WO2015075282A1 - Removable sampling device for carrying out non-destructive autopsies in spiral membranes - Google Patents

Removable sampling device for carrying out non-destructive autopsies in spiral membranes Download PDF

Info

Publication number
WO2015075282A1
WO2015075282A1 PCT/ES2014/000176 ES2014000176W WO2015075282A1 WO 2015075282 A1 WO2015075282 A1 WO 2015075282A1 ES 2014000176 W ES2014000176 W ES 2014000176W WO 2015075282 A1 WO2015075282 A1 WO 2015075282A1
Authority
WO
WIPO (PCT)
Prior art keywords
membranes
membrane
permeate
autopsies
destructive
Prior art date
Application number
PCT/ES2014/000176
Other languages
Spanish (es)
French (fr)
Inventor
Juan Antonio LOPEZ RAMIREZ
Original Assignee
Universidad De Cádiz (Otri)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Cádiz (Otri) filed Critical Universidad De Cádiz (Otri)
Publication of WO2015075282A1 publication Critical patent/WO2015075282A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • B01D63/103Details relating to membrane envelopes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D3/00Distillation or related exchange processes in which liquids are contacted with gaseous media, e.g. stripping
    • B01D3/10Vacuum distillation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/10Spiral-wound membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/08Prevention of membrane fouling or of concentration polarisation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D65/00Accessories or auxiliary operations, in general, for separation processes or apparatus using semi-permeable membranes
    • B01D65/10Testing of membranes or membrane apparatus; Detecting or repairing leaks
    • B01D65/109Testing of membrane fouling or clogging, e.g. amount or affinity
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/60Specific sensors or sensor arrangements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/90Additional auxiliary systems integrated with the module or apparatus
    • B01D2313/902Integrated cleaning device
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A20/00Water conservation; Efficient water supply; Efficient water use
    • Y02A20/124Water desalination
    • Y02A20/131Reverse-osmosis

Definitions

  • the industrial sector is that of water desalination, which includes any type of industry that uses spiral membrane systems for water treatment.
  • the fouling of the membranes is intrinsic to their functioning, in other words it is inevitable. But at least it can be minimized with good management of the membrane unit. For this, good monitoring of the system's operating parameters and water quality is essential. A deviation from the design conditions can lead to fouling that seriously impairs the operation of the unit.
  • the fouling and its variants organic, inorganic, colloidal, precipitation and microbiological
  • a late diagnosis in the development of a fouling can lead to an unrecoverable situation due to the delay of the response and can be very expensive for the ownership of the installation, with all the damages that this entails.
  • the present invention relates to a sampling device, which allows non-destructive autopsies to be performed on spiral configuration membranes, easy to place and remove, that provides pieces of membranes representative of what is happening within a given unit, allowing the Autopsy performed without destroying a membrane element.
  • the information generated by these autopsies will help to take the more appropriate decisions on the most suitable cleaning agents and sequences for a good control of the membrane unit.
  • the device object of the present invention must be placed inside the pressure containers of the membrane water treatment units in spiral configuration, such as reverse osmosis, nanofiltration, ultrafiltration, etc.
  • This device easy to install and remove, incorporates a piece of membrane for analysis. Thanks to the configuration of the device, the portion of the membrane that it carries inside supports the same conditions as the membranes placed in the plant under study, so it is representative of what is happening and can be subjected to autopsy analysis to know the degree and the fouling mechanism the unit is experiencing. In this way the device facilitates the most appropriate decision making. Once what happens with that membrane is known, the most appropriate decision is chosen, which can be: do nothing, proceed to change the operating conditions, perform preventive or corrective cleaning, intensify the pretreatment, etc. In short, it allows the membrane unit to be managed more adequately.
  • the membrane elements in spiral configuration are placed in series inside a cylindrical pressure container that has two lids, one at each end, which seals said container, being only crossed by the tubes that lead the water to be treated, the treated water and The water rejected. It is necessary that one of the permeate collector ends of a membrane element of the end be blinded or plugged to prevent the outflow of the treated water and its mixing with the other water streams, which would spoil the process.
  • the placement of the sampling device is carried out on the tubes called permeate collectors of the membrane elements of the ends of a pressure container.
  • the sampling device can have two different forms: in one of them it covers the permeate collector and seals it tightly to avoid water mixtures and in the other, it connects the permeate collector of the membrane element with the outside to extract the treated water from the pressure container. That is, one is shaped like a plug and the other has a hollow tube that connects to the permeate pipe.
  • sampling devices can be placed in the same installation. These devices can be placed in one or both ends of the same pressure container, or in several containers of a system that works in one, two or three stages. In this way, if the devices are distributed throughout the installation, it is possible to characterize the degree of fouling of the entire system at any given time by removing all the devices at once. But if you want to know the evolution of the fouling of the membranes of the treatment plant over time, you can select different devices and remove them sequentially over a certain period of time.
  • the container For proper placement of the devices, the container must be opened at one or both ends.
  • the placement can be initial, when the plant is going to start up for the first time, or once its operations have begun.
  • the piece that covers it must be removed and the device replaced, taking into account that the permeate collector is inserted at one end and blind at the other end .
  • the interconnector must be removed and replaced by the device, which must have a shape compatible with the replaced part of such way to join the permeate pipe. Once the devices are placed, the correct sealing of the permeate collectors must be checked.
  • the form of operation of the device is the same as any membrane element of the container where it has been placed. This ensures that its subsequent analysis reflects the actual operating conditions of the system.
  • the device can incorporate a system of layers equal to the membranes of the unit whose behavior you want to analyze, or as mentioned above, you can incorporate a different layer system that you want to test in the unit, in case one day You want to change the type of membranes.
  • the device object of the present invention comprises a support formed by a hollow plastic tube perforated around it to a length less than the width of the piece of membrane to be used. These holes allow the permeate to pass through the membrane and be collected by the permeate collector.
  • a very dense plastic mesh known as a permeate or carrier mesh, is placed on the tube, allowing the permeate to easily pass through with a minimum pressure loss through it.
  • This mesh has a rectangular shape and is placed on the ring-shaped plastic tube, glued or welded by its shorter ends. The union at its ends of the mesh with the support can be done in several ways, chemical, physical, thermal, etc., but should not interfere with its proper functioning.
  • the surface used for the joint must be minimal and the bonding is done on a line parallel to the longitudinal axis of the plastic tube.
  • the rectangular piece of membrane to be studied is placed on the mesh, forming a ring, and placing the joining lines of each layer on the previous one, to minimize the loss of active surface.
  • the membrane will also be glued by its ends directly on the perforated plastic support so that there is sealing and forces the permeate to cross the active layer of the membrane, covering the permeate mesh entirely.
  • a plastic mesh called a spacer that allows the water to mix avoiding problems related to the laminar flow within the membrane elements. This material is rolled and glued in the same way as the previous ones.
  • a layer of waterproof plastic material is wound and glued on the spacer. Its placement ensures that the flow of water and hydrodynamic conditions on the surface of the membrane and spacer are equal to those of the adjacent membrane element because it simulates an active layer of another membrane.
  • the device faithfully reproduces the conditions of the adjacent membrane element so it is representative of what happens to it, regardless of whether it is placed at the beginning or at the end of the pressure container.
  • a strategically placed sampling device can be extracted, which allows to evaluate, after laboratory analysis, the type of fouling that has developed in the unit and prepare the best cleaning strategy for correction. Once the device is removed, it can easily be replaced by a new one for later analysis or monitoring of the unit over time.
  • Figure 1 shows a partial perspective of the end of a pressure container with a single inlet or outlet and its lid together with the elements that make up the quick-release device in the form of a cap.
  • Figure 2 shows a partial perspective of the end of a pressure container with an inlet and outlet or two outlets and its lid together with the elements that make up the quick-disconnect device in the form of an interconnector.
  • Figure 3 shows elements of Figure 1 in their operating position inside the sectional and elevation container.
  • Figure 4 shows elements of Figure 2 in their operating position inside the sectional and elevation container.
  • Pressure container lid with one inlet and one outlet or two outlets.
  • This device is valid for those pressure containers (1) that have a distance of a few centimeters between the anti-telescope device or "endcap” (18) and the closing lid of the pressure container (9,11). It can even be used on angled permeate interconnects.
  • the construction of the device is done from the inside out.
  • the device can have two configurations: the "plug form” (4) when replacing the blind plug that blocks one end of the permeate collector, and the "interconnecting form” (3), when replacing the interconnector with output to the outside.
  • the plastic tube that, in addition to fulfilling its function as a plug or interconnector, serves as support for the rest of the components of the device, must be constructed of a material resistant to the working pressure of the water treatment unit.
  • the curved surface of the tube is perforated (15, 16) so that the water that passes through the membrane (6) can circulate towards the permeate collector (10).
  • the flat face of the cylinder will be unperforated.
  • the extension of the perforated surface will be less than the surface of the membrane deposited on them and between the ring-shaped joints of the adhesives (22) that join the membrane to the support (3, 4) so that there is a seal.
  • the internal diameter of the support, both in its plug-shaped and interconnected configuration, must be slightly larger than the external diameter of the permeate manifold (10) of the membrane element (17) so that it can slide and fix on it. The tightness of the manifold-device assembly is ensured by the use of O-rings (2).
  • a rectangular piece of permeate mesh or carrier (5) is placed all around and concentrically.
  • the longest side of the rectangle to be placed will be a few millimeters greater than the length of the outer circumference of the plastic device, so that the remaining part can overlap and be used for joining. Thus this rectangle bends to form a cylinder.
  • This joint also allows fixing on the plastic device by gluing.
  • the permeate mesh must cover the entire perforated surface of the support (15, 16).
  • a piece of membrane (6) will be deposited on this assembly, which can be of the same model as the one used in the installation under study or of any other one that you wish to test.
  • This piece of rectangular membrane (6) is placed concentrically to the permeate mesh (5) and joins in the same way as this one on the shortest side of the rectangle forming a cylinder. But in this case, it will also be glued additionally with glue (22) on the outer circular edges of said cylinder so that the water that passes inside crosses the device and is collected only by the permeate collector, thus ensuring the tightness of those unions. This requires that the surface of the membrane be slightly larger than that of the permeate mesh. The glue joints will form concentric rings (22) to the longitudinal axis of the plastic devices.
  • a piece of spacer mesh (7) will be placed on the membrane (6). This spacer allows water to circulate in turbulent flow over the membrane, just as it happens inside the membrane elements. The union will be done in the same way as with the permeate mesh (5).
  • the length of the device depends on the distance between the permeate manifolds and the pressure container lids. In an indicative and non-limiting manner, this length can range between five and ten centimeters.
  • the fouling of membranes is the operating variable that is most related to the increase in the costs of membrane systems. Membrane systems get dirty throughout their operation. It is impossible for a system to not get dirty, but it is possible to keep dirtying under control. For this, a triple strategy is carried out: a good pretreatment, a rapid diagnosis of the development of fouling and a good membrane cleaning technique.
  • the devices object of this invention placed throughout the entire membrane system, allow a rapid diagnosis of the degree and type of fouling that is occurring in the membrane unit to be carried out with a minimum loss of time and materials.
  • the design of the proposed device allows it to work in exactly the same conditions as the membranes that are next to it, which provides the information on the degree of fouling that the membranes of the unit are suffering.
  • Another advantage provided by the device is that, depending on the place of installation where it is placed, it will provide different information. Thus, if placed at the beginning of a container of a first, second or third stage it provides a type of information about the type of fouling that is occurring on the first membranes. And if it is placed at the end of a container of a first, second or third stage, it gives information about the type of fouling that is occurring in the last membranes.
  • This device can be used in seawater desalination plants, brackish water and any type of industrial installation that desalinates water by means of reverse osmosis or nanofiltration membranes, but also to those ultrafiltration and microfiltration units that use spiral-shaped membranes, since all they are subject to fouling of their membranes and have similar shapes.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Sampling And Sample Adjustment (AREA)

Abstract

Fouling of desalination membranes poses a serious problem for the water-treatment industry. In order to identify the level of membrane fouling, a device has been developed that permits the retrieval of significant membrane samples for analysis in a laboratory, without having to extract, transfer and sacrifice one or more membrane elements of the system. The distribution of the device at different points of an installation allows for preventative and corrective monitoring of the fouling. The device comprises a hollow plastic tube that is perforated around the outside, and which can be opened at both ends when being substituted for the inter-connector having an external outlet, or closed at one end when being substituted for an end-cap of the permeate collector, a polymeric membrane, a spacer and an impermeable plastic.

Description

DISPOSITIVO DE MUESTREO EXTRAÍBLE PARA LA REALIZACIÓN DE AUTOPSIAS NO DESTRUCTIVAS EN MEMBRANAS DE CONFIGURACIÓN ESPIRAL  REMOVABLE SAMPLING DEVICE FOR THE PERFORMANCE OF NON-DESTRUCTIVE AUTOPSIES IN SPIRAL CONFIGURATION MEMBERS
SECTOR DE LA TÉCNICA. SECTOR OF THE TECHNIQUE.
El área científica al que se destina esta invención es en la ingeniería, más concretamente en el tratamiento del agua.  The scientific area to which this invention is intended is in engineering, more specifically in water treatment.
El sector industrial es el de la desalinización del agua, lo cual incluye cualquier tipo de industria que emplee sistemas de membranas en espiral para el tratamiento del agua. The industrial sector is that of water desalination, which includes any type of industry that uses spiral membrane systems for water treatment.
ESTADO DE LA TÉCNICA. STATE OF THE TECHNIQUE.
El ensuciamiento de las membranas es un problema importante en las tecnologías de membranas. El agua y los constituyentes de ésta están en contacto con las membranas durante los procesos de filtración. Como consecuencia de ello algunos de estos constituyentes pueden adherirse reversible o irreversiblemente a la superficie de las membranas, por fenómenos de adsorción, precipitación, difusión, etc. El resultado es que la superficie, o parte de ella, es ocupada por estos materiales y se ve reducida, disminuyendo el área útil de filtración. Esta reducción superficial se manifiesta de múltiples maneras, afectando a los parámetros de operación de la unidad: disminución de la producción, aumento del consumo energético, pérdida de la calidad del agua producida... Todo ello conduce en definitiva, a un incremento de los costes de producción.  The fouling of membranes is a major problem in membrane technologies. Water and its constituents are in contact with the membranes during the filtration processes. As a result, some of these constituents may adhere reversibly or irreversibly to the surface of the membranes, due to adsorption, precipitation, diffusion, etc. The result is that the surface, or part of it, is occupied by these materials and is reduced, reducing the useful area of filtration. This superficial reduction is manifested in multiple ways, affecting the unit's operating parameters: decrease in production, increase in energy consumption, loss of the quality of the water produced ... All this ultimately leads to an increase in production costs.
La naturaleza físico-química y microbiológica del agua varía de una instalación a otra, por lo cual es imposible señalar a un agente común de ensuciamiento, ya que depende de las características del agua a tratar. La mejor forma de poder reducir el problema de ensuciamiento en las membranas es conocer muy bien la naturaleza del agua y evitar las condiciones críticas que conducen a ello. Pero las condiciones de operación aplicadas a la unidad de tratamiento vienen impuestas por aspectos relacionados con las necesidades de producción, calidad del agua, etc. Son estas condiciones y una buena o mala ejecución las que minimizan o intensifican el grado de ensuciamiento de las membranas. Una vez que las membranas están sucias es posible aplicar sistemas y secuencias de limpieza para recuperar total o parcialmente las condiciones iniciales de las membranas. Aunque estas acciones pueden suponer grandes beneficios implican paradas técnicas y productivas y consumos de reactivos, lo que implica un vertido posterior y un impacto ambiental. Todo ello conlleva, en definitiva, pérdidas de producción y aumento de costes. The physical-chemical and microbiological nature of water varies from one facility to another, so it is impossible to point to a common fouling agent, since it depends on the characteristics of the water to be treated. The best way to reduce the problem of fouling in the membranes is to know the nature of the water very well and avoid the critical conditions that lead to it. But the operating conditions applied to the treatment unit are imposed by aspects related to production needs, water quality, etc. It is these conditions and a good or bad execution that minimize or intensify the degree of fouling of the membranes. Once the membranes are dirty it is possible to apply cleaning systems and sequences to fully or partially recover the initial conditions of the membranes. Although these actions can have great benefits, they involve technical and productive shutdowns and reagent consumption, which implies a subsequent discharge and an environmental impact. All this entails, in short, production losses and increased costs.
Cuando se conoce perfectamente el agente que causa el ensuciamiento se le puede atacar de forma específica con determinados agentes de limpieza, pero cuando se desconoce su naturaleza se aplican agentes y secuencias de limpieza generalistas, las cuales no siempre consiguen el efecto buscado.  When the agent causing the fouling is well known, it can be attacked specifically with certain cleaning agents, but when its nature is unknown, general cleaning agents and sequences are applied, which do not always achieve the desired effect.
Desafortunadamente, la única forma que hay de saber cuáles son los agentes depositados sobre las membranas consiste en realizar autopsias de los elementos de membrana. Esta operación implica parar la unidad, abrir los contenedores de presión y extraer un elemento de membrana, o varios, y sacrificarlo para poder disponer de muestras que van a ser analizadas posteriormente en el laboratorio. Lógicamente, esto implica tener que sustituir ese elemento de membrana por uno nuevo. Debido al diseño de los elementos de membranas (que solo pueden ser colocados avanzando en una única dirección) es necesario sacar todos los elementos por un extremo y volverlos a colocar en el mismo orden pero por el otro extremo. Una vez que el elemento de membrana extraído es conducido al laboratorio para su análisis se abre para permitir la observación del interior y la extracción de muestras de la superficie de la membrana para su análisis, lo que implica su destrucción, Unfortunately, the only way to know which agents are deposited on the membranes is to perform autopsies of the membrane elements. This operation involves stopping the unit, opening the pressure containers and extracting a membrane element, or several, and sacrificing it in order to have samples that will be analyzed later in the laboratory. Logically, this implies having to replace that membrane element with a new one. Due to the design of the membrane elements (which can only be placed advancing in a single direction) it is necessary to remove all the elements at one end and put them back in the same order but at the other end. Once the extracted membrane element is taken to the laboratory for analysis it is opened to allow observation of the interior and the extraction of samples from the membrane surface for analysis, which implies its destruction,
De todo lo anterior se deduce la necesidad de disponer de un sistema que facilite la realización de autopsias en tecnología de membranas para tratamiento de aguas, que permitan conocer su nivel de ensuciamiento y los agentes depositados sobre las membranas, sin producir un elevado consumo de tiempo y costes de sustitución de los elementos sacrificados, siendo este el objeto de la presente invención. En la actualidad se desconoce la existencia de dispositivos de estas características. From all of the above, the need to have a system that facilitates the performance of autopsies on membrane technology for water treatment, that allows to know its level of fouling and the agents deposited on the membranes, without producing a high consumption of time and replacement costs of the sacrificed elements, this being the object of the present invention. At present the existence of devices of these characteristics is unknown.
DESCRIPCIÓN DE LA INVENCIÓN. DESCRIPTION OF THE INVENTION
El ensuciamiento de las membranas es intrínseco a su funcionamiento, en otras palabras es inevitable. Pero al menos puede ser minimizado con una buena gestión de la unidad de membranas. Para ello es imprescindible un buen seguimiento de los parámetros de operación del sistema y de la calidad del agua. Una desviación sobre las condiciones de diseño puede conducir a ensuciamientos que perjudican seriamente el funcionamiento de la unidad. El ensuciamiento y sus variantes (orgánico, inorgánico, coloidal, precipitaciones y microbiológico) pueden ser contrarrestados mediante la realización de limpiezas químicas, bien in situ o fuera del lugar de operaciones, pero en cualquier caso suponen la paralización de la unidad y la pérdida de producción. A veces, un diagnóstico tardío en el desarrollo de un ensuciamiento puede conducir a una situación irrecuperable por la tardanza de la respuesta y puede llegar a ser muy costoso para la propiedad de la instalación, con todos los perjuicios que ello conlleva. Pero incluso, una rápida respuesta basada en un diagnóstico erróneo puede ser aún peor pues podría ocasionar daños irreparables sobre las membranas. Es por ello, que se precisa un sistema fiable, sencillo y económico que solucione este tipo de situaciones ayudando a la gestión y adecuada toma de decisiones para prevenir y luchar contra el ensuciamiento y los problemas que genera.  The fouling of the membranes is intrinsic to their functioning, in other words it is inevitable. But at least it can be minimized with good management of the membrane unit. For this, good monitoring of the system's operating parameters and water quality is essential. A deviation from the design conditions can lead to fouling that seriously impairs the operation of the unit. The fouling and its variants (organic, inorganic, colloidal, precipitation and microbiological) can be counteracted by performing chemical cleaning, either in situ or outside the place of operations, but in any case they involve the stoppage of the unit and the loss of production. Sometimes, a late diagnosis in the development of a fouling can lead to an unrecoverable situation due to the delay of the response and can be very expensive for the ownership of the installation, with all the damages that this entails. But even a quick response based on a misdiagnosis can be even worse because it could cause irreparable damage to the membranes. That is why a reliable, simple and economical system is needed to solve these types of situations, helping to manage and make appropriate decisions to prevent and fight against fouling and the problems it generates.
La presente invención se refiere a un dispositivo de muestreo, que permite la realización de autopsias no destructivas en membranas de configuración espiral, de fácil colocación y extracción, que proporciona trozos de membranas representativos de lo que está ocurriendo dentro de una determinada unidad, permitiendo la realización de autopsias sin necesidad de destruir un elemento de membrana. La información que generan estas autopsias ayudará a la toma de las decisiones más apropiadas sobre las secuencias y agentes de limpieza más idóneos para un buen control de la unidad de membranas. The present invention relates to a sampling device, which allows non-destructive autopsies to be performed on spiral configuration membranes, easy to place and remove, that provides pieces of membranes representative of what is happening within a given unit, allowing the Autopsy performed without destroying a membrane element. The information generated by these autopsies will help to take the more appropriate decisions on the most suitable cleaning agents and sequences for a good control of the membrane unit.
El dispositivo objeto de la presente invención debe colocarse dentro de los contenedores de presión de las unidades de tratamiento de agua por membranas en configuración espiral, como son la osmosis inversa, nanofiltración, ultrafiltración, etc. Este dispositivo, de fácil colocación y extracción, incorpora un trozo de membrana para someterlo a análisis. Gracias a la configuración del dispositivo, la porción de membrana que lleva en su interior soporta las mismas condiciones que las membranas colocadas en la planta a estudio, por lo que es representativa de lo que ocurre y puede ser sometida a análisis de autopsia para conocer el grado y el mecanismo de ensuciamiento que está experimentando la unidad. De esta forma el dispositivo facilita la toma de decisiones más adecuada. Una vez que se conoce lo que ocurre con esa membrana se elige la decisión más apropiada, que puede ser: no hacer nada, proceder a cambiar las condiciones de operación, realizar limpiezas preventivas o correctivas, intensificar el pretratamiento, etc. En definitiva, permite gestionar más adecuadamente a la unidad de membranas. The device object of the present invention must be placed inside the pressure containers of the membrane water treatment units in spiral configuration, such as reverse osmosis, nanofiltration, ultrafiltration, etc. This device, easy to install and remove, incorporates a piece of membrane for analysis. Thanks to the configuration of the device, the portion of the membrane that it carries inside supports the same conditions as the membranes placed in the plant under study, so it is representative of what is happening and can be subjected to autopsy analysis to know the degree and the fouling mechanism the unit is experiencing. In this way the device facilitates the most appropriate decision making. Once what happens with that membrane is known, the most appropriate decision is chosen, which can be: do nothing, proceed to change the operating conditions, perform preventive or corrective cleaning, intensify the pretreatment, etc. In short, it allows the membrane unit to be managed more adequately.
Los elementos de membranas en configuración espiral se colocan en serie dentro de un contenedor cilindrico de presión que posee dos tapas, una en cada extremo, que sellan dicho contenedor, siendo solo atravesadas por los tubos que conducen el agua a tratar, el agua tratada y el agua rechazada. Es preciso que uno de los extremos del colector de permeado de un elemento de membrana del extremo esté cegado o taponado para evitar la salida del agua tratada y su mezcla con las otras corrientes de agua, lo que estropearía el proceso. La colocación del dispositivo de muestreo se realiza sobre los tubos denominados colectores de permeado de los elementos de membranas de los extremos de un contenedor de presión. No hay un modelo estandarizado en la forma de los contenedores de presión y en sus tapas de cierres, pudiendo estos presentar diversas formas. Sin embargo, suelen presentar un tubo de entrada de la alimentación por un extremo del contenedor de presión, que conduce el agua a tratar, y dos tubos de salida por el otro extremo o final, que se corresponden con la salida del permeado (agua tratada) y el rechazo (agua rechazada por la membrana). Por ello, el dispositivo de muestreo puede presentar dos formas distintas: en una de ellas cubre el colector de permeado y lo tapona de forma estanca para evitar mezclas de agua y en la otra, conecta el colector de permeado del elemento de membrana con el exterior para extraer el agua tratada del contenedor de presión. Es decir, uno tiene forma de tapón y el otro de tubo hueco que se conexiona con la tubería de permeado. The membrane elements in spiral configuration are placed in series inside a cylindrical pressure container that has two lids, one at each end, which seals said container, being only crossed by the tubes that lead the water to be treated, the treated water and The water rejected. It is necessary that one of the permeate collector ends of a membrane element of the end be blinded or plugged to prevent the outflow of the treated water and its mixing with the other water streams, which would spoil the process. The placement of the sampling device is carried out on the tubes called permeate collectors of the membrane elements of the ends of a pressure container. There is no standardized model in the form of pressure containers and in their closing lids, which can present various forms. However, they usually have a feed inlet tube at one end of the pressure vessel, which conducts the water to be treated, and two outlet tubes at the other end or end, which correspond to the permeate outlet (treated water ) and rejection (water rejected by the membrane). Therefore, the sampling device can have two different forms: in one of them it covers the permeate collector and seals it tightly to avoid water mixtures and in the other, it connects the permeate collector of the membrane element with the outside to extract the treated water from the pressure container. That is, one is shaped like a plug and the other has a hollow tube that connects to the permeate pipe.
En una misma instalación pueden colocarse varios dispositivos de muestreo. Estos dispositivos pueden colocarse en uno o en ambos extremos de un mismo contenedor de presión, o en varios contenedores de un sistema que trabaje en una, dos o tres etapas. De esta manera, si los dispositivos están repartidos por toda la instalación es posible caracterizar el grado de ensuciamiento de todo el sistema en un momento dado extrayendo todos los dispositivos a la vez. Pero si se desea conocer la evolución del ensuciamiento de las membranas de la planta de tratamiento a lo largo del tiempo, se pueden seleccionar distintos dispositivos e ir extrayéndolos de forma secuencial a lo largo de un período de tiempo determinado.  Several sampling devices can be placed in the same installation. These devices can be placed in one or both ends of the same pressure container, or in several containers of a system that works in one, two or three stages. In this way, if the devices are distributed throughout the installation, it is possible to characterize the degree of fouling of the entire system at any given time by removing all the devices at once. But if you want to know the evolution of the fouling of the membranes of the treatment plant over time, you can select different devices and remove them sequentially over a certain period of time.
Para una correcta colocación de los dispositivos se ha de abrir el contenedor por uno o ambos extremos. La colocación puede ser inicial, cuando la planta se va a poner en marcha por primera vez, o una vez iniciadas las operaciones de la misma. En función del lugar en el que se va a colocar el dispositivo podemos tener dos variantes: For proper placement of the devices, the container must be opened at one or both ends. The placement can be initial, when the plant is going to start up for the first time, or once its operations have begun. Depending on the place where the device is going to be placed, we can have two variants:
Si el dispositivo se va a colocar sobre el colector de permeado taponado se debe retirar la pieza que lo tapona y colocar el dispositivo sustituyéndolo, teniendo en cuenta que en este dispositivo por un extremo se introduce el colector de permeado y por el otro extremo está ciego. If the device is to be placed on the capped permeate collector, the piece that covers it must be removed and the device replaced, taking into account that the permeate collector is inserted at one end and blind at the other end .
Si el dispositivo se va a colocar en el extremo contrario del contenedor, el que pone en contacto el colector de permeado con el exterior, se debe retirar el interconector y sustituirlo por el dispositivo, que debe tener una forma compatible con la pieza sustituida de tal manera que se una a la tubería de permeado. Una vez colocados los dispositivos debe comprobarse el sellado correcto de los colectores de permeado. If the device is to be placed at the opposite end of the container, which contacts the permeate collector with the outside, the interconnector must be removed and replaced by the device, which must have a shape compatible with the replaced part of such way to join the permeate pipe. Once the devices are placed, the correct sealing of the permeate collectors must be checked.
Para finalizar, se cierra el extremo o extremos del contenedor de presión con la tapa o las tapas del mismo y se comprueba la estanqueidad del sistema.  Finally, the end or ends of the pressure container is closed with the lid or lids thereof and the tightness of the system is checked.
La forma de operación del dispositivo es la misma que cualquier elemento de membrana del contenedor donde se ha colocado. De este modo se asegura que su análisis posterior, refleja las condiciones reales de operación del sistema. Sin embargo, el dispositivo puede incorporar un sistema de capas igual a las membranas de la unidad cuyo comportamiento se desea analizar, o como se ha mencionado anteriormente, puede incorporar un sistema de capas diferente que interese probar en la unidad, por si algún día se desea cambiar de tipo de membranas. The form of operation of the device is the same as any membrane element of the container where it has been placed. This ensures that its subsequent analysis reflects the actual operating conditions of the system. However, the device can incorporate a system of layers equal to the membranes of the unit whose behavior you want to analyze, or as mentioned above, you can incorporate a different layer system that you want to test in the unit, in case one day You want to change the type of membranes.
El dispositivo objeto de la presente invención comprende un soporte formado por un tubo plástico hueco perforado a su alrededor hasta una longitud inferior a la anchura del trozo de membrana que se va a emplear. Estos agujeros permiten que el permeado atraviese la membrana y se recoja por el colector de permeado. Sobre el tubo se coloca una malla plástica muy tupida, conocida como malla de permeado o carrier, que permite que el permeado pueda atravesar fácilmente con una pérdida de carga mínima a través de él. Esta malla presenta una forma rectangular y se coloca sobre el tubo plástico en forma de anillo, pegado o soldado por sus extremos más cortos. La unión por sus extremos de la malla con el soporte se puede hacer de varias maneras, química, física, térmica, etc., pero no deberá interferir en su correcto funcionamiento. La superficie empleada para la unión debe ser mínima y el pegado se realiza sobre una línea paralela al eje longitudinal del tubo plástico. Sobre la malla se coloca el trozo rectangular de membrana que se desea estudiar, formando un anillo, y colocando las líneas de unión de cada capa sobre la anterior, para minimizar la pérdida de superficie activa. La membrana también se pegará por sus extremos directamente sobre el soporte de plástico perforado para que haya estanqueidad y obligue al permeado a travesar la capa activa de la membrana, cubriendo enteramente la malla de permeado. Sobre la membrana se coloca una malla plástica denominada espaciador que permite que el agua se mezcle evitando problemas relacionados con el flujo laminar dentro de los elementos de membranas. Este material se enrolla y pega de igual manera que los anteriores. Por último, sobre el espaciador se enrolla y pega una capa de material plástico impermeable. Su colocación asegura que el flujo de agua y condiciones hidrodinámicas sobre la superficie de la membrana y espaciador sean iguales a las del elemento de membrana contiguo pues simula una capa activa de otra membrana. The device object of the present invention comprises a support formed by a hollow plastic tube perforated around it to a length less than the width of the piece of membrane to be used. These holes allow the permeate to pass through the membrane and be collected by the permeate collector. A very dense plastic mesh, known as a permeate or carrier mesh, is placed on the tube, allowing the permeate to easily pass through with a minimum pressure loss through it. This mesh has a rectangular shape and is placed on the ring-shaped plastic tube, glued or welded by its shorter ends. The union at its ends of the mesh with the support can be done in several ways, chemical, physical, thermal, etc., but should not interfere with its proper functioning. The surface used for the joint must be minimal and the bonding is done on a line parallel to the longitudinal axis of the plastic tube. The rectangular piece of membrane to be studied is placed on the mesh, forming a ring, and placing the joining lines of each layer on the previous one, to minimize the loss of active surface. The membrane will also be glued by its ends directly on the perforated plastic support so that there is sealing and forces the permeate to cross the active layer of the membrane, covering the permeate mesh entirely. On The membrane is placed a plastic mesh called a spacer that allows the water to mix avoiding problems related to the laminar flow within the membrane elements. This material is rolled and glued in the same way as the previous ones. Finally, a layer of waterproof plastic material is wound and glued on the spacer. Its placement ensures that the flow of water and hydrodynamic conditions on the surface of the membrane and spacer are equal to those of the adjacent membrane element because it simulates an active layer of another membrane.
Gracias a su configuración y diseño, el dispositivo reproduce fielmente las condiciones del elemento de membrana adyacente por lo que resulta representativo de lo que le ocurre a éste, independientemente de si está colocado al principio del contenedor de presión o al final del mismo. Así, cuando se sospeche que en una unidad de membranas puede existir algún tipo de problema de ensuciamiento, se puede extraer un dispositivo de muestreo, colocado estratégicamente, el cual permite evaluar, tras su análisis en laboratorio, el tipo de ensuciamiento que se ha desarrollado en la unidad y preparar la mejor estrategia de limpieza para su corrección. Una vez extraído el dispositivo, este puede ser fácilmente sustituido por otro nuevo para un posterior análisis o seguimiento de la unidad a lo largo del tiempo. Thanks to its configuration and design, the device faithfully reproduces the conditions of the adjacent membrane element so it is representative of what happens to it, regardless of whether it is placed at the beginning or at the end of the pressure container. Thus, when it is suspected that a type of fouling problem may exist in a membrane unit, a strategically placed sampling device can be extracted, which allows to evaluate, after laboratory analysis, the type of fouling that has developed in the unit and prepare the best cleaning strategy for correction. Once the device is removed, it can easily be replaced by a new one for later analysis or monitoring of the unit over time.
DESCRIPCIÓN DEL CONTENIDO DE LAS FIGURAS. DESCRIPTION OF THE CONTENT OF THE FIGURES.
La figura 1 muestra una perspectiva parcial del extremo de un contenedor de presión con una única entrada o salida y su tapa junto con los elementos que conforman el dispositivo de extracción rápida con forma de tapón. Figure 1 shows a partial perspective of the end of a pressure container with a single inlet or outlet and its lid together with the elements that make up the quick-release device in the form of a cap.
La figura 2 muestra una perspectiva parcial del extremo de un contenedor de presión con una entrada y salida o dos salidas y su tapa junto con los elementos que conforman el dispositivo de extracción rápida con forma de interconector. Figure 2 shows a partial perspective of the end of a pressure container with an inlet and outlet or two outlets and its lid together with the elements that make up the quick-disconnect device in the form of an interconnector.
La figura 3 muestra elementos de la figura 1 en su posición de funcionamiento dentro del contenedor en sección y en elevación. La fígura 4 muestra elementos de la figura 2 en su posición de funcionamiento dentro del contenedor en sección y en elevación. Figure 3 shows elements of Figure 1 in their operating position inside the sectional and elevation container. Figure 4 shows elements of Figure 2 in their operating position inside the sectional and elevation container.
Los elementos que se muestran en las diferentes figuras presentan las siguientes referencias: The elements shown in the different figures have the following references:
1. Contenedor de presión. 1. Pressure container.
2. Junta tórica. 2. O-ring.
3. Soporte con configuración en forma de interconector, con agujeros y salida al exterior del contenedor. 3. Support with interconnector configuration, with holes and exit to the outside of the container.
4. Soporte con configuración en forma de tapón con agujeros. 4. Support with plug-shaped configuration with holes.
5. Malla de permeado o carrier. 5. Permeate or carrier mesh.
6. Trozo de membrana que se desea evaluar. 6. Piece of membrane to be evaluated.
7. Espaciador de membranas. 7. Membrane spacer.
8. Capa de material plástico impermeable. 8. Waterproof plastic layer.
9. Tapa del contenedor de presión con una entrada o una salida. 9. Pressure container lid with an inlet or outlet.
10. Colector de permeado del elemento de membrana. 10. Permeate collector of the membrane element.
11. Tapa del contenedor de presión con una entrada y una salida o dos salidas. 11. Pressure container lid with one inlet and one outlet or two outlets.
12. Tubo de entrada de la alimentación o salida del rechazo. 12. Feed inlet tube or rejection outlet.
13. Cierre mecánico de la tapa del contenedor de presión. 13. Mechanical closure of the pressure container lid.
14. Junta tórica de la tapa del contenedor de presión. 14. O-ring of the pressure container lid.
15. Agujeros sobre la superficie del soporte con configuración en forma de tapón que permiten el paso del permeado. 15. Holes on the surface of the support with a plug-shaped configuration that allow permeate to pass through.
16. Agujeros sobre la superficie del soporte con configuración en forma de interconector que permiten el paso del permeado. 16. Holes on the surface of the support with an interconnector configuration that allow the permeate to pass through.
17. Elemento de membrana. 17. Membrane element.
18. Sistema antitelescopeo del elemento de membrana. 19. Agujeros del sistema antitelescopeo. 18. Anti-telescope system of the membrane element. 19. Holes of the telescope system.
20. Sección del elemento de membranas del sistema a evaluar. 20. Section of the membrane element of the system to be evaluated.
21. Salida hacia el exterior del dispositivo con forma de interconector. 21. Outward exit of the device in the form of an interconnector.
22. Anillos de pegamento para unir la membrana al dispositivo plástico generar estanqueidad. 22. Glue rings to join the membrane to the plastic device generate tightness.
MODO DE REALIZACIÓN DE LA INVENCIÓN. MODE OF EMBODIMENT OF THE INVENTION.
Este dispositivo es válido para aquellos contenedores de presión (1) que presentan una distancia de unos centímetros entre el dispositivo antitelescopeo o "endcap" (18) y la tapa de cierre del contenedor de presión (9,11). Incluso puede emplearse sobre interconectores de permeado acodados.  This device is valid for those pressure containers (1) that have a distance of a few centimeters between the anti-telescope device or "endcap" (18) and the closing lid of the pressure container (9,11). It can even be used on angled permeate interconnects.
La construcción del dispositivo se realiza de dentro a fuera. The construction of the device is done from the inside out.
Como se ha comentado anteriormente, en función del lugar en donde se coloque, el dispositivo puede presentar dos configuraciones: la "forma tapón" (4) cuando sustituye al tapón ciego que tapona un extremo del colector de permeado, y la "forma interconector" (3), cuando sustituye al interconector con salida al exterior. La forma de ambos es distinta pero el método de realización es igual para ambos dispositivos. En ambos casos, el tubo de plástico que, además de cumplir su función como tapón o interconector, sirve de soporte al resto de componentes del dispositivo, deberá construirse de un material resistente a la presión de trabajo de la unidad de tratamiento de agua. La superficie curva del tubo está perforada (15, 16) para que el agua que atraviese la membrana (6) pueda circular hacia el colector de permeado (10). En el caso del dispositivo en forma de tapón la cara plana del cilindro estará sin perforar. La extensión de la superficie agujereada será menor que la superficie de la membrana depositada sobre ellos y comprendidos entre las uniones en forma de anillos de los pegamentos (22) que unen la membrana al soporte (3, 4) para que exista estanqueidad. El diámetro interno del soporte, tanto en su configuración en forma tapón como de interconector, debe ser ligeramente mayor que el diámetro externo del colector de permeado (10) del elemento de membrana (17) para que pueda deslizarse y fijarse sobre él. La estanqueidad del conjunto colector-dispositivo queda asegurada por el uso de juntas tóricas (2). As previously mentioned, depending on the place where it is placed, the device can have two configurations: the "plug form" (4) when replacing the blind plug that blocks one end of the permeate collector, and the "interconnecting form" (3), when replacing the interconnector with output to the outside. The shape of both is different but the method of realization is the same for both devices. In both cases, the plastic tube that, in addition to fulfilling its function as a plug or interconnector, serves as support for the rest of the components of the device, must be constructed of a material resistant to the working pressure of the water treatment unit. The curved surface of the tube is perforated (15, 16) so that the water that passes through the membrane (6) can circulate towards the permeate collector (10). In the case of the cap-shaped device the flat face of the cylinder will be unperforated. The extension of the perforated surface will be less than the surface of the membrane deposited on them and between the ring-shaped joints of the adhesives (22) that join the membrane to the support (3, 4) so that there is a seal. The internal diameter of the support, both in its plug-shaped and interconnected configuration, must be slightly larger than the external diameter of the permeate manifold (10) of the membrane element (17) so that it can slide and fix on it. The tightness of the manifold-device assembly is ensured by the use of O-rings (2).
Sobre el soporte (3, 4) se coloca, a todo a su alrededor y de forma concéntrica, un trozo rectangular de malla de permeado o carrier (5). El lado más largo del rectángulo que se ha de colocar será unos milímetros mayor que la longitud de la circunferencia externa del dispositivo plástico, para que la parte sobrante pueda solaparse y usarse para la unión. Así este rectángulo se dobla para formar un cilindro. Esta unión permite también la fijación sobre el dispositivo plástico mediante pegado. La malla de permeado ha de cubrir toda la superficie agujereada del soporte (15, 16). Sobre este conjunto se va a depositar un trozo de membrana (6), que puede ser del mismo modelo que el que se emplea en la instalación en estudio o de cualquier otro que se desee probar. On the support (3, 4) a rectangular piece of permeate mesh or carrier (5) is placed all around and concentrically. The longest side of the rectangle to be placed will be a few millimeters greater than the length of the outer circumference of the plastic device, so that the remaining part can overlap and be used for joining. Thus this rectangle bends to form a cylinder. This joint also allows fixing on the plastic device by gluing. The permeate mesh must cover the entire perforated surface of the support (15, 16). A piece of membrane (6) will be deposited on this assembly, which can be of the same model as the one used in the installation under study or of any other one that you wish to test.
Este trozo de membrana rectangular (6) se coloca concéntrico a la malla de permeado (5) y se une de igual manera que éste por el lado más corto del rectángulo formando un cilindro. Pero en este caso, también se va a pegar adicionalmente con pegamento (22) sobre los bordes circulares exteriores de dicho cilindro para que el agua que pase al interior atraviese el dispositivo y sea recogido sólo por el colector de permeado, así se asegura la estanqueidad de esas uniones. Para ello es preciso que la superficie de la membrana sea ligeramente mayor que la de la malla de permeado. Las uniones de pegamento formarán anillos concéntricos (22) al eje longitudinal de los dispositivos plásticos. Sobre la membrana (6) se va a colocar un trozo de malla de espaciador (7). Este espaciador permite que el agua circule en flujo turbulento sobre la membrana, al igual que sucede dentro de los elementos de membrana. La unión se hará de igual manera que con la malla de permeado (5). This piece of rectangular membrane (6) is placed concentrically to the permeate mesh (5) and joins in the same way as this one on the shortest side of the rectangle forming a cylinder. But in this case, it will also be glued additionally with glue (22) on the outer circular edges of said cylinder so that the water that passes inside crosses the device and is collected only by the permeate collector, thus ensuring the tightness of those unions. This requires that the surface of the membrane be slightly larger than that of the permeate mesh. The glue joints will form concentric rings (22) to the longitudinal axis of the plastic devices. A piece of spacer mesh (7) will be placed on the membrane (6). This spacer allows water to circulate in turbulent flow over the membrane, just as it happens inside the membrane elements. The union will be done in the same way as with the permeate mesh (5).
Sobre este conjunto se va a colocar una capa impermeable de material plástico (8), pegada de igual manera que las anteriores mallas y membrana. En la medida de lo posible todas estas uniones se colocarán unas sobre otras para que la superficie útil de filtración con el agua sea máxima y no se vea afectada por las diferentes uniones. Esta capa de plástico debe de servir, además de protector de todo el dispositivo para su manipulación, para generar un espacio igual al del canal de paso de agua existente sobre las membranas de los elementos de membranas que hay en el contenedor de presión. An impermeable layer of plastic material (8), glued in the same way as the previous meshes and membrane, is to be placed on this set. As far as possible all these joints will be placed on top of each other so that the useful surface of filtration with the water is maximum and is not affected by the different unions. This plastic layer must serve, in addition to protecting the entire device for handling, to generate a space equal to that of the existing water passage channel on the membranes of the membrane elements that are in the pressure container.
La longitud del dispositivo depende de la distancia existente entre los colectores de permeado y las tapas de los contenedores de presión. De forma orientativa, y no limitativa, esta longitud puede oscilar entre los cinco y los diez centímetros.  The length of the device depends on the distance between the permeate manifolds and the pressure container lids. In an indicative and non-limiting manner, this length can range between five and ten centimeters.
APLICACIÓN INDUSTRIAL. INDUSTRIAL APPLICATION
El ensuciamiento de las membranas es la variable de operación que está más relacionada con el incremento de los costes de los sistemas de membranas. Los sistemas de membranas se ensucian a lo largo de su funcionamiento. Es imposible que un sistema no se ensucie, pero sí es posible tener bajo control el ensuciamiento. Para ello, se realiza una triple estrategia: un buen pretratamiento, un rápido diagnóstico del desarrollo del ensuciamiento y una buena técnica de limpieza de las membranas.  The fouling of membranes is the operating variable that is most related to the increase in the costs of membrane systems. Membrane systems get dirty throughout their operation. It is impossible for a system to not get dirty, but it is possible to keep dirtying under control. For this, a triple strategy is carried out: a good pretreatment, a rapid diagnosis of the development of fouling and a good membrane cleaning technique.
Los dispositivos objeto de esta invención, colocados a lo largo de todo el sistema de membranas, permiten realizar, con una mínima pérdida de tiempo y materiales, un rápido diagnóstico del grado y tipo de ensuciamiento que se está produciendo en la unidad de membranas.  The devices object of this invention, placed throughout the entire membrane system, allow a rapid diagnosis of the degree and type of fouling that is occurring in the membrane unit to be carried out with a minimum loss of time and materials.
La posibilidad de que sean extraídos de una manera sencilla para realizar estudios de autopsia sobre los mismos elimina la necesidad de tener que abrir el contenedor de presión, extraer todos los elementos de membranas y volverlos a colocar en el mismo orden que el que estaban, sustituyendo uno o dos elementos antiguos (el primero y el último) por unos nuevos con el coste que ello conlleva. The possibility that they are extracted in a simple way to perform autopsy studies on them eliminates the need to have to open the pressure container, remove all the membrane elements and place them in the same order as they were, replacing one or two old elements (the first and the last) for new ones with the cost that this entails.
El diseño del dispositivo propuesto permite que funcione exactamente en las mismas condiciones que las membranas que están a su lado, lo que proporciona la información sobre el grado de ensuciamiento que las membranas de la unidad están sufriendo. The design of the proposed device allows it to work in exactly the same conditions as the membranes that are next to it, which provides the information on the degree of fouling that the membranes of the unit are suffering.
Otra ventaja que aporta el dispositivo es que, en función del lugar de la instalación donde se coloque, va a proporcionar una diferente información. Así, si se coloca al principio de un contenedor de una primera, segunda o tercera etapa proporciona un tipo de información sobre el tipo de ensuciamiento que se está produciendo sobre las primeras membranas. Y si se coloca al final de un contenedor de una primera, segunda o tercera etapa da información sobre el tipo de ensuciamiento que se está produciendo en las últimas membranas.  Another advantage provided by the device is that, depending on the place of installation where it is placed, it will provide different information. Thus, if placed at the beginning of a container of a first, second or third stage it provides a type of information about the type of fouling that is occurring on the first membranes. And if it is placed at the end of a container of a first, second or third stage, it gives information about the type of fouling that is occurring in the last membranes.
El uso de este dispositivo facilita la extracción y obtención de muestras representativas para su análisis en laboratorio, siendo su manejo mucho más sencillo que el engorroso procedimiento de tener que extraer, trasladar y abrir uno o varios elementos de membrana de muchos metros cuadrados.  The use of this device facilitates the extraction and obtaining of representative samples for laboratory analysis, being its handling much simpler than the cumbersome procedure of having to extract, move and open one or several membrane elements of many square meters.
Este dispositivo puede emplearse en desalinizadoras de agua de mar, de aguas salobres y cualquier tipo de instalación industrial que desalinice agua mediante membranas de osmosis inversa o nanofiltración, pero también a aquellas unidades de ultrafiltración y microfiltración que empleen membranas en configuración espiral, ya que todas ellas están sujetas al ensuciamiento de sus membranas y tienen formas similares.  This device can be used in seawater desalination plants, brackish water and any type of industrial installation that desalinates water by means of reverse osmosis or nanofiltration membranes, but also to those ultrafiltration and microfiltration units that use spiral-shaped membranes, since all they are subject to fouling of their membranes and have similar shapes.

Claims

REIVINDICACIONES. CLAIMS.
1. Dispositivo de muestreo extraíble para la realización de autopsias no destructivas en membranas de configuración espiral que comprende: 1. Removable sampling device for performing non-destructive autopsies on spiral configuration membranes that comprises:
a) Un tubo plástico hueco perforado a su alrededor, denominado soporte, que podrá ser abierto por sus dos extremos a) A hollow plastic tube perforated around it, called a support, which can be opened at both ends
(3) cuando sustituya al interconector con salida al exterior, o cerrado por uno de ellos (3) when replacing the interconnector with exit to the outside, or closed by one of them
(4) cuando sustituya al tapón de un extremo del colector de permeado. (4) when replacing the plug on one end of the permeate collector.
b) Una malla plástica muy tupida de forma rectangular, denominada malla de permeado b) A very tight plastic mesh of rectangular shape, called permeate mesh
(5), que irá colocada concéntricamente sobre el tubo de plástico hueco perforado y pegada sobre éste por sus extremos más cortos. (5), which will be placed concentrically on the hollow perforated plastic tube and glued to it by its shortest ends.
c) Un trozo rectangular de la membrana c) A rectangular piece of the membrane
(6) que se desea estudiar, que se coloca concéntricamente sobre la malla de permeado e irá sujeta a ésta por sus extremos más cortos, mientras que por los extremos de mayor longitud va sujeta directamente sobre el soporte, asegurando estanqueidad y obligando al permeado a travesar la capa activa de la membrana (6) that you want to study, which is placed concentrically on the permeate mesh and will be attached to it by its shorter ends, while by the longer ends it is attached directly to the support, ensuring tightness and forcing the permeate to cross the active layer of the membrane
d) Una malla plástica, denominada espaciador d) A plastic mesh, called a spacer
(7), que se enrolla y pega por sus extremos más cortos, haciendo coincidir su unión con las de las capas anteriores. (7), which is rolled and glued at its shortest ends, matching its union with those of the previous layers.
e) Una capa de material plástico impermeable e) A layer of waterproof plastic material
(8) que se enrolla y pega sobre el espaciador, haciendo coincidir su unión con las de las capas anteriores. Dispositivo de muestreo extraíble para la realización de autopsias no destructivas en membranas de configuración espiral, según reivindicación 1, caracterizado porque el diámetro interior del soporte debe ser ligeramente mayor que el diámetro externo del colector de permeado del elemento de membrana sobre el que se fijará taponándolo. (8) which is rolled and glued on the spacer, making its union coincide with those of the previous layers. Removable sampling device for performing non-destructive autopsies on membranes with a spiral configuration, according to claim 1, characterized in that the internal diameter of the support must be slightly larger than the external diameter of the permeate collector of the membrane element on which it will be fixed by plugging it. .
Dispositivo de muestreo extraíble para la realización de autopsias no destructivas en membranas de configuración espiral, según reivindicaciónRemovable sampling device for performing non-destructive autopsies on spiral configuration membranes, according to claim
2, caracterizado porque la extensión de la superficie agujereada del soporte será menor que la superficie de la membrana depositada sobre ellos y estarán comprendidos entre las uniones en forma de anillos de los pegamentos (22) que unen la membrana al tubo. 2, characterized in that the extension of the perforated surface of the support will be less than the surface of the membrane deposited on them and will be included between the ring-shaped joints of the glues (22) that join the membrane to the tube.
Dispositivo de muestreo extraíble para la realización de autopsias no destructivas en membranas de configuración espiral, según reivindicaciónRemovable sampling device for performing non-destructive autopsies on spiral configuration membranes, according to claim
3, caracterizado porque la estanqueidad entre el colector de permeado y el dispositivo se asegura mediante el uso de juntas tóricas (2) alojadas en el interior del soporte. 3, characterized in that the tightness between the permeate collector and the device is ensured through the use of O-rings (2) housed inside the support.
Dispositivo de muestreo extraíble para la realización de autopsias no destructivas en membranas de configuración espiral, según reivindicación 1, caracterizado porque el lado más largo de la malla de permeado es ligeramente mayor que la longitud de la circunferencia externa del soporte usando la parte sobrante que se solapa para la unión. Removable sampling device for performing non-destructive autopsies on spiral configuration membranes, according to claim 1, characterized in that the longest side of the permeate mesh is slightly greater than the length of the external circumference of the support using the excess part that is flap for union.
Dispositivo de muestreo extraíble para la realización de autopsias no destructivas en membranas de configuración espiral, según reivindicación 5, caracterizado porque la superficie de la malla de permeado cubre todas la superficie agujereada del soporte. Dispositivo de muestreo extraíble para la realización de autopsias no destructivas en membranas de configuración espiral, según reivindicación 1, caracterizado porque la membrana empleada en el dispositivo puede ser del mismo modelo que el que se emplea en la instalación en estudio o de cualquier otro que se desee probar. Removable sampling device for carrying out non-destructive autopsies on membranes with a spiral configuration, according to claim 5, characterized in that the surface of the permeate mesh covers the entire perforated surface of the support. Removable sampling device for carrying out non-destructive autopsies on membranes with a spiral configuration, according to claim 1, characterized in that the membrane used in the device can be the same model as the one used in the installation under study or any other that is used. want to try.
Procedimiento para la instalación del dispositivo en un sistema de membranas, según reivindicaciones 1 a 7, que comprende las siguientes etapas: Procedure for installing the device in a membrane system, according to claims 1 to 7, which includes the following steps:
a) Abrir el contenedor por uno o ambos extremos. a) Open the container at one or both ends.
b) Sustituir el interconector o el tapón que cierra el colector de permeado por el dispositivo de muestreo, fijándolo sobre el colector de permeado mediante el empleo de juntas tóricas. b) Replace the interconnector or the plug that closes the permeate collector with the sampling device, fixing it on the permeate collector using O-rings.
c) Comprobar el sellado correcto de los colectores de permeado. d) Cierre del extremo o extremos del contenedor de presión con la tapa o las tapas del mismo. c) Check the correct sealing of the permeate collectors. d) Closing the end or ends of the pressure container with its lid or lids.
e) Comprobar la estanqueidad del sistema. e) Check the tightness of the system.
9. Uso del dispositivo, según reivindicaciones 1 a 8, para la obtención de muestras significativas de membranas para su análisis en laboratorio, sin necesidad de extraer, trasladar y sacrificar uno o varios elementos de membrana del sistema. 9. Use of the device, according to claims 1 to 8, to obtain significant samples of membranes for analysis in the laboratory, without the need to extract, transfer and sacrifice one or more membrane elements of the system.
10. Uso del dispositivo según reivindicación 9, para conocer el estado de ensuciamiento de membranas en desalinizadoras de agua de mar, de aguas salobres y cualquier tipo de instalación industrial que desalinice agua mediante membranas de osmosis inversa o nanofiltracion, pero también a aquellas unidades de ultrafiltración y micro filtración que empleen membranas en configuración espiral. 10. Use of the device according to claim 9, to know the state of fouling of membranes in seawater desalination plants, brackish water plants and any type of industrial installation that desalinate water through reverse osmosis or nanofiltration membranes, but also in those units of ultrafiltration and microfiltration that use membranes in a spiral configuration.
11. Uso del dispositivo, según reivindicaciones 9, colocándolo al principio de un contenedor de una primera, segunda o tercera etapa para obtener información sobre el tipo de ensuciamiento que se está produciendo sobre las primeras membranas. 11. Use of the device, according to claims 9, placing it at the beginning of a container of a first, second or third stage to obtain information about the type of fouling that is occurring on the first membranes.
12. Uso del dispositivo, según reivindicaciones 9, colocándolo al final de un contenedor de una primera, segunda o tercera etapa para obtener información sobre el tipo de ensuciamiento que se está produciendo sobre las últimas membranas. 12. Use of the device, according to claims 9, placing it at the end of a container of a first, second or third stage to obtain information about the type of fouling that is occurring on the last membranes.
PCT/ES2014/000176 2013-11-22 2014-10-22 Removable sampling device for carrying out non-destructive autopsies in spiral membranes WO2015075282A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ESP201301107 2013-11-22
ES201301107A ES2540574B2 (en) 2013-11-22 2013-11-22 Removable sampling device for performing non-destructive autopsies on spiral configuration membranes

Publications (1)

Publication Number Publication Date
WO2015075282A1 true WO2015075282A1 (en) 2015-05-28

Family

ID=53179007

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/000176 WO2015075282A1 (en) 2013-11-22 2014-10-22 Removable sampling device for carrying out non-destructive autopsies in spiral membranes

Country Status (2)

Country Link
ES (1) ES2540574B2 (en)
WO (1) WO2015075282A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251620A2 (en) * 1986-06-24 1988-01-07 Hydranautics Spiral wound membrane filtration device and filtration method using such device
ES2219776T3 (en) * 1996-10-07 2004-12-01 Prime Water Systems Gmbh DEVICE FOR WATER FILTERING.
ES2386868T3 (en) * 2008-06-20 2012-09-04 Hydranautics Cross flow filtration apparatus with biocide feed spacer
ES2429448T3 (en) * 2008-01-31 2013-11-14 Toray Industries, Inc. Hollow fiber membrane filtration apparatus

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2183744B2 (en) * 2001-08-17 2004-03-01 Thomassen Johannes Adria FILTRATION DEVICE FOR SEMIPERMEABLE MEMBRANES.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0251620A2 (en) * 1986-06-24 1988-01-07 Hydranautics Spiral wound membrane filtration device and filtration method using such device
ES2219776T3 (en) * 1996-10-07 2004-12-01 Prime Water Systems Gmbh DEVICE FOR WATER FILTERING.
ES2429448T3 (en) * 2008-01-31 2013-11-14 Toray Industries, Inc. Hollow fiber membrane filtration apparatus
ES2386868T3 (en) * 2008-06-20 2012-09-04 Hydranautics Cross flow filtration apparatus with biocide feed spacer

Also Published As

Publication number Publication date
ES2540574A1 (en) 2015-07-10
ES2540574B2 (en) 2015-10-23

Similar Documents

Publication Publication Date Title
JP5536078B2 (en) Spiral wound membrane separator assembly
JP5536080B2 (en) Central core element for spirally wound separator assembly
ES2457749T3 (en) Filter membrane with support frame and production procedure
JP6102921B2 (en) Fresh water generation method using separation membrane unit
ES2848117T3 (en) Hollow fiber membrane cartridge and fluid separation module
US8236177B1 (en) Spiral wound filter
CN102186566B (en) Spirally wound membrane separator assembly
RU2699117C1 (en) Twisted membrane module and diffusion dialysis method with backflow mode
JP2009208013A (en) Humidifying membrane module
KR101397296B1 (en) Perforated flux pipe for forward osmosis or pressure retarded osmosis module comprising the same
ES2332678B1 (en) DEVICE FOR MEASURING LOSS OF LOAD IN CONTAINERS OF REVERSE OSMOSIS MEMBRANES.
ES2676601T3 (en) Filtration system with fluid couplings
KR102585046B1 (en) Spiral-wound membrane module with integrated differential pressure monitoring
US10427105B2 (en) Filter device
JP2006281125A (en) Spiral type membrane module
WO2015075282A1 (en) Removable sampling device for carrying out non-destructive autopsies in spiral membranes
ES2773626T3 (en) Filtration module
JPH01115410A (en) Osmosis device between solutions
JP5970988B2 (en) Membrane module manufacturing method
ES2720280T3 (en) Modular distribution head for membrane housing body
KR101212800B1 (en) Pressurized-type hollow-fiber membrane module
JP6064811B2 (en) Membrane module, membrane unit
RU2555037C2 (en) Membrane for reverse osmosis
JP2005224719A (en) Hollow fiber membrane module and manufacturing method therefor
JP2005519759A (en) Spiral membrane filter cartridge with chevron seal

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863715

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14863715

Country of ref document: EP

Kind code of ref document: A1