WO2015075820A1 - Method for controlling ballast water - Google Patents
Method for controlling ballast water Download PDFInfo
- Publication number
- WO2015075820A1 WO2015075820A1 PCT/JP2013/081544 JP2013081544W WO2015075820A1 WO 2015075820 A1 WO2015075820 A1 WO 2015075820A1 JP 2013081544 W JP2013081544 W JP 2013081544W WO 2015075820 A1 WO2015075820 A1 WO 2015075820A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ballast water
- active substance
- concentration
- chlorine
- total residual
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F1/00—Treatment of water, waste water, or sewage
- C02F1/72—Treatment of water, waste water, or sewage by oxidation
- C02F1/76—Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B63—SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
- B63J—AUXILIARIES ON VESSELS
- B63J4/00—Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for
- B63J4/002—Arrangements of installations for treating ballast water, waste water, sewage, sludge, or refuse, or for preventing environmental pollution not otherwise provided for for treating ballast water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2103/00—Nature of the water, waste water, sewage or sludge to be treated
- C02F2103/008—Originating from marine vessels, ships and boats, e.g. bilge water or ballast water
-
- C—CHEMISTRY; METALLURGY
- C02—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F—TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
- C02F2209/00—Controlling or monitoring parameters in water treatment
- C02F2209/29—Chlorine compounds
Definitions
- the present invention relates to a method for controlling ballast water by optimally determining the addition amount of a chlorinated active substance in ballast water treatment.
- the standard set by the International Maritime Organization (IMO) as a standard for the treatment of ship ballast water is that the number of organisms (mainly zooplankton) of 50 ⁇ m or more contained in the ship ballast water discharged from the ship is less than 10 in 1 m 3 , The number of organisms (mainly phytoplankton) of 10 ⁇ m or more and less than 50 ⁇ m is less than 10 in 1 ml, the number of Vibrio cholerae is less than 1 cfu in 100 ml, the number of E. coli is less than 250 cfu in 100 ml, and the number of enterococci in 100 ml Less than 100 cfu.
- IMO International Maritime Organization
- microorganisms can be obtained by adding a disinfectant of chlorinated active substances such as sodium hypochlorite and calcium hypochlorite to ship ballast water to ensure residence time.
- a disinfectant of chlorinated active substances such as sodium hypochlorite and calcium hypochlorite
- the ship ballast water processing method which kills etc. is proposed.
- the addition amount of the chlorinated active substance in this ballast water treatment is determined using the maximum allowable addition amount (MAD) set at the time of basic approval of IMO as an index.
- MAD maximum allowable addition amount
- the chlorine attenuation prediction method described in Patent Document 1 often adds a chlorine-based active substance at a high concentration to ballast water for prediction.
- the initial attenuation rate of the chlorine-based active substance is high. Since the correlation between the initial chlorine consumption rate and the subsequent chlorine consumption rate is small, it is possible to predict the chlorine concentration after several days from the chlorine consumption in a relatively short time such as 120 minutes or less after the addition of the active substance. There was a problem that it was difficult.
- the quality of water in actual ballast water varies depending on many factors such as the contamination status of the sampling site, the depth of the sampling water, the timing of sampling, and the duration of the voyage.
- This change in water quality depends not only on SS but also on the types and amounts of DOC, POC, ammonia, nitrous acid, inorganic salts, and organic substances.
- the conventional method has a problem that it cannot follow that the consumption rate of the chlorine-based active substance varies with the change in water quality.
- This invention solves this subject and aims at providing the control method of the ballast water which can determine the addition amount of the chlorinated active substance in a ballast water process optimally.
- a control method for ballast water is provided that determines the amount of chlorinated active substance added so that the total residual oxidizing substance concentration in the scheduled discharge time of ballast water is 0.1 mg / L or more (In
- a logarithmic formula is calculated based on a short-time change in the total residual oxidizing substance concentration, and the total residual oxidizing substance concentration in the estimated ballast water drainage time is 0.1 mg / L or more from this logarithmic formula.
- the said chlorinated active substance is 1 type, or 2 or more types chosen from the dichloro isocyanurate, the trichloro isocyanurate, and the hypochlorite (invention 2). .
- these chlorinated active substances are excellent in bactericidal properties of microorganisms contained in ship ballast water and the like, and are calculated and measured by logarithmic formulas based on the total residual oxidizing substance concentration. Is suitable for determining the amount of addition of the chlorinated active substance.
- ballast water control method of the present invention untreated ballast water to which no chlorinated active substance is added is collected in advance, and the chlorinated active substance is added to the untreated ballast water by adding the chlorinated active substance. Measure the time-dependent changes in the total residual oxidant concentration due to the substance, and based on the total residual oxidant concentration (including the initial total residual oxidant concentration) for three or more measurement times, Since the addition amount of the chlorinated active substance at which the residual oxidizing substance concentration is 0.1 mg / L or more is determined, the addition amount of the chlorinated active substance can be optimally determined. Excessive or insufficient addition can be prevented. Moreover, the toxicity of discharged water can be lowered and the amount of neutralizing agent added can be reduced.
- Patent Document 1 Based on the calculation method of the comparative example (Patent Document 1) of four types of seawater, the calculated value of the total residual oxidant concentration after 5 days and the actual measurement value of the total residual oxidant concentration after 5 days of the four types of seawater It is a graph to show.
- ballast water control method of the present invention will be described in detail based on one embodiment.
- the ballast water control method of the present embodiment is for determining the amount of addition of a chlorinated active substance that sterilizes aquatic microorganisms in the ballast water when supplying the ballast water taken from the water intake to the ballast tank.
- the untreated ballast water to which no chlorinated active substance is added is collected in advance, the chlorinated active substance is added to the untreated ballast water, and the total residual oxidizing substance concentration of the chlorinated active substance is reduced. Measure changes over time.
- Chlorine-based active substances total residual oxidizing substances
- TRO Total Residual Oxidants
- oxidizing chlorine concentration due to the addition of a chlorine-based active substance and other oxidizing components generated by reaction with this oxidizing chlorine are included. included.
- This total residual oxidizing substance concentration can be measured at room temperature using a commercially available high precision TRO meter using the DPD absorbance method.
- ballast water such as untreated seawater to which no chlorinated active substance is added is collected, and a chlorinated active substance is added experimentally.
- a chlorinated active substance dichloroisocyanuric acid salt, trichloroisocyanuric acid is excellent because it is excellent in bactericidal properties and approximates to some extent the calculation by the logarithmic formula by the total residual oxidizing substance concentration described later and the actual measurement value.
- One or more selected from salts and hypochlorites can be used, and hypochlorites such as sodium hypochlorite are particularly preferred.
- the addition amount of the experimental chlorine-based active substance is the maximum allowable addition amount (MAD) or an approximation not exceeding this.
- the maximum allowable addition amount is a concentration at which the maximum amount of ballast water set at the time of IMO basic approval can be added, and the person to be approved must add a chlorinated active substance to the ballast water beyond this concentration. I can't.
- the time for confirming the transition of the total residual oxidizing substance concentration is preferably shorter in view of the efficiency of the ballast water treatment, but conventionally, in the short measurement time, the chlorine system to the actual ballast water There was a problem that the accuracy of the addition amount (concentration) of the active substance was low.
- the concentration of the chlorine-based active substance added to the actual ballast water can be accurately determined by measuring the transition of the total residual oxidizing substance concentration for about 1 to 120 minutes, particularly about 1 to 40 minutes. Can be determined.
- two points three points including the initial total residual oxidizing substance concentration
- the values of a and b satisfying the logarithmic formula (1) are calculated to complete the logarithmic formula, and logarithmic approximation Create a curve. Since the chlorine-based active substance begins to decay immediately after the addition, it is difficult to accurately measure the active substance concentration immediately after the addition. Therefore, when creating a logarithmic approximation curve, the concentration immediately after the addition of the chlorine-based active substance is set as the maximum allowable addition amount, and the time (t) at this time is assumed to be an extremely short time of about 0.1 seconds. It is possible to obtain a logarithmic approximation curve that well simulates the change with time of the consumption of the system active substance.
- the number of days of voyage is simulated as the discharge time (t) of ballast water, and this ballast water discharge time (t) is applied to the logarithmic approximate curve to calculate the total residual oxidation during ballast water discharge.
- the initial total residual oxidizing substance concentration at which the concentration of the active substance becomes 0.1 mg / L or more is set, and based on this, the addition amount of the chlorine-based active substance to the actual ballast water may be determined. If the total residual oxidizing substance concentration is less than 0.1 mg / L, it becomes difficult to maintain the bactericidal properties of the micro-animals in the ballast water until the end of the voyage.
- the amount of chlorinated active substance added depends on the ballast water discharge time (t It is preferable to add so that the total residual oxidizing substance concentration of 1) to 10 mg / L, particularly 2 to 5 mg / L. Thereby, the effect that the dispersion
- a reducing agent is supplied to the discharged ballast water to reduce the remaining chlorine, and the residual chlorine concentration is reduced to the target residual chlorine concentration before being discharged to the external environment.
- sodium sulfite, sodium bisulfite (sodium hydrogen sulfite), sodium thiosulfate, or the like can be used as the reducing agent supplied from this reducing agent supply mechanism.
- the total residual oxidizing substance concentration is not limited to the measurement using a TRO meter using the DPD absorbance method, and various measuring means can be applied as long as similar measurement values can be obtained. Is possible.
- Example 1 Seawater (Tokyo Bay A (seawater (i)), Tokyo Bay B (seawater (ii)), Shizuoka fishing port A (seawater (iii)) and Shizuoka fishing port B (seawater (iv))
- the salinity, pH, turbidity, SS concentration, POC (suspended organic carbon) concentration and DOC (dissolved organic carbon) concentration of these seawaters are as shown in Table 1, and the water quality depends on the location. It was very different.
- Table 1 shows the results of measuring the transition of the total residual oxidizing substance concentration using the DPD method up to 14 days after the addition of sodium hypochlorite. . Also, the transition of the total residual oxidizing substance concentration up to 5 days after this measurement value is shown in FIG.
- FIG. 4 shows the result of comparing the calculated value of the total residual oxidizable substance concentration after 5 days with the actual measurement value based on the calculation method of Patent Document 1.
- the ballast water control method of the present invention can accurately simulate the total residual oxidant concentration after a long period of time from the measured value of the total residual oxidant concentration in a short time. It was found that the amount of the chlorinated active substance added so that the total residual oxidizing substance concentration in the planned water drainage time is 0.1 mg / L or more can be set without excessive addition or insufficient addition.
- ballast water control method of the present invention it is possible to accurately simulate the total residual oxidant concentration after a long period of time from the measured value of the total residual oxidant concentration in a short time. It is possible to determine the amount of substance added, thereby enabling optimization of the loading amount, space, and equipment of the drug on the ship, and consequently providing a cost-competitive processing apparatus. It becomes possible.
Landscapes
- Life Sciences & Earth Sciences (AREA)
- Hydrology & Water Resources (AREA)
- Engineering & Computer Science (AREA)
- Environmental & Geological Engineering (AREA)
- Water Supply & Treatment (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Treatment Of Water By Oxidation Or Reduction (AREA)
Abstract
In the present invention, untreated ballast water to which a chlorine-based active substance has not been added is collected, the chlorine-based active substance is added to the ballast water, and the change over time in the total residual oxidant concentration due to the chlorine-based active substance is measured. On the basis of the total residual oxidant concentration during three or more measurement times (including the initial total residual oxidant concentration), the values of conditions (a) and (b) satisfying the logarithmic formula C=a×ln(t)+b are calculated, and the added amount of a chlorine-based active substance for which the total residual oxidant concentration is 0.1 mg/L or more during the planned discharge period of the ballast water is determined. Using such a method for controlling ballast water, the addied amount of the chlorine-based active substance in the treatment of the ballast water can be determined in an optimal manner.
Description
本発明は、バラスト水処理における塩素系活性物質の添加量を最適に決定してバラスト水を制御するための方法に関する。
The present invention relates to a method for controlling ballast water by optimally determining the addition amount of a chlorinated active substance in ballast water treatment.
一般に船舶、特に貨物船は、積載貨物などの重量を含めて設計されているため、空荷または積荷が少ない状態の船舶は、プロペラ没水深度の確保、空荷時における安全航行の確保等の必要性から、出港前に港において海水を取水して船舶のバランスを取るが、このバラストとして用いられる水のことを船舶バラスト水とよぶ。この船舶バラスト水は、無積載で出港するとき、その出港地で港の海水などをバラストタンクに積み込む一方、逆に港内で積荷をするときには、船舶バラスト水の排水を行う。
In general, since ships, especially cargo ships, are designed to include the weight of cargo, etc., ships that are unloaded or lightly loaded must be able to ensure proper submersion depth and safe navigation during unloaded conditions. From the necessity, seawater is taken in the port before leaving the port to balance the ship. The water used as this ballast is called ship ballast water. When the ship ballast water leaves the port without loading, the seawater of the port is loaded into the ballast tank at the port of departure, while the ship ballast water is drained when loading in the port.
ところで、環境の異なる荷積み港と荷下し港との間を往復する船舶によって船舶バラスト水の注排水が行われると、荷積み港と荷下し港における船舶バラスト水に含まれる微生物の差異により沿岸生態系に悪影響を及ぼすことが懸念されている。そこで、船舶の船舶バラスト水管理に関する国際会議において2004年2月に船舶の船舶バラスト水及び沈殿物の規制及び管理のための国際条約が採択され、船舶バラスト水の処理が義務付けられることとなった。
By the way, when the ship ballast water is poured and discharged by a ship that goes back and forth between the loading port and the unloading port in different environments, the difference in microorganisms contained in the ship ballast water at the loading port and the unloading port. There are concerns that it will adversely affect coastal ecosystems. Therefore, an international convention for the regulation and management of ship ballast water and sediment of ships was adopted in February 2004 at the international conference on ship ballast water management of ships, and the treatment of ship ballast water became obligatory. .
船舶バラスト水の処理基準として国際海事機構(IMO)が定める基準は、船舶から排出される船舶バラスト水に含まれる50μm以上の生物(主に動物プランクトン)の数が1m3中に10個未満、10μm以上50μm未満の生物(主に植物プランクトン)の数が1ml中に10個未満、コレラ菌の数が100ml中に1cfu未満、大腸菌の数が100ml中に250cfu未満、腸球菌の数が100ml中に100cfu未満となっている。
The standard set by the International Maritime Organization (IMO) as a standard for the treatment of ship ballast water is that the number of organisms (mainly zooplankton) of 50 μm or more contained in the ship ballast water discharged from the ship is less than 10 in 1 m 3 , The number of organisms (mainly phytoplankton) of 10 μm or more and less than 50 μm is less than 10 in 1 ml, the number of Vibrio cholerae is less than 1 cfu in 100 ml, the number of E. coli is less than 250 cfu in 100 ml, and the number of enterococci in 100 ml Less than 100 cfu.
このようなバラスト水の処理基準を満たすために、船舶バラスト水に次亜塩素酸ナトリウムや次亜塩素酸カルシウムなどの塩素系活性物質の殺菌剤を添加して、滞留時間を確保することにより微生物等を殺滅する船舶バラスト水の処理方法が提案されている。このバラスト水処理における塩素系活性物質の添加量は、IMO基本承認時に設定された最大許容添加量(MAD)を指標として決定される。
In order to satisfy such ballast water treatment standards, microorganisms can be obtained by adding a disinfectant of chlorinated active substances such as sodium hypochlorite and calcium hypochlorite to ship ballast water to ensure residence time. The ship ballast water processing method which kills etc. is proposed. The addition amount of the chlorinated active substance in this ballast water treatment is determined using the maximum allowable addition amount (MAD) set at the time of basic approval of IMO as an index.
しかしながら、バラスト水に塩素系活性物質を添加した場合、時間とともに塩素が消費されるので、塩素系活性物質の消費速度を算出して、バラスト水の排出時、すなわち航海の終了時までの必要量を添加するのが望ましい。一般的に塩素の消費速度を算出する手法として、特許文献1に記載された下記計算式を用いた塩素減衰予測法が公知である。
C=z・C0・e-kt
(式中、C0は塩素注入管出口における塩素濃度であり、Cは時間(t)における塩素濃度であり、kは反応定数であり、tは経過時間であり、zは塩素注入後の塩素残留係数である。) However, when chlorinated active substances are added to ballast water, chlorine is consumed over time, so the consumption rate of chlorinated active substances is calculated, and the required amount until the end of the voyage, that is, the discharge of ballast water It is desirable to add. In general, as a method for calculating the consumption rate of chlorine, a chlorine decay prediction method using the following calculation formula described inPatent Document 1 is known.
C = z · C 0 · e -kt
(Where C 0 is the chlorine concentration at the chlorine injection tube outlet, C is the chlorine concentration at time (t), k is the reaction constant, t is the elapsed time, and z is the chlorine after chlorine injection. Residual coefficient.)
C=z・C0・e-kt
(式中、C0は塩素注入管出口における塩素濃度であり、Cは時間(t)における塩素濃度であり、kは反応定数であり、tは経過時間であり、zは塩素注入後の塩素残留係数である。) However, when chlorinated active substances are added to ballast water, chlorine is consumed over time, so the consumption rate of chlorinated active substances is calculated, and the required amount until the end of the voyage, that is, the discharge of ballast water It is desirable to add. In general, as a method for calculating the consumption rate of chlorine, a chlorine decay prediction method using the following calculation formula described in
C = z · C 0 · e -kt
(Where C 0 is the chlorine concentration at the chlorine injection tube outlet, C is the chlorine concentration at time (t), k is the reaction constant, t is the elapsed time, and z is the chlorine after chlorine injection. Residual coefficient.)
しかしながら、特許文献1に記載された塩素減衰予測法は、予測に際してはバラスト水に高濃度で塩素系活性物質を添加することが多いが、このような場合には塩素系活性物質の初期減衰速度が大きく、初期塩素消費速度とそれ以降の塩素消費速度との相関が小さいため、活性物質添加後、例えば120分以下といった比較的短時間の塩素消費量から数日後の塩素濃度を予想することが難しい、という問題点があった。
However, the chlorine attenuation prediction method described in Patent Document 1 often adds a chlorine-based active substance at a high concentration to ballast water for prediction. In such a case, the initial attenuation rate of the chlorine-based active substance is high. Since the correlation between the initial chlorine consumption rate and the subsequent chlorine consumption rate is small, it is possible to predict the chlorine concentration after several days from the chlorine consumption in a relatively short time such as 120 minutes or less after the addition of the active substance. There was a problem that it was difficult.
さらに、実際のバラスト水は、採取場所の汚染状況、採取水深、採取時期、航海の期間等、多くの要因によって水質が変化する。この水質変化は、単純にSSだけでなくDOC、POC、アンモニア、亜硝酸、無機塩類、有機物の種類や量に依存する。しかしながら、従来の方法では、この水質の変化に伴い塩素系活性物質の消費速度が異なることに追従できない、という問題点があった。
Furthermore, the quality of water in actual ballast water varies depending on many factors such as the contamination status of the sampling site, the depth of the sampling water, the timing of sampling, and the duration of the voyage. This change in water quality depends not only on SS but also on the types and amounts of DOC, POC, ammonia, nitrous acid, inorganic salts, and organic substances. However, the conventional method has a problem that it cannot follow that the consumption rate of the chlorine-based active substance varies with the change in water quality.
この対応として、数日間経過後でも十分な残留塩素濃度が見込めるだけの過剰量の塩素系活性物質を添加することが考えられるが、最大許容添加量(MAD)より多くの塩素系活性物質を添加することはできない。さらに、清澄な水に対して、塩素系活性物質の添加量を決定した場合、大部分の活性物質が排出時に残留することで排出水の毒性が高くなることや、残留した活性物質を分解するための中和剤の添加量が膨大になる等の不都合が生じる、という問題点がある。このように従来は、バラスト水の排出時までの殺菌性を維持できるだけの全残留酸化性物質濃度(残留塩素濃度)を保持しつつ、かつその添加量を抑制した塩素系活性物質の添加量を最適に決定することの可能なバラスト水を制御する方法はなかった。
To cope with this, it may be possible to add an excessive amount of chlorinated active substance that can be expected to have a sufficient residual chlorine concentration even after several days, but add more chlorinated active substance than the maximum allowable addition amount (MAD). I can't do it. In addition, when the amount of chlorinated active substance added to clear water is determined, most of the active substance remains at the time of discharge, which increases the toxicity of the discharged water and decomposes the remaining active substance. For this reason, there is a problem in that the amount of the neutralizing agent added becomes enormous. Thus, conventionally, the amount of chlorine-based active substance added while maintaining the total residual oxidizing substance concentration (residual chlorine concentration) that can maintain the bactericidal properties until the discharge of ballast water and suppressing the addition amount is reduced. There was no way to control the ballast water that could be optimally determined.
本発明は、かかる課題を解決して、バラスト水処理における塩素系活性物質の添加量を最適に決定することの可能なバラスト水の制御方法を提供することを目的とする。
This invention solves this subject and aims at providing the control method of the ballast water which can determine the addition amount of the chlorinated active substance in a ballast water process optimally.
上記課題を解決するために、本発明は、取水口から取水されたバラスト水をバラストタンクに供給するに際し、該バラスト水中の水生微生物を殺菌処理するための塩素系活性物質を添加するバラスト水の制御方法であって、塩素系活性物質を添加していない未処理のバラスト水をあらかじめ採取し、該未処理のバラスト水に塩素系活性物質を添加して前記塩素系活性物質による全残留酸化性物質濃度の経時的変化を測定し、3以上の計測時間の全残留酸化性物質濃度(初期全残留酸化性物質濃度を含む)に基づき、下記対数式
C=a・ln(t)+b
(式中、a及びbはそれぞれ反応定数であり、tは経過時間であり、Cは全残留酸化性物質濃度である。)を満たすa及びbの値を算出し、この算出された対数式からバラスト水の排出予定時間における全残留酸化性物質濃度が0.1mg/L以上となる塩素系活性物質の添加量を決定することを特徴とするバラスト水の制御方法を提供する(発明1)。 In order to solve the above problems, the present invention provides ballast water to which a chlorinated active substance for sterilizing aquatic microorganisms in the ballast water is added when supplying ballast water taken from a water intake to a ballast tank. It is a control method in which untreated ballast water to which no chlorinated active substance is added is collected in advance, and the chlorinated active substance is added to the untreated ballast water and the total residual oxidizability by the chlorinated active substance Based on the total residual oxidant concentration (including the initial total residual oxidant concentration) for three or more measurement times, the following logarithm formula C = a · ln (t) + b
(Wherein, a and b are reaction constants, t is the elapsed time, and C is the total residual oxidizing substance concentration). A control method for ballast water is provided that determines the amount of chlorinated active substance added so that the total residual oxidizing substance concentration in the scheduled discharge time of ballast water is 0.1 mg / L or more (Invention 1) .
C=a・ln(t)+b
(式中、a及びbはそれぞれ反応定数であり、tは経過時間であり、Cは全残留酸化性物質濃度である。)を満たすa及びbの値を算出し、この算出された対数式からバラスト水の排出予定時間における全残留酸化性物質濃度が0.1mg/L以上となる塩素系活性物質の添加量を決定することを特徴とするバラスト水の制御方法を提供する(発明1)。 In order to solve the above problems, the present invention provides ballast water to which a chlorinated active substance for sterilizing aquatic microorganisms in the ballast water is added when supplying ballast water taken from a water intake to a ballast tank. It is a control method in which untreated ballast water to which no chlorinated active substance is added is collected in advance, and the chlorinated active substance is added to the untreated ballast water and the total residual oxidizability by the chlorinated active substance Based on the total residual oxidant concentration (including the initial total residual oxidant concentration) for three or more measurement times, the following logarithm formula C = a · ln (t) + b
(Wherein, a and b are reaction constants, t is the elapsed time, and C is the total residual oxidizing substance concentration). A control method for ballast water is provided that determines the amount of chlorinated active substance added so that the total residual oxidizing substance concentration in the scheduled discharge time of ballast water is 0.1 mg / L or more (Invention 1) .
上記発明(発明1)のように、実際に塩素系活性物質を添加する前の未処理のバラスト水を採取し、このバラスト水に塩素系活性物質を添加して該塩素系活性物質による全残留酸化性物質濃度の経時的変化を測定した場合、この経時的変化は、対数式によって模擬される。そして、この対数式は、例えば120分以下などの短時間の経時的変化の結果に基づき、精度よく算出できることを本発明者らは見出した。そこで、全残留酸化性物質濃度の短時間の経時的変化に基づき、対数式を算出し、この対数式からバラスト水の排水予定時間における全残留酸化性物質濃度が0.1mg/L以上となる塩素系活性物質の添加量を決定することで、活性物質の過剰添加や添加不足を防止できる。また、排出水の毒性を低くすることや中和剤の添加量を少なくすることができる、という効果も奏する。
As in the above invention (Invention 1), untreated ballast water is collected before actually adding the chlorine-based active substance, and the chlorine-based active substance is added to the ballast water, so that the total residue due to the chlorine-based active substance is obtained. When the change with time of the oxidizing substance concentration is measured, this change with time is simulated by a logarithmic expression. The inventors have found that this logarithmic expression can be calculated with high accuracy based on the result of a short-term change over a short period of time, for example, 120 minutes or less. Therefore, a logarithmic formula is calculated based on a short-time change in the total residual oxidizing substance concentration, and the total residual oxidizing substance concentration in the estimated ballast water drainage time is 0.1 mg / L or more from this logarithmic formula. By determining the addition amount of the chlorine-based active substance, it is possible to prevent excessive addition or insufficient addition of the active substance. Moreover, the effect that the toxicity of discharged water can be reduced and the amount of neutralizing agent added can be reduced.
上記発明(発明1)においては、前記塩素系活性物質が、ジクロロイソシアヌル酸塩、トリクロロイソシアヌル酸塩および次亜塩素酸塩から選ばれた1種または2種以上であるのが好ましい(発明2)。
In the said invention (invention 1), it is preferable that the said chlorinated active substance is 1 type, or 2 or more types chosen from the dichloro isocyanurate, the trichloro isocyanurate, and the hypochlorite (invention 2). .
かかる発明(発明2)によれば、これらの塩素系活性物質は、船舶バラスト水などに含まれる微生物の殺菌性に優れているとともに、全残留酸化性物質濃度による対数式による計算と実測値とがある程度近似するので、塩素系活性物質の添加量を決定するのに好適である。
According to this invention (Invention 2), these chlorinated active substances are excellent in bactericidal properties of microorganisms contained in ship ballast water and the like, and are calculated and measured by logarithmic formulas based on the total residual oxidizing substance concentration. Is suitable for determining the amount of addition of the chlorinated active substance.
本発明のバラスト水の制御方法によれば、塩素系活性物質を添加していない未処理のバラスト水をあらかじめ採取し、該未処理のバラスト水に塩素系活性物質を添加して前記塩素系活性物質による全残留酸化性物質濃度の経時的変化を測定し、3以上の計測時間の全残留酸化性物質濃度(初期全残留酸化性物質濃度を含む)に基づき、バラスト水の排水予定時間における全残留酸化性物質濃度が0.1mg/L以上となる塩素系活性物質の添加量を決定しているので、該塩素系活性物質の添加量を最適に決定することができ、塩素系活性物質の過剰添加や添加不足を防止できる。また、排出水の毒性を低くすることや中和剤の添加量を少なくすることができる。
According to the ballast water control method of the present invention, untreated ballast water to which no chlorinated active substance is added is collected in advance, and the chlorinated active substance is added to the untreated ballast water by adding the chlorinated active substance. Measure the time-dependent changes in the total residual oxidant concentration due to the substance, and based on the total residual oxidant concentration (including the initial total residual oxidant concentration) for three or more measurement times, Since the addition amount of the chlorinated active substance at which the residual oxidizing substance concentration is 0.1 mg / L or more is determined, the addition amount of the chlorinated active substance can be optimally determined. Excessive or insufficient addition can be prevented. Moreover, the toxicity of discharged water can be lowered and the amount of neutralizing agent added can be reduced.
以下、本発明のバラスト水の制御方法について、一実施形態に基づき詳細に説明する。
Hereinafter, the ballast water control method of the present invention will be described in detail based on one embodiment.
本実施形態のバラスト水の制御方法は、取水口から取水されたバラスト水をバラストタンクに供給するに際し、該バラスト水中の水生微生物を殺菌処理する塩素系活性物質の添加量を決定するためのものであり、塩素系活性物質を添加していない未処理のバラスト水をあらかじめ採取し、該未処理のバラスト水に塩素系活性物質を添加して該塩素系活性物質による全残留酸化性物質濃度の経時的変化を測定する。
The ballast water control method of the present embodiment is for determining the amount of addition of a chlorinated active substance that sterilizes aquatic microorganisms in the ballast water when supplying the ballast water taken from the water intake to the ballast tank. The untreated ballast water to which no chlorinated active substance is added is collected in advance, the chlorinated active substance is added to the untreated ballast water, and the total residual oxidizing substance concentration of the chlorinated active substance is reduced. Measure changes over time.
次に、3以上の計測時間の全残留酸化性物質濃度(初期全残留酸化性物質濃度を含む)に基づき、下記対数式
C=a・ln(t)+b ・・・ (1)
(式中、a及びbはそれぞれ反応定数であり、tは経過時間であり、Cは全残留酸化性物質濃度である。)を満たすa及びbの値を算出する。そして、算出された対数式からバラスト水の排水予定時間(排出経過時間)における全残留酸化性物質濃度が0.1mg/L以上となる塩素系活性物質の添加量を決定する。 Next, based on the total residual oxidizable substance concentration (including the initial total residual oxidizable substance concentration) for three or more measurement times, the following logarithmic expression C = a · ln (t) + b (1)
(Wherein, a and b are reaction constants, t is the elapsed time, and C is the total residual oxidizing substance concentration), and the values of a and b are calculated. Then, from the calculated logarithmic expression, the addition amount of the chlorinated active substance at which the total residual oxidizing substance concentration in the estimated drainage time (discharge elapsed time) of the ballast water is 0.1 mg / L or more is determined.
C=a・ln(t)+b ・・・ (1)
(式中、a及びbはそれぞれ反応定数であり、tは経過時間であり、Cは全残留酸化性物質濃度である。)を満たすa及びbの値を算出する。そして、算出された対数式からバラスト水の排水予定時間(排出経過時間)における全残留酸化性物質濃度が0.1mg/L以上となる塩素系活性物質の添加量を決定する。 Next, based on the total residual oxidizable substance concentration (including the initial total residual oxidizable substance concentration) for three or more measurement times, the following logarithmic expression C = a · ln (t) + b (1)
(Wherein, a and b are reaction constants, t is the elapsed time, and C is the total residual oxidizing substance concentration), and the values of a and b are calculated. Then, from the calculated logarithmic expression, the addition amount of the chlorinated active substance at which the total residual oxidizing substance concentration in the estimated drainage time (discharge elapsed time) of the ballast water is 0.1 mg / L or more is determined.
本発明者らの研究の結果、世界各地の港湾の水を塩素処理することによって、ほとんどすべての港湾水が、塩素系活性物質に起因する塩素(全残留酸化性物質)を上記の対数の近似曲線に従って消費すると仮定できることを発見して完成に至った。なお、全残留酸化性物質濃度とは、TRO(Total Residual Oxidants)のことであり、塩素系活性物質の添加による酸化性塩素濃度、及びこの酸化性塩素との反応により生じる他の酸化性成分が含まれる。この全残留酸化性物質濃度は、DPD吸光度法を用いた市販の高精度TRO計を用いて常温にて測定することができる。
As a result of the inventors' research, almost all harbor waters are treated with chlorinated water from ports all over the world. Chlorine-based active substances (total residual oxidizing substances) are approximated to the above logarithm. It was discovered that it can be assumed that it will be consumed according to the curve. The total residual oxidizing substance concentration is TRO (Total Residual Oxidants), and the oxidizing chlorine concentration due to the addition of a chlorine-based active substance and other oxidizing components generated by reaction with this oxidizing chlorine are included. included. This total residual oxidizing substance concentration can be measured at room temperature using a commercially available high precision TRO meter using the DPD absorbance method.
具体的には、以下のような操作を行えばよい。まず、塩素系活性物質を添加していない未処理の海水などのバラスト水を採取し、試験的に塩素系活性物質を添加する。ここで、塩素系活性物質としては、殺菌性に優れているとともに、後述する全残留酸化性物質濃度による対数式による計算と実測値とがある程度近似することから、ジクロロイソシアヌル酸塩、トリクロロイソシアヌル酸塩および次亜塩素酸塩から選ばれた1種または2種以上を用いることができ、特に次亜塩素酸ナトリウムなどの次亜塩素酸塩が好ましい。
Specifically, the following operations may be performed. First, ballast water such as untreated seawater to which no chlorinated active substance is added is collected, and a chlorinated active substance is added experimentally. Here, as the chlorinated active substance, dichloroisocyanuric acid salt, trichloroisocyanuric acid is excellent because it is excellent in bactericidal properties and approximates to some extent the calculation by the logarithmic formula by the total residual oxidizing substance concentration described later and the actual measurement value. One or more selected from salts and hypochlorites can be used, and hypochlorites such as sodium hypochlorite are particularly preferred.
また、試験的な塩素系活性物質の添加量は、最大許容添加量(MAD)、もしくはこれを超えない近似したものとするのが好ましい。ここで、最大許容添加量とは、IMO基本承認時に設定されたバラスト水を最大添加できる濃度のことであり、被承認者は、この濃度を超えてバラスト水に塩素系活性物質を添加することはできない。このように試験的な塩素系活性物質の添加量を最大許容添加量とすることにより、後述するように全残留酸化性物質濃度による対数式の計算において、塩素系活性物質消費量の経時変化を良く模擬した対数近似曲線を得ることができる。
In addition, it is preferable that the addition amount of the experimental chlorine-based active substance is the maximum allowable addition amount (MAD) or an approximation not exceeding this. Here, the maximum allowable addition amount is a concentration at which the maximum amount of ballast water set at the time of IMO basic approval can be added, and the person to be approved must add a chlorinated active substance to the ballast water beyond this concentration. I can't. In this way, by setting the experimental addition amount of the chlorinated active substance as the maximum allowable addition amount, in the calculation of the logarithmic formula by the total residual oxidizable substance concentration as described later, the chronological change of the chlorinated active substance consumption is changed. A well-simulated logarithmic approximation curve can be obtained.
このように事前に採取したバラスト水に試験的に塩素系活性物質を添加したら、まず添加直後の全残留酸化性物質濃度(初期全残留酸化性物質濃度)を測定し、そのまま放置して全残留酸化性物質濃度の推移を数点確認する。
When chlorinated active substances are added to the ballast water sampled in advance in this way, first measure the total residual oxidizing substance concentration (initial total residual oxidizing substance concentration) immediately after the addition, and leave it as it is. Check several changes in the concentration of oxidizing substances.
ここで、全残留酸化性物質濃度の推移を確認する時間は、バラスト水の処理の効率化の点で短い方が好ましいが、従来は短時間の測定時間では、実際のバラスト水への塩素系活性物質の添加量(濃度)の精度が低いという問題点があった。しかしながら、本実施形態では、1~120分程度、特に1~40分程度の全残留酸化性物質濃度の推移を測定するだけで、実際のバラスト水への塩素系活性物質の添加濃度を精度よく決定することができる。また、この1~120分の間の測定数は、多い方が精度的には好ましいが、本実施形態においては2点(初期全残留酸化性物質濃度も入れると3点)でよい。
Here, the time for confirming the transition of the total residual oxidizing substance concentration is preferably shorter in view of the efficiency of the ballast water treatment, but conventionally, in the short measurement time, the chlorine system to the actual ballast water There was a problem that the accuracy of the addition amount (concentration) of the active substance was low. However, in this embodiment, the concentration of the chlorine-based active substance added to the actual ballast water can be accurately determined by measuring the transition of the total residual oxidizing substance concentration for about 1 to 120 minutes, particularly about 1 to 40 minutes. Can be determined. In addition, although it is preferable that the number of measurements between 1 to 120 minutes is large in terms of accuracy, in this embodiment, two points (three points including the initial total residual oxidizing substance concentration) may be used.
この3点以上の経過時間(t)における全残留酸化性物質濃度(C)に基づいて、上記対数式(1)を満たすa及びbの値を計算してこの対数式を完成し、対数近似曲線を作成する。塩素系活性物質は添加直後から減衰が始まるため、添加直後の活性物質濃度を厳密に測定することが難しい。そこで、対数近似曲線を作成する際、塩素系活性物質添加直後の濃度を最大許容添加量とし、この時の時間(t)を0.1秒程度の極短時間と仮定することで実際の塩素系活性物質消費量の経時変化を良く模擬した対数近似曲線を得ることができる。
Based on the total residual oxidizing substance concentration (C) at the elapsed time (t) of three or more points, the values of a and b satisfying the logarithmic formula (1) are calculated to complete the logarithmic formula, and logarithmic approximation Create a curve. Since the chlorine-based active substance begins to decay immediately after the addition, it is difficult to accurately measure the active substance concentration immediately after the addition. Therefore, when creating a logarithmic approximation curve, the concentration immediately after the addition of the chlorine-based active substance is set as the maximum allowable addition amount, and the time (t) at this time is assumed to be an extremely short time of about 0.1 seconds. It is possible to obtain a logarithmic approximation curve that well simulates the change with time of the consumption of the system active substance.
そして、作成した近似曲線を用いて、航海日数をバラスト水の排出時間(t)と擬制し、このバラスト水排出時間(t)を対数近似曲線に当て嵌めて、バラスト水排出時における全残留酸化性物質濃度が、0.1mg/L以上となる初期全残留酸化性物質濃度を設定し、これに基づき実際のバラスト水への塩素系活性物質の添加量を決定すればよい。全残留酸化性物質濃度が、0.1mg/L未満では、航海終了までバラスト水中の微小動物等の殺菌性を維持するのが困難となる。特に航海の時間が計画よりも長くなり残留塩素の無い時間が長期間にわたるとバクテリアの再増殖や耐久卵の孵化等が起こりうるため、塩素系活性物質の添加量は、バラスト水排出時間(t)の全残留酸化性物質濃度が1~10mg/L、特に2~5mg/Lとなるように添加することが好ましい。これにより、水質のばらつき、塩素消費のばらつき、近似曲線のばらつきを補正することができる、という効果も奏する。
Then, using the created approximate curve, the number of days of voyage is simulated as the discharge time (t) of ballast water, and this ballast water discharge time (t) is applied to the logarithmic approximate curve to calculate the total residual oxidation during ballast water discharge. The initial total residual oxidizing substance concentration at which the concentration of the active substance becomes 0.1 mg / L or more is set, and based on this, the addition amount of the chlorine-based active substance to the actual ballast water may be determined. If the total residual oxidizing substance concentration is less than 0.1 mg / L, it becomes difficult to maintain the bactericidal properties of the micro-animals in the ballast water until the end of the voyage. In particular, if the voyage time is longer than planned and there is no residual chlorine for a long time, bacterial regrowth, durable egg hatching, etc. may occur. Therefore, the amount of chlorinated active substance added depends on the ballast water discharge time (t It is preferable to add so that the total residual oxidizing substance concentration of 1) to 10 mg / L, particularly 2 to 5 mg / L. Thereby, the effect that the dispersion | variation in water quality, the dispersion | variation in chlorine consumption, and the dispersion | variation in an approximated curve can be corrected is also show | played.
なお、バラスト水の排出時は、排バラスト水に還元剤を供給して残存する塩素を還元し、残留塩素濃度を目標残留塩素濃度にまで低減した上で外部環境に排水する。この還元剤供給機構から供給される還元剤としては、亜硫酸ナトリウム、重亜硫酸ナトリウム(亜硫酸水素ナトリウム)、チオ硫酸ナトリウムなどを用いることができる。
When discharging ballast water, a reducing agent is supplied to the discharged ballast water to reduce the remaining chlorine, and the residual chlorine concentration is reduced to the target residual chlorine concentration before being discharged to the external environment. As the reducing agent supplied from this reducing agent supply mechanism, sodium sulfite, sodium bisulfite (sodium hydrogen sulfite), sodium thiosulfate, or the like can be used.
以上、本発明について一実施形態に基づいて説明してきたが、本発明は前記実施形態に限定されず、種々の変形実施が可能である。例えば、全残留酸化性物質濃度は、DPD吸光度法を用いたTRO計を用いて測定することに限定されるものではなく、同様の測定値が得られるものであれば、種々の測定手段が適用可能である。
As mentioned above, although this invention has been demonstrated based on one Embodiment, this invention is not limited to the said embodiment, A various deformation | transformation implementation is possible. For example, the total residual oxidizing substance concentration is not limited to the measurement using a TRO meter using the DPD absorbance method, and various measuring means can be applied as long as similar measurement values can be obtained. Is possible.
以下の具体的実施例により本発明をさらに詳細に説明する。
〔実施例1及び比較例1〕
4か所の港湾の海水(東京湾A(海水(i))、東京湾B(海水(ii))、静岡県漁港A(海水(iii))及び静岡県漁港B(海水(iv))をサンプリングした。これらの海水の塩分濃度、pH、濁度、SS濃度、POC(懸濁態有機炭素)濃度及びDOC(溶存態有機炭素)濃度は表1に示すとおりであり、場所によりその水質が大きくことなるものであった。 The following specific examples further illustrate the present invention.
[Example 1 and Comparative Example 1]
Seawater (Tokyo Bay A (seawater (i)), Tokyo Bay B (seawater (ii)), Shizuoka fishing port A (seawater (iii)) and Shizuoka fishing port B (seawater (iv)) The salinity, pH, turbidity, SS concentration, POC (suspended organic carbon) concentration and DOC (dissolved organic carbon) concentration of these seawaters are as shown in Table 1, and the water quality depends on the location. It was very different.
〔実施例1及び比較例1〕
4か所の港湾の海水(東京湾A(海水(i))、東京湾B(海水(ii))、静岡県漁港A(海水(iii))及び静岡県漁港B(海水(iv))をサンプリングした。これらの海水の塩分濃度、pH、濁度、SS濃度、POC(懸濁態有機炭素)濃度及びDOC(溶存態有機炭素)濃度は表1に示すとおりであり、場所によりその水質が大きくことなるものであった。 The following specific examples further illustrate the present invention.
[Example 1 and Comparative Example 1]
Seawater (Tokyo Bay A (seawater (i)), Tokyo Bay B (seawater (ii)), Shizuoka fishing port A (seawater (iii)) and Shizuoka fishing port B (seawater (iv)) The salinity, pH, turbidity, SS concentration, POC (suspended organic carbon) concentration and DOC (dissolved organic carbon) concentration of these seawaters are as shown in Table 1, and the water quality depends on the location. It was very different.
これらの海水に、次亜塩素酸ナトリウムを、DPD吸光度法を用いたTRO計による測定値で、全残留酸化性物質濃度で30mg/Lとなるように添加した。この海水を密栓して25℃の暗室に静置し、次亜塩素酸ナトリウム添加後の14日後までの全残留酸化性物質濃度の推移をDPD法を用いてそれぞれ測定した結果を表1に示す。また、この測定値のうち5日後までの全残留酸化性物質濃度の推移を図1に示す。
To these seawaters, sodium hypochlorite was added so that the total residual oxidizing substance concentration was 30 mg / L as measured with a TRO meter using the DPD absorbance method. Table 1 shows the results of measuring the transition of the total residual oxidizing substance concentration using the DPD method up to 14 days after the addition of sodium hypochlorite. . Also, the transition of the total residual oxidizing substance concentration up to 5 days after this measurement value is shown in FIG.
次に、上記測定値において、次亜塩素酸ナトリウム添加直後の全残留酸化性物質濃度を30mg/Lと仮定し、続いて5分、30分後の全残留酸化性物質濃度から式(1)の対数式におけるa及びbを決定して、これに基づき海水(i)~(iv)の対数近似曲線をそれぞれ作成した。結果を図2に示す。
Next, in the above measured value, assuming that the total residual oxidant concentration immediately after the addition of sodium hypochlorite is 30 mg / L, and subsequently calculating the formula (1) from the total residual oxidant concentration after 5 minutes and 30 minutes. The logarithmic approximation curves of seawater (i) to (iv) were respectively created based on a and b in the logarithmic formula. The results are shown in FIG.
さらに、これら対数曲線から求められた海水(i)~(iv)の5日経過後の全残留酸化性物質濃度を算出し、実測値と対比した結果を図3に示す。また、比較のために特許文献1の算出方法に基づく5日後の全残留酸化性物質濃度の計算値と、実測値とを対比した結果を図4に示す。
Furthermore, the total residual oxidizing substance concentration after 5 days of seawater (i) to (iv) obtained from these logarithmic curves was calculated, and the result compared with the actual measurement value is shown in FIG. For comparison, FIG. 4 shows the result of comparing the calculated value of the total residual oxidizable substance concentration after 5 days with the actual measurement value based on the calculation method of Patent Document 1.
図3及び図4より明らかなとおり、実施例1では実測値を精度良く模擬しているのに対し、従来法である特許文献1の算出方法に基づいた比較例1では、5日後の全残留酸化性物質濃度をほとんど模擬していなかった。これらのことから、本発明のバラスト水の制御方法により、短時間の全残留酸化性物質濃度の測定値から、長期間経過後の全残留酸化性物質濃度を精度よく模擬することができ、バラスト水の排水予定時間における全残留酸化性物質濃度が0.1mg/L以上となる塩素系活性物質の添加量を過剰添加や添加不足なく設定することができることがわかった。
As apparent from FIGS. 3 and 4, the actual measurement values are simulated with high accuracy in Example 1, whereas in Comparative Example 1 based on the calculation method of Patent Document 1 which is a conventional method, the total remaining after 5 days Almost no oxidant concentration was simulated. From these facts, the ballast water control method of the present invention can accurately simulate the total residual oxidant concentration after a long period of time from the measured value of the total residual oxidant concentration in a short time. It was found that the amount of the chlorinated active substance added so that the total residual oxidizing substance concentration in the planned water drainage time is 0.1 mg / L or more can be set without excessive addition or insufficient addition.
本発明のバラスト水の制御方法により、短時間の全残留酸化性物質濃度の測定値から、長期間経過後の全残留酸化性物質濃度を精度よく模擬することができるため、最適な塩素系活性物質の添加量を決定することができ、これにより、薬剤の船への搭載量、スペース、設備を最適化することが可能であり、結果的にコスト競争力のある処理装置を提供することが可能となる。
According to the ballast water control method of the present invention, it is possible to accurately simulate the total residual oxidant concentration after a long period of time from the measured value of the total residual oxidant concentration in a short time. It is possible to determine the amount of substance added, thereby enabling optimization of the loading amount, space, and equipment of the drug on the ship, and consequently providing a cost-competitive processing apparatus. It becomes possible.
Claims (2)
- 取水口から取水されたバラスト水をバラストタンクに供給するに際し、該バラスト水中の水生微生物を殺菌処理するための塩素系活性物質を添加するバラスト水の制御方法であって、
塩素系活性物質を添加していない未処理のバラスト水をあらかじめ採取し、該未処理のバラスト水に塩素系活性物質を添加して前記塩素系活性物質による全残留酸化性物質濃度の経時的変化を測定し、3以上の計測時間の全残留酸化性物質濃度に基づき、下記対数式
C=a・ln(t)+b
(式中、a及びbはそれぞれ反応定数であり、tは経過時間であり、Cは全残留酸化性物質濃度である。)
を満たすa及びbの値を算出し、
この算出された対数式からバラスト水の排水予定時間における全残留酸化性物質濃度が0.1mg/L以上となる塩素系活性物質の添加量を決定する
ことを特徴とするバラスト水の制御方法。 When supplying ballast water taken from a water intake to a ballast tank, a ballast water control method for adding a chlorinated active substance for sterilizing aquatic microorganisms in the ballast water,
Pre-collecting untreated ballast water to which no chlorinated active material has been added, adding a chlorinated active material to the untreated ballast water, and changing the concentration of all residual oxidizing substances over time due to the chlorinated active material And the following logarithm formula C = a · ln (t) + b
(Wherein, a and b are reaction constants, t is the elapsed time, and C is the total residual oxidizing substance concentration.)
Calculate the values of a and b that satisfy
A control method for ballast water, characterized in that, from the calculated logarithmic formula, an addition amount of a chlorine-based active substance at which a total residual oxidizing substance concentration in a scheduled drainage time of ballast water is 0.1 mg / L or more is determined. - 前記塩素系活性物質が、ジクロロイソシアヌル酸塩、トリクロロイソシアヌル酸塩および次亜塩素酸塩から選ばれた1種または2種以上であることを特徴とする請求項1に記載のバラスト水の制御方法。 The method for controlling ballast water according to claim 1, wherein the chlorinated active substance is one or more selected from dichloroisocyanurate, trichloroisocyanurate and hypochlorite. .
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/081544 WO2015075820A1 (en) | 2013-11-22 | 2013-11-22 | Method for controlling ballast water |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/081544 WO2015075820A1 (en) | 2013-11-22 | 2013-11-22 | Method for controlling ballast water |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015075820A1 true WO2015075820A1 (en) | 2015-05-28 |
Family
ID=53179125
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/081544 WO2015075820A1 (en) | 2013-11-22 | 2013-11-22 | Method for controlling ballast water |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2015075820A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3100983A1 (en) * | 2015-06-03 | 2016-12-07 | Techcross Inc. | Ballast water treatment system by using nadcc |
WO2019044769A1 (en) | 2017-08-31 | 2019-03-07 | 株式会社クラレ | Ballast water treatment method |
Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0841670A (en) * | 1994-07-29 | 1996-02-13 | Mitsubishi Heavy Ind Ltd | Chlorine content controller of chlorine generator |
JP2012007969A (en) * | 2010-06-24 | 2012-01-12 | Hokuto Denko Kk | Monitoring method of total residual oxidant (tro) concentration in ballast water |
-
2013
- 2013-11-22 WO PCT/JP2013/081544 patent/WO2015075820A1/en active Application Filing
Patent Citations (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0841670A (en) * | 1994-07-29 | 1996-02-13 | Mitsubishi Heavy Ind Ltd | Chlorine content controller of chlorine generator |
JP2012007969A (en) * | 2010-06-24 | 2012-01-12 | Hokuto Denko Kk | Monitoring method of total residual oxidant (tro) concentration in ballast water |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP3100983A1 (en) * | 2015-06-03 | 2016-12-07 | Techcross Inc. | Ballast water treatment system by using nadcc |
WO2019044769A1 (en) | 2017-08-31 | 2019-03-07 | 株式会社クラレ | Ballast water treatment method |
US11530144B2 (en) | 2017-08-31 | 2022-12-20 | Kuraray Co., Ltd. | Ballast water treatment method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20040129645A1 (en) | Methods, apparatus, and compositions for controlling organisms in ballast water | |
Schroeder et al. | Potential and limitations of ozone for the removal of ammonia, nitrite, and yellow substances in marine recirculating aquaculture systems | |
KR20100057644A (en) | Method and system for treating ballast water | |
JP5690282B2 (en) | Ballast water treatment system | |
JP5141163B2 (en) | Bactericidal and algae killing method | |
de Lafontaine et al. | Performance of a biological deoxygenation process for ships' ballast water treatment under very cold water conditions | |
JP5942373B2 (en) | Ship ballast water treatment system | |
WO2015075820A1 (en) | Method for controlling ballast water | |
JP2012106224A (en) | Ballast water control method and ballast water treatment system | |
Park et al. | The effects of chemical additives on the production of disinfection byproducts and ecotoxicity in simulated ballast water | |
JP6107077B2 (en) | Ballast water control method | |
US10669173B2 (en) | Ballast water treatment device and ballast water treatment method | |
JP5776367B2 (en) | Ship ballast water treatment method | |
JP2013006173A (en) | Method for treating ship ballast water | |
WO2016024342A1 (en) | Method for treating ballast water | |
JP2009160505A (en) | Method for controlling slime in water of water system | |
JP6191255B2 (en) | Ballast water treatment method | |
JP5874245B2 (en) | Ship ballast water treatment method | |
JP5938874B2 (en) | Ship ballast water treatment agent and ship ballast water treatment method using the same | |
de Lafontaine et al. | Effectiveness and potential environmental impact of a yeast-based deoxygenation process for treating ship ballast waters | |
JP6529706B1 (en) | Ballast water treatment method | |
Juretić et al. | Pilot studies of ozonation for inactivation of Artemia salina nauplii in ballast water | |
Fredricks et al. | Effects of formaldehyde on nitrification in biofilters of small‐scale recirculating systems | |
JP2013046897A (en) | Treatment method of ship ballast water | |
WO2017110154A1 (en) | Ballast water control device and method for controlling ballast water treatment system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13897780 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13897780 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |