WO2015072806A1 - Double porous synthetic bone wedge and method for manufacturing same - Google Patents

Double porous synthetic bone wedge and method for manufacturing same Download PDF

Info

Publication number
WO2015072806A1
WO2015072806A1 PCT/KR2014/011066 KR2014011066W WO2015072806A1 WO 2015072806 A1 WO2015072806 A1 WO 2015072806A1 KR 2014011066 W KR2014011066 W KR 2014011066W WO 2015072806 A1 WO2015072806 A1 WO 2015072806A1
Authority
WO
WIPO (PCT)
Prior art keywords
synthetic bone
calcium phosphate
bone wedge
wedge
pore
Prior art date
Application number
PCT/KR2014/011066
Other languages
French (fr)
Korean (ko)
Inventor
송해룡
김학준
김성은
윤영필
유창국
Original Assignee
고려대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 고려대학교산학협력단 filed Critical 고려대학교산학협력단
Publication of WO2015072806A1 publication Critical patent/WO2015072806A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B25/00Phosphorus; Compounds thereof
    • C01B25/16Oxyacids of phosphorus; Salts thereof
    • C01B25/26Phosphates
    • C01B25/32Phosphates of magnesium, calcium, strontium, or barium
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/50Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L27/56Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/14Macromolecular materials
    • A61L27/18Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L27/00Materials for grafts or prostheses or for coating grafts or prostheses
    • A61L27/28Materials for coating prostheses
    • A61L27/30Inorganic materials
    • A61L27/32Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/04Macromolecular materials
    • A61L31/06Macromolecular materials obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/08Materials for coatings
    • A61L31/082Inorganic materials
    • A61L31/086Phosphorus-containing materials, e.g. apatite
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L31/00Materials for other surgical articles, e.g. stents, stent-grafts, shunts, surgical drapes, guide wires, materials for adhesion prevention, occluding devices, surgical gloves, tissue fixation devices
    • A61L31/14Materials characterised by their function or physical properties, e.g. injectable or lubricating compositions, shape-memory materials, surface modified materials
    • A61L31/146Porous materials, e.g. foams or sponges
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61LMETHODS OR APPARATUS FOR STERILISING MATERIALS OR OBJECTS IN GENERAL; DISINFECTION, STERILISATION OR DEODORISATION OF AIR; CHEMICAL ASPECTS OF BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES; MATERIALS FOR BANDAGES, DRESSINGS, ABSORBENT PADS OR SURGICAL ARTICLES
    • A61L2430/00Materials or treatment for tissue regeneration
    • A61L2430/02Materials or treatment for tissue regeneration for reconstruction of bones; weight-bearing implants

Definitions

  • the present invention relates to a double-pore synthetic bone wedge having macro and micro sized pores and a method for producing the same.
  • High Tibial Osteotomy changes the support angle of the tibial bone through simple fractures, thereby changing the area where the knee joint is engaged, and thus can be treated simply for arthritis and knee injury. have.
  • a wedge-shaped empty space is formed at the site of the fracture by the proximal tibial fracture procedure, and a procedure of fixing the lower portion and the upper portion of the empty space with a bone plate is usually used while leaving the empty space empty.
  • a procedure of fixing the lower portion and the upper portion of the empty space with a bone plate is usually used while leaving the empty space empty.
  • a relatively large empty space is formed, so a very long time is required for bone regeneration, and the burden on the pain of the patient is increased and the time for cure is long.
  • Korean Patent Registration No. 10-0331990 discloses a biodegradable porous bone graft material using biodegradable calcium metaphosphate (CMP) and a method of manufacturing the same.
  • CMP biodegradable calcium metaphosphate
  • the structure of the closed pores is difficult to enter the blood vessels and bone cells, and remains after foreign transplantation, and bone fusion is also limited, there is a disadvantage that the autogenous bone occupancy is not high.
  • the present inventors have made diligent efforts to solve the above problems, and produced a double-pore synthetic bone wedge having a macro- and micro-sized double pore structure, and when it is used for regeneration of autologous bone, inflow of blood vessels and bone through the pores It was confirmed that the adhesion of cells is easy, and the regeneration ability of the autogenous bone is improved, thereby completing the present invention.
  • An object of the present invention is to provide a double-pore synthetic bone wedge having a macro- and micro-sized double pore structure and easy to introduce blood vessels and osteocytes, and a method of manufacturing the same.
  • Another object of the present invention is to provide a scaffold for bone regeneration containing the double pore synthetic bone wedge.
  • the present invention is to prepare a calcium phosphate paste by mixing (1) calcium phosphate powder and aqueous binder solution;
  • the present invention also provides a double-pore synthetic bone wedge comprising a macro-pores of 200 ⁇ 450 ⁇ m size and micropores of 0.5 ⁇ 2 ⁇ m size prepared by the above method.
  • the present invention also provides a scaffold for bone regeneration containing the double pore synthetic bone wedge.
  • 1 is a photograph showing a double pore synthetic bone wedge.
  • FIG. 2 is a SEM photograph showing the macropores of the double pore synthetic bone wedge.
  • Figure 3 is a SEM photograph showing the micro pores of the double pore synthetic bone wedge.
  • Figure 4 (a) is a SEM picture showing the open pore structure of the biporous synthetic bone wedges connected to each other, (b) is a SEM picture showing the bone cells attached to the double pore synthetic bone wedge.
  • Figure 5 (a) is a SEM image of a conventional synthetic bone wedge, (b) is an SEM image of the enlarged (a), (c) is a SEM image of the double-pore synthetic bone wedge of Example 1, (d) SEM image of enlarged (c), (e) SEM image of double pore synthetic bone wedge of Example 2, (f) SEM image of enlarged (e), (g) double pore synthesis of Example 3 SEM photograph of the goal wedge and (h) are SEM photographs which expanded (g).
  • Figure 6 (a) is a SEM photograph showing the micro-sized pores of the double-pore synthetic bone wedge of Example 1, (b) is a SEM photograph showing the micro-sized pores of the double-pore synthetic bone wedge of Example 2 and ( c) is a SEM photograph showing the micro-sized pores of the double-pore synthetic bone wedge of Example 3.
  • Figure 7 is a graph showing the cell diffusion over time of the conventional synthetic bone wedge and the bi-pore synthetic bone wedge of Examples 1-3.
  • a synthetic bone wedge having micropores of 0.5 ⁇ 2 ⁇ m size and macropores of 200 ⁇ 450 ⁇ m size.
  • the prepared double-pore synthetic bone wedge for the regeneration of autologous bone it was confirmed that the inflow of blood vessels and adhesion of bone cells through the pores to improve the regeneration of autologous bone.
  • the present invention provides a method for producing a double-pore synthetic bone wedge having a micro-pores of 0.5 ⁇ 2 ⁇ m size and macropores of 200 ⁇ 450 ⁇ m size, the manufacturing method is as follows.
  • the calcium phosphate powder of step (1) and (4) is one selected from the group consisting of apatite hydroxide, ⁇ -tricalcium phosphate, ⁇ -tricalcium phosphate, calcium phosphate, calcium metaphosphate, calcium polyphosphate and bioglass
  • apatite hydroxide ⁇ -tricalcium phosphate
  • ⁇ -tricalcium phosphate calcium phosphate
  • calcium metaphosphate calcium polyphosphate and bioglass
  • BCP biphasic calcium phosphate
  • the binder aqueous solution of step (1) and (4) is preferably PVA (Polyvinyl alcohol) or cellulose-based binder aqueous solution, more preferably PVA binder aqueous solution.
  • PVA Polyvinyl alcohol
  • cellulose-based binder aqueous solution more preferably PVA binder aqueous solution.
  • step (1) the calcium phosphate powder and the binder aqueous solution are mixed at a weight ratio of 1: 0.5 to 1: 3 to prepare a calcium phosphate paste, and the polyurethane sponge used in step (2) is 40 to It has a pore size of 80 ppi and is soaked in basic aqueous solution and subjected to surface treatment with ultrasonic waves. Then, the calcium phosphate paste is penetrated into the polyurethane sponge surface-treated in step (2) and coated therein, and dried in step (3) and calcined at a temperature of 1100 to 1250 ° C. to provide macropores having a size of 200 to 450 ⁇ m. Synthetic bone wedges can be prepared.
  • step (4) the calcium phosphate powder and the binder aqueous solution of 200 to 800 nm particle size are mixed in a weight ratio of 1: 0.5 to 1: 8 to prepare a calcium phosphate slurry, preferably 1: 3 to 1: 1. 6, More preferably, it is a weight ratio of 1: 5-1: 6.
  • the synthetic bone wedges having the macropores of 200-450 ⁇ m size prepared in the step (3) are dipped in the calcium phosphate slurry, taken out and blown with compressed air to remove the excess calcium phosphate slurry and coated thinly and uniformly.
  • the synthetic bone wedge in step (4) is dried and calcined at a temperature of 1100 ⁇ 1250 °C to obtain a synthetic bone wedge having a micro-pores of 0.5 ⁇ 2 ⁇ m size.
  • Synthetic bone wedge prepared by the above method is a dual-pore synthetic bone wedge, characterized in that it has a macropores of 200 ⁇ 450 ⁇ m size and micropores of 0.5 ⁇ 2 ⁇ m size.
  • the present invention relates to a double-pore synthetic bone wedge comprising a macro-pores of 200 ⁇ 450 ⁇ m size and micropores of 0.5 ⁇ 2 ⁇ m size prepared by the above method.
  • the conventional synthetic bone wedge has a smooth surface, it was difficult to attach the bone cells, while the dual-pore synthetic bone wedge of the present invention has a micropore on the surface has a very advantageous structure of the attachment of bone cells, the micro-pores Through the circulation of blood and body fluids can be easily regenerated autologous bone at the same time inside and outside the wedge.
  • the double pore synthetic bone wedge of the present invention has a porosity of 60 to 80%, and because autologous bone regeneration occurs outside and inside the pores, autologous bone of 60 to 80% can be regenerated. In addition, despite the high porosity, it has a structure strong enough to withstand a pressure of 5Mpa.
  • the double-pore synthetic bone wedges have an inclination angle of 6 to 14 ° and 6 to 14 ° in width, and thus are applicable to both left and right legs.
  • Dual-pore synthetic bone wedge according to the present invention has a much higher autogenous bone regeneration share than the conventional synthetic bone wedge, and despite having a high porosity, having a rigid structure, both legs can be used, proximal tibial osteotomy (High Tibial Osteotomy) , HTO) and the like can be used suitably.
  • the present invention relates to a scaffold for bone regeneration containing the double pore synthetic bone wedge from another aspect.
  • the bi-porous synthetic bone wedge can be used alone as a scaffold for bone regeneration, such as BMP (Bone Morphogenetic Protein) -2, BMP-4, BMP-7, BMP-14, TGF (Transforming Growth Factor) - ⁇ 1, etc. It can be mixed with bone formation promoting proteins.
  • BCP biphasic calcium phosphate
  • a polyurethane sponge having a pore size of 60 ppi was immersed in a 2% aqueous sodium hydroxide solution, surface treated with ultrasonic waves for 10 minutes, washed with running water, and dried at 60 ° C. Thereafter, the surface-treated polyurethane sponge was immersed in a BCP paste and then rolled with a rod to penetrate and coat the BCP paste into the sponge, and remove the remaining BCP paste by passing through the roller.
  • the polyurethane sponge uniformly coated with BCP paste was dried at room temperature for 24 hours and then heated at a rate of 5 ° C./min and calcined at 1200 ° C. for 3 hours to prepare a synthetic bone wedge having a pore size of 200 ⁇ 450 ⁇ m.
  • BCP powder of 600-800 nm particle size was mixed with a 2% PVA aqueous binder solution in a weight ratio of 1: 2 and dispersed in an ultrasonic bath to prepare a BCP slurry.
  • Synthetic bone wedges having a macropore size of 200 ⁇ 450 ⁇ m prepared above were immersed in a BCP slurry, taken out, and blown dry compressed air to remove residual BCP slurry to prepare a synthetic bone wedge uniformly coated with BCP slurry. Thereafter, after drying at room temperature for 6 hours or more, the temperature was raised at a temperature increase rate of 5 ° C./min, followed by heat treatment at 1200 ° C. for 2 hours to prepare a double pore synthetic bone wedge having a micro pore of 0.5-2 ⁇ m and a pore size of 200-450 ⁇ m. .
  • the bi-porous synthetic bone wedge prepared in Example 1 is as shown in Figure 1, as shown in the SEM photograph (Fig. 2 and 3) of the double-pore synthetic bone wedge, to confirm that it has macro pores and micro pores could.
  • a double-pore synthetic bone wedge was prepared in the same manner as in Example 1 except that a BCP slurry was prepared by mixing a BCP powder having a particle size of 600-800 nm with a 2% PVA aqueous solution in a weight ratio of 1: 3.
  • a double-pore synthetic bone wedge was prepared in the same manner as in Example 1 except that the BCP powder having a particle size of 600-800 nm was mixed with a 2% PVA aqueous binder solution in a weight ratio of 1: 6.
  • Phosphoric acid was reacted with coral to make hydroxy apatite, thereby cutting synthetic bone wedges.
  • the dual pore synthetic bone wedge of the present invention has macro and micro size pores, so that macro pores facilitate the inflow of blood vessels and osteocytes, and micro pores facilitate the circulation of blood and body fluids for the growth and metabolism of bone cells. Can provide a useful environment for the attachment of osteocytes.
  • the dual pore synthetic bone wedge of the present invention exhibits a porosity of about 80% to increase autologous bone regeneration rate by the autogenous bone regeneration occurs through the pores.

Landscapes

  • Health & Medical Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Epidemiology (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Transplantation (AREA)
  • Medicinal Chemistry (AREA)
  • Dermatology (AREA)
  • Inorganic Chemistry (AREA)
  • Dispersion Chemistry (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Vascular Medicine (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials For Medical Uses (AREA)
  • Prostheses (AREA)

Abstract

The present invention relates to a double porous synthetic bone wedge having pores of which the sizes are 200-450μm and 0.5-2μm and a method for manufacturing the same, wherein the double porous synthetic bone wedge can improve a regenerative capability of an autogenous bone due to an easy influx of blood vessels and an easy attachment of bone cells through the pores.

Description

이중기공 합성골 웨지 및 이의 제조방법Double-pore synthetic bone wedge and its manufacturing method
본 발명은 매크로 및 마이크로 크기의 기공을 가지는 이중기공 합성골 웨지 및 이의 제조방법에 관한 것이다.The present invention relates to a double-pore synthetic bone wedge having macro and micro sized pores and a method for producing the same.
현재 정형외과 분야에서 관절염 및 슬관절 손상을 치료하기 위하여 인공관절 시술을 보편적으로 수행하고 있다. 인공관절 시술은 시술이 복잡할 뿐만 아니라 시술 시 많은 양의 자가골을 제거해야 한다. 또한, 예상 수명 주기가 있으므로 인공 슬관절 수술에 의한 슬관절 손상을 치료하는 데는 한계가 있다. Currently, orthopedic surgery is commonly used to treat arthritis and knee injuries. The artificial joint procedure is not only complicated but also requires the removal of a large amount of autogenous bone during the procedure. In addition, since there is an expected life cycle, there is a limit in treating knee injuries caused by artificial knee surgery.
이에 반해 근위경골골절술(High Tibial Osteotomy, HTO)은 간단한 골절술을 통하여 정강뼈의 지지각도를 변경하고, 이로 인해 슬관절이 맞물리는 부위를 변경해주어 간단하게 관절염 및 슬관절 손상에 대한 치료를 할 수 있다.On the other hand, High Tibial Osteotomy (HTO) changes the support angle of the tibial bone through simple fractures, thereby changing the area where the knee joint is engaged, and thus can be treated simply for arthritis and knee injury. have.
근위경골골절술 시술을 통하여 골절술을 시행한 부위에는 쐐기 모양의 빈 공간이 형성되고, 통상적으로 빈 공간을 비워둔 채 본플레이트로 빈 공간의 아래, 위 부분을 고정하는 시술법이 이용되고 있다. 그러나 이 시술법을 사용하는 경우 비교적 큰 빈 공간이 형성되는 것이므로 골이 재생되는데 매우 긴 시간이 필요하며, 그만큼 환자의 고통에 대한 부담이 늘어나고 완치에 시간이 오래 소요되는 단점이 있다.A wedge-shaped empty space is formed at the site of the fracture by the proximal tibial fracture procedure, and a procedure of fixing the lower portion and the upper portion of the empty space with a bone plate is usually used while leaving the empty space empty. However, when using this procedure, a relatively large empty space is formed, so a very long time is required for bone regeneration, and the burden on the pain of the patient is increased and the time for cure is long.
이를 보완하기 위하여 현재 쐐기 모양의 합성골 웨지를 사용하고 있으나, 현재 상용화 되어있는 웨지는 대부분 폐기공 구조이거나 부분적으로 개기공 구조를 가지고 있다. 대한민국 특허등록 제10-0331990호에서는 생분해성 칼슘 메타포스페이트(CMP)를 이용한 생분해성 다공질 골이식재 및 그 제조방법을 개시하고 있다. 폐기공 구조는 혈관과 골세포가 내부로 유입되기 어려우므로 이식 후에도 이물질로 남아있게 되며, 골융합도 제한적이어서 자가골 점유율이 높지 않은 단점이 있다.In order to compensate for this, the wedge-shaped synthetic bone wedges are currently used, but the commercially available wedges are mostly disposed of closed holes or partially open holes. Korean Patent Registration No. 10-0331990 discloses a biodegradable porous bone graft material using biodegradable calcium metaphosphate (CMP) and a method of manufacturing the same. The structure of the closed pores is difficult to enter the blood vessels and bone cells, and remains after foreign transplantation, and bone fusion is also limited, there is a disadvantage that the autogenous bone occupancy is not high.
이에, 본 발명자들은 상기 문제점을 해결하기 위하여 예의 노력한 결과, 매크로 및 마이크로 크기의 이중 기공 구조를 가지는 이중기공 합성골 웨지를 제조하고, 이를 자가골의 재생에 사용할 경우 상기 기공을 통하여 혈관의 유입 및 골세포의 부착이 용이하여 자가골의 재생 능력이 향상되는 것을 확인하고, 본 발명을 완성하게 되었다.Therefore, the present inventors have made diligent efforts to solve the above problems, and produced a double-pore synthetic bone wedge having a macro- and micro-sized double pore structure, and when it is used for regeneration of autologous bone, inflow of blood vessels and bone through the pores It was confirmed that the adhesion of cells is easy, and the regeneration ability of the autogenous bone is improved, thereby completing the present invention.
발명의 요약Summary of the Invention
본 발명의 목적은 매크로 및 마이크로 크기의 이중 기공 구조를 가지는 혈관 및 골세포의 유입이 용이한 이중기공 합성골 웨지 및 그 제조방법을 제공하는데 있다. Disclosure of Invention An object of the present invention is to provide a double-pore synthetic bone wedge having a macro- and micro-sized double pore structure and easy to introduce blood vessels and osteocytes, and a method of manufacturing the same.
본 발명의 다른 목적은 상기 이중기공 합성골 웨지를 함유하는 골 재생용 스캐폴드(scaffold)를 제공하는데 있다.Another object of the present invention is to provide a scaffold for bone regeneration containing the double pore synthetic bone wedge.
상기 목적을 달성하기 위하여,In order to achieve the above object,
본 발명은 (1) 인산칼슘 분말 및 바인더 수용액을 혼합하여 인산칼슘 페이스트를 제조하는 단계;The present invention is to prepare a calcium phosphate paste by mixing (1) calcium phosphate powder and aqueous binder solution;
(2) 상기 제조된 인산칼슘 페이스트로 표면 처리된 폴리우레탄 스펀지를 코팅하는 단계;(2) coating a polyurethane sponge surface-treated with the prepared calcium phosphate paste;
(3) 상기 인산칼슘 페이스트로 코팅된 폴리우레탄 스펀지를 건조 및 소성하여 200~450μm 크기의 매크로 기공을 가지는 합성골 웨지를 제조하는 단계;(3) drying and firing the polyurethane sponge coated with the calcium phosphate paste to prepare a synthetic bone wedge having macropores of 200 to 450 μm in size;
(4) 상기 합성골 웨지 표면을 200~800nm 입자 크기의 인산칼슘 분말 및 바인더 수용액을 혼합하여 제조된 인산칼슘 슬러리로 코팅하는 단계; 및(4) coating the surface of the synthetic bone wedge with a calcium phosphate slurry prepared by mixing a calcium phosphate powder and a binder aqueous solution having a particle size of 200 ~ 800nm; And
(5) 상기 인산칼슘 슬러리로 코팅된 합성골 웨지를 건조 및 소성하여 0.5~2μm 크기의 마이크로 기공 및 200~450μm 크기의 매크로 기공을 가지는 합성골 웨지를 제조하는 단계를 포함하는 이중기공 합성골 웨지의 제조방법을 제공한다.(5) drying and firing the synthetic bone wedge coated with the calcium phosphate slurry to prepare a double-pore synthetic bone wedge having a micro-pores of 0.5 ~ 2μm size and macropores of 200 ~ 450μm size It provides a method of manufacturing.
본 발명은 또한, 상기 방법으로 제조된 200~450μm 크기의 매크로 기공 및 0.5~2μm 크기의 마이크로 기공을 포함하는 이중기공 합성골 웨지를 제공한다.The present invention also provides a double-pore synthetic bone wedge comprising a macro-pores of 200 ~ 450μm size and micropores of 0.5 ~ 2μm size prepared by the above method.
본 발명은 또한, 상기 이중기공 합성골 웨지를 함유하는 골 재생용 스캐폴드(scaffold)를 제공한다.The present invention also provides a scaffold for bone regeneration containing the double pore synthetic bone wedge.
도 1은 이중기공 합성골 웨지를 나타낸 사진이다.1 is a photograph showing a double pore synthetic bone wedge.
도 2는 이중기공 합성골 웨지의 매크로 기공을 나타낸 SEM 사진이다.2 is a SEM photograph showing the macropores of the double pore synthetic bone wedge.
도 3은 이중기공 합성골 웨지의 마이크로 기공을 나타낸 SEM 사진이다.Figure 3 is a SEM photograph showing the micro pores of the double pore synthetic bone wedge.
도 4의 (a)는 이중기공 합성골 웨지의 서로 연결된 개기공 구조를 나타낸 SEM 사진이고, (b)는 이중기공 합성골 웨지에 골세포가 부착된 것을 나타낸 SEM 사진이다.Figure 4 (a) is a SEM picture showing the open pore structure of the biporous synthetic bone wedges connected to each other, (b) is a SEM picture showing the bone cells attached to the double pore synthetic bone wedge.
도 5의 (a)는 종래의 합성골 웨지의 SEM 사진, (b)는 (a)를 확대한 SEM 사진, (c)는 실시예 1의 이중기공 합성골 웨지의 SEM 사진, (d)는 (c)를 확대한 SEM 사진, (e)는 실시예 2의 이중기공 합성골 웨지의 SEM 사진, (f)는 (e)를 확대한 SEM 사진, (g)는 실시예 3의 이중기공 합성골 웨지의 SEM 사진 및 (h)는 (g)를 확대한 SEM 사진이다.Figure 5 (a) is a SEM image of a conventional synthetic bone wedge, (b) is an SEM image of the enlarged (a), (c) is a SEM image of the double-pore synthetic bone wedge of Example 1, (d) SEM image of enlarged (c), (e) SEM image of double pore synthetic bone wedge of Example 2, (f) SEM image of enlarged (e), (g) double pore synthesis of Example 3 SEM photograph of the goal wedge and (h) are SEM photographs which expanded (g).
도 6의 (a)는 실시예 1의 이중기공 합성골 웨지의 마이크로 크기의 기공을 나타낸 SEM 사진, (b)는 실시예 2의 이중기공 합성골 웨지의 마이크로 크기의 기공을 나타낸 SEM 사진 및 (c)는 실시예 3의 이중기공 합성골 웨지의 마이크로 크기의 기공을 나타낸 SEM 사진이다.Figure 6 (a) is a SEM photograph showing the micro-sized pores of the double-pore synthetic bone wedge of Example 1, (b) is a SEM photograph showing the micro-sized pores of the double-pore synthetic bone wedge of Example 2 and ( c) is a SEM photograph showing the micro-sized pores of the double-pore synthetic bone wedge of Example 3.
도 7은 종래의 합성골 웨지 및 실시예 1~3의 이중기공 합성골 웨지의 시간에 따른 세포 확산을 나타낸 그래프이다.Figure 7 is a graph showing the cell diffusion over time of the conventional synthetic bone wedge and the bi-pore synthetic bone wedge of Examples 1-3.
발명의 상세한 설명 및 구체적인 구현예 Detailed Description of the Invention and Specific Embodiments
다른 식으로 정의되지 않는 한, 본 명세서에서 사용된 모든 기술적 및 과학적 용어들은 본 발명이 속하는 기술 분야에서 숙련된 전문가에 의해서 통상적으로 이해되는 것과 동일한 의미를 가진다. 일반적으로, 본 명세서에서 사용된 명명법은 본 기술 분야에서 잘 알려져 있고 통상적으로 사용되는 것이다.Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. In general, the nomenclature used herein is well known and commonly used in the art.
본원 명세서 전체에서, 어떤 부분이 어떤 구성 요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성 요소를 제외하는 것이 아니라 다른 구성 요소를 더 포함할 수 있는 것을 의미한다.Throughout this specification, when a part is said to "include" a certain component, it means that it can further include other components, without excluding the other components unless specifically stated otherwise.
본 발명에서는 인산칼슘 페이스트 및 인산칼슘 슬러리를 이용하여 0.5~2μm 크기의 마이크로 기공 및 200~450μm 크기의 매크로 기공을 가지는 합성골 웨지를 제조하였다. 아울러 상기 제조된 이중기공 합성골 웨지를 자가골의 재생에 사용할 경우 상기 기공을 통하여 혈관의 유입 및 골세포의 부착이 용이하여 자가골의 재생 능력이 향상되는 것을 확인하였다.In the present invention, using a calcium phosphate paste and calcium phosphate slurry was prepared a synthetic bone wedge having micropores of 0.5 ~ 2μm size and macropores of 200 ~ 450μm size. In addition, when using the prepared double-pore synthetic bone wedge for the regeneration of autologous bone it was confirmed that the inflow of blood vessels and adhesion of bone cells through the pores to improve the regeneration of autologous bone.
따라서, 본 발명은 일 관점에서, 0.5~2μm 크기의 마이크로 기공 및 200~450μm 크기의 매크로 기공을 가지는 이중기공 합성골 웨지의 제조방법을 제공하며, 제조방법은 하기와 같다.Accordingly, the present invention provides a method for producing a double-pore synthetic bone wedge having a micro-pores of 0.5 ~ 2μm size and macropores of 200 ~ 450μm size, the manufacturing method is as follows.
(1) 인산칼슘 분말 및 바인더 수용액을 혼합하여 인산칼슘 페이스트를 제조하는 단계;(1) mixing calcium phosphate powder and aqueous binder solution to prepare a calcium phosphate paste;
(2) 상기 제조된 인산칼슘 페이스트로 표면 처리된 폴리우레탄 스펀지를 코팅하는 단계;(2) coating a polyurethane sponge surface-treated with the prepared calcium phosphate paste;
(3) 상기 인산칼슘 페이스트로 코팅된 폴리우레탄 스펀지를 건조 및 소성하여 200~450μm 크기의 매크로 기공을 가지는 합성골 웨지를 제조하는 단계;(3) drying and firing the polyurethane sponge coated with the calcium phosphate paste to prepare a synthetic bone wedge having macropores of 200 to 450 μm in size;
(4) 상기 합성골 웨지 표면을 200~800nm 입자 크기의 인산칼슘 분말 및 바인더 수용액을 혼합하여 제조된 인산칼슘 슬러리로 코팅하는 단계; 및(4) coating the surface of the synthetic bone wedge with a calcium phosphate slurry prepared by mixing a calcium phosphate powder and a binder aqueous solution having a particle size of 200 ~ 800nm; And
(5) 상기 인산칼슘 슬러리로 코팅된 합성골 웨지를 건조 및 소성하여 0.5~2μm 크기의 마이크로 기공 및 200~450μm 크기의 매크로 기공을 가지는 합성골 웨지를 제조하는 단계.(5) preparing a synthetic bone wedge having 0.5 ~ 2μm micropores and 200 ~ 450μm macropores by drying and firing the synthetic bone wedge coated with the calcium phosphate slurry.
상기 (1)단계 및 (4)단계의 인산칼슘 분말은 수산화아파타이트, α-삼인산칼슘, β-삼인산칼슘, 사인산칼슘, 칼슘 메타포스페이트, 칼슘 폴리포스페이트 및 바이오글라스로 이루어진 군으로부터 선택되는 1종 이상인 것이 바람직하며, 수산화아파타이트 및 β-삼인산칼슘을 3:7~7:3으로 혼합하여 제조된 이중상 인산칼슘(BCP, Biphasic Calcium Phosphate)을 사용하는 것이 바람직하다.The calcium phosphate powder of step (1) and (4) is one selected from the group consisting of apatite hydroxide, α-tricalcium phosphate, β-tricalcium phosphate, calcium phosphate, calcium metaphosphate, calcium polyphosphate and bioglass The above is preferable, and it is preferable to use biphasic calcium phosphate (BCP) prepared by mixing apatite hydroxide and β-tricalcium phosphate at 3: 7 to 7: 3.
또한, 상기 (1)단계 및 (4)단계의 바인더 수용액은 PVA(Polyvinyl alcohol) 또는 셀룰로오스계 바인더 수용액이 바람직하며, PVA 바인더 수용액이 더욱 바람직하다.In addition, the binder aqueous solution of step (1) and (4) is preferably PVA (Polyvinyl alcohol) or cellulose-based binder aqueous solution, more preferably PVA binder aqueous solution.
상기 (1)단계에서 인산칼슘 분말 및 바인더 수용액은 1:0.5~1:3의 중량 비율로 혼합하여 인산칼슘 페이스트를 제조하는 것이 바람직하며, 상기 (2)단계에서 사용하는 폴리우레탄 스펀지는 40~80ppi의 기공 크기를 가지며, 염기성 수용액에 담가 초음파로 표면 처리한다. 그 후 상기 (2)단계에서 표면 처리된 폴리우레탄 스펀지에 인산칼슘 페이스트를 내부로 침투시켜 코팅하며, 상기 (3)단계에서 건조 및 1100~1250℃의 온도로 소성하여 200~450μm 크기의 매크로 기공을 가지는 합성골 웨지를 제조할 수 있다.In step (1), the calcium phosphate powder and the binder aqueous solution are mixed at a weight ratio of 1: 0.5 to 1: 3 to prepare a calcium phosphate paste, and the polyurethane sponge used in step (2) is 40 to It has a pore size of 80 ppi and is soaked in basic aqueous solution and subjected to surface treatment with ultrasonic waves. Then, the calcium phosphate paste is penetrated into the polyurethane sponge surface-treated in step (2) and coated therein, and dried in step (3) and calcined at a temperature of 1100 to 1250 ° C. to provide macropores having a size of 200 to 450 μm. Synthetic bone wedges can be prepared.
또한, 상기 (4)단계에서 200~800nm 입자 크기의 인산칼슘 분말 및 바인더 수용액은 1:0.5~1:8의 중량 비율로 혼합하여 인산칼슘 슬러리를 제조하며, 바람직하게는 1:3~1:6, 더욱 바람직하게는 1:5~1:6의 중량 비율이다. 상기 (4)단계에서는 상기 (3)단계에서 제조된 200~450μm 크기의 매크로 기공을 가지는 합성골 웨지를 인산칼슘 슬러리에 담근 후 꺼내어 압축 공기로 불어내어 잉여 인산칼슘 슬러리를 제거하여 얇고 균일하게 코팅된 합성골 웨지를 얻으며, 상기 (4)단계에서 합성골 웨지를 건조 및 1100~1250℃의 온도로 소성하여 0.5~2μm 크기의 마이크로 기공을 가지는 합성골 웨지를 얻을 수 있다.In addition, in step (4), the calcium phosphate powder and the binder aqueous solution of 200 to 800 nm particle size are mixed in a weight ratio of 1: 0.5 to 1: 8 to prepare a calcium phosphate slurry, preferably 1: 3 to 1: 1. 6, More preferably, it is a weight ratio of 1: 5-1: 6. In the step (4), the synthetic bone wedges having the macropores of 200-450 μm size prepared in the step (3) are dipped in the calcium phosphate slurry, taken out and blown with compressed air to remove the excess calcium phosphate slurry and coated thinly and uniformly. To obtain a synthetic bone wedge, the synthetic bone wedge in step (4) is dried and calcined at a temperature of 1100 ~ 1250 ℃ to obtain a synthetic bone wedge having a micro-pores of 0.5 ~ 2μm size.
상기 방법으로 제조된 합성골 웨지는 200~450μm 크기의 매크로 기공 및 0.5~2μm 크기의 마이크로 기공을 가지는 것이 특징인 이중기공 합성골 웨지이다.Synthetic bone wedge prepared by the above method is a dual-pore synthetic bone wedge, characterized in that it has a macropores of 200 ~ 450μm size and micropores of 0.5 ~ 2μm size.
따라서, 본 발명은 다른 관점에서, 상기 방법으로 제조된 200~450μm 크기의 매크로 기공 및 0.5~2μm 크기의 마이크로 기공을 포함하는 이중기공 합성골 웨지에 관한 것이다.Therefore, in another aspect, the present invention relates to a double-pore synthetic bone wedge comprising a macro-pores of 200 ~ 450μm size and micropores of 0.5 ~ 2μm size prepared by the above method.
상기 매크로 기공으로 혈관이 성장하여 들어가며, 골세포도 안으로 이동할 수 있다. 또한, 기존의 합성골 웨지는 표면이 매끈하여 골세포의 부착이 어려웠던 반면, 본 발명의 이중기공 합성골 웨지는 표면에 마이크로 기공이 있어 골세포의 부착이 매우 유리한 구조를 가지고 있으며, 상기 마이크로 기공을 통해 혈액 및 체액의 순환이 용이하여 웨지 내부 및 외부에서 동시에 자가골이 재생될 수 있다.Blood vessels grow and enter the macropores, and bone cells can also move inside. In addition, the conventional synthetic bone wedge has a smooth surface, it was difficult to attach the bone cells, while the dual-pore synthetic bone wedge of the present invention has a micropore on the surface has a very advantageous structure of the attachment of bone cells, the micro-pores Through the circulation of blood and body fluids can be easily regenerated autologous bone at the same time inside and outside the wedge.
본 발명의 이중기공 합성골 웨지는 60~80%의 기공율을 가지고 있으며, 상기 기공의 외부 및 내부에서 자가골 재생이 일어나므로 60~80%의 자가골이 재생될 수 있다. 또한, 높은 기공율에도 불구하고 5Mpa의 압력을 견딜 수 있을 정도로 단단한 구조를 지니고 있다. The double pore synthetic bone wedge of the present invention has a porosity of 60 to 80%, and because autologous bone regeneration occurs outside and inside the pores, autologous bone of 60 to 80% can be regenerated. In addition, despite the high porosity, it has a structure strong enough to withstand a pressure of 5Mpa.
또한, 상기 이중기공 합성골 웨지는 가로 6~14° 및 세로 6~14°의 경사각을 지니고 있어 좌측 및 우측 다리에 모두 적용 가능한 특징을 가진다.In addition, the double-pore synthetic bone wedges have an inclination angle of 6 to 14 ° and 6 to 14 ° in width, and thus are applicable to both left and right legs.
본 발명에 따른 이중기공 합성골 웨지는 종래의 합성골 웨지보다 매우 높은 자가골 재생 점유율을 보이며, 높은 기공율에도 불구하고 단단한 구조를 지니고 있고, 양쪽 다리 모두 사용할 수 있으므로, 근위경골골절술(High Tibial Osteotomy, HTO) 등에 매우 적합하게 사용될 수 있다.Dual-pore synthetic bone wedge according to the present invention has a much higher autogenous bone regeneration share than the conventional synthetic bone wedge, and despite having a high porosity, having a rigid structure, both legs can be used, proximal tibial osteotomy (High Tibial Osteotomy) , HTO) and the like can be used suitably.
따라서, 본 발명은 또 다른 관점에서 상기 이중기공 합성골 웨지를 함유하는 골 재생용 스캐폴드에 관한 것이다.Accordingly, the present invention relates to a scaffold for bone regeneration containing the double pore synthetic bone wedge from another aspect.
상기 이중기공 합성골 웨지는 단독으로 골 재생용 스캐폴드로 사용할 수 있고, BMP(Bone Morphogenetic Protein)-2, BMP-4, BMP-7, BMP-14, TGF(Transforming Growth Factor)-β1 등과 같은 골 형성 촉진 단백질과 혼합하여 사용할 수 있다.The bi-porous synthetic bone wedge can be used alone as a scaffold for bone regeneration, such as BMP (Bone Morphogenetic Protein) -2, BMP-4, BMP-7, BMP-14, TGF (Transforming Growth Factor) -β1, etc. It can be mixed with bone formation promoting proteins.
이하, 실시예를 통하여 본 발명을 더욱 상세하게 설명한다. 단, 하기 실시예 및 실험예는 본 발명을 예시하기 위한 것으로, 본 발명의 범위가 실시예 및 실험예에 제한되는 것은 아니다.Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following Examples and Experimental Examples are for illustrating the present invention, and the scope of the present invention is not limited to the Examples and Experimental Examples.
실시예 1. 이중기공 합성골 웨지의 제조Example 1 Preparation of Double Pore Synthetic Bone Wedge
수산화아파타이트와 β-삼인산칼슘을 6:4의 비율로 혼합하여 이중상 인산칼슘(BCP, Biphasic Calcium Phosphate) 분말을 제조하였다. 상기 BCP 분말과 2%의 PVA 바인더 수용액을 1.5:1의 중량비로 혼합하여 교반하여 BCP 페이스트를 제조하였다.Apatite hydroxide and β-tricalcium phosphate were mixed at a ratio of 6: 4 to prepare biphasic calcium phosphate (BCP) powder. The BCP powder and 2% PVA binder aqueous solution were mixed and mixed at a weight ratio of 1.5: 1 to prepare a BCP paste.
60ppi의 기공 크기를 가지는 폴리우레탄 스펀지를 2% 수산화 나트륨 수용액에 담근 뒤 초음파로 10분간 표면 처리한 후 흐르는 물에 세척하여 60℃에서 건조하였다. 그 후 표면 처리된 폴리우레탄 스펀지를 BCP 페이스트에 담근 후 막대로 롤링하여 BCP 페이스트를 스펀지 내부로 침투시켜 코팅하고, 롤러에 통과하여 남은 BCP 페이스트를 제거하였다.A polyurethane sponge having a pore size of 60 ppi was immersed in a 2% aqueous sodium hydroxide solution, surface treated with ultrasonic waves for 10 minutes, washed with running water, and dried at 60 ° C. Thereafter, the surface-treated polyurethane sponge was immersed in a BCP paste and then rolled with a rod to penetrate and coat the BCP paste into the sponge, and remove the remaining BCP paste by passing through the roller.
BCP 페이스트로 균일하게 코팅된 폴리우레탄 스펀지를 상온에서 24시간 동안 건조한 후 5℃/분의 속도로 승온하여 1200℃에서 3시간 동안 소성하여 200~450μm 크기의 기공을 가지는 합성골 웨지를 제조하였다.The polyurethane sponge uniformly coated with BCP paste was dried at room temperature for 24 hours and then heated at a rate of 5 ° C./min and calcined at 1200 ° C. for 3 hours to prepare a synthetic bone wedge having a pore size of 200˜450 μm.
600~800nm 입자 크기의 BCP 분말을 2% PVA 바인더 수용액과 1:2의 중량비로 혼합하여 초음파 수조에서 분산시켜 BCP 슬러리를 제조하였다. 상기에서 제조된 200~450μm의 크기의 매크로 기공을 가지는 합성골 웨지를 BCP 슬러리에 담근 후 꺼내어 건조 압축 공기를 불어 잔여 BCP 슬러리를 제거하여 BCP 슬러리로 균일하게 코팅된 합성골 웨지를 제조하였다. 그 후 상온에서 6시간 이상 건조한 후 5℃/분의 승온 속도로 승온하여 1200℃에서 2시간 동안 열처리 하여 0.5~2μm의 마이크로 기공 및 200~450μm의 기공 크기를 가지는 이중기공 합성골 웨지를 제조하였다.BCP powder of 600-800 nm particle size was mixed with a 2% PVA aqueous binder solution in a weight ratio of 1: 2 and dispersed in an ultrasonic bath to prepare a BCP slurry. Synthetic bone wedges having a macropore size of 200 ~ 450μm prepared above were immersed in a BCP slurry, taken out, and blown dry compressed air to remove residual BCP slurry to prepare a synthetic bone wedge uniformly coated with BCP slurry. Thereafter, after drying at room temperature for 6 hours or more, the temperature was raised at a temperature increase rate of 5 ° C./min, followed by heat treatment at 1200 ° C. for 2 hours to prepare a double pore synthetic bone wedge having a micro pore of 0.5-2 μm and a pore size of 200-450 μm. .
실시예 1에서 제조한 이중기공 합성골 웨지는 도 1에 나타낸 바와 같으며, 상기 이중기공 합성골 웨지의 SEM 사진(도 2 및 도 3)에 나타난 바와 같이, 매크로 기공 및 마이크로 기공을 가지는 것을 확인할 수 있었다.The bi-porous synthetic bone wedge prepared in Example 1 is as shown in Figure 1, as shown in the SEM photograph (Fig. 2 and 3) of the double-pore synthetic bone wedge, to confirm that it has macro pores and micro pores Could.
실시예 2Example 2
600~800nm 입자크기의 BCP 분말을 2% PVA 바인더 수용액과 1:3의 중량비로 혼합하여 BCP 슬러리를 제조한 것을 제외하고는 실시예 1과 동일하게 실시하여 이중기공 합성골 웨지를 제조하였다.A double-pore synthetic bone wedge was prepared in the same manner as in Example 1 except that a BCP slurry was prepared by mixing a BCP powder having a particle size of 600-800 nm with a 2% PVA aqueous solution in a weight ratio of 1: 3.
실시예 3Example 3
600~800nm 입자크기의 BCP 분말을 2% PVA 바인더 수용액과 1:6의 중량비로 혼합하여 BCP 슬러리를 제조한 것을 제외하고는 실시예 1과 동일하게 실시하여 이중기공 합성골 웨지를 제조하였다.A double-pore synthetic bone wedge was prepared in the same manner as in Example 1 except that the BCP powder having a particle size of 600-800 nm was mixed with a 2% PVA aqueous binder solution in a weight ratio of 1: 6.
비교예Comparative example
산호에 인산반응을 하여 하이드록시 아파타이트(hydroxy apatite)를 만들어 잘라 합성골 웨지를 제조하였다.Phosphoric acid was reacted with coral to make hydroxy apatite, thereby cutting synthetic bone wedges.
실험예 1: 실시예 1~3의 이중기공 합성골 웨지의 골세포 부착 거동Experimental Example 1: Osteocell adhesion behavior of the biporous synthetic bone wedges of Examples 1 to 3
실시예 1~3에서 제조한 이중기공 합성골 웨지의 골세포 부착 거동을 SEM으로 관찰하였다(도 4). 그 결과, 도 4(a)에 나타난 바와 같이, 이중기공 합성골 웨지는 서로 연결된 개기공 구조를 가지는 것을 확인할 수 있었다.The bone cell adhesion behavior of the biporous synthetic bone wedges prepared in Examples 1 to 3 was observed by SEM (FIG. 4). As a result, as shown in Figure 4 (a), it was confirmed that the double-pore synthetic bone wedge has an open pore structure connected to each other.
아울러 실시예 1~3에서 제조한 이중기공 합성골 웨지 각각에 골세포(stromal cell, 입수처: 경북대학교) 1×105개를 시딩(seeding)하여 부착시킨 결과, 도 4(b)에 나타난 바와 같이, 이중기공 합성골 웨지에 골세포가 부착된 것을 확인할 수 있었다.In addition, as a result of attaching 1 × 10 5 bone cells (stromal cell, obtained from Kyungpook National University) to each of the double pore synthetic bone wedges prepared in Examples 1 to 3, as shown in FIG. 4 (b). As described above, it was confirmed that the bone cells were attached to the double pore synthetic bone wedge.
한편, 종래의 합성골 웨지(도 5(a) 및 (b))는 표면이 매끄러운 반면, 실시예 1~3(도 5(c)~(h))의 이중기공 합성골 웨지의 표면은 마이크로 크기의 기공으로 인하여 표면이 매끄럽지 않은 것으로 관찰되었다(도 5). 종래의 합성골 웨지는 폐기공 및 매크로 기공만을 형성하고 개기공 및 마이크로 기공은 형성하지 않아서 세포의 부착률이 떨어졌다.On the other hand, while the conventional synthetic bone wedge (Figs. 5 (a) and (b)) is a smooth surface, the surface of the double-pore synthetic bone wedge of Examples 1 to 3 (Fig. 5 (c) ~ (h)) is micro It was observed that the surface was not smooth due to the pores of the size (FIG. 5). Conventional synthetic bone wedges form only closed pores and macropores but do not form open pores and micropores, resulting in poor cell adhesion.
또한, 실시예 1~3의 이중기공 합성골 웨지를 5000배로 확대하여 관찰한 결과, BCP 슬러리 제조시 PVA 바인더 수용액의 중량비가 높을수록 마이크로 크기의 기공이 더 많이 생성되는 것을 확인하였다(도 6).In addition, as a result of observing the double-pore synthetic bone wedge of Examples 1 to 3 to 5000 times, it was confirmed that the higher the weight ratio of the PVA binder aqueous solution when producing the BCP slurry, the more micro-sized pores are produced (FIG. 6). .
기공이 많을수록 세포부착이 많이 일어나는 것이므로, 기공에 따른 자가골 재생 능력을 알아보기 위하여 종래의 합성골 웨지 및 상기 실시예 1~3의 이중기공 합성골 웨지를 사용하여 1~7일 동안 골세포를 배양하여 기공에 따른 세포부착능력을 확인하였다. 종래의 합성골 웨지는 시간이 지나도 골세포의 확산은 차이가 없었지만, 실시예 1~3의 이중기공 합성골 웨지는 시간이 지남에 따라 골세포의 확산이 일어났으며, 특히 BCP 슬러리의 농도(BCP 분말:PVA 바인더 수용액 1:6)가 가장 묽은 실시예 3에서 가장 높은 골세포 확산을 보였다(도 7).Since more pores result in more cell adhesion, culture the bone cells for 1 to 7 days using conventional synthetic bone wedges and the dual-pore synthetic bone wedges of Examples 1 to 3 in order to determine the autologous bone regeneration ability according to the pores. The cell adhesion was confirmed according to the pores. The conventional synthetic bone wedges did not differ in the spread of bone cells over time, but the double-pore synthetic bone wedges of Examples 1 to 3 occurred in the diffusion of osteocytes over time, especially the concentration of BCP slurry ( BCP powder: aqueous solution of PVA binder 1: 6) showed the highest osteocytic diffusion in the thinnest Example 3 (FIG. 7).
상기 결과를 통하여 BCP 슬러리의 농도가 낮을수록 이중기공 합성골 웨지의 기공이 많이 형성되며, 그에 따라 표면이 울퉁불퉁하게 제조되어 골세포의 부착이 용이한 환경을 제공할 수 있어 자가골 재생 능력이 높아진다는 것을 확인할 수 있었다.Through the above results, the lower the concentration of the BCP slurry, the more pores of the double-pore synthetic bone wedge are formed, and thus, the surface is unevenly manufactured, thereby providing an environment in which bone cells can be easily attached, thereby increasing autologous bone regeneration ability. I could confirm that.
이상으로 본 발명의 특정한 부분을 상세히 기술하였는바, 당업계의 통상의 지식을 가진 자에게 있어서, 이러한 구체적 기술은 단지 바람직한 실시양태일 뿐이며, 이에 의해 본 발명의 범위가 제한되는 것이 아닌 점은 명백할 것이다. 따라서 본 발명의 실질적인 범위는 첨부된 청구항들과 그것들의 등가물에 의하여 정의된다고 할 것이다.Having described the specific parts of the present invention in detail, it will be apparent to those skilled in the art that such specific descriptions are merely preferred embodiments, and thus the scope of the present invention is not limited thereto. will be. Thus, the substantial scope of the present invention will be defined by the appended claims and their equivalents.
본 발명의 이중기공 합성골 웨지는 매크로 및 마이크로 크기의 기공을 가지고 있어 매크로 기공으로는 혈관 및 골세포의 유입이 용이하며, 마이크로 기공으로는 혈액 및 체액의 순환이 원활하여 골세포의 성장 및 대사에 유용한 환경을 제공할 수 있어 골세포의 부착을 유리하게 한다.The dual pore synthetic bone wedge of the present invention has macro and micro size pores, so that macro pores facilitate the inflow of blood vessels and osteocytes, and micro pores facilitate the circulation of blood and body fluids for the growth and metabolism of bone cells. Can provide a useful environment for the attachment of osteocytes.
또한, 본 발명의 이중기공 합성골 웨지는 약 80%의 기공율을 나타내어 상기 기공을 통하여 자가골 재생이 일어나 자가골 재생 점유율을 80%까지 높일 수 있다.In addition, the dual pore synthetic bone wedge of the present invention exhibits a porosity of about 80% to increase autologous bone regeneration rate by the autogenous bone regeneration occurs through the pores.

Claims (12)

  1. (1) 인산칼슘 분말 및 바인더 수용액을 혼합하여 인산칼슘 페이스트를 제조하는 단계;(1) mixing calcium phosphate powder and aqueous binder solution to prepare a calcium phosphate paste;
    (2) 상기 제조된 인산칼슘 페이스트로 표면 처리된 폴리우레탄 스펀지를 코팅하는 단계;(2) coating a polyurethane sponge surface-treated with the prepared calcium phosphate paste;
    (3) 상기 인산칼슘 페이스트로 코팅된 폴리우레탄 스펀지를 건조 및 소성하여 200~450μm 크기의 매크로 기공을 가지는 합성골 웨지를 제조하는 단계;(3) drying and firing the polyurethane sponge coated with the calcium phosphate paste to prepare a synthetic bone wedge having macropores of 200 to 450 μm in size;
    (4) 상기 합성골 웨지 표면을 200~800nm 입자 크기의 인산칼슘 분말 및 바인더 수용액을 혼합하여 제조된 인산칼슘 슬러리로 코팅하는 단계; 및(4) coating the surface of the synthetic bone wedge with a calcium phosphate slurry prepared by mixing a calcium phosphate powder and a binder aqueous solution having a particle size of 200 ~ 800nm; And
    (5) 상기 인산칼슘 슬러리로 코팅된 합성골 웨지를 건조 및 소성하여 0.5~2μm 크기의 마이크로 기공 및 200~450μm 크기의 매크로 기공을 가지는 합성골 웨지를 제조하는 단계를 포함하는 이중기공 합성골 웨지의 제조방법.(5) drying and firing the synthetic bone wedge coated with the calcium phosphate slurry to prepare a double-pore synthetic bone wedge having a micro-pores of 0.5 ~ 2μm size and macropores of 200 ~ 450μm size Manufacturing method.
  2. 제1항에 있어서, 상기 (1)단계 및 (4)단계의 인산칼슘 분말은 수산화아파타이트, α-삼인산칼슘, β-삼인산칼슘, 사인산칼슘, 칼슘 메타포스페이트, 칼슘 폴리포스페이트 및 바이오글라스로 구성된 군에서 선택되는 1종 이상인 것을 특징으로 하는 이중기공 합성골 웨지의 제조방법.The method of claim 1, wherein the calcium phosphate powder of step (1) and (4) is composed of apatite hydroxide, α-tricalcium phosphate, β-tricalcium phosphate, calcium phosphate, calcium metaphosphate, calcium polyphosphate and bioglass Method for producing a double-pore synthetic bone wedge, characterized in that at least one selected from the group.
  3. 제2항에 있어서, 상기 인산칼슘 분말은 수산화아파타이트 및 β-삼인산칼슘을 3:7~7:3의 중량비로 혼합한 이중상 인산칼슘인 것을 특징으로 하는 이중기공 합성골 웨지의 제조방법.3. The method of claim 2, wherein the calcium phosphate powder is biphasic calcium phosphate obtained by mixing apatite hydroxide and β-tricalcium phosphate in a weight ratio of 3: 7 to 7: 3.
  4. 제1항에 있어서, 상기 (1)단계 및 (4)단계의 바인더 수용액은 PVA 바인더 수용액 또는 셀룰로오스계 바인더 수용액인 것을 특징으로 하는 이중기공 합성골 웨지의 제조방법.The method of claim 1, wherein the aqueous binder solution of steps (1) and (4) is a PVA binder solution or a cellulose-based binder solution.
  5. 제1항에 있어서, 상기 폴리우레탄 스펀지는 40~80ppi의 기공 크기를 가지는 것을 특징으로 하는 이중기공 합성골 웨지의 제조방법.The method of claim 1, wherein the polyurethane sponge has a pore size of 40 to 80 ppi.
  6. 제1항에 있어서, 상기 (4) 단계의 200~800nm 입자 크기의 인산칼슘 분말 및 바인더 수용액은 1:0.5~1:8의 중량비로 혼합하는 것을 특징으로 하는 이중기공 합성골 웨지의 제조방법.[Claim 2] The method of claim 1, wherein the calcium phosphate powder and the binder aqueous solution having the particle size of 200 to 800 nm in the step (4) are mixed at a weight ratio of 1: 0.5 to 1: 8.
  7. 제1항에 있어서, 상기 (3) 단계 및 (4) 단계의 소성온도는 1100~1250℃인 것을 특징으로 하는 이중기공 합성골 웨지의 제조방법.The method of claim 1, wherein the firing temperature of the step (3) and (4) is 1100 ~ 1250 ℃.
  8. 제1항의 제조방법으로 제조된 200~450μm 크기의 매크로 기공 및 0.5~ 2μm 크기의 마이크로 기공을 포함하는 이중기공 합성골 웨지.A double-pore synthetic bone wedge comprising a macropores of 200 ~ 450μm size and micropores of 0.5 ~ 2μm size prepared by the manufacturing method of claim 1.
  9. 제8항에 있어서, 상기 이중기공 합성골 웨지는 60~80%의 기공율을 가지는 것을 특징으로 하는 이중기공 합성골 웨지.The method of claim 8, wherein the double pore synthetic bone wedge has a porosity of 60 to 80%.
  10. 제8항에 있어서, 상기 이중기공 합성골 웨지는 가로 및 세로의 경사각이 각각 6~14° 및 6~14°인 것을 특징으로 하는 이중기공 합성골 웨지.According to claim 8, The double pore synthetic bone wedge is a bi-pore synthetic bone wedge, characterized in that the horizontal and vertical inclination angle of 6 ~ 14 ° and 6 ~ 14 °, respectively.
  11. 제8항에 있어서, 상기 이중기공 합성골 웨지는 한 개의 이중기공 합성골 웨지로 좌측 및 우측 다리에 모두 적용 가능한 것을 특징으로 하는 이중기공 합성골 웨지.10. The biporous synthetic bone wedge of claim 8, wherein the biporous synthetic bone wedge is applicable to both left and right legs as one biporous synthetic bone wedge.
  12. 제8항의 이중기공 합성골 웨지를 함유하는 골 재생용 스캐폴드.A scaffold for bone regeneration comprising the double pore synthetic bone wedge of claim 8.
PCT/KR2014/011066 2013-11-18 2014-11-18 Double porous synthetic bone wedge and method for manufacturing same WO2015072806A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2013-0139586 2013-11-18
KR20130139586A KR101493752B1 (en) 2013-11-18 2013-11-18 Macro and micro porous synthetic wedge and manufacturing method comprising the same

Publications (1)

Publication Number Publication Date
WO2015072806A1 true WO2015072806A1 (en) 2015-05-21

Family

ID=52593763

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/011066 WO2015072806A1 (en) 2013-11-18 2014-11-18 Double porous synthetic bone wedge and method for manufacturing same

Country Status (2)

Country Link
KR (1) KR101493752B1 (en)
WO (1) WO2015072806A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106630646A (en) * 2016-12-09 2017-05-10 苏州纳贝通环境科技有限公司 Porous biological glass ceramic and preparation method thereof
CN106620872A (en) * 2017-01-18 2017-05-10 中国人民解放军第四军医大学 Formula and preparation method of engineered bone scaffold

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101817002B1 (en) 2016-06-10 2018-01-09 조선대학교산학협력단 Manufacturing method for β-tricalciumphosphate synthetic wedge using compression molding

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000075142A (en) * 1999-05-29 2000-12-15 정종평 Bone substituent consisting of biodegradable porous calcium metaphosphate and its process of preparation
US7087540B2 (en) * 1999-08-26 2006-08-08 Curasan Ag Resorbable bone replacement and bone formation material
KR20090099670A (en) * 2008-03-18 2009-09-23 유앤아이 주식회사 Complex implants infilterated with biodegradable mg(alloys) inside porous structural materials and method for manufacturing the same
KR20110120784A (en) * 2010-04-29 2011-11-04 유창국 Composition and manufacturing method for porous calcium phosphate granules by physical foaming

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20000075142A (en) * 1999-05-29 2000-12-15 정종평 Bone substituent consisting of biodegradable porous calcium metaphosphate and its process of preparation
US7087540B2 (en) * 1999-08-26 2006-08-08 Curasan Ag Resorbable bone replacement and bone formation material
KR20090099670A (en) * 2008-03-18 2009-09-23 유앤아이 주식회사 Complex implants infilterated with biodegradable mg(alloys) inside porous structural materials and method for manufacturing the same
KR20110120784A (en) * 2010-04-29 2011-11-04 유창국 Composition and manufacturing method for porous calcium phosphate granules by physical foaming

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
PARK, GI DEOK ET AL., MACROMOL. SYMP., vol. 249 - 25, 2007, pages 145 - 150 *
PARK, YOUNG SANG: "Fabrication of Osteoconductive Porous Blocks Using Calcium Phosphate Glass", MASTER'S THESIS *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106630646A (en) * 2016-12-09 2017-05-10 苏州纳贝通环境科技有限公司 Porous biological glass ceramic and preparation method thereof
CN106620872A (en) * 2017-01-18 2017-05-10 中国人民解放军第四军医大学 Formula and preparation method of engineered bone scaffold
CN106620872B (en) * 2017-01-18 2019-07-19 中国人民解放军第四军医大学 The formula and preparation method of Engineering Bone bracket

Also Published As

Publication number Publication date
KR101493752B1 (en) 2015-02-17

Similar Documents

Publication Publication Date Title
JP5759370B2 (en) Three-dimensional matrix of monetite with structured porosity for tissue engineering and bone regeneration, and method for preparing the three-dimensional matrix
WO2015072806A1 (en) Double porous synthetic bone wedge and method for manufacturing same
WO2012134059A2 (en) Complex support body for regenerating bones and cartilage, method for manufacturing complex support body, and composition for treating bones and cartilage containing same as active ingredient
CN109133971B (en) Calcium phosphate/bioactive glass bone repair scaffold and preparation method thereof
WO2012174837A1 (en) Bionic bone repairing scaffold of layered structure and manufacturing method thereof
WO2021125529A1 (en) Cell culture scaffold and preparation method therefor
CN104721880A (en) Beta-tricalcium phosphate/mesoporous biological glass composite scaffold as well as preparation method and application
CN109594195A (en) A kind of cotton shape fibrous framework and its preparation method and application
IL279552B2 (en) Hemostatic complex and preparation method therefor
CN108404206B (en) Preparation method of bone repair material
WO2015034307A1 (en) Bone graft material using cuttlefish bones and method for preparing same
Escobar-Sierra et al. Chitosan/hydroxyapatite scaffolds for tissue engineering manufacturing method effect comparison
WO2011129533A2 (en) Method for manufacturing artificial bone
DE10063119B4 (en) Process for the preparation of a synthetic filling material and temporary bone defect filler
CN105797217A (en) Porous micro-sphere bone repair material and preparing method thereof
Mao et al. Preparation and properties of α-calcium sulphate hemihydrate and β-tricalcium phosphate bone substitute
WO2015167045A1 (en) Nano-scaffold containing functional factor and method for producing same
WO2015129972A1 (en) High strength synthetic bone for bone replacement for increasing compressive strength and facilitating blood circulation, and manufacturing method therefor
CN107050513A (en) A kind of gradient dip-coating HA prepares ZrO2The method of Bone Defect Repari bioceramic scaffold material
CN112972776B (en) Multi-stage hole bone repair biological scaffold material with photothermal effect and preparation method thereof
US20110229547A1 (en) Process for producing inorganic interconnected 3d open cell bone substitutes
CN108607119B (en) Calcium polyphosphate surface polydopamine modified composite biological ceramic and preparation method thereof
CN114681668B (en) Preparation method of 3D printed selenium-doped hydroxyapatite artificial bone structure
CN105833345A (en) Porous calcium phosphate/gelatin composite scaffold for bone tissue engineering and preparation method of porous calcium phosphate/gelatin composite scaffold
CN113350573B (en) Porous microsphere adhesive with osteoinductive capacity and preparation method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861423

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861423

Country of ref document: EP

Kind code of ref document: A1