixed in the form of a dispersion liquid previously dispersed in a medium such as an aqueous solvent or alcohol. Thereby, the electroconductive composition of the form with which solid content was disperse | distributed to the organic medium can be prepared suitably.
 [テルル担持ガラスの用意]
 なお、テルル含有組成物のうち、テルル担持ガラスは、例えば、所定のガラス粉末とテルル化合物とを混合し、この混合物を焼成することで用意することができる。焼成は、ガラス粉末の融点をTm℃としたとき、典型的には酸化雰囲気(例えば、大気雰囲気)において(Tm-35)℃~(Tm+20)℃となる温度範囲で実施するのが好ましい。焼成温度は、(Tm+20)℃を超過するとガラス粉末の溶融が進行し、テルル化合物がガラス相に取り込まれて(溶解して)しまうために好ましくない。焼成温度はより好ましくは(Tm+15)℃以下であり、更に好ましくはTm℃以下(すなわち、ガラス粉末の融点以下)である。また、焼成温度が(Tm-35)℃よりも低いとテルル化合物を確実に担持できない可能性が高まるために好ましくない。焼成温度は、好ましくは(Tm-30)℃以上であり、より好ましくは(Tm-20)℃以上である。これにより、ここに開示されるテルル担持ガラスを用意することができる。
[Preparation of tellurium-supported glass]
In the tellurium-containing composition, the tellurium-supported glass can be prepared, for example, by mixing a predetermined glass powder and a tellurium compound and firing the mixture. The firing is preferably carried out in a temperature range of (Tm−35) ° C. to (Tm + 20) ° C. typically in an oxidizing atmosphere (eg, air atmosphere) when the melting point of the glass powder is Tm ° C. When the firing temperature exceeds (Tm + 20) ° C., melting of the glass powder proceeds, and the tellurium compound is taken into (dissolved) in the glass phase, which is not preferable. The firing temperature is more preferably (Tm + 15) ° C. or less, and further preferably Tm ° C. or less (that is, the melting point of the glass powder or less). Further, if the firing temperature is lower than (Tm-35) ° C., the possibility that the tellurium compound cannot be reliably supported increases, which is not preferable. The firing temperature is preferably (Tm-30) ° C. or higher, more preferably (Tm-20) ° C. or higher. Thereby, the tellurium carrying | support glass disclosed here can be prepared.
 なお、焼成後に得られる焼成物としてのテルル担持ガラスは、全体が焼結して大きな凝集体を形成している場合もあり得る。このような場合には、かかる凝集体を解砕し、必要に応じてふるいにかけることで、導電性組成物の調製に適した粒度(例えば、0.01μm~10μm程度)のものを用いるようにしても良い。焼結によりガラス粉末とテルル化合物とはネックを形成して結合される。かかる結合は、吸着等による付着に比べて強固ではあるものの、ガラス粉末とテルル化合物とは圧密されることなく混合状態のまま焼結されているため、この凝集体はボールミルや粉砕機等の特別な装置を用いることなく軽い解砕(例えば、手作業による圧潰や、乳鉢および乳棒等を用いた軽い混合)によって所望の粒度にまで容易に細粒化することができる。 Note that the tellurium-supported glass as a fired product obtained after firing may be sintered as a whole to form large aggregates. In such a case, such agglomerate is crushed and sieved as necessary so that a particle size suitable for the preparation of the conductive composition (for example, about 0.01 μm to 10 μm) is used. Anyway. By sintering, the glass powder and the tellurium compound are combined to form a neck. Although this bond is stronger than adhesion by adsorption or the like, the glass powder and the tellurium compound are sintered in a mixed state without being compacted. Can be easily reduced to a desired particle size by light crushing (for example, manual crushing or light mixing using a mortar, pestle, etc.) without using a simple device.
 [電極の作製]
 以上のようにして得られる導電性組成物は、例えば、従来より基板上に受光面電極としてのAg電極を形成するのに用いられてきた銀ペースト等と同様に取り扱うことができる。すなわち、ここに開示される導電性組成物による電極の形成には、従来公知の方法を特に制限なく採用することができる。
[Production of electrodes]
The conductive composition obtained as described above can be handled in the same manner as, for example, a silver paste that has been conventionally used for forming an Ag electrode as a light-receiving surface electrode on a substrate. That is, a conventionally known method can be employed without any particular limitation for the formation of the electrode from the conductive composition disclosed herein.
 かかる受光面電極12を形成する手法としては、例えば、シリコン基板11の表面のほぼ全面に反射防止膜14を形成し、この反射防止膜14の上の受光面電極12の形成部分に銀ペーストを直接塗布して焼成することにより、銀ペーストの下の反射防止膜14を溶融させて銀ペーストとシリコン基板11との電気的接触をとる、いわゆるファイヤースルー法を利用するようにしても良い。
 例えば、図1に示した太陽電池10における銀電極(受光面電極12)を、ファイヤースルー法により形成する場合には、従来と同様にn層16や反射防止膜14を基板の受光面に形成した後に、本発明の導電性組成物を反射防止膜14の上に所望する膜厚(例えば20μm程度)や所望の塗膜パターンとなるように供給(塗布)する。導電性組成物の供給は、典型的には、スクリーン印刷法、ディスペンサー塗布法、ディップ塗布法等によって行うことができる。なお、基板としては、シリコン(Si)製基板11が好適であり、典型的にはSiウエハである。かかる基板11の厚さとしては、所望する太陽電池のサイズや、該基板11上に形成されるAg電極12,裏面電極20,反射防止膜14等の膜厚、該基板11の強度(例えば破壊強度)等を考慮して設定することができる。基板11の厚さは、例えば一般的には、100μm以上300μm以下とされ、150μm以上250μm以下が好ましく、例えば160μm以上200μmであり得る。また、本導電性組成物は、n層16が薄くドーパント濃度の低いシャローエミッタ構造を有する基板11に対しても用いることができる。
As a method for forming the light receiving surface electrode 12, for example, an antireflection film 14 is formed on almost the entire surface of the silicon substrate 11, and a silver paste is applied to a portion where the light receiving surface electrode 12 is formed on the antireflection film 14. A so-called fire-through method may be used in which the anti-reflection film 14 under the silver paste is melted by direct coating and baking to make electrical contact between the silver paste and the silicon substrate 11.
For example, when the silver electrode (light-receiving surface electrode 12) in the solar cell 10 shown in FIG. 1 is formed by the fire-through method, the n + layer 16 and the antireflection film 14 are formed on the light-receiving surface of the substrate as in the conventional case. After the formation, the conductive composition of the present invention is supplied (applied) on the antireflection film 14 so as to have a desired film thickness (for example, about 20 μm) and a desired coating film pattern. The conductive composition can be typically supplied by a screen printing method, a dispenser coating method, a dip coating method, or the like. As the substrate, a silicon (Si) substrate 11 is suitable, and typically a Si wafer. The thickness of the substrate 11 includes a desired solar cell size, film thicknesses of the Ag electrode 12, the back electrode 20, the antireflection film 14 and the like formed on the substrate 11, and the strength (for example, destruction) of the substrate 11. (Strength) and the like can be set. The thickness of the substrate 11 is, for example, generally 100 μm or more and 300 μm or less, preferably 150 μm or more and 250 μm or less, and may be 160 μm or more and 200 μm, for example. The conductive composition can also be used for the substrate 11 having a shallow emitter structure in which the n + layer 16 is thin and the dopant concentration is low.
 ここに開示される導電性組成物は、例えば、主として銀粉末と、テルル含有組成物としてのガラス成分とが有機媒体に分散されて構成されたものであり得る。このような導電性組成物は、組成物中のガラス成分が焼成過程において反射防止膜14を破ることで、組成物中の銀成分とn-Si層16とによるオーミックコンタクトが実現されるものである。かかる手法によると、反射防止膜14の部分的除去を伴う電極形成手法と比較して、工程数が削減できるとともに、反射防止膜14の除去部分と受光面電極12の形成位置とにズレが生じる心配がない。そのため、受光面電極12の形成には、かかるファイヤースルー法を好ましく採用することができる。
 なお、ファイヤースルー法を採用しない場合には、例えば、以下の手法を採用することができる。すなわち、まず、シリコン基板11の表面のほぼ全面にCVD等によって受光面にn層16や反射防止膜14を形成する。その後に、この反射防止膜14における受光面電極12の形成部分を弗酸(HF)などを用いて所望の電極パターンで剥離(除去)する。そして、かかる剥離部分に導電性組成物を所望する膜厚で供給することが挙げられる。
 次いで、基板11に供給された導電性組成物の塗布物(塗膜)を適当な温度(例えば室温以上であり、典型的には100℃程度)で乾燥させる。乾燥後、適当な焼成炉(例えば高速焼成炉)中で適切な加熱条件(例えば600℃以上900℃以下、好ましくは700℃以上800℃以下)で所定時間加熱することによって、乾燥塗膜の焼成を行う。これにより、上記塗布物が基板11上に焼き付けられ、図2に示すような銀電極12が形成される。
The conductive composition disclosed herein can be constituted, for example, by mainly dispersing silver powder and a glass component as a tellurium-containing composition in an organic medium. In such a conductive composition, an ohmic contact between the silver component in the composition and the n-Si layer 16 is realized by the glass component in the composition breaking the antireflection film 14 in the firing process. is there. According to such a method, the number of steps can be reduced as compared with an electrode formation method that involves partial removal of the antireflection film 14, and a deviation occurs between the removal portion of the antireflection film 14 and the formation position of the light receiving surface electrode 12. There is no worry. Therefore, such a fire-through method can be preferably used for forming the light receiving surface electrode 12.
In the case where the fire-through method is not employed, for example, the following method can be employed. That is, first, the n + layer 16 and the antireflection film 14 are formed on the light receiving surface by CVD or the like over almost the entire surface of the silicon substrate 11. Thereafter, the formation portion of the light-receiving surface electrode 12 in the antireflection film 14 is peeled (removed) with a desired electrode pattern using hydrofluoric acid (HF) or the like. And supplying a conductive composition with the desired film thickness to this peeling part is mentioned.
Next, the conductive composition coating (coating film) supplied to the substrate 11 is dried at an appropriate temperature (eg, room temperature or higher, typically about 100 ° C.). After drying, the dried coating film is baked by heating in an appropriate baking furnace (for example, a high-speed baking furnace) under appropriate heating conditions (for example, 600 ° C. to 900 ° C., preferably 700 ° C. to 800 ° C.) for a predetermined time. I do. Thereby, the coated material is baked on the substrate 11 to form a silver electrode 12 as shown in FIG.
 [太陽電池の作製]
 なお、本発明の製造方法により製造された導電性組成物を使用して電極(典型的には、受光面電極)を形成すること以外の太陽電池製造のための材料やプロセスは、従来と同様であってよい。そして、特別な処理等を必要とすることなく、当該導電性組成物によって形成された電極を備えた太陽電池(典型的には結晶シリコン系太陽電池)を製造することができる。かかる結晶シリコン系太陽電池の構成の一典型例としては、上述の図1に示される構成が挙げられる。
 受光面電極形成以外のプロセスとしては、裏面電極20としてのアルミニウム電極20の形成が挙げられる。かかるアルミニウム電極20の形成の手順は以下のとおりである。例えば、先ず、上記の通り受光面に受光面電極12を形成するための導電性組成物を印刷し、裏面にも裏面側外部接続用電極22形成用の導電性組成物(ここで開示された製造方法により調整された導電性組成物であってよい)を所望の領域に印刷し、乾燥させる。その後、裏面側外部接続用電極用の導電性組成物の印刷領域の一部に重なるようにアルミニウム電極ペースト材料を印刷・乾燥し、全ての塗膜の焼成を行う。通常、アルミニウム電極20が焼成されるとともに、P層(BSF層)24も形成される。すなわち、焼成によって裏面電極20となるアルミニウム電極20がp型シリコン基板11上に形成されるとともに、アルミニウム原子が該基板11中に拡散することで、アルミニウムを不純物として含むp層24が形成されることとなる。このようにして太陽電池(セル)10を作製することができる。
[Production of solar cells]
Note that materials and processes for manufacturing a solar cell other than forming an electrode (typically, a light-receiving surface electrode) using the conductive composition manufactured by the manufacturing method of the present invention are the same as in the past. It may be. And a solar cell (typically crystalline silicon solar cell) provided with the electrode formed with the said conductive composition can be manufactured, without requiring a special process etc. A typical example of the structure of such a crystalline silicon solar cell is the structure shown in FIG.
As a process other than the formation of the light receiving surface electrode, formation of the aluminum electrode 20 as the back surface electrode 20 can be mentioned. The procedure for forming the aluminum electrode 20 is as follows. For example, first, as described above, the conductive composition for forming the light-receiving surface electrode 12 is printed on the light-receiving surface, and the conductive composition for forming the back-side external connection electrode 22 is also formed on the back surface (disclosed here). A conductive composition prepared by a manufacturing method may be printed on a desired area and dried. Thereafter, the aluminum electrode paste material is printed and dried so as to overlap a part of the printing region of the conductive composition for the backside external connection electrode, and all the coating films are fired. Usually, the aluminum electrode 20 is baked and a P + layer (BSF layer) 24 is also formed. That is, the aluminum electrode 20 to be the back electrode 20 is formed on the p-type silicon substrate 11 by firing, and the aluminum atoms are diffused into the substrate 11 to form the p + layer 24 containing aluminum as an impurity. The Rukoto. In this way, the solar battery (cell) 10 can be manufactured.
 ここで開示される導電性組成物は、上述したように、焼成後の基板と電極との界面に含まれるテルルの平均価数が4.3以上5.1以下となるように制御されている。かかる電子状態のテルルが基板と電極との界面に存在することで、基板と電極との間のコンタクトが良好となり、太陽電池10の基板11内で発生された電力を、電極を経由して損失が低い状態で外部に取り出すことが可能となる。これにより、エネルギー変換効率の高い太陽電池を作製することが可能となる。また、この導電性組成物は、本質的に、テルル成分を含んでいるため、接着強度が高く、耐久性および信頼性の高い太陽電池の作製を可能とする。したがって、かかる導電性組成物によると、優れた太陽電池特性(例えば、FFが0.78以上で、発電効率が16.5%以上)を有する太陽電池が提供され得る。 As described above, the conductive composition disclosed herein is controlled so that the average valence of tellurium contained in the interface between the substrate and the electrode after firing is 4.3 or more and 5.1 or less. . The tellurium in the electronic state is present at the interface between the substrate and the electrode, so that the contact between the substrate and the electrode becomes good, and the power generated in the substrate 11 of the solar cell 10 is lost via the electrode. Can be taken out to the outside in a low state. Thereby, it becomes possible to produce a solar cell with high energy conversion efficiency. Moreover, since this electrically conductive composition essentially contains a tellurium component, it is possible to produce a solar cell with high adhesive strength and high durability and reliability. Therefore, according to such a conductive composition, a solar cell having excellent solar cell characteristics (for example, FF of 0.78 or more and power generation efficiency of 16.5% or more) can be provided.
 なお、ファイヤースルー法により形成される太陽電池10のエネルギー変換効率等の性能は、上記のように形成されるオーミックコンタクトの品質によるところが大きい。つまり、形成される受光面電極12とシリコン基板11との接触抵抗が低減されることで、高いエネルギー変換効率が達成され得る。ここに開示される導電性組成物は、上記のとおり、オーミックコンタクトを改善することができ、延いては、曲線因子(FF)やエネルギー変換効率の高められた太陽電池10の実現に好適に寄与し得る。 Note that the performance of the solar cell 10 formed by the fire-through method, such as energy conversion efficiency, largely depends on the quality of the ohmic contact formed as described above. That is, high energy conversion efficiency can be achieved by reducing the contact resistance between the formed light receiving surface electrode 12 and the silicon substrate 11. As described above, the conductive composition disclosed herein can improve ohmic contact, and thus contributes favorably to the realization of the solar cell 10 with enhanced fill factor (FF) and energy conversion efficiency. Can do.
 また、従来の太陽電池の一般的な構成において、短波長の光は透過性が低いことからpn接合に到達して発電に寄与することなく、n-Si層に吸収されて熱に変わってしまっていた(ヒートロス)。ここに開示される太陽電池10の好適な一態様においては、より短波長の光をできる限り高い強度でpn接合部分に送り届け、光電変換効率を上げる目的で、n-Si層16の厚さ(深さ)を薄くしてヒートロスを低減させるようにしても良い。n-Si層16の厚みは、例えば、従来と同様に、300nm~500nm程度とすることもできる。しかしながら、例えは、300nm以下、より好ましくは250nm以下程度として、薄層化することもできる。 Further, in a general configuration of a conventional solar cell, short-wavelength light has low transmissivity, so that it reaches the pn junction and does not contribute to power generation, but is absorbed by the n-Si layer and changed to heat. (Heat loss). In a preferred embodiment of the solar cell 10 disclosed herein, the thickness of the n-Si layer 16 (for the purpose of increasing the photoelectric conversion efficiency by delivering light having a shorter wavelength to the pn junction portion with as high an intensity as possible. The depth may be reduced to reduce heat loss. The thickness of the n-Si layer 16 can be, for example, about 300 nm to 500 nm as in the conventional case. However, for example, the thickness can be reduced to 300 nm or less, more preferably about 250 nm or less.
 一般に、n-Si層の厚さがこのように薄くなると、n-Si層自体が高抵抗化してシート抵抗が増大すること、また表面再結合を抑制するためにドーパント濃度を低下する必要があること等から、受光面電極とn-Si層との間に良好なオーミックコンタクトが得られ難く、接触抵抗が増大するという問題が生じることが懸念される。また、受光面電極の形成に上記のファイヤースルー法を適用すると、電極ペーストがn-Si層に達するのみならずn-Si層を超えてpn接合界面近傍にまで浸食する可能性が生じ、焼成条件の厳格化が要求され、また、太陽電池の曲線因子(FF)やエネルギー変換効率に却って悪影響を与えるおそれがあった。しかしながら、ここに開示される導電性組成物を用いて受光面電極を形成することで、上記のとおりオーミックコンタクトが確実に改善され得る。したがって、例えばn-Si層16の厚みを250nm以下に薄くしたり、pn接合を浸食しないよう焼成条件を調整した場合であっても、接触抵抗の増大を抑制して良好な接合を実現することが可能とされる。 In general, when the thickness of the n-Si layer is reduced in this way, the n-Si layer itself increases in resistance and increases in sheet resistance, and it is necessary to lower the dopant concentration in order to suppress surface recombination. For this reason, it is difficult to obtain a good ohmic contact between the light-receiving surface electrode and the n-Si layer, and there is a concern that the problem of increased contact resistance may occur. In addition, when the above-described fire-through method is applied to the formation of the light-receiving surface electrode, the electrode paste not only reaches the n-Si layer, but also erodes to the vicinity of the pn junction interface beyond the n-Si layer. Strict conditions were required, and there was a risk of adverse effects on the fill factor (FF) and energy conversion efficiency of solar cells. However, by forming the light-receiving surface electrode using the conductive composition disclosed herein, the ohmic contact can be reliably improved as described above. Therefore, for example, even when the thickness of the n-Si layer 16 is reduced to 250 nm or less or the firing conditions are adjusted so as not to erode the pn junction, an increase in contact resistance can be suppressed and a good junction can be realized. Is possible.
 以下、本発明に関する実施例を説明するが、本発明を以下の実施例に示すものに限定することを意図したものではない。 Hereinafter, examples related to the present invention will be described, but the present invention is not intended to be limited to those shown in the following examples.
 銀粉末(平均粒径1.6μm)、Ni粉末(平均粒径0.15μm)および下記に示すガラス組成物を含む導電性組成物1~10を調製した。これらの導電性組成物は、バインダ(エチルセルロース)と有機溶剤(ターピネオール)とからなる有機ビヒクルに分散させ、有機溶剤を加えることで、粘度が160~180Pa・s(20rpm,25℃)のペースト状に調整した。ペーストの調製には、三本ロールミルを用いた。このようにして得られたペースト状の導電性組成物の配合は、銀粉末:77~88質量%、Ni粉末:0.01~0.2質量%、ガラス組成物:1~10質量%、有機ビヒクル4~14質量%、有機溶剤2~8質量%であった。 Conductive compositions 1 to 10 including silver powder (average particle size 1.6 μm), Ni powder (average particle size 0.15 μm) and the glass composition shown below were prepared. These conductive compositions are dispersed in an organic vehicle composed of a binder (ethylcellulose) and an organic solvent (terpineol), and the viscosity is 160 to 180 Pa · s (20 rpm, 25 ° C.) by adding the organic solvent. Adjusted. A three-roll mill was used for preparing the paste. The composition of the paste-like conductive composition thus obtained was as follows: silver powder: 77 to 88% by mass, Ni powder: 0.01 to 0.2% by mass, glass composition: 1 to 10% by mass, The organic vehicle was 4 to 14% by mass and the organic solvent was 2 to 8% by mass.
 なお、上記ガラス組成物としては、テルルを含有しない基本ガラスフリットと、テルルを含有するテルル含有ガラスフリットとを、導電性組成物に占めるテルル量が下記の表1の「Te添加量」に示す値となるように混合して用いた。基本ガラスフリットとしては、平均粒径が1.1μmで、下記の組成Aまたは組成Bを有するガラスを用いた。また、テルル含有ガラスフリットとしては、下記の組成を有するガラスを用いた。 In addition, as said glass composition, the tellurium amount which occupies the basic glass frit which does not contain tellurium, and the tellurium containing glass frit containing tellurium in an electroconductive composition is shown in "Te addition amount" of the following Table 1 It mixed and used so that it might become a value. As the basic glass frit, a glass having an average particle diameter of 1.1 μm and having the following composition A or composition B was used. Further, as the tellurium-containing glass frit, a glass having the following composition was used.
 <基本ガラスフリット:組成A>
 Bi:20mol%,B:29mol%,SiO:4mol%,ZnO:30mol%,LiO:17mol%
 <基本ガラスフリット:組成B>
 PbO:29mol%,B:12mol%,SiO:47mol%,LiO:12mol%
 <テルル含有ガラスフリット>
 TeO:30mol%,PbO:29mol%,B:5mol%,SiO:36mol%
<Basic glass frit: Composition A>
Bi 2 O 3: 20mol%, B 2 O 3: 29mol%, SiO 2: 4mol%, ZnO: 30mol%, Li 2 O: 17mol%
<Basic glass frit: Composition B>
PbO: 29mol%, B 2 O 3: 12mol%, SiO 2: 47mol%, Li 2 O: 12mol%
<Glass frit containing tellurium>
Te 2 O: 30mol%, PbO : 29mol%, B 2 O 3: 5mol%, SiO 2: 36mol%
[評価用の太陽電池セルの作製]
 上記で得られたペースト状の導電性組成物1~10を受光面電極形成用ペーストとして用い、以下の手順で評価用の太陽電池セルを作製した。
 すなわち、先ず、市販の156mm四方の大きさの太陽電池用p型単結晶シリコン基板(板厚180μm)を用意し、その表面を、フッ酸と硝酸とを混合した混酸を用いて酸エッチング処理した。次いで、上記エッチング処理で微細な凹凸構造が形成されたシリコン基板の受光面にリン含有溶液を塗布し、熱処理を行なうことによって、当該シリコン基板の受光面に厚さが約0.5μmであるn-Si層(n層)を形成した(図1参照)。このn-Si層上に、プラズマCVD(PECVD)法によって厚みが80nm程度の反射防止膜(窒化シリコン膜)を形成した。
 その後、用意した導電性組成物を用い、反射防止膜上にスクリーン印刷法によって受光面電極(Ag電極)となる塗膜(厚さ10μm以上30μm以下)を形成した。また、同様にして、裏面電極(Ag電極)となる塗膜をパターン状に形成した。これらの塗膜は85℃で乾燥させて次工程に供した。
[Preparation of solar cells for evaluation]
Using the paste-like conductive compositions 1 to 10 obtained above as the light-receiving surface electrode forming paste, solar cells for evaluation were produced according to the following procedure.
That is, first, a commercially available p-type single crystal silicon substrate (plate thickness 180 μm) for a solar cell having a size of 156 mm square was prepared, and its surface was acid-etched using a mixed acid obtained by mixing hydrofluoric acid and nitric acid. . Next, a phosphorus-containing solution is applied to the light receiving surface of the silicon substrate on which the fine uneven structure is formed by the etching process, and heat treatment is performed, so that the thickness of the light receiving surface of the silicon substrate is about 0.5 μm. A -Si layer (n + layer) was formed (see FIG. 1). On this n-Si layer, an antireflection film (silicon nitride film) having a thickness of about 80 nm was formed by plasma CVD (PECVD).
Thereafter, using the prepared conductive composition, a coating film (thickness of 10 μm or more and 30 μm or less) to be a light receiving surface electrode (Ag electrode) was formed on the antireflection film by screen printing. Similarly, a coating film to be a back electrode (Ag electrode) was formed in a pattern. These coating films were dried at 85 ° C. and subjected to the next step.
 次いで、所定の裏面電極用アルミニウムペーストを、シリコン基板の裏面側のAg電極パターンの一部に重なるようにスクリーン印刷(SUS製スクリーンメッシュ、#325、線径23μm、乳剤厚20μm、以下同じ。)により印刷(塗布)した。印刷条件は、グリッドラインの焼成幅が100μmとなるよう設定した。次いで、このシリコン基板を、近赤外線高速焼成炉を用い、大気雰囲気中で、およそ700℃以上800℃以下の温度で焼成した。これにより、Ag電極(受光面電極)を備えた評価用の太陽電池セルを得た。以下、導電性組成物1~10を用いて作製した太陽電池を、それぞれサンプル1~10のように対応させて呼ぶ。 Next, a predetermined aluminum paste for back electrode is screen printed so as to overlap a part of the Ag electrode pattern on the back side of the silicon substrate (SUS screen mesh, # 325, wire diameter 23 μm, emulsion thickness 20 μm, the same applies hereinafter). Was printed (coated). The printing conditions were set so that the firing width of the grid line was 100 μm. Next, this silicon substrate was baked at a temperature of about 700 ° C. or higher and 800 ° C. or lower in an air atmosphere using a near infrared high-speed baking furnace. Thereby, the solar cell for evaluation provided with the Ag electrode (light-receiving surface electrode) was obtained. Hereinafter, solar cells produced using the conductive compositions 1 to 10 will be referred to as samples 1 to 10, respectively.
[曲線因子(FF)およびエネルギー変換効率(Eff)]
 ソーラーシミュレータ(Beger社製、PSS10)を用いて、サンプル1~10の太陽電池のI-V特性を測定し、得られたI-V曲線から、開放電圧(Voc)、曲線因子(fill factor:FF)および発電効率(η)を求めた。Voc、FFおよび発電効率は、JIS C-8913に規定される「結晶系太陽電池セル出力測定方法」に基づいて算出し、その結果を表1に示した。なお、この算出値は、ソーラーシミュレータによって得られた100個のデータの平均値である。
[Curve factor (FF) and energy conversion efficiency (Eff)]
Using a solar simulator (Beger, PSS10), the IV characteristics of the solar cells of Samples 1 to 10 were measured. From the obtained IV curves, the open circuit voltage (Voc) and the fill factor (fill factor: FF) and power generation efficiency (η) were obtained. Voc, FF and power generation efficiency were calculated based on the “crystalline solar cell output measurement method” defined in JIS C-8913, and the results are shown in Table 1. This calculated value is an average value of 100 data obtained by the solar simulator.
[テルルの価数の評価]
 I-V特性を測定した後のサンプル1~10の太陽電池について、シリコン基板の表面の電極を剥離し、露出した電極と基板との界面(基板表面)をXAFS分析し、かかる界面におけるテルルの価数を調べた。分析条件は以下の通りとした。
  分析装置:SPring-8の産業利用II,BL14B2
  モノクロメーター:SPring-8標準二結晶分光器
  分光結晶:Si(111)
  測定エネルギー領域:4320eV~4400eV
  測定法:透過法
 XANESスペクトルにおいては、テルルの原子価数が大きくなるほど、吸収端が高エネルギー側にシフトする。テルルの価数の解析には、TeOおよびTeOをそれぞれ4価および6価のテルルの標準試料とし、かかる標準試料のXANESスペクトルにおける4350eV付近の吸収エネルギーのシフト量から、測定サンプルに含まれるテルルの平均価数を算出した。テルルの平均価数の測定結果を表1に示した。
[Evaluation of valence of tellurium]
For the solar cells of Samples 1 to 10 after the IV characteristics were measured, the electrode on the surface of the silicon substrate was peeled off, and the interface (substrate surface) between the exposed electrode and the substrate was subjected to XAFS analysis. The valence was examined. The analysis conditions were as follows.
Analyzer: SPring-8 Industrial Use II, BL14B2
Monochromator: SPring-8 standard double crystal spectrometer Spectral crystal: Si (111)
Measurement energy range: 4320 eV to 4400 eV
Measurement method: Transmission method In the XANES spectrum, the absorption edge shifts to the higher energy side as the valence number of tellurium increases. In the analysis of the valence of tellurium, TeO 2 and TeO 3 are used as tetravalent and hexavalent standard samples, respectively, and from the amount of shift of the absorbed energy in the vicinity of 4350 eV in the XANES spectrum of the standard sample, it is included in the measurement sample. The average valence of tellurium was calculated. The measurement results of the average valence of tellurium are shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[評価]
 サンプル1~10の導電性組成物を焼成して得られる電極-基板界面におけるテルルの価数は、おおよそ、経験から予想される値とほぼ一致した。表1に示されるように、導電性組成物に含まれるテルルの割合と、焼成後の電極-基板界面におけるテルルの価数との間には、概ねTe添加量が増えるとテルルの価数が低下する傾向が見られる。しかしながら、サンプル1、2およびサンプル5等から解るように、必ずしもこのような関係が成立するわけではなく、ガラス組成物の配合や、テルル価数調整材の配合等により、テルルの価数が変化することがわかる。
[Evaluation]
The valence of tellurium at the electrode-substrate interface obtained by firing the conductive compositions of Samples 1 to 10 was approximately the same as expected from experience. As shown in Table 1, between the ratio of tellurium contained in the conductive composition and the valence of tellurium at the electrode-substrate interface after firing, the valence of tellurium increases as the Te addition amount increases. There is a tendency to decrease. However, as can be seen from Samples 1, 2 and 5, etc., this relationship does not necessarily hold, and the tellurium valence changes depending on the composition of the glass composition and the tellurium valence adjusting agent. I understand that
 そして、テルルの価数が4.3以上5.1以下の場合に、Voc、FFおよび発電効率のいずれもがバランスよく良好な値を示すことが示された。曲線因子(FF)は、基本的に太陽電池の品質の目安となる指標であって、代表的なFF値は0.7以上0.8以下の範囲に入る。このFF値が0.7台の後半の領域では、FF値が0.01%でも増大することで、太陽電池としての性能が大きく向上されることになる。表1の結果からは、導電性組成物中のテルルの価数によって、得られるFF値に大きな差がみられることが確認された。すなわち、テルルの価数が4.3以上5.1以下の場合に、いずれもFF値が0.78台と、他の場合よりも極めて高い値が得られた。
 また、同様の傾向が、Vocおよび発電効率についても見られ、テルルの価数が4.3以上5.1以下の場合に、いずれの特性もがバランスよく、しかも、著しく向上されているといえる。
And when the valence of tellurium was 4.3 or more and 5.1 or less, it was shown that all of Voc, FF, and power generation efficiency show a good value with good balance. The fill factor (FF) is basically an index that is a measure of the quality of a solar cell, and a typical FF value falls within a range of 0.7 to 0.8. In the latter half region where the FF value is 0.7, the performance as a solar cell is greatly improved by increasing the FF value even by 0.01%. From the results in Table 1, it was confirmed that there was a large difference in the FF values obtained depending on the valence of tellurium in the conductive composition. That is, when the valence of tellurium is 4.3 or more and 5.1 or less, the FF value is 0.78 units, which is much higher than the other cases.
The same tendency is also observed for Voc and power generation efficiency. When the tellurium valence is 4.3 or more and 5.1 or less, all the characteristics are well balanced and can be said to be remarkably improved. .
 以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。 Although specific examples of the present invention have been described in detail above, these are merely examples and do not limit the scope of the claims. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.
 10  太陽電池
 11  基板
 12  受光面電極(Ag電極)
 14  反射防止膜
 16  n-Si層(n層)
 20  裏面電極(アルミニウム電極)
 22  裏面側外部接続用電極
 24  p
10 Solar cell 11 Substrate 12 Light-receiving surface electrode (Ag electrode)
14 Anti-reflective coating 16 n-Si layer (n + layer)
20 Back electrode (aluminum electrode)
22 Back side external connection electrode 24 p + layer

Claims (7)

  1.  太陽電池の電極を形成するための導電性組成物の製造方法であって、
     銀粉末と、テルル含有組成物と、テルル価数調整材とを用意すること、
     該導電性組成物を前記太陽電池の基板に塗布して焼成したときの当該基板と前記導電性組成物との界面に含まれるテルル(Te)の平均価数が4.3以上5.1以下となるように、前記銀粉末、前記テルル含有組成物および前記テルル価数調整材の配合を調整して導電性組成物を調製すること、
    を包含する、製造方法。
    A method for producing a conductive composition for forming an electrode of a solar cell, comprising:
    Preparing a silver powder, a tellurium-containing composition, and a tellurium valence adjusting material;
    When the conductive composition is applied to the substrate of the solar cell and fired, the average valence of tellurium (Te) contained in the interface between the substrate and the conductive composition is 4.3 or more and 5.1 or less. Adjusting the composition of the silver powder, the tellurium-containing composition and the tellurium valence adjusting material to prepare a conductive composition,
    Manufacturing method.
  2.  前記テルル含有組成物は、テルル(Te)を構成元素として含むテルル化合物粉末である、請求項1に記載の製造方法。 The production method according to claim 1, wherein the tellurium-containing composition is a tellurium compound powder containing tellurium (Te) as a constituent element.
  3.  前記テルル含有組成物は、テルル(Te)を構成元素として含むガラス組成物である、請求項1または2に記載の製造方法。 The manufacturing method according to claim 1 or 2, wherein the tellurium-containing composition is a glass composition containing tellurium (Te) as a constituent element.
  4.  前記ガラス組成物は、テルルを含まない基本ガラス成分と、テルルを含むテルル含有ガラス成分との混合物である、請求項3に記載の製造方法。 The manufacturing method according to claim 3, wherein the glass composition is a mixture of a basic glass component containing no tellurium and a tellurium-containing glass component containing tellurium.
  5.  前記テルル価数調整材は、Ti,V,Mn,Fe,Co,Ni,CuおよびZnからなる群から選択される少なくとも1種の金属元素を含む金属または金属化合物である、請求項1~4のいずれか1項に記載の製造方法。 The tellurium valence adjusting material is a metal or metal compound containing at least one metal element selected from the group consisting of Ti, V, Mn, Fe, Co, Ni, Cu and Zn. The manufacturing method of any one of these.
  6.  請求項1~5のいずれか1項に記載の製造方法で製造された、導電性組成物。 A conductive composition produced by the production method according to any one of claims 1 to 5.
  7.  請求項6に記載の導電性組成物を用いて形成された電極を備えている、太陽電池。 A solar cell comprising an electrode formed using the conductive composition according to claim 6.
PCT/JP2014/079872 2013-11-20 2014-11-11 Method for producing conductive composition WO2015076157A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015519676A JP6114389B2 (en) 2013-11-20 2014-11-11 Method for producing conductive composition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013240014 2013-11-20
JP2013-240014 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015076157A1 true WO2015076157A1 (en) 2015-05-28

Family

ID=53179424

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079872 WO2015076157A1 (en) 2013-11-20 2014-11-11 Method for producing conductive composition

Country Status (3)

Country Link
JP (1) JP6114389B2 (en)
TW (1) TW201526027A (en)
WO (1) WO2015076157A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6074483B1 (en) * 2015-11-10 2017-02-01 株式会社ノリタケカンパニーリミテド Conductive composition
TWI681410B (en) * 2017-07-28 2020-01-01 南韓商三星Sdi股份有限公司 Composition for solar cell electrode and solar cell electrode prepared using the same
WO2022041537A1 (en) * 2020-08-26 2022-03-03 南通天盛新能源股份有限公司 Glass powder and silver paste containing same

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170108577A (en) * 2016-03-18 2017-09-27 대주전자재료 주식회사 Lead Free Conductive Paste for solar cell
TWI638793B (en) 2017-04-28 2018-10-21 碩禾電子材料股份有限公司 Conductive paste for solar cell, solar cell and manufacturing method thereof, and solar cell module

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012084585A (en) * 2010-10-07 2012-04-26 Shoei Chem Ind Co Solar cell device and method of manufacturing the same
JP2013531863A (en) * 2010-05-04 2013-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thick film pastes containing lead-tellurium-lithium-oxides and their use in the manufacture of semiconductor devices
US20130270489A1 (en) * 2012-04-17 2013-10-17 Heraeus Precious Metals North America Conshohocken Llc Inorganic Reaction System For Electroconductive Paste Composition
JP2014022194A (en) * 2012-07-18 2014-02-03 Noritake Co Ltd PASTE COMPOSITION FOR FORMING Ag ELECTRODE, METHOD FOR MANUFACTURING THE SAME AND SOLAR CELL
WO2014050703A1 (en) * 2012-09-26 2014-04-03 株式会社村田製作所 Conductive paste and solar cell
JP2014078594A (en) * 2012-10-10 2014-05-01 Noritake Co Ltd Paste composition and solar battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013531863A (en) * 2010-05-04 2013-08-08 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー Thick film pastes containing lead-tellurium-lithium-oxides and their use in the manufacture of semiconductor devices
JP2012084585A (en) * 2010-10-07 2012-04-26 Shoei Chem Ind Co Solar cell device and method of manufacturing the same
US20130270489A1 (en) * 2012-04-17 2013-10-17 Heraeus Precious Metals North America Conshohocken Llc Inorganic Reaction System For Electroconductive Paste Composition
JP2014022194A (en) * 2012-07-18 2014-02-03 Noritake Co Ltd PASTE COMPOSITION FOR FORMING Ag ELECTRODE, METHOD FOR MANUFACTURING THE SAME AND SOLAR CELL
WO2014050703A1 (en) * 2012-09-26 2014-04-03 株式会社村田製作所 Conductive paste and solar cell
JP2014078594A (en) * 2012-10-10 2014-05-01 Noritake Co Ltd Paste composition and solar battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6074483B1 (en) * 2015-11-10 2017-02-01 株式会社ノリタケカンパニーリミテド Conductive composition
JP2017092254A (en) * 2015-11-10 2017-05-25 株式会社ノリタケカンパニーリミテド Conductive composition
TWI681410B (en) * 2017-07-28 2020-01-01 南韓商三星Sdi股份有限公司 Composition for solar cell electrode and solar cell electrode prepared using the same
WO2022041537A1 (en) * 2020-08-26 2022-03-03 南通天盛新能源股份有限公司 Glass powder and silver paste containing same

Also Published As

Publication number Publication date
JP6114389B2 (en) 2017-04-12
JPWO2015076157A1 (en) 2017-03-16
TW201526027A (en) 2015-07-01

Similar Documents

Publication Publication Date Title
JP5690780B2 (en) Ag electrode forming paste composition, method for producing the same, and solar cell
JP5711359B2 (en) Thick film pastes containing lead-tellurium-lithium-titanium-oxides and their use in the manufacture of semiconductor devices
CN105097067B (en) For forming the composition of solar cel electrode and the electrode using its preparation
JP6114389B2 (en) Method for producing conductive composition
JP5955791B2 (en) Paste composition and solar cell
JP2013514956A (en) Glass composition used in conductors for photovoltaic cells
TWI548605B (en) Composition for solar cell electrodes and electrode fabricated using the same
CN102369168A (en) Glass compositions used in conductors for photovoltaic cells
JP2015525181A (en) Glass compositions and their use in conductive silver pastes
JP2012530664A (en) Glass composition used in conductors for photovoltaic cells
KR102097805B1 (en) Composition for forming solar cell electrode and electrode prepared using the same
JP2015506066A (en) Conductive silver paste for metal wrap-through silicon solar cells
TWI677992B (en) Solar cell
TWI532197B (en) Composition for forming solar cell electrode and electrode prepared using the same
WO2014178419A1 (en) Solar cell and paste composition for forming aluminum electrode for solar cell
TWI529744B (en) Composition for solar cell electrode and electrode fabricated using the same
TWI612020B (en) Composition for solar cell electrodes and electrode fabricated using the same
WO2013018462A1 (en) Conductive paste composition for solar cells
JP2014078594A (en) Paste composition and solar battery
KR20190113131A (en) Composition for forming solar cell electrode and electrode prepared using the same
TWI687384B (en) Composition for solar cell electrodes and electrode fabricated using the same
TW201815711A (en) Composition for forming solar cell electrode and electrode prepared using the same
CN105449012A (en) Solar cell including electrode formed on high sheet resistance wafer

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2015519676

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863189

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863189

Country of ref document: EP

Kind code of ref document: A1