WO2015072778A1 - 동시 멀티 충전이 가능한 무선 전력 전송 장치 - Google Patents
동시 멀티 충전이 가능한 무선 전력 전송 장치 Download PDFInfo
- Publication number
- WO2015072778A1 WO2015072778A1 PCT/KR2014/010953 KR2014010953W WO2015072778A1 WO 2015072778 A1 WO2015072778 A1 WO 2015072778A1 KR 2014010953 W KR2014010953 W KR 2014010953W WO 2015072778 A1 WO2015072778 A1 WO 2015072778A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- wireless power
- signal
- power
- transmission
- charging
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/0042—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries characterised by the mechanical construction
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/005—Mechanical details of housing or structure aiming to accommodate the power transfer means, e.g. mechanical integration of coils, antennas or transducers into emitting or receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/10—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling
- H02J50/12—Circuit arrangements or systems for wireless supply or distribution of electric power using inductive coupling of the resonant type
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/40—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices
- H02J50/402—Circuit arrangements or systems for wireless supply or distribution of electric power using two or more transmitting or receiving devices the two or more transmitting or the two or more receiving devices being integrated in the same unit, e.g. power mats with several coils or antennas with several sub-antennas
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/60—Circuit arrangements or systems for wireless supply or distribution of electric power responsive to the presence of foreign objects, e.g. detection of living beings
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/80—Circuit arrangements or systems for wireless supply or distribution of electric power involving the exchange of data, concerning supply or distribution of electric power, between transmitting devices and receiving devices
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J50/00—Circuit arrangements or systems for wireless supply or distribution of electric power
- H02J50/90—Circuit arrangements or systems for wireless supply or distribution of electric power involving detection or optimisation of position, e.g. alignment
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J7/00—Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries
- H02J7/007—Regulation of charging or discharging current or voltage
- H02J7/007188—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters
- H02J7/007192—Regulation of charging or discharging current or voltage the charge cycle being controlled or terminated in response to non-electric parameters in response to temperature
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02J—CIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
- H02J2310/00—The network for supplying or distributing electric power characterised by its spatial reach or by the load
- H02J2310/10—The network having a local or delimited stationary reach
- H02J2310/20—The network being internal to a load
- H02J2310/22—The load being a portable electronic device
Definitions
- the present invention relates to a wireless power transmission apparatus capable of simultaneous multi-charging.
- the portable terminal in order to charge a portable terminal such as a mobile phone, a notebook computer, or a PDA, the portable terminal must receive electric energy (or power) from an external charger.
- the portable terminal includes a battery cell for storing the supplied electrical energy and a circuit for charging and discharging the battery cell (supplying electrical energy to the portable terminal).
- the electrical connection method between the charger and the battery cell for charging the electric energy in the battery cell is supplied with commercial power to convert the voltage and current corresponding to the battery cell and supply the electrical energy to the battery cell through the terminal of the corresponding battery cell. Includes terminal supply.
- This terminal supply method is accompanied by the use of a physical cable (cable) or wire. Therefore, when handling a lot of terminal supply equipment, many cables occupy considerable working space, are difficult to organize, and are not good in appearance. In addition, the terminal supply method may cause problems such as instantaneous discharge due to different potential differences between the terminals, burnout and fire caused by foreign substances, natural discharge, and deterioration of the life and performance of the battery pack.
- the wireless power transmission system includes a wireless power transmission device for supplying electrical energy in a wireless power transmission method, and a wireless power reception device for charging the battery cells by receiving the electrical energy supplied wirelessly from the wireless power transmission device.
- the wireless power transmission device may include a transmission coil, a shielding material installed to surround the transmission coil, and a controller and an adapter for controlling the power signal to be transmitted from the transmission coil.
- the present invention has been made to solve the above-described object, and provides a wireless power transmitter capable of simultaneous multi-charging, which can lower initial standby power, lower a detection error rate of a wireless power receiver, and improve wireless power transmission efficiency. It is to.
- a wireless power transmitter capable of multi-charging simultaneously, a plurality of transmission blocks comprising two or more primary coils; And when the plurality of wireless power receivers are in the charging position, using the response signals from the primary coils corresponding to the charging positions, selecting the plurality of primary coils corresponding to the wireless power receiver and selecting the selected ones.
- the transmission control unit may control the transport blocks to simultaneously transmit a wireless power signal in a plurality of primary coils.
- the transmission block may include: an object detector configured to transmit a response signal generated by the wireless power receiver to the transmission controller in the primary coil; A converter connected to each of the primary coils; And a driving driver for transmitting a driving signal only to the primary coil detected by the object detecting unit under the control of the transmission control unit.
- the wireless power transmitter capable of simultaneous multi-charging may further include an adapter for converting external AC power into DC power and supplying power of the wireless power signal.
- the adapter may be installed to be replaced according to the number of the primary coil.
- the wireless power transmitter capable of simultaneous multi-charging may further include a temperature sensor, and the transmission controller may control the wireless power signal when the temperature measured by the temperature sensor is equal to or greater than a reference value while simultaneously transmitting the wireless power signal. You can restrict all transmissions of.
- the transmission controller may control the output of the wireless power signal based on the charging state information transmitted through the primary coil.
- the response signal is a signal strength packet signal for the digital ping, and when the response signal is received from all of the primary coils, the transmission control unit may control to generate a wireless power signal in all of the primary coils. .
- the transmission control unit transmits the wireless power signal at the intersection with respect to the primary coil, and analyzes the charging state information from the wireless power receiver, so that the current value rectified by the wireless power receiver is equal to or greater than a reference value. If the primary coil is identified, it is selected as the best primary coil and controlled to oscillate the wireless power signal. If the current value rectified by the wireless power receiver is less than or equal to the reference value, the wireless power is stored in all of the primary coils. The signal can be controlled to oscillate.
- the wireless power transmitter capable of simultaneous multi-charging which is an embodiment of the present invention having the above-described configuration, it is possible to simultaneously charge a plurality of wireless power receivers.
- the initial standby power can be significantly lowered, the efficiency of detecting foreign matters during charging, and the power power transmission efficiency can be improved.
- 1 is a view for explaining the operation of the wireless power transmission apparatus capable of simultaneous multi-charging which is an embodiment of the present invention.
- FIG. 2 is a view for explaining the electronic configuration of a wireless power transmission apparatus capable of simultaneous multi-charging which is an embodiment of the present invention.
- FIG. 3 is a flowchart illustrating a method for performing foreign material detection in a wireless power transmission system including a wireless power transmitter capable of simultaneous multi-charging according to an embodiment of the present invention.
- FIG. 4 is a flowchart illustrating a method for performing foreign material detection in a wireless power transfer system including a wireless power transmitter capable of simultaneous multi-charging according to another embodiment of the present invention.
- FIG. 5 is a flowchart illustrating a method for performing foreign material detection in a wireless power transmission system including a wireless power transmitter capable of simultaneous multi-charging according to another embodiment of the present invention.
- FIG. 6 is a flow chart illustrating a method for performing foreign material detection in a wireless power transfer system including a wireless power transfer apparatus capable of simultaneous multi-charging according to an embodiment of the present invention.
- FIG. 7 is a flowchart illustrating an operation of a wireless power transmission system in a wireless power transmission system including a wireless power transmission apparatus capable of simultaneous multi-charging according to another embodiment of the present invention.
- FIG. 8 is a flowchart illustrating an operation of a wireless power transmission system including a wireless power transmitter capable of simultaneous multi-charging according to another embodiment of the present invention.
- FIG. 1 is a view for explaining the operation of the wireless power transmission apparatus capable of simultaneous multi-charging which is an embodiment of the present invention.
- a plurality of coils are arranged in a matrix form, and each coil is spaced apart from each other.
- a plurality of wireless power receivers such as a smart phone 200 may be placed in a charging position at the same time.
- the wireless power transmitter 100 oscillates a wireless power signal suitable for each of the plurality of wireless power receivers 200. Accordingly, power is supplied to the plurality of wireless power receivers 200 at the same time.
- the wireless power transmission system may include a wireless power transmitter 100, a wireless power receiver 200, and an adapter 300.
- the adapter 300 functions to convert AC commercial power into DC power to supply power for the wireless power signal oscillated to the wireless power receiver 200.
- the adapter 300 may be configured as a switching mode power supply (SMPS).
- SMPS refers to a power supply using a switching circuit, which is more efficient, more durable, and more compact and lighter than conventional linear power supplies.
- the adapter 300 may be installed interchangeably according to the capacity or the number of the transmission block 110 to be described later. For example, when having two charging positions, the SMPS has a capacity of 12V / 2A, and when having four charging positions, the SMPS may have a capacity of 12V / 4A.
- the wireless power transmission apparatus 100 may include at least two transmission blocks 110, a transmission controller 120, and a temperature sensor 130.
- each of the transmission blocks 110 may be connected to a pair of primary coils 101, a converter 103 connected to each of the primary coils 101, and each of the converters 103.
- One object driver 105 and an object detector 107 connected to each of the primary coils 101 and detecting whether the wireless power receiver 200 is at a charging position may be included.
- the primary coil 101 is a component that oscillates a wireless power signal and oscillates a wireless power signal to the wireless power receiver 200 in an electromagnetic induction manner.
- the shape may be circular, elliptical, track-shaped, square, polygonal, or the like.
- the primary block 101 is paired to the transmission block 110.
- the primary coils 101 are paired has been described.
- the present invention is not limited thereto, and the transmission block 110 may be configured with three or four primary coils.
- the converter 103 generates a power supply for generating a power signal to be transmitted by the control of the driving driver 105 and supplies it to the primary coil 101.
- the transmission controller 120 determines the converter 103 corresponding to the primary coil 101 in which the wireless power receiver 200 is placed at the charging position, and determines the power value required by the determined converter 103.
- the drive driver 105 selects the converter 103 in response to the transmitted power control signal and controls its operation. Accordingly, the converter 103 applies the output power corresponding to the power value required by the control of the driving driver 105 to the corresponding primary coil 101, so that the wireless power signal of the required intensity is charged to the charging position. It is to be sent to the wireless power receiver 200 in the.
- the driving driver 105 controls the operation of the converter 103 under the control of the transmission control unit 120.
- the object detecting unit 107 detects a load change of the primary coil 101 to detect whether an object exists at a charging position, and accordingly, the transmission control unit 120 transmits a digital ping signal to the driving driver 105. ) And oscillate through the transmission coil, and receives a signal strength packet signal from the wireless power receiver 200 as a response signal to determine whether the object is caused by the wireless power receiver 200. (That is, having a function as an ID verification unit), and performs a function of filtering and processing the charging state information transmitted from the wireless power receiver 200. That is, when a signal including the object response signal and the charging state information, which is a signal strength packet signal for the digital ping of the object detection signal transmitted through the primary coil 101, is received, it functions to filter.
- the transmission control unit 120 receives and confirms the determination result of the object detecting unit 107, analyzes the object response signal received from the primary coil 101, and performs wireless power through the primary coil 101. It transmits a power signal for transmitting a signal to the drive driver 105.
- the transmission control unit 120 transmits an intersection wireless power signal to the primary coil 101, and then analyzes the charging state information from the wireless power receiver 200 to determine the wireless power receiver ( When the primary coil 101 whose current value rectified by the reference value is greater than or equal to the reference value is identified, it is selected as the best primary coil and controlled to generate a wireless power signal through the same, and the wireless power receiver 200 When the current value rectified is less than or equal to the reference value, it functions to control the wireless power signal to oscillate in all of the paired primary coil 101.
- the temperature sensor 130 functions to detect that the wireless power transmitter 100 is overheated due to a foreign substance.
- foreign matters such as coins are placed at the charging position of the wireless power transmitter 100 during wireless charging or initially, wireless power transmission is not normally performed, and thus, power waste occurs, thereby causing wireless power.
- the transmission device 100 becomes overheated.
- the transmission control unit 120 has a function of limiting all transmissions of the wireless power signal when the temperature measured by the temperature sensor 130 is equal to or greater than a reference value while simultaneously transmitting the wireless power signal. Accordingly, it is possible to prevent abnormally wasted power.
- the wireless power receiver 200 that receives the power signal and is supplied with power, the secondary coil 210 for generating the induced power by the transmitted power signal, and the rectifier 220 for rectifying the induced power And a battery 230 and a reception controller 240 that are charged with rectified power.
- the battery cell module 230 includes a protection circuit such as an overvoltage and overcurrent protection circuit, a temperature sensing circuit, and the like, and also includes a charge management module for collecting and processing information such as a state of charge of the battery cell. .
- the present invention includes a plurality of transport blocks. Accordingly, when the wireless power receiver 200 is placed in the charging position, the object detecting unit 107 of each of the transmission blocks 110 may detect which charging position the wireless power receiver 200 is placed in, and charge the battery.
- the transmission block 110 in which the wireless power receiver 200 is not placed in the position is maintained in a ready state, and the transmission block 110 in which the wireless power receiver 200 is placed is placed on a certain primary coil 101.
- the driver driver is switched to drive the wireless power signal in the primary coil 101 at the corresponding position, or the two converters 103 are controlled to operate.
- the drive driver 105, the object detector 107, the converter 103, and the primary coil are transferred to block blocks, which facilitates maintenance, and further increases power efficiency by significantly lowering standby power.
- the primary coil 101 may be composed of two or more coils in order to increase the degree of freedom of charging position.
- SMPS 5 to 10W class adapter
- SMPS 10-15W class adapter
- the primary coil 101 is separated from the main substrate, that is, the transfer block 110, the transfer control unit 120, and the temperature sensor 130 are installed on the main substrate, and one of the transfer blocks 110 is provided. If the primary coil 101 is provided separately from the main substrate, the magnetic field generated in the primary coil 101 can have a space that can minimize the influence on the substrate, and the manufacturing cost can be reduced.
- FIG. 3 is a flowchart illustrating a method for performing foreign material detection in a wireless power transmission system including a wireless power transmission apparatus capable of simultaneous multi-charging according to an embodiment of the present invention.
- a foreign substance detection operation is performed before initial charging (S200).
- the foreign matter detection operation before the initial charging is as shown in FIG. 6.
- foreign matter may be detected by performing unidirectional communication during charging.
- the foreign matter detection operation using one-way communication during charging is as shown in FIG. 7.
- foreign matter may be detected by performing bidirectional communication during charging.
- the foreign matter detection operation using bidirectional communication during charging is as shown in FIG. 8.
- foreign matter may be detected by simultaneously or independently performing the unidirectional communication and the bidirectional communication during charging.
- the foreign substance detection corresponding power limiting operation is performed as in step S225.
- the temperature sensor 130 or thermistor to protect the power transmission (eg, Power off) (S220).
- the temperature sensor may be attached to the receiving device or attached to the transmitting device.
- the power is limited based on the temperature sensor (or thermistor) to protect the power transmission when a problem occurs in the power transmission with the fine foreign matter not detected.
- FIG. 4 is a flowchart illustrating a method for performing foreign material detection in a wireless power transmission system including a wireless power transmitter capable of simultaneous multi-charging according to another embodiment of the present invention.
- a foreign substance detection operation is performed before initial charging (S300).
- the power is limited based on a temperature sensor (or thermistor) to protect the power transmission (eg, power Hang up) (S310).
- the temperature sensor may be attached to the receiving device or attached to the transmitting device.
- the power is limited based on the temperature sensor (or thermistor) to protect the power transmission when a problem occurs in the power transmission with the fine foreign matter not detected.
- FIG. 5 is a flowchart illustrating a method for performing foreign material detection in a wireless power transmission system in a wireless power transmission system including a wireless power transmitter capable of simultaneous multi-charging according to another embodiment of the present invention.
- the power is limited based on a temperature sensor (or thermistor) to protect the power transmission (eg, cut off the power).
- the temperature sensor may be attached to the receiving device or attached to the transmitting device.
- step S415 power is limited based on a temperature sensor (or thermistor) in order to protect the power transmission when a problem occurs in power transmission with fine foreign matter not detected.
- the operation of detecting foreign matters will be described by distinguishing between the first charge and after the charge (for example, one-way communication or two-way communication).
- FIG. 6 is a flowchart illustrating a method of performing foreign matter detection in a wireless power transmission system including a wireless power transmission apparatus capable of simultaneous multi-charging according to an embodiment of the present invention. It corresponds to step S200 of FIG. 2 or step S300 of FIG. 3.
- the wireless power transmitter performs a digital ping.
- the wireless power transmitter transmits a power signal of an operating point to the wireless power receiver (S500).
- the wireless power receiver When receiving the power signal of the ping phase, the wireless power receiver generates a signal strength packet indicating the strength of receiving the power signal and transmits it to the wireless power transmitter (S505).
- the wireless power receiver generates an identification packet indicating a unique ID of the wireless power receiver and configuration information of the wireless power receiver, and transmits the identification packet and the configuration information to the wireless power transmitter (S510).
- the wireless power receiver measures the reception power (S515). From this point, the initial voltage V i is set.
- the wireless power receiver determines whether termination reasons such as over voltage power (OVP), over current power (OCP), and full charge occur (S520). If the reason for the OVP, OCP, full charge, or other types of charging occurs, the wireless power receiver terminates charging (S525). If the type reason does not occur, the wireless power receiver determines whether it is in a state of receiving wireless power from the wireless power transmitter, that is, charging (S530).
- termination reasons such as over voltage power (OVP), over current power (OCP), and full charge occur (S520). If the reason for the OVP, OCP, full charge, or other types of charging occurs, the wireless power receiver terminates charging (S525). If the type reason does not occur, the wireless power receiver determines whether it is in a state of receiving wireless power from the wireless power transmitter, that is, charging (S530).
- step S530 if charging, the wireless power receiver compares the received power to the required power, generates a power control packet based on the result, and transmits the power control packet to the wireless power transmitter (S535).
- the wireless power receiver determines whether the initial voltage Vi is in a hold state (S540). If the initial voltage V i steady state value of the reference voltage range (for example 7.0V ⁇ 10.5V) is present in, the wireless power receiving apparatus, the initial setting is completed. This makes the initial voltage V i is the hold state, the wireless power receiving apparatus may enter a foreign matter detection phase.
- the initial voltage V i steady state value of the reference voltage range for example 7.0V ⁇ 10.5V
- the wireless power receiver If it is not in the V i hold state, the wireless power receiver generates a power control packet and transmits it to the wireless power transmitter as in the case of charging (S535). If the V i hold state, the wireless power receiver enters the foreign object detection phase. Here, the wireless power receiver generates a foreign material state packet and transmits it to the wireless power transmitter (S545).
- the foreign state packet according to the present invention includes a preamble, a header, a message, and a checksum.
- the preamble may be configured with a minimum of 11 bits and a maximum of 25 bits, and all bit values may be set to zero.
- the preamble is used by the wireless power transmitter to accurately detect the start bit of the header of the foreign state packet and to synchronize the incoming data.
- the header indicates the type of packet and may consist of 8 bits.
- the value of the header of the foreign state packet may be '0x00'.
- the message may have its value set to 0, that is, '0x00'.
- the value of the header of the foreign material status packet may be '0x05' which is the same as the header of the charge status packet.
- the packet is a foreign state packet. That is, the foreign matter packet is included in the charge packet.
- the wireless power transmitter determines whether the received packet is a foreign state packet based on the header of the received packet or the value of the message. If it is determined that the foreign state packet has been received, the wireless power transmitter performs the foreign matter detection (S550). The operation of checking the foreign substance status packet and the foreign substance detection are performed by the control unit of the wireless power transmission apparatus.
- the wireless power transmitter searches for a wireless power receiver (S600). At this time, the wireless power transmitter is in a charging standby state until the wireless power receiver is found.
- the wireless power transmitter enters a charging mode and transmits wireless power to the wireless power receiver (S605).
- the wireless power transmitter applies power to the primary coil to generate an induced magnetic field or resonance.
- the wireless power transmitter measures the current flowing in the primary coil, and the wireless power transmitter acquires a current measurement value from the current flowing in the primary coil (S610).
- the current measured by the wireless power transmitter may be an alternating current.
- the current measurement value may be converted into a DC value suitable for recognition by the control unit in the wireless power transmission device. That is, the wireless power transmitter measures a relatively high alternating current flowing through the primary coil, and maps the measured high current into a current measurement value, which is a value suitable for the control unit to interpret, as shown in Table 1.
- the wireless power transmitter performs foreign matter detection using any one or a combination of two or more parameters such as a reference current I ref , a reference range (I low to I high ), a reference AC signal, and a foreign matter detection time t (S615).
- parameters such as a reference current I ref , a reference range (I low to I high ), a reference AC signal, and a foreign matter detection time t may be previously stored in the wireless power transmitter as an initial setting value.
- the wireless power transmitter continuously transmits power to the wireless power receiver (S620).
- the wireless power transmitter obtains the current measurement value of the primary coil again at a predetermined time t by the system or the standard (S610), and attempts to detect the foreign matter based on this (S615).
- the wireless power transmitter blocks the wireless power transmitted to the wireless power receiver (S625).
- FIG. 8 is a flowchart illustrating an operation of a wireless power transmission system including a wireless power transmission apparatus capable of simultaneous multi-charging according to another embodiment of the present invention.
- performing bidirectional communication means that when a transmitting device transmits power to a receiving device, the receiving device informs the transmitting device of a received power value, and determines that the FOD is higher than a predetermined reference value. I say that.
- performing bidirectional communication means that when the transmitting device transmits 7 to 10 W of power to the receiving device and receives 5 W of power from the receiving device, the transmitting device informs the transmitting device of the received power value of 5 W, and the power loss is 2 W. Since it is larger than 1W which is a predetermined reference value, it determines with FOD. Through this, the FOD may be detected in the power transmission step.
- the wireless power transmitter searches for the wireless power receiver (S700). At this time, the wireless power transmitter is in a charging standby state until the wireless power receiver is found.
- the wireless power transmitter enters a charging mode and transmits wireless power to the wireless power receiver (S705).
- the wireless power transmitter applies power to the primary coil to generate an induced magnetic field or resonance.
- the wireless power transmitter transmits a transmission power measurement report indicating the measured transmission power to the wireless power receiver (S710).
- the wireless power transmitter transmits a transmission power measurement report as an FSK signal to the wireless power receiver.
- the FSK signal refers to a signal transmitted using the FSK method.
- the FSK signal may include a simple amount of power (eg, transmit power amount).
- the wireless power transmitter may transmit the FSK signal at regular intervals. This is because the wireless power receiver may not know the transmission time of the FSK signal.
- the constant period may be a period in which a predetermined number of data signals are transmitted (for example, the ASK signal is constant).
- the amount of transmission power may be a value measured by the wireless power transmitter by measuring the power generated in the main coil according to the AC current signal.
- the FSK signal switches or selects a range of variable frequencies (e.g. 140 or 140.3 Khz) for converting one fixed power frequency (f 0 , e.g. 145 kHz) required by the receiving device.
- f 0 e.g. 140 or 140.3 Khz
- f 0 e.g. 140 or 140.3 Khz
- f 0 e.g. 140 or 140.3 Khz
- f 0 e.g. 145 kHz
- the wireless power transmitter may measure power generated by the main coil according to an AC current signal, configure a transmission power measurement report indicating the measured generated power, and transmit the measured power to the wireless power receiver.
- the control information may be transmitted from the wireless power transmitter to the wireless power receiver (for example, the control information may be transmitted using an FSK signal), or from the wireless power receiver to the wireless power transmitter. Bi-directional communication in which control information is transmitted is possible.
- the wireless power transmitter performs a PWM using an inverter and generates a frequency allowed for the required power (or required power) of the wireless power receiver.
- the required power of the wireless power receiver generates a duty cycle or voltage
- the duty cycle or voltage value is the power value of the wireless power transmitter. That is, the power of the wireless power transmitter may be represented by a voltage, a duty setting, and a frequency applied to the inverter.
- the transmission power value is transmitted to the wireless power receiver by using the set value (eg, voltage, duty frequency) in the FSK method.
- the wireless power receiver stops receiving the existing data signal (eg, ASK signal) and receives the signal of FSK.
- the reception operation of the FSK signal includes a demodulation operation of the FSK signal.
- the FSK signal may be transmitted at a constant period 750.
- the predetermined period 750 may be a transmission period of a predetermined time (eg, 3 seconds and 5 seconds) or a predetermined number of data signals (eg, an ASK signal).
- the FSK signal may be transmitted simultaneously with the wireless power. That is, S705 and S710 may be performed at the same time.
- the wireless power receiver detects the foreign matter based on the transmission power measurement report (S715). For example, the FSK signal including the received power value measured by the wireless power receiver and the generated power measurement report is calculated, and if the difference is greater than or equal to a predetermined reference value, the FOD signal is determined. As another example, the wireless power receiver determines that the 'receive power-transmission energy' is equal to or greater than a predetermined reference value.
- the threshold is 1W.
- the reception power measurement result indicates 1. If the difference between the power indicated by the transmission power measurement report and the required power is larger than the threshold value, this may mean that a foreign object has been detected. Therefore, the wireless power transmitter 40 may recognize this as a foreign matter detection declaration.
- the wireless power receiver transmits the ASK signal including the foreign matter detection result to the wireless power transmitter (S720).
- the ASK signal may include a power control signal, an FOD detection signal, an emergency signal, or a buffer signal.
- the ASK signal may include required power information of the wireless power receiver.
- the required power information refers to information required for the wireless power transmitter to generate wireless power based on a magnetic induction method.
- the required power information indicates a control signal so that the wireless power transmitter checks the required power information and induces the power indicated in the required power information.
- Information to generate For example, when the requested power information indicates 10W, the wireless power transmitter generates a control signal to transmit 10W.
- the ASK signal may be transmitted in the form of a control error packet, a rectified packet, or a charger state.
- the wireless power transmitter may transmit wireless power based on the received ASK signal (S725).
- a data signal for example, an ASK signal or an FSK signal
- transmission or reception is performed sequentially.
- the power continues to be generated through the induced frequency, it is possible to simultaneously transmit the power signal and the data signal. Therefore, the wireless power may be transmitted simultaneously or at any time regardless of the time point at which the ASK signal and the FSK signal are transmitted and received.
- the ASK signal and the wireless power may be transmitted and received a plurality of times according to the above steps S720 and S725.
- the wireless power transmitter transmits a transmission power measurement report indicating the measured transmission power to the wireless power receiver (S730).
- the wireless power transmitter transmits a transmission power measurement report as an FSK signal to the wireless power receiver.
- the constant period 750 may be a transmission period of a predetermined time (eg, 3 seconds and 5 seconds) or a predetermined number of data signals (eg, an ASK signal).
- the wireless power transmitter may perform an action for detecting the foreign matter (not shown). For example, the wireless power transmitter may enter a shutdown mode in which driving of the main coil is reduced or stopped. This may prevent heat generation of the parasitic load and limit or stop the supply of inductive power which is inefficient.
- the wireless power transmitter capable of simultaneous multi-charging which is an embodiment of the present invention having the above-described configuration, it is possible to simultaneously charge a plurality of wireless power receivers.
- the initial standby power can be significantly lowered, the efficiency of detecting foreign matters during charging, and the power power transmission efficiency can be improved.
- the wireless power transmitter capable of simultaneous multi-charging described above is not limited to the configuration and method of the embodiments described above, but the embodiments may be all or part of each embodiment so that various modifications may be made. May be optionally combined.
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Computer Networks & Wireless Communication (AREA)
- Charge And Discharge Circuits For Batteries Or The Like (AREA)
Abstract
본 발명은, 2개 이상의 1차 코일을 포함하는, 복수개의 전송 블록; 및 복수개의 무선 전력 수신 장치가 충전 위치에 놓이면, 상기 충전 위치들에 대응하는 1차 코일로부터의 응답신호를 이용하여, 상기 무선 전력 수신 장치에 대응하는 복수의 1차 코일을 선택하고, 이 선택된 복수의 1차 코일에서 무선 전력 신호가 동시에 발신하도록 상기 전송 블록들을 제어하는 전송 제어부를 포함하는, 동시 멀티 충전이 가능한 무선 전력 전송 장치에 관한 것이다.
Description
본 발명은, 동시 멀티 충전이 가능한 무선 전력 전송 장치에 관한 것이다.
일반적으로 휴대폰, 노트북, PDA와 같은 휴대용 단말기(Portable Terminal)가 충전되려면, 휴대용 단말기가 외부의 충전기로부터 전기에너지(또는 전력)을 공급받아야 한다. 이러한 휴대용 단말기는 공급되는 전기에너지를 저장하는 배터리셀과 배터리셀의 충전 및 방전(휴대용 단말기로 전기에너지를 공급)을 위한 회로를 포함한다.
배터리셀에 전기에너지를 충전시키기 위한 충전기와 배터리셀간의 전기적 연결방식은, 상용전원을 공급받아 배터리셀에 대응하는 전압 및 전류로 변환하여 해당 배터리셀의 단자를 통해 배터리셀로 전기에너지를 공급하는 단자공급방식을 포함한다.
이러한 단자공급방식은 물리적인 케이블(cable) 또는 전선의 사용이 동반된다. 따라서 단자공급방식의 장비들을 많이 취급하는 경우, 많은 케이블들이 상당한 작업 공간을 차지하고 정리가 곤란하며 외관상으로도 좋지 않다. 또한 단자공급방식은, 단자들간의 서로 다른 전위차로 인한 순간방전현상, 이물질에 의한 소손 및 화재발생, 자연방전, 배터리팩의 수명 및 성능 저하 등의 문제점을 야기할 수 있다.
최근에는 상기와 같은 문제점을 해결하기 위하여, 무선전력 전송방식을 이용한 충전시스템(이하 무선전력 전송 시스템)과 제어방법들이 제시되고 있다. 무선전력 전송방식을 비접촉(contactless) 전력 전송방식 또는 무접점(no point of contact) 전력 전송방식이라 하기도 한다. 무선전력 전송 시스템은, 무선전력 전송방식으로 전기에너지를 공급하는 무선전력 전송장치와, 상기 무선전력 전송장치로부터 무선으로 공급되는 전기에너지를 수신하여 배터리셀을 충전하는 무선전력 수신 장치로 구성된다.
이러한 무선 전력 전송 장치는, 전송 코일, 전송 코일을 감싸게 설치되는 차폐재, 그리고, 전송 코일에서 전력 신호이 전송되도록 제어하는 제어부 및 어댑터를 포함하여 구성될 수 있다.
이러한 무선 전력 전송시스템에서는 통상 하나의 무선 전력 수신 장치만을 충전할 수 있다. 따라서, 다수의 무선 전력 수신 장치를 동시에 충전하고자 하는 경우에는 상기 무선 전력 전송 장치를 다수개 설치 운영하여야 하며, 이는 사용자에게 상당한 비용 부담이 될 뿐 아니라 소비 전력 증가를 초래하는등 많은 문제점이 있었다.
본 발명은 상술한 목적을 해결하기 위하여 안출된 것으로서, 초기 대기 전력을 낮추며, 무선 전력 수신 장치의 감지오차율을 낮추고, 무선 전력 전송 효율을 높일 수 있는, 동시 멀티 충전이 가능한 무선 전력 전송 장치를 제공하기 위한 것이다.
상술한 과제를 해결하기 위하여 안출된 본 발명의 일실시예인 동시 멀티 충전이 가능한 무선 전력 전송 장치는, 2개 이상의 1차 코일을 포함하는, 복수개의 전송 블록; 및 복수개의 무선 전력 수신 장치가 충전 위치에 놓이면, 상기 충전 위치들에 대응하는 1차 코일로부터의 응답신호를 이용하여, 상기 무선 전력 수신 장치에 대응하는 복수의 1차 코일을 선택하고, 이 선택된 복수의 1차 코일에서 무선 전력 신호가 동시에 발신하도록 상기 전송 블록들을 제어하는 전송 제어부를 포함할 수 있다.
여기서, 상기 전송 블록은, 상기 1차 코일에 상기 무선 전력 수신 장치에 따라 발생하는 응답 신호를 상기 전송 제어부로 전달하는 객체 감지부; 상기 1차 코일 각각에 연결되는 컨버터; 및 상기 전송 제어부의 제어에 의해 상기 객체 감지부에 의해 감지된 1차 코일에 대해서만 구동 신호를 보내는, 구동 드라이버를 포함할 수 있다.
여기서, 상기 동시 멀티 충전이 가능한 무선 전력 전송 장치는, 외부 교류 전원을 직류 전원으로 변환하여, 상기 무선 전력 신호의 전원을 공급하는 어댑터를 더 포함할 수 있다.
여기서, 상기 어댑터는 상기 1차 코일의 수에 따라 교체 가능하게 설치될 수 있다.
여기서, 상기 동시 멀티 충전이 가능한 무선 전력 전송 장치는 온도 센서를 더 포함하고, 상기 전송 제어부는, 상기 무선 전력 신호가 동시에 발신하는 중에 상기 온도 센서로부터 측정되는 온도가 기준값 이상이면, 상기 무선 전력 신호의 전송을 모두 제한할 수 있다.
여기서, 상기 전송 제어부는, 상기 1차 코일을 통해 전송되는 충전 상태정보에 기초하여, 상기 무선 전력 신호의 출력을 제어할 수 있다.
여기서, 상기 응답 신호는 디지털 핑에 대한 신호 세기 패킷 신호이고, 상기 전송 제어부는, 상기 1차 코일 모두로부터 상기 응답 신호가 수신되면, 상기 1차 코일 모두에서 무선 전력 신호가 발생하도록 제어할 수 있다.
여기서, 상기 전송 제어부는, 상기 1차 코일에 대하여 교차로 무선 전력신호를 전송한 후,상기 무선 전력 수신 장치로부터의 충전 상태 정보를 분석하여, 상기 무선 전력 수신 장치에서 정류되는 전류값이 기준값 이상인 1차 코일이 확인되는 경우, 이를 최선의 1차코일로 선정하여 이를 통해 무선 전력 신호를 발진하도록 제어하고, 상기 무선 전력 수신 장치에서 정류되는 전류값이 기준값 이하인 경우, 상기 1차 코일 모두에서 무선 전력 신호가 발진하도록 제어할 수 있다.
상술한 구성을 가지는 본 발명의 일실시예인 동시 멀티 충전이 가능한 무선 전력 전송 장치에 따르면, 복수의 무선 전력 수신 장치를 동시에 충전할 수 있다.
더욱이, 상기 무선 전력 전송 장치를 전송 블록별로 구획화함으로써, 초기 대기 전력을 크게 낮추고, 충전 중 이물질 감지에 대한 효율성이 높아지며, 전원 전력 전송 효율을 높일 수 있게 된다.
도 1은 본 발명의 일실시예인 동시 멀티 충전이 가능한 무선 전력 전송 장치의 동작 형태를 설명하기 위한 도면.
도 2는, 본 발명의 일실시예인 동시 멀티 충전이 가능한 무선 전력 전송 장치의 전자적인 구성을 설명하기 위한 도면.
도 3은 본 발명의 일실시예에 따른 동시 멀티 충전이 가능한 무선 전력 전송 장치를 포함하는 무선 전력 전송 시스템에서 이물질 검출을 수행하는 방법을 나타내는 순서도.
도 4는 본 발명의 다른 실시예에 따른 동시 멀티 충전이 가능한 무선 전력 전송 장치를 포함하는 무선 전력 전송 시스템에서 이물질 검출을 수행하는 방법을 나타내는 순서도.
도 5는 본 발명의 다른 실시예에 따른 동시 멀티 충전이 가능한 무선 전력 전송 장치를 포함하는 무선 전력 전송 시스템에서 이물질 검출을 수행하는 방법을 나타내는 순서도.
도 6은 본 발명의 일실시예에 따른 동시 멀티 충전이 가능한 무선 전력 전송 장치를 포함하는 무선 전력 전송 시스템에서 이물질 검출을 수행하는 방법을 설명하는 흐름도.
도 7은 본 발명의 다른 실시예에 따른 동시 멀티 충전이 가능한 무선 전력 전송 장치를 포함하는 무선 전력 전송 시스템에서의 무선 전력 전송 시스템의 동작 흐름도.
도 8은 본 발명의 다른 실시예에 따른 동시 멀티 충전이 가능한 무선 전력 전송 장치를 포함하는 무선 전력 전송 시스템의 동작 흐름도.
이하, 본 발명과 관련된 동시 멀티 충전이 가능한 무선 전력 전송 장치에 대하여 도면을 참조하여 보다 상세하게 설명한다. 이하의 설명에서 사용되는 구성요소에 대한 접미사 "모듈" 및 "부"는 명세서 작성의 용이함만이 고려되어 부여되거나 혼용되는 것으로서, 그 자체로 서로 구별되는 의미 또는 역할을 갖는 것은 아니다.
도 1은 본 발명의 일실시예인 동시 멀티 충전이 가능한 무선 전력 전송 장치의 동작 형태를 설명하기 위한 도면이다. 도 1에 도시된 바와 같이, 본 발명에 따른 무선 전력 전송 장치(100)에는 복수개의 코일이 매트릭스 형태로 배열되며, 각각의 코일은 이격 형성된다. 이 때 스마트폰과 같은 무선 전력 수신 장치(200)는 복수개가 동시에 충전 위치에 놓일 수 있게 된다. 이 경우, 무선 전력 전송 장치(100)는 상기 복수개의 무선 전력 수신 장치(200)에 각각 적합한 무선 전력 신호를 발진하게 된다. 이에 따라, 복수개의 무선 전력 수신 장치(200)에 전원 공급이 동시에 이루어지게 된다.
이하에서는 도 2를 참조하여, 상술한 기능을 하는, 동시 멀티 충전이 가능한 무선 전력 전송 장치(100)의 전자적인 구성을 설명하도록 한다.
도 2는, 본 발명의 일실시예인 동시 멀티 충전이 가능한 무선 전력 전송 장치의 전자적인 구성을 설명하기 위한 도면이다. 도 2에 도시된 바와 같이, 무선 전력 전송 시스템은 무선 전력 전송 장치(100), 무선 전력 수신 장치(200) 및 어댑터(300)를 포함할 수 있다.
우선 어댑터(300)는, 교류의 상용 전원을 직류전원으로 변환하여, 무선 전력 수신 장치(200)로 발진하는 무선 전력 신호의 전원을 공급하는 기능을 한다. 이 때, 어댑터(300)는 SMPS(Switching Mode Power Supply)로 구성할 수 있다. SMPS는 스위칭 회로를 이용한 전원공급장치를 말하는데, 기존에 사용하던 리니어방식의 전원공급장치에 비해 효율이 높고 내구성이 강하며 소형, 경량화에 유리하다. 이 어댑터(300)는 후술하는 전송 블록(110)의 용량이나 개수에 따라 교환 가능하게 설치될 수 있다. 예컨대, 2개의 충전위치를 가지는 경우, SMPS는 12V/2A의 용량을 가며, 4개의 충전 위치를 가지는 경우, 12V/4A의 용량을 가질 수 있다.
한편, 본원 발명에 따르는 무선 전력 전송 장치(100)는, 적어도 2개의 전송 블록(110), 전송 제어부(120), 그리고 온도 센서(130)를 포함할 수 있다.
전송 블록(110) 각각은, 도 2에 도시된 바와 같이, 쌍을 이루는 1차 코일(101)과, 1차 코일(101) 각각에 연결되는 컨버터(103), 상기 컨버터(103) 각각 연결되는 하나의 구동 드라이버(105), 그리고, 1차 코일(101) 각각에 연결되어서, 무선 전력 수신 장치(200)가 충전 위치에 있는지를 감지하는 객체 감지부(107)를 포함할 수 있다.
상기 1차 코일(101)은, 무선 전력 신호를 발진하는 구성요소로서, 전자기 유도 방식으로 무선 전력 수신 장치(200)에 무선 전력 신호를 발진한다. 이러한 1차 코일(101)로는 그 형태가 원형, 타원형, 트랙형, 사각형, 다각형등이 이용될 수 있다.
본 발명에서의 전송 블록(110)에는 1차 코일(101)이 쌍을 이루게 된다. 본 실시예에서는 1차 코일(101)이 쌍을 이루는 예를 설명하였으나, 이에 한정되지 않고, 3개 또는 4개의 1차 코일로 전송블록(110)이 구성될 수 있다.
상기 컨버터(103)는 구동 드라이버(105)의 제어에 의해 송출하고자 하는 전력신호를 발생하기 위한 송출전원을 생성하여 상기 1차 코일(101)로 공급하는 것이다. 다시 말해, 전송 제어부(120)가 충전 위치에 무선 전력 수신 장치(200)가 놓여진 1차 코일(101)에 대응하는 컨버터(103)를 결정하고, 그 결정된 컨버터(103)가 요구되는 전력값을 갖는 전력 신호의 송출하도록 하는 전력 제어 신호를 구동 드라이버(105)로 전송하면, 상기 구동 드라이버(105)는 전송된 전력제어신호에 대응하여 컨버터(103)를 선정하고 그 동작을 제어한다. 이에 따라,상기 컨버터(103)는 구동 드라이버(105)의 제어에 의하여 요구되는 전력값에 대응하는 송출전원을 대응하는 1차 코일(101)에 인가함으로써, 요구되는 세기의 무선 전력 신호가 충전위치에 있는 무선 전력 수신 장치(200)로 송출되도록 하는 것이다.
상기 구동 드라이버(105)는 전송 제어부(120)의 제어를 통해 컨버터(103)의 동작을 제어하는 것이다.
상기 객체 감지부(107)는 상기 1차 코일(101)의 부하변화를 감지하여, 충전 위치에 오브젝트가 있는지를 감지하고, 이에 따라, 전송 제어부(120)가 디지털 핑 신호를 상기 구동 드라이버(105)를 제어하여 전송코일을 통해 발진시키게 되며, 이에 대한 응답신호로서 신호세기 패킷 신호를 무선 전력 수신 장치(200)로부터 수신하여 상기 오브젝트가 무선 전력 수신 장치(200)에 의한 것인지를 판단할 뿐만 아니라(즉 아이디 확인부로서의 기능을 가짐), 무선 전력 수신 장치(200)로부터 전송된 충전 상태 정보를 필터링하여 처리하는 기능을 수행한다. 즉, 1차 코일(101)을 통해 전송되는 객체 감지 신호의 디지털 핑에 대한 신호 세기 패킷 신호인 객체 응답신호 및 충전 상태 정보를 포함하는 신호가 수신되면, 이를 필터링 하여 처리하는 기능을 한다.
상기 전송 제어부(120)는 상기 객체 감지부(107)의 판단결과를 전송받아 확인하고, 1차 코일(101)에서 수신되는 객체 응답 신호를 분석하여, 상기 1차 코일(101)을 통해 무선전력신호를 송출하기 위한 전력 신호를 상기 구동 드라이버(105)로 전송하는 역할을 한다. 한편, 전송 제어부(120)는, 상기 1차 코일(101)에 대하여 교차로 무선 전력신호를 전송한 후,상기 무선 전력 수신 장치(200)로부터의 충전 상태 정보를 분석하여, 상기 무선 전력 수신 장치(200)에서 정류되는 전류값이 기준값 이상인 1차 코일(101)이 확인되는 경우, 이를 최선의 1차 코일로 선정하여 이를 통해 무선 전력 신호를 발진하도록 제어하고, 상기 무선 전력 수신 장치(200)에서 정류되는 전류값이 기준값 이하인 경우, 상기 쌍을 이루는 1차 코일(101) 모두에서 무선 전력 신호가 발진하도록 제어하는 기능을 한다.
온도 센서(130)는, 무선 전력 전송 장치(100)가 이물질로 인하여 과열되는 것을 감지하는 기능을 한다. 무선 충전 중 또는 초기에 무선 전력 전송 장치(100)의 충전 위치에 동전과 같은 금속재의 이물질이 위치하게 되면, 무선 전력 전송이 정상적으로 이루어지지 않게 되고, 이에 따라, 전력 낭비가 발생하게 되어서, 무선 전력 전송 장치(100)가 과열되게 된다.
본 발명에서는 상기 전송 제어부(120)는, 상기 무선 전력 신호가 동시에 발신하는 중에 상기 온도 센서(130)로부터 측정되는 온도가 기준값 이상이면, 상기 무선 전력 신호의 전송을 모두 제한하는 기능을 하게 된다. 이에 따라, 전력이 비정상적으로 낭비되는 것을 방지할 수 있게 된다.
한편, 전력신호를 수신하여 전력을 공급받는 무선 전력 수신 장치(200)는, 상기 송출된 전력 신호에 의해 유도전력을 생성하는 2차 코일(210)과, 유도된 전력을 정류하는 정류부(220) 및 정류된 전력으로 충전되는 배터리(230) 및 수신 제어부(240)를 포함한다.
여기서, 상기 배터리셀모듈(230)에는 과전압 및 과전류방지회로, 온도감지회로 등의 보호회로가 포함되어 구성되며, 또한, 배터리셀의 충전상태 등의 정보를 수집 및 처리하는 충전관리모듈이 포함된다.
이상과 같은 구성에 따르면, 본 발명에서는 전송블록을 복수개 포함하게 된다. 이에 따라, 무선 전력 수신 장치(200)가 충전 위치에 놓이면, 전송 블록(110) 각각의 객체 감지부(107)가 무선 전력 수신 장치(200)가 어떤 충전 위치에 놓였는지를 감지하게 되며, 충전 위치에 무선 전력 수신 장치(200)가 놓이지 않은 전송 블록(110)은 준비상태를 유지하도록 하고, 무선 전력 수신 장치(200)가 놓인 전송 블록(110)에는 어떤 1차 코일(101)위에 무선 전력 수신 장치(200)가 놓여 있는지를 확인하여, 대응하는 위치의 1차 코일(101)에서 무선 전력 신호가 구동하도록 구동드라이버 스위칭하거나 또는 두 개의 컨버터(103) 모두가 동작하도록 제어한다.
이상과 같이 구동 드라이버(105), 객체 감지부(107), 컨버터(103) 및 1차 코일을 전송블록화함으로서, 유지관리가 편리하게 되고, 더욱이 대기 전력을 크게 낮추어 전력 효율을 높일 수 있게 된다.
한편, 상기 1차 코일(101)은 충전 위치 자유도를 높이기 위하여 2개 이상의 코일로 구성될 수 있다.
상술한 바와 같이, 1차 코일을 두 개 설치하면 두 개의 무선 전력 수신 장치를 동시에 충전할 수 있으며, 이 경우, 5~10W 급 어댑터(SMPS)를 사용하고, 만약, 1차 코일을 4개 설치하는 경우, 4개의 무선 전력 수신 장치를 동시에 충전할 수 있으며, 이 경우, 10~15W급 어댑터(SMPS)를 사용하게 된다.
또한, 상기 1차 코일(101)을 메인 기판에서 분리한다면, 즉, 전송 블록(110) 및 전송 제어부(120), 그리고 온도 센서(130)를 메인 기판에 설치하고, 전송 블록(110)중 1차 코일(101)을 메인 기판과 별개로 설치한다면, 1차 코일(101)에서 발생되는 자기장이 기판에 영향을 미치는 것을 최소화할 수 있는 공간을 가질 수 있게 되며, 제조 원가도 낮출 수 있게 된다.
도 3은 본 발명의 일실시예에 따른 동시 멀티 충전이 가능한 무선 전력 전송 장치를 포함하는 무선 전력 전송 시스템에서 이물질 검출을 수행하는 방법을 나타내는 순서도이다.
도 3을 참조하면, 최초 충전 전 이물질 감지 동작을 수행한다(S200). 일 예로, 최초 충전 전 이물질 감지 동작은 다음 도 6와 같다.
최초 충전 전 이물질이 감지되면(S205), 이물질 감지에 대응하는 전력 제한 동작을 수행한다(S225).
최초 충전 전 이물질이 감지되지 않은 경우(S205), 충전이 시작되면 충전 중 이물질 감지 동작을 수행한다(S210).
일 예로, 충전 중 단방향 통신을 수행하여 이물질을 감지할 수 있다. 일 예로, 충전 중 단방향 통신을 이용한 이물질 감지 동작은 다음 도 7과 같다.
다른 예로, 충전 중 양방향 통신을 수행하여 이물질을 감지할 수 있다. 일 예로, 충전 중 양방향 통신을 이용한 이물질 감지 동작은 다음 도 8과 같다.
또 다른 예로, 충전 중 상기 단방향 통신 및 상기 양방향 통신을 동시에 수행하거나 독립적으로 수행하여 이물질을 감지할 수 있다.
충전 중 이물질이 감지되면(S215), 상기 단계 S225와 같이 이물질 감지 대응 전력 제한 동작을 수행한다.
충전 중 이물질이 감지되지 않은 경우(S215), 감지가 안된 미세한 이물로 전력전송에 문제가 생길 경우 전력 전송을 보호하기 위하여 온도 센서(130)(또는 써미스터)를 기준으로 파워를 제한한다(예, 전력을 끊는다)(S220). 상기 온도센서는 수신 장치에 부착되거나 송신 장치에 부착될 수 있다.
또는, 상기 단계 S225에서 이물질 감지 대응 전력 제한 동작이 수행된 이후에도, 감지가 안된 미세한 이물로 전력전송에 문제가 생길 경우 전력 전송을 보호하기 위하여 온도센서(또는 써미스터)를 기준으로 파워를 제한한다.
도 4는 본 발명의 다른 실시예에 따른 동시 멀티 충전이 가능한 무선 전력 전송 장치를 포함하는 무선 전력 전송 시스템에서 이물질 검출을 수행하는 방법을 나타내는 순서도이다.
도 4를 참조하면, 최초 충전 전 이물질 감지 동작을 수행한다(S300).
최초 충전 전 이물질이 감지되면(S305), 이물질 감지에 대응하는 전력 제한 동작을 수행한다(S315).
최초 충전 전 이물질이 감지되지 않은 경우(S305), 감지가 안된 미세한 이물로 전력전송에 문제가 생길 경우 전력 전송을 보호하기 위하여 온도센서(또는 써미스터)를 기준으로 파워를 제한한다(예, 전력을 끊는다)(S310). 상기 온도센서는 수신 장치에 부착되거나 송신 장치에 부착될 수 있다.
또는, 상기 단계 S315에서 이물질 감지 대응 전력 제한 동작이 수행된 이후에도, 감지가 안된 미세한 이물로 전력전송에 문제가 생길 경우 전력 전송을 보호하기 위하여 온도센서(또는 써미스터)를 기준으로 파워를 제한한다.
도 5는 본 발명의 다른 실시예에 따른 동시 멀티 충전이 가능한 무선 전력 전송 장치를 포함하는 무선 전력 전송 시스템에서의 무선 전력 전송 시스템에서 이물질 검출을 수행하는 방법을 나타내는 순서도이다.
도 5를 참조하면, 충전이 시작되면 충전 중 이물질 감지 동작을 수행한다(S400).
충전 중 이물질이 감지되면(S405), 이물질 감지에 대응하는 전력 제한 동작을 수행한다(S415).
충전 중 이물질이 감지되지 않은 경우(S405), 감지가 안된 미세한 이물로 전력전송에 문제가 생길 경우 전력 전송을 보호하기 위하여 온도센서(또는 써미스터)를 기준으로 파워를 제한한다(예, 전력을 끊는다)(S410). 상기 온도센서는 수신 장치에 부착되거나 송신 장치에 부착될 수 있다.
또는, 상기 단계 S415에서 이물질 감지 대응 전력 제한 동작이 수행된 이후에도, 감지가 안된 미세한 이물로 전력전송에 문제가 생길 경우 전력 전송을 보호하기 위하여 온도센서(또는 써미스터)를 기준으로 파워를 제한한다.
이제 본 발명에 따라서 이물질을 감지하는 동작을 최초충전 전과 충전 이후(예, 단방향 통신이용 또는 양방향 통신이용)를 구분하여 설명한다.
1. 최초충전 전 이물질 감지 동작
도 6은 본 발명의 일실시예에 따른 동시 멀티 충전이 가능한 무선 전력 전송 장치를 포함하는 무선 전력 전송 시스템에서 이물질 검출을 수행하는 방법을 설명하는 흐름도이다. 상기 도 2의 단계 S200 또는 상기 도 3의 단계 S300에 해당한다.
도 6을 참조하면, 핑 페이즈에서 무선 전력 전송 장치는 디지털 핑을 수행하며, 이때 무선 전력 전송 장치는 동작점의 전력 신호를 무선 전력 수신 장치로 전송한다(S500).
핑 페이즈의 전력 신호를 수신하면, 무선 전력 수신 장치는 상기 전력 신호를 수신한 세기를 지시하는 신호세기 패킷을 생성하여 무선 전력 전송 장치로 전송한다(S505). 그리고 무선 전력 수신 장치는 무선 전력 수신 장치의 고유한 ID를 지시하는 식별 패킷과 무선 전력 수신 장치의 구성정보를 생성하고, 식별 패킷과 구성정보를 무선 전력 전송 장치로 전송한다(S510).
무선 전력 수신 장치는 수신전력을 측정한다(S515). 이때부터 초기전압 Vi를 설정하는 단계로 진입한다.
무선 전력 수신 장치는 과전압 전력(over voltage power: OVP), 과전류 전력(over current power: OCP), 만충전(full charge) 등 종료 사유가 발생하는지 판단한다(S520). 만약 OVP, OCP, 만충전, 기타 충전의 종류 사유가 발생하면, 무선 전력 수신 장치는 충전을 종료한다(S525). 만약 종류 사유가 발생하지 않으면, 무선 전력 수신 장치는 무선 전력 전송 장치로부터 무선 전력을 수신하는 상태인지, 즉 충전 중인지 판단한다(S530).
단계 S530에서 만약 충전 중이면, 무선 전력 수신 장치는 요구전력 대비 수신전력을 비교하여 그 결과를 기반으로 전력 제어 패킷을 생성하여 무선 전력 전송 장치로 전송한다(S535). 단계 S535에서 만약 충전중이 아니면, 무선 전력 수신 장치는 초기전압 Vi가 홀드 상태인지 판단한다(S540). 초기전압 Vi의 정상상태의 값이 기준전압 범위(예를 들어 7.0V~10.5V) 내에 존재하는 경우, 무선 전력 수신 장치는 초기 설정이 완료된다. 이로서 초기전압 Vi는 홀드 상태가 되고, 무선 전력 수신 장치는 이물질 검출 페이즈로 진입할 수 있다.
만약 Vi 홀드 상태가 아니면, 무선 전력 수신 장치는 충전 중인 경우와 마찬가지로 전력 제어 패킷을 생성하여 무선 전력 전송 장치로 전송한다(S535). 만약 Vi 홀드 상태이면, 무선 전력 수신 장치는 이물질 검출 페이즈로 진입한다. 여기서, 무선 전력 수신 장치는 이물질 상태 패킷을 생성하여 무선 전력 전송 장치로 전송한다(S545).
본 발명에 따른 이물질 상태 패킷은 프리앰블(preamble), 헤더(header), 메시지 및 체크섬(checksum)을 포함한다. 프리앰블은 최소 11비트부터 최대 25비트로 구성될 수 있며, 모든 비트의 값이 0으로 설정될 수 있다. 프리앰블은 무선 전력 전송 장치가 이물질 상태 패킷의 헤더의 시작비트를 정확히 감지하고, 들어오는 데이터에 동기를 맞추기 위해 사용된다.
헤더는 패킷의 타입을 지시하며, 8비트로 구성될 수 있다. 일례로서, 이물질 상태 패킷의 헤더의 값은 '0x00'수 있다. 이 경우, 메시지는 그 값이 0, 즉 '0x00'설정될 수 있다. 다른 예로서, 이물질 상태 패킷의 헤더의 값은 충전 상태 패킷(charge status packet)의 헤더와 동일한 '0x05'일 수 있다. 다만, 충전 상태 패킷의 1바이트 메시지의 값이'0x00'으로설정됨으로써, 이물질 상태 패킷임이 지시될 수 있다. 즉, 이물질 상태 패킷은 충전 상태 패킷에 포함된다.
무선 전력 전송 장치는 수신된 패킷의 헤더 또는 메시지의 값을 기반으로, 수신된 패킷이 이물질 상태 패킷인지 확인한다. 그리고 이물질 상태 패킷이 수신된 것으로 판명되면, 무선 전력 전송 장치는 이물질 검출을 수행한다(S550). 이물질 상태 패킷을 확인하는 동작 및 이물질 검출은 무선 전력 전송 장치의 제어 유닛에 의해 수행된다.
2. 충전 중 이물질 감지
2-1. 충전 중 단방향 통신을 이용한 이물질 감지
도 7은 본 발명의 다른 실시예에 따른 동시 멀티 충전이 가능한 무선 전력 전송 장치를 포함하는 무선 전력 전송 시스템의 동작 흐름도이다. 상기 도 2의 단계 S210 또는 상기 도 4의 단계 S400에 해당한다.
도 7을 참조하면, 무선 전력 전송 장치는 무선 전력 수신 장치를 탐색한다(S600). 이때, 무선 전력 전송 장치는 무선 전력 수신 장치가 검색될 때까지 충전 대기상태에 놓여있다.
만약 감지된 물체가 무선 전력 수신 장치이면, 무선 전력 전송 장치는 충전 모드로 진입하여, 무선 전력을 무선 전력 수신 장치로 전송한다(S605). 충전 모드에서는 무선 전력 전송 장치가 1차 코일에 전력을 인가하여 유도 자기장 또는 공진을 발생시킨다.
무선 전력 전송 장치는 1차 코일에 흐르는 전류를 측정하고, 무선 전력 전송 장치는 1차 코일에서 흐르는 전류로부터 전류 측정값을 획득한다(S610). 무선 전력 전송 장치가 측정하는 전류는 교류전류일 수 있다. 상기 전류 측정값은 무선 전력 전송 장치 내의 제어 유닛이 인식하기에 적합한 DC 수치로 변환된 것일 수 있다. 즉, 무선 전력 전송 장치는 1차 코일에 흐르는 상대적으로 높은 교류 전류를 측정하고, 상기 측정된 고전류를 제어 유닛이 해석하는데 적합한 수치인 전류 측정값으로 표 1과 같이 맵핑한다.
표 1
Rx power(unit : W) | Tx AC current(unit : A) | Max AC current(unit : A) |
2.5 | 0.998 | 1.05 |
3 | 1.328 | 1.5 |
4 | 1.664 | 1.85 |
5 | 1.925 | 2.05 |
무선 전력 전송 장치는 기준 전류 Iref, 기준 범위(Ilow~Ihigh), 기준 AC 신호, 이물질 감지 시기 t와 같은 파라미터들 중 어느 하나 또는 2 이상의 조합을 사용하여, 이물질 감지를 수행한다(S615). 그리고 기준 전류 Iref, 기준 범위(Ilow~Ihigh), 기준 AC 신호, 이물질 감지 시기 t와 같은 파라미터들은 초기 설정 값으로서 무선 전력 전송 장치에 미리 저장되어 있을 수 있다.
무선 전력 전송 장치는 이물질이 감지되지 않으면 지속적으로 무선 전력 수신 장치로 전력을 전송한다(S620). 그리고 무선 전력 전송 장치는 시스템 또는 표준에 의해 미리 정해진 시점 t에 다시 1차 코일의 전류 측정값을 획득하며(S610), 이를 기반으로 이물질 감지를 시도할 수 있다(S615).
반면, 무선 전력 전송 장치는 이물질이 감지되면 무선 전력 수신 장치로 전송되던 무선 전력을 차단한다(S625).
2-2. 충전 중 양방향 통신을 이용한 이물질 감지 동작
도 8은 본 발명의 다른 실시예에 따른 동시 멀티 충전이 가능한 무선 전력 전송 장치를 포함하는 무선 전력 전송 시스템의 동작 흐름도이다.
일 예로, 양방향 통신을 수행함이란 전송 장치에서 수신 장치로 전력을 송신하면, 수신 장치에서 수신 전력(received power) 값을 전송 장치에게 알려주고, 전력 손실(power loss)이 소정의 기준값이상이면 FOD로 판단하는 것을 말한다. 예를 들어, 양방향 통신을 수행함이란 전송 장치에서 수신 장치로 7 내지 10W의 전력을 송신하고 수신 장치에서 5W의 전력을 수신한 경우, 수신 전력 값 '5W'를 전송 장치에게 알려주고, 전력 손실이 2W이상이어서 소정의 기준값인 1W보다 크므로 FOD로 판단한다. 이를 통해, 전력 전송 단계에 있어서 FOD를 검출할 수 있다.
도 8을 참조하여 양방향 통신을 구체적으로 설명하면, 무선 전력 전송 장치는 무선 전력 수신 장치를 탐색한다(S700). 이때, 무선 전력 전송 장치는 무선 전력 수신 장치가 검색될 때까지 충전 대기상태에 놓여있다.
만약 감지된 물체가 무선 전력 수신 장치이면, 무선 전력 전송 장치는 충전 모드로 진입하여, 무선 전력을 무선 전력 수신 장치에게 전송한다(S705). 충전 모드에서는 무선 전력 전송 장치가 1차 코일에 전력을 인가하여 유도 자기장 또는 공진을 발생시킨다.
무선 전력 전송 장치는 측정된 송신 전력을 지시하는 송신전력 측정보고를 무선 전력 수신 장치에게 전송한다(S710). 일 예로, 무선 전력 전송 장치는 송신전력 측정보고를 FSK 신호로 무선 전력 수신 장치에게 전송한다. 여기서, FSK 신호는 FSK 방식을 이용하여 전송되는 신호를 말한다.
상기 FSK 신호는 단순한 전력 양(예, 송신 전력양)을 포함할 수 있다. 이때, 무선 전력 전송 장치는 상기 FSK 신호를 일정한 주기로 전송할 수 있다. 왜냐하면 무선 전력 수신 장치가 상기 FSK 신호의 전송 시점에 대해서 알지 못할 수 있기 때문이다. 상기 일정한 주기는 일정 개수의 데이터 신호가 전송되는 구간(예, ASK 신호가 일정)일 수 있다.
일 예로, 상기 송신전력양은 무선 전력 전송 장치가 AC 전류 신호에 따라 주 코일에서 생성되는 전력을 측정한 값일 수 있다.
상기 FSK 신호는 수신 장치에서 요구되는 1개의 고정된 전력주파수(f0, 예를 들어 145kHz)를 변환 시키는 일정범위의 가변주파수(예, 140 또는 140.3Khz)를 스위칭(switching)하거나 셀렉트(select)하여, 0값과 1값을 전송하는 신호를 말한다. 다른 예로, 위상을 이용하여 0값과 1값을 포함하는 데이터 신호를 전송하는 신호를 말한다.
일 예로, 무선 전력 전송 장치는 AC 전류 신호에 따라 주 코일에서 생성되는 전력을 측정하고, 측정된 생성 전력을 지시하는 송신전력 측정보고를 구성하여, 무선 전력 수신 장치로 전송할 수 있다. 이와 같이 무선 전력 전송 장치에서 무선 전력 수신 장치로의 경로로 제어정보가 전송되거나(예를 들어, FSK 신호로 제어정보가 전송될 수 있고), 무선 전력 수신 장치에서 무선 전력 전송 장치로의 경로로 제어정보가 전송되는 양방향 통신이 가능하다.
무선 전력 전송 장치는 인버터를 이용하여 PWM을 수행하고, 무선 전력 수신 장치의 필요 전력(또는 요구 전력)에 허용된 주파수를 발생한다.
무선 전력 수신 장치의 필요 전력이 듀티 사이클(duty cycle) 또는 전압을 발생시키며, 듀티 사이클 또는 전압 값이 무선 전력 전송 장치의 전력 값이다. 즉, 무선 전력 전송 장치의 전력은 인버터에 인가된 전압, 듀티 설정 및 주파수으로 나타내어 질 수 있다.
무선 전력 전송 장치가 전력을 전송하는 단계에 있어서, 설정된 값(예, 전압, 듀티 주파수)을 FSK 방식으로 무선 전력 수신 장치에게 '송신 전력값'을 전송한다.
이때, 무선 전력 수신 장치는 기존의 데이터 신호(예, ASK 신호)의 수신을 를 멈추고, FSK의 신호를 수신한다. 일 예로, FSK 신호의 수신 동작은 FSK 신호의 복조(demodulation) 동작을 포함한다.
상기 FSK 신호는 일정한 주기(750)로 전송될 수 있다. 예를 들어 상기 일정한 주기(750)는 소정의 시간(예, 3초 5초) 또는 소정의 개수의 데이터 신호(예, ASK 신호)의 전송 구간 일 수 있다.
*상기 FSK 신호는 무선 전력과 동시에 전송될 수도 있다. 즉, S705 및 S710은 동시에 수행될 수도 있다.
이어서, 무선 전력 수신 장치는 송신전력 측정보고를 기초로 이물질을 감지한다(S715). 예를 들어, 무선 전력 수신 장치에서 측정한 수신전력 값과 생성 전력 측정보고를 포함하는 FSK 신호를 연산하여 그 차이값이 소정의 기준값 이상이면 FOD로 판단한다. 다른 예로, 무선 전력 수신 장치는 '수신전력-전송 정력'이 소정의 기준값 이상이면 FOD로 판단한다.
일 예로, 상기 측정한 수신전력 값은 송신전력 측정보고에 의해 지시되는 전력과, 요구 전력간의 차이가 임계치보다 큰지 같은지 또는 작은지를 지시하는 정보일 수 있다. 예를 들어, 송신전력 측정보고에 의해 지시되는 전력과 요구 전력간의 차이가 임계치보다 크면'수신전력측정결과=1'로설정되고, 송신전력 측정보고에 의해 지시되는 전력과 요구 전력간의 차이가 임계치보다 작거나 같으면 '수신전력측정결과=0'로 설정될 수 있다. 또는 반대로, 송신전력 측정보고에 의해 지시되는 전력과 요구 전력간의 차이가 임계치보다 크거나 같은 때 '수신전력측정결과=1'설정되고, 송신전력 측정보고에 의해 지시되는 전력과 요구 전력간의 차이가 임계치보다 작은 때에 '수신전력측정결과=0'으로 설정될 수도 있다. 예를 들어, 임계치가 1W라 하자. 상기의 예와 같이 송신전력 측정보고에 의해 지시되는 전력이 12W이고, 요구 전력은 10W인 상황에서, 그 차이는 2W이고 이는 임계치인 1W보다 크다. 이 경우 수신전력 측정결과는 1을 지시한다. 송신전력 측정보고에 의해 지시되는 전력과 요구 전력간의 차이가 임계치 보다 크면, 이는 이물질이 감지된 것을 의미할 수 있다. 따라서, 무선 전력 전송 장치(40)는 이를 이물질 감지 선언으로 인식할 수 있다.
무선 전력 수신 장치는 무선 전력 전송 장치로 이물질 감지 결과를 포함하는 ASK 신호를 전송한다(S720).
상기 ASK 신호는 전력제어용 신호, FOD 검출 신호, 긴급(emergency) 신호 또는 완충 신호 등을 포함할 수 있다.
또한, 상기 ASK 신호는 무선 전력 수신 장치의 요구 전력 정보를 포함할 수 있다. 요구 전력 정보는 무선 전력 전송 장치가 자기 유도 방식에 기반하여 무선 전력을 생성하도록 요구하는 정보를 말하며, 무선 전력 전송 장치가 요구 전력 정보를 확인하고 요구 전력 정보에서 지시한 전력이 유도되도록 제어신호를 발생시키도록 하는 정보이다. 예를 들어, 요구 전력 정보가 10W를 지시할 때, 무선 전력 전송 장치는 10W가 전송되도록 제어신호를 발생시킨다.
상기 ASK 신호는 제어 에러 패킷(control error packet), 렉티파이드 패킷(rectified packet) 또는 차저 스테이트(charger state) 형태로 전송될 수 있다.
이어서, 무선 전력 전송 장치는 수신한 ASK 신호를 기초로 무선 전력을 전송할 수 있다(S725).
데이터 신호(예, ASK 신호 또는 FSK 신호)는 송신과 수신을 동시에 하는 것이 불가능하므로 송신 도는 수신이 순차적으로 수행된다. 반면, 유도 주파수를 통해서 전력은 계속 발생하기 때문에 전력 신호와 데이터 신호가 동시에 송신되는 것은 가능하다. 따라서, ASK 신호 및 FSK 신호가 송수신되는 시점과 무관하게 무선 전력은 동시 또는 수시로 전송될 수 있다.
상기 단계 S720 및 단계 S725에 따라서 ASK 신호와 무선 전력을 복수회 송수신될 수 있다.
단계 S710에 대하여 일정한 주기(750)가 경과되면 무선 전력 전송 장치는 측정된 송신 전력을 지시하는 송신전력 측정보고를 무선 전력 수신 장치에게 전송한다(S730). 일 예로, 무선 전력 전송 장치는 송신전력 측정보고를 FSK 신호로 무선 전력 수신 장치에게 전송한다. 상기 일정한 주기(750)는 소정의 시간(예, 3초 5초) 또는 소정의 개수의 데이터 신호(예, ASK 신호)의 전송 구간 일 수 있다.
한편, 무선 전력 수신 장치에서 이물질이 검출된 것으로 판단되면, 무선 전력 전송 장치는 이물질 검출에 대한 조치를 수행할 수 있다(도면 미표시). 예를 들어, 무선 전력 전송 장치는 주 코일의 구동이 감소 또는 중단되는 차단 모드로 진입할 수 있다. 이로써 기생 부하의 발열이 방지되고, 비효율적인 유도전력의 공급이 제한 또는 중단될 수 있다.
상술한 구성을 가지는 본 발명의 일실시예인 동시 멀티 충전이 가능한 무선 전력 전송 장치에 따르면, 복수의 무선 전력 수신 장치를 동시에 충전할 수 있다.
더욱이, 상기 무선 전력 전송 장치를 전송 블록별로 구획화함으로써, 초기 대기 전력을 크게 낮추고, 충전 중 이물질 감지에 대한 효율성이 높아지며, 전원 전력 전송 효율을 높일 수 있게 된다.
상기와 같이 설명된 동시 멀티 충전이 가능한 무선 전력 전송 장치는 상기 설명된 실시예들의 구성과 방법이 한정되게 적용될 수 있는 것이 아니라, 상기 실시예들은 다양한 변형이 이루어질 수 있도록 각 실시예들의 전부 또는 일부가 선택적으로 조합되어 구성될 수도 있다.
Claims (8)
- 2개 이상의 1차 코일을 포함하는, 복수개의 전송 블록; 및복수 개의 무선 전력 수신 장치가 충전 위치에 놓이면, 상기 충전 위치들에 대응하는 1차 코일로부터의 응답신호를 이용하여, 상기 무선 전력 수신 장치에 대응하는 복수의 1차 코일을 선택하고, 이 선택된 복수의 1차 코일에서 무선 전력 신호가 동시에 발신하도록 상기 전송 블록들을 제어하는 전송 제어부를 포함하는, 동시 멀티 충전이 가능한 무선 전력 전송 장치.
- 제 1 항에 있어서,상기 전송 블록은,상기 1차 코일에 상기 무선 전력 수신 장치에 따라 발생하는 응답신호를 상기 전송 제어부로 전달하는 객체 감지부;상기 1차 코일 각각에 연결되는 컨버터; 및상기 전송 제어부의 제어에 의해 상기 객체 감지부에 의해 감지된 1차 코일에 대해서만 구동 신호를 보내는, 구동 드라이버를 포함하는, 동시 멀티 충전이 가능한 무선 전력 전송 장치.
- 제 1 항에 있어서,외부 교류 전원을 직류 전원으로 변환하여, 상기 무선 전력 신호의 전원을 공급하는 어댑터를 더 포함하는, 동시 멀티 충전이 가능한 무선 전력 전송 장치.
- 제 3 항에 있어서,상기 어댑터는 상기 1차 코일의 수에 따라 교체 가능하게 설치되는, 동시 멀티 충전이 가능한 무선 전력 전송 장치.
- 제 1 항에 있어서,온도 센서를 더 포함하고,상기 전송 제어부는,상기 무선 전력 신호가 동시에 발신하는 중에 상기 온도 센서로부터 측정되는 온도가 기준값 이상이면, 상기 무선 전력 신호의 전송을 모두 제한하는, 동시 멀티 충전이 가능한 무선 전력 전송 장치.
- 제 1 항에 있어서,상기 전송 제어부는,상기 1차코일을 통해 전송되는 충전 상태정보에 기초하여, 상기 무선 전력 신호의 출력을 제어하는, 동시 멀티 충전이 가능한 무선 전력 전송 장치.
- 제 5 항에 있어서,상기 전송 제어부는,상기 1차 코일 모두로부터 디지털 핑에 대한 신호 세기 패킷 신호가 수신되면, 상기 1차 코일 모두에서 무선 전력 신호가 발생하도록 제어하는, 동시 멀티 충전이 가능한 무선 전력 전송 장치.
- 제 7 항에 있어서,상기 전송 제어부는,상기 1차 코일에 대하여 교차로 무선 전력신호를 전송한 후,상기 무선 전력 수신 장치로부터의 충전 상태 정보를 분석하여, 상기 무선 전력 수신 장치에서 정류되는 전류값이 기준값 이상인 1차 코일이 확인되는 경우, 이를 최선의 1차코일로 선정하여 이를 통해 무선 전력 신호를 발진하도록 제어하고, 상기 무선 전력 수신 장치에서 정류되는 전류값이 기준값 이하인 경우, 상기 1차 코일 모두에서 무선 전력 신호가 발진하도록 제어하는, 동시 멀티 충전이 가능한 무선 전력 전송 장치.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2013-0138931 | 2013-11-15 | ||
KR1020130138931A KR102154306B1 (ko) | 2013-11-15 | 2013-11-15 | 동시 멀티 충전이 가능한 무선 전력 전송 장치 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015072778A1 true WO2015072778A1 (ko) | 2015-05-21 |
Family
ID=53057649
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2014/010953 WO2015072778A1 (ko) | 2013-11-15 | 2014-11-14 | 동시 멀티 충전이 가능한 무선 전력 전송 장치 |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102154306B1 (ko) |
WO (1) | WO2015072778A1 (ko) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018528743A (ja) * | 2015-08-24 | 2018-09-27 | エルジー イノテック カンパニー リミテッド | 無線電力伝送システム及びその駆動方法 |
WO2020050539A1 (ko) * | 2018-09-03 | 2020-03-12 | 엘지전자 주식회사 | 무선전력 전송 시스템에서 데이터를 전송하는 장치 및 방법 |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20160143951A (ko) * | 2015-06-04 | 2016-12-15 | (주)오라컴디스플레이 | 다수의 모바일 기기를 동시에 충전하는 멀티 케이스형 무선충전 시스템 |
KR101635084B1 (ko) * | 2016-03-31 | 2016-06-30 | 주식회사 핀크래프트엔지니어링 | 전압 및 전류 제어를 통한 멀티 충전이 가능한 충전 장치 |
KR101918229B1 (ko) * | 2017-01-04 | 2018-11-13 | 엘지전자 주식회사 | 차량에 구비되는 이동 단말기용 무선 충전 장치 및 차량 |
US11056922B1 (en) | 2020-01-03 | 2021-07-06 | Nucurrent, Inc. | Wireless power transfer system for simultaneous transfer to multiple devices |
CN111245076B (zh) * | 2020-04-23 | 2020-08-18 | 成都斯普奥汀科技有限公司 | 用于中功率电子设备的多发射多接收磁共振无线充电系统 |
US11881716B2 (en) | 2020-12-22 | 2024-01-23 | Nucurrent, Inc. | Ruggedized communication for wireless power systems in multi-device environments |
US11876386B2 (en) | 2020-12-22 | 2024-01-16 | Nucurrent, Inc. | Detection of foreign objects in large charging volume applications |
US12003116B2 (en) | 2022-03-01 | 2024-06-04 | Nucurrent, Inc. | Wireless power transfer system for simultaneous transfer to multiple devices with cross talk and interference mitigation |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011036125A (ja) * | 2005-05-09 | 2011-02-17 | Sony Corp | 非接触充電装置及び非接触充電システム並びに非接触充電方法 |
JP2011120361A (ja) * | 2009-12-02 | 2011-06-16 | Nec Casio Mobile Communications Ltd | 無接点充電装置及び電子機器並びにプログラム |
JP2012239331A (ja) * | 2011-05-12 | 2012-12-06 | Toyo Electric Mfg Co Ltd | 非接触給電装置 |
KR20130106706A (ko) * | 2012-03-20 | 2013-09-30 | 엘에스전선 주식회사 | 수전 코일의 위치 탐색이 가능한 무접점 충전 장치 및 그 제어 방법 |
KR20130121466A (ko) * | 2012-04-27 | 2013-11-06 | 한국전자통신연구원 | 에너지 전송 시스템에서 무선 에너지 전송 장치 및 방법 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2008309020B2 (en) * | 2007-09-28 | 2012-12-20 | Access Business Group International Llc | Multiphase inductive power supply system |
AU2008339681A1 (en) * | 2007-12-21 | 2009-07-02 | Access Business Group International Llc | Inductive power transfer |
KR101254258B1 (ko) * | 2011-05-30 | 2013-04-12 | 주식회사 한림포스텍 | 무선 전력 전송 장치의 무선 전력 전송 제어 방법 및 이를 이용하는 무선 전력 전송 장치 |
KR101317360B1 (ko) * | 2011-10-04 | 2013-10-11 | 주식회사 한림포스텍 | 무선 전력전송장치 및 방법 |
-
2013
- 2013-11-15 KR KR1020130138931A patent/KR102154306B1/ko active IP Right Grant
-
2014
- 2014-11-14 WO PCT/KR2014/010953 patent/WO2015072778A1/ko active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011036125A (ja) * | 2005-05-09 | 2011-02-17 | Sony Corp | 非接触充電装置及び非接触充電システム並びに非接触充電方法 |
JP2011120361A (ja) * | 2009-12-02 | 2011-06-16 | Nec Casio Mobile Communications Ltd | 無接点充電装置及び電子機器並びにプログラム |
JP2012239331A (ja) * | 2011-05-12 | 2012-12-06 | Toyo Electric Mfg Co Ltd | 非接触給電装置 |
KR20130106706A (ko) * | 2012-03-20 | 2013-09-30 | 엘에스전선 주식회사 | 수전 코일의 위치 탐색이 가능한 무접점 충전 장치 및 그 제어 방법 |
KR20130121466A (ko) * | 2012-04-27 | 2013-11-06 | 한국전자통신연구원 | 에너지 전송 시스템에서 무선 에너지 전송 장치 및 방법 |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2018528743A (ja) * | 2015-08-24 | 2018-09-27 | エルジー イノテック カンパニー リミテッド | 無線電力伝送システム及びその駆動方法 |
EP3343732B1 (en) * | 2015-08-24 | 2020-09-02 | LG Innotek Co., Ltd. | Wireless power transmission system and driving method therefor |
WO2020050539A1 (ko) * | 2018-09-03 | 2020-03-12 | 엘지전자 주식회사 | 무선전력 전송 시스템에서 데이터를 전송하는 장치 및 방법 |
US10931332B2 (en) | 2018-09-03 | 2021-02-23 | Lg Electronics Inc. | Device and method for transmitting data in wireless power transmission system |
US11387866B2 (en) | 2018-09-03 | 2022-07-12 | Lg Electronics Inc. | Device and method for transmitting data in wireless power transmission system |
US11444662B2 (en) | 2018-09-03 | 2022-09-13 | Lg Electronics Inc. | Device and method for transmitting data in wireless power transmission system |
Also Published As
Publication number | Publication date |
---|---|
KR102154306B1 (ko) | 2020-09-10 |
KR20150056222A (ko) | 2015-05-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015072778A1 (ko) | 동시 멀티 충전이 가능한 무선 전력 전송 장치 | |
WO2013095067A1 (ko) | 무선 전력전송장치 및 방법 | |
WO2014038862A1 (en) | Wireless power transmitter for excluding cross-connected wireless power receiver and method for controlling the same | |
WO2013109032A1 (en) | Wireless power transmitter, wireless power receiver, and control methods thereof | |
WO2013035978A1 (en) | Wireless power repeater and method thereof | |
WO2014137199A1 (en) | Wireless power transmitter and method for controlling same | |
WO2017094997A1 (ko) | 무선 충전 장치, 그의 무선 전력 송신 방법, 및 이를 위한 기록 매체 | |
WO2012036380A2 (en) | Apparatus for wireless power transmission and reception | |
WO2016080751A1 (ko) | 무선 전력 송신 장치 및 그의 이물질 검출 방법 | |
WO2015076561A1 (ko) | 복수의 무선 전력 수신기에 대한 무선 충전 전력을 분배하기 위한 방법 | |
WO2014010951A1 (ko) | 무선 전력 송신기, 무선 전력 수신기 및 각각의 제어 방법 | |
WO2013036067A2 (en) | Wireless power receiver and control method thereof | |
WO2014010907A1 (en) | Method and apparatus for providing wireless charging power to a wireless power receiver | |
WO2013048004A1 (en) | Wireless power transmitter, wirless power repeater and wireless power transmission method | |
WO2010068062A2 (ko) | 무접점 전력 송신장치 | |
WO2014104813A1 (ko) | 공진형 무선 전력 전송 시스템에서의 무선 전력 전송 제어 방법, 이를 이용하는 무선 전력 전송 장치, 및 이를 이용하는 무선 전력 수신 장치 | |
WO2013162336A1 (ko) | 무선전력 수신장치 및 그의 전력 제어 방법 | |
WO2015137729A1 (ko) | 무선전력 전송 장치를 구비한 무선전력전송 시스템 | |
EP2873135A1 (en) | Wireless power transmitter, wireless power receiver, and methods of controlling the same | |
WO2016140465A1 (ko) | 무선 전력 송신기 및 수신기 | |
WO2014081054A1 (ko) | 무선충전방식 휴대전화의 충전 제어장치와 제어방법 | |
WO2015199466A1 (ko) | 무선전력전송 시스템 | |
WO2014123350A1 (ko) | 저발열 무선 전력 수신 장치 및 방법 | |
WO2016163697A1 (ko) | 무선 전력 전송 방법 및 이를 위한 장치 | |
WO2017138713A1 (ko) | 복수의 송신 코일이 구비된 무선 전력 기기 및 그 구동 방법 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 14861446 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 14861446 Country of ref document: EP Kind code of ref document: A1 |