WO2015072598A1 - 레이저 압착 방식의 플립 칩 본딩을 위한 레이저 옵틱 장치 - Google Patents

레이저 압착 방식의 플립 칩 본딩을 위한 레이저 옵틱 장치 Download PDF

Info

Publication number
WO2015072598A1
WO2015072598A1 PCT/KR2013/010345 KR2013010345W WO2015072598A1 WO 2015072598 A1 WO2015072598 A1 WO 2015072598A1 KR 2013010345 W KR2013010345 W KR 2013010345W WO 2015072598 A1 WO2015072598 A1 WO 2015072598A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
laser beam
semiconductor chip
bonding head
lens
Prior art date
Application number
PCT/KR2013/010345
Other languages
English (en)
French (fr)
Inventor
최지웅
조성윤
Original Assignee
(주)정원기술
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by (주)정원기술 filed Critical (주)정원기술
Priority to PCT/KR2013/010345 priority Critical patent/WO2015072598A1/ko
Publication of WO2015072598A1 publication Critical patent/WO2015072598A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies
    • H01L24/75Apparatus for connecting with bump connectors or layer connectors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/12Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure
    • B23K26/1224Working by laser beam, e.g. welding, cutting or boring in a special atmosphere, e.g. in an enclosure in vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L24/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/74Apparatus for manufacturing arrangements for connecting or disconnecting semiconductor or solid-state bodies and for methods related thereto
    • H01L2224/75Apparatus for connecting with bump connectors or layer connectors
    • H01L2224/7525Means for applying energy, e.g. heating means
    • H01L2224/75261Laser
    • H01L2224/75263Laser in the upper part of the bonding apparatus, e.g. in the bonding head
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/81201Compression bonding
    • H01L2224/81203Thermocompression bonding, e.g. diffusion bonding, pressure joining, thermocompression welding or solid-state welding
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/81Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a bump connector
    • H01L2224/812Applying energy for connecting
    • H01L2224/8122Applying energy for connecting with energy being in the form of electromagnetic radiation
    • H01L2224/81224Applying energy for connecting with energy being in the form of electromagnetic radiation using a laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/10Bump connectors ; Manufacturing methods related thereto
    • H01L24/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L24/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector

Definitions

  • the present invention relates to a laser optical device, and more particularly, a laser that can supply a uniform heat source to a large area by irradiating a square beam with uniform uniformity to a semiconductor chip when performing flip chip bonding using a laser compression method.
  • the present invention relates to a laser optical device for crimp flip chip bonding.
  • Laser Light Amplification by Stimulated Emission of Radiation refers to a monochromatic light that is amplified by the induced emission process of the radiation, the intensity is very strong and does not spread far.
  • Such lasers can be used in a variety of industries using their properties, for example, in various thermal transfer processes such as laser induced thermal imaging (LITI), or on various target surfaces. It can be applied to the expected heat flux.
  • LITI laser induced thermal imaging
  • such a laser may be used as a heat source of a flip chip bonding method in which a semiconductor chip is attached to a circuit board through solder bumps in manufacturing a semiconductor package.
  • flip chip bonding uses a thermal compression method and a laser compression method.
  • thermal compression method since the flip chip is heated using a heater, heat transfer to the flip chip is delayed. It takes a long time to join, there is a disadvantage that the productivity is lowered.
  • the laser crimping method is mainly used.
  • the laser crimping method moves the solder bumps of the semiconductor chip to the bond position to face the designated solder bumps on the circuit board, and then uses the laser beam from the back of the chip. It proceeds by bonding between both solder bumps by pressing through a press head (bonding head) while heating.
  • the laser beam irradiated through the conventional laser generator has a beam intensity of a Gaussian profile having a high irradiation center and a low periphery, There was a problem that it is difficult to transfer uniform heat.
  • the conventional laser generator has a problem in that the laser beam is not evenly distributed due to irregular reflection and refraction in the process of transferring the laser beam according to the vacuum structure of the pressure head for absorbing the semiconductor chip.
  • Patent No. 10-1245356 Pressure head of a flip chip bonder
  • FIG. 1 the applicant 's registered patent has a window 44 made of quartz material and an adsorption head 45 spaced above and below the through part 41 formed in the pressure head 40.
  • the structure for vacuum suction of the semiconductor chip 50 causes a laser beam to be uniformly transmitted to the semiconductor chip 50, thereby causing a special obstacle. It is designed to minimize uniform heat transfer and heat loss.
  • the laser beam emitted to the laser generator 80 is transmitted to the semiconductor chip 50 through the adsorption head 45 so that uniform heat transfer to the semiconductor chip 50 can be achieved.
  • the semiconductor chip mounted on the circuit board has various sizes, patterns, and heating characteristics, the semiconductor chip having such various properties should be appropriately changed in size and strength of the heat source supplied according to its type.
  • the registered patent is not provided with a means for adjusting the size of the laser beam according to the size of the semiconductor chip, it is possible to increase the bonding efficiency of the circuit board and the semiconductor chip by increasing the uniformity of the laser beam irradiated to the semiconductor chip Since there is no method, there is a problem in that the use range is limited.
  • Patent Document 1 Republic of Korea Patent No. 10-1245356 (Registration Date 2013.03.13)
  • the present invention has been proposed to solve the above problems of the prior art, and an object of the present invention is to maintain a constant heat source uniformity of a laser beam supplied to a semiconductor chip when performing flip chip bonding using a laser compression method.
  • the present invention provides a laser optical device for flip chip bonding of a laser compression method in which a laser beam is supplied according to the size of a semiconductor chip to stably supply a laser beam.
  • Laser optical head device for achieving the above object is installed in the lower portion of the bonding head module by adsorbing the semiconductor chip by the vacuum suction force, the semiconductor chip by irradiating a laser beam to the bonding head pressed to press the circuit board in close contact
  • the laser beam is provided on the upper side of the bonding head, the laser beam generated from an external laser head and transmitted through the optical fiber through a plurality of lenses in a square shape
  • a barrel which converts the laser beam into a horizontal beam and outputs the horizontal beam
  • a reflector installed on the bonding head, the reflector configured to convert a horizontal laser beam outputted from the barrel into a vertical downward direction and irradiate the bonding head to transfer the heat source to the semiconductor chip vacuum-absorbed at the bonding bottom; .
  • the reflector is preferably installed on the bonding head through the reflector support so that the tilt can be adjusted.
  • a laser input unit for receiving a laser beam transmitted through an optical fiber is formed, and a plurality of lenses are spaced apart from each other to extend a laser beam having a Gaussian profile and convert the laser beam into a square laser beam.
  • a lens unit is provided, and a laser output unit for outputting a laser beam converted into a square shape through the lens unit to the outside is formed.
  • the barrel is provided with a focusing control unit for adjusting the size of the laser beam is converted by adjusting the distance between the plurality of lenses provided on the inside, the focusing control unit zooming (Zooming) to convert the rotational movement to linear distance movement The distance between the lenses is adjusted through the operation.
  • the lens unit includes a beam expander for expanding the laser beam input through the laser input unit, a collimation lens for collimating the extended laser beam with parallel light, and a focus of the collimated laser beam.
  • Focusing lens for adjusting the laser beam, Aspheric lens for sharpening the laser beam through the aspherical surface, and Objective lens for outputting the laser beam extended in the square shape to the outside through the laser output unit. Are spaced apart from each other.
  • the lens unit converts a laser beam having an input Gaussian profile into a square laser beam having a uniformity of 85% or more.
  • the focusing control unit of the lens unit has a three-stage zooming operation of 2 to 6 mm, 6 to 18 mm, and 18 to 35 mm. Through this, a laser beam having a size of 2 mm ⁇ 2 mm to 35 mm ⁇ 35 mm is formed.
  • the laser optical head device can supply a square-shaped laser heat source in which uniformity is maintained to a semiconductor chip when flip chip bonding is performed using a laser crimping method, so that a more precise flip chip bonding operation of the semiconductor chip is achieved.
  • the size of the laser beam can be easily and precisely adjusted according to the size of the semiconductor chip, and thus it can be applied to various types of semiconductor chips.
  • the laser optical device according to the present invention is applied to a semiconductor facility, it is possible to mount a highly integrated chip when manufacturing a semiconductor package, and to increase productivity by shortening a bonding time.
  • 1 is a pressure head structure diagram of a conventional flip chip bonder
  • FIG. 2 is a conceptual diagram of laser generation of the laser optical device according to the present invention.
  • FIG. 3 is a perspective view of a bonding head module having a laser optic device according to the present invention.
  • FIG. 4 is a partial side cross-sectional view of a laser optic in accordance with the present invention.
  • FIG. 5 is a partial perspective cross-sectional view of the laser optic according to the present invention.
  • FIG. 6 is a perspective view of a barrel of the laser optic according to the present invention.
  • FIG. 7 is a perspective partial cross-sectional view of the barrel of the laser optic according to the present invention.
  • FIG. 9 is a conceptual diagram illustrating a process of converting a laser beam through a lens disposed inside the barrel of the laser optic according to the present invention.
  • 11 and 12 show an example of the uniformity and shape of the laser beam output through the lens disposed inside the barrel of the laser optic according to the present invention.
  • FIG. 2 is a conceptual diagram illustrating laser generation of a laser optical device according to an exemplary embodiment of the present invention.
  • the laser optical apparatus supplies a laser head 300 for generating a laser beam, supplies power for generating a laser to the laser head 300, and operates the laser head 300.
  • the laser head controller 200 for controlling the laser beam
  • the host computer 100 for remotely controlling the operation of the laser head 300 through the laser head controller 200
  • the laser beam generated through the laser head 300 The laser optics 400 is converted to a square laser beam and output.
  • the laser head 300 generates a laser beam having a Gaussian profile like the conventional laser generating device, and transmits the laser beam to the laser optic 400 through a single fiber.
  • the laser optic 400 converts a laser beam having a Gaussian profile transmitted from the laser head 300 through an optical fiber into a laser beam having a square shape, and outputs the laser beam.
  • the laser optic 400 outputs a laser beam having a Gaussian profile through a plurality of lens combinations into a square laser beam having a uniformity of 85% or more, more preferably 90% or more.
  • the square laser beam size can be varied by adjusting the distance between the lenses.
  • the laser optic 400 outputs a laser beam having a wavelength of 980 nm, wherein the output laser beam has a size of 2 mm ⁇ 2 mm to 35 mm ⁇ 35 mm.
  • FIG 3 is a perspective view of a bonding head module having a laser optic device according to an exemplary embodiment of the present invention.
  • the bonding head module 500 illustrated in FIG. 3 presses the circuit board fixed on the vacuum chuck in a state in which the semiconductor chip is absorbed by using the vacuum suction force, and applies the laser beam irradiated through the laser optic 400 to the semiconductor chip. It is a device that bonds between solder bumps of a semiconductor chip and a circuit board by irradiating to.
  • the bonding head module 500 for flip chip bonding is installed under the head body 510 to bond the semiconductor chip to a circuit board, and is installed on the upper side of the head body 510 for bonding.
  • the load cell 530 to pressurize secondary, the servo motor 540 is installed on the upper side of the head body 510 to align the bonding head 550 in the ⁇ direction, and is installed on the side of the bonding head 550
  • a laser optic 400 for supplying a heat source for bonding the semiconductor chip to the bonding head 550.
  • the bonding head 550 is installed under the head body 510, and absorbs the semiconductor chip using the vacuum suction force generated by the vacuum generator to locate the upper portion of the circuit board, and then the lifting block 520 and the rod.
  • the semiconductor chip is bonded to the circuit board through a heat source supplied through the laser optic 400 while the semiconductor chip is aligned and pressed on the circuit board. Since the structure of the bonding head 550 basically follows the applicant's Patent No. 10-1245356, a detailed description thereof will be omitted.
  • the structure and operation of the elevating block 520, the load cell 530 and the servo motor 540 follows a structure generally used in the flip chip bonding field to which the present invention belongs, so a detailed description thereof will be omitted. do.
  • the laser optic 400 converts the laser beam generated through the laser head 300 and supplied through the optical fiber into a square laser beam in which uniformity is maintained, and then converts the direction of the converted laser beam.
  • the switch is transferred from the upper portion of the bonding head 550 in the vertical lower direction.
  • FIG 4 is a partial side cross-sectional view of the laser optic according to an embodiment of the present invention
  • Figure 5 shows a partial perspective cross-sectional view of the laser optic.
  • the laser optic 400 is installed on the upper and side surfaces of the bonding head 550 and receives a laser beam generated from an external laser head 300 to form a square laser beam. Is converted to the optical device and then transferred to the bonding head 550 through the reflector 430.
  • the laser optic 400 is installed on a barrel 410 in which a plurality of lenses 421, 422, 423, 424, 425; 420 are disposed, and an upper portion of the bonding head 550 positioned on the side of the barrel 410. And a reflecting mirror 430 for converting the horizontal laser beam emitted from the barrel 410 in the vertical downward direction to be transmitted to the bonding head 550.
  • the reflector 430 is fixed to the upper portion of the bonding head 550 through the reflector support 431 so as to be located on the vertical upper portion of the bonding head 550, the reflector 430 is inclined in the 45 degree direction side
  • the square laser beam irradiated through the barrel 410 is transferred to the bonding head 550 located below the vertical. If the reflector 430 is not present, the laser optic 400 must irradiate the laser beam from the vertical upper portion of the bonding head 550, thereby limiting the installation space. As a result, the size of the bonding head module 500 is increased. The problem that needs to be formed long will occur.
  • the reflector 430 is installed on the bonding head 550, and the barrel 410 is provided on the side of the reflector 430, thereby releasing the constraint of the installation space.
  • the reflector support 431 is preferably installed on the bonding head 550 to adjust the angle of the reflector 430 according to the installation position of the barrel 410.
  • the barrel 410 is fixed to the side of the reflector 430 to irradiate the laser beam toward the reflector 430, the inside of the barrel 410 a plurality of lenses (420; 421, 422, 423, 424 and 425 are installed to adjust the mutual distance through the focusing adjusting unit 415 is configured to adjust the size of the square beam through the distance of the lens.
  • FIG. 6 is a perspective view of a barrel of the laser optic according to an embodiment of the present invention
  • Figure 7 is a partial perspective cross-sectional view of the barrel
  • Figure 8 shows an example of a lens disposed inside the barrel.
  • the barrel 410 of the laser optic 400 has a laser input unit 411 in which a laser beam generated from the laser head 300 is input through an optical fiber at one end. Is formed, and the other end is formed in a cylindrical shape formed with a laser output unit 412 to output a laser beam converted into a square shape through a plurality of lenses inside the barrel (410).
  • the laser beam input to the laser input unit 411 is a laser beam having a normal Gaussian profile
  • the laser beam output through the laser output unit 412 is a laser beam having a square shape, according to the difference of the laser beam.
  • the aperture of the laser output unit 412 is larger than the laser input unit 411.
  • a lens unit 420 in which several lenses are disposed at predetermined intervals is formed inside the barrel 410, and the lenses provided in the lens unit 420 are provided with a focusing adjusting unit provided in the barrel 410.
  • Mutual spacing is adjusted through 415.
  • the focusing adjusting unit 415 adjusts the distance between the lenses through a zooming function applied to a general camera zoom lens.
  • the lens output unit 412 is adjusted. ) Will change the size of the laser beam output.
  • the lens unit 420 has a beam expander 421 from the laser input unit 411 side. ), A collimation lens 422, a focusing lens 423, an aspheric lens 424, and an object lens 425 are sequentially disposed.
  • the beam expander 421 extends and spreads the laser beam input through the laser input unit 411, the collimating lens 422 collimates the extended laser beam with parallel light, and the focusing lens 423 collimates the collimating lens.
  • the focus of the collimated laser beam is adjusted through the lens 422, the aspherical lens 424 sharpens the laser beam through the aspherical surface, and the objective lens 425 directs the laser beam through the laser output unit 412. It will be output to the outside.
  • 9 is a conceptual diagram illustrating a process of converting a laser beam through a lens provided in the lens unit 420.
  • the lens unit 420 formed of the above lens combination has a size of the laser beam emitted through the objective lens 425 by adjusting the distance between the lenses through the focusing adjusting unit 415 formed in the barrel 410.
  • the focusing adjusting unit 415 is configured not to adjust the distance between the lens by the linear drive, but to adjust the distance between the lens through the rotational movement as the camera lens, it is possible to finely and easily adjust the distance between the lenses Accordingly, the laser beam output through the barrel 410 can be easily and precisely adjusted in size.
  • the focusing controller 415 adjusts the size of the radar beam by adjusting the distance between the hemispherical lens 424 and the objective lens 425 based on the focusing lens 423 of the lens unit 420.
  • This focusing control unit 415 is a square laser beam having a size of 2mm ⁇ 2mm to 35mm ⁇ 35mm through a three-step zooming operation that can be changed from 2mm to 6mm, 6m to 18mm, 18mm to 35mm It can be formed.
  • the reason why the laser beam passing through the lens unit 420 is changed into a square shape is that energy deformation occurs while the laser beam passes through the hemispherical lens 424 and the objective lens 425.
  • the deformation can be formulated by the following equation (1) which represents the outward curve of the inner beam wavefront.
  • I in () is the intensity distribution function of the input laser beam
  • r in is the radius of the input ray point beam that is the target of the intensity distribution
  • I out () is the output ray point.
  • the intensity distribution function of the beam, r out de represents the radius of the resulting output laser beam after intensity redistribution.
  • FIG. 10 shows an example of a change in the laser beam generated between the hemispherical lens and the objective lens.
  • the laser beam transformed into a square beam through the lens unit 420 has a uniformity (Uniformity) or more than 85%, which is according to the following equation 2 representing the principle of the field mapping type refractive beam shaper will be.
  • the principle of the refractive beam shaper is implemented in two optical components and a telescope system, in which the input and output waveforms are realized in a fully controlled manner, so that a uniform intensity profile in the Gaussian beam is achieved. Change to maintain uniformity.
  • the first device ensures accurate induction of wave aberrations and consequently maintains a flat beam without uniform intensity and beam coherence and increase and branching of parallel output beams.
  • represents the radius of the Gaussian beam
  • I in 0 and I out 0 represent the constants.
  • FIG. 11 illustrates characteristics of a laser beam having a size of 8m ⁇ 8m among the laser beams changed through the focusing control part
  • FIG. 12 illustrates a laser beam having a size of 35m ⁇ 35m among the laser beams changed through the focusing control part. It is characteristic. 11 and 12, the left two diagrams are beam profile measurement graphs for evaluating uniformity, and the right diagram is a photograph of a planar temperature distribution for evaluating uniformity. This square-shaped laser beam shows more than 85% uniformity. have.
  • the bonding head 550 In order to bond the semiconductor chip to the circuit board, the bonding head 550 first adsorbs the semiconductor chip through a vacuum suction force and then positions the semiconductor chip on the circuit board. When the semiconductor chip adsorbed on the bonding head 550 is positioned on the circuit board, the lifting block 520 lowers the bonding head 550 to pressurize the semiconductor chip to the circuit board, and the load cell 530 and The servo motor 540 performs the bonding operation of the circuit board and the semiconductor chip using the laser beam radiated from the laser optic 400 as a heat source while aligning and secondly pressing the semiconductor chip on the circuit board.
  • the size of the laser beam irradiated through the laser optic 400 may be adjusted by moving a distance between the lenses disposed inside the barrel 410 through a focusing adjusting unit 415 installed in the barrel 410.
  • the laser beam converted into a square beam through the lens unit 420 of the barrel 410 is output in the horizontal direction through the laser output unit 412, and the square laser beam output in the horizontal direction travels through the reflector 430.
  • the direction is converted to the vertical downward direction to be transmitted to the bonding head 550.
  • the laser beam transmitted to the bonding head 550 heats the semiconductor chip vacuum-compressed under the bonding head 550, and bonds between the semiconductor chip and the solder bumps of the circuit board as the semiconductor chip is heated and pressed. .
  • the laser optical device may convert the laser beam into a square shape through a plurality of lenses disposed in the barrel 410, and may also adjust the size of the laser beam by adjusting the distance between the lenses.
  • the distance between the lenses can be precisely adjusted by the rotation of the focusing adjusting unit 415 installed in the barrel 410, the size of the square laser beam can be easily and precisely adjusted.

Abstract

본 발명은 레이저 압착 방식을 이용하여 플립 칩 본딩을 수행할 때 반도체 칩에 균일도가 일정하게 유지된 스퀘어 빔을 조사하여 넓은 면적에 균일한 열원을 공급할 수 있도록 하는 레이저 압착 방식의 플립 칩 본딩을 위한 레이저 옵틱 장치에 관한 것이다. 본 발명에 레이저 옵틱 장치는 본딩 헤드 모듈의 하부에 설치되어 진공 흡착력에 의해 반도체 칩을 흡착하여 회로 기판에 밀착시켜 가압하는 본딩 헤드에 레이저 빔을 조사하여 반도체 칩이 회로 기판에 본딩될 수 있도록 하는 레이저 옵틱 장치에 있어서, 상기 본딩 헤드(550)의 상부 측면에 설치되어, 외부의 레이저 헤드(300)로부터 발생되어 광 섬유를 통하여 전달되는 레이저 빔을 복수의 렌즈를 통하여 스퀘어(square) 형상의 레이저 빔으로 변환하여 수평 방향으로 출력하는 경통(410)과; 상기 본딩 헤드(550)의 상부에 설치되어, 상기 경통(410)으로부터 출력되는 수평 방향의 레이저 빔을 수직 하향 방향으로 전환하여 본딩 헤드(550)에 조사하여 본딩 하부에 진공 흡착된 반도체 칩에 열원으로 전달하는 반사경(430);을 포함하여 이루어져, 반도체 칩에 균일도가 일정하게 유지되는 스퀘어 형태의 레이저 열원을 공급할 수 있으며, 반도체 칩의 크기에 따라 레이저 빔의 크기를 용이하고 정밀하게 조절할 수 있도록 제공된다.

Description

레이저 압착 방식의 플립 칩 본딩을 위한 레이저 옵틱 장치
본 발명은 레이저 옵틱 장치에 관한 것으로, 특히 레이저 압착 방식을 이용하여 플립 칩 본딩을 수행할 때 반도체 칩에 균일도가 일정하게 유지된 스퀘어 빔을 조사하여 넓은 면적에 균일한 열원을 공급할 수 있도록 하는 레이저 압착 방식의 플립 칩 본딩을 위한 레이저 옵틱 장치에 관한 것이다.
레이저(Laser ; Light Amplification by Stimulated Emission of Radiation)는 복사의 유도방출 과정에 의해 빛이 증폭되어 세기가 아주 강하고 멀리까지 퍼지지 않고 전달되는 단색광을 의미한다.
이러한 레이저는 그 특성을 이용하여 다양한 산업 분야에서 활용될 수 있는데, 예를 들면 LITI(Laser Induced Thermal Imaging)와 같이 다양한 열 전송 프로세스(Thermal Transfer Process)에서 사용되거나, 다양한 대상 표면(Target Surface)에서 예상되는 열 유속(Heat Flux)에 적용될 수 있다. 특히, 이러한 레이저는 반도체 패키지 제작시 솔더범프(solder bumps)를 통하여 반도체 칩을 회로 기판에 부착하는 플립 칩 본딩 방식의 열원으로 사용될 수 있다.
일반적으로 플립 칩 본딩은 열 압착 방식과 레이저 압착 방식을 이용하게 되는데, 열 압착 방식의 경우 히터를 이용하여 플립 칩을 가열하기 때문에 플립 칩에 열이 전해지는 것이 늦어지고 이에 따라 플립 칩과 기판을 접합하는데 시간이 많이 소요되어 생산성이 저하되는 단점이 있다. 이러한 문제점에 따라 근래에는 레이저 압착 방식이 주로 이용되는데, 레이저 압착 방식은 반도체 칩의 솔더범프들을 회로 기판의 지정된 솔더범프와 대향되도록 본드 포지션으로 이동시킨 후에 칩의 후면으로부터 레이저 빔을 이용하여 칩을 가열하면서 가압 헤드(본딩 헤드)를 통하여 가압함으로써 양 솔더범프 사이를 본딩하는 방식으로 진행된다.
이러한 플립 칩 본딩을 위해서는 반도체 칩에 열이 균일하게 전달되어야 하는데, 종래 레이저 발생 장치를 통하여 조사되는 레이저 빔은 조사 중심부가 높고 주변이 낮은 가우시안 프로파일(gaussian profile)의 빔 강도를 갖기 때문에 반도체 칩에 균일한 열을 전달하기 어려운 문제점이 있었다. 또한, 종래 레이저 발생 장치는 반도체 칩을 흡착하기 위한 가압 헤드의 진공 구조에 따라 레이저 빔의 전달 과정에서 난반사 및 굴절현상 등이 발생하여 레이저 빔이 고르게 분포되지 못하는 문제점이 있었다.
이러한 문제점에 따라 본 출원인은 레이저 빔이 반도체 칩의 전면에 균일하게 조사될 수 있도록 하는 등록특허 제10-1245356호 "플립 칩 본더의 가압 헤드"를 제안하였는데, 도 1은 상기 등록특허인 가압 헤드의 구조를 나타낸 것이다. 도 1에 도시된 바와 같이, 본 출원인의 등록특허는 가압 헤드(40) 내부에 형성된 관통부(41)의 상,하부에 쿼츠 재질로 된 윈도(44)와 흡착 헤드(45)를 이격되게 배치하고, 상기 흡착 헤드(45)의 중심부에 수직으로 흡입홀(h)을 형성함으로써 반도체 칩(50)의 진공 흡입을 위한 구조가 레이저 빔이 반도체 칩(50)으로 균일하게 전달되는데 별다른 장애를 초래하지 않도록 하여 균일한 열전달 및 열손실의 최소화 되도록 하고 있다. 또한, 레이저 발생기(80)에 방출하는 레이저 빔이 흡착 헤드(45)를 통하여 반도체 칩(50)에 전달되도록 함으로써 반도체 칩(50)에 균일한 열 전달이 이루어질 수 있도록 하고 있다.
한편, 회로 기판에 실장되는 반도체 칩은 다양한 크기와 패턴 그리고 가열(heating) 특성이 있기 때문에, 이렇게 다양한 성질을 갖는 반도체 칩은 그 종류에 따라 공급되는 열원의 크기 및 강도가 적절히 변경되어야 한다. 하지만, 상기 등록특허는 반도체 칩의 크기에 따라 레이저 빔의 크기를 조절할 수 있는 수단이 구비되어 있지 않으며, 반도체 칩에 조사되는 레이저 빔의 균일도를 높여 회로 기판과 반도체 칩의 본딩 효율을 높일 수 있는 방법이 제시되어 있지 않아 그 활용 범위에 제약이 따르는 문제점이 있었다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) 대한민국 등록특허 제10-1245356호 (등록일자 2013.03.13)
본 발명은 상기 종래 기술의 문제점을 해결하기 위하여 제안된 것으로서, 본 발명의 목적은 레이저 압착 방식을 이용하여 플립 칩 본딩을 수행할 때 반도체 칩에 공급되는 레이저 빔의 열원 균일도가 일정하게 유지될 수 있으며, 반도체 칩의 크기에 따라 공급되는 레이저 빔의 크기를 조절하여 안정적으로 레이저 빔을 공급할 수 있도록 하는 레이저 압착 방식의 플립 칩 본딩을 위한 레이저 옵틱 장치를 제공하는 데 있다.
상기 목적을 달성하기 위한 본 발명에 따른 레이저 옵틱 헤드 장치는 본딩 헤드 모듈의 하부에 설치되어 진공 흡착력에 의해 반도체 칩을 흡착하여 회로 기판에 밀착시켜 가압하는 본딩 헤드에 레이저 빔을 조사하여 반도체 칩이 회로 기판에 본딩될 수 있도록 하는 레이저 옵틱 장치에 있어서, 상기 본딩 헤드의 상부 측면에 설치되어, 외부의 레이저 헤드로부터 발생되어 광 섬유를 통하여 전달되는 레이저 빔을 복수의 렌즈를 통하여 스퀘어(square) 형상의 레이저 빔으로 변환하여 수평 방향으로 출력하는 경통과; 상기 본딩 헤드의 상부에 설치되어, 상기 경통으로부터 출력되는 수평 방향의 레이저 빔을 수직 하향 방향으로 전환하여 본딩 헤드에 조사하여 본딩 하부에 진공 흡착된 반도체 칩에 열원으로 전달하는 반사경;을 포함하여 이루어진다.
여기에서, 상기 반사경은 기울기 조절이 가능하도록 반사경 지지대에 통하여 본딩 헤드 상부에 설치되는 것이 바람직하다.
한편, 상기 경통의 일단에는 광 섬유를 통하여 전달되는 레이저 빔이 입력되는 레이저 입력부가 형성되고, 내측에는 복수의 렌즈가 이격 배치되어 가우시안 프로파일을 갖는 레이저 빔을 확장시켜 스퀘어 형상의 레이저 빔으로 변환하는 렌즈부가 구비되며, 타측에는 상기 렌즈부를 통하여 스퀘어 형상으로 변환된 레이저 빔을 외부로 출력하는 레이저 출력부가 형성된다.
여기에서, 상기 경통에는 내측에 구비된 복수의 렌즈 간의 거리를 조절하여 변환되는 레이저 빔의 크기를 조절하는 포커싱 조절부가 구비되는데, 상기 포커싱 조절부는 회전 운동을 직선 거리 운동으로 전환하는 주밍(Zooming) 동작을 통하여 렌즈 간의 거리를 조절하게 된다.
또한, 상기 렌즈부에는 레이저 입력부를 통하여 입력되는 레이저 빔을 확장시키는 빔 익스펜더(Beam Expander)와, 확장되는 레이저 빔을 평행광으로 시준하는 시준 렌즈(Collimation Lens)와, 시준화 된 레이저 빔의 초점을 조절하는 포커싱 렌즈(Focusing Lens)와, 비구면을 통하여 레이저 빔을 선명하게 하는 비구면 렌즈(Aspheric Lens)와, 스퀘어 형상으로 확장된 레이저 빔을 레이저 출력부를 통하여 외부로 출력하는 대물 렌즈(Objectice Lens)가 상호 이격되어 배치된다.
상기 렌즈부는 입력되는 가우시안 프로파일을 갖는 레이저 빔을 균일도가 85% 이상되는 스퀘어 형상의 레이저 빔으로 변환하게 되는데, 상기 렌즈부의 포커싱 조절부는 2~6mm, 6~18mm, 18~35mm의 3단계 주밍 동작을 통하여 2mm×2mm 내지 35mm×35mm 의 크기를 갖는 레이저 빔을 형성하게 된다.
본 발명에 따른 레이저 옵틱 헤드 장치는 레이저 압착 방식을 이용하여 플립 칩 본딩을 수행할 때 반도체 칩에 균일도가 일정하게 유지되는 스퀘어 형태의 레이저 열원을 공급할 수 있어 반도체 칩의 보다 정밀한 플립 칩 본딩 작업이 이루어질 수 있으며, 반도체 칩의 크기에 따라 레이저 빔의 크기를 용이하고 정밀하게 조절할 수 있어 다양한 형태의 반도체 칩에 적용할 수 있는 효과가 있다. 또한, 이러한 본 발명에 따른 레이저 옵틱 장치를 반도체 설비에 적용하게 되면 반도체 패키지 제작시 고집적도 칩의 실장을 가능하며, 본딩 시간을 단축하여 생산성을 높일 수 있게 된다.
도 1은 종래 플립 칩 본더의 가압 헤드 구조도,
도 2는 본 발명에 따른 레이저 옵틱 장치의 레이저 발생 개념도,
도 3은 본 발명에 따른 레이저 옵틱 장치가 설치된 본딩 헤드 모듈의 사시도,
도 4는 본 발명에 따른 레이저 옵틱의 부분 측단면도.
도 5는 본 발명에 따른 레이저 옵틱의 부분 사시 단면도,
도 6은 본 발명에 따른 레이저 옵틱의 경통 사시도,
도 7은 본 발명에 따른 레이저 옵틱의 경통 부분 사시 단면도,
도 8은 본 발명에 따른 레이저 옵틱의 경통 내부에 배치된 렌즈의 일례,
도 9은 본 발명에 따른 레이저 옵틱의 경통 내부에 배치된 렌즈를 통하여 레이저 빔이 변환되는 과정을 나타낸 개념도,
도 10은 본 발명에 따른 레이저 옵틱의 경통 내부에 배치된 반구면 렌즈와 대물 렌즈 사이에서 발생하는 레이저 빔의 변화 일례,
도 11 및 도 12는 본 발명에 따른 레이저 옵틱의 경통 내부에 배치된 렌즈를 통하여 출력되는 레이저 빔의 균일도 및 형태 일례를 나타낸 것이다.
이하, 첨부된 도면을 참조하여 본 발명의 바람직한 실시예를 상세히 설명하기로 한다.
도 2는 본 발명의 실시예에 따른 레이저 옵틱 장치의 레이저 발생 개념도를 나타낸 것이다.
도 2에 도시된 바와 같이, 본 발명에 따른 레이저 옵틱 장치는 레이저 빔을 발생시키는 레이저 헤드(300)와, 상기 레이저 헤드(300)에 레이저 발생을 위한 전원을 공급하고 레이저 헤드(300)의 동작을 제어하는 레이저 헤드 컨트롤러(200)와, 상기 레이저 헤드 컨트롤러(200)를 통하여 레이저 헤드(300) 동작을 원격 제어하는 호스트 컴퓨터(100)와, 상기 레이저 헤드(300)를 통하여 발생하는 레이저 빔을 전달받아 스퀘어 형상의 레이저 빔으로 변환하여 출력하는 레이저 옵틱(400)을 포함하여 이루어진다.
상기 레이저 헤드(300)는 통상의 레이저 발생 장치와 마찬가지로 가우시안 프로파일을 갖는 레이저 빔을 발생시켜 하나의 광 섬유(Single Fiber)을 통하여 레이저 옵틱(400)에 전달하게 된다.
상기 레이저 옵틱(400)은 광 섬유를 통하여 레이저 헤드(300)로부터 전송되는 가우시안 프로파일을 갖는 레이저 빔을 스퀘어 형상을 갖는 레이저 빔으로 변화시켜 출력하게 된다. 본 발명의 실시예에서 상기 레이저 옵틱(400)은 복수의 렌즈 조합을 통하여 가우시안 프로파일을 갖는 레이저 빔을 균일도가 85% 이상, 더욱 바람직하게 90% 이상 되는 스퀘어 형상의 레이저 빔으로 변화시켜 출력하게 되는데, 이 스퀘어 형상의 레이저 빔 크기(size)는 렌즈 간의 거리 조절을 통하여 다양하게 변화할 수 있게 된다. 또한, 본 발명의 실시예에서 상기 레이저 옵틱(400)은 980nm의 파장을 갖는 레이저 빔을 출력하게 되는데, 이때 출력되는 레이저 빔은 2mm×2mm 내지 35mm×35mm의 크기를 갖게 된다.
도 3은 본 발명의 실시예에 따른 레이저 옵틱 장치가 설치된 본딩 헤드 모듈의 사시도를 나타낸 것이다.
도 3에 도시된 본딩 헤드 모듈(500)은, 진공 흡착력을 이용하여 반도체 칩을 흡착한 상태에서 진공 척 위에 고정된 회로 기판에 가압시키고, 레이저 옵틱(400)을 통하여 조사되는 레이저 빔을 반도체 칩에 조사하여 반도체 칩과 회로 기판의 솔더범프 사이를 본딩하는 장치이다.
이러한 플립 칩 본딩을 위한 본딩 헤드 모듈(500)은 헤드 몸체(510)의 하부에 설치되어 반도체 칩을 회로 기판에 본딩하는 본딩 헤드(550)와, 헤드 몸체(510)의 상부 측면에 설치되어 본딩 헤드(550)를 업/다운 시켜 반도체 칩을 회로 기판에 1차 가압하는 승강 블록(520)과, 헤드 몸체(510)의 상부에 설치되어 본딩 헤드(550)에 흡착된 반도체 칩을 회로 기판에 2차 가압하는 로드 셀(530)과, 헤드 몸체(510)의 상부 일측에 설치되어 본딩 헤드(550)를 θ 방향으로 정렬시키는 서보 모터(540)와, 상기 본딩 헤드(550)의 측면에 설치되어 본딩 헤드(550)에 반도체 칩의 본딩에 필요한 열원을 공급하는 레이저 옵틱(400)을 포함하여 이루어진다.
상기 본딩 헤드(550)는 헤드 몸체(510)의 하부에 설치되어, 진공발생기에 의해 발생하는 진공 흡착력을 이용하여 반도체 칩을 흡착하여 회로 기판의 상부로 위치시킨 후, 승강 블록(520)과 로드 셀(530) 및 서보 모터(540)의 구동에 따라 반도체 칩을 회로 기판에 정렬 및 가압시킨 상태에서 레이저 옵틱(400)을 통해 공급되는 열원을 통하여 반도체 칩을 회로 기판에 본딩시키게 된다. 이러한 본딩 헤드(550)의 구조는 기본적으로 본 출원인의 등록특허 제10-1245356호를 따르므로, 이에 대한 상세한 설명은 생략하기로 한다. 또한, 상기 승강 블록(520)과 로드 셀(530) 및 서보 모터(540)의 구조와 동작은 본 발명이 속하는 플립 칩 본딩 분야에서 일반적으로 사용되는 구조를 따르므로 이에 대한 구체적인 설명은 생략하기로 한다.
한편, 상기 레이저 옵틱(400)은 레이저 헤드(300)를 통하여 생성되어 광 섬유를 통하여 공급되는 레이저 빔을 균일도가 일정하게 유지되는 스퀘어 형상의 레이저 빔으로 변환한 후, 변환된 레이저 빔의 방향을 전환하여 본딩 헤드(550)의 상부에서 수직 하부 방향으로 전달하게 된다.
도 4는 본 발명의 실시예에 따른 레이저 옵틱의 부분 측단면도이고, 도 5는 레이저 옵틱의 부분 사시 단면도를 나타낸 것이다.
도 4와 도 5에 도시된 바와 같이, 상기 레이저 옵틱(400)은 본딩 헤드(550)의 상부 및 측면에 설치되어 외부의 레이저 헤드(300)로부터 발생하는 레이저 빔을 전달받아 스퀘어 형상의 레이저 빔으로 변환한, 후 이를 반사경(430)을 통하여 본딩 헤드(550)로 전달하는 광학 장치이다.
이러한 레이저 옵틱(400)은 복수의 렌즈(421, 422, 423, 424, 425 ; 420)가 배치된 경통(410)과, 상기 경통(410)의 측면에 위치한 본딩 헤드(550)의 상부에 설치되어 경통(410)으로부터 조사되는 수평 방향의 레이저 빔을 수직 하향 방향으로 전환하여 본딩 헤드(550)에 전달하는 반사경(430)을 포함하여 이루어진다.
상기 반사경(430)은 본딩 헤드(550)의 수직 상부에 위치하도록 반사경 지지대(431)를 통하여 본딩 헤드(550)의 상부에 고정 설치되는데, 이 반사경(430)은 45도 방향으로 경사지게 설치되어 측면의 경통(410)을 통하여 조사되는 스퀘어 형상의 레이저 빔을 수직 하부에 위치한 본딩 헤드(550)로 전달하게 된다. 만약, 반사경(430)이 없다면 레이저 옵틱(400)이 본딩 헤드(550)의 수직 상부에서 레이저 빔을 조사하여야 하기 때문에 설치 공간에 제약이 따르게 되며, 이로 인하여 본딩 헤드 모듈(500)의 크기가 상하로 길게 형성되어야 하는 문제점이 발생하게 된다. 이러한 문제점에 따라 본 발명에서는 반사경(430)을 본딩 헤드(550) 상부에 설치하고, 이 반사경(430)의 측면에 경통(410)을 설치함으로써, 설치 공간의 제약에서 벗어날 수 있도록 하였다. 한편, 상기 반사경 지지대(431)는 경통(410)의 설치 위치에 따라 반사경(430)의 각도를 조절할 수 있도록 본딩 헤드(550) 상부에 설치되는 것이 바람직하다.
상기 경통(410)은 반사경(430)을 향하여 레이저 빔을 조사할 수 있도록 반사경(430)의 측면에 고정 설치되는데, 이 경통(410)의 내측에는 복수의 렌즈(420 ; 421, 422, 423, 424, 425)가 포커싱 조절부(415)를 통하여 상호 간격이 조절될 수 있도록 설치되어 렌즈의 거리 조절을 통하여 스퀘어 빔의 크기를 조절할 수 있도록 구성된다.
도 6은 본 발명의 실시예에 따른 레이저 옵틱의 경통 사시도이고, 도 7은 경통의 부분 사시 단면도이며, 도 8은 경통 내부에 배치된 렌즈의 일례를 나타낸 것이다.
도 6 내지 도 8에 도시된 바와 같이, 본 발명에 따른 레이저 옵틱(400)의 경통(410)은 일단에 레이저 헤드(300)로부터 발생하는 레이저 빔이 광 섬유를 통하여 입력되는 레이저 입력부(411)가 형성되고, 타단에 경통(410)의 내측에서 복수의 렌즈를 통하여 스퀘어 형상으로 변환된 레이저 빔이 출력되는 레이저 출력부(412)가 형성된 원통 형상으로 이루어진다. 상기 레이저 입력부(411)로 입력되는 레이저 빔은 통상의 가우시안 프로파일을 갖는 레이저 빔이고, 레이저 출력부(412)를 통하여 출력되는 레이저 빔은 스퀘어 형상을 갖는 레이저 빔으로, 이러한 레이저 빔의 차이에 따라 레이저 입력부(411)에 비해 레이저 출력부(412)의 구경이 더 크게 형성된다.
한편, 상기 경통(410) 내측에는 여러 개의 렌즈가 소정의 간격으로 배치된 렌즈부(420)가 형성되는데, 이 렌즈부(420)에 구비된 렌즈들은 경통(410)에 구비된 포커싱 조절부(415)를 통하여 상호 간격이 조절된다. 상기 포커싱 조절부(415)는 일반적인 카메라 줌 렌즈에 적용되는 주밍(Zooming) 기능을 통하여 렌즈 간의 간격을 조절하게 되는데, 이렇게 포커싱 조절부(415)를 통해 렌즈 간의 간격이 조절되면 렌즈 출력부(412)를 통하여 출력되는 레이저 빔의 크기를 달라지게 된다.
본 발명의 실시예에서 상기 경통(410)에 구비되는 렌즈부(420)에는 모두 5개의 렌즈가 배치되는데, 이 렌즈부(420)에는 레이저 입력부(411) 측으로부터 빔 익스펜더(Beam Expander)(421), 시준 렌즈(Collimation Lens)(422), 포커싱 렌즈(Focusing Lens)(423), 비구면 렌즈(Aspheric Lens)(424), 대물 렌즈(Objectice Lens)(425)가 순차적으로 배치된다. 상기 빔 익스펜더(421)는 레이저 입력부(411)를 통하여 입력되는 레이저 빔을 확장시켜 퍼트리게 되고, 시준 렌즈(422)는 확장되는 레이저 빔을 평행광으로 시준하게 되며, 포커싱 렌즈(423)는 시준 렌즈(422)를 통하여 시준화 된 레이저 빔의 초점을 조절하고, 비구면 렌즈(424)는 비구면을 통하여 레이저 빔을 선명하게 만들며, 대물 렌즈(425)는 레이저 빔을 레이저 출력부(412)를 통하여 외부로 출력시키게 된다. 도 9은 이러한 렌즈부(420)에 구비된 렌즈를 통하여 레이저 빔이 변환되는 과정을 나타낸 개념도이다.
상기의 렌즈 조합으로 이루어진 렌즈부(420)는 경통(410)에 형성된 포커싱 조절부(415)를 통하여 렌즈 간의 거리가 조절됨으로써 대물 렌즈(425)를 통하여 방출되는 레이저 빔의 크기가 달라지게 된다. 이때 상기 포커싱 조절부(415)는 직선 구동에 의해 렌즈 간의 거리를 조절하는 것이 아니라, 카메라 렌즈와 같이 회전 운동을 통하여 렌즈 간 거리 조절이 가능하도록 구성됨으로써 렌즈 간에 미세하고 용이한 거리 조절이 가능하며, 이에 따라 경통(410)을 통하여 출력되는 레이저 빔을 크기를 용이하고 정밀하게 조절할 수 있게 된다.
본 발명의 실시예에서 상기 포커싱 조절부(415)는 렌즈부(420)의 포커싱 렌즈(423)를 기준으로 반구면 렌즈(424) 및 대물 렌즈(425)의 간격을 조절함으로써 레이버 빔의 크기를 조절하게 되는데, 이러한 포커싱 조절부(415)는 2mm∼6mm, 6m∼18mm, 18mm∼35mm의 변화가 가능한 3단계 주밍 동작을 통하여 2mm×2mm 내지 35mm×35mm 의 크기를 갖는 스퀘어 형상의 레이저 빔을 형성할 수 있게 된다.
이렇게 렌즈부(420)를 통과하는 레이저 빔이 스퀘어 형상으로 변화되는 것은, 레이저 빔이 반구면 렌즈(424)와 대물 렌즈(425)를 통과하면서 에너지 변형이 발생하기 때문인 것으로, 이러한 레이저 빔의 에너지 변형은 내부의 빔 웨이브 프론트의 외곡을 나타나는 다름의 수학식 1에 의해 공식화될 수 있다.
[수학식 1]
Figure PCTKR2013010345-appb-I000001
여기에서, ρ는 지정된 극좌표의 변수 빔 반경을, Iin()는 입력 레이저 빔의 강도 분포 함수를, rin은 강도 분포의 대상인 입력 레이점 빔의 반경을, Iout()은 출력 레이점 빔의 강도 분포 함수를, rout de는 인텐시티 재분배 후 결과 출력 레이저 빔의 반경을 나타낸다.
도 10은 이러한 반구면 렌즈와 대물 렌즈 사이에서 발생하는 레이저 빔의 변화 일례를 나타낸 것이다.
한편, 이러한 렌즈부(420)를 통하여 스퀘어 빔으로 변형되어 출력되는 레이저 빔은 85% 이상의 균일도(Uniformity)를 갖게 되는데, 이는 필드 매핑 타입의 굴절 빔 셰이퍼의 원칙을 나타내는 다음의 수학식 2에 따른 것이다. 즉, 굴절 빔 셰이퍼의 원칙은 두 광학 소자(optical components)와 망원경 시스템으로 구현되는데, 이는 입력 및 출력 파형이 전면 통제된 방식으로 실현되어, 가우스 빔에서 균일한 하나의 인텐시티 프로파일(intensity profile)이 변화하여 균일도를 유지하게된다. 첫 번째 소자로 파 수차의 정확한 유도 및 그 결과로 평행 출력 빔의 균일한 강도와 빔 일관성과 증가 및 분기 없이 평면 빔을 유지하게 된다.
[수학식 2]
Figure PCTKR2013010345-appb-I000002
여기에서, ω는 가우시안 빔의 반지름을, Iin0 , Iout0는 상수를 나타낸다.
도 11은 이러한 포커싱 조절부를 통하여 변화되는 레이저 빔 중 8m×8m 크기를 갖는 레이저 빔에 대한 특성을 나타낸 것이며, 도 12는 포커싱 조절부를 통하여 변화되는 레이저 빔 중 35m×35m 크기를 갖는 레이저 빔에 대한 특성을 나타낸 것이다. 도 11과 도 12에서, 좌측 두 개의 도면은 균일도를 평가한 빔 프로파일 측정 그래프이고, 우측 도면은 균일도를 평가한 평면 온도 분포를 측정 사진으로, 이러한 스퀘어 형상의 레이저 빔은 85% 이상의 균일도를 보이고 있다.
이하, 상기의 구성으로 이루어진 레이저 옵틱 장치가 설치된 본딩 헤드 모듈을 통하여 반도체 칩의 본딩이 이루어지는 과정에 대하여 설명한다.
반도체 칩을 회로 기판에 본딩하기 위하여, 먼저 본딩 헤드(550)가 진공 흡착력을 통하여 반도체 칩을 흡착한 후 회로 기판의 상부로 위치시키게 된다. 상기 본딩 헤드(550)에 흡착된 반도체 칩이 회로 기판 상부에 위치되면, 승강 블록(520)은 본딩 헤드(550)를 하강시켜 반도체 칩을 회로 기판에 1차 가압시키고, 로드 셀(530) 및 서보 모터(540)가 반도체 칩을 회로 기판에 정렬 및 2차 가압하면서 레이저 옵틱(400)으로부터 조사되는 레이저 빔을 열원으로 하여 회로 기판과 반도체 칩의 본딩 작업을 수행하게 된다.
이때, 레이저 옵틱(400)을 통하여 조사되는 레이저 빔은 경통(410)에 설치된 포커싱 조절부(415)를 통하여 경통(410) 내측에 배치된 렌즈 간의 간격을 이동시킴으로써 그 크기를 조절할 수 있으며, 이렇게 경통(410)의 렌즈부(420)를 통하여 스퀘어 빔으로 변환된 레이저 빔은 레이저 출력부(412)를 통하여 수평 방향으로 출력되며, 수평 방향으로 출력되는 스퀘어 레이저 빔은 반사경(430)을 통하여 진행 방향이 수직 하향 방향으로 전환되어 본딩 헤드(550)에 전달되게 된다.
본딩 헤드(550)로 전달되는 레이저 빔은 본딩 헤드(550)의 하부에 진공 압착된 반도체 칩을 가열시키게 되며, 반도체 칩의 가열 및 가압에 따라 반도체 칩과 회로 기판의 솔더범프 사이를 본딩시키게 된다.
이와 같이, 본 발명에 따른 레이저 옵틱 장치는 경통(410)에 배치된 복수의 렌즈를 통하여 레이저 빔을 스퀘어 형상으로 변환할 수 있으며, 렌즈 간의 거리를 조절함으로써 레이저 빔의 크기 또한 조절할 수 있게 된다. 특히, 경통(410)의 설치된 포커싱 조절부(415)의 회전을 통해 렌즈 간의 거리를 정밀하게 조절할 수 있으므로 스퀘어 형상의 레이저 빔 크기를 용이하고 정밀하게 조절할 수 있게 된다.
이러한 본 발명은 상술한 실시 예에 한정되는 것은 아니며 본 발명이 속하는 기술 분야에서 통상의 지식을 갖는 자에 의해 본 발명의 기술사상과 아래에 기재될 특허청구 범위의 균등범위 내에서 다양한 수정 및 변형이 이루어질 수 있음은 물론이다.

Claims (8)

  1. 본딩 헤드 모듈의 하부에 설치되어 진공 흡착력에 의해 반도체 칩을 흡착하여 회로 기판에 밀착시켜 가압하는 본딩 헤드에 레이저 빔을 조사하여 반도체 칩이 회로 기판에 본딩될 수 있도록 하는 레이저 옵틱 장치에 있어서,
    상기 본딩 헤드(550)의 상부 측면에 설치되어, 외부의 레이저 헤드(300)로부터 발생되어 광 섬유를 통하여 전달되는 레이저 빔을 복수의 렌즈를 통하여 스퀘어(square) 형상의 레이저 빔으로 변환하여 수평 방향으로 출력하는 경통(410)과;
    상기 본딩 헤드(550)의 상부에 설치되어, 상기 경통(410)으로부터 출력되는 수평 방향의 레이저 빔을 수직 하향 방향으로 전환하여 본딩 헤드(550)에 조사하여 본딩 하부에 진공 흡착된 반도체 칩에 열원으로 전달하는 반사경(430);을 포함하여 이루어지는 것을 특징으로 하는 레이저 옵틱 장치.
  2. 제 1항에 있어서,
    상기 반사경(430)은 기울기 조절이 가능하도록 반사경 지지대(431)에 통하여 본딩 헤드(550) 상부에 설치되는 것을 특징으로 하는 레이저 옵틱 장치.
  3. 제 1항에 있어서,
    상기 경통(410)의 일단에는 광 섬유를 통하여 전달되는 레이저 빔이 입력되는 레이저 입력부(411)가 형성되고,
    내측에는 복수의 렌즈가 이격 배치되어 가우시안 프로파일을 갖는 레이저 빔을 확장시켜 스퀘어 형상의 레이저 빔으로 변환하는 렌즈부(420)가 구비되며,
    타측에는 상기 렌즈부(420)를 통하여 스퀘어 형상으로 변환된 레이저 빔을 외부로 출력하는 레이저 출력부(412)가 형성된 것을 특징으로 하는 레이저 옵틱 장치.
  4. 제 3항에 있어서,
    상기 경통(410)에는 내측에 구비된 복수의 렌즈 간의 거리를 조절하여 변환되는 레이저 빔의 크기를 조절하는 포커싱 조절부(415)가 구비된 것을 특징으로 하는 레이저 옵틱 장치.
  5. 제 4항에 있어서,
    상기 포커싱 조절부(415)는 회전 운동을 직선 거리 운동으로 전환하는 주밍(Zooming) 동작을 통하여 렌즈 간의 거리를 조절하는 것을 특징으로 하는 레이저 옵틱 장치.
  6. 제 3항에 있어서,
    상기 렌즈부(420)에는
    상기 레이저 입력부(411)를 통하여 입력되는 레이저 빔을 확장시키는 빔 익스펜더(Beam Expander)(421)와, 확장되는 레이저 빔을 평행광으로 시준하는 시준 렌즈(Collimation Lens)(422)와, 시준화 된 레이저 빔의 초점을 조절하는 포커싱 렌즈(Focusing Lens)(423)와, 비구면을 통하여 레이저 빔을 선명하게 하는 비구면 렌즈(Aspheric Lens)(424)와, 스퀘어 형상으로 확장된 레이저 빔을 레이저 출력부(412)를 통하여 외부로 출력하는 대물 렌즈(Objectice Lens)(425)가 상호 이격되어 배치되는 것을 특징으로 하는 레이저 옵틱 장치.
  7. 제 6항에 있어서,
    상기 렌즈부(420)는 입력되는 가우시안 프로파일을 갖는 레이저 빔을 균일도가 85% 이상되는 스퀘어 형상의 레이저 빔으로 변환하는 것을 특징으로 하는 레이저 옵틱 장치.
  8. 제 6항에 있어서,
    상기 렌즈부(420)의 포커싱 조절부(415)는 2~6mm, 6~18mm, 18~35mm의 3단계 주밍 동작을 통하여 2mm×2mm 내지 35mm×35mm 의 크기를 갖는 레이저 빔을 형성하는 것을 특징으로 하는 레이저 옵틱 장치.
PCT/KR2013/010345 2013-11-14 2013-11-14 레이저 압착 방식의 플립 칩 본딩을 위한 레이저 옵틱 장치 WO2015072598A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/010345 WO2015072598A1 (ko) 2013-11-14 2013-11-14 레이저 압착 방식의 플립 칩 본딩을 위한 레이저 옵틱 장치

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/KR2013/010345 WO2015072598A1 (ko) 2013-11-14 2013-11-14 레이저 압착 방식의 플립 칩 본딩을 위한 레이저 옵틱 장치

Publications (1)

Publication Number Publication Date
WO2015072598A1 true WO2015072598A1 (ko) 2015-05-21

Family

ID=53057529

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/010345 WO2015072598A1 (ko) 2013-11-14 2013-11-14 레이저 압착 방식의 플립 칩 본딩을 위한 레이저 옵틱 장치

Country Status (1)

Country Link
WO (1) WO2015072598A1 (ko)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151842A1 (ko) * 2018-02-05 2019-08-08 크루셜머신즈 주식회사 전자부품의 리플로우 및 리워크 장치
CN110899885A (zh) * 2018-09-18 2020-03-24 镭射希股份有限公司 与微米级厚度的电子部件有关的激光回流焊装置
US11410961B2 (en) 2020-03-17 2022-08-09 Micron Technology, Inc. Methods and apparatus for temperature modification in bonding stacked microelectronic components and related substrates and assemblies

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030003690A1 (en) * 1998-10-23 2003-01-02 Nering James E. Semiconductor device separation using a patterned laser projection
US20030003610A1 (en) * 1995-01-13 2003-01-02 Semiconductor Energy Laboratory Co., Ltd. Laser illumination system
US20070184639A1 (en) * 2006-02-03 2007-08-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of memory element, laser irradiation apparatus, and laser irradiation method
KR20080095375A (ko) * 2007-04-24 2008-10-29 삼성테크윈 주식회사 칩 가열장치, 이를 구비한 플립 칩 본더 및 이를 이용한플립 칩 본딩 방법
KR20120097394A (ko) * 2009-12-07 2012-09-03 제이피 서셀 어소시에트, 인코퍼레이티드 레이저 리프트 오프 시스템과 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030003610A1 (en) * 1995-01-13 2003-01-02 Semiconductor Energy Laboratory Co., Ltd. Laser illumination system
US20030003690A1 (en) * 1998-10-23 2003-01-02 Nering James E. Semiconductor device separation using a patterned laser projection
US20070184639A1 (en) * 2006-02-03 2007-08-09 Semiconductor Energy Laboratory Co., Ltd. Manufacturing method of memory element, laser irradiation apparatus, and laser irradiation method
KR20080095375A (ko) * 2007-04-24 2008-10-29 삼성테크윈 주식회사 칩 가열장치, 이를 구비한 플립 칩 본더 및 이를 이용한플립 칩 본딩 방법
KR20120097394A (ko) * 2009-12-07 2012-09-03 제이피 서셀 어소시에트, 인코퍼레이티드 레이저 리프트 오프 시스템과 방법

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2019151842A1 (ko) * 2018-02-05 2019-08-08 크루셜머신즈 주식회사 전자부품의 리플로우 및 리워크 장치
KR20190094755A (ko) * 2018-02-05 2019-08-14 레이저쎌 주식회사 전자소자의 본딩 및 디본딩 장치
KR102047445B1 (ko) * 2018-02-05 2019-11-21 레이저쎌 주식회사 전자소자의 본딩 및 디본딩 장치
CN110899885A (zh) * 2018-09-18 2020-03-24 镭射希股份有限公司 与微米级厚度的电子部件有关的激光回流焊装置
EP3626378A1 (en) * 2018-09-18 2020-03-25 Laserssel Co., Ltd Laser reflow soldering apparatus and method for reflow soldering electronic components
CN110899885B (zh) * 2018-09-18 2021-11-19 镭射希股份有限公司 与微米级厚度的电子部件有关的激光回流焊装置
US11276665B2 (en) 2018-09-18 2022-03-15 Laserssel Co., Ltd. Laser reflow apparatus and method for electronic components with micron-class thickness
US11410961B2 (en) 2020-03-17 2022-08-09 Micron Technology, Inc. Methods and apparatus for temperature modification in bonding stacked microelectronic components and related substrates and assemblies
US11961818B2 (en) 2020-03-17 2024-04-16 Micron Technology, Inc. Substrates with heat transfer structures for bonding a stack of microelectronic devices, and related assemblies and electronic systems

Similar Documents

Publication Publication Date Title
KR101416820B1 (ko) 레이저 압착 방식의 플립 칩 본딩을 위한 레이저 옵틱 장치
US20190262860A1 (en) Compound elliptical reflector for curing optical fibers
CN104979749B (zh) 一种高功率半导体光纤耦合激光器及其耦合方法
WO2018074697A1 (ko) 광 균질화 모듈 및 그를 포함하는 레이저 본딩장치
JP6309893B2 (ja) デュアル楕円反射体
KR102120722B1 (ko) 마이크론급의 두께를 갖는 전자부품에 대한 레이저 리플로우 장치
WO2019017650A1 (ko) 레이저 리플로우 장치
WO2015072598A1 (ko) 레이저 압착 방식의 플립 칩 본딩을 위한 레이저 옵틱 장치
JP2001523585A (ja) 2つの基板の接続面を熱的に接続する方法および装置
JP7409730B2 (ja) レーザリフロー装置
CN113020738A (zh) 激光回流装置和激光回流方法
WO2017213465A1 (ko) 릴-투-릴 레이저 리플로우 장치 및 방법
WO2017034172A1 (ko) 레이저 솔더링 장치
JP2018160477A (ja) 照明装置
CN111158221A (zh) Led光源曝光系统及曝光机
US20080224372A1 (en) Device for Fixing a Flat Object, in Particular a Substrate, to a Work Surface by Means of Low Pressure
WO2021172858A1 (ko) 3d 프린터용 노즐유닛의 레이저 헤드
US9548586B2 (en) Energy integrating device for split semiconductor laser diodes
CN113600412A (zh) 一种激光器光学镜片自动组装设备
WO2013162187A1 (ko) 부양 장치 및 부양 방법
US20090025202A1 (en) Method for assembly of an led light
US11719903B2 (en) Systems, methods, and devices for assembling lenses and waveguides
JP6809928B2 (ja) 光照射装置
CN215695546U (zh) 摄像头固化装置
WO2017115974A1 (ko) 렌즈 광학계 및 이를 포함하는 레이저 가공장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase
32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16/09/2016)

122 Ep: pct application non-entry in european phase

Ref document number: 13897265

Country of ref document: EP

Kind code of ref document: A1