WO2015074269A1 - 一种通信系统、设备及方法 - Google Patents

一种通信系统、设备及方法 Download PDF

Info

Publication number
WO2015074269A1
WO2015074269A1 PCT/CN2013/087766 CN2013087766W WO2015074269A1 WO 2015074269 A1 WO2015074269 A1 WO 2015074269A1 CN 2013087766 W CN2013087766 W CN 2013087766W WO 2015074269 A1 WO2015074269 A1 WO 2015074269A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
cellular
millimeter wave
base station
bandwidth
Prior art date
Application number
PCT/CN2013/087766
Other languages
English (en)
French (fr)
Inventor
黄磊
梁永明
李鹏
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to PCT/CN2013/087766 priority Critical patent/WO2015074269A1/zh
Priority to BR112016010481-1A priority patent/BR112016010481B1/pt
Priority to EP18168883.9A priority patent/EP3407656B1/en
Priority to KR1020167011907A priority patent/KR101738656B1/ko
Priority to CA2927061A priority patent/CA2927061C/en
Priority to JP2016532007A priority patent/JP6295476B2/ja
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to MX2016006701A priority patent/MX359501B/es
Priority to RU2016121399A priority patent/RU2628952C1/ru
Priority to EP13897816.8A priority patent/EP3046378B1/en
Priority to CN201380080725.XA priority patent/CN105706506B/zh
Publication of WO2015074269A1 publication Critical patent/WO2015074269A1/zh
Priority to US15/159,542 priority patent/US10070419B2/en

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • H04W60/005Multiple registrations, e.g. multihoming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W60/00Affiliation to network, e.g. registration; Terminating affiliation with the network, e.g. de-registration
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/10Connection setup
    • H04W76/15Setup of multiple wireless link connections
    • H04W76/16Involving different core network technologies, e.g. a packet-switched [PS] bearer in combination with a circuit-switched [CS] bearer
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/042Public Land Mobile systems, e.g. cellular systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • H04W88/10Access point devices adapted for operation in multiple networks, e.g. multi-mode access points

Definitions

  • the present invention relates to the field of communications, and in particular, to a communication system, device, and method. Background technique
  • the high frequency band is collectively referred to as the millimeter wave band.
  • the millimeter wave band There are currently some schemes for cellular communication using the millimeter-wave band, as follows:
  • the main purpose is to deploy a cellular base station and a millimeter wave base station on the network side, and the cellular base station communicates with the user equipment through the cellular frequency band, and the millimeter wave base station communicates with the user equipment through the millimeter wave frequency band.
  • the user equipment needs to deploy two transceivers, one for communicating with the cellular base station and the other for communicating with the millimeter wave base station.
  • the frequency of the millimeter wave band is too high, the power requirements and complexity of the transceiver used for communication in the millimeter wave band are relatively high, resulting in an increase in the cost of the user equipment.
  • the embodiment of the present invention provides a communication system, a device, and a method.
  • the user equipment only needs to include a set of cellular frequency band transceivers and a set of millimeter wave band receivers to complete the cellular frequency band and the millimeter wave frequency band.
  • the communication can thus solve the problem that the power requirements and complexity of the transceiver for the millimeter wave band communication are relatively high, resulting in an increase in the cost of the user equipment.
  • a communication system includes: a cellular base station, a millimeter wave base station, and a user equipment, where:
  • the cellular base station is connected to the millimeter wave base station via a transmission link, the cellular base station includes a first cellular frequency band transceiver, and the millimeter wave base station includes a second cellular frequency band transceiver and a millimeter wave band transmitter, the user
  • the device includes a third cellular band transceiver and a millimeter wave band receiver;
  • the third cellular band transceiver is configured to receive the first cellular band transceiver or the Control layer data information sent by the second cellular band transceiver through the cellular frequency band;
  • the third cellular band transceiver is configured to send uplink data to the first cellular band transceiver or the second cellular band transceiver by using a cellular frequency band;
  • the millimeter wave band receiver is configured to receive user layer data information sent by the millimeter wave band transmitter through a millimeter wave band.
  • the cellular base station is further configured to allocate, by the user equipment, a millimeter wave frequency band of a first bandwidth, where the first cellular frequency band transceiver is further used to Transmitting, by the three-cell frequency band transceiver, the first identification information of the millimeter wave frequency band of the first bandwidth; or, the millimeter wave base station is further configured to allocate, for the user equipment, a millimeter wave frequency band of a first bandwidth, the second cell
  • the frequency band transceiver is further configured to send the first identification information of the millimeter wave frequency band of the first bandwidth to the third cellular band transceiver;
  • the millimeter wave band receiver is further configured to receive, according to the first identification information, user layer data information that is sent by the millimeter wave band transmitter through the millimeter wave band of the first bandwidth.
  • the user equipment and the cellular base station use a frequency division duplex FDD mode to communicate in a cellular frequency band, and Or, the user equipment communicates with the millimeter wave base station by using an FDD method in a cellular frequency band;
  • the third cellular band transceiver is further configured to receive control layer data information sent by the first cellular band transceiver or the second cellular band transceiver through a second frequency band of a cellular band;
  • the third cellular band transceiver is further configured to send uplink data to the first cellular band transceiver or the second cellular band transceiver by using a third frequency band of the cellular band;
  • the cellular base station is further configured to: add, by the user equipment, the uplink carrier of the third frequency band of the third bandwidth to a specific bandwidth or a specific number of carriers according to the millimeter wave band bandwidth of the first bandwidth;
  • the device is further configured to send the second identifier information of the third frequency band of the third bandwidth after the uplink carrier is added to the third cellular band transceiver; or the millimeter wave base station is further configured to be used according to the first bandwidth
  • the millimeter wave band bandwidth is used by the user equipment to increase an uplink carrier of the third bandwidth of the cellular frequency band by a specific bandwidth or a specific carrier number;
  • the second cellular frequency band transceiver is further configured to send to the third cellular frequency band transceiver Adding second identification information of the cellular frequency band of the third bandwidth after the uplink carrier is increased;
  • the third cellular band transceiver is further configured to send and receive to the first cellular band transceiver or the second cellular band by using the second frequency band of the up
  • the cellular base station is further configured to estimate the user according to the millimeter wave band bandwidth of the first bandwidth An uplink load of the device, and adding, according to the uplink load, the uplink carrier of the third frequency band of the third bandwidth to a specific bandwidth or a specific carrier number; or the millimeter wave base station is further configured to be used according to the first
  • the bandwidth of the millimeter wave band of the bandwidth is used to estimate the uplink load of the user equipment, and according to the uplink load, the user equipment increases the uplink carrier of the third frequency band of the cellular band by a specific bandwidth or a specific number of carriers.
  • the user equipment communicates with the cellular base station in a time-division duplex TDD manner in a cellular frequency band, and Or the user equipment and the millimeter wave base station communicate in a TDD manner in a cellular frequency band;
  • the third cellular band transceiver is further configured to receive control layer data information sent by the first cellular band transceiver or the second cellular band transceiver through a cellular band of a fourth bandwidth;
  • the third cellular band transceiver is further configured to send uplink data to the first cellular band transceiver or the second cellular band transceiver by using the fourth frequency band of the cellular band;
  • the cellular base station is further configured to adjust, according to the millimeter wave band bandwidth of the first bandwidth, a current uplink and downlink subframe ratio of the fourth bandwidth of the cellular frequency band to a target uplink and downlink subframe ratio;
  • the first cellular band transceiver is further configured to send information about the target uplink and downlink subframe ratio to the third cellular band transceiver;
  • the third cellular band transceiver is further configured to receive, by the information about the target uplink and downlink subframe ratio, the first cellular frequency band transceiver or the second cellular frequency band transceiver to pass the target uplink and downlink subframe Control layer data information sent by the cellular band of the fourth bandwidth;
  • the third cellular band transceiver is further configured to: according to the information of the target uplink and downlink subframe ratio, the cellular frequency band of the fourth bandwidth that is matched by the target uplink and downlink subframes to the first cellular frequency band
  • the transceiver or the second cellular band transceiver transmits uplink data.
  • the cellular base station is further configured to estimate, according to the millimeter wave band bandwidth of the first bandwidth, The uplink load of the cellular device in the fourth bandwidth is adjusted according to the uplink load, and the ratio of the current uplink and downlink subframes is adjusted to the target uplink and downlink subframe ratio.
  • a user equipment provided by an embodiment of the present invention includes: a memory, a controller, a cellular band transceiver, and a millimeter wave band receiver, where:
  • the memory is coupled to the controller, and the controller is further coupled to the cellular band transceiver and the millimeter wave band receiver, respectively;
  • the memory is for storing a set of program codes and user data, and the controller is configured to invoke the memory stored program to control the cellular band transceiver and the millimeter wave band receiver to perform the following operations:
  • the cellular band transceiver receives control layer data information sent by a cellular base station or a millimeter wave base station through a cellular frequency band;
  • the cellular band transceiver transmits uplink data to the cellular base station or the millimeter wave base station through a cellular frequency band;
  • the millimeter wave band receiver receives user layer data information transmitted by the millimeter wave base station through a millimeter wave band.
  • the cellular band transceiver is further configured to receive first identification information of a millimeter wave band of the first bandwidth sent by the cellular base station or the millimeter wave base station;
  • the millimeter wave band of the first bandwidth is a millimeter wave band bandwidth allocated by the cellular base station or the millimeter wave base station to the user equipment;
  • the millimeter wave band receiver is further configured to receive user layer data information sent by the millimeter wave base station through the millimeter wave band according to the first identification information.
  • the user equipment communicates with the cellular base station by using an FDD mode in a cellular frequency band, and/or The user equipment communicates with the millimeter wave base station in an FDD mode in a cellular frequency band; the cellular frequency band transceiver is further configured to receive control layer data information sent by a cellular base station or a millimeter wave base station through a second frequency band of the second bandwidth;
  • the cellular band transceiver is further configured to send uplink data to the cellular base station or the millimeter wave base station by using a cellular band of a third bandwidth;
  • the cellular band transceiver is further configured to receive the cellular base station or the millimeter wave base station to send The second identification information of the cellular frequency band of the third bandwidth after the uplink carrier is added; wherein, the cellular frequency band of the third bandwidth after the uplink carrier is increased is a cellular frequency band of a third bandwidth after adding a specific bandwidth or a specific number of carriers, The specific bandwidth or the specific number of carriers added by the cellular band of the third bandwidth is an uplink carrier added by the cellular base station or the millimeter wave base station according to the millimeter wave band bandwidth of the first bandwidth to the user equipment;
  • the cellular band transceiver is further configured to send uplink data to the cellular base station or the millimeter wave base station by using the second frequency band of the uplink frequency after the uplink carrier is added according to the second identifier information.
  • the user equipment communicates with the cellular base station by using a TDD manner in a cellular frequency band, and/or The user equipment communicates with the millimeter wave base station in a cellular frequency band by using a TDD mode;
  • the cellular frequency band transceiver is further configured to receive control layer data information sent by a cellular base station or a millimeter wave base station through a fourth frequency band of a radio frequency band;
  • the cellular band transceiver is further configured to send uplink data to the cellular base station or the millimeter wave base station by using the cellular frequency band of the fourth bandwidth;
  • the cellular band transceiver is further configured to receive information about a target uplink and downlink subframe ratio of a cellular frequency band of the fourth bandwidth that is sent by the cellular base station, where the target uplink and downlink subframes of the fourth bandwidth Comparing the uplink and downlink subframe ratio adjusted by the cellular base station according to the millimeter wave band bandwidth of the first bandwidth;
  • the cellular band transceiver is further configured to receive, according to the information of the target uplink and downlink subframe ratio, a cellular frequency band of the fourth bandwidth that is matched by the cellular base station or the millimeter wave base station by using the target uplink and downlink subframes.
  • the cellular band transceiver is further configured to send, according to the information of the target uplink and downlink subframe ratio, the cellular frequency band of the fourth bandwidth of the target uplink and downlink subframe ratio to the cellular base station or the millimeter wave base station. Send upstream data.
  • a base station provided by the embodiment of the present invention includes: a memory, a controller, a millimeter wave band transmitter, and a cellular band transceiver, where:
  • the memory is connected to the controller, and the controller is further connected to the millimeter wave band transmitter;
  • the memory is configured to store a set of program codes and user data, and the controller is configured to invoke the program stored in the memory to control the millimeter wave band transmitter to perform the following operations:
  • the millimeter wave band transmitter transmits user layer data information to the user equipment through the millimeter wave frequency band; the controller is further configured to invoke the memory storage program to control the cellular frequency band to perform the following operations:
  • the cellular band transceiver transmits control layer data information to the user equipment through a cellular frequency band;
  • the cellular band transceiver receives uplink data sent by the user equipment through a cellular frequency band.
  • the controller is further configured to allocate, by the user equipment, a millimeter wave band of a first bandwidth;
  • the cellular band transceiver is further configured to send first identifier information of the millimeter wave band of the first bandwidth to the user equipment;
  • the millimeter wave band transmitter is further configured to send user layer data information to the user equipment through the millimeter wave band of the first bandwidth according to the first identification information.
  • the user equipment and the base station perform communication by using an FDD mode in a cellular frequency band;
  • the machine is further configured to send control layer data information to the user equipment by using a cellular frequency band of the second bandwidth;
  • the cellular band transceiver is further configured to receive uplink data sent by the user equipment through a cellular frequency band of a third bandwidth;
  • the controller is further configured to: add, by the user equipment, the uplink carrier of the third frequency band of the third bandwidth to a specific bandwidth or a specific number of carriers according to the millimeter wave band bandwidth of the first bandwidth;
  • the cellular band transceiver is further configured to send the second identifier information of the third frequency band of the third bandwidth after the uplink carrier is added to the user equipment;
  • the cellular band transceiver is further configured to receive, according to the second identifier information, uplink data that is sent by the user equipment by using a third frequency band of the third bandwidth after adding the uplink carrier.
  • a communication method provided by an embodiment of the present invention includes:
  • control layer data information sent by the cellular base station or the millimeter wave base station through the cellular frequency band, where the control layer data information includes first identification information of a millimeter wave frequency band;
  • the uplink data includes feedback information of a millimeter wave frequency band identified by the first identification information
  • the millimeter wave frequency band includes a millimeter wave frequency band of the first bandwidth, where the millimeter wave frequency band of the first bandwidth is the cellular base station or the millimeter wave base station The bandwidth of the allocated millimeter wave band;
  • the method Before the sending the uplink data to the cellular base station or the millimeter wave base station by using the cellular frequency band, the method further includes:
  • the cellular base station or the second identifier information of the third frequency band of the third bandwidth after the uplink carrier is sent by the cellular base station or the millimeter wave base station where the cellular frequency band of the third bandwidth after adding the uplink carrier is increasing a specific bandwidth or a cellular frequency band of a third bandwidth after a specific number of carriers, and a specific bandwidth or a specific number of carriers added by the cellular frequency band of the third bandwidth is increased by the cellular base station or the millimeter wave base station according to the millimeter wave frequency band of the first bandwidth ;
  • the control layer data information sent by the receiving cellular base station or the millimeter wave base station through the cellular frequency band includes:
  • the millimeter wave frequency band includes a millimeter wave frequency band of the first bandwidth, where the millimeter wave frequency band of the first bandwidth is the cellular base station or The bandwidth of the millimeter wave band allocated by the millimeter wave base station;
  • the method Before the receiving the control layer data information sent by the cellular base station or the millimeter wave base station through the cellular frequency band, the method further includes:
  • the cellular base station And receiving, by the cellular base station, the information of the target uplink and downlink subframe ratio of the fourth frequency band of the cellular frequency band, where the target uplink and downlink subframe ratio of the fourth bandwidth of the cellular frequency band is the first The bandwidth of the millimeter wave band bandwidth adjustment of the uplink and downlink subframe ratio;
  • the control layer data information sent by the receiving cellular base station or the millimeter wave base station through the cellular frequency band include:
  • the user equipment receives the control layer data information sent by the first cellular band transceiver or the second cellular band transceiver through the cellular frequency band through the third cellular band transceiver; and the third cellular band transceiver passes The cellular frequency band transmits uplink data to the first cellular frequency band transceiver or the second cellular frequency band transceiver; and the user layer data information sent by the millimeter wave frequency band transmitter through the millimeter wave frequency band is received by the millimeter wave band receiver.
  • the user equipment only needs to include a set of cellular band transceivers and a set of millimeter wave band receivers to complete communication in the cellular band and the millimeter wave band, and a set of cellular band transceivers and a set are required compared to the prior art user equipment.
  • the millimeter wave band transceiver so that the embodiment of the present invention can reduce the cost of the user equipment.
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention.
  • FIG. 2 is a schematic structural diagram of another communication system according to an embodiment of the present invention.
  • FIG. 3 is a schematic diagram of an optional frequency band provided by an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of an optional communication provided by an embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a millimeter wave base station according to an embodiment of the present invention.
  • FIG. 9 is a schematic structural diagram of another millimeter wave base station according to an embodiment of the present invention.
  • FIG. 10 is a schematic flowchart diagram of a communication method according to an embodiment of the present invention.
  • FIG. 11 is a schematic flowchart diagram of another communication method according to an embodiment of the present invention.
  • FIG. 12 is a schematic flowchart diagram of another communication method according to an embodiment of the present invention. detailed description
  • the communication system may be any communication system in which any cellular network and millimeter wave cellular communication coexist, such as: Long Term Evolution (LTE) network system, Worldwide Interoperability for Microwave Access (World Interoperability for Microwave Access, WiMax) system, etc.
  • LTE Long Term Evolution
  • WiMax Worldwide Interoperability for Microwave Access
  • the cellular frequency band may specifically be a low frequency band (for example, a frequency band below 3 GHz).
  • FIG. 1 is a schematic structural diagram of a communication system according to an embodiment of the present invention. As shown in FIG. 1, the method includes: a cellular base station 11, a millimeter wave base station 12, and a user equipment 13, wherein:
  • the cellular base station 11 is connected to the millimeter wave base station 12 via a transmission link.
  • the cellular base station 11 includes a first cellular band transceiver 111.
  • the millimeter wave base station 12 includes a second cellular band transceiver 121 and a millimeter wave band transmitter 122, as shown in FIG.
  • the user equipment 13 includes a third cellular band transceiver 131 and a millimeter wave band receiver 132;
  • the third cellular band transceiver 131 is configured to receive control layer data information sent by the first cellular band transceiver 111 or the second cellular band transceiver 121 through the cellular frequency band.
  • the first cellular band transceiver 111 transmits control layer data information to the third cellular band transceiver 131 through the cellular frequency band, or the second cellular band transceiver 121 transmits the control layer data to the third cellular band transceiver 131 through the cellular frequency band.
  • the control layer data information herein may be Radio Resource Control (RRC) signaling information transmitted between the base station and the user equipment, and the broadcast channel (the broadcasting infomation channel, which is transmitted by the base station to the user equipment, BCH) signaling, etc.
  • RRC Radio Resource Control
  • the third cellular band transceiver 131 is further configured to transmit uplink data to the first cellular band transceiver 111 or the second cellular band transceiver 121 via the cellular frequency band.
  • the first cellular band transceiver 111 receives the control layer data information and the user layer data information sent by the third cellular band transceiver 131 through the cellular frequency band, that is, the uplink data, or the second cellular band transceiver 121 receives the third cell.
  • the millimeter wave band receiver 132 is configured to receive user layer data information transmitted by the millimeter wave band transmitter 122 through the millimeter wave band.
  • the foregoing system includes: a cellular base station 11, a millimeter wave base station 12, and a user equipment 13, and specifically the foregoing system includes at least one cellular base station 11, at least one millimeter wave base station 12, and at least one user equipment 13 . That is, the above-mentioned cellular base station 11 may represent one or more cellular base stations, and the millimeter wave base station 12 may represent one or more millimeter wave base stations, and the user equipment 13 may represent one or more user equipments.
  • the foregoing uplink data may specifically include at least one of the following:
  • Control layer data information and user layer data information are control layer data information and user layer data information.
  • the user equipment receives the control layer data information sent by the first cellular band transceiver or the second cellular band transceiver through the cellular frequency band through the third cellular band transceiver; and the third cellular band transceiver passes The cellular frequency band transmits uplink data to the first cellular frequency band transceiver or the second cellular frequency band transceiver; and the user layer data information sent by the millimeter wave frequency band transmitter through the millimeter wave frequency band is received by the millimeter wave band receiver.
  • the user equipment only needs to include a set of cellular band transceivers and a set of millimeter wave band receivers to complete communication in the cellular band and the millimeter wave band, and a set of cellular band transceivers and a set are required compared to the prior art user equipment.
  • the millimeter wave band transceiver so that the embodiment of the present invention can reduce the cost of the user equipment.
  • 2 is a schematic structural diagram of a communication system according to an embodiment of the present invention. As shown in FIG. 2, the method includes: a cellular base station 21, a millimeter wave base station 22, and a user equipment 23, where:
  • the cellular base station 21 is connected to the millimeter wave base station 22 via a transmission link.
  • the cellular base station 21 may be connected to the millimeter wave base station 22 through a circuit, or the cellular base station 21 may be connected to the millimeter wave base station 22 via a fiber-optic wired backhaul link, or the cellular base station 21 may pass through
  • the meter wave wireless backhaul link is connected to the millimeter wave base station 22.
  • the cellular base station 21 can exchange data with the millimeter wave base station 22 through the above link.
  • the cellular base station 21 may transmit the user layer data information that needs to be sent to the user equipment 23 to the millimeter wave base station 22 through the foregoing link, and may also send the scheduling information of the user layer data information to the millimeter wave base station 22, that is, the cellular.
  • the base station 21 can schedule the millimeter wave base station 22 to transmit the user layer data information to the user equipment 23 through the scheduling information.
  • the cellular base station 21 includes a first cellular band transceiver 211.
  • the millimeter wave base station 22 includes a second cellular band transceiver 221 and a millimeter wave band transmitter 222, as shown in FIG.
  • the user equipment 23 includes a third cellular band transceiver 231 and a millimeter wave band receiver 232;
  • the third cellular band transceiver 231 is configured to receive control layer data information sent by the first cellular band transceiver 211 or the second cellular band transceiver 221 through the cellular frequency band.
  • the third cellular band transceiver 231 is also operative to transmit uplink data to the first cellular band transceiver 211 or the second cellular band transceiver 221 via the cellular frequency band.
  • the first cellular band transceiver 211 receives the control layer data information sent by the third cellular band transceiver 231 through the cellular frequency band, or the second cellular band transceiver 221 receives the control of the third cellular band transceiver 231 transmitted through the cellular frequency band. Layer data information.
  • the millimeter wave band receiver 232 is configured to receive user layer data information transmitted by the millimeter wave band transmitter 222 through the millimeter wave band.
  • the cellular base station 21 may be further configured to allocate a millimeter wave frequency band of the first bandwidth to the user equipment;
  • the first cellular band transceiver 211 is further configured to send the first identification information of the millimeter wave band of the first bandwidth to the third cellular band transceiver;
  • the millimeter wave band receiver 231 is further configured to receive user layer data information sent by the millimeter wave band transmitter through the millimeter wave band of the first bandwidth according to the first identification information.
  • the user equipment 23 measures the millimeter wave frequency band and feeds back its channel state information to the cellular base station 21, and the cellular base station 21 allocates the foregoing to the user equipment 23 according to the measurement result.
  • the millimeter wave band of the first bandwidth (for example: 200M).
  • the cellular base station 21 can regenerate the identification information of the millimeter wave band of the first bandwidth (for example, 200 M), that is, the first identification information.
  • the millimeter wave frequency band of the first bandwidth can be found according to the identification information, and the user layer data information is received on the millimeter wave frequency band.
  • the first bandwidth band may specifically be a downlink data transmission dedicated to the user equipment 23.
  • the first identifier information may specifically be an ID number corresponding to the millimeter wave band of the first bandwidth.
  • the cellular base station 21 may further include: a memory 212 and a controller 213, wherein: the memory 212 is configured to store a set of program codes, and the controller 213 is configured to invoke a program stored in the memory 212 to perform allocation of the first bandwidth to the user equipment. Operation of the millimeter wave band.
  • the millimeter wave base station 22 can also be configured to allocate the millimeter wave band of the first bandwidth to the user equipment;
  • the second cellular band transceiver 221 is further configured to send the first identification information of the millimeter wave band of the first bandwidth to the third cellular band transceiver;
  • the millimeter wave band receiver 231 is further configured to receive user layer data information sent by the millimeter wave band transmitter through the millimeter wave band of the first bandwidth according to the first identification information.
  • the cellular base station 21 transmits, to the millimeter wave base station 22, indication information for allocating the bandwidth of the millimeter wave band to the user equipment 23, and after receiving the indication information, the millimeter wave base station 22 receives the indication information.
  • the millimeter wave band is measured, and the millimeter wave base station 22 further allocates the millimeter wave band of the first bandwidth (for example, 200 M) to the user equipment 23 according to the measurement result.
  • the first bandwidth band may specifically be a downlink data transmission dedicated to the user equipment 23.
  • the first identifier information may specifically be an ID number corresponding to the millimeter wave band of the first bandwidth.
  • the millimeter wave base station 22 may further include: a memory 223 and a controller 224, wherein: the memory 223 is configured to store a set of program codes, and the controller 224 is configured to invoke a program stored in the memory 223 to perform allocation of the first bandwidth to the user equipment. The operation of the millimeter wave band.
  • the user equipment 23 communicates with the cellular base station 21 in a frequency band using a Frequency Division Duplexing (FDD) manner, and/or the user equipment 23 and the The millimeter wave base station 22 communicates in the cellular frequency band by using the FDD method. That is, the third cellular band transceiver 231 receives the control layer data information and transmits the uplink data, which may be specifically performed by means of FDD.
  • FDD Frequency Division Duplexing
  • the third cellular band transceiver 231 can also be configured to receive the first cellular band transceiver 211 or The control layer data information sent by the second cellular band transceiver 221 through the cellular band of the second bandwidth;
  • the third cellular band transceiver 231 can also be configured to transmit uplink data to the first cellular band transceiver 211 or the second cellular band transceiver 221 through a cellular band of a third bandwidth.
  • the cellular frequency band of the second bandwidth and the cellular frequency band of the third bandwidth may specifically be two independent bandwidths of the cellular frequency band.
  • the third cellular band transceiver 231 receives the control layer data information sent by the first cellular band transceiver 211 or the second cellular band transceiver 221 through a downlink carrier formed by a 10 MHz cellular frequency band, and the third cellular frequency band
  • the transceiver 231 transmits uplink data to the first cellular band transceiver 211 or the second cellular band transceiver 221 through an uplink carrier formed by another 10 MHz cellular band.
  • the embodiment may also be implemented in combination with the implementation of the millimeter wave band of the first bandwidth, and the cellular base station 21 may further be configured to: according to the millimeter wave band bandwidth of the first bandwidth, the user equipment 23 to use the third bandwidth of the cell.
  • the uplink carrier of the frequency band increases a specific bandwidth or a specific number of carriers;
  • the first cellular band transceiver 211 can also be configured to send, to the third cellular band transceiver 231, the second identification information of the cellular frequency band of the third bandwidth after the uplink carrier is increased.
  • the cellular frequency band of the third bandwidth is a bandwidth allocated by the system to the user equipment 23 in advance (for example, a 10 MHz cellular frequency band), and the cellular base station 21 or the millimeter wave base station 22 allocates the millimeter wave frequency band of the first bandwidth to the user equipment 23.
  • the cellular base station 21 estimates the uplink load of the user equipment 23 according to the millimeter wave band bandwidth of the first bandwidth, and determines whether the cellular frequency band of the third bandwidth can carry the uplink load of the user equipment 23, and when determining the cellular frequency band of the third bandwidth is not When the uplink load of the user equipment 23 can be carried, the cellular base station 21 can add the uplink carrier of the cellular band of the third bandwidth to the user equipment 23 according to the estimated uplink load.
  • the uplink carrier of the cellular frequency band that increases the third bandwidth may specifically be a bandwidth of a cellular frequency band that increases a third bandwidth, or an uplink carrier number of a cellular frequency band that increases a third bandwidth. For example, if the cellular frequency band of the third bandwidth is 10 MHz, the cellular base station 21 can adjust the cellular frequency band of the third bandwidth to 30 M, or use multiple 10 MHz cellular frequency bands as the cellular frequency band of the third bandwidth.
  • the second identifier information may be specifically an ID number of a cellular frequency band that increases a third bandwidth after the uplink carrier.
  • the first cellular band transceiver 221 sends the second identifier information to the third cellular band transceiver 231, which may be specifically controlled by Radio Resource Control (RRC).
  • RRC Radio Resource Control
  • the protocol signaling sends the second identification information to the third cellular band transceiver 231. That is, the uplink carrier that increases the cellular band of the third bandwidth is implemented for the user equipment 23 through RRC signaling.
  • the cellular base station 21 is further configured to estimate an uplink load of the user equipment according to the millimeter wave frequency band bandwidth of the first bandwidth, and use the third uplink bandwidth for the user equipment 23 according to the uplink load.
  • the uplink carrier of the cellular band increases the specific bandwidth or the number of specific carriers.
  • the cellular base station 21 can obtain the uplink load quantity of the channel state information of the link of the millimeter wave frequency band fed back by the user equipment 23 through the bandwidth of the millimeter wave frequency band of the first bandwidth, and then the user equipment 23 according to the uplink load quantity.
  • the uplink carrier of the third frequency band of the cellular band is increased by a specific bandwidth or a specific number of carriers. Therefore, it is possible to semi-statically configure the bandwidth of the uplink carrier of the cellular band or the number of uplink carriers according to the load of the millimeter wave band and the cellular band.
  • the millimeter wave base station 22 is further configured to add, by the user equipment 23, the uplink carrier of the third frequency band of the third bandwidth to a specific bandwidth or a specific number of carriers according to the millimeter wave band bandwidth of the first bandwidth;
  • the second cellular band transceiver 221 is further configured to send the second identifier information of the third frequency band of the third bandwidth to the third cellular band transceiver 231.
  • the third cellular band transceiver 231 is further configured to send, according to the second identifier information, the cellular frequency band of the third bandwidth after adding the uplink carrier to the first cellular band transceiver 221 or the second cell.
  • the band transceiver 221 transmits uplink data.
  • the millimeter wave base station 22 is further configured to estimate an uplink load of the user equipment according to the millimeter wave band bandwidth of the first bandwidth, and the third device is used by the user equipment 23 according to the uplink load.
  • the uplink carrier of the bandwidth of the cellular band increases the specific bandwidth or the number of specific carriers.
  • the millimeter wave base station 22 can obtain the uplink load quantity of the channel state information of the link of the millimeter wave frequency band fed back by the user equipment 23 through the bandwidth of the millimeter wave frequency band of the first bandwidth, and then use the uplink load quantity as the user equipment according to the uplink load quantity. 23 increasing the uplink carrier of the third bandwidth of the cellular frequency band by a specific bandwidth or a specific number of carriers.
  • the implementation manner is specifically as shown in FIG. 3.
  • the user equipment 23 Before the user equipment 23 accesses the millimeter wave base station 22, the user equipment 23 first passes the 10 MHz downlink carrier 301 and the 10 MHz uplink carrier. 302 communicates with the cellular base station 21.
  • the cellular base station 21 or the millimeter wave base station 22 allocates a downlink carrier 303 of a 200 MHz millimeter wave band for the user equipment, that is, the user equipment 23 accesses the millimeter.
  • the downlink carrier of the user equipment 23 may include a 10 MHz downlink carrier 301 and a downlink carrier 303 of a 200 MHz millimeter wave band.
  • the 10 MHz uplink carrier 302 may be difficult to meet the uplink data requirement of the user equipment 23, and the cellular base station 21 or the millimeter wave base station 22 may add the user equipment 23.
  • the number of uplink carriers in the cellular frequency band for example: 10 MHz uplink carrier 304 and 10 MHz uplink carrier 305 are added, so that the downlink carrier of the user equipment 23 may include a 10 MHz uplink carrier 302, a 10 MHz uplink carrier 304, and a 10 MHz uplink carrier 305.
  • the user equipment 23 communicates with the cellular base station 21 in a time division duplex (TDD) manner in the cellular frequency band, and/or the user equipment 23 and the millimeter wave base station 21 are used in the cellular frequency band.
  • TDD mode for communication. That is, the third cellular band transceiver 231 receives the control layer data information and transmits the uplink data through the same frequency band of the cellular frequency band.
  • the third cellular band transceiver 231 is further configured to receive control layer data information sent by the first cellular band transceiver 211 or the second cellular band transceiver 221 through a fourth frequency band of the cellular band; the third cellular band transceiver And is further configured to send uplink data to the first cellular band transceiver 211 or the second cellular band transceiver 221 through the cellular band of the fourth bandwidth.
  • the third cellular band transceiver 231 receives the control layer data information sent by the first cellular band transceiver 211 or the second cellular band transceiver 221 through the downlink subframe in the cellular band of the fourth bandwidth, and the third cellular band transceiver 231 sends uplink data to the first cellular band transceiver 111 or the second cellular band transceiver 221 through an uplink subframe in the cellular band of the fourth bandwidth.
  • the cellular base station 21 is further configured to adjust, according to the millimeter wave band bandwidth of the first bandwidth, a current uplink and downlink subframe ratio of the fourth bandwidth of the cellular frequency band to a target uplink and downlink subframe ratio;
  • a cellular band transceiver 211 can also be configured to send information about the target uplink and downlink subframe ratio to the third cellular band transceiver 231;
  • the third cellular band transceiver 231 can also be configured to receive the first cellular band transceiver 211 or the second cellular band transceiver 221 according to the information of the target uplink and downlink subframe ratio.
  • the control layer data information sent by the cellular band of the fourth bandwidth matched by the target uplink and downlink subframes; the third cellular band transceiver 231 may be further configured to: according to the information of the target uplink and downlink subframe ratio,
  • the cellular frequency band of the fourth bandwidth matched by the target uplink and downlink subframes sends uplink data to the first cellular band transceiver 211 or the second cellular band transceiver 221.
  • the current uplink and downlink subframe ratio of the fourth bandwidth of the cellular frequency band is the uplink and downlink subframe ratio 3 defined by the communication protocol, that is, the current uplink and downlink subframe ratio of the fourth bandwidth of the cellular frequency band is 3:6, for example,
  • the cellular bandwidth of the fourth bandwidth is 10 MHz
  • the radio frequency band of the fourth bandwidth includes 10 radio subframes, and the subframes 2, 3, and 4 are configured as uplink subframes, and the 0th, 5th, and 5th
  • the subframes 6, 6, 8, and 9 are configured as downlink subframes, and the subframe 1 is a handover subframe.
  • the cellular base station 21 can adjust the uplink-downlink subframe ratio 3 to the uplink-downlink subframe ratio 0 defined by the communication protocol, that is, the uplink and downlink subframe ratio of the fourth bandwidth of the cellular bandwidth is 6:2, for example, :
  • the cellular frequency band of the fourth bandwidth is 10 MHz, and then, in the cellular frequency band of the fourth bandwidth, each radio frame includes 10 radio subframes, and the subframes 2, 3, 4, 7, 8, and 9 are configured as uplink sub-frames.
  • Frames, subframes 0 and 5 are configured as downlink subframes, and subframes 1 and 6 are handover subframes.
  • the foregoing communication protocol may specifically be an evolved Advanced of LTE, that is, an LTE-Advanced protocol.
  • the cellular base station 21 is further configured to estimate an uplink load of the user equipment 23 according to the millimeter wave band bandwidth of the first bandwidth, and adjust a current frequency of the fourth bandwidth according to the uplink load.
  • the uplink and downlink subframe ratio is adjusted to the target uplink and downlink subframe ratio.
  • the cellular base station 21 can obtain the uplink load quantity of the channel state information of the link of the millimeter wave frequency band fed back by the user equipment 23 through the bandwidth of the millimeter wave frequency band of the first bandwidth, and adjust the fourth bandwidth according to the uplink load quantity.
  • the current uplink and downlink subframe ratio of the cellular frequency band is adjusted to the target uplink and downlink subframe ratio.
  • the cellular base station 21 obtains the uplink load of the user equipment 23 in the cellular frequency band according to the number of user equipments 23 that perform downlink communication through the millimeter wave frequency band of the first bandwidth, and then adjusts the fourth according to the uplink load amount.
  • the current uplink and downlink subframe ratio of the bandwidth of the cellular frequency band is adjusted to the target uplink and downlink subframe ratio. Therefore, the uplink-downlink subframe ratio of the cellular frequency band can be semi-statically configured according to the load of the millimeter wave band and the cellular band.
  • the cellular base station 21 and the millimeter wave base station 22 can share a single antenna (for example, a transmitting tower and a pole) to set up respective antennas, or share a set of days. Line.
  • the data connection between the cellular base station 21 and the millimeter wave base station 22, that is, the data exchange between the cellular base station 21 and the millimeter wave base station 22 can be exchange between high speed circuits, so that there is no cellular base station 21 and millimeter wave base station 22
  • the delay and capacity issues of the backhaul link can improve the transmission efficiency of the communication system.
  • the coverage of the millimeter wave base station 22 may be consistent with the coverage of the cellular base station 21, for example: the coverage of both is a hot spot, such as 200 to 500 meters of the hotspot area. Radius range.
  • the coverage of the millimeter wave base station 22 can also be smaller than the coverage of the cellular base station 22.
  • the millimeter wave base station 22 covers a radius ranging from 200 meters to 500 meters as a hot spot
  • the cellular base station 21 covers a wider range of a radius ranging from 1 km to 2 km.
  • the user equipment 23 can be a user equipment within the coverage of the millimeter wave base station 22 and within the coverage of the co-site cellular base station 21.
  • the user equipment 23 within the coverage of the millimeter wave base station 22 receives the control plane information transmitted from the cellular base station 21 through the cellular frequency band 401 through the third cellular frequency band transceiver 231, and receives the millimeter wave band receiver 232 from the millimeter wave band receiver 232.
  • the third cellular band transceiver 231 transmits uplink data (including control plane information and user plane information) to the cellular base station 21 or the millimeter wave base station 22 via the cellular frequency band 401.
  • the user equipment 24 outside the coverage of the millimeter wave base station 22 can only communicate with the cellular base station 21 via the cellular frequency band 401.
  • the cellular base station 21 and the millimeter wave base station 22 are configured in a non-co-site manner.
  • the cellular base station 21 and the millimeter wave base station 22 are erected at different sites.
  • the cellular base station 21 and the millimeter wave base station 22 exchange data through a fiber-optic wired backhaul link or a millimeter-wave wireless backhaul link.
  • one or more millimeter wave base stations 22 are within the coverage of the cellular base station 21.
  • the user equipment 23 within the coverage of the millimeter wave base station 22 can perform data transmission with the cellular base station through the cellular frequency band.
  • the user equipment 23 within the coverage of the millimeter wave base station 22 receives the control plane information transmitted from the cellular base station 21 through the cellular frequency band 501 through the third cellular band transceiver 231, and receives the millimeter wave base station 22 through the millimeter wave band receiver 232.
  • the third cellular band transceiver 231 transmits uplink data (including control plane information and user plane information) to the cellular base station 21 through the cellular frequency band 501.
  • the architecture can consider the millimeter wave base station 22 as a relay
  • the transmission of the node, the scheduling, and the scheduling information is performed by the cellular base station 21, where the scheduling may specifically refer to the scheduling control layer data information and the user layer data information being sent to the user equipment 23.
  • the user layer data information may first be moved to the millimeter wave base station 22 through the backhaul link between the cellular base station 21 and the millimeter wave base station 22, and the cellular base station 21 schedules the millimeter wave base station 22 to pass the millimeter wave band by transmitting scheduling information to the millimeter wave base station 22.
  • 502 transmits user layer data information to the user equipment.
  • the user equipment 23 can also feed back its acknowledgment message to the cellular base station 21 via the cellular frequency band 501, for example: Acknowledgement (ACK), or feed back its unacknowledged message to the cellular base station 21 via the cellular frequency band 501, for example: Negative acknowledgement message (Negative Acknowledgement, NACK ).
  • ACK Acknowledgement
  • NACK Negative acknowledgement message
  • the cellular base station 21 then schedules the millimeter wave base station 22 to perform corresponding retransmission based on the information fed back by the user equipment 23.
  • User equipment 24 outside the coverage of millimeter wave base station 22 can only communicate with cellular base station 21 via cellular frequency band 501.
  • the cellular base station 21 and the millimeter wave base station 22 are configured in a non-co-site manner.
  • the cellular base station 21 and the millimeter wave base station 22 are erected at different sites.
  • the cellular base station 21 and the millimeter wave base station 22 exchange data through a fiber-optic wired backhaul link or a millimeter-wave wireless backhaul link.
  • one or more millimeter wave base stations 22 are within the coverage of the cellular base station 21.
  • the user equipment 23 within the coverage of the millimeter wave base station 22 receives the control plane information transmitted from the cellular base station 21 through the cellular frequency band 601 through the third cellular band transceiver 231, and receives the millimeter wave base station 22 through the millimeter wave band receiver 232.
  • the third cellular band transceiver 232 transmits uplink data (including control plane information and user plane information) to the millimeter wave base station 22 via the cellular frequency band 601.
  • the architecture can be considered that the millimeter wave base station 22 is a relay node, and the scheduling and the transmission of the scheduling information are all performed by the cellular base station 21.
  • the scheduling may specifically refer to the scheduling control layer data information and the user layer data information being sent to the user equipment 23.
  • the user layer data information may first be moved to the millimeter wave base station 22 through the backhaul link between the cellular base station 21 and the millimeter wave base station 22, and the cellular base station 21 schedules the millimeter wave base station 22 to pass the millimeter wave band by transmitting scheduling information to the millimeter wave base station 22. 502 transmits user layer data information to the user equipment.
  • the user equipment 23 can also feed back its acknowledgment message to the millimeter wave base station 22 via the cellular frequency band 601, for example: ACK, or feed back its unacknowledged message to the millimeter wave base station 22 via the cellular frequency band 601, for example: NACK.
  • FIG. 7 is a schematic structural diagram of a user equipment according to an embodiment of the present invention. As shown in FIG. 7, the method includes: a memory 71, a controller 72, a cellular band transceiver 73, and a millimeter wave band receiver 74, where:
  • the memory 71 is coupled to the controller 72, which is also coupled to the cellular band transceiver 73 and the millimeter wave band receiver 74, respectively;
  • the memory 71 is for storing a set of program codes and user data
  • the controller 72 is for calling a program stored in the memory 71 to control the cellular band transceiver 73 and the millimeter wave band receiver 74 to perform the following operations:
  • the cellular band transceiver 73 receives control layer data information transmitted by the cellular base station or the millimeter wave base station through the cellular frequency band;
  • the cellular band transceiver 73 transmits uplink data to the cellular base station or the millimeter wave base station through a cellular frequency band;
  • the millimeter wave band receiver 74 receives user layer data information transmitted by the millimeter wave base station through the millimeter wave band.
  • the foregoing uplink data may specifically include at least one of the following:
  • Control layer data information and user layer data information are control layer data information and user layer data information.
  • the cellular band transceiver 73 is further configured to receive first identifier information of a millimeter wave band of the first bandwidth sent by the cellular base station or the millimeter wave base station; where the first The millimeter wave band of the bandwidth is a millimeter wave band bandwidth allocated by the cellular base station or the millimeter wave base station to the user equipment;
  • the millimeter wave band receiver 74 can also be configured to receive user layer data information transmitted by the millimeter wave base station through the millimeter wave band according to the first identification information.
  • the foregoing first bandwidth band may be specifically used for downlink data transmission of the user equipment.
  • the first identifier information may be an ID number corresponding to the millimeter wave frequency band of the first bandwidth.
  • the user equipment communicates with the cellular base station by using an FDD method in a cellular frequency band, and/or the user equipment communicates with the millimeter wave base station in a cellular frequency band by using an FDD method;
  • the cellular band transceiver 73 can also be configured to receive control layer data information sent by the cellular base station or the millimeter wave base station through the cellular band of the second bandwidth;
  • the cellular band transceiver 73 can also be configured to send uplink data to the cellular base station or the millimeter wave base station through a cellular band of a third bandwidth;
  • the cellular band transceiver 73 is further configured to receive the second identifier information of the cellular frequency band of the third bandwidth after the uplink carrier is sent by the cellular base station or the millimeter wave base station, where the third bandwidth after the uplink carrier is increased
  • the cellular frequency band is a cellular frequency band of a third bandwidth after a specific bandwidth or a specific number of carriers, and the specific bandwidth or the specific number of carriers added by the third frequency band of the cellular band is the cellular base station or the millimeter wave base station according to the The bandwidth of the millimeter wave band of one bandwidth is an uplink carrier added by the user equipment;
  • the cellular band transceiver 73 is further configured to send uplink data to the cellular base station or the millimeter wave base station by using the second frequency band of the uplink frequency carrier according to the second identification information.
  • the cellular frequency band of the third bandwidth is a bandwidth allocated by the system to the user equipment in advance (for example, a cellular frequency band of 10 MHz), and when the cellular base station or the millimeter wave base station allocates the millimeter wave frequency band of the first bandwidth to the user equipment, the cellular base station Or the millimeter wave base station may estimate the uplink load of the user equipment according to the bandwidth of the millimeter wave band of the first bandwidth, and then determine whether the cellular frequency band of the third bandwidth can carry the uplink load of the user equipment, when determining the cellular frequency band of the third bandwidth is not When the uplink load of the user equipment can be carried, the cellular base station or the millimeter wave base station can add the uplink carrier of the third frequency band to the user equipment according to the millimeter wave frequency band bandwidth of the first bandwidth.
  • a bandwidth allocated by the system to the user equipment in advance for example, a cellular frequency band of 10 MHz
  • the cellular base station or the millimeter wave base station may estimate the uplink load of
  • the uplink carrier of the cellular frequency band that increases the third bandwidth may specifically be a bandwidth of a cellular frequency band that increases a third bandwidth, or an uplink carrier number of a cellular frequency band that increases a third bandwidth.
  • the cellular frequency band of the third bandwidth is 10 MHz
  • the cellular base station or the millimeter wave base station can adjust the cellular frequency band of the third bandwidth to 30 M, or use multiple 10 MHz cellular frequency bands as the cellular frequency band of the third bandwidth.
  • the second identifier information may be specifically an ID number of a cellular frequency band that increases a third bandwidth after the uplink carrier.
  • the second identifier information is sent by the cellular base station or the millimeter wave base station to the cellular band transceiver 73.
  • the second identifier information is sent to the cellular band transceiver 73 by using RRC signaling. That is, the uplink carrier of the cellular frequency band with the third bandwidth is increased for the user equipment by using RRC signaling.
  • the user equipment communicates with the cellular base station in a TDD manner in a cellular frequency band, and/or the user equipment communicates with the millimeter wave base station in a cellular frequency band by using a TDD manner;
  • the cellular band transceiver 73 can also be configured to receive control layer data information transmitted by the cellular base station or the millimeter wave base station through the fourth bandwidth of the cellular frequency band;
  • the cellular band transceiver 73 is further configured to send uplink data to the cellular base station or the millimeter wave base station by using the cellular band of the fourth bandwidth;
  • the cellular band transceiver 73 is further configured to receive, by the cellular base station, information about a target uplink and downlink subframe ratio of a cellular frequency band of the fourth bandwidth, where the target uplink and downlink subframe of the fourth bandwidth Comparing the uplink and downlink subframe ratio adjusted by the cellular base station according to the millimeter wave band bandwidth of the first bandwidth; receiving the fourth of the target uplink and downlink subframe ratio by the cellular base station or the millimeter wave base station
  • the control layer data information sent by the bandwidth of the cellular frequency band; the cellular frequency band of the fourth bandwidth matched by the target uplink and downlink subframes is sent to the cellular base station or the millimeter wave base station to send uplink data.
  • the current uplink and downlink subframe ratio of the fourth bandwidth of the cellular frequency band is the uplink and downlink subframe ratio 3 defined by the communication protocol, that is, the current uplink and downlink subframe ratio of the fourth bandwidth of the cellular frequency band is 3:6, for example,
  • the cellular bandwidth of the fourth bandwidth is 10 MHz
  • the radio frequency band of the fourth bandwidth includes 10 radio subframes, and the subframes 2, 3, and 4 are configured as uplink subframes, and the 0th, 5th, and 5th
  • the subframes 6, 6, 8, and 9 are configured as downlink subframes, and the subframe 1 is a handover subframe.
  • the cellular base station 21 can adjust the uplink-downlink subframe ratio 3 to the uplink-downlink subframe ratio 0 defined by the communication protocol, that is, the uplink and downlink subframe ratio of the fourth bandwidth of the cellular bandwidth is 6:2, for example, :
  • the cellular frequency band of the fourth bandwidth is 10 MHz, and then, in the cellular frequency band of the fourth bandwidth, each radio frame includes 10 radio subframes, and the subframes 2, 3, 4, 7, 8, and 9 are configured as uplink sub-frames.
  • Frames, subframes 0 and 5 are configured as downlink subframes, and subframes 1 and 6 are handover subframes.
  • the foregoing communication protocol may specifically be an LTE-Advanced protocol.
  • the user equipment receives the cellular base station or the millimeter wave through the cellular band transceiver.
  • the control layer data information sent by the base station through the cellular frequency band; and the cellular frequency band transceiver transmits the uplink data to the cellular base station or the millimeter wave base station through the cellular frequency band; and then receives the user transmitted by the millimeter wave base station through the millimeter wave frequency band through the millimeter wave band receiver Layer data information.
  • FIG. 8 is a schematic structural diagram of a millimeter wave base station according to an embodiment of the present invention. As shown in FIG. 8, the method includes: a memory 81, a controller 82, and a millimeter wave band transmitter 83, where:
  • the memory 81 is connected to the controller 82, the controller 82 is also connected to the millimeter wave band transmitter 83; the memory 81 is used to store a set of program codes, and the controller 82 is used to call a program stored in the memory 83 to control the millimeter wave band transmitter.
  • 83 performs the following operations:
  • the millimeter wave band transmitter 83 transmits user layer data information to the user equipment through the millimeter wave band.
  • the downlink control layer data information of the user equipment may be sent by the cellular base station to the user equipment through the cellular frequency band, and the uplink data of the user equipment (for example, the uplink control layer data information and the uplink user layer data information) may pass.
  • the cellular band is transmitted to the cellular base station. Thereby completing the communication between the cellular band and the millimeter wave band of the user equipment.
  • FIG. 9 is a schematic structural diagram of a millimeter wave base station according to an embodiment of the present invention. As shown in FIG. 9, the method includes: a memory 91, a controller 92, a cellular band transceiver 93, and a millimeter wave band transmitter 94, where:
  • the memory 91 is connected to the controller 92, and the controller 82 is also connected to the cellular band transceiver 93 and the millimeter wave band transmitter 94, respectively;
  • the memory 91 is used to store a set of program codes, and the controller 92 is used to call a program stored in the memory 93 to control the cellular band transceiver 93 and the millimeter wave band transmitter 94 to perform the following operations:
  • the cellular band transceiver 93 passes through the cellular band
  • the user equipment sends control layer data information; and/or, the cellular band transceiver 93 receives the uplink data sent by the user equipment through the cellular frequency band;
  • the millimeter wave band transmitter 94 transmits user layer data information to the user equipment through the millimeter wave band.
  • the uplink data sent by the user equipment can be sent to the cellular base station; when the cellular frequency band transceiver 93 only receives the user equipment through the cellular frequency band
  • the cellular base station can send control layer data information to the user equipment through the cellular frequency band.
  • the millimeter wave base station can also exchange data with the cellular base station, for example: performing the above-mentioned user layer data information exchange.
  • controller 92 may be further configured to allocate the millimeter wave band of the first bandwidth to the user equipment;
  • the cellular band transceiver 93 can also be configured to send the first identification information of the millimeter wave band of the first bandwidth to the user equipment;
  • the millimeter wave band transmitter 94 can also be used for user layer data information transmitted to the user equipment through the first bandwidth millimeter wave band according to the first identification information.
  • the cellular base station sends, to the millimeter wave base station, indication information for allocating a bandwidth of the millimeter wave band to the user equipment, and after receiving the indication information, the controller 92 performs the millimeter wave frequency band. For measurement, the controller 92 then allocates the millimeter wave band of the first bandwidth (for example: 200M) to the user equipment according to the measurement result.
  • the millimeter wave band of the first bandwidth for example: 200M
  • the foregoing first bandwidth band may specifically be downlink data transmission specifically for user equipment.
  • the first identifier information may specifically be an ID number corresponding to the millimeter wave band of the first bandwidth.
  • the user equipment communicates with the cellular base station by using an FDD manner in a cellular frequency band;
  • the cellular band transceiver 93 can also be configured to transmit control layer data information to the user equipment over a cellular frequency band of the second bandwidth; and/or
  • the cellular band transceiver 93 can also be configured to receive uplink data sent by the user equipment through a third frequency band of the cellular frequency band;
  • the controller 92 is further configured to: add, by the user equipment, the uplink carrier of the third frequency band of the third bandwidth to a specific bandwidth or a specific number of carriers according to the millimeter wave band bandwidth of the first bandwidth; the cellular band transceiver 93 can also Transmitting, by the user equipment, second identifier information of a cellular frequency band of the third bandwidth after adding the uplink carrier;
  • the cellular band transceiver 93 is further configured to receive, according to the second identifier information, uplink data that is sent by the user equipment by using the third frequency band of the third bandwidth after adding the uplink carrier.
  • the cellular frequency band of the third bandwidth is a bandwidth allocated by the system to the user equipment in advance (for example, a 10 MHz cellular frequency band), and when the controller 92 allocates the millimeter wave frequency band of the first bandwidth to the user equipment, the controller 92 can The uplink load of the user equipment is obtained according to the millimeter wave frequency band of the first bandwidth, and whether the cellular frequency band of the third bandwidth can carry the uplink load of the user equipment, and the cellular frequency band of the third bandwidth cannot be used to carry the uplink load of the user equipment.
  • the controller 92 may add an uplink carrier of the third frequency band of the third bandwidth to the user equipment according to the millimeter wave band bandwidth of the first bandwidth.
  • the uplink carrier of the cellular frequency band that increases the third bandwidth may specifically be a bandwidth of a cellular frequency band that increases a third bandwidth, or an uplink carrier number of a cellular frequency band that increases a third bandwidth. For example, if the cellular frequency band of the third bandwidth is 10 MHz, the controller 92 can adjust the cellular frequency band of the third bandwidth to 30 M, or use multiple 10 MHz cellular frequency bands as the cellular frequency band of the third bandwidth.
  • the second identifier information may specifically be an ID number of a cellular frequency band that increases a third bandwidth after the uplink carrier.
  • the cellular band transceiver 93 sends the second identifier information to the user equipment, and specifically, the second identifier information is sent to the user equipment by using RRC signaling. That is, the uplink carrier of the cellular frequency band with the third bandwidth is increased for the user equipment through RRC signaling.
  • FIG. 10 is a schematic structural diagram of a communication method according to an embodiment of the present invention. As shown in FIG. 10, the method includes the following steps:
  • control layer data information sent by a cellular base station or a millimeter wave base station through a cellular frequency band, where the control layer data information includes first identification information of a millimeter wave frequency band.
  • 1002 Send uplink data to the cellular base station or the millimeter wave base station by using a cellular frequency band, where the uplink data includes channel state information of a millimeter wave frequency band identified by the first identification information.
  • the channel state information included in the uplink data may be transmitted to the millimeter wave base station, so that the millimeter wave base station sends the user layer data information to the user equipment through the millimeter wave frequency band.
  • the user layer data information can be transmitted to the user equipment through the millimeter wave frequency band according to the channel state information.
  • the millimeter wave band may include a millimeter wave band of the first bandwidth, where the millimeter wave band of the first bandwidth is the cellular base station or the millimeter wave base station The bandwidth of the matched millimeter wave band;
  • FIG. 11 is a schematic structural diagram of another communication method according to an embodiment of the present invention. As shown in FIG. 11, the method includes the following steps:
  • the first identification information of the cellular frequency band of the third bandwidth after the uplink carrier is added by the cellular base station or the millimeter wave base station is received.
  • the cellular frequency band of the third bandwidth after the uplink carrier is increased is increased by a specific one.
  • a bandwidth or a third bandwidth of the cellular band after the specific number of carriers, the specific bandwidth or the specific number of carriers added by the third bandwidth of the cellular band is the millimeter wave band of the cellular base station or the millimeter wave base station according to the first bandwidth Increased;
  • FIG. 12 is a schematic structural diagram of another communication method according to an embodiment of the present invention. As shown in FIG. 12, the method includes the following steps:
  • the uplink frequency to the cellular base station or the millimeter wave base station by using the fourth frequency band of the target uplink and downlink subframe ratio. data.
  • the cost of the user equipment is reduced, and the TDD mode communication in the cellular frequency band is also implemented, and the frequency band of the cellular frequency band communication with the cellular base station or the millimeter wave base station is uplink and downlink.
  • the subframe ratio can be adjusted by the cellular base station based on the millimeter wave band bandwidth.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (Random Access Memory).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Telephonic Communication Services (AREA)
  • Telephone Function (AREA)

Abstract

本发明实施例公开了一种通信系统包括:蜂窝基站、毫米波基站和用户设备,其中:蜂窝基站通过传输链路与毫米波基站连接,蜂窝基站包括第一蜂窝频段收发机,毫米波基站包括第二蜂窝频段收发机和毫米波频段发射机,用户设备包括第三蜂窝频段收发机和毫米波频段接收机;第三蜂窝频段收发机,用于接收第一蜂窝频段收发机或者第二蜂窝频段收发机通过蜂窝频段发送的控制层数据信息;第三蜂窝频段收发机,用于通过蜂窝频段向第一蜂窝频段收发机或者第二蜂窝频段收发机发送上行数据;毫米波频段接收机,用于接收毫米波频段发射机通过毫米波频段发送的用户层数据信息。相应地,本发明实施例还公开了相关的设备和方法。本发明实施例可以降低用户设备的成本。

Description

一种通信系统、 设备及方法
技术领域
本发明涉及通信领域, 尤其涉及一种通信系统、 设备及方法。 背景技术
目前通信系统中大部分适用于移动通信设备的低频段(例如: 3GHz以下 的频段)的频谱资源已经被分配完, 然而, 高频段(例如: 3-300GHZ的频段) 的大量频谱资源还未被分配使用。 根据国际电信联盟 ( International Telecommunication Union, ITU ) 的定义, 高频段又被统称为毫米波频段。 目 前已有一些使用毫米波频段进行蜂窝通信的方案, 具体如下:
主要是通过在网络侧部署蜂窝基站和毫米波基站,蜂窝基站通过蜂窝频段 与用户设备进行通信, 毫米波基站通过毫米波频段与用户设备进行通信。这样 用户设备就需要部署两套收发机, 一套用于与蜂窝基站进行通信, 另一套用于 与毫米波基站进行通信。且由于毫米波频段的频率过高,使用于毫米波频段通 信的收发机的功率要求和复杂度都比较高, 从而导致用户设备的成本增加。 发明内容
本发明实施例提供了一种通信系统、设备及方法, 本发明实施例中, 用户 设备只需要包括一套蜂窝频段收发机和一套毫米波频段接收机就可以完成在 蜂窝频段和毫米波频段的通信,从而可以解决用于毫米波频段通信的收发机的 功率要求和复杂度都比较高, 导致的用户设备的成本增加的问题。
第一方面, 本发明实施例提供的一种通信系统, 包括: 蜂窝基站、 毫米波 基站和用户设备, 其中:
所述蜂窝基站通过传输链路与所述毫米波基站连接,所述蜂窝基站包括第 一蜂窝频段收发机,所述毫米波基站包括第二蜂窝频段收发机和毫米波频段发 射机, 所述用户设备包括第三蜂窝频段收发机和毫米波频段接收机;
所述第三蜂窝频段收发机,用于接收所述第一蜂窝频段收发机或者所述第 二蜂窝频段收发机通过蜂窝频段发送的控制层数据信息;
所述第三蜂窝频段收发机,用于通过蜂窝频段向所述第一蜂窝频段收发机 或者所述第二蜂窝频段收发机发送上行数据;
所述毫米波频段接收机,用于接收所述毫米波频段发射机通过毫米波频段 发送的用户层数据信息。
在第一方面的第一种可能的实现方式中,所述蜂窝基站还用于为所述用户 设备分配第一带宽的毫米波频段,所述第一蜂窝频段收发机还用于向所述第三 蜂窝频段收发机发送所述第一带宽的毫米波频段的第一标识信息; 或者, 所述 毫米波基站还用于为所述用户设备分配第一带宽的毫米波频段,所述第二蜂窝 频段收发机还用于向所述第三蜂窝频段收发机发送所述第一带宽的毫米波频 段的第一标识信息;
所述毫米波频段接收机还用于根据所述第一标识信息接收所述毫米波频 段发射机通过所述第一带宽的毫米波频段发送的用户层数据信息。
结合第一方面的第一种可能的实现方式,在第一方面的第二种可能的实现 方式中, 所述用户设备与所述蜂窝基站在蜂窝频段采用频分双工 FDD方式进 行通信, 和 /或, 所述用户设备与所述毫米波基站在蜂窝频段采用 FDD方式进 行通信;
所述第三蜂窝频段收发机还用于接收所述第一蜂窝频段收发机或者所述 第二蜂窝频段收发机通过第二带宽的蜂窝频段发送的控制层数据信息;
所述第三蜂窝频段收发机还用于通过第三带宽的蜂窝频段向所述第一蜂 窝频段收发机或者所述第二蜂窝频段收发机发送上行数据;
所述蜂窝基站还用于根据所述第一带宽的毫米波频段带宽为所述用户设 备将所述第三带宽的蜂窝频段的上行载波增加特定带宽或者特定载波数;所述 第一蜂窝频段收发机还用于向所述第三蜂窝频段收发机发送所述增加上行载 波后的第三带宽的蜂窝频段的第二标识信息; 或者, 所述毫米波基站还用于根 据所述第一带宽的毫米波频段带宽为所述用户设备将所述第三带宽的蜂窝频 段的上行载波增加特定带宽或者特定载波数;所述第二蜂窝频段收发机还用于 向所述第三蜂窝频段收发机发送所述增加上行载波后的第三带宽的蜂窝频段 的第二标识信息; 所述第三蜂窝频段收发机还用于根据所述第二标识信息,通过所述增加上 行载波后的第三带宽的蜂窝频段向所述第一蜂窝频段收发机或者所述第二蜂 窝频段收发机发送上行数据。
结合第一方面的第二种可能的实现方式,在第一方面的第三种可能的实现 方式中,所述蜂窝基站还用于根据所述第一带宽的毫米波频段带宽预估所述用 户设备的上行负载,并根据所述上行负载为所述用户设备将所述第三带宽的蜂 窝频段的上行载波增加特定带宽或者特定载波数;或者所述毫米波基站还用于 根据所述第一带宽的毫米波频段带宽预估所述用户设备的上行负载,并根据所 述上行负载为所述用户设备将所述第三带宽的蜂窝频段的上行载波增加特定 带宽或者特定载波数。
结合第一方面的第一种可能的实现方式,在第一方面的第四种可能的实现 方式中, 所述用户设备与所述蜂窝基站在蜂窝频段采用时分双工 TDD方式进 行通信, 和 /或, 所述用户设备与所述毫米波基站在蜂窝频段采用 TDD方式进 行通信;
所述第三蜂窝频段收发机还用于接收所述第一蜂窝频段收发机或者所述 第二蜂窝频段收发机通过第四带宽的蜂窝频段发送的控制层数据信息;
所述第三蜂窝频段收发机还用于通过所述第四带宽的蜂窝频段向所述第 一蜂窝频段收发机或者所述第二蜂窝频段收发机发送上行数据;
所述蜂窝基站还用于根据所述第一带宽的毫米波频段带宽将所述第四带 宽的蜂窝频段当前的上下行子帧配比调整为目标上下行子帧配比;
所述第一蜂窝频段收发机还用于向第三蜂窝频段收发机发送所述目标上 下行子帧配比的信息;
所述第三蜂窝频段收发机还用于根据所述目标上下行子帧配比的信息,接 收所述第一蜂窝频段收发机或者所述第二蜂窝频段收发机通过所述目标上下 行子帧配比的所述第四带宽的蜂窝频段发送的控制层数据信息;
所述第三蜂窝频段收发机还用于根据所述目标上下行子帧配比的信息,通 过所述目标上下行子帧配比的所述第四带宽的蜂窝频段向所述第一蜂窝频段 收发机或者所述第二蜂窝频段收发机发送上行数据。
结合第一方面的第四种可能的实现方式,在第一方面的第五种可能的实现 方式中,所述蜂窝基站还用于根据所述第一带宽的毫米波频段带宽预估所述用 户设备的上行负载,并根据所述上行负载调整所述第四带宽的蜂窝频段当前的 上下行子帧配比调整为目标上下行子帧配比。
第二方面, 本发明实施例提供的一种用户设备, 包括: 存储器、 控制器、 蜂窝频段收发机和毫米波频段接收机, 其中:
所述存储器与所述控制器连接,所述控制器还分别与所述蜂窝频段收发机 和所述毫米波频段接收机连接;
所述存储器用于存储一组程序代码和用户数据,所述控制器用于调用所述 存储器存储的程序,以控制所述蜂窝频段收发机和所述毫米波频段接收机执行 如下操作:
所述蜂窝频段收发机接收蜂窝基站或者毫米波基站通过蜂窝频段发送的 控制层数据信息;
所述蜂窝频段收发机通过蜂窝频段向所述蜂窝基站或者所述毫米波基站 发送上行数据;
所述毫米波频段接收机接收所述毫米波基站通过毫米波频段发送的用户 层数据信息。
在第二方面的第一种可能的实现方式中,所述蜂窝频段收发机还用于接收 所述蜂窝基站或者所述毫米波基站发送的第一带宽的毫米波频段的第一标识 信息; 其中, 所述第一带宽的毫米波频段为所述蜂窝基站或者所述毫米波基站 为所述用户设备分配的毫米波频段带宽;
所述毫米波频段接收机还用于根据所述第一标识信息接收所述毫米波基 站通过毫米波频段发送的用户层数据信息。
结合第二方面的第一种可能的实现方式中,在第二方面的第二种可能的实 现方式中,所述用户设备与所述蜂窝基站在蜂窝频段采用 FDD方式进行通信, 和 /或, 所述用户设备与所述毫米波基站在蜂窝频段采用 FDD方式进行通信; 所述蜂窝频段收发机还用于接收蜂窝基站或者毫米波基站通过第二带宽 的蜂窝频段发送的控制层数据信息;
所述蜂窝频段收发机还用于通过第三带宽的蜂窝频段向所述蜂窝基站或 者所述毫米波基站发送上行数据;
所述蜂窝频段收发机还用于接收所述蜂窝基站或者所述毫米波基站发送 的增加上行载波后的第三带宽的蜂窝频段的第二标识信息; 其中, 所述增加上 行载波后的第三带宽的蜂窝频段为增加特定带宽或者特定载波数后的第三带 宽的蜂窝频段,第三带宽的蜂窝频段所增加的特定带宽或者特定载波数为所述 蜂窝基站或者所述毫米波基站根据所述第一带宽的毫米波频段带宽为所述用 户设备增加的上行载波;
所述蜂窝频段收发机还用于根据所述第二标识信息,通过所述增加上行载 波后的第三带宽的蜂窝频段向所述蜂窝基站或者所述毫米波基站发送上行数 据。
结合第二方面的第一种可能的实现方式中,在第二方面的第三种可能的实 现方式中,所述用户设备与所述蜂窝基站在蜂窝频段采用 TDD方式进行通信, 和 /或, 所述用户设备与所述毫米波基站在蜂窝频段采用 TDD方式进行通信; 所述蜂窝频段收发机还用于接收蜂窝基站或者毫米波基站通过第四带宽 的蜂窝频段发送的控制层数据信息;
所述蜂窝频段收发机还用于通过所述第四带宽的蜂窝频段向所述蜂窝基 站或者所述毫米波基站发送上行数据;
所述蜂窝频段收发机还用于接收所述蜂窝基站发送的所述第四带宽的蜂 窝频段的目标上下行子帧配比的信息,所述第四带宽的蜂窝频段的目标上下行 子帧配比为所述蜂窝基站根据所述第一带宽的毫米波频段带宽调整的上下行 子帧配比;
所述蜂窝频段收发机还用于根据所述目标上下行子帧配比的信息,接收所 述蜂窝基站或者所述毫米波基站通过所述目标上下行子帧配比的第四带宽的 蜂窝频段发送的控制层数据信息;
所述蜂窝频段收发机还用于根据所述目标上下行子帧配比的信息,通过所 述目标上下行子帧配比的第四带宽的蜂窝频段向所述蜂窝基站或者所述毫米 波基站发送上行数据。
第三方面, 本发明实施例提供的一种基站, 包括: 存储器、 控制器、 毫米 波频段发射机和蜂窝频段收发机, 其中:
所述存储器与所述控制器连接,所述控制器还与所述毫米波频段发射机连 接; 所述存储器用于存储一组程序代码和用户数据,所述控制器用于调用所述 存储器存储的程序, 以控制所述毫米波频段发射机执行如下操作:
所述毫米波频段发射机通过毫米波频段向用户设备发送用户层数据信息; 所述控制器还用于调用所述存储器存储的程序控制所述蜂窝频段执行如 下操作:
所述蜂窝频段收发机通过蜂窝频段向所述用户设备发送控制层数据信息; 和 /或
所述蜂窝频段收发机接收所述用户设备通过蜂窝频段发送的上行数据。 在第三方面的第一种可能的实现方式中,所述控制器还用于为所述用户设 备分配第一带宽的毫米波频段;
所述蜂窝频段收发机还用于向所述用户设备发送所述第一带宽的毫米波 频段的第一标识信息;
所述毫米波频段发射机还用于根据所述第一标识信息通过所述第一带宽 的毫米波频段向所述用户设备发送的用户层数据信息。
结合第三方面的第一种可能的实现方式中,在第三方面的第二种可能的实 现方式中, 所述用户设备与所述基站在蜂窝频段采用 FDD方式进行通信; 所述蜂窝频段收发机还用于通过第二带宽的蜂窝频段向所述用户设备发 送控制层数据信息; 和 /或
所述蜂窝频段收发机还用于接收所述用户设备通过第三带宽的蜂窝频段 发送的上行数据;
所述控制器还用于根据所述第一带宽的毫米波频段带宽为所述用户设备 将所述第三带宽的蜂窝频段的上行载波增加特定带宽或者特定载波数;
所述蜂窝频段收发机还用于向所述用户设备发送所述增加上行载波后的 第三带宽的蜂窝频段的第二标识信息;
所述蜂窝频段收发机还用于根据所述第二标识信息,接收所述用户设备通 过所述增加上行载波后的第三带宽的蜂窝频段发送的上行数据。
第四方面, 本发明实施例提供的一种通信方法, 包括:
接收蜂窝基站或者毫米波基站通过蜂窝频段发送的控制层数据信息, 其 中, 所述控制层数据信息包括毫米波频段的第一标识信息;
根据所述标识信息通过蜂窝频段向所述蜂窝基站或者所述毫米波基站发 送上行数据, 其中, 所述上行数据包括所述第一标识信息标识的毫米波频段的 反馈信息;
接收所述毫米波基站通过所述毫米波频段发送的用户层数据信息。
在第四方面的第一种可能的实现方式中,所述毫米波频段包括第一带宽的 毫米波频段; 其中, 所述第一带宽的毫米波频段为所述蜂窝基站或者所述毫米 波基站分配的毫米波频段的带宽;
所述根据所述标识信息通过蜂窝频段向所述蜂窝基站或者所述毫米波基 站发送上行数据之前, 所述方法还包括:
接收所述蜂窝基站或者所述毫米波基站发送的增加上行载波后的第三带 宽的蜂窝频段的第二标识信息; 其中, 所述增加上行载波后的第三带宽的蜂窝 频段为增加特定带宽或者特定载波数后的第三带宽的蜂窝频段,第三带宽的蜂 窝频段所增加的特定带宽或者特定载波数为所述蜂窝基站或者所述毫米波基 站根据所述第一带宽的毫米波频段增加的;
所述接收蜂窝基站或者毫米波基站通过蜂窝频段发送的控制层数据信息, 包括:
接收蜂窝基站或者毫米波基站通过第二带宽的蜂窝频段发送的控制层数 据信息;
所述根据所述标识信息通过蜂窝频段向所述蜂窝基站或者所述毫米波基 站发送上行数据, 包括:
根据所述第二标识信息,通过所述增加上行载波后的第三带宽的蜂窝频段 向所述蜂窝基站或者所述毫米波基站发送上行数据。
结合第四方面,在第四方面的第二种可能的实现方式中, 所述毫米波频段 包括第一带宽的毫米波频段; 其中, 所述第一带宽的毫米波频段为所述蜂窝基 站或者所述毫米波基站分配的毫米波频段的带宽;
所述接收蜂窝基站或者毫米波基站通过蜂窝频段发送的控制层数据信息 之前, 所述方法还包括:
接收所述蜂窝基站发送的第四带宽的蜂窝频段的目标上下行子帧配比的 信息,所述第四带宽的蜂窝频段的目标上下行子帧配比为所述蜂窝基站根据所 述第一带宽的毫米波频段带宽调整的上下行子帧配比;
所述接收蜂窝基站或者毫米波基站通过蜂窝频段发送的控制层数据信息, 包括:
根据所述目标上下行子帧配比的信息,接收蜂窝基站或者毫米波基站通过 所述目标上下行子帧配比的第四带宽的蜂窝频段发送的控制层数据信息; 所述根据所述标识信息通过蜂窝频段向所述蜂窝基站或者所述毫米波基 站发送上行数据, 包括:
根据所述目标上下行子帧配比的信息和所述标识信息,通过所述目标上下 行子帧配比的第四带宽的蜂窝频段向所述蜂窝基站或者所述毫米波基站发送 上行数据。
上述技术方案中,用户设备通过第三蜂窝频段收发机接收所述第一蜂窝频 段收发机或者所述第二蜂窝频段收发机通过蜂窝频段发送的控制层数据信息; 以及第三蜂窝频段收发机通过蜂窝频段向所述第一蜂窝频段收发机或者所述 第二蜂窝频段收发机发送上行数据;再通过毫米波频段接收机接收所述毫米波 频段发射机通过毫米波频段发送的用户层数据信息。从而用户设备只需要包括 一套蜂窝频段收发机和一套毫米波频段接收机就可以完成在蜂窝频段和毫米 波频段的通信,相比现有技术用户设备需要一套蜂窝频段收发机和一套毫米波 频段收发机, 从而本发明实施例可以降低用户设备的成本。 附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲, 在不付 出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1是本发明实施例提供的一种通信系统结构示意图;
图 2是本发明实施例提供的另一种通信系统结构示意图;
图 3是本发明实施例提供的可选的频段示意图;
图 4-图 6是本发明实施例提供的可选的通信示意图;
图 7是本发明实施例提供的一种用户设备的结构示意图;
图 8是本发明实施例提供的一种毫米波基站的结构示意图;
图 9是本发明实施例提供的另一种毫米波基站的结构示意图; 图 10是本发明实施例提供的一种通信方法的流程示意图;
图 11是本发明实施例提供的另一种通信方法的流程示意图;
图 12是本发明实施例提供的另一种通信方法的流程示意图。 具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是 全部的实施例。基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
本发明实施例中,通信系统具体可以是任何蜂窝网络与毫米波蜂窝通信共 存的通信系统, 例如: 长期演进 ( Long Term Evolution , LTE ) 网络系统、 全 球微波互联接入 ( Worldwide Interoperability for Microwave Access , WiMax ) 系统等。
另外, 本发明实施例中, 蜂窝频段具体可以是低频段(例如: 3GHz以下 的频段)。
图 1是本发明实施例提供的一种通信系统结构示意图,如图 1所示,包括: 蜂窝基站 11、 毫米波基站 12和用户设备 13 , 其中:
蜂窝基站 11通过传输链路与毫米波基站 12连接。
如图 1-a所示,蜂窝基站 11包括第一蜂窝频段收发机 111 ,如图 1-b所示, 毫米波基站 12包括第二蜂窝频段收发机 121和毫米波频段发射机 122, 如图 1-c所示,用户设备 13包括第三蜂窝频段收发机 131和毫米波频段接收机 132; 其中:
第三蜂窝频段收发机 131 , 用于接收第一蜂窝频段收发机 111或者第二蜂 窝频段收发机 121通过蜂窝频段发送的控制层数据信息。
具体可以是第一蜂窝频段收发机 111 通过蜂窝频段向第三蜂窝频段收发 机 131发送控制层数据信息,或者第二蜂窝频段收发机 121通过蜂窝频段向第 三蜂窝频段收发机 131发送控制层数据信息。这里的控制层数据信息可以为基 站与用户设备之间传送的无线资源控制 ( Radio Resource Control, RRC )信令 信息, 基站传送给用户设备的广播信道 ( broadcasting infomation channel , BCH )信令等。
第三蜂窝频段收发机 131还用于通过蜂窝频段向第一蜂窝频段收发机 111 或者第二蜂窝频段收发机 121发送上行数据。
具体可以是第一蜂窝频段收发机 111接收第三蜂窝频段收发机 131通过蜂 窝频段发送的控制层数据信息和用户层数据信息, 即上述上行数据,或者第二 蜂窝频段收发机 121接收第三蜂窝频段收发机 131通过蜂窝频段发送的控制层 数据信息和用户层数据信息, 即上述上行数据。
毫米波频段接收机 132, 用于接收毫米波频段发射机 122通过毫米波频段 发送的用户层数据信息。
需要说明的是, 上述系统包括: 蜂窝基站 11、 毫米波基站 12和用户设备 13 , 具体可以是上述系统包括至少一个蜂窝基站 11、 至少一个毫米波基站 12 和至少一个用户设备 13。即上述蜂窝基站 11可以表示一个或者多个蜂窝基站, 上述毫米波基站 12可以表示一个或者多个毫米波基站,上述用户设备 13可以 表示一个或者多个用户设备。 上述上行数据具体可以包括如下至少一项:
控制层数据信息和用户层数据信息。
上述技术方案中,用户设备通过第三蜂窝频段收发机接收所述第一蜂窝频 段收发机或者所述第二蜂窝频段收发机通过蜂窝频段发送的控制层数据信息; 以及第三蜂窝频段收发机通过蜂窝频段向所述第一蜂窝频段收发机或者所述 第二蜂窝频段收发机发送上行数据;再通过毫米波频段接收机接收所述毫米波 频段发射机通过毫米波频段发送的用户层数据信息。从而用户设备只需要包括 一套蜂窝频段收发机和一套毫米波频段接收机就可以完成在蜂窝频段和毫米 波频段的通信,相比现有技术用户设备需要一套蜂窝频段收发机和一套毫米波 频段收发机, 从而本发明实施例可以降低用户设备的成本。 图 2是本发明实施例提供的一种通信系统结构示意图,如图 2所示,包括: 蜂窝基站 21、 毫米波基站 22和用户设备 23 , 其中:
蜂窝基站 21通过传输链路与毫米波基站 22连接。
具体可以是蜂窝基站 21通过电路与毫米波基站 22连接, 或者,蜂窝基站 21通过光纤有线回程链路与毫米波基站 22连接, 或者, 蜂窝基站 21通过毫 米波无线回程链路与毫米波基站 22连接。其中,蜂窝基站 21可以通过上述链 路与毫米波基站 22进行数据交换。具体可以是蜂窝基站 21通过上述链路将需 要发送给用户设备 23的用户层数据信息发送至毫米波基站 22, 同时, 还可以 将用户层数据信息的调度信息发送至毫米波基站 22, 即蜂窝基站 21可以通过 该调度信息调度毫米波基站 22向用户设备 23发送该用户层数据信息。
如图 2-a所示,蜂窝基站 21包括第一蜂窝频段收发机 211 ,如图 2-b所示, 毫米波基站 22包括第二蜂窝频段收发机 221和毫米波频段发射机 222, 如图 2-c所示,用户设备 23包括第三蜂窝频段收发机 231和毫米波频段接收机 232; 其中:
第三蜂窝频段收发机 231 , 用于接收第一蜂窝频段收发机 211或者第二蜂 窝频段收发机 221通过蜂窝频段发送的控制层数据信息。
第三蜂窝频段收发机 231还用于通过蜂窝频段向第一蜂窝频段收发机 211 或者第二蜂窝频段收发机 221发送上行数据。
具体可以是第一蜂窝频段收发机 211接收第三蜂窝频段收发机 231通过蜂 窝频段发送的控制层数据信息,或者第二蜂窝频段收发机 221接收第三蜂窝频 段收发机 231通过蜂窝频段发送的控制层数据信息。
毫米波频段接收机 232, 用于接收毫米波频段发射机 222通过毫米波频段 发送的用户层数据信息。
作为一种可选的实施方式, 蜂窝基站 21还可以用于为所述用户设备分配 第一带宽的毫米波频段;
第一蜂窝频段收发机 211 还可以用于向所述第三蜂窝频段收发机发送所 述第一带宽的毫米波频段的第一标识信息;
毫米波频段接收机 231 还可以用于根据所述第一标识信息接收所述毫米 波频段发射机通过所述第一带宽的毫米波频段发送的用户层数据信息。
具体可以是用户设备 23通过蜂窝频段与蜂窝基站 21建立连接后,用户设 备 23对毫米波频段进行测量并反馈其信道状态信息至蜂窝基站 21 , 蜂窝基站 21再根据测量结果为用户设备 23分配上述第一带宽 (例如: 200M ) 的毫米 波频段。 蜂窝基站 21可以再生成上述第一带宽(例如: 200M )的毫米波频段 的标识信息, 即上述第一标识信息。 这样当用户设备 23接收该标识信息后, 就可以根据该标识信息查找到上述第一带宽的毫米波频段,并在该毫米波频段 上接收用户层数据信息。
上述第一带宽频段具体可以是专门用于用户设备 23的下行数据传输。 上 述第一标识信息具体可以是第一带宽的毫米波频段对应的 ID号。
蜂窝基站 21具体还可以包括: 存储器 212和控制器 213 , 其中: 存储器 212用于存储一组程序代码,控制器 213用于调用存储器 212存储 的程序, 执行为所述用户设备分配第一带宽的毫米波频段的操作。
作为一种可选的实施方式, 毫米波基站 22还可以用于为所述用户设备分 配第一带宽的毫米波频段;
第二蜂窝频段收发机 221 还可以用于向所述第三蜂窝频段收发机发送所 述第一带宽的毫米波频段的第一标识信息;
毫米波频段接收机 231 还可以用于根据所述第一标识信息接收所述毫米 波频段发射机通过所述第一带宽的毫米波频段发送的用户层数据信息。
具体可以是用户设备 23通过蜂窝频段与蜂窝基站 21建立后, 蜂窝基站 21向毫米波基站 22发送为用户设备 23分配毫米波频段带宽的指示信息, 毫 米波基站 22在接收到该指示信息后, 对毫米波频段进行测量, 毫米波基站 22 再根据测量结果为用户设备 23分配上述第一带宽(例如: 200M )的毫米波频 段。
上述第一带宽频段具体可以是专门用于用户设备 23的下行数据传输。 上 述第一标识信息具体可以是第一带宽的毫米波频段对应的 ID号。
毫米波基站 22具体还可以包括: 存储器 223和控制器 224, 其中: 存储器 223用于存储一组程序代码,控制器 224用于调用存储器 223存储 的程序, 执行为所述用户设备分配第一带宽的毫米波频段的操作。
作为一种可选的实施方式,所述用户设备 23与所述蜂窝基站 21在蜂窝频 段采用频分双工(Frequency Division Duplexing, FDD )方式进行通信, 和 /或, 所述用户设备 23与所述毫米波基站 22在蜂窝频段采用 FDD方式进行通信。 即第三蜂窝频段收发机 231接收上述控制层数据信息以及发送上述上行数据, 具体可以是通过 FDD的方式进行的。 具体可以如下:
第三蜂窝频段收发机 231还可以用于接收所述第一蜂窝频段收发机 211或 者所述第二蜂窝频段收发机 221 通过第二带宽的蜂窝频段发送的控制层数据 信息;
第三蜂窝频段收发机 231 还可以用于通过第三带宽的蜂窝频段向所述第 一蜂窝频段收发机 211或者所述第二蜂窝频段收发机 221发送上行数据。
上述第二带宽的蜂窝频段与上述第三带宽的蜂窝频段具体可以是两个独 立的带宽的蜂窝频段。例如: 第三蜂窝频段收发机 231接收所述第一蜂窝频段 收发机 211或者所述第二蜂窝频段收发机 221通过一个 10MHz的蜂窝频段构 成的下行载波发送的控制层数据信息, 第三蜂窝频段收发机 231 通过另一个 10MHz的蜂窝频段构成的上行载波向第一蜂窝频段收发机 211或者所述第二 蜂窝频段收发机 221发送上行数据。
该实施方式还可以结合上述第一带宽的毫米波频段的实施方式一起实现, 蜂窝基站 21 还可以用于根据所述第一带宽的毫米波频段带宽为用户设备 23 将所述第三带宽的蜂窝频段的上行载波增加特定带宽或者特定载波数;
第一蜂窝频段收发机 211还可以用于向所述第三蜂窝频段收发机 231发送 所述增加上行载波后的第三带宽的蜂窝频段的第二标识信息。
例如:上述第三带宽的蜂窝频段为系统预先为用户设备 23分配的带宽(例 如: 10MHz的蜂窝频段), 当蜂窝基站 21或者毫米波基站 22为用户设备 23 分配上述第一带宽的毫米波频段时, 蜂窝基站 21根据第一带宽的毫米波频段 带宽预估用户设备 23的上行负载, 再判断第三带宽的蜂窝频段是否能够承载 用户设备 23的上行负载, 当判断第三带宽的蜂窝频段不能够承载用户设备 23 的上行负载时,蜂窝基站 21就可以根据预估的上行负载为用户设备 23增加所 述第三带宽的蜂窝频段的上行载波。
其中,增加所述第三带宽的蜂窝频段的上行载波具体可以是增加第三带宽 的蜂窝频段的带宽, 或者增加第三带宽的蜂窝频段的上行载波数。 例如: 第三 带宽的蜂窝频段为 10MHz,蜂窝基站 21就可以将第三带宽的蜂窝频段为调整 为 30M, 或者将多个 10MHz的蜂窝频段作为上述第三带宽的蜂窝频段。
上述第二标识信息具体可以是增加上行载波后的第三带宽的蜂窝频段的 ID号。 第一蜂窝频段收发机 221向所述第三蜂窝频段收发机 231发送上述第 二标识信息, 具体可以是通过无线资源控制 (Radio Resource Control, RRC ) 协议信令向第三蜂窝频段收发机 231发送上述第二标识信息。 即通过 RRC信 令为用户设备 23实现增加第三带宽的蜂窝频段的上行载波。
可选的, 蜂窝基站 21还可以用于根据所述第一带宽的毫米波频段带宽预 估所述用户设备的上行负载, 并根据所述上行负载为所述用户设备 23将所述 第三带宽的蜂窝频段的上行载波增加特定带宽或者特定载波数。 例如: 蜂窝基 站 21可以通过第一带宽的毫米波频段的带宽获取到用户设备 23反馈该毫米波 频段的链路的信道状态信息的上行负载量,再根据该上行负载量为所述用户设 备 23将所述第三带宽的蜂窝频段的上行载波增加特定带宽或者特定载波数。 从而可以实现根据毫米波频段和蜂窝频段的负载,半静态配置蜂窝频段的上行 载波的带宽或者上行载波的个数。
该实施方式, 毫米波基站 22还可以用于根据所述第一带宽的毫米波频段 带宽为所述用户设备 23将所述第三带宽的蜂窝频段的上行载波增加特定带宽 或者特定载波数;
第二蜂窝频段收发机 221还可以用于向所述第三蜂窝频段收发机 231发送 所述增加上行载波后的第三带宽的蜂窝频段的第二标识信息;
所述第三蜂窝频段收发机 231还用于根据所述第二标识信息,通过所述增 加上行载波后的第三带宽的蜂窝频段向所述第一蜂窝频段收发机 221 或者所 述第二蜂窝频段收发机 221发送上行数据。
可选的, 毫米波基站 22还可以用于根据所述第一带宽的毫米波频段带宽 预估所述用户设备的上行负载, 并根据所述上行负载为所述用户设备 23将所 述第三带宽的蜂窝频段的上行载波增加特定带宽或者特定载波数。例如: 毫米 波基站 22可以通过第一带宽的毫米波频段的带宽获取到用户设备 23反馈该毫 米波频段的链路的信道状态信息的上行负载量,再根据该上行负载量为所述用 户设备 23将所述第三带宽的蜂窝频段的上行载波增加特定带宽或者特定载波 数。
其中, 具体的实现过程可以参考蜂窝基站 21的实现过程, 此处不作重复 说明。
可选的, 该实施方式具体可以如图 3所示, 在用户设备 23接入毫米波基 站 22之前,用户设备 23首先通过 10MHz下行载波 301以及 10MHz上行载波 302与蜂窝基站 21进行通信, 当用户设备 23需要接入毫米波基站 22时, 蜂 窝基站 21或者毫米波基站 22为用户设备分配 200MHz的毫米波频段的下行载 波 303 , 即用户设备 23接入毫米波基站 22之后, 用户设备 23的下行载波就 可以包括 10MHz下行载波 301和 200MHz的毫米波频段的下行载波 303。 由 于为用户设备 23分配了 200MHz的毫米波频段的下行载波 303 , 这样 10MHz 上行载波 302可能就很难满足用户设备 23 的上行数据的需求, 蜂窝基站 21 或者毫米波基站 22就可以增加用户设备 23的蜂窝频段的上行载波个数,例如: 增加 10MHz上行载波 304和 10MHz上行载波 305 , 这样用户设备 23的下行 载波就可以包括 10MHz上行载波 302、 10MHz上行载波 304和 10MHz上行 载波 305。
作为一种可选的实施方式,用户设备 23与蜂窝基站 21在蜂窝频段采用时 分双工(Time Division Duplexing, TDD )方式进行通信, 和 /或, 用户设备 23 与毫米波基站 21在蜂窝频段采用 TDD方式进行通信。即第三蜂窝频段收发机 231 接收上述控制层数据信息与发送上述上行数据是通过同一带宽的蜂窝频 段进行。 具体可以如下:
第三蜂窝频段收发机 231还用于接收所述第一蜂窝频段收发机 211或者所 述第二蜂窝频段收发机 221通过第四带宽的蜂窝频段发送的控制层数据信息; 第三蜂窝频段收发机还用于通过所述第四带宽的蜂窝频段向所述第一蜂 窝频段收发机 211或者所述第二蜂窝频段收发机 221发送上行数据。
例如:第三蜂窝频段收发机 231接收第一蜂窝频段收发机 211或者第二蜂 窝频段收发机 221 通过第四带宽的蜂窝频段中的下行子帧发送的控制层数据 信息,第三蜂窝频段收发机 231通过第四带宽的蜂窝频段中的上行子帧向第一 蜂窝频段收发机 111或者第二蜂窝频段收发机 221发送上行数据。
可选的, 蜂窝基站 21还可以用于根据所述第一带宽的毫米波频段带宽将 所述第四带宽的蜂窝频段当前的上下行子帧配比调整为目标上下行子帧配比; 第一蜂窝频段收发机 211还可以用于向第三蜂窝频段收发机 231发送所述 目标上下行子帧配比的信息;
第三蜂窝频段收发机 231 还可以用于根据所述目标上下行子帧配比的信 息,接收所述第一蜂窝频段收发机 211或者所述第二蜂窝频段收发机 221通过 所述目标上下行子帧配比的所述第四带宽的蜂窝频段发送的控制层数据信息; 第三蜂窝频段收发机 231 还可以用于根据所述目标上下行子帧配比的信 息,通过所述目标上下行子帧配比的所述第四带宽的蜂窝频段向所述第一蜂窝 频段收发机 211或者所述第二蜂窝频段收发机 221发送上行数据。
例如:第四带宽的蜂窝频段当前的上下行子帧配比为通信协议定义的上下 行子帧配比 3 , 即第四带宽的蜂窝频段当前的上下行子帧配比为 3:6, 例如: 第四带宽的蜂窝频段为 10MHz, 那么第四带宽的蜂窝频段上, 每一个无线帧 包括 10个无线子帧, 其中第 2、 3、 4号子帧配置为上行子帧, 第 0、 5、 6、 7、 8、 9号子帧配置为下行子帧, 第 1号子帧为切换子帧。 蜂窝基站 21就可以将 上述上下行子帧配比 3调整为通信协议定义的上下行子帧配比 0, 即第四带宽 的蜂窝频段调整后的上下行子帧配比为 6:2 , 例如: 第四带宽的蜂窝频段为 10MHz, 那么第四带宽的蜂窝频段上, 每一个无线帧包括 10个无线子帧, 其 中第 2、 3、 4、 7、 8、 9号子帧配置为上行子帧, 第 0、 5号子帧配置为下行子 帧, 第 1、 6号子帧为切换子帧。
其中, 上述通信协议具体可以是 LTE的演进 Advanced, 即 LTE- Advanced 协议。
可选的, 蜂窝基站 21还可以用于根据所述第一带宽的毫米波频段带宽预 估所述用户设备 23的上行负载, 并根据所述上行负载调整所述第四带宽的蜂 窝频段当前的上下行子帧配比调整为目标上下行子帧配比。 例如: 蜂窝基站 21可以通过第一带宽的毫米波频段的带宽获取到用户设备 23反馈该毫米波频 段的链路的信道状态信息的上行负载量,再根据该上行负载量调整所述第四带 宽的蜂窝频段当前的上下行子帧配比调整为目标上下行子帧配比。或者,蜂窝 基站 21根据通过上述第一带宽的毫米波频段进行下行通信的用户设备 23的数 量, 以获取到这些用户设备 23在蜂窝频段的上行负载, 再根据该上行负载量 调整所述第四带宽的蜂窝频段当前的上下行子帧配比调整为目标上下行子帧 配比。从而可以实现根据毫米波频段和蜂窝频段的负载, 半静态配置蜂窝频段 的上下行子帧配比。
作为一种可选的实施方式, 如图 4所示, 蜂窝基站 21 和毫米波基站 22 可以共用一个站址(例如: 发射塔、 抱杆)架设各自的天线, 或者共用一套天 线。 蜂窝基站 21和毫米波基站 22之间通过电路连接, 即蜂窝基站 21和毫米 波基站 22之间的数据交换可以为高速的电路之间的交换, 这样不存在蜂窝基 站 21和毫米波基站 22之间回程链路的延时和容量问题,从而可以提高通信系 统的传输效率。
在该实施方式中,毫米波基站 22的覆盖范围可以与蜂窝基站 21的覆盖范 围一致, 例如: 这两者的覆盖范围都为某一热点地区, 如为该热点地区的 200 米至 500米的半径范围。 当然, 毫米波基站 22的覆盖范围还可以小于蜂窝基 站 22的覆盖范围。例如, 毫米波基站 22作为热点覆盖 200米至 500米的半径 范围, 而蜂窝基站 21覆盖更广的范围达到 1公里到 2公里的半径范围。 这样 上述用户设备 23就可以为处于毫米波基站 22覆盖范围内的用户设备,且处于 共站址的蜂窝基站 21覆盖范围内。
该实施方式中,在毫米波基站 22覆盖范围内的用户设备 23通过第三蜂窝 频段收发机 231接收从蜂窝基站 21通过蜂窝频段 401发送的控制层面信息, 通过毫米波频段接收机 232接收从毫米波基站 22通过毫米波频段 402发送的 用户层面信息。 第三蜂窝频段收发机 231通过蜂窝频段 401向蜂窝基站 21或 者毫米波基站 22传输上行数据 (包括控制层面信息和用户层面信息)。在毫米 波基站 22覆盖范围外的用户设备 24就只能通过蜂窝频段 401与蜂窝基站 21 进行通信。
作为一种可选的实施方式, 如图 5所示, 蜂窝基站 21 和毫米波基站 22 采用不共站址方式配置。在该配置中,蜂窝基站 21和毫米波基站 22架设在不 同的站址。蜂窝基站 21与毫米波基站 22之间通过光纤有线回程链路或者毫米 波无线回程链路进行数据交换。 该网络构架下, 一个或者多个毫米波基站 22 处于蜂窝基站 21 的覆盖范围内。 处于毫米波基站 22覆盖范围内的用户设备 23均可以通过蜂窝频段与蜂窝基站进行数据传输。
在毫米波基站 22覆盖范围内的用户设备 23通过第三蜂窝频段收发机 231 接收从蜂窝基站 21通过蜂窝频段 501传输的控制层面信息, 通过毫米波频段 接收机 232接收从毫米波基站 22通过毫米波频段 502传输的用户层面信息。 第三蜂窝频段收发机 231通过蜂窝频段 501向蜂窝基站 21传输上行数据 (包 括控制层面信息和用户层面信息)。该架构可以认为毫米波基站 22为一个中继 节点, 调度以及调度信息的传输均由蜂窝基站 21完成, 其中, 该调度具体可 以是指调度控制层数据信息和用户层数据信息向用户设备 23发送。 用户层数 据信息可以先通过蜂窝基站 21与毫米波基站 22之间的回程链路搬移到毫米波 基站 22, 蜂窝基站 21通过向毫米波基站 22发送调度信息, 调度毫米波基站 22通过毫米波频段 502向用户设备传输用户层数据信息。 用户设备 23还可以 通过蜂窝频段 501 反馈其确认消息给蜂窝基站 21 , 例如: 确认字符 ( Acknowledgement, ACK ), 或者通过蜂窝频段 501 反馈其未确认消息给蜂 窝基站 21 , 例如: 否定确认消息(Negative Acknowledgement, NACK )。 蜂窝 基站 21再根据用户设备 23反馈的信息调度毫米波基站 22进行相应的重传。 在毫米波基站 22覆盖范围外的用户设备 24就只能通过蜂窝频段 501与蜂窝基 站 21进行通信。
作为一种可选的实施方式, 如图 6所示, 蜂窝基站 21 和毫米波基站 22 采用不共站址方式配置。在该配置中,蜂窝基站 21和毫米波基站 22架设在不 同的站址。蜂窝基站 21与毫米波基站 22之间通过光纤有线回程链路或者毫米 波无线回程链路进行数据交换。 该网络构架下, 一个或者多个毫米波基站 22 处于蜂窝基站 21的覆盖范围内。
在毫米波基站 22覆盖范围内的用户设备 23通过第三蜂窝频段收发机 231 接收从蜂窝基站 21通过蜂窝频段 601传输的控制层面信息, 通过毫米波频段 接收机 232接收从毫米波基站 22通过毫米波频段 602传输的用户层面信息。 第三蜂窝频段收发机 232通过蜂窝频段 601向毫米波基站 22传输上行数据(包 括控制层面信息和用户层面信息)。该架构可以认为毫米波基站 22为一个中继 节点, 调度以及调度信息的传输均由蜂窝基站 21完成, 其中, 该调度具体可 以是指调度控制层数据信息和用户层数据信息向用户设备 23发送。 用户层数 据信息可以先通过蜂窝基站 21与毫米波基站 22之间的回程链路搬移到毫米波 基站 22, 蜂窝基站 21通过向毫米波基站 22发送调度信息, 调度毫米波基站 22通过毫米波频段 502向用户设备传输用户层数据信息。 用户设备 23还可以 通过蜂窝频段 601反馈其确认消息给毫米波基站 22, 例如: ACK, 或者通过 蜂窝频段 601反馈其未确认消息给毫米波基站 22, 例如: NACK。 毫米波基站 22再根据用户设备 23反馈的信息进行相应的重传。 在毫米波基站 22覆盖范 围外的用户设备 24就只能通过蜂窝频段 601与蜂窝基站 21进行通信。 图 7是本发明实施例提供的一种用户设备的结构示意图, 如图 7所示, 包 括: 存储器 71、 控制器 72、 蜂窝频段收发机 73和毫米波频段接收机 74, 其 中:
存储器 71与控制器 72连接,控制器 72还分别与蜂窝频段收发机 73和毫 米波频段接收机 74连接;
存储器 71用于存储一组程序代码和用户数据,控制器 72用于调用存储器 71存储的程序, 以控制蜂窝频段收发机 73和毫米波频段接收机 74执行如下 操作:
蜂窝频段收发机 73接收蜂窝基站或者毫米波基站通过蜂窝频段发送的控 制层数据信息;
蜂窝频段收发机 73通过蜂窝频段向所述蜂窝基站或者所述毫米波基站发 送上行数据;
毫米波频段接收机 74接收所述毫米波基站通过毫米波频段发送的用户层 数据信息。
可选的, 上述上行数据具体可以包括如下至少一项:
控制层数据信息和用户层数据信息。
作为一种可选的实施方式, 蜂窝频段收发机 73还可以用于接收所述蜂窝 基站或者所述毫米波基站发送的第一带宽的毫米波频段的第一标识信息; 其 中,所述第一带宽的毫米波频段为所述蜂窝基站或者所述毫米波基站为所述用 户设备分配的毫米波频段带宽;
毫米波频段接收机 74还可以用于根据所述第一标识信息接收所述毫米波 基站通过毫米波频段发送的用户层数据信息。
其中, 上述第一带宽频段具体可以是专门用于用户设备的下行数据传输。 上述第一标识信息具体可以是第一带宽的毫米波频段对应的 ID号。
作为一种可选的实施方式,所述用户设备与所述蜂窝基站在蜂窝频段采用 FDD方式进行通信, 和 /或, 所述用户设备与所述毫米波基站在蜂窝频段采用 FDD方式进行通信; 蜂窝频段收发机 73还可以用于接收蜂窝基站或者毫米波基站通过第二带 宽的蜂窝频段发送的控制层数据信息;
蜂窝频段收发机 73还可以用于通过第三带宽的蜂窝频段向所述蜂窝基站 或者所述毫米波基站发送上行数据;
蜂窝频段收发机 73还用于接收所述蜂窝基站或者所述毫米波基站发送的 增加上行载波后的第三带宽的蜂窝频段的第二标识信息; 其中, 所述增加上行 载波后的第三带宽的蜂窝频段为增加特定带宽或者特定载波数后的第三带宽 的蜂窝频段,第三带宽的蜂窝频段所增加的特定带宽或者特定载波数为所述蜂 窝基站或者所述毫米波基站根据所述第一带宽的毫米波频段带宽为所述用户 设备增加的上行载波;
所述蜂窝频段收发机 73还可以用于根据所述第二标识信息, 通过所述增 加上行载波后的第三带宽的蜂窝频段向所述蜂窝基站或者所述毫米波基站发 送上行数据。
例如:上述第三带宽的蜂窝频段为系统预先为用户设备分配的带宽(例如: 10MHz的蜂窝频段), 当蜂窝基站或者毫米波基站为用户设备分配上述第一带 宽的毫米波频段时,蜂窝基站或者毫米波基站就可以是根据第一带宽的毫米波 频段带宽预估用户设备的上行负载,再判断第三带宽的蜂窝频段是否能够承载 用户设备的上行负载,当判断第三带宽的蜂窝频段不能够承载用户设备的上行 负载时,蜂窝基站或者毫米波基站就可以根据所述第一带宽的毫米波频段带宽 为用户设备增加所述第三带宽的蜂窝频段的上行载波。
其中,增加所述第三带宽的蜂窝频段的上行载波具体可以是增加第三带宽 的蜂窝频段的带宽, 或者增加第三带宽的蜂窝频段的上行载波数。 例如: 第三 带宽的蜂窝频段为 10MHz, 蜂窝基站或者毫米波基站就可以将第三带宽的蜂 窝频段为调整为 30M, 或者将多个 10MHz的蜂窝频段作为上述第三带宽的蜂 窝频段。
上述第二标识信息具体可以是增加上行载波后的第三带宽的蜂窝频段的 ID号。蜂窝基站或者毫米波基站向所述蜂窝频段收发机 73发送上述第二标识 信息,具体可以是通过 RRC信令向蜂窝频段收发机 73发送上述第二标识信息。 即通过 RRC信令为用户设备实现增加第三带宽的蜂窝频段的上行载波。 作为一种可选的实施方式,所述用户设备与所述蜂窝基站在蜂窝频段采用 TDD方式进行通信, 和 /或, 所述用户设备与所述毫米波基站在蜂窝频段采用 TDD方式进行通信;
蜂窝频段收发机 73还可以用于接收蜂窝基站或者毫米波基站通过第四带 宽的蜂窝频段发送的控制层数据信息;
蜂窝频段收发机还 73可以用于通过所述第四带宽的蜂窝频段向所述蜂窝 基站或者所述毫米波基站发送上行数据;
蜂窝频段收发机 73还可以用于接收所述蜂窝基站发送的所述第四带宽的 蜂窝频段的目标上下行子帧配比的信息,所述第四带宽的蜂窝频段的目标上下 行子帧配比为所述蜂窝基站根据所述第一带宽的毫米波频段带宽调整的上下 行子帧配比; 收所述蜂窝基站或者所述毫米波基站通过所述目标上下行子帧配比的第四带 宽的蜂窝频段发送的控制层数据信息; 过所述目标上下行子帧配比的第四带宽的蜂窝频段向所述蜂窝基站或者所述 毫米波基站发送上行数据。
例如:第四带宽的蜂窝频段当前的上下行子帧配比为通信协议定义的上下 行子帧配比 3 , 即第四带宽的蜂窝频段当前的上下行子帧配比为 3:6, 例如: 第四带宽的蜂窝频段为 10MHz, 那么第四带宽的蜂窝频段上, 每一个无线帧 包括 10个无线子帧, 其中第 2、 3、 4号子帧配置为上行子帧, 第 0、 5、 6、 7、 8、 9号子帧配置为下行子帧, 第 1号子帧为切换子帧。 蜂窝基站 21就可以将 上述上下行子帧配比 3调整为通信协议定义的上下行子帧配比 0, 即第四带宽 的蜂窝频段调整后的上下行子帧配比为 6:2 , 例如: 第四带宽的蜂窝频段为 10MHz, 那么第四带宽的蜂窝频段上, 每一个无线帧包括 10个无线子帧, 其 中第 2、 3、 4、 7、 8、 9号子帧配置为上行子帧, 第 0、 5号子帧配置为下行子 帧, 第 1、 6号子帧为切换子帧。
其中, 上述通信协议具体可以是 LTE- Advanced协议。
上述技术方案中,用户设备通过蜂窝频段收发机接收蜂窝基站或者毫米波 基站通过蜂窝频段发送的控制层数据信息;以及蜂窝频段收发机通过蜂窝频段 向蜂窝基站或者毫米波基站发送上行数据;再通过毫米波频段接收机接收所述 毫米波基站通过毫米波频段发送的用户层数据信息。从而用户设备只需要包括 一套蜂窝频段收发机和一套毫米波频段接收机就可以完成在蜂窝频段和毫米 波频段的通信,相比现有技术用户设备需要一套蜂窝频段收发机和一套毫米波 频段收发机, 从而本发明实施例可以降低用户设备的成本。 图 8是本发明实施例提供的一种毫米波基站的结构示意图, 如图 8所示, 包括: 存储器 81、 控制器 82和毫米波频段发射机 83 , 其中:
存储器 81与控制器 82连接, 控制器 82还与毫米波频段发射机 83连接; 存储器 81用于存储一组程序代码, 控制器 82用于调用存储器 83存储的 程序, 以控制毫米波频段发射机 83执行如下操作:
毫米波频段发射机 83通过毫米波频段向用户设备发送用户层数据信息。 本实施例中,用户设备的下行控制层数据信息可以是由蜂窝基站向通过蜂 窝频段向用户设备发送的, 用户设备的上行数据(例如: 上行控制层数据信息 和上行用户层数据信息)可以通过蜂窝频段向蜂窝基站发送。从而完成用户设 备的蜂窝频段和毫米波频段的通信。
上述技术方案中,由于用户设备在毫米波频段只需要接收毫米波频段发射 机发送的用户层数据信息,即用户设备只需要一套毫米波频段接收机就可以完 成毫米波频段的通信, 从而可以降低用户设备的成本。 图 9是本发明实施例提供的一种毫米波基站的结构示意图, 如图 9所示, 包括: 存储器 91、 控制器 92、 蜂窝频段收发机 93和毫米波频段发射机 94, 其中:
存储器 91与控制器 92连接,控制器 82还分别与蜂窝频段收发机 93和毫 米波频段发射机 94连接;
存储器 91用于存储一组程序代码, 控制器 92用于调用存储器 93存储的 程序, 以控制蜂窝频段收发机 93和毫米波频段发射机 94执行如下操作: 蜂窝频段收发机 93通过蜂窝频段向所述用户设备发送控制层数据信息; 和 /或, 蜂窝频段收发机 93接收所述用户设备通过蜂窝频段发送的上行数据; 毫米波频段发射机 94通过毫米波频段向用户设备发送用户层数据信息。 当蜂窝频段收发机 93只通过蜂窝频段向所述用户设备发送控制层数据信 息时, 用户设备发送的上行数据就可以发送至蜂窝基站; 当蜂窝频段收发机 93 只接收所述用户设备通过蜂窝频段发送的上行数据时, 蜂窝基站就可以通 过蜂窝频段向用户设备发送控制层数据信息。当然所述毫米波基站还可以与蜂 窝基站进行数据的交换, 例如: 进行上述用户层数据信息的交换。
作为一种可选的实施方式, 控制器 92还可以用于为所述用户设备分配第 一带宽的毫米波频段;
蜂窝频段收发机 93还可以用于向所述用户设备发送所述第一带宽的毫米 波频段的第一标识信息;
毫米波频段发射机 94还可以用于根据所述第一标识信息通过所述第一带 宽的毫米波频段向所述用户设备发送的用户层数据信息。
具体可以是用户设备通过蜂窝频段与蜂窝基站建立后,蜂窝基站向上述毫 米波基站发送为用户设备分配毫米波频段带宽的指示信息, 控制器 92在接收 到该指示信息后, 对毫米波频段进行测量, 控制器 92再根据测量结果为用户 设备分配上述第一带宽 (例如: 200M ) 的毫米波频段。
上述第一带宽频段具体可以是专门用于用户设备的下行数据传输。上述第 一标识信息具体可以是第一带宽的毫米波频段对应的 ID号。
作为一种可选的实施方式,所述用户设备与所述蜂窝基站在蜂窝频段采用 FDD方式进行通信;
蜂窝频段收发机 93还可以用于通过第二带宽的蜂窝频段向所述用户设备 发送控制层数据信息; 和 /或
蜂窝频段收发机 93还可以用于接收所述用户设备通过第三带宽的蜂窝频 段发送的上行数据;
控制器 92还可以用于根据所述第一带宽的毫米波频段带宽为所述用户设 备将所述第三带宽的蜂窝频段的上行载波增加特定带宽或者特定载波数; 蜂窝频段收发机 93还可以用于向所述用户设备发送所述增加上行载波后 的第三带宽的蜂窝频段的第二标识信息;
蜂窝频段收发机 93还可以用于根据所述第二标识信息, 接收所述用户设 备通过所述增加上行载波后的第三带宽的蜂窝频段发送的上行数据。 例如:上述第三带宽的蜂窝频段为系统预先为用户设备分配的带宽(例如: 10MHz的蜂窝频段), 当控制器 92为用户设备分配上述第一带宽的毫米波频 段时, 控制器 92就可以是根据第一带宽的毫米波频段获取到用户设备的上行 负载,再判断第三带宽的蜂窝频段是否能够承载用户设备的上行负载, 当判断 第三带宽的蜂窝频段不能够承载用户设备的上行负载时, 控制器 92就可以根 据所述第一带宽的毫米波频段带宽为用户设备增加所述第三带宽的蜂窝频段 的上行载波。
其中,增加所述第三带宽的蜂窝频段的上行载波具体可以是增加第三带宽 的蜂窝频段的带宽, 或者增加第三带宽的蜂窝频段的上行载波数。 例如: 第三 带宽的蜂窝频段为 10MHz,控制器 92就可以将第三带宽的蜂窝频段为调整为 30M, 或者将多个 10MHz的蜂窝频段作为上述第三带宽的蜂窝频段。
上述第二标识信息具体可以是增加上行载波后的第三带宽的蜂窝频段的 ID号。 蜂窝频段收发机 93向所述用户设备发送上述第二标识信息, 具体可以 是通过 RRC信令向用户设备发送上述第二标识信息。即通过 RRC信令为用户 设备实现增加第三带宽的蜂窝频段的上行载波。 图 10是本发明实施例提供的一种通信方法的结构示意图,如图 10所示,, 包括以下步骤:
1001、 接收蜂窝基站或者毫米波基站通过蜂窝频段发送的控制层数据信 息, 其中, 控制层数据信息包括毫米波频段的第一标识信息。
1002、 通过蜂窝频段向所述蜂窝基站或者所述毫米波基站发送上行数据, 其中, 所述上行数据包括第一标识信息标识的毫米波频段的信道状态信息。
可选的, 当蜂窝基站接收到上述上行数据时, 就可以将该上行数据包括的 信道状态信息传输至毫米波基站,以使毫米波基站通过毫米波频段向用户设备 发送用户层数据信息。 当毫米波基站接收到上述上行数据时, 就可以根据该信 道状态信息通过毫米波频段向用户设备发送用户层数据信息。
1003、 接收所述毫米波基站通过所述毫米波频段发送的用户层数据信息。 作为一种可选的实施方式,所述毫米波频段可以包括第一带宽的毫米波频 段; 其中, 所述第一带宽的毫米波频段为所述蜂窝基站或者所述毫米波基站分 配的毫米波频段的带宽;
上述技术方案中,接收蜂窝基站或者毫米波基站通过蜂窝频段发送的控制 层数据信息; 通过蜂窝频段向蜂窝基站或者毫米波基站发送上行数据; 接收所 述毫米波基站通过毫米波频段发送的用户层数据信息。从而用户设备只需要包 括一套蜂窝频段收发机和一套毫米波频段接收机就可以完成在蜂窝频段和毫 米波频段的通信,相比现有技术用户设备需要一套蜂窝频段收发机和一套毫米 波频段收发机, 从而本实施例可以降低用户设备的成本。 图 11是本发明实施例提供的另一种通信方法的结构示意图,如图 11所示, 所述方法包括以下步骤:
1101、接收蜂窝基站或者毫米波基站通过第二带宽的蜂窝频段发送的控制 层数据信息;
1102、接收所述蜂窝基站或者所述毫米波基站发送的增加上行载波后的第 三带宽的蜂窝频段的第二标识信息; 其中, 所述增加上行载波后的第三带宽的 蜂窝频段为增加特定带宽或者特定载波数后的第三带宽的蜂窝频段,第三带宽 的蜂窝频段所增加的特定带宽或者特定载波数为所述蜂窝基站或者所述毫米 波基站根据所述第一带宽的毫米波频段增加的;
1103、根据所述第二标识信息, 通过所述增加上行载波后的第三带宽的蜂 窝频段向所述蜂窝基站或者所述毫米波基站发送上行数据。
1104、 接收所述毫米波基站通过所述毫米波频段发送的用户层数据信息。 上述技术方案中, 在上面实施例的基础上实现降低用户设备的成本的同 时, 还可以实现在蜂窝频段进行 FDD方式的通信, 且向蜂窝基站或者毫米波 基站传输上行数据的上行载波可以由蜂窝基站或者毫米波基站进行调整。 图 12是本发明实施例提供的另一种通信方法的结构示意图,如图 12所示, 所述方法包括以下步骤:
1201、接收所述蜂窝基站发送的第四带宽的蜂窝频段的目标上下行子帧配 比的信息,所述第四带宽的蜂窝频段的目标上下行子帧配比为所述蜂窝基站根 据所述第一带宽的毫米波频段带宽调整的上下行子帧配比;
1202、根据所述目标上下行子帧配比的信息,接收蜂窝基站或者毫米波基 站通过所述目标上下行子帧配比的第四带宽的蜂窝频段发送的控制层数据信 息;
1203、根据所述目标上下行子帧配比的信息和所述标识信息, 通过所述目 标上下行子帧配比的第四带宽的蜂窝频段向所述蜂窝基站或者所述毫米波基 站发送上行数据。
1204、 接收所述毫米波基站通过所述毫米波频段发送的用户层数据信息。 上述技术方案中, 在上面实施例的基础上实现降低用户设备的成本的同 时, 还可以实现在蜂窝频段进行 TDD方式的通信, 且与蜂窝基站或者毫米波 基站进行蜂窝频段通信的频段的上下行子帧配比可以由蜂窝基站根据毫米波 频段带宽进行调整。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程, 是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算 机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。 其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory, ROM )或随机存取存储器(Random Access Memory, 筒称 RAM )等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之 权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims

权 利 要 求
1、 一种通信系统, 其特征在于, 包括: 蜂窝基站、 毫米波基站和用户设 备, 其中:
所述蜂窝基站通过传输链路与所述毫米波基站连接,所述蜂窝基站包括第 一蜂窝频段收发机,所述毫米波基站包括第二蜂窝频段收发机和毫米波频段发 射机, 所述用户设备包括第三蜂窝频段收发机和毫米波频段接收机;
所述第三蜂窝频段收发机,用于接收所述第一蜂窝频段收发机或者所述第 二蜂窝频段收发机通过蜂窝频段发送的控制层数据信息;
所述第三蜂窝频段收发机还用于通过蜂窝频段向所述第一蜂窝频段收发 机或者所述第二蜂窝频段收发机发送上行数据;
所述毫米波频段接收机,用于接收所述毫米波频段发射机通过毫米波频段 发送的用户层数据信息。
2、 如权利要求 1所述的系统, 其特征在于, 所述蜂窝基站还用于为所述 用户设备分配第一带宽的毫米波频段,所述第一蜂窝频段收发机还用于向所述 第三蜂窝频段收发机发送所述第一带宽的毫米波频段的第一标识信息; 或者, 所述毫米波基站还用于为所述用户设备分配第一带宽的毫米波频段,所述第二 蜂窝频段收发机还用于向所述第三蜂窝频段收发机发送所述第一带宽的毫米 波频段的第一标识信息;
所述毫米波频段接收机还用于根据所述第一标识信息接收所述毫米波频 段发射机通过所述第一带宽的毫米波频段发送的用户层数据信息。
3、 如权利要求 2所述的系统, 其特征在于, 所述用户设备与所述蜂窝基 站在蜂窝频段采用频分双工 FDD方式进行通信, 和 /或, 所述用户设备与所述 毫米波基站在蜂窝频段采用 FDD方式进行通信;
所述第三蜂窝频段收发机还用于接收所述第一蜂窝频段收发机或者所述 第二蜂窝频段收发机通过第二带宽的蜂窝频段发送的控制层数据信息;
所述第三蜂窝频段收发机还用于通过第三带宽的蜂窝频段向所述第一蜂 窝频段收发机或者所述第二蜂窝频段收发机发送上行数据; 所述蜂窝基站还用于根据所述第一带宽的毫米波频段带宽为所述用户设 备将所述第三带宽的蜂窝频段的上行载波增加特定带宽或者特定载波数;所述 第一蜂窝频段收发机还用于向所述第三蜂窝频段收发机发送所述增加上行载 波后的第三带宽的蜂窝频段的第二标识信息; 或者, 所述毫米波基站还用于根 据所述第一带宽的毫米波频段带宽为所述用户设备将所述第三带宽的蜂窝频 段的上行载波增加特定带宽或者特定载波数;所述第二蜂窝频段收发机还用于 向所述第三蜂窝频段收发机发送所述增加上行载波后的第三带宽的蜂窝频段 的第二标识信息;
所述第三蜂窝频段收发机还用于根据所述第二标识信息,通过所述增加上 行载波后的第三带宽的蜂窝频段向所述第一蜂窝频段收发机或者所述第二蜂 窝频段收发机发送上行数据。
4、 如权利要求 3所述的系统, 其特征在于, 所述蜂窝基站还用于根据所 述第一带宽的毫米波频段带宽预估所述用户设备的上行负载,并根据所述上行 负载为所述用户设备将所述第三带宽的蜂窝频段的上行载波增加特定带宽或 者特定载波数;或者所述毫米波基站还用于根据所述第一带宽的毫米波频段带 宽预估所述用户设备的上行负载,并根据所述上行负载为所述用户设备将所述 第三带宽的蜂窝频段的上行载波增加特定带宽或者特定载波数。
5、 如权利要求 2所述的系统, 其特征在于, 所述用户设备与所述蜂窝基 站在蜂窝频段采用时分双工 TDD方式进行通信, 和 /或, 所述用户设备与所述 毫米波基站在蜂窝频段采用 TDD方式进行通信;
所述第三蜂窝频段收发机还用于接收所述第一蜂窝频段收发机或者所述 第二蜂窝频段收发机通过第四带宽的蜂窝频段发送的控制层数据信息;
所述第三蜂窝频段收发机还用于通过所述第四带宽的蜂窝频段向所述第 一蜂窝频段收发机或者所述第二蜂窝频段收发机发送上行数据;
所述蜂窝基站还用于根据所述第一带宽的毫米波频段带宽将所述第四带 宽的蜂窝频段当前的上下行子帧配比调整为目标上下行子帧配比;
所述第一蜂窝频段收发机还用于向第三蜂窝频段收发机发送所述目标上 下行子帧配比的信息; 所述第三蜂窝频段收发机还用于根据所述目标上下行子帧配比的信息,接 收所述第一蜂窝频段收发机或者所述第二蜂窝频段收发机通过所述目标上下 行子帧配比的所述第四带宽的蜂窝频段发送的控制层数据信息;
所述第三蜂窝频段收发机还用于根据所述目标上下行子帧配比的信息,通 过所述目标上下行子帧配比的所述第四带宽的蜂窝频段向所述第一蜂窝频段 收发机或者所述第二蜂窝频段收发机发送上行数据。
6、 如权利要求 5所述的系统, 其特征在于, 所述蜂窝基站还用于根据所 述第一带宽的毫米波频段带宽预估所述用户设备的上行负载,并根据所述上行 负载调整所述第四带宽的蜂窝频段当前的上下行子帧配比调整为目标上下行 子帧配比。
7、 一种用户设备, 其特征在于, 包括: 存储器、 控制器、 蜂窝频段收发 机和毫米波频段接收机, 其中:
所述存储器与所述控制器连接,所述控制器还分别与所述蜂窝频段收发机 和所述毫米波频段接收机连接;
所述存储器用于存储一组程序代码和用户数据,所述控制器用于调用所述 存储器存储的程序,以控制所述蜂窝频段收发机和所述毫米波频段接收机执行 如下操作:
所述蜂窝频段收发机接收蜂窝基站或者毫米波基站通过蜂窝频段发送的 控制层数据信息;
所述蜂窝频段收发机通过蜂窝频段向所述蜂窝基站或者所述毫米波基站 发送上行数据;
所述毫米波频段接收机接收所述毫米波基站通过毫米波频段发送的用户 层数据信息。
8、 如权利要求 7所述的用户设备, 其特征在于, 所述蜂窝频段收发机还 用于接收所述蜂窝基站或者所述毫米波基站发送的第一带宽的毫米波频段的 第一标识信息; 其中, 所述第一带宽的毫米波频段为所述蜂窝基站或者所述毫 米波基站为所述用户设备分配的毫米波频段带宽; 所述毫米波频段接收机还用于根据所述第一标识信息接收所述毫米波基 站通过毫米波频段发送的用户层数据信息。
9、 如权利要求 8所述的用户设备, 其特征在于, 所述用户设备与所述蜂 窝基站在蜂窝频段采用 FDD方式进行通信, 和 /或, 所述用户设备与所述毫米 波基站在蜂窝频段采用 FDD方式进行通信;
所述蜂窝频段收发机还用于接收蜂窝基站或者毫米波基站通过第二带宽 的蜂窝频段发送的控制层数据信息;
所述蜂窝频段收发机还用于通过第三带宽的蜂窝频段向所述蜂窝基站或 者所述毫米波基站发送上行数据;
所述蜂窝频段收发机还用于接收所述蜂窝基站或者所述毫米波基站发送 的增加上行载波后的第三带宽的蜂窝频段的第二标识信息; 其中, 所述增加上 行载波后的第三带宽的蜂窝频段为增加特定带宽或者特定载波数后的第三带 宽的蜂窝频段,第三带宽的蜂窝频段所增加的特定带宽或者特定载波数为所述 蜂窝基站或者所述毫米波基站根据所述第一带宽的毫米波频段带宽为所述用 户设备增加的上行载波;
所述蜂窝频段收发机还用于根据所述第二标识信息,通过所述增加上行载 波后的第三带宽的蜂窝频段向所述蜂窝基站或者所述毫米波基站发送上行数 据。
10、 如权利要求 8所述的用户设备, 其特征在于, 所述用户设备与所述蜂 窝基站在蜂窝频段采用 TDD方式进行通信, 和 /或, 所述用户设备与所述毫米 波基站在蜂窝频段采用 TDD方式进行通信;
所述蜂窝频段收发机还用于接收蜂窝基站或者毫米波基站通过第四带宽 的蜂窝频段发送的控制层数据信息;
所述蜂窝频段收发机还用于通过所述第四带宽的蜂窝频段向所述蜂窝基 站或者所述毫米波基站发送上行数据;
所述蜂窝频段收发机还用于接收所述蜂窝基站发送的所述第四带宽的蜂 窝频段的目标上下行子帧配比的信息,所述第四带宽的蜂窝频段的目标上下行 子帧配比为所述蜂窝基站根据所述第一带宽的毫米波频段带宽调整的上下行 子帧配比;
所述蜂窝频段收发机还用于根据所述目标上下行子帧配比的信息,接收所 述蜂窝基站或者所述毫米波基站通过所述目标上下行子帧配比的第四带宽的 蜂窝频段发送的控制层数据信息;
所述蜂窝频段收发机还用于根据所述目标上下行子帧配比的信息,通过所 述目标上下行子帧配比的第四带宽的蜂窝频段向所述蜂窝基站或者所述毫米 波基站发送上行数据。
11、 一种毫米波基站, 其特征在于, 包括: 存储器、 控制器、 毫米波频段 发射机和蜂窝频段收发机, 其中:
所述存储器与所述控制器连接,所述控制器还与所述毫米波频段发射机连 接;
所述存储器用于存储一组程序代码和用户数据,所述控制器用于调用所述 存储器存储的程序, 以控制所述毫米波频段发射机执行如下操作:
所述毫米波频段发射机通过毫米波频段向用户设备发送用户层数据信息; 所述控制器还用于调用所述存储器存储的程序控制所述蜂窝频段执行如 下操作:
所述蜂窝频段收发机通过蜂窝频段向所述用户设备发送控制层数据信息; 和 /或
所述蜂窝频段收发机接收所述用户设备通过蜂窝频段发送的上行数据。
12、 如权利要求 11所述的基站, 其特征在于, 所述控制器还用于为所述 用户设备分配第一带宽的毫米波频段;
所述蜂窝频段收发机还用于向所述用户设备发送所述第一带宽的毫米波 频段的第一标识信息;
所述毫米波频段发射机还用于根据所述第一标识信息通过所述第一带宽 的毫米波频段向所述用户设备发送的用户层数据信息。
13、 如权利要求 12所述的基站, 其特征在于, 所述用户设备与所述基站 在蜂窝频段采用 FDD方式进行通信;
所述蜂窝频段收发机还用于通过第二带宽的蜂窝频段向所述用户设备发 送控制层数据信息; 和 /或
所述蜂窝频段收发机还用于接收所述用户设备通过第三带宽的蜂窝频段 发送的上行数据;
所述控制器还用于根据所述第一带宽的毫米波频段带宽为所述用户设备 将所述第三带宽的蜂窝频段的上行载波增加特定带宽或者特定载波数;
所述蜂窝频段收发机还用于向所述用户设备发送所述增加上行载波后的 第三带宽的蜂窝频段的第二标识信息;
所述蜂窝频段收发机还用于根据所述第二标识信息,接收所述用户设备通 过所述增加上行载波后的第三带宽的蜂窝频段发送的上行数据。
14、 一种通信方法, 其特征在于, 包括:
接收蜂窝基站或者毫米波基站通过蜂窝频段发送的控制层数据信息, 其 中, 所述控制层数据信息包括毫米波频段的第一标识信息;
通过蜂窝频段向所述蜂窝基站或者所述毫米波基站发送上行数据, 其中, 所述上行数据包括所述第一标识信息标识的毫米波频段的信道状态信息; 接收所述毫米波基站通过所述毫米波频段发送的用户层数据信息。
15、 如权利要求 14所述的方法, 其特征在于, 所述毫米波频段包括第一 带宽的毫米波频段; 其中, 所述第一带宽的毫米波频段为所述蜂窝基站或者所 述毫米波基站分配的毫米波频段的带宽;
所述通过蜂窝频段向所述蜂窝基站或者所述毫米波基站发送上行数据之 前, 所述方法还包括:
接收所述蜂窝基站或者所述毫米波基站发送的增加上行载波后的第三带 宽的蜂窝频段的第二标识信息; 其中, 所述增加上行载波后的第三带宽的蜂窝 频段为增加特定带宽或者特定载波数后的第三带宽的蜂窝频段,第三带宽的蜂 窝频段所增加的特定带宽或者特定载波数为所述蜂窝基站或者所述毫米波基 站根据所述第一带宽的毫米波频段增加的; 所述接收蜂窝基站或者毫米波基站通过蜂窝频段发送的控制层数据信息, 包括:
接收蜂窝基站或者毫米波基站通过第二带宽的蜂窝频段发送的控制层数 据信息;
所述根据所述标识信息通过蜂窝频段向所述蜂窝基站或者所述毫米波基 站发送上行数据, 包括:
根据所述第二标识信息,通过所述增加上行载波后的第三带宽的蜂窝频段 向所述蜂窝基站或者所述毫米波基站发送上行数据。
16、 如权利要求 14所述的方法, 其特征在于, 所述毫米波频段包括第一 带宽的毫米波频段; 其中, 所述第一带宽的毫米波频段为所述蜂窝基站或者所 述毫米波基站分配的毫米波频段的带宽;
所述接收蜂窝基站或者毫米波基站通过蜂窝频段发送的控制层数据信息 之前, 所述方法还包括:
接收所述蜂窝基站发送的第四带宽的蜂窝频段的目标上下行子帧配比的 信息,所述第四带宽的蜂窝频段的目标上下行子帧配比为所述蜂窝基站根据所 述第一带宽的毫米波频段带宽调整的上下行子帧配比;
所述接收蜂窝基站或者毫米波基站通过蜂窝频段发送的控制层数据信息, 包括:
根据所述目标上下行子帧配比的信息,接收蜂窝基站或者毫米波基站通过 所述目标上下行子帧配比的第四带宽的蜂窝频段发送的控制层数据信息; 所述根据所述标识信息通过蜂窝频段向所述蜂窝基站或者所述毫米波基 站发送上行数据, 包括:
根据所述目标上下行子帧配比的信息和所述标识信息,通过所述目标上下 行子帧配比的第四带宽的蜂窝频段向所述蜂窝基站或者所述毫米波基站发送 上行数据。
PCT/CN2013/087766 2013-11-25 2013-11-25 一种通信系统、设备及方法 WO2015074269A1 (zh)

Priority Applications (11)

Application Number Priority Date Filing Date Title
BR112016010481-1A BR112016010481B1 (pt) 2013-11-25 2013-11-25 Sistema de comunicações, equipamento de usuário, estação base de onda milimétrica e método de comunicações
EP18168883.9A EP3407656B1 (en) 2013-11-25 2013-11-25 Communications system
KR1020167011907A KR101738656B1 (ko) 2013-11-25 2013-11-25 통신 시스템 및 방법, 및 장치
CA2927061A CA2927061C (en) 2013-11-25 2013-11-25 Communications system and method, and device
JP2016532007A JP6295476B2 (ja) 2013-11-25 2013-11-25 通信システムおよび方法、ならびにデバイス
PCT/CN2013/087766 WO2015074269A1 (zh) 2013-11-25 2013-11-25 一种通信系统、设备及方法
MX2016006701A MX359501B (es) 2013-11-25 2013-11-25 Sistema de comunicaciones, dispositivo y metodo.
RU2016121399A RU2628952C1 (ru) 2013-11-25 2013-11-25 Система и способ связи, и устройство
EP13897816.8A EP3046378B1 (en) 2013-11-25 2013-11-25 Communication system, device and method
CN201380080725.XA CN105706506B (zh) 2013-11-25 2013-11-25 一种通信系统、设备及方法
US15/159,542 US10070419B2 (en) 2013-11-25 2016-05-19 Communications system and method, and device in which a cellular network and millimeter wave-cellular communications coexist

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/087766 WO2015074269A1 (zh) 2013-11-25 2013-11-25 一种通信系统、设备及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US15/159,542 Continuation US10070419B2 (en) 2013-11-25 2016-05-19 Communications system and method, and device in which a cellular network and millimeter wave-cellular communications coexist

Publications (1)

Publication Number Publication Date
WO2015074269A1 true WO2015074269A1 (zh) 2015-05-28

Family

ID=53178837

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087766 WO2015074269A1 (zh) 2013-11-25 2013-11-25 一种通信系统、设备及方法

Country Status (10)

Country Link
US (1) US10070419B2 (zh)
EP (2) EP3407656B1 (zh)
JP (1) JP6295476B2 (zh)
KR (1) KR101738656B1 (zh)
CN (1) CN105706506B (zh)
BR (1) BR112016010481B1 (zh)
CA (1) CA2927061C (zh)
MX (1) MX359501B (zh)
RU (1) RU2628952C1 (zh)
WO (1) WO2015074269A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017092897A (ja) * 2015-11-17 2017-05-25 パナソニック株式会社 ミリ波通信制御方法及びミリ波通信制御装置
US11146481B2 (en) 2014-09-18 2021-10-12 Qualcomm Incorporated Base station initiated control mechanism for supporting supplemental link

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106162906B (zh) * 2015-03-31 2019-01-15 中兴通讯股份有限公司 调度信息发送、接收方法及装置
EP3249970B1 (en) * 2016-05-26 2020-07-01 Alcatel Lucent Handover method for wireless data transmission system
US10992444B2 (en) * 2016-10-18 2021-04-27 Photonic Systems, Inc. Full-duplex communications system
JP2020535669A (ja) * 2017-08-10 2020-12-03 オッポ広東移動通信有限公司Guangdong Oppo Mobile Telecommunications Corp., Ltd. 無線通信方法及びネットワークノード
US10575240B2 (en) 2017-09-12 2020-02-25 Sony Corporation Multi-band millimeter wave network discovery
US10716053B2 (en) 2017-10-02 2020-07-14 Sony Corporation Adaptive network discovery signaling
US10728733B2 (en) 2018-01-12 2020-07-28 Sony Corporation Multi-band millimeter wave discovery in WLAN distribution networks
US10742299B2 (en) 2018-08-20 2020-08-11 Sony Corporation Allocation and directional information distribution in millimeter wave WLAN networks
KR102513433B1 (ko) * 2018-09-13 2023-03-24 삼성전자주식회사 영상전송을 위한 다중 무선 네트워크 환경에서의 QoS 제어 장치 및 이의 제어방법
US11617137B1 (en) * 2020-04-01 2023-03-28 Cable Television Laboratories, Inc. Power-efficient coordinated multipoint transmission in millimeter-wave small cells-power
US11265751B1 (en) * 2020-05-19 2022-03-01 Sprint Spectrum L.P. Dynamic air-interface reconfiguration based on inter-access-node data flow for dual-connectivity service

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102098062A (zh) * 2010-12-09 2011-06-15 北京邮电大学 基于毫米波的微型物联网组网系统和方法
US20110182174A1 (en) * 2010-01-28 2011-07-28 Samsung Electronics Co. Ltd. Techniques for millimeter wave mobile communication
US20120320874A1 (en) * 2011-06-17 2012-12-20 Samsung Electronics Co., Ltd. Apparatus and method for supporting network entry in a millimeter-wave mobile broadband communication system
CN102884731A (zh) * 2010-04-06 2013-01-16 三星电子株式会社 用于毫米波通信系统的空分双工的装置和方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8320346B2 (en) * 2009-09-25 2012-11-27 Intel Corporation Apparatus and methods for universal services interface networking
JP5587809B2 (ja) 2011-02-16 2014-09-10 インターナショナル・ビジネス・マシーンズ・コーポレーション アウトオブバンドの無線チャネルを用いた高速ミリ波リンクの制御とモニタリング
RU2475968C1 (ru) * 2011-06-28 2013-02-20 Федеральное государственное унитарное предприятие "Государственный космический научно-производственный центр имени М.В. Хруничева" (ФГУП "ГКНПЦ им. М.В. Хруничева") Многофункциональный мобильный комплекс обеспечения потребителей мониторинговой информацией (мкопми)
US20140321282A1 (en) * 2011-12-08 2014-10-30 Interdigital Patent Holdings, Inc. High-rate dual-band cellular communications
TWI595762B (zh) * 2011-12-08 2017-08-11 內數位專利控股公司 毫米波通訊系統方法及裝置
EP2848083B1 (en) * 2012-05-10 2017-09-20 IDAC Holdings, Inc. Systems and methods for directional mesh networks with joint backhaul and access link design
US9439096B2 (en) * 2012-08-13 2016-09-06 Samsung Electronics Co., Ltd. Method and apparatus to support channel refinement and multi-stream transmission in millimeter wave systems
US9660771B2 (en) * 2012-10-16 2017-05-23 Samsung Electronics Co., Ltd Method and apparatus for performing hybrid automatic repeat request operation in an asymmetric multicarrier communication network environment
US9781738B2 (en) * 2013-02-07 2017-10-03 Idac Holdings, Inc. Physical layer (PHY) design for a low latency millimeter wave (MMW) backhaul system
US9497047B2 (en) * 2013-07-02 2016-11-15 Samsung Electronics Co., Ltd. Methods and apparatus for sounding channel operation in millimeter wave communication systems

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110182174A1 (en) * 2010-01-28 2011-07-28 Samsung Electronics Co. Ltd. Techniques for millimeter wave mobile communication
CN102884731A (zh) * 2010-04-06 2013-01-16 三星电子株式会社 用于毫米波通信系统的空分双工的装置和方法
CN102098062A (zh) * 2010-12-09 2011-06-15 北京邮电大学 基于毫米波的微型物联网组网系统和方法
US20120320874A1 (en) * 2011-06-17 2012-12-20 Samsung Electronics Co., Ltd. Apparatus and method for supporting network entry in a millimeter-wave mobile broadband communication system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3046378A4 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11146481B2 (en) 2014-09-18 2021-10-12 Qualcomm Incorporated Base station initiated control mechanism for supporting supplemental link
JP2017092897A (ja) * 2015-11-17 2017-05-25 パナソニック株式会社 ミリ波通信制御方法及びミリ波通信制御装置

Also Published As

Publication number Publication date
EP3046378A1 (en) 2016-07-20
CN105706506A (zh) 2016-06-22
EP3046378A4 (en) 2016-10-26
US20160270075A1 (en) 2016-09-15
EP3046378B1 (en) 2018-06-27
EP3407656A1 (en) 2018-11-28
CA2927061A1 (en) 2015-05-28
CN105706506B (zh) 2019-05-24
EP3407656B1 (en) 2021-09-22
KR20160068852A (ko) 2016-06-15
MX359501B (es) 2018-09-26
RU2628952C1 (ru) 2017-08-23
MX2016006701A (es) 2016-09-06
BR112016010481A2 (zh) 2017-08-08
BR112016010481B1 (pt) 2022-06-14
JP2016539573A (ja) 2016-12-15
JP6295476B2 (ja) 2018-03-20
CA2927061C (en) 2019-07-02
US10070419B2 (en) 2018-09-04
KR101738656B1 (ko) 2017-05-22

Similar Documents

Publication Publication Date Title
US10070419B2 (en) Communications system and method, and device in which a cellular network and millimeter wave-cellular communications coexist
US20220046735A1 (en) Secondary cell activation method and apparatus
JP2022550963A (ja) Harqプロセスごとにフィードバックを有効化/無効化するharqコードブック構築
CN105265014B (zh) 一种数据传输的方法及用户设备
US20230063901A1 (en) Sidelink feedback method and terminal device
CN114788204B (zh) Harq进程的状态确定方法、装置及设备
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和系统
EP3211959B1 (en) Method, apparatus, and computer program product for establishing a mix of d2d direct and cellular communication links between two devices for interaction
CN115580380B (zh) 无线通信的方法及装置
EP4280752A1 (en) Setup of a second sidelink in high range of frequency
US12028169B2 (en) Wireless communication method, receiving-end device, and sending-end device
WO2024065689A1 (en) Method of reporting timing information and method of timing information indication in multi-trp scenario and related devices
WO2023070375A1 (zh) 资源指示的方法、终端设备和网络设备
WO2024026678A1 (zh) 无线通信的方法、终端设备和网络设备
US20220060290A1 (en) Wireless communication method, receiving-end device, and sending-end device
CN115396947B (zh) 侧行数据传输方法、终端设备和网络设备
US20230099072A1 (en) Information processing method, terminal device and network device
US20230379027A1 (en) Information processing method and terminal device
US20230254071A1 (en) Transmission method and terminal device
WO2023035185A1 (zh) 无线通信的方法和终端设备
WO2021163967A1 (zh) 数据传输方法、终端设备和网络设备
WO2023055413A1 (en) Smart integrated access backhaul that supports repeater mode
EP4173206A1 (en) Configurations for a carrier overlapping multiple unlicensed bands
CN116996942A (zh) 一种跨分布式单元du的通信方法及相关装置
CN104918227A (zh) 通信设备和长期演进系统中基站回传的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897816

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2927061

Country of ref document: CA

REEP Request for entry into the european phase

Ref document number: 2013897816

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013897816

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 20167011907

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2016532007

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: MX/A/2016/006701

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112016010481

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: IDP00201603681

Country of ref document: ID

ENP Entry into the national phase

Ref document number: 2016121399

Country of ref document: RU

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 112016010481

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20160510