WO2015074576A1 - 防雷装置、直驱风力发电机组及其雷电防护方法 - Google Patents

防雷装置、直驱风力发电机组及其雷电防护方法 Download PDF

Info

Publication number
WO2015074576A1
WO2015074576A1 PCT/CN2014/091713 CN2014091713W WO2015074576A1 WO 2015074576 A1 WO2015074576 A1 WO 2015074576A1 CN 2014091713 W CN2014091713 W CN 2014091713W WO 2015074576 A1 WO2015074576 A1 WO 2015074576A1
Authority
WO
WIPO (PCT)
Prior art keywords
lightning
lightning protection
brush
conductive end
blade
Prior art date
Application number
PCT/CN2014/091713
Other languages
English (en)
French (fr)
Inventor
黄金鹏
刘承前
Original Assignee
北京金风科创风电设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京金风科创风电设备有限公司 filed Critical 北京金风科创风电设备有限公司
Priority to EP14863636.8A priority Critical patent/EP3078852B1/en
Priority to EA201691064A priority patent/EA033610B1/ru
Priority to CA2931290A priority patent/CA2931290C/en
Priority to US15/033,396 priority patent/US10612525B2/en
Priority to KR1020167016679A priority patent/KR101766613B1/ko
Priority to AU2014352342A priority patent/AU2014352342B2/en
Priority to ES14863636T priority patent/ES2761285T3/es
Priority to DK14863636.8T priority patent/DK3078852T3/da
Publication of WO2015074576A1 publication Critical patent/WO2015074576A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D7/00Controlling wind motors 
    • F03D7/02Controlling wind motors  the wind motors having rotation axis substantially parallel to the air flow entering the rotor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D80/00Details, components or accessories not provided for in groups F03D1/00 - F03D17/00
    • F03D80/30Lightning protection
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/72Wind turbines with rotation axis in wind direction

Definitions

  • the invention relates to the technical field of lightning protection devices, in particular to a lightning protection device, a direct drive wind power generator set and a lightning protection method thereof.
  • Wind turbines are usually located in relatively open areas or coastal areas, while wind turbines typically exceed 130 meters in height, especially for new wind turbines that exceed 160 meters. In these areas, wind turbines are particularly protruding objects. Wind turbines are therefore susceptible to lightning strikes.
  • Direct drive wind turbines and doubly-fed wind turbines are fundamentally different in structure.
  • the most typical feature is that the generators of direct-drive wind turbines are outside the nacelle, while the generators of doubly-fed wind turbines are in the nacelle. internal.
  • For direct lightning protection of direct-drive wind turbines this means that the lightning current must pass through the bearings of the direct-drive wind turbine.
  • the direct drive wind turbine includes three types of bearings, namely pitch bearings, generator main bearings, and yaw bearings. Lightning currents can cause these three bearings to burn and be damaged, further causing damage to the direct drive wind turbine.
  • the lightning protection method for direct-drive wind turbines is: using separate cable leads inside the blades, using the metal castings, structural members and bearings of the direct-drive wind turbines as the conduction path of the direct lightning strikes, that is, connecting the blades
  • the down conductor of the flasher is connected to the blade root flange of the direct drive wind turbine, and then the blade root flange is used to connect the hub through the pitch bearing, the hub is connected to the generator through the generator main bearing, the generator is connected to the cabin base, and the nacelle Base through yaw axis
  • the direct structure of the direct-drive wind turbine connected to the tower and the tower connected to the fan base will direct the lightning current. As shown in FIG.
  • FIG. 1 a schematic diagram of a prior art direct lightning flow path through a direct drive wind power generator, it can be seen that the direct lightning flow path passes through the pitch bearing a of the direct drive wind power generator, the generator main bearing b, and the yaw bearing c .
  • the prior art also has a lightning protection method and device for a wind power generator, which constructs a lightning current discharge path of "blade-hub cover-cabin cover-earth", completely avoids lightning current flowing through the pitch bearing, and ensures the change The safety of the paddle bearings.
  • other bearings such as generator main bearings and yaw bearings, may still be damaged by lightning currents, and the lightning current discharge path constructed by them passes through the hub cover and the nacelle cover, but there may be lightning current shunting to the bearings.
  • this design does not completely solve the lightning protection problem of the generator.
  • the embodiment of the invention provides a lightning protection device, a direct drive wind power generator set and a lightning protection method thereof, which can make a lightning current flow along a new external passage without passing through each bearing in the direct drive wind power generator, thereby avoiding the bearing suffering of each bearing
  • the damage of lightning current extends the service life of each bearing, effectively ensuring the normal operation of each bearing in the direct-drive wind turbine, thus ensuring the normal operation of the direct-drive wind turbine, and also improving the lightning current discharge channel. Electrical continuity.
  • the embodiment of the present invention adopts the following technical solutions:
  • the present invention provides a lightning protection apparatus comprising: a lightning receptor disposed on a non-metallic blade for receiving a lightning current; and a blade down conductor electrically connected to the lightning receptor, wherein the lightning protection
  • the device also includes:
  • a second lightning current component electrically insulated from an outer surface of the generator rotor and an insulated nacelle cover, wherein the second lightning current component is electrically connected to the first lightning current component through a metal conductor;
  • the lightning protection down conductor is for electrically connecting the second lightning current component and the grounding component disposed in the tower to discharge the lightning current to the earth through the tower.
  • the present invention also provides a direct drive wind power generator, including the lightning protection device provided by the above technical solution.
  • the present invention also provides a lightning protection method for a direct drive wind power generator, wherein the generator of the direct drive wind power generator is external to the nacelle, wherein the direct drive wind power generator has the above technical solution.
  • the lightning protection device of any of the direct-drive wind turbines includes the following steps:
  • Thunder current is transmitted from the second lightning current component to the grounding component through the lightning protection down conductor;
  • the lightning current is discharged to the earth through the grounding member.
  • the lightning protection device, the direct drive wind power generator and the lightning protection method provided by the embodiments of the present invention solve the original lightning current through the bearing by using the technical means of independent external guiding channel design. Damage design flaws, the establishment of a new independent lightning current relief channel (flashing device - blade down conductor - arc brush rail at the root of the outer surface of the fan blade - first lightning protection brush - second lightning protection Brush-on the top of the nacelle cover and close to the side of the generator, the circular brush track - lightning protection down line - tower tube - fan base - earth), so that lightning current flows along the new channel without passing through the direct drive wind turbine
  • Each bearing effectively ensures the normal operation of each bearing in the direct-drive wind turbine (including yaw bearing, pitch bearing and generator main bearing), and prolongs the service life of the bearing in the direct-drive wind turbine. Guaranteed direct drive wind turbines Normal operation and greatly improved the electrical continuity of the lightning current discharge path.
  • FIG. 1 is a schematic view of a prior art direct lightning flow path through a direct drive wind power generator
  • FIG. 2 is a schematic structural diagram of a lightning protection device according to an embodiment of the present invention.
  • Figure 3 is a partial enlarged view of a portion A of Figure 2;
  • Figure 4 is a front elevational view of the lightning protection device of Figure 2;
  • FIG. 5 is a flow chart of a lightning protection method for a direct drive wind power generator set according to an embodiment of the present invention.
  • Pitch bearing a generator main bearing b, yaw bearing c, blade 1, blade down conductor 2, first lightning current component 3, curved brush track 31, first lightning protection brush 32, first Insulation member 4, generator rotor 5, insulated nacelle cover 6, second lightning current component 7, second lightning protection brush 71, annular brush rail 72, second insulating member 8, metal conductor 9, tower 10,
  • an embodiment of the present invention provides a lightning protection for a direct drive wind power generator set.
  • the device comprises a lightning receptor (not shown) disposed on the non-metal blade 1 for receiving a lightning current and a blade down conductor 2 electrically connected to the lightning receptor, wherein the lightning protection device further comprises: a first lightning current component 3 electrically connected to the blade down conductor 2 and insulated from an outer surface of the generator rotor 5; a second lightning current component 7, with an outer surface of the generator rotor 5 and an insulated cabin
  • the cover 6 is insulatively connected, the second lightning current component 7 is electrically connected to the first lightning current component 3 through the metal conductor 9; the lightning protection down conductor 11 is used for electrically connecting the second lightning current component 7 and is disposed on A grounding member 15 (see FIG. 4) within the tower 10 is used to vent lightning current through the tower 10 to the ground.
  • the lightning protection device for the direct-drive wind turbine set provided by the embodiment of the present invention adopts an independent external guiding channel design technical means to solve the design defect of the lightning current passing through the bearing in the original direct lightning protection design. , establish a new lightning current bleed channel (lighter - blade down conductor 2 - first lightning current component 3 - metal conductor 9 - second lightning current component 7 - lightning protection down line 11 - tower 10 - Grounding component 15 - earth), allowing lightning current to flow along the new external channel without passing through the bearings in the direct-drive wind turbine, effectively ensuring the bearings in the direct-drive wind turbine (including yaw bearings, The normal operation of the paddle bearing and the main bearing of the generator extends the service life of the bearing in the direct-drive wind turbine, thus ensuring the normal operation of the direct-drive wind turbine and greatly improving the electrical discharge of the lightning current discharge path. Continuity.
  • the direct-flow wind power generator in the embodiment of the present invention is an outer rotor inner stator structure, and thus the generator rotor is external, and the first lightning-receiving current component and the second lightning current can be directly disposed on the outer surface thereof.
  • the component does not affect the normal operation of the generator;
  • the insulated nacelle cover 6 in the embodiment of the present invention refers to a nacelle cover whose surface is insulated from the second lightning-leading current component 7, which may be made of an insulating material such as non-metal.
  • the present invention does not limit this.
  • the wire passage does not pass through the structure of the generator set itself such as the nacelle cover, thereby improving the electrical continuity of the lightning current discharge passage and avoiding damage to the nacelle cover by the lightning current; the independent wire passage is located outside the generator set, The lightning current is prevented from entering the inside of the generator set, thereby avoiding the interference of the lightning current to the pitch cabinet and the surrounding wires inside the generator set, and is convenient for the operator to install, repair and maintain.
  • the embodiment of the present invention may further include: a first insulating member 4 disposed on the outer surface of the generator rotor 5 and adjacent to the blade 1; the first lightning-leading current component 3 includes the first a conductive end and a second conductive end, the first conductive end is disposed on the root of the blade 1 and electrically connected to the blade down conductor 2, and the second conductive end is disposed on the first insulating member 4 and electrically connected to the metal conductor 9, the blade When the first conductive end is in sliding contact with the second conductive end, the lightning current can be transmitted from the blade down conductor 2 to the metal conductor 9 via the first conductive end and the second conductive end.
  • the first conductive end may be a metal arc brush track 31 having a preset arc
  • the second conductive end may be a first lightning protection brush 32
  • the metal arc brush track 31 The track width is greater than or equal to the length of the long side of the cross section of the first lightning protection brush 32.
  • the curved brush rail 31 may be specifically disposed on the outer side of the blade 1 at a distance of 1.5 meters from the root of the blade 1 at a position of the trailing edge of the blade 1 airfoil
  • the preset arc may be greater than 120°
  • the preferred position is -100°.
  • the arc brush track 31 can be accurately and effectively slidably contacted with the first lightning protection brush 32 regardless of whether the blade 1 rotates around the generator main bearing or the blade 1 rotates under the action of the pitch bearing. Thereby, it is ensured that the lightning current is smoothly transmitted from the curved brush track 31 to the first lightning protection brush 32. Further, the arc brush track 31 can be pre-buried on the blade 1 and kept on the same plane as the surface of the blade 1, which can also reduce the forward resistance when the blade 1 rotates, and improve the power generation efficiency of the generator set.
  • the curved brush rail 31 should have a suitable roughness so that a small amount of dust generated when it is slidably rubbed against the first lightning protection brush 32 is filled in the curved brush rail 31 and the first brush 32.
  • the conductivity of the dust is used to ensure good electrical continuity between the two.
  • the roughness of the curved brush track 31 is preferably R8 to R12, which can maximize the maximum
  • the loss of the first brush 32 is reduced to have the longest service life, and the electrical continuity between the curved brush track 31 and the first lightning protection brush 32 can be ensured.
  • the embodiment of the present invention may further include two sets of first lightning-directing current components 3 and two first insulating components 4, that is, as shown in FIG. 3, the embodiment of the present invention may include three a first lightning-directing current component 3 and three first insulating components 4 are disposed, and three first lightning-proof brushes 32 are evenly distributed on the outer surface of the generator rotor 5 at intervals of 120° by three first insulating members and Near the blade 1, three curved brush tracks 31 are distributed at the roots of the outer surfaces of the three blades 1; thus, each of the first lightning protection brushes 32 corresponds to the curved brush track 31 on each of the blades 1.
  • the lightning current can be effectively conducted from the blade down conductor 2 to the metal conductor 9.
  • each of the first insulating members 4 may be a bracket-like structure similar to a "Z" shape, and each set of the first lightning protection brushes 32 is disposed in the "Z" shape of the first insulating member 4.
  • the end of the blade 1 ensures that the arc brush track 31 and the first lightning protection brush 32 are just in sliding contact.
  • the first insulating member 4 may be made of an insulating material such as ceramic, polymer, rubber or nylon.
  • the first insulating component 4 may further be provided with a first brush powder box 12 for receiving dust generated during the friction process between the first lightning protection brush 32 and the curved brush rail 31, thereby preventing the dust from entering.
  • the first brush powder box 12 is a box-like structure, and can completely accommodate each group of first lightning protection brushes 32, and the right side of the box-like structure contacting the blade 1 is opened.
  • the small opening just exposes the first lightning protection brush 32 in sliding contact with the curved brush rail 31; on the left side of the box-like structure, a small hole is formed, just passing the metal conductor 9 through. In this way, the dust can be effectively sealed in the box-type structure; the side of the first brush powder box 12 can be opened to facilitate replacement of the first lightning protection brush 32.
  • the lightning protection device for the direct drive wind power generator further includes a second insulating member 8 disposed on the outer surface of the generator rotor 5 and adjacent to the nacelle;
  • the lightning-directing current component 7 includes a third conductive end and a fourth conductive end, wherein the third conductive end is disposed on the second insulating member 8 and electrically connected to the metal conductor 9, and the fourth conductive end is disposed at
  • the insulating nacelle cover 6 is electrically connected to the lightning protection down conductor 11 so that the third conductive end is in sliding contact with the fourth conductive end when the generator rotor 5 rotates, thereby ensuring that the lightning current can pass from the metal conductor 9 through the third conductive
  • the terminal and the fourth conductive end are conducted to the lightning protection down conductor 11.
  • the third conductive end may be a second lightning protection brush 71
  • the fourth conductive end may be a metal annular brush rail 72 surrounding the insulated nacelle cover 6, and the metal annular brush track 72
  • the track width is greater than or equal to the length of the long side of the cross section of the second lightning protection brush 71.
  • three second lightning protection brushes 71 may be provided in total, and the three second lightning protection brushes 71 are evenly distributed in the generator at intervals of 120° by three second insulating members 8.
  • the outer surface of the rotor 5 is adjacent to the insulated nacelle cover 6.
  • the lines are parallel to each other.
  • the 360° lightning protection effect on the direct-drive wind turbine generator can be realized, thereby realizing full-angle and omnidirectional lightning. Protection, enhance the lightning protection performance of direct-drive wind turbines, and further ensure the safe operation of direct-drive wind turbines under lightning weather.
  • a one-to-one correspondence between the three first lightning protection brushes 32 and the three second lightning protection brushes 71 is such that each pair of the first lightning protection brush 32 and the second lightning protection brush 71 The wires are parallel to each other, so that the length of the metal conductor 9 between the first lightning protection brush 32 and the second lightning protection brush 71 can be minimized, facilitates conduction and facilitates guiding lightning current.
  • the second insulating member 8 may be a bracket-like structure similar to a "Z" shape, and each of the second lightning protection brushes 71 is disposed at a "Z" shape of the second insulating member 8 near the end of the insulated nacelle cover 6.
  • the material of the second insulating member 8 may be an insulating material such as ceramic, polymer, rubber or nylon.
  • a second brush powder box 13 may be disposed on the second insulating member 8. The function and specific structure of the second brush powder box 13 may be the same as the function and specific structure of the first brush powder box 12. I will not repeat them here.
  • the annular brush rail 72 can be set to be higher than the predetermined height of the outer surface of the generator rotor 5, such as 300-350 mm. Preferably 320 mm. Similar to the curved brush track 31, the roughness of the annular brush track 72 may preferably be R8 to R12, most preferably R10.
  • the metal conductor 9 between the first lightning protection brush 32 and the second lightning protection brush 71 is fixed to the respective bases of the first insulating member 4 and the second insulating member 8 by a jig (not shown). In this way, it is possible to prevent the metal conductor 9 from being pulsated while the generator rotor 5 rotates, thereby causing the metal conductor 9 to break.
  • the lightning protection down conductor 11 connecting the fourth conductive end and the grounding member 15 can be twisted around the yaw bearing 14 to prevent the generator from rotating under the action of the yaw bearing 14.
  • the lightning down line 11 breaks.
  • the lightning protection down conductor 11 When the generator is twisted by a clockwise or counterclockwise angle under the action of the yaw bearing 14, the lightning protection down conductor 11 will be twisted at the same angle. Therefore, the lightning protection down conductor 11 is a torsion-resistant cable and has a sufficient length, even if it is twisted at a maximum angle (usually 720° clockwise or 720° counterclockwise), no break occurs.
  • the manner in which the lightning protection down conductor 11 has a sufficient length to ensure that it does not break when it is maximally twisted may be referred to as a twisted cable method.
  • the grounding member 15 may be a grounding lug plate 151 disposed on the inner wall of the tower 10 and electrically connected to a fan foundation (not shown), such that the direct-drive wind power constructed by the embodiment of the present invention is constructed.
  • the lightning current discharge channel of the lightning protection device of the generator set is: lightning receptor-blade down-conductor 2-arc brush rail 31-first lightning protection brush 32-second lightning protection brush 71-ring brush Track 72 - lightning protection down conductor 11 - grounding lug 151 - tower 10 - fan foundation - earth; or, grounding member 15 can also be a fan foundation, lightning protection down conductor 11 through the tower 10 directly with the fan
  • the basic electrical connection, such that the lightning current discharge channel of the lightning protection device of the direct drive wind power generator constructed by the embodiment of the invention is: lightning receptor-blade down-conductor 2-arc brush track 31-first lightning protection Brush 32 - second lightning protection brush 71 - ring brush track 72 - lightning protection down line 11 - fan foundation - earth.
  • the metal conductor 9 and the lightning protection down conductor 11 should have sufficient electrical conductivity to ensure smooth conduction of lightning current.
  • the metal conductor 9 and the lightning protection down conductor 11 can be horizontally cross-sectional area greater than or equal to 50mm soft copper cable 2, in order to further ensure its conductivity, may be selected cross-sectional area of not less than 70mm soft copper cable 2, of course, also be employed cross-sectional area of not less than 70mm 2 copper braid
  • a wire having a strong electrical conductivity such as a galvanized flat steel or the like may be used as long as it is a metal conductor having a good electrical conductivity.
  • the first conductive end is a curved brush track
  • the second conductive end is a first lightning protection brush.
  • the curved brush track and the first lightning protection brush are further The positional interchange may occur, that is, the first conductive end is the first lightning protection brush, and the second conductive end is the curved brush track, so the same technical effect can also be achieved, and details are not described herein; accordingly, the ring electric power
  • the position of the brush track and the second lightning protection brush may also be interchanged, that is, the third conductive end is a ring-shaped brush track, and the fourth conductive end is a second lightning-proof brush, which will not be described herein.
  • first lightning protection brush and the second lightning protection brush described in the present invention are common brushes, only to highlight the role of the brushes in the embodiment of the present invention and to distinguish each electric power.
  • the position of the brush is defined as the first lightning protection brush and the second lightning protection brush.
  • the arc brush track and the annular brush track are tracks that cooperate with the brush, but are defined as curved brush tracks and ring brush tracks in order to highlight the shape of the tracks.
  • the independent external flow guiding channel is adopted (the lightning brush-blade down-line-the arc-shaped brush track of the root of the outer surface of the fan blade) -The first lightning protection brush - the second lightning protection brush - the annular brush rail on the top of the nacelle cover and close to the generator side - lightning protection down line - tower tube - fan foundation - earth), can completely solve the lightning current Damage to individual bearings in direct-drive wind turbines, thereby reducing the occurrence of faults in direct-drive wind turbines.
  • the devices in this solution are electrically connected, and the contact is good, there is no gap, so the impedance of the lightning current discharge channel can be effectively reduced, and the electrical conduction performance of the direct lightning protection channel is greatly improved.
  • the wire and the lightning protection lead down line, and the cross-sectional area of the soft copper cable and the copper braided galvanized flat steel is not less than 50 mm 2 , which further greatly improves the electrical conduction performance of the direct lightning protection passage.
  • the technical solution of the embodiment of the present invention can completely prevent the lightning into the interior of the unit and cause interference of the pitch cabinet and its surrounding wires.
  • a generator powder-feeding device is designed at the lightning protection brush to prevent the dust generated after the brush friction from entering the generator.
  • an embodiment of the present invention further provides a direct drive wind power generator including a blade, a pitch bearing and a hub connected to the blade, a generator connected to the hub, an insulated nacelle cover connected to the generator, and an insulated cabin a yaw bearing connected to the hood, a tower connected to the yaw bearing, and a fan foundation at the bottom of the tower, and further comprising any lightning protection device for the direct drive wind turbine provided by the embodiment of the invention
  • the embodiment of the present invention further provides a lightning protection method for a direct-drive wind turbine, wherein the generator of the direct-drive wind turbine is external to the nacelle, wherein the direct-drive wind turbine has the embodiment provided by the embodiment of the present invention.
  • Any lightning protection device, as shown in Figure 5, the lightning protection method for the direct drive wind turbine includes the following steps:
  • the lightning current is transmitted from the second lightning current component to the grounding component through the lightning protection down conductor;
  • the lightning protection method for a direct drive wind power generator provided by the embodiment of the present invention, wherein the first lightning current component comprises a first conductive end and a second conductive end, the first conductive end is disposed on the root of the blade and is led down by the blade The first conductive end is disposed on the outer surface of the generator rotor near the blade and is insulated from the generator rotor and electrically connected to the metal conductor, and the first conductive end is in sliding contact with the second conductive end when the blade rotates;
  • the second lightning current component includes a third conductive end and a fourth conductive end, and the third conductive end is disposed on the outer surface of the generator rotor near the insulated nacelle cover and insulated from the generator and electrically connected to the metal conductor, The fourth conductive end is disposed on the insulated nacelle cover and electrically connected to the lightning protection down conductor, and the third conductive end is in sliding contact with the fourth conductive end when the generator rotor rotates;
  • the lightning protection method provided by the embodiment of the present invention specifically includes the following steps:
  • the lightning current is transmitted from the fourth conductive end to the grounding component through the lightning protection down conductor;
  • the lightning protection method for a direct-drive wind turbine generator provided by the present invention, wherein the lightning protection device further comprises: a first insulating component and a second insulating component; the first conductive end is a metal arc-shaped brush track having a preset curvature, The second conductive end is a first lightning protection brush; the third conductive end is a second lightning protection brush, and the fourth conductive end is a metal annular brush track surrounding the insulated nacelle cover;
  • the lightning protection method for the direct drive wind power generator further includes the following steps:
  • the second conductive end disposed on the outer surface of the generator rotor near the blade and insulated from the generator rotor specifically includes: fixing the outer surface of the generator rotor near the blade side by the first insulating member, Fixing the first lightning protection brush on the first insulating component, thereby achieving insulation between the first lightning protection brush and the generator rotor;
  • the third conductive end described above is disposed on the outer surface of the generator rotor near the insulated nacelle cover and is insulated from the generator rotor. Specifically, the second conductive end is fixed to the outside of the generator rotor near the insulated nacelle cover by using the second insulating member. On the surface, the second lightning protection brush is fixed on the second insulating component, so that the second lightning protection brush is insulated from the generator rotor.
  • the lightning protection method for a direct-drive wind power generator provided by the embodiment of the invention further includes: a first brush powder box and a second brush powder box, and a lightning protection method for the direct drive wind power generator Including the following steps:
  • the second brush powder box is fixed on the second insulating member for receiving the dust generated after the second lightning protection brush is rubbed.
  • the lightning protection method for a direct drive wind power generator provided by the present invention, wherein the method further comprises the following steps:
  • the electrical connection between the first lightning protection brush and the second lightning protection brush is achieved by a soft copper cable, a copper braid or a galvanized flat steel.
  • the lightning protection method for the direct drive wind power generator has the following beneficial effects: for the direct drive wind power generator, the independent external flow guiding channel is adopted (the lightning receptor-blade down-line-the outer surface of the fan blade) Curved brush rail of the root - first lightning protection brush - second lightning protection brush - annular brush rail on the top of the nacelle cover and close to the generator side - lightning protection down line - tower tube - fan foundation - earth ), it can completely solve the damage of lightning current to each bearing in the direct drive wind turbine, thereby reducing the fault of the direct drive wind turbine.
  • the independent external flow guiding channel is adopted (the lightning receptor-blade down-line-the outer surface of the fan blade) Curved brush rail of the root - first lightning protection brush - second lightning protection brush - annular brush rail on the top of the nacelle cover and close to the generator side - lightning protection down line - tower tube - fan foundation - earth ), it can completely solve the damage of lightning current to each bearing in the direct drive wind turbine,
  • the devices in this solution are electrically connected, and the contact is good, there is no gap, so the impedance of the lightning current discharge channel can be effectively reduced, and the electrical conduction performance of the direct lightning protection channel is greatly improved.
  • Soft copper cable, copper braid or galvanized flat steel to achieve electrical connection between the first lightning protection brush and the second lightning protection brush; using soft copper cable, copper braid or galvanized flat steel to manufacture the blade The line and the lightning protection down conductor further greatly improve the electrical continuity performance of the direct lightning protection channel.
  • the technical solution of the embodiment of the present invention can completely prevent the lightning into the interior of the unit and cause interference of the pitch cabinet and its surrounding wires.
  • a generator powder feeding device is designed at the lightning protection brush to prevent the dust generated after the brush friction from entering the generator.

Abstract

一种防雷装置,包括设置在非金属叶片(1)上的用于接收雷电流的接闪器及与该接闪器电气连接的叶片引下线(2);第一引雷电流部件(3),其与所述叶片引下线(2)电气连接,且与发电机转子(5)的外表面绝缘连接;第二引雷电流部件(7),与所述发电机转子的外表面和绝缘机舱罩(6)绝缘连接,所述第二引雷电流部件(7)通过金属导体(9)与所述第一引雷电流部件(3)电气连接;防雷引下线(11),用于电气连接所述第二引雷电流部件(7)与设置于塔筒内的接地部件(15),以通过塔筒将雷电流泄放到大地。还披露了一种直驱风力发电机组及其雷电防护方法。

Description

防雷装置、直驱风力发电机组及其雷电防护方法 技术领域
本发明涉及防雷装置技术领域,尤其涉及一种防雷装置、直驱风力发电机组及其雷电防护方法。
背景技术
风力发电机组通常位于比较空旷的地区或沿海地区,而风力发电机组的高度一般都超过130米,尤其是新型的风力发电机组都超过了160米,在这些地区风力发电机组属于特别突起的物体,因而风力发电机组容易遭受雷击。
因此,对于风力发电机组的防雷保护至关重要,尤其对于发电机处于机舱外部的直驱风力发电机组,由于其发电机中的变桨轴承、发电机主轴承及偏航轴承的成本在整机成本中的比例较高,雷电流会造成这三种轴承的灼烧及损坏,因而对直驱风力发电机组的防雷保护尤为重要。
直驱风力发电机组与双馈式风力发电机组在结构上有着本质的区别,最典型的特点是直驱风力发电机组的发电机处于机舱的外部,而双馈型风力发电机组的发电机处于机舱的内部。对于直驱风力发电机组的直接雷击防护来说,这就意味着雷电流必定会通过直驱风力发电机组的各个轴承。直驱风力发电机组包含了三种轴承,即变桨轴承、发电机主轴承、偏航轴承。雷电流会造成这三种轴承发生灼烧并损坏,从而进一步造成了直驱风力发电机组损坏。
目前,直驱风力发电机组的防雷保护方法为:在叶片内部使用单独的电缆引线,利用直驱风力发电机组自身的金属铸件、结构件及轴承作为直击雷的传导路径,即:将叶片接闪器的引下线连接在直驱风力发电机组叶片根部法兰上,然后利用叶片根部法兰通过变桨轴承连接轮毂、轮毂通过发电机主轴承连接到发电机、发电机连接机舱底座、机舱底座通过偏航轴 承连接到塔筒、塔筒连接风机基础的直驱风力发电机组的自身结构将直击雷电流导出。如图1所示,为现有技术直击雷流通路径通过直驱风力发电机组的示意图,可见直击雷流通路径通过直驱风力发电机组的变桨轴承a、发电机主轴承b、偏航轴承c。
然而,发电机中轴承的内圈与外圈之间存在间隙,导致雷电流流通路径中阻抗较高,影响雷电流的泄放;并且,利用各个轴承作为雷电流流通路径会导致雷电流对轴承灼烧从而损坏轴承,造成整机成本较高,且停机更换新轴承会中断直驱风力发电机组的正常运行,进一步造成巨大的经济损失。
现有技术还存在一种风力发电机组防雷方法及装置,其构建“叶片—轮毂罩—机舱罩—大地”的雷电流泄放路径,完全避免了雷电流流过变桨轴承,保证了变桨轴承的安全。但是其他的轴承,如发电机主轴承、偏航轴承,还是可能会流过雷电流造成损坏,且其构建的雷电流泄放路径经过轮毂罩和机舱罩,但可能会有雷电流分流到轴承中,对轴承造成损害,且对于直驱风力发电机组来说,由于发电机处于外部,这种设计并不能够彻底解决发电机的防雷问题。
发明内容
本发明实施例提供一种防雷装置、直驱风力发电机组及其雷电防护方法,能够使雷电流沿着新的外部通道流通而不经过直驱风力发电机组中的各个轴承,避免各个轴承遭受雷电流的损伤,延长了各个轴承的使用寿命,有效地保证了直驱风力发电机组中各个轴承的正常运转,从而保证直驱风力发电机组的正常运行,同时还可以提高雷电流泄放通道的电气导通性。
为达到上述目的,本发明实施例采用如下技术方案:
一方面,本发明提供了一种防雷装置,包括设置在非金属叶片上的用于接收雷电流的接闪器及与该接闪器电气连接的叶片引下线,其中,所述防雷装置还包括:
第一引雷电流部件,与所述叶片引下线电气连接,且与发电机转子的 外表面绝缘连接;
第二引雷电流部件,与所述发电机转子的外表面及绝缘机舱罩绝缘连接,所述第二引雷电流部件通过金属导体与所述第一引雷电流部件电气连接;
防雷引下线,用于电气连接所述第二引雷电流部件与设置于塔筒内的接地部件,以通过塔筒将雷电流泄放到大地。
另一方面,本发明还提供了一种直驱风力发电机组,包括上述技术方案提供的所述的防雷装置。
另一方面,本发明还提供了一种直驱风力发电机组的雷电防护方法,所述直驱风力发电机组的发电机处于机舱的外部,其中,所述直驱风力发电机组具有上述技术方案提供的任一种所述的防雷装置,所述直驱风力发电机组的雷电防护方法包括如下步骤:
利用安装于风机叶片上的接闪器接收雷电流;
通过叶片引下线连接所述接闪器,将雷电流传输到第一引雷电流部件;
通过金属导体将雷电流从所述第一引雷电流部件传输到第二引雷电流部件;
通过防雷引下线将雷电流从所述第二引雷电流部件传输到接地部件;
通过所述接地部件将雷电流泄放到大地。
在本发明实施例提供的防雷装置、直驱风力发电机组及其雷电防护方法,因为采用独立的外部导流通道设计的技术手段,解决了原有直击雷防护设计中雷电流通过轴承而造成损伤的设计缺陷,建立新的独立的雷电流泄放通道(接闪器-叶片引下线-风机叶片外表面的根部的弧形电刷轨道-第一防雷电刷-第二防雷电刷-机舱罩顶部且靠近发电机一侧的环形电刷轨道-防雷引下线-塔筒-风机基础-大地),使雷电流沿着新的通道流通而不经过直驱风力发电机组中的各个轴承,有效地保证了直驱风力发电机组中各轴承(包括偏航轴承、变桨轴承及发电机主轴承)的正常运转,延长了轴承在直驱风力发电机组中的使用寿命,从而保证了直驱风力发电机组的 正常运行,并且也大大提高了雷电流泄放通路的电气导通性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为现有技术直击雷流通路径通过直驱风力发电机组的示意图;
图2为本发明实施例提供的防雷装置的结构示意图;
图3为图2中A部分的局部放大图;
图4为图2所示防雷装置的主视图;
图5为本发明实施例的一种直驱风力发电机组雷电防护方法流程图。
附图标号:
变桨轴承a、发电机主轴承b、偏航轴承c、叶片1、叶片引下线2、第一引雷电流部件3、弧形电刷轨道31、第一防雷电刷32、第一绝缘部件4、发电机转子5、绝缘机舱罩6、第二引雷电流部件7、第二防雷电刷71、环形电刷轨道72、第二绝缘部件8、金属导体9、塔筒10、防雷引下线11、第一电刷接粉盒12、第二电刷接粉盒13、偏航轴承14、接地部件15、接地耳板151。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
如图2所示,本发明实施例提供了一种用于直驱风力发电机组的防雷 装置,该装置包括设置在非金属叶片1上的用于接收雷电流的接闪器(未图示)及与该接闪器电气连接的叶片引下线2,其中,防雷装置还包括:第一引雷电流部件3,与所述叶片引下线2电气连接,且与发电机转子5的外表面绝缘连接;第二引雷电流部件7,与发电机转子5的外表面和绝缘机舱罩6绝缘连接,所述第二引雷电流部件7通过金属导体9与第一引雷电流部件3电气连接;防雷引下线11,用于电气连接第二引雷电流部件7与设置于塔筒10内的接地部件15(参阅图4),以通过塔筒10将雷电流泄放到大地。
本发明实施例图2提供的用于直驱风力发电机组的防雷装置,采用独立的外部导流通道设计技术手段,解决了原有直击雷防护设计中雷电流通过轴承而造成损伤的设计缺陷,建立新的雷电流泄放通道(接闪器-叶片引下线2-第一引雷电流部件3-金属导体9-第二引雷电流部件7-防雷引下线11-塔筒10-接地部件15-大地),使雷电流沿着新的外部通道流通而不经过直驱风力发电机组中的各个轴承,有效地保证了直驱风力发电机组中各轴承(包括偏航轴承、变桨轴承及发电机主轴承)的正常运转,延长了轴承在直驱风力发电机组中的使用寿命,从而保证了直驱风力发电机组的正常运行,并且也大大提高了雷电流泄放通路的电气导通性。
需要说明的是,本发明实施例中的直取风力发电机为外转子内定子式结构,因而发电机转子处于外部,可以直接在其外表面设置第一引雷电流部件及第二引雷电流部件而不会影响发电机的正常运作;另外,本发明实施例中的绝缘机舱罩6是指表面与第二引雷电流部件7绝缘的机舱罩,它可以是由非金属等绝缘材料制成的;也可以是由金属等导电材料制成的,而在表面涂覆一层绝缘漆等绝缘物质;或者是由金属等导电物质组成的,但在机舱罩上局部设有绝缘支撑部从而使机舱罩与第二引雷电流部件7绝缘。总之,只要保证第二引雷电流部件7与机舱罩绝缘即可,本发明对此不作限定。
这样,可以使雷电流泄放过程中只经过上述效果分析中提到的独立的 导线通道,而不经过机舱罩等发电机组本身的结构,从而提高了雷电流泄放通道的电气导通性,并避免机舱罩等被雷电流损坏;独立的导线通道位于发电机组的外部,可避免雷电流进入发电机组内部,从而避免了雷电流对发电机组内部的变桨柜及周围导线的干扰,且便于操作人员对其进行安装、维修及保养。
进一步地,如图2和图3所示,本发明实施例还可以包括:设置在发电机转子5外表面上且靠近叶片1的第一绝缘部件4;第一引雷电流部件3包括第一导电端和第二导电端,第一导电端设置在叶片1的根部上并与叶片引下线2电气连接,第二导电端设置在第一绝缘部件4上并与金属导体9电气连接,叶片1转动时第一导电端与第二导电端滑动接触,从而保证雷电流可以从叶片引下线2经第一导电端及第二导电端传导至金属导体9。
具体地,如图3所示,第一导电端可以为具有预设弧度的金属弧形电刷轨道31,第二导电端可以为第一防雷电刷32,且金属弧形电刷轨道31的轨道宽度大于或等于第一防雷电刷32的横截面长边的长度。其中,弧形电刷轨道31具体可以设置在叶片1的外侧距叶片1根部1.5米、位于叶片1翼型后缘的位置处,预设弧度可以大于120°,优选设置位置为-100°~+20°,这样,无论叶片1绕着发电机主轴承旋转还是叶片1在变桨轴承的作用下旋转,弧形电刷轨道31都能与第一防雷电刷32准确有效地滑动接触,从而保证雷电流顺利的从弧形电刷轨道31传导至第一防雷电刷32。进一步地,可以将弧形电刷轨道31预埋在叶片1上且与叶片1表面保持在同一平面上,这样还可以减少叶片1转动时的正向阻力,提高发电机组的发电效率。
需要说明的是,弧形电刷轨道31应该具有合适的粗糙度,以使它与第一防雷电刷32滑动摩擦时产生的少量粉尘填充在弧形电刷轨道31与第一电刷32之间,利用该粉尘的导电性保证这两者之间具有良好的电气导通性。弧形电刷轨道31的粗糙度最优为R8~R12,这样既可以最大限度的 减少第一电刷32的损耗从而使其具有最长的使用寿命,又可以保证弧形电刷轨道31与第一防雷电刷32之间具有良好的电气导通性。
另外,作为一种扩展变形实施方式,本发明实施例还可以包括两组第一引雷电流部件3和两个第一绝缘部件4,即如图3所示,本发明实施例可以共包括三组第一引雷电流部件3和三个第一绝缘部件4,且三个第一防雷电刷32通过三个第一绝缘部件按120°间隔均匀分布在发电机转子5的外表面上且靠近叶片1,三个弧形电刷轨道31分布在三个叶片1的外表面根部;这样,每个第一防雷电刷32刚好与每个叶片1上的弧形电刷轨道31相对应,可以有效地将雷电流从叶片引下线2传导至金属导体9上。
其中,如图3所示,每个第一绝缘部件4可以是类似“Z”形状的支架类结构,每组第一防雷电刷32均设置在第一绝缘部件4的“Z”形状靠近叶片1的端部,从而保证弧形电刷轨道31与第一防雷电刷32之间刚好可以滑动接触。第一绝缘部件4可以是由陶瓷、高分子、橡胶或尼龙等绝缘材料制备。
另外,第一绝缘部件4上还可以设置有第一电刷接粉盒12,用于接收第一防雷电刷32与弧形电刷轨道31摩擦过程中产生的粉尘,从而避免这些粉尘进入发电机内部,防止该粉尘影响发电机的正常运行。具体地,如图3所示,第一电刷接粉盒12为盒状结构,可以完全容纳每组第一防雷电刷32,盒状结构与叶片1相接触的右侧面上开有小口,刚好仅使第一防雷电刷32露出与弧形电刷轨道31滑动接触;在盒状结构的左侧面上开有小孔,刚好仅使金属导体9穿过。这样,可以有效地将粉尘密封在该盒型结构中;第一电刷接粉盒12的侧面可以开启,以便于更换第一防雷电刷32。
本发明实施例中,如图2和图3所示,用于直驱风力发电机组的防雷装置还包括设置在发电机转子5的外表面上且靠近机舱的第二绝缘部件8;第二引雷电流部件7包括第三导电端和第四导电端,其中,第三导电端设置在第二绝缘部件8上并与金属导体9电气连接,第四导电端设置在 绝缘机舱罩6上并与防雷引下线11电气连接,这样,当发电机转子5转动时第三导电端与第四导电端滑动接触,从而保证雷电流可以从金属导体9经第三导电端及第四导电端传导至防雷引下线11。
具体地,如图3所示,第三导电端可以为第二防雷电刷71,第四导电端可以为环绕绝缘机舱罩6的金属环形电刷轨道72,且金属环形电刷轨道72的轨道宽度大于或等于第二防雷电刷71的横截面长边的长度。另外,作为一种扩展变形实施方式,可以总共设置三个第二防雷电刷71,且三个第二防雷电刷71通过三个第二绝缘部件8按120°间隔均匀分布在发电机转子5的外表面上且靠近绝缘机舱罩6。优选地,三个第一防雷电刷32与三个第二防雷电刷71之间是一一对应,每一对第一防雷电刷32与第二防雷电刷71之间的连线互相平行。
通过上述三个第一防雷电刷32与三个第二防雷电刷71的结构设计,可实现对直驱风力发电机组的360°防雷效果,从而实现了全角度、全方向的雷电防护,增强直驱风力发电机组的雷电防护性能,进一步保障直驱风力发电机组在雷电天气下的安全运行。
并且,三个第一防雷电刷32与三个第二防雷电刷71之间的一一对应,使每一对第一防雷电刷32与第二防雷电刷71之间的连线互相平行,从而使第一防雷电刷32与第二防雷电刷71之间的金属导体9的长短可实现最短化,便于导电且便于引导雷电流。
其中,第二绝缘部件8可以为类似“Z”形状的支架类结构,且每个第二防雷电刷71均设置在第二绝缘部件8的“Z”形状靠近绝缘机舱罩6的端部。第二绝缘部件8的材质可以是陶瓷、高分子、橡胶或尼龙等绝缘材料。另外,第二绝缘部件8上可以设有第二电刷接粉盒13,第二电刷接粉盒13的作用及具体结构可以与第一电刷接粉盒12的作用及具体结构相同,此处不再赘述。
为了使环形电刷轨道72与第二防雷电刷71可靠的滑动接触,可以将环形电刷轨道72设为高于发电机转子5外表面预定高度,如300~350mm, 优选320mm。与弧形电刷轨道31类似,环形电刷轨道72的粗糙度最优也可以为R8~R12,最优选为R10。
在本实施例中,第一防雷电刷32和第二防雷电刷71之间的金属导体9通过夹具(未示出)固定在第一绝缘部件4和第二绝缘部件8各自的底座上,从而可防止发电机转子5旋转时将金属导体9不断甩动而造成金属导体9的断裂。
如图3所示,连接第四导电端和接地部件15的防雷引下线11可以采用扭缆方式绕过偏航轴承14,以防止发电机在偏航轴承14的作用下转动时该防雷引下线11发生断裂。
发电机在偏航轴承14的作用下沿顺时针或逆时针扭转一定的角度时,防雷引下线11将发生相同角度的扭转。因此,防雷引下线11为耐扭线缆,且具有足够的长度,即使其扭转最大角度(通常为沿顺时针720°或沿逆时针720°)时也不发生任何断裂,这种使防雷引下线11具有足够长度以保证其最大扭转时不发生断裂的方式可称为扭缆方式。
具体地,如图4所示,接地部件15可以为设置于塔筒10内壁且与风机基础(未示出)电气连接的接地耳板151,这样,本发明实施例构建的用于直驱风力发电机组的防雷装置的雷电流泄放通道为:接闪器-叶片引下线2-弧形电刷轨道31-第一防雷电刷32-第二防雷电刷71-环形电刷轨道72-防雷引下线11-接地耳板151-塔筒10-风机基础-大地;或者,接地部件15也可以为风机基础,防雷引下线11穿过塔筒10直接与该风机基础电气连接,这样,本发明实施例构建的直驱风力发电机组的防雷装置的雷电流泄放通道为:接闪器-叶片引下线2-弧形电刷轨道31-第一防雷电刷32-第二防雷电刷71-环形电刷轨道72-防雷引下线11-风机基础-大地。
需要说明的是,本发明实施例中,金属导体9和防雷引下线11应该具足够的导电能力以保证雷电流的顺利传导,例如,金属导体9和防雷引下线11可以采用横截面积大于或等于50mm2的软铜电缆,为了进一步保证其导电能力,可以选择横截面积不少于70mm2的软铜电缆,当然,也可 以采用横截面积不少于70mm2的铜编织带或镀锌扁钢等导电能力较强的导线,只要为导电能力较好的金属材质导体即可,本发明对此不作限定。
上述实施例中,第一导电端为弧形电刷轨道,第二导电端为第一防雷电刷,在本发明的其它实施例中,弧形电刷轨道与第一防雷电刷还可以发生位置互换,即第一导电端为第一防雷电刷,第二导电端为弧形电刷轨道,因此也能达到相同的技术效果,在此不再赘述;相应地,环形电刷轨道与第二防雷电刷也可以发生位置互换,即第三导电端为环形电刷轨道,第四导电端为第二防雷电刷,在此不再赘述。
需要说明的是,本发明中所述的第一防雷电刷及第二防雷电刷均为普通的电刷,只是为了突出这些电刷在本发明实施例中的作用及为了区分各个电刷的位置,将其定义为第一防雷电刷和第二防雷电刷。相应地,弧形电刷轨道和环形电刷轨道为与电刷相配合的轨道,只是为了突出这些轨道的形状将其定义为弧形电刷轨道和环形电刷轨道。
本发明实施例的上述技术方案具有如下有益效果:针对直驱风力发电机组,采用独立的外部导流通道设计(接闪器-叶片引下线-风机叶片外表面的根部的弧形电刷轨道-第一防雷电刷-第二防雷电刷-机舱罩顶部且靠近发电机一侧的环形电刷轨道-防雷引下线-塔筒-风机基础-大地),可以彻底解决雷电流对直驱风力发电机组中各个轴承的损害,从而降低直驱风力发电机组的故障发生。本方案中各个装置之间均为电气连接,且接触良好,不存在任何间隙,因而可以有效地降低雷电流泄放通道的阻抗,大大提高了直击雷防护通道的电气导通性能,另外,通过软铜电缆、铜编织带或镀锌扁钢实现第一防雷电刷和第二防雷电刷之间的电气连接;采用软铜电缆、铜编织带或镀锌扁钢以制造叶片引下线及防雷引下线,且该软铜电缆、铜编织带镀锌扁钢的横截面积不少于50mm2,更进一步大大提高了直击雷防护通道的电气导通性能。本发明实施例的技术方案与现有技术的导流通道安装在机组内部的防雷装置相比,可杜绝对雷电进入机组的内部而导致变桨柜及其周围导线的受到干扰。本方案在防雷电刷处设计了发电 机接粉装置,可避免电刷摩擦后产生的粉尘进入到发电机内部。
相应地,本发明实施例还提供了一种直驱风力发电机组,包括叶片、与叶片相连的变桨轴承及轮毂、与轮毂相连的发电机、与发电机相连的绝缘机舱罩、与绝缘机舱罩相连的偏航轴承、与偏航轴承相连的塔筒及位于塔筒底部的风机基础,此外,还包括本发明实施例提供的任何一种用于直驱风力发电机组的防雷装置,因此,也能实现如前文所述的技术效果,前文已经进行了详细的说明,此处不再赘述。
相应地,本发明实施例还提供了一种直驱风力发电机组的雷电防护方法,该直驱风力发电机组的发电机处于机舱的外部,其中,直驱风力发电机组具有本发明实施例提供的任何一种防雷装置,如图5所示,直驱风力发电机组的雷电防护方法包括如下步骤:
S1、利用安装于风机叶片上的接闪器接收雷电流;
S2、通过叶片引下线连接接闪器,将雷电流传输到第一引雷电流部件;
S3、通过金属导体将雷电流从第一引雷电流部件传输到第二引雷电流部件;
S4、通过防雷引下线将雷电流从第二引雷电流部件传输到接地部件;
S5、通过接地部件将雷电流泄放到大地。
本发明实施例提供的直驱风力发电机组的雷电防护方法,其中,第一引雷电流部件包括第一导电端和第二导电端,第一导电端设置在叶片的根部上并与叶片引下线电气连接,第二导电端设置在发电机转子外表面上靠近叶片的位置处且与发电机转子绝缘、并与金属导体电气连接,叶片转动时第一导电端与第二导电端滑动接触;第二引雷电流部件包括第三导电端和第四导电端,第三导电端设置在发电机转子外表面上靠近绝缘机舱罩的位置处且与发电机绝缘、并与金属导体电气连接,第四导电端设置在绝缘机舱罩上、并与防雷引下线电气连接,发电机转子转动时第三导电端与第四导电端滑动接触;
因而,本发明实施例提供的雷电防护方法具体包括如下步骤:
S1、利用安装于风机叶片上的接闪器接收雷电流;
S21、通过叶片引下线连接接闪器,将雷电传输到第一导电端;
S22、通过第一导电端与第二导电端滑动接触,将雷电流传输到第二导电端;
S31、通过第三导电端与第二导电端之间的金属导体,将雷电流传输到第三导电端;
S32、通过第三导电端与第四导电端滑动接触,将雷电流传输到第四导电端;
S41、通过防雷引下线将雷电流从第四导电端传输到接地部件;
S51、通过接地部件将雷电流泄放到大地。
本发明提供的直驱风力发电机组的雷电防护方法,其中,防雷装置还包括:第一绝缘部件和第二绝缘部件;第一导电端为具有预设弧度的金属弧形电刷轨道,第二导电端为第一防雷电刷;第三导电端为第二防雷电刷,第四导电端为环绕绝缘机舱罩的金属环形电刷轨道;
所述直驱风力发电机组雷电防护方法还包括如下步骤:
上述所述的第二导电端设置在发电机转子外表面上靠近叶片的位置处且与发电机转子绝缘具体包括:利用第一绝缘部件固定于靠近叶片一侧的发电机转子的外表面上,以在该第一绝缘部件上固定第一防雷电刷,从而实现第一防雷电刷与发电机转子绝缘;
上述所述的第三导电端设置在发电机转子外表面上靠近绝缘机舱罩的位置处且与发电机转子绝缘具体包括:利用第二绝缘部件固定于靠近绝缘机舱罩一侧的发电机转子外表面上,以在该第二绝缘部件上固定第二防雷电刷,从而实现第二防雷电刷与发电机转子绝缘。
本发明实施例提供的直驱风力发电机组的雷电防护方法,其中,防雷装置还包括:第一电刷接粉盒和第二电刷接粉盒,直驱风力发电机组的雷电防护方法还包括如下步骤:
利用第一电刷接粉盒固定于第一绝缘部件上,用于承接第一防雷电刷 摩擦后产生的粉尘;
利用第二电刷接粉盒固定于第二绝缘部件上,用于承接第二防雷电刷摩擦后产生的粉尘。
本发明提供的直驱风力发电机组的雷电防护方法,其中,所述方法还包括如下步骤:
通过软铜电缆、铜编织带或镀锌扁钢实现第一防雷电刷和第二防雷电刷间的电气连接。
本发明实施例提供的直驱风力发电机组的雷电防护方法具有如下有益效果:针对直驱风力发电机组,采用独立的外部导流通道设计(接闪器-叶片引下线-风机叶片外表面的根部的弧形电刷轨道-第一防雷电刷-第二防雷电刷-机舱罩顶部且靠近发电机一侧的环形电刷轨道-防雷引下线-塔筒-风机基础-大地),可以彻底解决雷电流对直驱风力发电机组中各个轴承的损害,从而降低直驱风力发电机组的故障发生。本方案中各个装置之间均为电气连接,且接触良好,不存在任何间隙,因而可以有效地降低雷电流泄放通道的阻抗,大大提高了直击雷防护通道的电气导通性能,另外,通过软铜电缆、铜编织带或镀锌扁钢实现第一防雷电刷和第二防雷电刷之间的电气连接;采用软铜电缆、铜编织带或镀锌扁钢以制造叶片引下线及防雷引下线,更进一步大大提高了直击雷防护通道的电气导通性能。本发明实施例的技术方案与现有技术的导流通道安装在机组内部的防雷装置相比,可杜绝对雷电进入机组的内部而导致变桨柜及其周围导线的受到干扰。本方案在防雷电刷处设计了发电机接粉装置,可避免电刷摩擦后产生的粉尘进入到发电机内部。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,可轻易想到的变化或替换,都应涵盖在本发明的保护范围之内。因此,本发明的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种防雷装置,包括设置在非金属叶片上的用于接收雷电流的接闪器及与该接闪器电气连接的叶片引下线,其特征在于,所述防雷装置还包括:
    第一引雷电流部件,与所述叶片引下线电气连接,且与发电机转子的外表面绝缘连接;
    第二引雷电流部件,与所述发电机转子的外表面及绝缘机舱罩绝缘连接,所述第二引雷电流部件通过金属导体与所述第一引雷电流部件电气连接;
    防雷引下线,用于电气连接所述第二引雷电流部件与设置于塔筒内的接地部件,以通过塔筒将雷电流泄放到大地。
  2. 根据权利要求1所述的防雷装置,其特征在于,还包括:第一绝缘部件,设置在所述发电机转子的外表面上且靠近所述叶片;
    所述第一引雷电流部件包括第一导电端和第二导电端,所述第一导电端设置在所述叶片的根部上并与所述叶片引下线电气连接,所述第二导电端设置在所述第一绝缘部件上并与所述金属导体电气连接,所述叶片转动时所述第一导电端与所述第二导电端滑动接触。
  3. 根据权利要求2所述的防雷装置,其特征在于,还包括:第二绝缘部件,设置在所述发电机转子的外表面上且靠近绝缘机舱罩;
    所述第二引雷电流部件包括第三导电端和第四导电端,所述第三导电端设置在所述第二绝缘部件上并与所述金属导体电气连接,所述第四导电端设置在所述绝缘机舱罩上、并与所述防雷引下线电气连接,所述发电机转子转动时所述第三导电端与所述第四导电端滑动接触。
  4. 根据权利要求3所述的防雷装置,其特征在于,所述第一导电端为具有预设弧度的金属弧形电刷轨道,所述第二导电端为第一防雷电刷。
  5. 根据权利要求4所述的防雷装置,其特征在于,还包括:第一电刷接粉盒,设置在所述第一绝缘部件上,用于接收所述第一防雷电刷与所 述弧形电刷轨道摩擦过程中产生的粉尘。
  6. 根据权利要求4所述的防雷装置,其特征在于,所述第三导电端为第二防雷电刷,所述第四导电端为环绕所述绝缘机舱罩的金属环形电刷轨道。
  7. 根据权利要求6所述的防雷装置,其特征在于,还包括:第二电刷接粉盒,设置在所述第二绝缘部件上,用于接收所述第二防雷电刷与所述环形电刷轨道摩擦过程中产生的粉尘。
  8. 根据权利要求6所述的防雷装置,其特征在于,所述弧形电刷轨道或环形电刷轨道的粗糙度为R8~R12。
  9. 根据权利要求4所述的防雷装置,其特征在于,所述弧形电刷轨道的预设弧度至少为120°。
  10. 根据权利要求1所述的防雷装置,其特征在于,所述防雷引下线采用扭缆方式绕过偏航轴承。
  11. 根据权利要求1所述的防雷装置,其特征在于,所述金属导体及所述防雷引下线采用软铜电缆、铜编织带或镀锌扁钢。
  12. 根据权利要求1所述的防雷装置,其特征在于,所述接地部件为设置在所述塔筒内壁且与风机基础电气连接的接地耳板;或者所述接地部件为风机基础,所述防雷引下线穿过所述塔筒直接与该风机基础电气连接。
  13. 根据权利要求6所述的防雷装置,其特征在于,还包括:两组所述第一引雷电流部件和两个所述第一绝缘部件,以及两个所述第二防雷电刷和两个所述第二绝缘部件;
    三个第一防雷电刷通过三个第一绝缘部件按120°间隔均匀分布在所述发电机转子的外表面上,且靠近所述叶片;三个弧形电刷轨道分布在三个所述叶片外表面的根部;
    三个第二防雷电刷通过三个第二绝缘部件按120°间隔均匀分布在所述发电机转子外表面上且靠近所述绝缘机舱罩。
  14. 根据权利要求13所述的防雷装置,其特征在于,三个第一防雷电刷与三个第二防雷电刷之间是一一对应,每一对第一防雷电刷与第二防雷电刷之间的连线互相平行。
  15. 根据权利要求6所述的防雷装置,其特征在于,所述第一防雷电刷和所述第二防雷电刷之间的金属导体分别通过夹具固定在所述第一绝缘部件和所述第二绝缘部件各自的底座上。
  16. 根据权利要求6所述的防雷装置,其特征在于,所述防雷装置的雷电流泄放通道为:
    接闪器-叶片引下线-弧形电刷轨道-第一防雷电刷-第二防雷电刷-环形电刷轨道-防雷引下线-接地部件-大地。
  17. 一种直驱风力发电机组,其特征在于,包括如权利要求1~16任一项所述的防雷装置。
  18. 一种直驱风力发电机组的雷电防护方法,所述直驱风力发电机组的发电机处于机舱的外部,其特征在于,所述直驱风力发电机组具有如权利要求1所述的防雷装置,所述直驱风力发电机组的雷电防护方法包括如下步骤:
    利用安装在风机叶片上的接闪器接收雷电流;
    通过叶片引下线连接所述接闪器,将雷电流传输到第一引雷电流部件;
    通过金属导体将雷电流从所述第一引雷电流部件传输到第二引雷电流部件;
    通过防雷引下线将雷电流从所述第二引雷电流部件传输到接地部件;
    通过所述接地部件将雷电流泄放到大地。
  19. 根据权利要求18所述的直驱风力发电机组的雷电防护方法,其特征在于,
    所述第一引雷电流部件包括第一导电端和第二导电端,所述第一导电端设置在所述叶片的根部上并与所述叶片引下线电气连接,所述第二导电 端设置在发电机转子外表面上靠近叶片的位置处且与发电机转子绝缘、并与所述金属导体电气连接,所述叶片转动时所述第一导电端与所述第二导电端滑动接触;
    所述第二引雷电流部件包括第三导电端和第四导电端,所述第三导电端设置在发电机转子外表面上靠近绝缘机舱罩的位置处且与发电机转子绝缘、并与所述金属导体电气连接,所述第四导电端设置在所述绝缘机舱罩上、并与所述防雷引下线电气连接,所述发电机转子转动时所述第三导电端与所述第四导电端滑动接触;
    所述雷电防护方法具体包括如下步骤:
    利用安装在所述风机叶片上的接闪器接收雷电流;
    通过所述叶片引下线连接所述接闪器,将雷电流传输到所述第一导电端;
    通过所述第一导电端与所述第二导电端滑动接触,将雷电流传输到所述第二导电端;
    通过所述第三导电端与所述第二导电端之间的金属导体,将雷电流传输到所述第三导电端;
    通过所述第三导电端与所述第四导电端滑动接触,将雷电流传输到所述第四导电端;
    通过所述防雷引下线将雷电流从所述第四导电端传输到所述接地部件;
    通过所述接地部件将雷电流泄放到大地。
  20. 根据权利要求19所述的直驱风力发电机组的雷电防护方法,其特征在于,所述防雷装置还包括:第一绝缘部件和第二绝缘部件;所述第一导电端为具有预设弧度的金属弧形电刷轨道,所述第二导电端为第一防雷电刷;所述第三导电端为第二防雷电刷,所述第四导电端为环绕所述绝缘机舱罩的金属环形电刷轨道;
    所述直驱风力发电机组雷电防护方法还包括如下步骤:
    利用所述第一绝缘部件固定于靠近所述叶片一侧的所述发电机转子的外表面上,以在该第一绝缘部件上固定所述第一防雷电刷,从而实现所述第一防雷电刷与所述发电机转子绝缘;
    利用所述第二绝缘部件固定于靠近所述绝缘机舱罩一侧的所述发电机转子外表面上,以在该第二绝缘部件上固定所述第二防雷电刷,从而实现所述第二防雷电刷与所述发电机转子绝缘。
  21. 根据权利要求20所述的直驱风力发电机组的雷电防护方法,其特征在于,所述防雷装置还包括:第一电刷接粉盒和第二电刷接粉盒,所述直驱风力发电机组的雷电防护方法还包括如下步骤:
    利用所述第一电刷接粉盒固定于所述第一绝缘部件上,用于承接所述第一防雷电刷摩擦后产生的粉尘;
    利用所述第二电刷接粉盒固定于所述第二绝缘部件上,用于承接所述第二防雷电刷摩擦后产生的粉尘。
  22. 根据权利要求21所述的直驱风力发电机组的雷电防护方法,其特征在于,所述直驱风力发电机组雷电防护方法还包括如下步骤:
    通过软铜电缆、铜编织带或镀锌扁钢实现所述第一防雷电刷和所述第二防雷电刷间的电气连接。
PCT/CN2014/091713 2013-11-22 2014-11-19 防雷装置、直驱风力发电机组及其雷电防护方法 WO2015074576A1 (zh)

Priority Applications (8)

Application Number Priority Date Filing Date Title
EP14863636.8A EP3078852B1 (en) 2013-11-22 2014-11-19 Lightning protection device, direct-drive wind turbine generator system and lightning protection method thereof
EA201691064A EA033610B1 (ru) 2013-11-22 2014-11-19 Молниезащитное устройство, система ветротурбогенератора с прямым приводом и способ ее молниезащиты
CA2931290A CA2931290C (en) 2013-11-22 2014-11-19 Lightning protection device, direct-drive wind turbine generator system and lightning protection method thereof
US15/033,396 US10612525B2 (en) 2013-11-22 2014-11-19 Lightning protection device, direct-drive wind turbine generator system and lightning protection method thereof
KR1020167016679A KR101766613B1 (ko) 2013-11-22 2014-11-19 낙뢰 보호 장치, 직접-구동 풍력 터빈 발전기 시스템 및 이의 낙뢰 보호 방법
AU2014352342A AU2014352342B2 (en) 2013-11-22 2014-11-19 Lightning protection device, direct-drive wind turbine generator system and lightning protection method thereof
ES14863636T ES2761285T3 (es) 2013-11-22 2014-11-19 Dispositivo de protección contra rayos, sistema generador de aerogenerador de accionamiento directo y método de protección contra rayos del mismo
DK14863636.8T DK3078852T3 (da) 2013-11-22 2014-11-19 Lynbeskyttelsesindretning, direkte drevet vindmøllegeneratorsystem og lynbeskyttelsesfremgangsmåde dertil

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310597395.3 2013-11-22
CN201310597395.3A CN103603775B (zh) 2013-11-22 2013-11-22 防雷装置、直驱风力发电机组及其雷电防护方法

Publications (1)

Publication Number Publication Date
WO2015074576A1 true WO2015074576A1 (zh) 2015-05-28

Family

ID=50122023

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/091713 WO2015074576A1 (zh) 2013-11-22 2014-11-19 防雷装置、直驱风力发电机组及其雷电防护方法

Country Status (10)

Country Link
US (1) US10612525B2 (zh)
EP (1) EP3078852B1 (zh)
KR (1) KR101766613B1 (zh)
CN (1) CN103603775B (zh)
AU (1) AU2014352342B2 (zh)
CA (1) CA2931290C (zh)
DK (1) DK3078852T3 (zh)
EA (1) EA033610B1 (zh)
ES (1) ES2761285T3 (zh)
WO (1) WO2015074576A1 (zh)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103603775B (zh) 2013-11-22 2016-06-01 北京金风科创风电设备有限公司 防雷装置、直驱风力发电机组及其雷电防护方法
CN104405594A (zh) * 2014-11-17 2015-03-11 中国第一重型机械股份公司 一种具有雷电保护功能的直驱风机
US11378064B2 (en) 2017-01-24 2022-07-05 Siemens Gamesa Renewable Energy A/S Brush arrangement
CN110582637B (zh) * 2017-02-21 2021-10-26 西门子歌美飒可再生能源公司 包括用于传递雷电流并且用于提供emf屏蔽的接地系统的风力涡轮机
CN107420271B (zh) * 2017-09-15 2019-05-03 宁夏中科天际防雷股份有限公司 一种电流传输设备雷电防护装置
CN108361159A (zh) * 2017-12-29 2018-08-03 华润新能源(连州)风能有限公司 一种风电机组叶片防雷系统
CN109253057A (zh) * 2018-08-28 2019-01-22 新疆金风科技股份有限公司 永磁直驱风力发电机组的防雷系统的安装方法
CN108979979A (zh) * 2018-08-31 2018-12-11 观为监测技术无锡股份有限公司 雷电监测装置、风电机组、风电机组监测系统及监测方法
EP3628864B1 (en) 2018-09-27 2021-07-21 Siemens Gamesa Renewable Energy A/S Wind turbine
EP3690238A1 (en) * 2019-01-30 2020-08-05 Siemens Gamesa Renewable Energy A/S Current transfer arrangement of a wind turbine lightning protection system
EP3712429A1 (en) * 2019-03-22 2020-09-23 Siemens Gamesa Renewable Energy A/S Lightning protection for a direct drive wind turbine
CN110131110A (zh) * 2019-05-13 2019-08-16 北京乾源风电科技有限公司 一种用于风力发电机的防雷装置
CN110165559B (zh) * 2019-05-30 2020-05-12 安徽华希电力科技有限公司 一种风电机组用石墨防雷接地装置及其施工方法
EP3786451A1 (en) * 2019-08-28 2021-03-03 Siemens Gamesa Renewable Energy A/S Wind turbine
CN111794917A (zh) * 2020-07-24 2020-10-20 湘电风能有限公司 一种风电机组用轮毂避雷装置
CN112727711A (zh) * 2021-01-04 2021-04-30 株洲时代新材料科技股份有限公司 一种风力发电机叶片防雷装置
CN112963318A (zh) * 2021-03-12 2021-06-15 中国大唐集团新能源科学技术研究院有限公司 一种风电机组叶片防雷接闪装置及其使用方法
CN113931810B (zh) * 2021-11-29 2023-02-07 江苏寅昊智能装备有限公司 一种风电叶片接闪装置及其使用方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718495A1 (de) * 1994-12-22 1996-06-26 AUTOFLUG ENERGIETECHNIK GmbH + CO. Windkraftanlage mit Blitzstromableitung
CN101341334A (zh) * 2005-12-21 2009-01-07 三菱重工业株式会社 风车叶片的闪电保护装置
US20110142671A1 (en) * 2010-12-01 2011-06-16 General Electric Company Wind turbine rotor blades with enhanced lightning protection system
CN201916132U (zh) * 2010-12-13 2011-08-03 哈尔滨哈飞工业有限责任公司 风力发电机组叶片防雷装置
CN102661240A (zh) * 2012-05-16 2012-09-12 国电联合动力技术有限公司 一种风力发电机组风轮叶片防雷装置及其安装方法
CN202431453U (zh) * 2011-12-17 2012-09-12 重庆通用工业(集团)有限责任公司 一种风轮机叶片防雷装置
CN102900630A (zh) * 2012-10-26 2013-01-30 南车株洲电力机车研究所有限公司 一种风力发电机组防雷方法及装置
CN102918262A (zh) * 2011-12-09 2013-02-06 三菱重工业株式会社 风车叶片
CN103174603A (zh) * 2011-12-23 2013-06-26 新疆金风科技股份有限公司 一种风力发电机组防雷装置及风力发电机组
CN103603775A (zh) * 2013-11-22 2014-02-26 北京金风科创风电设备有限公司 防雷装置、直驱风力发电机组及其雷电防护方法
CN203570513U (zh) * 2013-11-22 2014-04-30 北京金风科创风电设备有限公司 直驱风力发电机组的防雷装置及直驱风力发电机组

Family Cites Families (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10022128C1 (de) * 2000-05-06 2001-12-20 Aloys Wobben Windenergieanlage
DK174232B1 (da) * 2000-12-13 2002-10-07 Lm Glasfiber As Kombineret lynreceptor og drænkanal i vindmøllevinge
WO2004001224A1 (en) * 2002-06-19 2003-12-31 Neg Micon A/S Lightning protection means for a wind turbine
DK177270B1 (da) * 2002-11-12 2012-09-10 Lm Wind Power As Lynbeskyttelse af pitchreguleret vindmøllevinge
ATE531938T1 (de) * 2004-02-27 2011-11-15 Repower Systems Ag Blitzschutzeinrichtung für windenergieanlagen
US7377750B1 (en) * 2004-03-19 2008-05-27 Northern Power Systems, Inc. Lightning protection system for a wind turbine
ES2255454B1 (es) * 2004-12-15 2007-07-01 Gamesa Eolica, S.A. Sistema pararrayos para pala de aerogenerador.
ES2265776B1 (es) * 2005-08-01 2008-02-01 GAMESA INNOVATION & TECHNOLOGY, S.L. Sistema de transmision de rayos sin contacto.
DK178167B1 (da) * 2005-12-02 2015-07-13 Lm Wind Power As Lynsikringssystem til vinge til et vindenergianlæg
DE102007052525B4 (de) * 2007-11-01 2009-08-27 Innovative Windpower Ag Vorrichtung zum Ableiten eines Blitzes bei einer Windenergieanlage
EP2110552B2 (en) * 2008-04-15 2018-12-26 Siemens Aktiengesellschaft Wind turbine blade with an integrated lightning conductor and method for manufacturing the same
DK200801476A (en) * 2008-10-27 2009-09-18 Vestas Wind Sys As Slip ring assembly with cooling
GB2469520A (en) * 2009-04-17 2010-10-20 Tyco Electronics Ltd Uk Wind Turbine Lightning Protection And Monitoring Systems
IT1393707B1 (it) 2009-04-29 2012-05-08 Rolic Invest Sarl Impianto eolico per la generazione di energia elettrica
DK2499359T3 (en) * 2009-11-12 2018-11-05 Siemens Ag LINEN PROTECTION FOR A NACELLE ON A WINDMILL
EP2510229B1 (en) * 2009-12-09 2018-01-31 Siemens Aktiengesellschaft Wind turbine with a lightning protection system
DK2395238T3 (da) * 2010-06-10 2014-04-22 Siemens Ag Vindmølle med et lynbeskyttelsessystem
US8659697B2 (en) 2010-11-11 2014-02-25 DigitalOptics Corporation Europe Limited Rapid auto-focus using classifier chains, MEMS and/or multiple object focusing
EP2520796B1 (en) 2011-05-03 2015-08-12 Siemens Aktiengesellschaft Lightning protection system for a wind turbine and method for protecting components of a wind turbine against lightning strikes
CN103250314A (zh) * 2011-12-09 2013-08-14 三菱重工业株式会社 用于风力涡轮机的风力涡轮机桨叶
DK3255276T3 (da) * 2016-06-09 2019-05-13 Siemens Gamesa Renewable Energy As Lynbeskyttelsessystem til en vindmølle

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0718495A1 (de) * 1994-12-22 1996-06-26 AUTOFLUG ENERGIETECHNIK GmbH + CO. Windkraftanlage mit Blitzstromableitung
CN101341334A (zh) * 2005-12-21 2009-01-07 三菱重工业株式会社 风车叶片的闪电保护装置
US20110142671A1 (en) * 2010-12-01 2011-06-16 General Electric Company Wind turbine rotor blades with enhanced lightning protection system
CN201916132U (zh) * 2010-12-13 2011-08-03 哈尔滨哈飞工业有限责任公司 风力发电机组叶片防雷装置
CN102918262A (zh) * 2011-12-09 2013-02-06 三菱重工业株式会社 风车叶片
CN202431453U (zh) * 2011-12-17 2012-09-12 重庆通用工业(集团)有限责任公司 一种风轮机叶片防雷装置
CN103174603A (zh) * 2011-12-23 2013-06-26 新疆金风科技股份有限公司 一种风力发电机组防雷装置及风力发电机组
CN102661240A (zh) * 2012-05-16 2012-09-12 国电联合动力技术有限公司 一种风力发电机组风轮叶片防雷装置及其安装方法
CN102900630A (zh) * 2012-10-26 2013-01-30 南车株洲电力机车研究所有限公司 一种风力发电机组防雷方法及装置
CN103603775A (zh) * 2013-11-22 2014-02-26 北京金风科创风电设备有限公司 防雷装置、直驱风力发电机组及其雷电防护方法
CN203570513U (zh) * 2013-11-22 2014-04-30 北京金风科创风电设备有限公司 直驱风力发电机组的防雷装置及直驱风力发电机组

Also Published As

Publication number Publication date
KR101766613B1 (ko) 2017-08-08
EA033610B1 (ru) 2019-11-08
AU2014352342A1 (en) 2016-06-02
EP3078852A1 (en) 2016-10-12
ES2761285T3 (es) 2020-05-19
DK3078852T3 (da) 2019-12-16
US10612525B2 (en) 2020-04-07
EA201691064A1 (ru) 2016-10-31
CN103603775B (zh) 2016-06-01
AU2014352342B2 (en) 2017-08-24
CA2931290C (en) 2018-02-27
EP3078852B1 (en) 2019-09-18
CN103603775A (zh) 2014-02-26
US20160273521A1 (en) 2016-09-22
CA2931290A1 (en) 2015-05-28
KR20160088937A (ko) 2016-07-26
EP3078852A4 (en) 2017-08-16

Similar Documents

Publication Publication Date Title
WO2015074576A1 (zh) 防雷装置、直驱风力发电机组及其雷电防护方法
JP6008567B2 (ja) 風力タービン、風力タービン用の避雷システムおよび風力タービンの部品を落雷から保護するための方法
JP2011256871A (ja) 風車のための落雷防護システム
US10215163B2 (en) Lightning current transfer system with spark gap and wind turbine using the lightning current transfer system
EP2795122A1 (en) Wind turbine generator system and lightning protection device thereof
CN101793240B (zh) 一种风电机组的避雷装置
CN108266335A (zh) 一种风力发电设备用叶片避雷装置
JP2012237208A (ja) 風車
CN105209752A (zh) 风能设备和用于风能设备的避雷单元
JP4595086B2 (ja) 風車ブレード用避雷システムを有する風力発電装置
US10428789B2 (en) Cable routing for wind turbine system having multiple rotors
CN202991366U (zh) 一种风力发电机叶片根部雷电流导引装置
CN205001128U (zh) 一种风力发电机组变桨轴承防雷
CN203570513U (zh) 直驱风力发电机组的防雷装置及直驱风力发电机组
CN103899496B (zh) 一种风力发电机叶片根部雷电流导引装置
CN102946168B (zh) 永磁直驱风力发电机组的发电机的主轴承的防雷装置
CN102367786A (zh) 一种兆瓦级风机变桨滑动导雷装置
CN212296728U (zh) 一种风力发电机防雷装置
US10051717B2 (en) Electrostatic noise grounding system for use in a wind turbine and a rotor and wind turbine comprising the same
JP6800360B1 (ja) 風力発電機
CN209483544U (zh) 一种用于风机上的尖端防雷装置
CN117028175A (zh) 一种变桨轴承雷电防护结构及方法
CN204168067U (zh) 散热型集电环
CN102946037A (zh) 一种轮毂到机舱的雷电通道连接方法
CN104158350A (zh) 一种散热型集电环及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14863636

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 15033396

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014863636

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014863636

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2931290

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014352342

Country of ref document: AU

Date of ref document: 20141119

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 201691064

Country of ref document: EA

ENP Entry into the national phase

Ref document number: 20167016679

Country of ref document: KR

Kind code of ref document: A