WO2015073001A1 - Système et méthodologie pour une utilisation d'un objet dégradable dans un tubage - Google Patents

Système et méthodologie pour une utilisation d'un objet dégradable dans un tubage Download PDF

Info

Publication number
WO2015073001A1
WO2015073001A1 PCT/US2013/070053 US2013070053W WO2015073001A1 WO 2015073001 A1 WO2015073001 A1 WO 2015073001A1 US 2013070053 W US2013070053 W US 2013070053W WO 2015073001 A1 WO2015073001 A1 WO 2015073001A1
Authority
WO
WIPO (PCT)
Prior art keywords
tubing
wiper
seat
core
dissolvable
Prior art date
Application number
PCT/US2013/070053
Other languages
English (en)
Inventor
Mitchel Stretch
Original Assignee
Schlumberger Canada Limited
Services Petroliers Schlumberger
Schlumberger Holdings Limited
Schlumberger Technology B.V.
Prad Research And Development Limited
Schlumberger Technology Corporation
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Schlumberger Canada Limited, Services Petroliers Schlumberger, Schlumberger Holdings Limited, Schlumberger Technology B.V., Prad Research And Development Limited, Schlumberger Technology Corporation filed Critical Schlumberger Canada Limited
Priority to PCT/US2013/070053 priority Critical patent/WO2015073001A1/fr
Publication of WO2015073001A1 publication Critical patent/WO2015073001A1/fr

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/14Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
    • E21B34/142Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools unsupported or free-falling elements, e.g. balls, plugs, darts or pistons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/063Valve or closure with destructible element, e.g. frangible disc

Definitions

  • darts may be pumped downhole along an interior of a tubing string deployed in a wellbore. The dart is moved until it engages and seals against a corresponding seat. After the dart seals against the seat, fluid may be pressurized in the interior of the tubing string above the seat. The pressurized fluid is used to actuate a desired tool. Following actuation, the dart is removed by a suitable removal process, such as milling, to provide a passageway to a lower portion of the wellbore. The passageway may be used for cementing operations, well treatment operations, and/or a variety of additional or other well-related procedures.
  • the present disclosure provides a methodology and system for performing an operation in tubing, such as a wellbore tubing.
  • a seat is placed in the tubing so that an object may be delivered along an interior of the tubing for engagement with the seat.
  • the object is designed with a non-degradable component, e.g. wiper, mounted on a degradable core.
  • a non-degradable component e.g. wiper
  • fluid may be used to move the object along the interior of the tubing and into engagement with the seat.
  • the non-degradable component may be used to wipe, e.g.
  • the object After the object engages the seat, pressure may be applied along the interior of the tubing to actuate a desired tool.
  • the core may be degraded, e.g. dissolved, and thus removed from the tubing.
  • the non-degradable component e.g. wiper
  • the non-degradable component of the object can in some cases be expanded into a recess in the tool holding the seat. If the seat is not degradable, it can also expand into the recess.
  • the inner diameter of the tool is such that it is as large or larger than the inner diameter of the tubing, providing full-bore unrestricted access to the lower section of the well without the need for a milling operation.
  • Figure 1 is a schematic representation of an example of a well system having a tubing string deployed in a wellbore with an object deployed through an interior of the tubing string for tool actuation, according to an embodiment of the disclosure;
  • Figure 2 is a cross-sectional illustration of an example of an object deployed along an interior of a tubing, according to an embodiment of the disclosure
  • Figure 3 is an illustration similar to that of Figure 2 but showing the object in a different operational position, according to an embodiment of the disclosure
  • Figure 4 is an illustration similar to that of Figure 3 but with a portion of the object degraded and removed, according to an embodiment of the disclosure
  • Figure 5 is a cross-sectional illustration of another example of an object deployed along an interior of a tubing, according to an embodiment of the disclosure.
  • Figure 6 is an illustration similar to that of Figure 5 but showing the object in a different operational position, according to an embodiment of the disclosure;
  • Figure 7 is an illustration similar to that of Figure 6 but showing the outer non-degradable section of the object expanded into a recess in the tubing, according to an embodiment of the disclosure
  • Figure 8 is an illustration similar to that of Figure 7 but with a portion of the object degraded and removed along with a degradable seat, providing unrestricted access through the inner diameter of the tubing, according to an embodiment of the disclosure;
  • Figure 9 is a cross-sectional illustration of another example of an object deployed along an interior of a tubing, according to an embodiment of the disclosure.
  • Figure 10 is an illustration similar to that of Figure 9 but showing the object in a different operational position, according to an embodiment of the disclosure
  • Figure 11 is an illustration similar to that of Figure 10 but showing the object in a different operational position, according to an embodiment of the disclosure
  • Figure 12 is an illustration similar to that of Figure 11 but with a portion of the object degraded and removed, according to an embodiment of the disclosure
  • Figure 13 is a cross-sectional illustration of another example of an object deployed along an interior of a tubing, according to an embodiment of the disclosure.
  • Figure 14 is an illustration similar to that of Figure 13 but showing the object in a different operational position, according to an embodiment of the disclosure;
  • Figure 15 is an illustration similar to that of Figure 14 but showing the outer non-degradable section of the object expanded into a recess in the tubing, according to an embodiment of the disclosure;
  • Figure 16 is an illustration similar to that of Figure 15 but with a portion of the object degraded and removed along with a degradable seat, providing unrestricted access through the inner diameter of the tubing, according to an embodiment of the disclosure;
  • Figure 17 is a cross-sectional illustration of another example of an object deployed along an interior of a tubing, according to an embodiment of the disclosure.
  • Figure 18 is an illustration similar to that of Figure 17 but showing the object in a different operational position, according to an embodiment of the disclosure
  • Figure 19 is an illustration similar to that of Figure 18 but showing the outer non-degradable section of the object expanded into a first recess in the tubing, according to an embodiment of the disclosure
  • Figure 20 is an illustration similar to that of Figure 19 but showing the outer non-degradable section of the object and an object seat expanded into a second, deeper recess in the tubing, according to an embodiment of the disclosure;
  • Figure 21 is an illustration similar to that of Figure 20 but with a portion of the object degraded and removed, providing unrestricted access through the inner diameter of the tubing, according to an embodiment of the disclosure;
  • Figure 22 is a cross-sectional illustration of another example of an object deployed along an interior of a tubing, according to an embodiment of the disclosure
  • Figure 23 is an illustration similar to that of Figure 22 but showing the object in a different operational position, according to an embodiment of the disclosure;
  • Figure 24 is an illustration similar to that of Figure 23 but showing the outer non-degradable section of the object expanded into a first recess in the tubing, according to an embodiment of the disclosure
  • Figure 25 is an illustration similar to that of Figure 24 but showing the outer non-degradable section of the object and an object seat expanded into a second, deeper recess in the tubing, according to an embodiment of the disclosure.
  • Figure 26 is an illustration similar to that of Figure 25 but with a portion of the object degraded and removed, providing unrestricted access through the inner diameter of the tubing, according to an embodiment of the disclosure.
  • the present disclosure generally relates to a system and methodology for performing an operation in tubing, such as a wellbore tubing.
  • an object e.g. a dart
  • the object is moved along an interior of a tubing string located within a wellbore.
  • the object is moved into engagement with a corresponding seat, and pressure may be applied uphole from the seated object to cause actuation of a tool.
  • the object may be used to actuate many types of tools and/or to facilitate other operations in well applications and other applications utilizing tubing.
  • a seat member comprises a seat which is placed in the tubing so that an object may be delivered along an interior of the tubing for engagement with the seat.
  • the object is designed with a non-degradable component, e.g. wiper, mounted on a degradable core.
  • the degradable core may be formed from a dissolvable material, such as a material which dissolves when exposed to well fluids.
  • the well fluids may be hydrocarbon-based fluids or other fluids, e.g. acids, pumped downhole to dissolve the core.
  • fluid may be used to move the object along the interior of the tubing and into engagement with the seat.
  • the wiper removes, e.g. scrapes or cleans, material from an inside surface of the tubing. After the object engages the seat, pressure may be applied along the interior of the tubing to actuate a desired tool.
  • the core may be degraded, e.g. dissolved, and thus removed from the tubing.
  • the object may be used in many types of tubing and in many applications to, for example: wipe an interior surface of the tubing; to actuate a tool; and to
  • the object may comprise a dart having a degradable, e.g. dissolvable, core.
  • the dart is deployed through a tubing string to wipe cement or other debris or fluids from the tubing along an upper portion of the wellbore.
  • the core may then be removed, e.g. dissolved, to provide flow access to a lower portion of the wellbore.
  • the dart Prior to degradation of the core, the dart also may be moved, e.g. pumped, into engagement with a seat for actuation of a tool.
  • the object e.g. dart, may be moved along vertical and deviated, e.g. horizontal, sections of the wellbore.
  • upper and lower refer to portions of the wellbore uphole and downhole, respectively, of a reference point such as the seat.
  • upper refers to the region between the reference point and the surface while lower refers to the wellbore on an opposite side of such reference point.
  • the degradable core of the object e.g dart
  • a non-degradable component such as a non-degradable wiper.
  • a non-degradable component such as a non-degradable wiper.
  • non-degradable e.g. non-dissolvable
  • materials to be used as the wiping, e.g. scraping or cleaning, component of the object while still providing unrestricted access to a lower portion of the wellbore after tool actuation.
  • the non-degradable component may be formed as an expandable component which expands outwardly into a recess to provide full-bore access to the lower portion of the wellbore.
  • the non-degradable portion may be a wiper formed from a non-dissolvable material, such as rubber, steel, or other materials that are beneficial to wiping, e.g. scraping or cleaning, the wellbore.
  • the object may be formed with different types of degradable materials.
  • the core may be formed from two types of material which dissolve at different rates.
  • the non-degradable component e.g. wiper
  • the wiper or other non-degradable component can be formed from a dissolvable material which dissolves at a slower rate than the core.
  • a tubing string 30 comprises tubing 32 deployed in a wellbore 34.
  • Wellbore 34 extends from surface equipment 36, e.g. a wellhead, down through a subterranean formation 38.
  • Surface equipment 36 is located at a surface location 40 which may be a land surface or a seabed.
  • the wellbore 34 may be a generally vertical wellbore, but the wellbore also may comprise deviated, e.g. horizontal, sections.
  • a seat member 42 is deployed along tubing
  • the tubing string 30 also may comprise a tool or tools 52 which are located and designed to facilitate a variety of well-related operations, such as service operations.
  • tool 52 may comprise a valve or valves designed to facilitate a cementing operation, gravel packing operation, or other well service operation.
  • additional or other tools may be located along the tubing string 30.
  • tool 52 may be actuated by applying pressure along the interior 46 of the upper portion 48 of wellbore 34.
  • an object 54 may be moved along interior 46 from surface location 40 toward seat 44.
  • the object 54 may be pumped down along interior 46 via a fluid and moved into engagement with seat 44.
  • object 54 Upon engaging seat 44, object 54 is designed to form a sufficient seal to enable pressurization of the fluid in interior 46 of upper portion 48. The pressurization may be used to actuate tool 52 and/or to perform other downhole operations.
  • object 54 may be in the form of a dart.
  • object 54 also may be constructed as another suitable shape for moving along interior 46 of tubing 32 and engaging seat 44.
  • the object 54 also may comprise a degradable portion and a non-degradable portion.
  • object 54 may comprise a degradable core 56, formed of a degradable material, and a non-degradable structure 58, formed of a non-degradable material and mounted on degradable core 56.
  • the non-degradable structure 58 is in the form of a wiper designed to wipe, e.g. scrape or clean, an interior surface 60 defining interior 46 of tubing 32 as the object 54 is moved along interior 46 in the direction of arrow 62.
  • the degradable material of core 56 is formed from a dissolvable material which readily dissolves in the presence of a wellbore fluid, such as a hydrocarbon fluid present in the wellbore, a delivery or actuating fluid which delivers object 54 downhole, or another type of fluid, e.g. acid, pumped downhole along interior 46 of tubing 32.
  • a wellbore fluid such as a hydrocarbon fluid present in the wellbore, a delivery or actuating fluid which delivers object 54 downhole, or another type of fluid, e.g. acid, pumped downhole along interior 46 of tubing 32.
  • the degradable material also may comprise a frangible material or other type of material which may be selectively degraded and removed after use of object 54 at seat 44.
  • the degradable core 56 may be designed to degrade in reaction to a variety of inputs.
  • the non-degradable structure 58 e.g.
  • the wiper may be formed from a non-dissolvable material or a slower dissolving material, such as rubber, steel, or other suitable material for a given application.
  • the non-degradable structure 58 does not degrade (or it degrades more slowly) when exposed to the given input which causes degradation of the core 56.
  • the object 54 is pumped down along interior 46 and the non-dissolvable wiper scrapes and cleans interior surface 60 of debris until object 54 engages seat 44.
  • the fluid in interior 46 of upper portion 48 is subjected to increased pressure so as to actuate tool 52.
  • the increased pressure may be created by surface pumps.
  • the core 56 is removed and allowed to dissolve or is simply degraded to enable removal.
  • interior 46 becomes a flowthrough passage to lower portion 50 of wellbore 34.
  • the non-degradable component 58 is in the form of a wiper 64 mounted on the degradable core 56.
  • degradable core 56 may be constructed from a dissolvable material and wiper 64 may be constructed from a non-dissolvable material.
  • the wiper 64 is mounted on core 56 via a mounting feature 66, such as an annular recess formed along an exterior of the degradable core 56.
  • the core 56 and annular recess 66 are sized to maintain wiper 64 in contact with interior surface 60 as the object 54 is pumped or otherwise moved along interior 46 of tubing 32.
  • the object 54 is moved along interior 46 as wiper 64 wipes along interior surface 60 until the object 54 engages seat member 42.
  • the degradable core 56 may comprise an engagement surface 68 oriented and constructed for sealing or substantial sealing with seat 44. Once the object 54 is engaged with seat 44, as illustrated in Figure 3, pressure may be increased in interior 46 of upper portion 48 to actuate tool 52 or to perform another operation.
  • the degradable core 56 is removed to provide a flow passageway connecting the interior 46 of upper portion 48 with the lower portion 50 of wellbore 34, as indicated by arrow 70 in Figure 4.
  • the degradable core 56 may be removed via degradation, e.g. dissolving the core 56 in a suitable fluid. In some applications, however, the degradable core 56 may be removed by other techniques and subsequently dissolved or otherwise degraded.
  • the wiper 64 may be used in a wellbore application to wipe the interior surface 60 of the upper wellbore portion 48 of cement, debris, fluids, and/or other materials.
  • the cement, debris, fluids, or other material are pushed out of an open valve where the upper and lower wellbore meet or simply out of the end of the tubing string 30.
  • tool 52 may be in the form of an open valve
  • object 54 is used to close the valve by pushing on seat 44 to transition the seat member 42 which, in turn, transitions a valve sleeve of the tool/valve 52.
  • the seat 44 may be an affixed seat to allow pressurization for actuation of other types of tools 52.
  • the degradable core 56 is removed, e.g. dissolved or otherwise removed, to provide access to the lower wellbore portion 50 below tool 52 and seat 44.
  • the non-degradable component 58 e.g. wiper 64
  • the non-degradable component 58/wiper 64 is spring biased in a radially outward direction.
  • the spring bias may be created by compressing a naturally resilient material into annular recess 66 or by providing an outward bias via a spring member 72 positioned between degradable core 56 and non-degradable component 58.
  • the object 54 is again pumped or otherwise moved along interior 46, as illustrated in Figure 5.
  • the wiper 64 may be used to wipe interior surface 60 of tubing 32.
  • pressure may be increased along interior 46 to actuate tool 52, as illustrated in Figure 6.
  • seat member 42 is connected with a sleeve 74 of tool 52.
  • the seat member 42 and seat 44 are transitioned or moved along the inside of tubing 32 to actuate the tool 52, as illustrated in Figure 7.
  • the spring bias acts to expand the wiper 64 (or other non-degradable component 58) into a cavity 76.
  • cavity 76 may be in the form of an annular recess formed into interior surface 60 along the inside of tubing 32.
  • the degradable core 56 may then be removed and degraded, as illustrated in Figure 8.
  • seat member 42 may be formed from a degradable material to enable removal of the seat member after actuation of tool 52.
  • a full-bore, unrestricted passageway to lower wellbore portion 50 can be established, as indicated by arrow 78.
  • the core 56 and seat member 42 may be removed by dissolving their component material in a suitable fluid.
  • tool 52 comprises a valve 80.
  • the object 54 is again pumped or otherwise moved along interior 46, as illustrated in Figure 9.
  • the wiper 64 may be used to wipe interio surface 60 of tubing 32.
  • seat member 42 may comprise an object receiving cavity 82 sized to receive object 54 therein, as illustrated in Figure 10.
  • the seat 44 is disposed within object receiving cavity 82, as illustrated.
  • valve 80 is initially in an open position in which valve ports 84 are aligned with tubing ports 86 to enable flow of fluid between interior 46 and a wellbore annulus 88 surrounding tubing 32.
  • the valve ports 84 may be located in a valve sleeve 90 slidably positioned along the interior of tubing 32.
  • valve sleeve 90 is shifted to move valve ports 84 out of alignment with tubing ports 86 which effectively actuates tool 52 by closing valve 80.
  • valve 80 may be used in cementing operations or a variety of other operations in which controlled flows of fluid are established between different wellbore regions.
  • tool 52 again comprises valve 80.
  • this embodiment also utilizes cavity 76, expandable component 58, and a degradable seat member 42.
  • Valve 80 may be used in a variety of applications, such as providing a flow path when a lower wellbore region is plugged.
  • object 54 is again pumped or otherwise moved along interior 46, as illustrated in Figure 13.
  • the non-degradable component/wiper 64 may be used to wipe interior surface 60 of tubing 32.
  • the object 54 is moved into engagement with seat 44, as illustrated in Figure 14.
  • the pressure is then increased along interior 46 to actuate tool 52 which in this example comprises valve 80.
  • Valve 80 is shifted to another operational position, e.g. a closed position as illustrated in Figure 15.
  • the spring bias acting on wiper 64 expands the wiper (or other non-degradable component 58) into cavity 76.
  • cavity 76 may again be in the form of an annular recess formed into interior surface 60 along the inside of tubing 32.
  • the degradable core 56 may be removed/degraded, as illustrated in Figure 16.
  • seat member 42 also is formed from a degradable material to enable removal of the seat member 42 after actuation of tool 52/valve 80.
  • both the non-degradable component 58 e.g. wiper 64
  • the seat member 42 are spring biased in a radially outward direction.
  • the non-degradable component 58 and the seat member 42 are spring biased in a radially outward direction.
  • the non-degradable component 58 and the seat member 42 each may be constructed from a naturally resilient material which is compressed inwardly and fitted within interior surface 60 of tubing 32.
  • separate spring members may be located within the non-degradable component 58 and seat member 42 to provide the radially outwardly directed spring bias.
  • the object 54 is again pumped or otherwise moved along interior 46, as illustrated in Figure 17.
  • the non-degradable component 58 may be in the form of wiper 64 which is employed to wipe inside surface 60 of tubing 32.
  • pressure may be increased along interior 46 to actuate tool 52, as illustrated in Figure 18.
  • seat member 42 is initially secured to the surrounding tubing 32 via a shear member 92, such as a shear ring or shear pins. Additionally, the seat member 42 is engaged with sleeve 74 of tool 52. As pressure is increased in interior 46 above seat 44, the shear member 92 is sheared. This allows the seat member 42 and seat 44 to be transitioned or moved along the inside of tubing 32 to actuate the tool 52 via movement of sleeve 74, as illustrated in Figure 19.
  • cavity 76 may again be in the form of an annular recess formed into interior surface 60 along the inside of tubing 32. In this example, however, the cavity 76 has a first portion for receiving component 58 and a second portion for receiving the seat member 42. This allows the degradable core 56 to be
  • the degradable core 56 may be removed by dissolving the core 56 with a suitable fluid.
  • a suitable fluid By expanding the non-degradable component 58 and the seat member 42 into cavity 76, a full-bore, unrestricted passageway to lower wellbore portion 50 can be established.
  • FIG. 22-26 another embodiment is illustrated which is similar to the previous embodiment in that both the non-degradable component 58, e.g. wiper 64, and the seat member 42 are spring biased in a radially outward direction.
  • the non-degradable component 58 and the seat member 42 are spring biased in a radially outward direction.
  • the component 58 and seat member 42 each may similarly be constructed from a naturally resilient material which is compressed inwardly and fitted within interior surface 60 of tubing 32.
  • separate spring members may be located within the non-degradable component 58 and seat member 42 to provide the radially outwardly directed spring bias.
  • valve 80 employs tool 52 in the form of valve 80.
  • This embodiment again utilizes cavity 76, expandable component 58, and expandable seat member 42.
  • Valve 80 may be used in a variety of applications, such as providing a flow path when a lower wellbore region is plugged.
  • the object 54 is pumped or otherwise moved along interior 46, as illustrated in Figure 22.
  • Component 58 may be in the form of wiper 64 so that during movement, the non- degradable component/wiper 64 may be used to wipe inside surface 60 of tubing 32.
  • the object 54 is moved into engagement with seat 44, as illustrated in Figure 23.
  • Seat member 42 may be initially secured to the surrounding tubing 32 via shear member 92, e.g. a shear ring or shear pins. Additionally, the seat member 42 is engaged with the valve sleeve 90 of valve 80. As pressure is increased in interior 46 above seat 44, the shear member 92 is sheared. This allows the seat member 42 and seat 44 to be transitioned or moved along the inside of tubing 32 to actuate the valve 80 via movement of valve sleeve 90, as illustrated in Figure 24. Depending on the specific application, the valve 80 may be shifted between various operational
  • valve 80 is initially in an open position in which valve ports 84 are aligned with tubing ports 86 to enable flow between interior 46 and the surrounding annulus 88. The valve 80 is then transitioned to a closed position.
  • cavity 76 may again be in the form of an annular recess formed into interior surface 60 along the inside of tubing 32.
  • the annular recess 76 may have a first portion for receiving the wiper 64 and a second portion for receiving the seat member 42.
  • the degradable core 56 may be removed/degraded, as illustrated in Figure 25.
  • expansion of the wiper 64/component 58 and seat member 42 allows the degradable core 56 to be removed and then degraded.
  • the degradable core 56 may be removed via degradation, e.g. by dissolving the core 56 with a suitable fluid.
  • the specific arrangement of system components for a given well application or non-well tubing application may vary.
  • a variety of components may be employed in the tubing string and the tubing string may have a variety of sizes, configurations, and lengths.
  • the object moved along the interior of the tubing string may have many forms and configurations depending on the environment, the seat structure, the material selected, and the tools to be actuated.
  • Both the degradable and non-degradable components of the object may vary in materials and configurations depending on the technique selected for degradation, the naturally occurring fluids, and the fluids available to be pumped down through the tubing string.
  • the object may be designed to enable release of the core through degradation or to mechanically release the core followed by core degradation.
  • many types of valves and other tools may be used in the tubing string and actuated via deployment of the object through the interior of the tubing string.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Geology (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)

Abstract

L'invention concerne une méthodologie et un système facilitant l'exécution d'une opération dans un tubage, tel qu'un tubage de puits de forage. Un support est placé dans le tubage de sorte qu'un objet peut être libéré le long d'un intérieur du tubage pour mise en prise avec le support. L'objet est conçu avec un composant non dégradable, par exemple, un racleur, monté sur une âme dégradable. Dans de nombreuses applications, un fluide peut être utilisé pour déplacer l'objet le long de l'intérieur du tubage et en prise avec le support. À mesure que l'objet se déplace le long de l'intérieur, le racleur est utilisé pour essuyer, par exemple, racler, le matériau depuis une surface intérieure du tubage. Après que l'objet vient en prise avec le support, une pression peut être appliquée le long de l'intérieur du tubage pour actionner un outil souhaité. À l'achèvement de la procédure, l'âme peut être dégradée, par exemple dissoute, et ainsi être éliminée du tubage.
PCT/US2013/070053 2013-11-14 2013-11-14 Système et méthodologie pour une utilisation d'un objet dégradable dans un tubage WO2015073001A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/US2013/070053 WO2015073001A1 (fr) 2013-11-14 2013-11-14 Système et méthodologie pour une utilisation d'un objet dégradable dans un tubage

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/US2013/070053 WO2015073001A1 (fr) 2013-11-14 2013-11-14 Système et méthodologie pour une utilisation d'un objet dégradable dans un tubage

Publications (1)

Publication Number Publication Date
WO2015073001A1 true WO2015073001A1 (fr) 2015-05-21

Family

ID=53057784

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/US2013/070053 WO2015073001A1 (fr) 2013-11-14 2013-11-14 Système et méthodologie pour une utilisation d'un objet dégradable dans un tubage

Country Status (1)

Country Link
WO (1) WO2015073001A1 (fr)

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018035149A1 (fr) * 2016-08-15 2018-02-22 Janus Tech Services, Llc Structure de bouchon de puits de forage et procédé de test de pression d'un puits de forage
AU2016203183B2 (en) * 2015-05-15 2018-03-29 Schlumberger Technology B.V. A Buoyancy assist tool
WO2018147853A1 (fr) * 2017-02-09 2018-08-16 Halliburton Energy Services, Inc. Actionnement d'un outil de fond de trou avec un anneau d'actionnement dégradable
US10287835B2 (en) * 2016-05-06 2019-05-14 Stephen L. Crow Tubular recess or support mounted isolation support for an object for formation pressure treatment
US10450817B2 (en) 2016-10-11 2019-10-22 Halliburton Energy Services, Inc. Dissolvable protector sleeve
WO2020023163A1 (fr) * 2018-07-26 2020-01-30 Baker Hughes, A Ge Company, Llc Agencement et procédé d'amélioration d'enlèvement d'objets
WO2020131104A1 (fr) * 2018-12-21 2020-06-25 Halliburton Energy Services, Inc. Outil d'assistance à la flottabilité
WO2020214145A1 (fr) * 2019-04-15 2020-10-22 Halliburton Energy Services, Inc. Outil d'assistance à la flottaison avec nez dégradable
US10900311B2 (en) 2018-07-26 2021-01-26 Baker Hughes, A Ge Company, Llc Object removal enhancement arrangement and method
US10989013B1 (en) 2019-11-20 2021-04-27 Halliburton Energy Services, Inc. Buoyancy assist tool with center diaphragm debris barrier
US10995583B1 (en) 2019-10-31 2021-05-04 Halliburton Energy Services, Inc. Buoyancy assist tool with debris barrier
US11072990B2 (en) 2019-10-25 2021-07-27 Halliburton Energy Services, Inc. Buoyancy assist tool with overlapping membranes
US11105166B2 (en) 2019-08-27 2021-08-31 Halliburton Energy Services, Inc. Buoyancy assist tool with floating piston
US11142994B2 (en) 2020-02-19 2021-10-12 Halliburton Energy Services, Inc. Buoyancy assist tool with annular cavity and piston
US11199071B2 (en) 2017-11-20 2021-12-14 Halliburton Energy Services, Inc. Full bore buoyancy assisted casing system
US11230905B2 (en) 2019-12-03 2022-01-25 Halliburton Energy Services, Inc. Buoyancy assist tool with waffle debris barrier
US11255155B2 (en) 2019-05-09 2022-02-22 Halliburton Energy Services, Inc. Downhole apparatus with removable plugs
WO2022046866A1 (fr) * 2020-08-25 2022-03-03 Saudi Arabian Oil Company Ensemble composite de synthèse à dissolution contrôlable
US11293260B2 (en) 2018-12-20 2022-04-05 Halliburton Energy Services, Inc. Buoyancy assist tool
US11346171B2 (en) 2018-12-05 2022-05-31 Halliburton Energy Services, Inc. Downhole apparatus
US11359454B2 (en) 2020-06-02 2022-06-14 Halliburton Energy Services, Inc. Buoyancy assist tool with annular cavity and piston
US11492867B2 (en) 2019-04-16 2022-11-08 Halliburton Energy Services, Inc. Downhole apparatus with degradable plugs
US11499395B2 (en) 2019-08-26 2022-11-15 Halliburton Energy Services, Inc. Flapper disk for buoyancy assisted casing equipment
EP3530873B1 (fr) * 2018-02-21 2023-10-11 Grant Prideco, Inc. Dispositif adapté pour être exécuté sur une colonne de tubage dans un puits de forage
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510994A (en) * 1984-04-06 1985-04-16 Camco, Incorporated Pump out sub
US20040104025A1 (en) * 2002-12-03 2004-06-03 Mikolajczyk Raymond F. Non-rotating cement wiper plugs
US20080302538A1 (en) * 2005-03-15 2008-12-11 Hofman Raymond A Cemented Open Hole Selective Fracing System
US20110284240A1 (en) * 2010-05-21 2011-11-24 Schlumberger Technology Corporation Mechanism for activating a plurality of downhole devices
US8231947B2 (en) * 2005-11-16 2012-07-31 Schlumberger Technology Corporation Oilfield elements having controlled solubility and methods of use

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4510994A (en) * 1984-04-06 1985-04-16 Camco, Incorporated Pump out sub
US20040104025A1 (en) * 2002-12-03 2004-06-03 Mikolajczyk Raymond F. Non-rotating cement wiper plugs
US20080302538A1 (en) * 2005-03-15 2008-12-11 Hofman Raymond A Cemented Open Hole Selective Fracing System
US8231947B2 (en) * 2005-11-16 2012-07-31 Schlumberger Technology Corporation Oilfield elements having controlled solubility and methods of use
US20110284240A1 (en) * 2010-05-21 2011-11-24 Schlumberger Technology Corporation Mechanism for activating a plurality of downhole devices

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2016203183B2 (en) * 2015-05-15 2018-03-29 Schlumberger Technology B.V. A Buoyancy assist tool
US10316626B2 (en) 2015-05-15 2019-06-11 Schlumberger Technology Corporation Buoyancy assist tool
US10287835B2 (en) * 2016-05-06 2019-05-14 Stephen L. Crow Tubular recess or support mounted isolation support for an object for formation pressure treatment
WO2018035149A1 (fr) * 2016-08-15 2018-02-22 Janus Tech Services, Llc Structure de bouchon de puits de forage et procédé de test de pression d'un puits de forage
US10450817B2 (en) 2016-10-11 2019-10-22 Halliburton Energy Services, Inc. Dissolvable protector sleeve
WO2018147853A1 (fr) * 2017-02-09 2018-08-16 Halliburton Energy Services, Inc. Actionnement d'un outil de fond de trou avec un anneau d'actionnement dégradable
GB2573230A (en) * 2017-02-09 2019-10-30 Halliburton Energy Services Inc Actuating a downhole tool with a degradable actuation ring
US11047186B2 (en) 2017-02-09 2021-06-29 Halliburton Energy Services, Inc. Actuating a downhole tool with a degradable actuation ring
GB2573230B (en) * 2017-02-09 2022-02-23 Halliburton Energy Services Inc Actuating a downhole tool with a degradable actuation ring
US11199071B2 (en) 2017-11-20 2021-12-14 Halliburton Energy Services, Inc. Full bore buoyancy assisted casing system
EP3530873B1 (fr) * 2018-02-21 2023-10-11 Grant Prideco, Inc. Dispositif adapté pour être exécuté sur une colonne de tubage dans un puits de forage
WO2020023163A1 (fr) * 2018-07-26 2020-01-30 Baker Hughes, A Ge Company, Llc Agencement et procédé d'amélioration d'enlèvement d'objets
US10900311B2 (en) 2018-07-26 2021-01-26 Baker Hughes, A Ge Company, Llc Object removal enhancement arrangement and method
US10975646B2 (en) 2018-07-26 2021-04-13 Baker Hughes, A Ge Company, Llc Object removal enhancement arrangement and method
US11346171B2 (en) 2018-12-05 2022-05-31 Halliburton Energy Services, Inc. Downhole apparatus
US11293260B2 (en) 2018-12-20 2022-04-05 Halliburton Energy Services, Inc. Buoyancy assist tool
WO2020131104A1 (fr) * 2018-12-21 2020-06-25 Halliburton Energy Services, Inc. Outil d'assistance à la flottabilité
US11293261B2 (en) 2018-12-21 2022-04-05 Halliburton Energy Services, Inc. Buoyancy assist tool
WO2020214145A1 (fr) * 2019-04-15 2020-10-22 Halliburton Energy Services, Inc. Outil d'assistance à la flottaison avec nez dégradable
US11603736B2 (en) 2019-04-15 2023-03-14 Halliburton Energy Services, Inc. Buoyancy assist tool with degradable nose
US11492867B2 (en) 2019-04-16 2022-11-08 Halliburton Energy Services, Inc. Downhole apparatus with degradable plugs
US11255155B2 (en) 2019-05-09 2022-02-22 Halliburton Energy Services, Inc. Downhole apparatus with removable plugs
US11499395B2 (en) 2019-08-26 2022-11-15 Halliburton Energy Services, Inc. Flapper disk for buoyancy assisted casing equipment
US11105166B2 (en) 2019-08-27 2021-08-31 Halliburton Energy Services, Inc. Buoyancy assist tool with floating piston
US11072990B2 (en) 2019-10-25 2021-07-27 Halliburton Energy Services, Inc. Buoyancy assist tool with overlapping membranes
US10995583B1 (en) 2019-10-31 2021-05-04 Halliburton Energy Services, Inc. Buoyancy assist tool with debris barrier
US10989013B1 (en) 2019-11-20 2021-04-27 Halliburton Energy Services, Inc. Buoyancy assist tool with center diaphragm debris barrier
US11230905B2 (en) 2019-12-03 2022-01-25 Halliburton Energy Services, Inc. Buoyancy assist tool with waffle debris barrier
US11142994B2 (en) 2020-02-19 2021-10-12 Halliburton Energy Services, Inc. Buoyancy assist tool with annular cavity and piston
US11359454B2 (en) 2020-06-02 2022-06-14 Halliburton Energy Services, Inc. Buoyancy assist tool with annular cavity and piston
US11454082B2 (en) 2020-08-25 2022-09-27 Saudi Arabian Oil Company Engineered composite assembly with controllable dissolution
WO2022046866A1 (fr) * 2020-08-25 2022-03-03 Saudi Arabian Oil Company Ensemble composite de synthèse à dissolution contrôlable
US11867012B2 (en) 2021-12-06 2024-01-09 Saudi Arabian Oil Company Gauge cutter and sampler apparatus

Similar Documents

Publication Publication Date Title
WO2015073001A1 (fr) Système et méthodologie pour une utilisation d'un objet dégradable dans un tubage
AU2012388733B2 (en) Electronic rupture discs for interventionless barrier plug
EP2697478B1 (fr) Cimentation etagée a l'aide d'un outil à vanne à manchon coulissant
US9441437B2 (en) Electronic rupture discs for interventionless barrier plug
CA2363708C (fr) Vanne a l'epreuve des debris
CA2862986A1 (fr) Elements de bouchons d'essuie-tiges et procedes de stimulation d'un environnement de puits de forage
US8469106B2 (en) Downhole displacement based actuator
US11795779B2 (en) Downhole inflow production restriction device
US11280155B2 (en) Single trip wellbore cleaning and sealing system and method
US11840905B2 (en) Stage tool
CA2689480A1 (fr) Mecanisme a double isolement d'orifice de scellement
GB2485811A (en) A downhole tool adapted for use in wellbore integrity tests
US11142987B2 (en) Annular barrier system
EP2436874B1 (fr) Tige de forage
CA2862308C (fr) Procede d'activation d'actionnement par pression
US11788365B2 (en) Expandable metal packer system with pressure control device
CA2713684C (fr) Joint d'etancheite concu pour des temperatures et des pressions elevees
WO2022005445A1 (fr) Dispositif de suspension de colonne perdue extensible avec trajet d'écoulement de fluide de post-réglage
EP3530873B1 (fr) Dispositif adapté pour être exécuté sur une colonne de tubage dans un puits de forage
AU2017343449B2 (en) Wellbore completion apparatus and methods utilizing expandable inverted seals

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897507

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13897507

Country of ref document: EP

Kind code of ref document: A1