WO2015075913A1 - Heat radiation pipe - Google Patents

Heat radiation pipe Download PDF

Info

Publication number
WO2015075913A1
WO2015075913A1 PCT/JP2014/005706 JP2014005706W WO2015075913A1 WO 2015075913 A1 WO2015075913 A1 WO 2015075913A1 JP 2014005706 W JP2014005706 W JP 2014005706W WO 2015075913 A1 WO2015075913 A1 WO 2015075913A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat radiating
radiating pipe
tube
hole
Prior art date
Application number
PCT/JP2014/005706
Other languages
French (fr)
Japanese (ja)
Inventor
好史 大良
Original Assignee
好史 大良
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 好史 大良 filed Critical 好史 大良
Priority to KR1020167013315A priority Critical patent/KR20160075619A/en
Priority to CN201480057729.0A priority patent/CN105705868A/en
Publication of WO2015075913A1 publication Critical patent/WO2015075913A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/12Tube and panel arrangements for ceiling, wall, or underfloor heating
    • F24D3/14Tube and panel arrangements for ceiling, wall, or underfloor heating incorporated in a ceiling, wall or floor
    • F24D3/146Tubes specially adapted for underfloor heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C23/00Extruding metal; Impact extrusion
    • B21C23/02Making uncoated products
    • B21C23/04Making uncoated products by direct extrusion
    • B21C23/08Making wire, bars, tubes
    • B21C23/085Making tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16LPIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
    • F16L11/00Hoses, i.e. flexible pipes
    • F16L11/20Double-walled hoses, i.e. two concentric hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D3/00Hot-water central heating systems
    • F24D3/10Feed-line arrangements, e.g. providing for heat-accumulator tanks, expansion tanks ; Hydraulic components of a central heating system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/02Fluid distribution means
    • F24D2220/0285Pipe sections
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2220/00Components of central heating installations excluding heat sources
    • F24D2220/20Heat consumers
    • F24D2220/2009Radiators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]

Definitions

  • the present invention relates to a heat radiating pipe used for floor heating of a house or heating of an agricultural house.
  • thermosyphons have been used for the above applications (see Patent Documents 1 to 3).
  • the thermosyphon has a structure in which the inner cylinder is penetrated so as to pass a lower position of the outer cylinder in a state of being laid down, and the working fluid is sealed in a space between the outer cylinder and the inner cylinder.
  • the working liquid evaporates by the heat, and the upper part of the inner surface of the outer cylinder is warmed and condensed by the steam, and falls down into the working liquid.
  • the outer cylinder is warmed, and heat is transferred from the outer cylinder to the floor of the house, an agricultural house, or the like.
  • JP 2004-101039 A JP 2005-48995 A JP 2005-42939 A
  • thermosyphons used in the above applications employ a packing such as an O-ring between the plate that closes both ends of the pipe and the inner wall of the outer cylinder or the outer wall of the inner cylinder. May cause leakage of the internal working fluid.
  • a packing such as an O-ring has a relatively short life, requires maintenance such as replacement of the packing and refilling of the hydraulic fluid, and requires a running cost.
  • an object of the present invention is to provide a heat radiation pipe that is inexpensive and excellent in durability.
  • the heat dissipating pipe of the present invention that achieves the above object is as follows. Multiple locations in the circumferential direction that support the inner wall by connecting the outer tube and the inner tube with the inner tube disposed in the outer tube with a space between the outer tube and the outer tube, and extending in the longitudinal direction and the radial direction A double pipe made through extrusion, having a support plate provided on Each end of the double pipe has a pair of end plates that project the inner pipe or the pipe connected to the inner pipe and close the inner space sandwiched between the outer pipe and the inner wall.
  • the heat radiating pipe of the present invention does not require a hydraulic fluid such as a thermosyphon. Therefore, there is no risk that the hydraulic fluid leaks out in the first place.
  • the heat radiating pipe of the present invention includes the double pipe and a pair of end plates, and does not require packing such as an O-ring. Therefore, high durability and long life are realized.
  • the posture of the pipe becomes a problem.
  • it is only necessary to flow smoothly when, for example, hot water is flowed into the inner pipe, and thus the posture is a serious problem.
  • it may also be arranged vertically or diagonally to the wall.
  • the above-mentioned double pipe extruded is used and can be manufactured at low cost.
  • the heat of the hot water when, for example, hot water is passed through the inner pipe is transferred to the support plate and the inner space to reach the outer pipe, and the heat of the outer pipe is radiated.
  • the heat of the outer pipe is radiated.
  • it is inferior to the immediate effect of warming the room rapidly compared with the thermosyphon, it is used for the purpose of warming gently over a long period of time, or the entrance side where the hot water flows in and the exit side where it flows out in the room. It is suitable for applications such as heating uniformly.
  • the load due to the thermal cycle accompanying operation and stop is different from the thermosyphon where the load is concentrated on the packing such as the O-ring, and the load is almost equally distributed to the entire heat radiating pipe. This also contributes to high durability and long life of the heat radiating pipe of the present invention.
  • the heat radiating pipe of the present invention there is no critical thing such as the evaporation temperature of the hydraulic fluid, and the temperature for warming the room can be easily adjusted by adjusting the temperature and flow rate of hot water passing through the inner pipe. can do.
  • the inner tube is preferably arranged concentrically with the outer tube.
  • the heat distortion caused by passing hot water through the inner pipe is equally received by the support plate and the outer pipe, which is favorable in terms of strength and contributes to longer life. . Also, heat conduction is made uniform.
  • the plurality of support plates are preferably formed at equal intervals in the circumferential direction.
  • the support plate has a notch that connects the internal space into one at least at one end, and each of the pair of end plates includes an outer tube and an inner tube or the inner tube. It is preferable that both the pipe and the pipe connected to each other are integrated by welding, and an inert gas is sealed in the internal space.
  • the internal space can be sealed by integrating the pair of end plates by welding, and the entire heat radiating pipe is integrated to form a strong structure. Moreover, when the inert gas in the internal space is sealed, the heat transfer characteristics are adjusted according to the thermal conductivity of the inert gas.
  • At least one end plate of the pair of end plates has a hole connecting the internal space and the outside, and the internal space is sealed by press-fitting a plug into the hole. It is also a preferred embodiment.
  • an inert gas can be injected into the interior, or the pressure in the interior space can be adjusted, and then the interior space can be easily sealed.
  • the hole is preferably formed by using a friction cutting tool.
  • the above holes are blocked by the press-fitting of the stopper, but a certain length (depth) of the hole is necessary for the inserted stopper to keep blocking the hole stably for a long period of time. If an attempt is made to secure the length (depth) of the hole only by the thickness of the end plate, it may be necessary to employ a thick end plate only to ensure the length (depth) of the hole. .
  • a friction cutting tool for example, a flow drill (registered trademark)
  • the wall around the hole becomes a shape extending in the length direction (depth direction) of the hole, exceeding the plate thickness.
  • a hole having a length (depth) is formed. Therefore, when a hole is drilled using a friction cutting tool, a hole with the required length (depth) can be formed, and an end plate with a thinner plate thickness can be used, realizing a cheaper and lighter heat radiating pipe. To do.
  • the pair of end plates is produced through extrusion molding and cutting to a predetermined thickness.
  • the end plate must have a hole for projecting the inner tube or a tube connected to the inner tube.
  • the plate material may be perforated, but through extrusion molding and cutting to a predetermined thickness, the perforating process becomes unnecessary and a more inexpensive heat radiating pipe is realized.
  • the hole into which the above-mentioned plug is press-fitted it may be formed at the time of extrusion molding, or may be drilled using the above-mentioned friction cutting tool after cutting in order to obtain an end plate with a thin plate pressure.
  • FIG. 2 is a cross-sectional view of the heat radiating pipe of the first embodiment of the present invention in the direction of arrow AA shown in FIG.
  • FIG. 2 is a cross-sectional view of the heat radiating pipe of the first embodiment of the present invention in the direction of arrow AA shown in FIG.
  • FIG. 2 is a cross-sectional view of the heat radiating pipe of the first embodiment of the present invention in the direction of arrow AA shown in FIG.
  • FIG. 2 is a cross-sectional view of the heat radiating pipe of the first embodiment of the present invention in the direction of arrow AA shown in FIG.
  • It is the expanded sectional view (A) and side view (B) of one edge part of the thermal radiation pipe of 2nd Embodiment of this invention.
  • It is sectional drawing of the thermal radiation pipe of 3rd Embodiment of this invention.
  • It is sectional drawing of the thermal radiation pipe of 4th Embodiment of this invention.
  • FIG. 1 is a sectional view of a heat radiating pipe according to a first embodiment of the present invention.
  • FIG. 2 is an enlarged sectional view (A) and a side view (B) of one end portion of the heat radiating pipe of the first embodiment whose sectional view is shown in FIG.
  • FIG. 3 is a cross-sectional view of the heat radiating pipe according to the first embodiment of the present invention in the direction of arrow AA shown in FIG.
  • a double tube 10 having a cross-sectional shape shown in FIG. 3 manufactured by extrusion molding of metal, for example, aluminum is used.
  • the double tube 10 includes an outer tube 11, an inner tube 12, and a support plate 13.
  • the outer tube 11 is a pipe having a circular cross section in the present embodiment.
  • the inner tube 12 is disposed with a space between the inner tube 12 and the outer tube 11.
  • the inner tube 12 is disposed concentrically with the outer tube 11.
  • the support plate 13 extends in the longitudinal direction (arrow XX direction shown in FIG. 1) and the radial direction (radial direction from the inner tube 12 toward the outer tube 11 as indicated by the arrow Y in FIG. 3). And a flat plate that supports the inner tube 12 by connecting the inner tube 12 and the inner tube 12.
  • the support plate 13 is formed at a plurality of locations in the circumferential direction (the direction of the arrow R shown in FIG. 3). In the present embodiment, the support plate 13 is formed at three locations at equal intervals of 120 ° in the circumferential direction (arrow R direction).
  • the support plate 131 has notches 131 formed at both ends thereof. As shown in FIG. 3, the present embodiment includes three support plates 13, and the notches 131 are formed in all of the three support plates 13.
  • the internal space 19 is shown as being divided into three, but the notch 131 of the support plate 13 connects the spaces on both sides separated by the support plate 13, and three Since the notches 131 are formed in all of the support plates 13, the internal space 19 is a space connected to one through the notches 131.
  • the heat radiating pipe 1 includes a pair of end plates 20 that block the internal space 19 sandwiched between the outer pipe 11 and the inner pipe 12 at both ends of the double pipe 10.
  • the end plate 20 is also made of aluminum like the double tube 10.
  • the connecting pipe 121 is connected to the inner pipe 12 so that the connecting pipe 121 is strongly inserted into the end of the inner pipe 12, and the connecting portion is the central hole 23 of the end plate 20. And the connecting pipe 121 protrudes outside.
  • a hose (not shown) is connected to the connecting pipe 121.
  • the connecting pipe 121 is prevented from being detached when inserted into the hose.
  • Protrusion 121a is provided.
  • This connecting pipe 121 is also made of aluminum of the same material in this embodiment.
  • the end plate 20 is welded to both the inner tube 12 and the outer tube over the entire circumference.
  • One of the pair of end plates 20 (the right end plate 20 in FIG. 1 shown in FIG. 2A) has a hole 21 that connects the internal space 19 and the outside.
  • the air in the internal space 19 is extracted by using the holes 21 to make the internal space 19 in a vacuum state, and an inert gas, typically helium gas, is injected into the internal space 19.
  • an inert gas typically helium gas
  • the hard ball 22 is driven into the hole 21, the hard ball 22 is press-fitted into the hole 21, and the hole 21 is closed in a sealed state.
  • stainless steel hard balls are used as the hard balls 22.
  • the hard sphere 22 corresponds to an example of a stopper according to the present invention.
  • a hose (not shown) is connected to the connecting pipes 121 protruding from both ends of the heat radiating pipe 1, and warm water flows into the inner pipe 12 of the heat radiating pipe 1 through the hose. It is discharged from the end. The discharged water is reheated by a heating device (not shown) and flows into the inner pipe 12 of the heat radiating pipe 1.
  • the heat of the hot water flowing into the inner pipe 12 is transferred from the inner pipe 12 to the outer pipe 11 via the support plate 13. Further, even if the inner tube 12 warms the inert gas in the inner space 19 and the inert gas is heated, the heat is transferred to the outer tube 11.
  • the outer tube 11 heated in this way dissipates the heat to the outside.
  • the double pipe 10 is cut at a position indicated by a one-dot chain line in FIG. Then, the outer tube 11 is shaved to the position of the solid line shown with the inner tube 12 left, and the notch 131 shown in the figure is formed in the support plate 13. Then, a separately prepared connecting pipe 121 is press-fitted into the inner pipe 12, and an end plate 20 which is also separately prepared is fitted into the outer pipe 11 and the inner pipe 12. And the internal space 19 is evacuated using the hole 21 of the end plate 20, and it confirms that there is no leakage by a pinhole. When this confirmation is completed, the inner space 19 is filled with an inert gas such as helium gas. Then, a hard ball 22 is driven into the hole 21 of the end plate 20, the hard ball 22 is press-fitted into the hole 21, and the hole 21 is also sealed. Thereby, this heat radiating pipe 1 is completed.
  • an inert gas such as helium gas
  • the location indicated by the symbol w in FIG. 1 and FIG. 2 represents a welding location over one round.
  • the sign w is shown only at the welded portion at one end, but the same applies to both ends.
  • FIG. 4 is an enlarged cross-sectional view (A) and a side view (B) of one end portion of the heat radiating pipe according to the second embodiment of the present invention.
  • the heat radiating pipe 2 of the second embodiment shown in FIG. 4 has an extruded double tube 10 and a pair of end plates 20, similar to the heat radiating pipe 1 of the first embodiment described above.
  • the double pipe 10 is cut at the position indicated by the alternate long and short dash line in FIG. 4A, leaving the inner pipe 12 and the outer pipe 11 and the support plate 13. Is cut to the position indicated by the solid line in FIG. Therefore, the connecting pipe 121 like the heat radiating pipe 1 of the first embodiment is unnecessary, the end of the inner pipe 12 serves as the connecting pipe, and the inner pipe is directly inserted into a hose (not shown). It is. For this reason, a protrusion 12a for preventing the hose from coming off is formed on the inner tube 12.
  • the portion of the end of the double pipe 10 is scraped off, but a connecting pipe 121 is prepared separately and the connecting pipe 121 is prepared. The step of press-fitting into the inner tube 12 becomes unnecessary.
  • FIG. 5 is a cross-sectional view of a heat radiating pipe according to a third embodiment of the present invention.
  • a notch 131 is formed only at one end (the right end in FIG. 5). Further, the notch 131 in the third embodiment is different in shape from the notch 131 in the first embodiment. However, also in the heat radiating pipe 3 of this third embodiment, the notches 131 are formed in all the support plates 13. The role of the notch 131 is to connect the internal spaces 19 into one, and as long as it is formed in all the support plates 13, it may be formed only in one end.
  • the connecting pipe 121 has a thickness that substantially matches the inner diameter of the inner pipe 12 and is inserted into the inner pipe 12 with a light force. It is a tube that can.
  • the double pipe 10 is cut at the position of arrow B to form a notch 131.
  • the connecting pipe 121 is inserted through the end plate 20, and the connecting pipe 121 is further inserted into the inner pipe 12.
  • the end plate 20 is separated from the position of the arrow B, and the end portion of the inner tube 12 and the outer wall of the connecting tube 121 are welded over the entire circumference.
  • the end plate 20 is applied to the end surface of the double pipe 10, and the end plate 20 and the outer pipe 11 and the connecting pipe 121 are welded over the entire circumference.
  • the air inside is extracted and an inert gas is injected, and hard balls 22 are driven into the holes 21 of the end plate 20 and sealed.
  • the support plate 13 is notched after the double pipe 10 is cut, such as the heat radiating pipes 1 and 2 of the first and second embodiments described above.
  • the work of cutting the outer tube 11 and the support plate 13 other than forming 131 is unnecessary, and a more inexpensive heat radiating pipe is realized.
  • FIG. 6 is a cross-sectional view of a heat radiating pipe according to a fourth embodiment of the present invention.
  • the support plate 13 of the heat radiating pipe 4 of the fourth embodiment shown in FIG. 6 has a notch 131 formed only at one end.
  • the inner tube 12 protrudes from the end plate 20 in the same manner as the heat radiating pipe 1 of the first embodiment.
  • the connecting pipe 121 has a thickness that can be easily inserted into the inner pipe 2 as in the case of the third embodiment shown in FIG.
  • the double pipe 10 is cut at a position similar to the position indicated by the one-dot chain line in FIG. 2, and the outer pipe 11 and the support plate 13 are shown in FIG. Sharpen to position. Then, a notch 131 is formed in the support plate 13. Thereafter, as shown in FIG. 6, the end of the inner tube 12 is inserted into the center hole 23 of the end plate 20, and the end plate 20 is directed to the end surface of the double tube 10, and the end plate 20 and the outer tube 11 and the inner pipe 12 are welded over one round. Next, the connecting pipe 121 is inserted into the inner pipe 12 as shown in FIG. 6, and the end surface of the inner pipe 12 and the outer wall of the connecting pipe 121 are welded. After that, as in the case of the first embodiment, the air in the internal space 19 is evacuated and filled with an inert gas, and a hard ball 22 is driven into the hole 21 of the end plate 20 and sealed.
  • holes 21 are formed in both end plates 20 at both ends, and hard balls 22 are press-fitted into both holes 21.
  • the end plate 20 is manufactured through extrusion. That is, the end plate 20 has an outer diameter that is substantially the same as that of the outer tube 11 and is formed with, for example, aluminum in a state where both a central hole 23 through which the inner tube 12 is inserted and a hole 21 into which the hard ball 22 is press-fitted are formed. It is manufactured by manufacturing an extruded product and cutting it into an end plate 20 having a thickness shown in FIG.
  • the end plates 20 manufactured by this manufacturing method are used at both ends of the double tube 10, holes 21 are formed in both end plates 20, and hard balls 22 are press-fitted into both holes 21.
  • the end plates 20 in which the holes 21 are formed are used at both ends of the double tube 10, but the holes 21 are not formed at the time of extrusion molding, but are formed by drilling after cutting.
  • the hole 21 may be formed only in the end plate 20 at one end of the heavy tube 10.
  • the end plate 20 in which the holes 21 are formed is formed as a double pipe by manufacturing both an extruded product provided with the holes 21 and an extruded product without the holes 21. It is also possible to employ an end plate 20 that is employed only at one end of 10 and has no holes 21 at the other end.
  • FIG. 7 is a cross-sectional view showing one end of a heat radiating pipe according to a fifth embodiment of the present invention.
  • the heat radiating pipe 5 of the fifth embodiment is the same as the heat radiating pipe 4 of the fourth embodiment shown in FIG. 6 except for the points described below.
  • the end plate 20 of the heat dissipating pipe 5 of the fifth embodiment shown in FIG. 7 is made of a thin plate material compared to the heat dissipating pipes 1 to 4 of the respective embodiments so far. For this reason, if the hole 21 has only the length (depth) of the thickness of the plate material, the hard ball 22 cannot be stably driven into the hole 21, and the internal space 19 is sealed by press-fitting the hard ball 22. It is not possible to obtain sufficient reliability. Therefore, as the end plate 20 of the heat radiating pipe 5 according to the fifth embodiment, a plate material in which a hole 21 is formed using a friction drilling tool such as a flow drill (registered trademark) is used.
  • the material of the plate material in which the hole 21 is formed is melted to form a cylindrical protrusion 221 that extends the hole 21, and thereby a hole having a length (depth) exceeding the thickness of the plate material.
  • the end plate 20 has 21. In the present embodiment, this is utilized, and the internal space is sealed with high reliability by press-fitting hard balls 22 into the holes 21 in spite of the thin plate material.
  • a thin plate material can be used as the end plate 20 as compared with the previous embodiments, and the heat radiating pipe can be made cheaper and lighter without reducing reliability.
  • the cylindrical protrusions 221 around the holes 21 are formed on both surfaces of the plate material. However, when the protrusions on the outer wall surface are obstructive, the protrusions on the outer wall surface may be scraped off. When cutting the projection on the outer wall surface side, drilling may be performed using a friction cutting tool designed to scrape the projection on the outer wall surface side simultaneously with the formation of the hole 21.
  • FIG. 8 is a cross-sectional view of a portion corresponding to the arrow AA shown in FIG. 1 of the heat radiating pipe according to the sixth embodiment of the present invention.
  • the double pipe 10A constituting the heat radiating pipe 6 of the sixth embodiment shown in FIG. 8 includes the outer pipe 11, the inner pipe 12 and the support plate 13 in the same manner as the double pipe 10 of the previous embodiments. Have. However, a groove 11a extending in the longitudinal direction of the double pipe 10A is formed on the outer wall surface of the outer pipe 11 where the support plate 13 is connected.
  • the outer wall surface of the outer tube 11 of the double tube 10 is cylindrical, and the orientation in the circulation direction is unknown in appearance.
  • the groove 11 a is formed at a location corresponding to the support plate 13 on the outer wall surface. Can know.
  • this heat radiating pipe 6 is laid sideways in a posture in which the groove 11a faces upward and a flooring is placed thereon, even if this heat radiating pipe 6 expands and contracts due to a thermal cycle, the expansion and contraction works equally to the left and right.
  • the flooring does not need to be moved left and right. If the heat radiating pipe 6 is placed so that the partition wall 13 has an uneven posture on the left and right and a flooring is laid thereon, the flooring may move left and right due to expansion and contraction of the heat radiating pipe 6.
  • FIG. 9 is a cross-sectional view of a portion corresponding to the arrow AA shown in FIG. 1 of the heat radiating pipe according to the seventh embodiment of the present invention.
  • the double pipe 10B constituting the heat radiating pipe 7 of the seventh embodiment has an outer pipe 11, an inner pipe 12, and three support plates 13 as in the embodiments described so far.
  • the outer tube 11 has flat portions 11 b formed in a plane at three locations corresponding to the support plate 13.
  • the flooring 50 is shown by a one-dot chain line.
  • the presence of the flat portion 11b makes it possible to compare the floor on the floor.
  • the material 50 is stabilized and the heat transfer to the floor material 50 is improved.
  • FIG. 10 is a cross-sectional view of a portion corresponding to the arrow AA shown in FIG. 1 of the heat radiating pipe according to the eighth embodiment of the present invention.
  • the support plate 13 constituting the double pipe is three, but in the case of the heat radiation pipe 8 of the eighth embodiment shown in FIG.
  • the four support plates 13 are provided at equal intervals of 90 ° in the circumferential direction.
  • the number of the support plates 13 may be an appropriate number in consideration of the strength and heat transfer performance of the heat radiating pipe, and the number is not limited.
  • FIG. 11 is a cross-sectional view of a portion corresponding to the arrow AA shown in FIG. 1 of the heat radiating pipe according to the ninth embodiment of the present invention.
  • the outer pipe of the double pipe 10D constituting the heat radiating pipe 9 of the ninth embodiment is a pipe having an elliptical cross section.
  • the outer pipe of the double pipe 10D constituting the heat radiating pipe 9 of the ninth embodiment is a pipe having an elliptical cross section.
  • the heat radiating pipe 9 shown in FIG. 11 has two support plates 13.
  • FIG. 12 is a cross-sectional view of a portion corresponding to the arrow AA shown in FIG. 1 of the heat radiating pipe according to the tenth embodiment of the present invention.
  • the heat radiating pipe 91 of the tenth embodiment shown in FIG. 12 is also formed with an outer tube 11 of a double tube 10E having an oval shape, similar to the heat radiating pipe 9 of the ninth embodiment shown in FIG.
  • the heat radiating pipe 91 of the tenth embodiment a total of four support plates 13 are arranged near the elliptical minor axis. For this reason, the heat radiating pipe 91 of the tenth embodiment can withstand the force of the direction of crushing in the minor axis direction, compared to the heat radiating pipe 9 of the ninth embodiment of FIG. It is advantageous for installation in places where it is strongly pinched.
  • the heat radiating pipe is described as being made of aluminum, but it is not necessarily made of aluminum, and may be other metals, and is not particularly limited as long as it is a material according to its use. Absent.
  • the internal space 19 has been described as being filled with an inert gas such as helium gas, but instead of being filled with an inert gas, air may be left as it is in the internal space.
  • an inert gas such as helium gas
  • the end plate 20 does not need to have a role of sealing the inside, and there may be some air flow between the internal space 19 and the outside.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Steam Or Hot-Water Central Heating Systems (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Thermal Insulation (AREA)

Abstract

The present invention pertains to a heat radiation pipe used in residential floor heating, agricultural house heating, etc., and provides a heat radiation pipe having excellent durability at a low price. The present invention has: an extrusion-molded double-layer pipe (10) having an outer pipe (11), an inner pipe (12) disposed inside the outer pipe so that a space is left between the inner pipe and the outer pipe (11), and support plates (13) that widen in the longitudinal direction and the radial direction, the support plates (13) connecting the outer pipe (11) and the inner pipe (12), supporting the inner pipe (12), and being provided at multiple locations in the circumferential direction; and a pair of end plates (20) for sealing the interior space interposed between the outer pipe (11) and the inner pipe (12) and allowing the end sections of the inner pipe (12) or a pipe (121) connected to the inner pipe (12) to protrude at both ends of the double-layer pipe (10).

Description

放熱パイプHeat dissipation pipe
 本発明は、住居の床暖房や農業用のハウスの暖房などに用いる放熱パイプに関する。 The present invention relates to a heat radiating pipe used for floor heating of a house or heating of an agricultural house.
 従来より、上記の用途として熱サイホンが利用されている(特許文献1~3参照)。熱サイホンは、横に倒した状態の外筒の下寄りの位置を通すように内筒を貫通させ、外筒と内筒との間の空間に作動液を密封した構造を有する。この熱サイホンの内筒内に温水を通すと、その熱で作動液が蒸発しその蒸気で外筒内面の上部を暖めて凝縮し作動液となって下に落下する。このようにして外筒が暖められ、その外筒から住居の床や農業用のハウス等に伝熱する。 Conventionally, thermosyphons have been used for the above applications (see Patent Documents 1 to 3). The thermosyphon has a structure in which the inner cylinder is penetrated so as to pass a lower position of the outer cylinder in a state of being laid down, and the working fluid is sealed in a space between the outer cylinder and the inner cylinder. When hot water is passed through the inner cylinder of the thermosyphon, the working liquid evaporates by the heat, and the upper part of the inner surface of the outer cylinder is warmed and condensed by the steam, and falls down into the working liquid. In this way, the outer cylinder is warmed, and heat is transferred from the outer cylinder to the floor of the house, an agricultural house, or the like.
特開2004-101039号公報JP 2004-101039 A 特開2005-48995号公報JP 2005-48995 A 特開2005-42939号公報JP 2005-42939 A
 しかしながら、上記の用途に用いられている熱サイホンの多くは、そのパイプの両端を塞ぐ板と外筒内壁や内筒外壁との間にOリング等のパッキンが採用されており、そのパッキンの劣化により内部の作動液がも漏れ出るおそれがある。Oリング等のパッキンは比較的短寿命であり、パッキンの交換や作動液の再充填等のメンテナンスが必要であり、ランニングコストがかかる。 However, many of the thermosyphons used in the above applications employ a packing such as an O-ring between the plate that closes both ends of the pipe and the inner wall of the outer cylinder or the outer wall of the inner cylinder. May cause leakage of the internal working fluid. A packing such as an O-ring has a relatively short life, requires maintenance such as replacement of the packing and refilling of the hydraulic fluid, and requires a running cost.
 本発明は、上記事情に鑑み、安価で耐久性に優れた放熱パイプを提供することを目的とする。 In view of the above circumstances, an object of the present invention is to provide a heat radiation pipe that is inexpensive and excellent in durability.
 上記目的を達成する本発明の放熱パイプは、
 外管と、外管との間に空間を空けてその外管内に配置された内管と、長手方向および半径方向に広がり外管と内管とを繋いで内壁を支持する、周回方向複数箇所に設けられた支持板とを有する、押出成形を経て作製された二重管と、
 その二重管両端部それぞれにおいて、内管あるいは内管に連結された管を突出させて外管と内壁とに挟まれた内部空間を塞ぐ一対の端板とを有することを特徴とする。
The heat dissipating pipe of the present invention that achieves the above object is as follows.
Multiple locations in the circumferential direction that support the inner wall by connecting the outer tube and the inner tube with the inner tube disposed in the outer tube with a space between the outer tube and the outer tube, and extending in the longitudinal direction and the radial direction A double pipe made through extrusion, having a support plate provided on
Each end of the double pipe has a pair of end plates that project the inner pipe or the pipe connected to the inner pipe and close the inner space sandwiched between the outer pipe and the inner wall.
 本発明の放熱パイプは、熱サイホンのような作動液は不要である。したがって、その作動液が漏れ出るといったおそれは、そもそも生じない。また、本発明の放熱パイプは、上記の二重管と一対の端板とで構成されており、Oリング等のパッキンは不要である。したがって高耐久性、長寿命化が実現する。 ¡The heat radiating pipe of the present invention does not require a hydraulic fluid such as a thermosyphon. Therefore, there is no risk that the hydraulic fluid leaks out in the first place. Moreover, the heat radiating pipe of the present invention includes the double pipe and a pair of end plates, and does not require packing such as an O-ring. Therefore, high durability and long life are realized.
 また、作動液を用いると、パイプの姿勢が問題となるが、本発明の放熱パイプの場合、内管内に例えば温水等を流したときに円滑に流れさえすればよく、したがって姿勢は大きな問題とはならず、床に水平に置かれるだけでなく、壁に垂直に、あるいは斜めに配置されてもよい。 In addition, when working fluid is used, the posture of the pipe becomes a problem. However, in the case of the heat radiating pipe of the present invention, it is only necessary to flow smoothly when, for example, hot water is flowed into the inner pipe, and thus the posture is a serious problem. In addition to being placed horizontally on the floor, it may also be arranged vertically or diagonally to the wall.
 さらに、本発明の放熱パイプの場合、押出成形された上記の二重管が使用されており、安価に製造できる。 Furthermore, in the case of the heat radiating pipe of the present invention, the above-mentioned double pipe extruded is used and can be manufactured at low cost.
 さらに、本発明の放熱パイプの場合、内管内に例えば温水を通したときのその温水の熱は、支持板や内部空間を伝熱して外管に達し、その外管の熱が放熱される。このため、熱サイホンと比べ部屋等を急速に暖める即効性には劣るものの、長時間内に渡って穏やかに暖めるといった用途、あるいは、部屋内の、温水を流し込む入口側と流れ出る出口側とをほぼ均一に暖めるといった用途には好適である。 Furthermore, in the case of the heat radiating pipe of the present invention, the heat of the hot water when, for example, hot water is passed through the inner pipe is transferred to the support plate and the inner space to reach the outer pipe, and the heat of the outer pipe is radiated. For this reason, although it is inferior to the immediate effect of warming the room rapidly compared with the thermosyphon, it is used for the purpose of warming gently over a long period of time, or the entrance side where the hot water flows in and the exit side where it flows out in the room. It is suitable for applications such as heating uniformly.
 また、本発明の伝熱パイプの場合、作動、停止に伴う熱サイクルによる負荷が、Oリング等のパッキンに集中する熱サイホンとは異なり、その負荷は放熱パイプ全体にほぼ均等に分担される。このことも本発明の放熱パイプの高耐久性、長寿命化に寄与している。 Also, in the case of the heat transfer pipe of the present invention, the load due to the thermal cycle accompanying operation and stop is different from the thermosyphon where the load is concentrated on the packing such as the O-ring, and the load is almost equally distributed to the entire heat radiating pipe. This also contributes to high durability and long life of the heat radiating pipe of the present invention.
 さらに、本発明の放熱パイプによれば、作動液の蒸発温度といった臨界的なものは存在せず、内管に通す温水等の温度や流速を調整することによって、部屋を暖める温度を容易に調整することができる。 Furthermore, according to the heat radiating pipe of the present invention, there is no critical thing such as the evaporation temperature of the hydraulic fluid, and the temperature for warming the room can be easily adjusted by adjusting the temperature and flow rate of hot water passing through the inner pipe. can do.
 ここで、本発明の放熱パイプにおいて、内管は、外管と同心に配置されていることが好ましい。 Here, in the heat radiating pipe of the present invention, the inner tube is preferably arranged concentrically with the outer tube.
 内管が外管と同心に配置されていると、内管に温水等を通したときの熱による歪みが支持板や外管に均等に受け止められ、強度的に好ましく、長寿命化に寄与する。また熱の伝導も均一化する。 When the inner pipe is arranged concentrically with the outer pipe, the heat distortion caused by passing hot water through the inner pipe is equally received by the support plate and the outer pipe, which is favorable in terms of strength and contributes to longer life. . Also, heat conduction is made uniform.
 さらに、本発明の放熱パイプにおいて、上記複数枚の支持板は、周回方向等間隔に形成されていることが好ましい。 Furthermore, in the heat radiating pipe of the present invention, the plurality of support plates are preferably formed at equal intervals in the circumferential direction.
 支持板を周回方向等間隔に形成することにより、熱による歪みが均等に分散され、また伝熱も均等化される。 形成 By forming the support plate at equal intervals in the circumferential direction, heat distortion is evenly distributed and heat transfer is also equalized.
 また、本発明の放熱パイプにおいて、支持板が、少なくとも一方の端部に、内部空間を1つに繋げる切欠きを有し、一対の端板それぞれが、外管と、内管あるいはその内管に連結された管との双方に溶接により一体化されたものであって、内部空間に不活性ガスが封入されていることが好ましい。 Further, in the heat radiating pipe of the present invention, the support plate has a notch that connects the internal space into one at least at one end, and each of the pair of end plates includes an outer tube and an inner tube or the inner tube. It is preferable that both the pipe and the pipe connected to each other are integrated by welding, and an inert gas is sealed in the internal space.
 一対の端板それぞれが溶接により一体化されていることにより内部空間を密封でき、かつこの放熱パイプ全体が一体化されて強固な構造となる。また内部空間の不活性ガスを封入すると、その不活性ガスの熱伝導率に応じて伝熱特性が調整される。 The internal space can be sealed by integrating the pair of end plates by welding, and the entire heat radiating pipe is integrated to form a strong structure. Moreover, when the inert gas in the internal space is sealed, the heat transfer characteristics are adjusted according to the thermal conductivity of the inert gas.
 また、支持板に上記の切欠きを形成して内部空間が1つに繋げておくことにより、圧力分布の発生を避け、圧力や伝熱の均一性が確保され、この放熱パイプの歪みの発生も緩和される。 In addition, by forming the above-mentioned notch in the support plate and connecting the internal space into one, the occurrence of pressure distribution is avoided, the uniformity of pressure and heat transfer is ensured, and distortion of this heat radiating pipe is generated Is also eased.
 さらに、本発明の放熱パイプにおいて、一対の端板のうちの少なくとも一方の端板が、内部空間と外部とを繋ぐ穴を有し、その穴に栓が圧入されることにより内部空間が密封されていることも好ましい態様である。 Furthermore, in the heat dissipating pipe of the present invention, at least one end plate of the pair of end plates has a hole connecting the internal space and the outside, and the internal space is sealed by press-fitting a plug into the hole. It is also a preferred embodiment.
 この構造を採用すると、内部に不活性ガスを注入したり、内部空間の圧力を調整して、その後容易に内部空間を密封することができる。 If this structure is adopted, an inert gas can be injected into the interior, or the pressure in the interior space can be adjusted, and then the interior space can be easily sealed.
 ここで、上記の穴を設けた端板を採用する場合において、上記穴が摩擦切削工具を用いて穿設されたものであることが好ましい。 Here, when the end plate provided with the hole is employed, the hole is preferably formed by using a friction cutting tool.
 上記の穴は栓の圧入により塞がれるが、圧入された栓が長期間に亘ってその穴を安定的に塞ぎ続けるには、ある程度の穴の長さ(奥行き)が必要である。この穴の長さ(奥行き)を端板の厚みのみで確保しようとすると、この穴の長さ(奥行き)を確保するためだけに板厚の厚い端板を採用する必要が生じることがあり得る。これに対し、摩擦切削工具、例えばフロードリル(登録商標)を用いて穴を穿設すると、穴の周りの壁が、穴の長さ方向(奥行き方向)に延びた形状となり、板厚を越えた長さ(奥行き)の穴が形成される。したがって、摩擦切削工具を用いて穴を穿設すると、必要な長さ(奥行き)の穴を形成したうえで板厚の薄い端板を採用することができ、一層安価かつ軽量な放熱パイプが実現する。 The above holes are blocked by the press-fitting of the stopper, but a certain length (depth) of the hole is necessary for the inserted stopper to keep blocking the hole stably for a long period of time. If an attempt is made to secure the length (depth) of the hole only by the thickness of the end plate, it may be necessary to employ a thick end plate only to ensure the length (depth) of the hole. . On the other hand, when a hole is drilled using a friction cutting tool, for example, a flow drill (registered trademark), the wall around the hole becomes a shape extending in the length direction (depth direction) of the hole, exceeding the plate thickness. A hole having a length (depth) is formed. Therefore, when a hole is drilled using a friction cutting tool, a hole with the required length (depth) can be formed, and an end plate with a thinner plate thickness can be used, realizing a cheaper and lighter heat radiating pipe. To do.
 また、上記一対の端板が、押出成形および所定厚みへの切断を経て作製されたものであることも好ましい形態である。 In addition, it is also a preferred form that the pair of end plates is produced through extrusion molding and cutting to a predetermined thickness.
 端板には、内管あるいはその内管に連結された管を突出させる穴が必要である。この穴を形成するにあたり、板材に穴明け加工をしてもよいが、押出成形および所定厚みへの切断を経ることにより穴明け加工が不要となり、一層安価な放熱パイプが実現する。 The end plate must have a hole for projecting the inner tube or a tube connected to the inner tube. In forming this hole, the plate material may be perforated, but through extrusion molding and cutting to a predetermined thickness, the perforating process becomes unnecessary and a more inexpensive heat radiating pipe is realized.
 なお、上述の栓が圧入される穴については、押出成形時に形成してもよく、板圧の薄い端板とするために切断後に、上述の摩擦切削工具を用いて穴明け加工してもよい。 In addition, about the hole into which the above-mentioned plug is press-fitted, it may be formed at the time of extrusion molding, or may be drilled using the above-mentioned friction cutting tool after cutting in order to obtain an end plate with a thin plate pressure. .
 以上の本発明によれば、安価で耐久性に優れた放熱パイプが実現する。 According to the present invention described above, a heat radiating pipe having low cost and excellent durability is realized.
本発明の第1実施形態の放熱パイプの断面図である。It is sectional drawing of the thermal radiation pipe of 1st Embodiment of this invention. 図1に断面図を示す第1実施形態の放熱パイプの一方の端部の拡大断面図(A)および側面図(B)である。It is the expanded sectional view (A) and side view (B) of one edge part of the heat radiating pipe of 1st Embodiment which shows sectional drawing in FIG. 本発明の第1実施形態の放熱パイプの、図1に示す矢印A-A方向の断面図である。FIG. 2 is a cross-sectional view of the heat radiating pipe of the first embodiment of the present invention in the direction of arrow AA shown in FIG. 本発明の第2実施形態の放熱パイプの一方の端部の拡大断面図(A)および側面図(B)である。It is the expanded sectional view (A) and side view (B) of one edge part of the thermal radiation pipe of 2nd Embodiment of this invention. 本発明の第3実施形態の放熱パイプの断面図である。It is sectional drawing of the thermal radiation pipe of 3rd Embodiment of this invention. 本発明の第4実施形態の放熱パイプの断面図である。It is sectional drawing of the thermal radiation pipe of 4th Embodiment of this invention. 本発明の第5実施形態の放熱パイプの一方の端部を示した断面図である。It is sectional drawing which showed one edge part of the thermal radiation pipe of 5th Embodiment of this invention. 本発明の第6実施形態の放熱パイプの、図1に示す矢印A-Aに対応する箇所の断面図である。It is sectional drawing of the location corresponding to arrow AA shown in FIG. 1 of the heat radiating pipe of 6th Embodiment of this invention. 本発明の第7実施形態の放熱パイプの、図1に示す矢印A-Aに対応する箇所の断面図である。It is sectional drawing of the location corresponding to arrow AA shown in FIG. 1 of the thermal radiation pipe of 7th Embodiment of this invention. 本発明の第8実施形態の放熱パイプの、図1に示す矢印A-Aに対応する箇所の断面図である。It is sectional drawing of the location corresponding to arrow AA shown in FIG. 1 of the thermal radiation pipe of 8th Embodiment of this invention. 本発明の第9実施形態の放熱パイプの、図1に示す矢印A-Aに対応する箇所の断面図である。It is sectional drawing of the location corresponding to arrow AA shown in FIG. 1 of the thermal radiation pipe of 9th Embodiment of this invention. 本発明の第10実施形態の放熱パイプの、図1に示す矢印A-Aに対応する箇所の断面図である。It is sectional drawing of the location corresponding to arrow AA shown in FIG. 1 of the thermal radiation pipe of 10th Embodiment of this invention.
 図1は、本発明の第1実施形態の放熱パイプの断面図である。 FIG. 1 is a sectional view of a heat radiating pipe according to a first embodiment of the present invention.
 図2は、図1に断面図を示す第1実施形態の放熱パイプの一方の端部の拡大断面図(A)および側面図(B)である。 FIG. 2 is an enlarged sectional view (A) and a side view (B) of one end portion of the heat radiating pipe of the first embodiment whose sectional view is shown in FIG.
 さらに、図3は、本発明の第1実施形態の放熱パイプの、図1に示す矢印A-A方向の断面図である。 FIG. 3 is a cross-sectional view of the heat radiating pipe according to the first embodiment of the present invention in the direction of arrow AA shown in FIG.
 本実施形態の放熱パイプ1には、金属、例えばアルミニウムの押出成形により作製された、図3に示す断面形状の二重管10が使われている。この二重管10は、外管11と、内管12と、支持板13とを有する。外管11は、本実施形態では断面円形のパイプである。内管12は、外管11との間に空間を空けて配置されている。 In the heat radiating pipe 1 of the present embodiment, a double tube 10 having a cross-sectional shape shown in FIG. 3 manufactured by extrusion molding of metal, for example, aluminum is used. The double tube 10 includes an outer tube 11, an inner tube 12, and a support plate 13. The outer tube 11 is a pipe having a circular cross section in the present embodiment. The inner tube 12 is disposed with a space between the inner tube 12 and the outer tube 11.
 本実施形態では、内管12は、外管11と同心に配置されている。また、支持板13は、長手方向(図1に示す矢印X-X方向)および半径方向(図3に矢印Yで示す、内管12から外管11に向かう放射方向)に広がり、外管11と内管12とを繋いで内管12を支持している平板である。この支持板13は、周回方向(図3に示す矢印R方向)複数箇所に形成されている。本実施形態では、この支持板13は、周回方向(矢印R方向)に120°ずつ等間隔に3箇所に形成されている。 In the present embodiment, the inner tube 12 is disposed concentrically with the outer tube 11. The support plate 13 extends in the longitudinal direction (arrow XX direction shown in FIG. 1) and the radial direction (radial direction from the inner tube 12 toward the outer tube 11 as indicated by the arrow Y in FIG. 3). And a flat plate that supports the inner tube 12 by connecting the inner tube 12 and the inner tube 12. The support plate 13 is formed at a plurality of locations in the circumferential direction (the direction of the arrow R shown in FIG. 3). In the present embodiment, the support plate 13 is formed at three locations at equal intervals of 120 ° in the circumferential direction (arrow R direction).
 この支持板131には、その両端部に切欠き131が形成されている。図3に示すように本実施形態には3枚の支持板13を備えており、この切欠き131はそれら3枚の支持板13の全てに形成されている。 The support plate 131 has notches 131 formed at both ends thereof. As shown in FIG. 3, the present embodiment includes three support plates 13, and the notches 131 are formed in all of the three support plates 13.
 図3には、内部空間19が3つに分かれたように示されているが、支持板13の切欠き131はその支持板13で区切られた両側の空間を繋いでおり、しかも3枚の支持板13の全てにこの切欠き131が形成されているため、この内部空間19は、それらの切欠き131を通して1つに繋がった空間となっている。 In FIG. 3, the internal space 19 is shown as being divided into three, but the notch 131 of the support plate 13 connects the spaces on both sides separated by the support plate 13, and three Since the notches 131 are formed in all of the support plates 13, the internal space 19 is a space connected to one through the notches 131.
 また、この放熱パイプ1は、上記の二重管10のほか、その二重管10の両端それぞれにおいて、外管11と内管12とに挟まれた内部空間19を塞ぐ一対の端板20を有する。本実施形態では、この端板20も、二重管10と同様、アルミニウム製である。 In addition to the double pipe 10, the heat radiating pipe 1 includes a pair of end plates 20 that block the internal space 19 sandwiched between the outer pipe 11 and the inner pipe 12 at both ends of the double pipe 10. Have. In the present embodiment, the end plate 20 is also made of aluminum like the double tube 10.
 ここに示す第1実施形態では、内管12の端部に連結管121を強く差し込むようにして内管12に連結管121が連結されていて、その連結部分が端板20の中央の穴23を通過して連結管121が外に突出している。この連結管121には、図示しないホースが連結されるが、この連結管121の途中には、図2(A)に示すように、この連結管121がホースに差し込まれたときの抜け止めとなる突起121aが設けられている。この連結管121も、本実施形態では同材質のアルミニウム製である。この端板20は、内管12と外管との双方に、全周にわたって溶接されている。 In the first embodiment shown here, the connecting pipe 121 is connected to the inner pipe 12 so that the connecting pipe 121 is strongly inserted into the end of the inner pipe 12, and the connecting portion is the central hole 23 of the end plate 20. And the connecting pipe 121 protrudes outside. A hose (not shown) is connected to the connecting pipe 121. In the middle of the connecting pipe 121, as shown in FIG. 2 (A), the connecting pipe 121 is prevented from being detached when inserted into the hose. Protrusion 121a is provided. This connecting pipe 121 is also made of aluminum of the same material in this embodiment. The end plate 20 is welded to both the inner tube 12 and the outer tube over the entire circumference.
 また、この一対の端板20のうちの一方(図2(A)に示す、図1の右側の端板20)は、内部空間19と外部とを繋ぐ穴21を有する。 One of the pair of end plates 20 (the right end plate 20 in FIG. 1 shown in FIG. 2A) has a hole 21 that connects the internal space 19 and the outside.
 本実施形態では、この穴21を使って先ず内部空間19の空気を抜き取って内部空間19を真空状態にし、その内部空間19に不活性ガス、代表的にはヘリウムガスを注入する。その後、穴21に硬球22が打ち込まれ、穴21に硬球22が圧入されて穴21が密封状態に塞がれる。ここでは、この硬球22として、ステンレス製の硬球が使われている。この硬球22は、本発明にいう栓の一例に相当する。 In this embodiment, first, the air in the internal space 19 is extracted by using the holes 21 to make the internal space 19 in a vacuum state, and an inert gas, typically helium gas, is injected into the internal space 19. Thereafter, the hard ball 22 is driven into the hole 21, the hard ball 22 is press-fitted into the hole 21, and the hole 21 is closed in a sealed state. Here, stainless steel hard balls are used as the hard balls 22. The hard sphere 22 corresponds to an example of a stopper according to the present invention.
 この放熱パイプ1の両端からそれぞれ突出している連結管121には、上述の通りホース(図示せず)が連結され、この放熱パイプ1の内管12の内部にはホースを通じて温水が流れ込み、もう一方の端部から排出される。排出された水は、図示しない加熱装置で再び温められてこの放熱パイプ1の内管12に流れ込む。 As described above, a hose (not shown) is connected to the connecting pipes 121 protruding from both ends of the heat radiating pipe 1, and warm water flows into the inner pipe 12 of the heat radiating pipe 1 through the hose. It is discharged from the end. The discharged water is reheated by a heating device (not shown) and flows into the inner pipe 12 of the heat radiating pipe 1.
 内管12に流れ込んだ温水の熱は、内管12から支持板13を経由して外管11に伝熱する。また、内管12が内部空間19内の不活性ガスを暖め、その不活性ガスを熱媒体しても外管11に伝熱される。 The heat of the hot water flowing into the inner pipe 12 is transferred from the inner pipe 12 to the outer pipe 11 via the support plate 13. Further, even if the inner tube 12 warms the inert gas in the inner space 19 and the inert gas is heated, the heat is transferred to the outer tube 11.
 このようにして暖められた外管11は、その熱を外部に放熱する。 The outer tube 11 heated in this way dissipates the heat to the outside.
 この放熱パイプ1の製造にあたっては、二重管10を、図2(A)に一点鎖線で示す位置で切断する。そして、内管12を残して外管11を図示の実線の位置まで削り、さらに支持板13に図示の切欠き131を形成する。そして、別途用意した連結管121を内管12に圧入し、これも別途用意しておいた端板20を嵌め込んで外管11との間および内管12との間を溶接する。そして、端板20の穴21を使って内部空間19を真空に引き、ピンホール等による漏れがないことを確認する。この確認が終了したら、内部空間19にヘリウムガス等の不活性ガスを充填する。そして、端板20の穴21に硬球22を打ち込んでその穴21に硬球22を圧入し、その穴21も密封する。これにより、この放熱パイプ1が完成する。 In manufacturing the heat radiating pipe 1, the double pipe 10 is cut at a position indicated by a one-dot chain line in FIG. Then, the outer tube 11 is shaved to the position of the solid line shown with the inner tube 12 left, and the notch 131 shown in the figure is formed in the support plate 13. Then, a separately prepared connecting pipe 121 is press-fitted into the inner pipe 12, and an end plate 20 which is also separately prepared is fitted into the outer pipe 11 and the inner pipe 12. And the internal space 19 is evacuated using the hole 21 of the end plate 20, and it confirms that there is no leakage by a pinhole. When this confirmation is completed, the inner space 19 is filled with an inert gas such as helium gas. Then, a hard ball 22 is driven into the hole 21 of the end plate 20, the hard ball 22 is press-fitted into the hole 21, and the hole 21 is also sealed. Thereby, this heat radiating pipe 1 is completed.
 ここで、図1,図2に符号wで示す箇所は、一周に亘る溶接箇所を表わしている。ここでは、放熱パイプ1の両端のうち、一方の端の溶接箇所にのみ符号wを示しているが、両端とも同様である。 Here, the location indicated by the symbol w in FIG. 1 and FIG. 2 represents a welding location over one round. Here, of the both ends of the heat radiating pipe 1, the sign w is shown only at the welded portion at one end, but the same applies to both ends.
 また、以下において説明する図4以降の各図に示した符号wについても同様である。 The same applies to the symbol w shown in each figure after FIG. 4 described below.
 図4は、本発明の第2実施形態の放熱パイプの一方の端部の拡大断面図(A)および側面図(B)である。 FIG. 4 is an enlarged cross-sectional view (A) and a side view (B) of one end portion of the heat radiating pipe according to the second embodiment of the present invention.
 ここでは、上述の第1実施形態の放熱パイプ1の構成要素と同一の構成要素には第1実施形態の各図において付した符号と同一の符号を付して示し、第1実施形態との相違点を中心に説明する。ここでの説明を省略した点については、前述の第1実施形態と同じである。 Here, the same constituent elements as those of the heat radiating pipe 1 of the first embodiment described above are denoted by the same reference numerals as those in the drawings of the first embodiment. The difference will be mainly described. About the point which abbreviate | omitted description here, it is the same as the above-mentioned 1st Embodiment.
 この図4に示す第2実施形態の放熱パイプ2は、前述の第1実施形態の放熱パイプ1と同じく、押出成形された二重管10と一対の端板20とを有する。 The heat radiating pipe 2 of the second embodiment shown in FIG. 4 has an extruded double tube 10 and a pair of end plates 20, similar to the heat radiating pipe 1 of the first embodiment described above.
 この第2実施形態の放熱パイプ2は、その製造にあたり、二重管10が図4(A)に一点鎖線で示した位置で切断され、内管12を残して、外管11と支持板13を図4(A)に実線で示す位置まで削り取る。したがって前述の第1実施形態の放熱パイプ1のような連結管121は不要であり、内管12の端部がその連結管の役割を果たし、内管が直接にホース(図示せず)に差し込まれる。このため、この内管12にホースの抜け止め用の突起12aが形成されている。 In the production of the heat radiating pipe 2 of the second embodiment, the double pipe 10 is cut at the position indicated by the alternate long and short dash line in FIG. 4A, leaving the inner pipe 12 and the outer pipe 11 and the support plate 13. Is cut to the position indicated by the solid line in FIG. Therefore, the connecting pipe 121 like the heat radiating pipe 1 of the first embodiment is unnecessary, the end of the inner pipe 12 serves as the connecting pipe, and the inner pipe is directly inserted into a hose (not shown). It is. For this reason, a protrusion 12a for preventing the hose from coming off is formed on the inner tube 12.
 この第2実施形態の放熱パイプ2によれば、第1実施形態の放熱パイプ1と比べ、二重管10の端部の削り取る部分が大きいが、連結管121を別途用意してその連結管121を内管12に圧入する工程は不要となる。 According to the heat radiating pipe 2 of the second embodiment, compared with the heat radiating pipe 1 of the first embodiment, the portion of the end of the double pipe 10 is scraped off, but a connecting pipe 121 is prepared separately and the connecting pipe 121 is prepared. The step of press-fitting into the inner tube 12 becomes unnecessary.
 図5は、本発明の第3実施形態の放熱パイプの断面図である。 FIG. 5 is a cross-sectional view of a heat radiating pipe according to a third embodiment of the present invention.
 上記の第2実施形態の場合と同様、この第3実施形態、およびさらに後述する各種実施形態においても、前述の第1実施形態の放熱パイプ1の構成要素と同一の構成要素には第1実施形態の各図において付した符号と同一の符号を付して示し、第1実施形態との相違点を中心に説明する。説明を省略した点については、前述の第1実施形態と同じである。 As in the case of the second embodiment described above, in the third embodiment and various embodiments described later, the same components as those of the heat radiating pipe 1 of the first embodiment described above are used in the first embodiment. The same reference numerals as those used in the respective drawings of the embodiments are attached and shown, and differences from the first embodiment will be mainly described. About the point which abbreviate | omitted description, it is the same as the above-mentioned 1st Embodiment.
 この第3実施形態の放熱パイプ3の支持板13には、その一方の端部(図5における右側の端部)にのみ、切欠き131が形成されている。またこの第3実施形態における切欠き131は、第1実施形態における切欠き131とは形状が異なっている。ただし、このこの第3実施形態の放熱パイプ3においても、切欠き131は全ての支持板13に形成されている。切欠き131の役割は、内部空間19を一つに繋げることであり、全ての支持板13に形成されていれば、一方の端部のみに形成されていてもよい。 In the support plate 13 of the heat radiating pipe 3 of the third embodiment, a notch 131 is formed only at one end (the right end in FIG. 5). Further, the notch 131 in the third embodiment is different in shape from the notch 131 in the first embodiment. However, also in the heat radiating pipe 3 of this third embodiment, the notches 131 are formed in all the support plates 13. The role of the notch 131 is to connect the internal spaces 19 into one, and as long as it is formed in all the support plates 13, it may be formed only in one end.
 また、この図5に示す第3実施形態の放熱パイプ3では、連結管121はその外径が内管12の内径とほぼ一致する太さであって、内管12に軽い力で挿入することができる管である。 Further, in the heat radiating pipe 3 of the third embodiment shown in FIG. 5, the connecting pipe 121 has a thickness that substantially matches the inner diameter of the inner pipe 12 and is inserted into the inner pipe 12 with a light force. It is a tube that can.
 この放熱パイプ3の製造にあたっては、二重管10を矢印Bの位置で切断して切欠き131を形成する。そして端板20に連結管121を挿通し、さらにその連結管121を内管12に挿入する。端板20は矢印Bの位置から離しておいて、内管12の端部と連結管121の外壁とを一周に亘って溶接する。次いで、端板20を二重管10の端面に宛がい端板20と、外管11および連結管121それぞれとの間を一周に亘って溶接する。その後は、第1実施形態と同様、内部の空気を抜いて不活性ガスを注入し、端板20の穴21に硬球22を打ち込んで密封する。 In manufacturing the heat radiating pipe 3, the double pipe 10 is cut at the position of arrow B to form a notch 131. Then, the connecting pipe 121 is inserted through the end plate 20, and the connecting pipe 121 is further inserted into the inner pipe 12. The end plate 20 is separated from the position of the arrow B, and the end portion of the inner tube 12 and the outer wall of the connecting tube 121 are welded over the entire circumference. Next, the end plate 20 is applied to the end surface of the double pipe 10, and the end plate 20 and the outer pipe 11 and the connecting pipe 121 are welded over the entire circumference. Thereafter, as in the first embodiment, the air inside is extracted and an inert gas is injected, and hard balls 22 are driven into the holes 21 of the end plate 20 and sealed.
 この第3実施形態の放熱パイプ3によれば、上述の第1実施形態および第2実施形態の放熱パイプ1,2のような、二重管10を切断した後の、支持板13に切欠き131を形成すること以外の外管11および支持板13を削る作業は不要であり、一層安価な放熱パイプが実現する。 According to the heat radiating pipe 3 of the third embodiment, the support plate 13 is notched after the double pipe 10 is cut, such as the heat radiating pipes 1 and 2 of the first and second embodiments described above. The work of cutting the outer tube 11 and the support plate 13 other than forming 131 is unnecessary, and a more inexpensive heat radiating pipe is realized.
 図6は、本発明の第4実施形態の放熱パイプの断面図である。 FIG. 6 is a cross-sectional view of a heat radiating pipe according to a fourth embodiment of the present invention.
 この図6に示す第4実施形態の放熱パイプ4の支持板13には、図5に示す第3実施形態の放熱パイプ3と同様、切欠き131が一方の端にのみ形成されている。 As in the heat radiating pipe 3 of the third embodiment shown in FIG. 5, the support plate 13 of the heat radiating pipe 4 of the fourth embodiment shown in FIG. 6 has a notch 131 formed only at one end.
 またこの第4実施形態の放熱パイプ4の場合、第1実施形態の放熱パイプ1と同様に、端板20から内管12が突出している。ただし、連結管121は、図5に示す第3実施形態の場合と同様、内管2に容易に挿入される太さとなっている。 In the case of the heat radiating pipe 4 of the fourth embodiment, the inner tube 12 protrudes from the end plate 20 in the same manner as the heat radiating pipe 1 of the first embodiment. However, the connecting pipe 121 has a thickness that can be easily inserted into the inner pipe 2 as in the case of the third embodiment shown in FIG.
 この放熱パイプ4の製造にあたっては、二重管10を図2に一点鎖線で示す位置と同様の位置で切断し、内管12を残して、外管11および支持板13をこの図6に示す位置まで削る。そして支持板13に切欠き131を形成する。その後、この図6に示すように、端板20の中央の穴23に内管12の端部を挿通させて端板20を二重管10の端面に宛がい、その端板20と外管11および内管12それぞれとを一周に亘って溶接する。次いで、連結管121を図6に示すように内管12に差し込んで内管12の端面と連結管121の外壁とを溶接する。その後は第1実施形態の場合と同様、内部空間19の空気を抜いて不活性ガスを充填し、端板20の穴21に硬球22を打ち込んで密封する。 In manufacturing the heat radiating pipe 4, the double pipe 10 is cut at a position similar to the position indicated by the one-dot chain line in FIG. 2, and the outer pipe 11 and the support plate 13 are shown in FIG. Sharpen to position. Then, a notch 131 is formed in the support plate 13. Thereafter, as shown in FIG. 6, the end of the inner tube 12 is inserted into the center hole 23 of the end plate 20, and the end plate 20 is directed to the end surface of the double tube 10, and the end plate 20 and the outer tube 11 and the inner pipe 12 are welded over one round. Next, the connecting pipe 121 is inserted into the inner pipe 12 as shown in FIG. 6, and the end surface of the inner pipe 12 and the outer wall of the connecting pipe 121 are welded. After that, as in the case of the first embodiment, the air in the internal space 19 is evacuated and filled with an inert gas, and a hard ball 22 is driven into the hole 21 of the end plate 20 and sealed.
 ここで、この第4実施形態の放熱パイプの場合、両端の端板20の双方に穴21が形成されて双方の穴21に硬球22が圧入されている。これは、この端板20が押出成形を経て製造されたものだからである。すなわちこの端板20は、外径が外管11とほぼ同径であって内管12を挿通させる中央の穴23および硬球22が圧入される穴21の双方が形成された状態の、例えばアルミニウム製の押出成形品を製造し、それをこの図6に示す板厚の端板20となるように切断することにより、製造される。ここでは、この製造方法により製造した端板20を二重管10の両端に用いているため、双方の端板20に穴21が形成され、双方の穴21に硬球22が圧入されている。 Here, in the case of the heat radiating pipe of the fourth embodiment, holes 21 are formed in both end plates 20 at both ends, and hard balls 22 are press-fitted into both holes 21. This is because the end plate 20 is manufactured through extrusion. That is, the end plate 20 has an outer diameter that is substantially the same as that of the outer tube 11 and is formed with, for example, aluminum in a state where both a central hole 23 through which the inner tube 12 is inserted and a hole 21 into which the hard ball 22 is press-fitted are formed. It is manufactured by manufacturing an extruded product and cutting it into an end plate 20 having a thickness shown in FIG. Here, since the end plates 20 manufactured by this manufacturing method are used at both ends of the double tube 10, holes 21 are formed in both end plates 20, and hard balls 22 are press-fitted into both holes 21.
 この第4実施形態の放熱パイプ4の場合、上記の通り、押出成形と切断とを経て製造した端板20を用いることで、端板20のコストを抑え、一層安価な放熱パイプとなっている。 In the case of the heat radiating pipe 4 according to the fourth embodiment, as described above, by using the end plate 20 manufactured through extrusion molding and cutting, the cost of the end plate 20 is suppressed, and the heat radiating pipe is further inexpensive. .
 なお、ここでは、穴21が形成された端板20を二重管10の両端に用いているが、穴21については押出成形時には作らずに切断後の穴明け加工により形成することで、二重管10の一方の端の端板20にのみ穴21を形成してもよい。あるいは、放熱パイプを多数個製造する場合は、穴21を設けた押出成形品と穴21のない押出成形品との両方を製造することで、穴21が形成された端板20を二重管10の一方の端にのみ採用し、もう一方の端には穴21のない端板20を用いてもよい。 Here, the end plates 20 in which the holes 21 are formed are used at both ends of the double tube 10, but the holes 21 are not formed at the time of extrusion molding, but are formed by drilling after cutting. The hole 21 may be formed only in the end plate 20 at one end of the heavy tube 10. Alternatively, when a large number of heat radiating pipes are manufactured, the end plate 20 in which the holes 21 are formed is formed as a double pipe by manufacturing both an extruded product provided with the holes 21 and an extruded product without the holes 21. It is also possible to employ an end plate 20 that is employed only at one end of 10 and has no holes 21 at the other end.
 図7は、本発明の第5実施形態の放熱パイプの一方の端部を示した断面図である。この第5実施形態の放熱パイプ5は、以下に説明する点を除き、図6に示した第4実施形態の放熱パイプ4と同一である。 FIG. 7 is a cross-sectional view showing one end of a heat radiating pipe according to a fifth embodiment of the present invention. The heat radiating pipe 5 of the fifth embodiment is the same as the heat radiating pipe 4 of the fourth embodiment shown in FIG. 6 except for the points described below.
 この図7に示す第5実施形態の放熱パイプ5は、これまでの各実施形態の放熱パイプ1~4と比べ、その端板20が薄い板材で構成されている。このため、穴21が仮にこの板材の厚みのみの長さ(奥行き)しかない場合、その穴21に硬球22を安定的に打ち込むことができず、硬球22の圧入により内部空間19を密封することに関し十分な信頼性を得ることができない。そこで、この第5実施形態の放熱パイプ5の端板20として、板材に、例えばフロードリル(登録商標)等の摩擦掘削工具を用いて穴21があけられたものが使われている。摩擦切削工具を用いると、穴21があけられている板材の材料が溶融し穴21を延長させる円筒の突起221が形成され、これにより、板材の厚さを越えた長さ(奥行き)の穴21を有する端板20となる。本実施形態では、これを利用し、薄い板材にもかかわらず、穴21への硬球22の圧入により内部空間を高い信頼性をもって密封している。 The end plate 20 of the heat dissipating pipe 5 of the fifth embodiment shown in FIG. 7 is made of a thin plate material compared to the heat dissipating pipes 1 to 4 of the respective embodiments so far. For this reason, if the hole 21 has only the length (depth) of the thickness of the plate material, the hard ball 22 cannot be stably driven into the hole 21, and the internal space 19 is sealed by press-fitting the hard ball 22. It is not possible to obtain sufficient reliability. Therefore, as the end plate 20 of the heat radiating pipe 5 according to the fifth embodiment, a plate material in which a hole 21 is formed using a friction drilling tool such as a flow drill (registered trademark) is used. When the friction cutting tool is used, the material of the plate material in which the hole 21 is formed is melted to form a cylindrical protrusion 221 that extends the hole 21, and thereby a hole having a length (depth) exceeding the thickness of the plate material. The end plate 20 has 21. In the present embodiment, this is utilized, and the internal space is sealed with high reliability by press-fitting hard balls 22 into the holes 21 in spite of the thin plate material.
 本実施形態の放熱パイプ5の場合、端板20として、これまでの実施形態と比べ薄い板材を用いることができ、信頼性を低下させることなく一層安価かつ軽量な放熱パイプとなる。 In the case of the heat radiating pipe 5 of the present embodiment, a thin plate material can be used as the end plate 20 as compared with the previous embodiments, and the heat radiating pipe can be made cheaper and lighter without reducing reliability.
 なお、穴21の周りの円筒の突起221はその板材の両面に形成されるが、外壁面側の突起が邪魔なときは外壁面側の突起を削り取ってもよい。外壁面側の突起を削り取るにあたっては、穴21の形成と同時に外壁面側の突起を削り取るように工夫された摩擦切削工具を使って穴明け加工してもよい。 The cylindrical protrusions 221 around the holes 21 are formed on both surfaces of the plate material. However, when the protrusions on the outer wall surface are obstructive, the protrusions on the outer wall surface may be scraped off. When cutting the projection on the outer wall surface side, drilling may be performed using a friction cutting tool designed to scrape the projection on the outer wall surface side simultaneously with the formation of the hole 21.
 図8は、本発明の第6実施形態の放熱パイプの、図1に示す矢印A-Aに対応する箇所の断面図である。 FIG. 8 is a cross-sectional view of a portion corresponding to the arrow AA shown in FIG. 1 of the heat radiating pipe according to the sixth embodiment of the present invention.
 ここで説明する第6実施形態以降の各実施形態は、二重管の構造に特徴があり、全体構造の図示および説明は省略する。放熱パイプ全体としては、二重管の構造の相違を除き、上述のいずれかの実施形態と同様に作製される。 Each embodiment after the sixth embodiment described here is characterized by the structure of a double tube, and the illustration and description of the entire structure are omitted. The entire heat radiating pipe is manufactured in the same manner as in any of the above-described embodiments except for the difference in the structure of the double pipe.
 また、この第6実施形態以降の各実施形態においても、これまで説明してきた実施形態の構成要素と同一概念の構成要素には、形状等の相違があっても、同じ符号を付して説明する。 In each of the sixth and subsequent embodiments, the same components as those in the embodiments described so far are described with the same reference numerals even if there are differences in shape and the like. To do.
 この図8に示す第6実施形態の放熱パイプ6を構成している二重管10Aは、これまでの各実施形態の二重管10と同様、外管11と内管12と支持板13を有する。ただし、この外管11の、支持板13が繋がった部分の外壁面には、この二重管10Aの長手方向に延びる溝11aが形成されている。 The double pipe 10A constituting the heat radiating pipe 6 of the sixth embodiment shown in FIG. 8 includes the outer pipe 11, the inner pipe 12 and the support plate 13 in the same manner as the double pipe 10 of the previous embodiments. Have. However, a groove 11a extending in the longitudinal direction of the double pipe 10A is formed on the outer wall surface of the outer pipe 11 where the support plate 13 is connected.
 前述の実施形態の放熱パイプの場合、二重管10の外管11の外壁面は円筒形であるため、周回方向の姿勢は外観上不明である。これに対し、この図8に示す第6実施形態の放熱パイプ6の場合は、外壁面の、支持板13に対応する箇所に溝11aが形成されているため、放熱パイプ6の周回方向の姿勢を知ることができる。 In the case of the heat radiating pipe according to the above-described embodiment, the outer wall surface of the outer tube 11 of the double tube 10 is cylindrical, and the orientation in the circulation direction is unknown in appearance. On the other hand, in the case of the heat radiating pipe 6 of the sixth embodiment shown in FIG. 8, the groove 11 a is formed at a location corresponding to the support plate 13 on the outer wall surface. Can know.
 この放熱パイプ6を、溝11aが上向きとなる姿勢に横に這わせて、その上に床材を置くと、この放熱パイプ6が熱サイクルで伸縮してもその伸縮は左右に均等に働くため、床材が左右に動かされる力を受けずに済む。仮に仕切壁13が左右不均等な姿勢となるように放熱パイプ6を置いてその上に床材を敷くと、放熱パイプ6の伸縮により床材が左右に動いてしまう可能性がある。 If this heat radiating pipe 6 is laid sideways in a posture in which the groove 11a faces upward and a flooring is placed thereon, even if this heat radiating pipe 6 expands and contracts due to a thermal cycle, the expansion and contraction works equally to the left and right. The flooring does not need to be moved left and right. If the heat radiating pipe 6 is placed so that the partition wall 13 has an uneven posture on the left and right and a flooring is laid thereon, the flooring may move left and right due to expansion and contraction of the heat radiating pipe 6.
 図9は、本発明の第7実施形態の放熱パイプの、図1に示す矢印A-Aに対応する箇所の断面図である。 FIG. 9 is a cross-sectional view of a portion corresponding to the arrow AA shown in FIG. 1 of the heat radiating pipe according to the seventh embodiment of the present invention.
 この第7実施形態の放熱パイプ7を構成している二重管10Bは、これまで説明した実施形態と同様、外管11と、内管12と、3枚の支持板13を有する。ただし、この外管11には、支持板13に対応する3箇所に平面に形成された扁平部11bを有する。 The double pipe 10B constituting the heat radiating pipe 7 of the seventh embodiment has an outer pipe 11, an inner pipe 12, and three support plates 13 as in the embodiments described so far. However, the outer tube 11 has flat portions 11 b formed in a plane at three locations corresponding to the support plate 13.
 この図9には一点鎖線で床材50が示されている。 In FIG. 9, the flooring 50 is shown by a one-dot chain line.
 例えば、この放熱パイプ7を水平に置き、その上に床材50を載せてその床材50に熱を伝える構造の場合、扁平部11bの存在により、円筒形の場合と比べ、その上の床材50が安定し、かつ床材50への伝熱性が向上する。 For example, in the case of a structure in which the heat radiating pipe 7 is placed horizontally and the floor material 50 is placed thereon to transmit heat to the floor material 50, the presence of the flat portion 11b makes it possible to compare the floor on the floor. The material 50 is stabilized and the heat transfer to the floor material 50 is improved.
 図10は、本発明の第8実施形態の放熱パイプの、図1に示す矢印A-Aに対応する箇所の断面図である。 FIG. 10 is a cross-sectional view of a portion corresponding to the arrow AA shown in FIG. 1 of the heat radiating pipe according to the eighth embodiment of the present invention.
 これまで説明してきた実施形態の場合、二重管を構成している支持板13は3枚であるが、この図10に示す第8実施形態の放熱パイプ8の場合、その二重管10Cには、周回方向に90°ずつ等間隔に4枚の支持板13が設けられている。 In the case of the embodiment described so far, the support plate 13 constituting the double pipe is three, but in the case of the heat radiation pipe 8 of the eighth embodiment shown in FIG. The four support plates 13 are provided at equal intervals of 90 ° in the circumferential direction.
 このように、支持板13の枚数は、放熱パイプの強度や伝熱性能を考慮して適宜の枚数備えればよく、その枚数が制限されるものではない。 As described above, the number of the support plates 13 may be an appropriate number in consideration of the strength and heat transfer performance of the heat radiating pipe, and the number is not limited.
 図11は、本発明の第9実施形態の放熱パイプの、図1に示す矢印A-Aに対応する箇所の断面図である。 FIG. 11 is a cross-sectional view of a portion corresponding to the arrow AA shown in FIG. 1 of the heat radiating pipe according to the ninth embodiment of the present invention.
 この第9実施形態の放熱パイプ9を構成している二重管10Dは、その外管が楕円形断面の管になっている。放熱パイプを例えば部屋の壁面に沿わせて設置する場合などは、その壁面からの突出量が小さい方がよく、そのような場合には、この図11に示すように、楕円形に潰れた形状の放熱パイプ9を使用することが好ましい。 The outer pipe of the double pipe 10D constituting the heat radiating pipe 9 of the ninth embodiment is a pipe having an elliptical cross section. For example, when installing the heat radiating pipe along the wall surface of the room, it is better that the amount of protrusion from the wall surface is small. In such a case, as shown in FIG. It is preferable to use the heat radiating pipe 9.
 また、この図11に示す放熱パイプ9は、支持板13は2枚で構成されている。 In addition, the heat radiating pipe 9 shown in FIG. 11 has two support plates 13.
 図12は、本発明の第10実施形態の放熱パイプの、図1に示す矢印A-Aに対応する箇所の断面図である。 FIG. 12 is a cross-sectional view of a portion corresponding to the arrow AA shown in FIG. 1 of the heat radiating pipe according to the tenth embodiment of the present invention.
 この図12に示す第10実施形態の放熱パイプ91も、図11に示す第9実施形態の放熱パイプ9と同様、二重管10Eの外管11が楕円に形成されている。 12, the heat radiating pipe 91 of the tenth embodiment shown in FIG. 12 is also formed with an outer tube 11 of a double tube 10E having an oval shape, similar to the heat radiating pipe 9 of the ninth embodiment shown in FIG.
 また、この第10実施形態の放熱パイプ91は、合計4枚の支持板13がその楕円の短径寄りに配置されている。このため、この第10実施形態の放熱パイプ91は、図11の第9実施形態の放熱パイプ9と比べ、短径方向に押し潰す向きの力に頑強に耐えることができ、例えば壁と壁に強く挟まれる場所等への設置に有利である。 Further, in the heat radiating pipe 91 of the tenth embodiment, a total of four support plates 13 are arranged near the elliptical minor axis. For this reason, the heat radiating pipe 91 of the tenth embodiment can withstand the force of the direction of crushing in the minor axis direction, compared to the heat radiating pipe 9 of the ninth embodiment of FIG. It is advantageous for installation in places where it is strongly pinched.
 ここでは、放熱パイプを構成する二重管の各種構造について説明したが、これらは例示に過ぎず、外管11と内管12と複数枚の支持板13とで構成される、押出成形で作製することのできる二重管であれば、その具体的な構造を問うものではない。 Here, various structures of the double pipe constituting the heat radiating pipe have been described. However, these are merely examples, and are manufactured by extrusion molding, which includes the outer pipe 11, the inner pipe 12, and a plurality of support plates 13. If it is a double tube that can be used, its specific structure is not questioned.
 また、ここでは、放熱パイプがアルミニウム製であるとして説明したが、必ずしもアルミニウム製である必要はなく、その他の金属であってもよく、その用途に応じた材料であれば特に限定されるものではない。 In addition, here, the heat radiating pipe is described as being made of aluminum, but it is not necessarily made of aluminum, and may be other metals, and is not particularly limited as long as it is a material according to its use. Absent.
 さらに、ここでは、内部空間19にヘリウムガス等の不活性ガスを充填するとして説明したが、不活性ガスを充填するのではなく、内部空間にそのまま空気を残しておいてもよい。空気を大気圧のまま残す場合、端板20には内部を密封する役割は不要であり、内部空間19と外部との間で多少の空気の流通があってもよい。 Furthermore, here, the internal space 19 has been described as being filled with an inert gas such as helium gas, but instead of being filled with an inert gas, air may be left as it is in the internal space. When air is left at atmospheric pressure, the end plate 20 does not need to have a role of sealing the inside, and there may be some air flow between the internal space 19 and the outside.
 1,2,3,4,5,6,7,8,9,91  放熱パイプ
 10,10A,10B,10C,10D,10E  二重管
 11  外管
 11a  溝
 11b  扁平部
 12  内管
 12a  突起
 13  支持板
 19  内部空間
 20  端板
 21,23  穴
 22  硬球
 50  床材
 121  連結管
 121a  突起
 131  切欠き
 211  突起
 w  溶接箇所
1, 2, 3, 4, 5, 6, 7, 8, 9, 91 Radiation pipe 10, 10A, 10B, 10C, 10D, 10E Double pipe 11 Outer pipe 11a Groove 11b Flat part 12 Inner pipe 12a Projection 13 Support Plate 19 Internal space 20 End plate 21, 23 Hole 22 Hard ball 50 Floor material 121 Connecting pipe 121a Protrusion 131 Notch 211 Protrusion w Welding location

Claims (7)

  1.  外管と、該外管との間に空間を空けて該外管内に配置された内管と、長手方向および半径方向に広がり該外管と該内管とを繋いで該内壁を支持する、周回方向複数箇所に設けられた支持板とを有する、押出成形を経て作製された二重管と、
     前記二重管両端部それぞれにおいて、前記内管あるいは該内管に連結された管を突出させて前記外管と前記内壁とに挟まれた内部空間を塞ぐ一対の端板とを有することを特徴とする放熱パイプ。
    A space between the outer tube and the outer tube, an inner tube disposed in the outer tube, and the longitudinally and radially extending direction connecting the outer tube and the inner tube to support the inner wall; A double pipe made through extrusion, having support plates provided at multiple locations in the circumferential direction;
    Each end of the double pipe has a pair of end plates that project the inner pipe or a pipe connected to the inner pipe and close an internal space sandwiched between the outer pipe and the inner wall. And heat dissipation pipe.
  2.  前記内管は、前記外管と同心に配置されていることを特徴とする請求項1記載の放熱パイプ。 The heat radiating pipe according to claim 1, wherein the inner pipe is disposed concentrically with the outer pipe.
  3.  前記支持板は、周回方向等間隔に設けられていることを特徴とする請求項1又は2記載の放熱パイプ。 The heat radiating pipe according to claim 1 or 2, wherein the support plates are provided at equal intervals in the circumferential direction.
  4.  前記支持板が、少なくとも一方の端部に、前記内部空間を1つに繋げる切欠きを有し、
     前記一対の端板それぞれが、前記外管と、前記内管あるいは該内管に連結された管との双方に溶接により一体化されたものであって、
     前記内部空間に不活性ガスが封入されていることを特徴とする請求項1から3のうちのいずれか1項記載の放熱パイプ。
    The support plate has a notch connecting the internal space into one at least at one end;
    Each of the pair of end plates is integrated by welding to both the outer tube and the inner tube or a tube connected to the inner tube,
    The heat radiating pipe according to any one of claims 1 to 3, wherein an inert gas is sealed in the internal space.
  5.  前記一対の端板のうちの少なくとも一方の端板が、前記内部空間と外部とを繋ぐ穴を有し、該穴に栓が圧入されることにより該内部空間が密封されていることを特徴とする請求項1から4のうちのいずれか1項記載の放熱パイプ。 At least one of the pair of end plates has a hole connecting the internal space and the outside, and the internal space is sealed by press-fitting a plug into the hole. The heat radiating pipe according to any one of claims 1 to 4.
  6.  前記穴が摩擦切削工具を用いて穿設されたものであることを特徴とする請求項5記載の放熱パイプ。 The heat radiating pipe according to claim 5, wherein the hole is formed by using a friction cutting tool.
  7.  前記一対の端板が、押出成形および所定厚みへの切断を経て作製されたものであることを特徴とする請求項1から6のうちいずれか1項記載の放熱パイプ。 The heat radiating pipe according to any one of claims 1 to 6, wherein the pair of end plates are manufactured by extrusion molding and cutting to a predetermined thickness.
PCT/JP2014/005706 2013-11-20 2014-11-13 Heat radiation pipe WO2015075913A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167013315A KR20160075619A (en) 2013-11-20 2014-11-13 Heat radiation pipe
CN201480057729.0A CN105705868A (en) 2013-11-20 2014-11-13 Heat radiation pipe

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013239855A JP6095554B2 (en) 2013-11-20 2013-11-20 Heat dissipation pipe
JP2013-239855 2013-11-20

Publications (1)

Publication Number Publication Date
WO2015075913A1 true WO2015075913A1 (en) 2015-05-28

Family

ID=53179200

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005706 WO2015075913A1 (en) 2013-11-20 2014-11-13 Heat radiation pipe

Country Status (4)

Country Link
JP (1) JP6095554B2 (en)
KR (1) KR20160075619A (en)
CN (1) CN105705868A (en)
WO (1) WO2015075913A1 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9799949B2 (en) 2014-09-30 2017-10-24 Nidec Corporation On-vehicle radar device and vehicle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284193A (en) * 1986-02-27 1987-12-10 Furukawa Electric Co Ltd:The Heat transfer pipe
JPH03251686A (en) * 1990-02-28 1991-11-11 Shinko Metal Prod Kk Heat exchanger
JP2003035495A (en) * 1997-02-07 2003-02-07 Sanwa Koki Kk Heat pipe, its producing method, and its utilizing method
JP2004245499A (en) * 2003-02-13 2004-09-02 Metro Denki Kogyo Kk Heater for heating fluid
JP2005080653A (en) * 2003-09-10 2005-03-31 Sagae Shoji Kk Warming apparatus for agricultural installation
JP2005283022A (en) * 2004-03-30 2005-10-13 Sharp Corp Evaporator, thermosiphon, and stirling cooler
JP2010503817A (en) * 2006-09-19 2010-02-04 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger for internal combustion engines

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS53121254A (en) * 1977-03-29 1978-10-23 Oki Electric Cable Heat tube provided with a plurality of steam passages
JPS5387053A (en) * 1977-11-09 1978-08-01 Suzuki Metal Industry Co Ltd Method of fabricating heat tube
JP2905081B2 (en) * 1994-03-09 1999-06-14 ハイデック株式会社 Roll using double pipe heat pipe
JP3284113B2 (en) * 1999-08-20 2002-05-20 東邦貿易株式会社 Fermentation / composting promotion method and fermentation / composting promotion device
JP3765572B2 (en) * 2000-08-18 2006-04-12 有限会社ジャパン通商 Floor heating device, thermosiphon heat pipe, and method of manufacturing heat pipe
JP2004101039A (en) 2002-09-09 2004-04-02 Takehara Tsutomu Thermosyphon and its manufacturing method
JP2005042939A (en) 2003-07-22 2005-02-17 Takehara Tsutomu Thermosyphon device, and cooling and heating device and method and plant growing method using the same
JP4366683B2 (en) 2003-07-28 2009-11-18 武原 力 Thermosyphon

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62284193A (en) * 1986-02-27 1987-12-10 Furukawa Electric Co Ltd:The Heat transfer pipe
JPH03251686A (en) * 1990-02-28 1991-11-11 Shinko Metal Prod Kk Heat exchanger
JP2003035495A (en) * 1997-02-07 2003-02-07 Sanwa Koki Kk Heat pipe, its producing method, and its utilizing method
JP2004245499A (en) * 2003-02-13 2004-09-02 Metro Denki Kogyo Kk Heater for heating fluid
JP2005080653A (en) * 2003-09-10 2005-03-31 Sagae Shoji Kk Warming apparatus for agricultural installation
JP2005283022A (en) * 2004-03-30 2005-10-13 Sharp Corp Evaporator, thermosiphon, and stirling cooler
JP2010503817A (en) * 2006-09-19 2010-02-04 ベール ゲーエムベーハー ウント コー カーゲー Heat exchanger for internal combustion engines

Also Published As

Publication number Publication date
JP6095554B2 (en) 2017-03-15
CN105705868A (en) 2016-06-22
JP2015098991A (en) 2015-05-28
KR20160075619A (en) 2016-06-29

Similar Documents

Publication Publication Date Title
US7159647B2 (en) Heat pipe assembly
US8297343B2 (en) Heat absorbing or dissipating device with multi-pipe reversely transported temperature difference fluids
US6032726A (en) Low-cost liquid heat transfer plate and method of manufacturing therefor
US9423185B2 (en) Heat transfer device
EP3312538B1 (en) Tube-fin heat exchanger
CN104019544A (en) Water heater and method for forming water heater
JP2015531469A (en) Heat conduction plate especially for cooling or heating buildings
JP7169923B2 (en) Heat exchanger
KR20200143720A (en) Systems and related methods including fluid coolers, heat exchangers, sealing assemblies and fluid coolers or heat exchangers
JP2009121758A (en) Heat exchanger and cryogenic system
EP3159642B1 (en) Heat exchangers
US10240873B2 (en) Joint assembly of vapor chambers
WO2015075913A1 (en) Heat radiation pipe
KR20100132212A (en) Heat pipe with double pipe structure
US20140151004A1 (en) Internal Heat Exchanger for an Air Conditioning System
JP5154449B2 (en) Bolts for use in thermally loaded environments
JP3211018U (en) Columnar heat transport device and piping for heat transport of fluid substances
CN102636059A (en) Heat pipe with compounding capillary and manufacturing method thereof
EP3141862B1 (en) Integral sealing device and heat exchanger using same
CN208901676U (en) Cryocooler cold head
TWM622251U (en) Heat pipe capable of resisting saturated vapor pressure
US20150122460A1 (en) Heat pipe structure
JP2007064538A (en) Heat exchanger and floor air conditioning apparatus using it
JP2007139401A (en) Thermosiphon
US20130126133A1 (en) Heat pipe structure

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14864909

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167013315

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14864909

Country of ref document: EP

Kind code of ref document: A1