WO2015072547A1 - Reciprocating displacement type compression device equipped with contactless suction/discharge mechanism - Google Patents

Reciprocating displacement type compression device equipped with contactless suction/discharge mechanism Download PDF

Info

Publication number
WO2015072547A1
WO2015072547A1 PCT/JP2014/080207 JP2014080207W WO2015072547A1 WO 2015072547 A1 WO2015072547 A1 WO 2015072547A1 JP 2014080207 W JP2014080207 W JP 2014080207W WO 2015072547 A1 WO2015072547 A1 WO 2015072547A1
Authority
WO
WIPO (PCT)
Prior art keywords
piston
suction
reciprocating
discharge
fluid
Prior art date
Application number
PCT/JP2014/080207
Other languages
French (fr)
Japanese (ja)
Inventor
眞 岡野
修一郎 淵野
充穂 古瀬
久男 北條
Original Assignee
独立行政法人産業技術総合研究所
バキュームプロダクツ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 独立行政法人産業技術総合研究所, バキュームプロダクツ株式会社 filed Critical 独立行政法人産業技術総合研究所
Priority to JP2015547808A priority Critical patent/JPWO2015072547A1/en
Publication of WO2015072547A1 publication Critical patent/WO2015072547A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B7/00Piston machines or pumps characterised by having positively-driven valving
    • F04B7/04Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports
    • F04B7/06Piston machines or pumps characterised by having positively-driven valving in which the valving is performed by pistons and cylinders coacting to open and close intake or outlet ports the pistons and cylinders being relatively reciprocated and rotated
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B15/00Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts
    • F04B15/06Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure
    • F04B15/08Pumps adapted to handle specific fluids, e.g. by selection of specific materials for pumps or pump parts for liquids near their boiling point, e.g. under subnormal pressure the liquids having low boiling points
    • F04B2015/081Liquefied gases
    • F04B2015/0822Hydrogen

Definitions

  • the present invention relates to a reciprocating positive displacement compressor for compressing a fluid such as a gas or a liquid, and a valve mechanism that alternately shields the suction and discharge of fluid required for the reciprocating positive displacement compressor is rotated in a reciprocating motion.
  • the present invention relates to a reciprocating positive displacement compressor that shields and opens a fluid by a difference in a gap between a rotating piston and a cylinder without adding mechanical action.
  • Liquid nitrogen and liquid helium are used as cryogenic refrigerants for cooling cryogenic equipment and superconducting power transmission lines. Furthermore, liquid hydrogen is used as a propellant for satellite launch vehicles, and as a reducing agent in the manufacturing industry for semiconductors, liquid crystals, and the like. Liquid hydrogen is attracting attention as a next-generation clean energy that does not place a burden on the global environment. Already in Germany, demand for hydrogen is expanding, with liquid hydrogen stations being built and operating for hydrogen fuel vehicles.
  • a metal superconductor magnesium diboride (MgB 2 ), which has been discovered in Japan and is easy to handle as a wire, can be used, and research and development has been activated.
  • Non-patent Document 1 As a conventional cryogenic fluid transport pump, the liquid nitrogen transport pump (Non-patent Document 1) shown in FIG. 1 is sold. However, since the transport system is a centrifugal type, the efficiency is low, and even higher Price.
  • the present invention uses a reciprocating positive displacement type compression device composed of a piston and a cylinder for compressing a cryogenic fluid such as a gas or a liquid.
  • a cryogenic fluid such as a gas or a liquid.
  • the suction and discharge of compressed fluid from the compression chamber is highly efficient and permanent because the difference between the gap between the rotating piston and cylinder allows the fluid to flow into and out of the suction port without contact. It is an object of the present invention to provide a reciprocating positive displacement type compression device that enables smooth fluid compression.
  • a piston that reciprocates in a cylinder circumscribing the piston with a predetermined gap is rotated, and grooves are provided at equal intervals in the outer circumferential direction with a predetermined width at the compression end of the rotating piston.
  • the cylinder side is provided with a suction and discharge port that synchronizes with the grooves provided at equal intervals, and in the reciprocating compression process, the side where the groove and the cylinder side communicate with each other is determined by the discharge side and the non-groove part.
  • the inlet side communicated with the gap of the suction side is the suction side, and in the reverse process, the fluid is shielded with a predetermined gap, and the rotation of the piston and the position of the groove part and the non-grooved part are synchronized to make contactless and permanent
  • a reciprocating positive displacement compressor having a mechanism for switching between suction and discharge of fluid into the compression chamber is employed.
  • a reciprocating volume that is compact and has a large compression capacity by providing a plurality of groove portions and non-grooved portions on the circumference of the outer peripheral surface of the rotating piston and performing the reciprocating operation a plurality of times while the piston rotates once.
  • the configuration of the mold compression apparatus was adopted.
  • the present invention (1) A driving means; a piston coupled to the driving means via a shaft; a rotary reciprocating mechanism for reciprocating the piston while rotating; a cylinder mounted on the piston with a predetermined gap; and the cylinder
  • a pair of suction ports and discharge ports which are located on the inner surface of the cylinder outside the compression end of the compression chamber and are connected to the suction and discharge of the compressed fluid, are provided facing each other, and the piston is on the compression chamber side
  • a groove portion having a predetermined depth and an equal width in the circumferential direction of the outer peripheral portion having a predetermined width in the reciprocating direction of the piston is alternately provided at the end portion of the piston, and the piston is driven by the driving means.
  • the driving means, the piston (excluding the compression end), and the piston rotation reciprocating mechanism are installed in a normal temperature state, and the piston (compression end) and the cylinder are installed in a cryogenic state
  • a reciprocating positive displacement apparatus provided with the non-contact suction / discharge mechanism described in any one of (3) to (3) is used.
  • the fluid is any one selected from hydrogen gas, nitrogen gas, helium gas, air, neon, liquid hydrogen, liquid nitrogen, liquid helium, liquid air, and liquid neon, or a mixture of two or more thereof.
  • a reciprocating positive displacement apparatus having the non-contact suction / discharge mechanism described in any one of (1) to (6) is provided.
  • the suction and discharge of the fluid in the compression part of the reciprocating positive displacement compressor is not blocked by the difference in fluid resistance due to the difference in the gap between the outer peripheral surface of the piston and the inner peripheral surface of the fixed cylinder. Since it is possible to contact, a suction / discharge mechanism that can switch between suction and discharge of fluid at a high speed in a wide temperature range from room temperature to extremely low temperature, even at room temperature and above, and capable of permanent operation with a small size. It was possible to provide a rotary reciprocating positive displacement type compression device.
  • FIG. 3 is a partial cross-sectional schematic view of a rotary reciprocating compression device using a suction / discharge mechanism of the present invention having a bearing configuration operable at a cryogenic temperature in order to compress a cryogenic fluid. It is a partial cross-sectional schematic diagram of a rotary reciprocating compression device using a suction / discharge mechanism of the present invention in which a drive motor generating a large amount of heat is installed in a room temperature portion and the rotation of the motor is connected by a magnetic coupling.
  • FIG. 1 It is a partial cross-sectional schematic diagram of the rotary reciprocating compression apparatus using the suction / discharge mechanism of the present invention in which only the compression section is installed at a cryogenic temperature and the room temperature and the cryogenic temperature are connected by an elongated heat insulating material. It is the fragmentary sectional view which showed the operating principle of the suction / discharge mechanism in the compression process of the reciprocating volume type compression device using the non-contact suction / discharge mechanism of this invention.
  • A Piston shaft left end (start of compression),
  • the compression part of the rotary reciprocating compression device that can increase the compression and transport capacity by making a plurality of grooves and non-groove parts alternately on the outer peripheral surface of the piston, and performing the reciprocating action a plurality of times during one revolution of the piston.
  • FIG. 2 shows an example of a reciprocating positive displacement compressor that performs a rotation operation in addition to a reciprocating operation of the present invention to perform non-contact switching between fluid suction and discharge.
  • the configuration shown in FIG. 2 supports a non-contact fluid radial bearing for the radial bearing and a magnetic for the rotation / reciprocation conversion and axial load support in order to support the weight of the piston and realize the rotational reciprocating motion.
  • the piston is supported in the cylinder in a non-contact manner by adopting a rotary reciprocating mechanism using the.
  • the rotary reciprocating mechanism includes a piston, a cylinder that supports the piston in a non-contact manner, a drive motor that rotates the piston, and a piston reciprocating mechanism that reciprocates the piston.
  • the piston reciprocating mechanism is composed of a piston made of a magnetic material that is rotated by a drive motor that is a driving means, a cylinder, and a permanent magnet fixed to the center inside the cylinder.
  • the reciprocating motion of the piston synchronized with the rotation is generated by the magnetic force.
  • the fluid to be sucked and discharged is shielded and opened by the difference between the piston and the cylinder in synchronization with the rotation of the piston in the compression process and the suction process of the reciprocating motion of the piston.
  • the suction port is located in the non-grooved portion of the piston.
  • the gap between the piston and the cylinder located at the suction port is very narrow, a large fluid resistance is generated for the compressed fluid to flow toward the suction port. Blocked by resistance. By such an operation, the fluid to be sucked / discharged is shielded / opened.
  • Figure 3 shows a reciprocating positive displacement type in which only the drive motor is installed at room temperature to avoid heat generation at extremely low temperatures, and the rotation is thin and long with a material with low thermal conductivity (low thermal conductivity material) and magnetically coupled.
  • 1 shows a compression device.
  • FIG. 4 shows a reciprocating positive displacement compressor in which only the reciprocating compression part in the cylinder is located at the tip of the extending shaft and installed in the cryogenic region, and the other mechanisms are installed in the normal temperature part. is there.
  • a drive motor and a bearing part are installed at room temperature in order to suppress the generation of heat in the cryogenic part as much as possible.
  • FIG. 5 shows the details of the operating principle of shielding and opening the fluid by the difference in the gap between the piston and the cylinder in the compression process of the reciprocating positive displacement compressor. In this case, when the piston rotates once, the piston reciprocates once.
  • FIG. 5 (a) shows a state in which the rotating piston is located at the left end (piston compression start position) of the compression chamber and is cut into the upper half of the outer peripheral surface with a predetermined width in the reciprocating direction of the discharge passage and the piston. It communicates with the recessed groove.
  • the predetermined width in the reciprocating direction means that, as shown in FIG. 5, the diameter of the suction port or the discharge port is added to the travel distance of the forward or return path of the piston, and the suction port and the discharge port are further connected to the compression chamber. The distance of several mm provided so as not to communicate with each other is added.
  • the suction passage is communicated with a non-grooved portion of the outer peripheral surface of the piston that is not engraved with a groove, and it can be seen that the passage is shielded by a narrow gap between the piston and the cylinder.
  • FIG. 5B shows a case where the piston moves to the center of the compression chamber (piston center position) while rotating, and the discharge port remains in communication with the recessed groove on the discharge side as shown in FIG. 5B.
  • the suction side remains shielded by the gap, and the fluid continues to be pushed out from the discharge port.
  • FIG. 5C shows a state in which the rotating piston is positioned at the right end (piston compression end position) of the compression chamber, the fluid in the compression chamber is discharged, the discharge side is shielded by the gap, and the suction side is the suction port. It turns out that it is in the state connected to the groove part dented in. Thereafter, the piston moves in the direction of the left arrow, and fluid is sucked into the compression chamber through the suction port.
  • FIG. 6 shows that a plurality of grooves and non-grooves that are recessed with a predetermined width in the reciprocating direction are formed alternately on the outer peripheral surface of the piston, and the cylinder portion has a number of suction / discharge ports corresponding to the plurality of grooves and non-grooves.
  • a reciprocating positive displacement compressor configured to increase a discharge amount by performing a reciprocating operation a plurality of times while a piston rotates once by providing an outlet is shown.
  • this reciprocating compression apparatus can also serve as an expander by rotating in the reverse direction.

Abstract

[Problem] To provide a high-efficiency permanent reciprocating displacement compression device that is capable of enabling a fluid to contactlessly enter and exit to and from a suction port and a discharge port at high speed. [Solution] A reciprocating displacement compression device having a contactless suction/discharge mechanism characterized in that: a pair of ports comprising a suction port and a discharge port positioned on a cylinder inner surface outside of the compressing end of a compression chamber are arranged so as to face each other; groove parts having a prescribed depth and grooveless parts having no groove are alternately disposed, at equal spacing, on a peripheral section of a piston in the circumferential direction of the peripheral section, said peripheral section being located on the compression-chamber-side end and having a prescribed width in the reciprocating direction of the piston; a suction stroke and a compression/discharge stroke are repeated as the piston is caused to reciprocate while rotating by a driving means; and the suction of fluid is blocked by means of fluid resistance generated by a gap.

Description

非接触吸入・吐出機構を設けた往復動容積型圧縮装置Reciprocating positive displacement compressor with non-contact suction / discharge mechanism
 本発明は、気体あるいは液体などの流体を圧縮させるための往復動容積型圧縮装置において、往復動容積型圧縮装置に必要な流体の吸入と吐出を交互に遮蔽する弁機構を往復動動作に回転動作を加えることによって、機械的な接触無しに、回転するピストンとシリンダーとの間隙の差で流体の遮蔽・開放を行う往復動容積型圧縮装置に関するものである。 The present invention relates to a reciprocating positive displacement compressor for compressing a fluid such as a gas or a liquid, and a valve mechanism that alternately shields the suction and discharge of fluid required for the reciprocating positive displacement compressor is rotated in a reciprocating motion. The present invention relates to a reciprocating positive displacement compressor that shields and opens a fluid by a difference in a gap between a rotating piston and a cylinder without adding mechanical action.
 液体窒素や液体ヘリウムなどは極低温機器や超電導送電線の冷却のための極低温冷媒として利用されている。さらに、液体水素は、衛星打ち上げロケットの推進剤や半導体、液晶などの製造業における還元剤として利用されている。また、液体水素は、地球環境に負荷をかけない次世代のクリーンエネルギーとして注目されている。すでに、ドイツでは、水素燃料車用に液体水素ステーションが建設され稼動しているなど水素の需要が拡大している。 Liquid nitrogen and liquid helium are used as cryogenic refrigerants for cooling cryogenic equipment and superconducting power transmission lines. Furthermore, liquid hydrogen is used as a propellant for satellite launch vehicles, and as a reducing agent in the manufacturing industry for semiconductors, liquid crystals, and the like. Liquid hydrogen is attracting attention as a next-generation clean energy that does not place a burden on the global environment. Already in Germany, demand for hydrogen is expanding, with liquid hydrogen stations being built and operating for hydrogen fuel vehicles.
 我が国でも水素を利用した燃料電池自動車が開発中であり、その市販化が計画されている。また、燃料電池自動車に水素を補充するインフラとして4大都市圏を中心に水素供給ステーションの整備も進行中である。 In Japan, a fuel cell vehicle using hydrogen is under development and its commercialization is planned. In addition, hydrogen supply stations are being developed mainly in the four major metropolitan areas as an infrastructure for replenishing fuel cell vehicles with hydrogen.
 現在、燃料電池自動車に搭載される燃料タンクには、高圧圧縮ガスを充電可能な水素容器が開発されている。大気圧下での液体水素の密度は、高圧圧縮ガスの密度よりもかなり高く、水素の貯蔵あるいは輸送において、液体水素の方が有利である。従って、将来の水素エネルギー社会において、より密度の大きい液体の状態で水素を利用する方が輸送や貯蔵では、特に効率的である。 Currently, hydrogen containers that can be charged with high-pressure compressed gas have been developed for fuel tanks installed in fuel cell vehicles. The density of liquid hydrogen at atmospheric pressure is much higher than that of high-pressure compressed gas, and liquid hydrogen is more advantageous in storing or transporting hydrogen. Therefore, in the future hydrogen energy society, it is particularly efficient in transportation and storage to use hydrogen in a more dense liquid state.
 また、液体水素温度20Kでは、我が国で発見され、線材化が容易で扱い易い金属系超電導体二ホウ化マグネシウム(MgB)が使用可能で、研究開発も活発化している。 Further, at a liquid hydrogen temperature of 20 K, a metal superconductor magnesium diboride (MgB 2 ), which has been discovered in Japan and is easy to handle as a wire, can be used, and research and development has been activated.
 このような将来のエネルギー社会において、極低温度沸点の液体水素や液体窒素などの貯蔵や輸送が増加するものと考えられる。したがって、それが液体の貯蔵や輸送装置の必要性も増してきている。現在、LPGやLNG輸送用大型極低温遠心ポンプが稼働しており、やや問題点もあるが液体窒素の輸送用に置き換えることが出来る。 In such a future energy society, it is considered that the storage and transport of liquid hydrogen and liquid nitrogen with extremely low temperature boiling points will increase. Therefore, the need for liquid storage and transport equipment is also increasing. Currently, large cryogenic centrifugal pumps for LPG and LNG transportation are in operation, and there are some problems, but they can be replaced with liquid nitrogen transportation.
 従来の極低温流体の輸送用ポンプの小型のものでは、図1に示す液体窒素輸送ポンプ(非特許文献1)が販売されているが、輸送方式が、遠心型のため効率が低く、さらに高価格である。 As a conventional cryogenic fluid transport pump, the liquid nitrogen transport pump (Non-patent Document 1) shown in FIG. 1 is sold. However, since the transport system is a centrifugal type, the efficiency is low, and even higher Price.
 従来、圧縮室への流体の吸入および圧縮された流体の吐出に往復動動作と同期させた機械式弁の開閉によって行っていた。しかし、機械式弁は、固体接触するため弁の耐久性の問題、弁の開閉による振動や騒音の問題、また、極低温領域では、油潤滑剤が使用できないため、弁の耐久性の低下や高速な弁開閉には問題があった。その他、特許文献1の低温流体を効果的に輸送圧縮するポンプ装置も公開されている。 Conventionally, this was performed by opening and closing a mechanical valve synchronized with a reciprocating operation for sucking fluid into the compression chamber and discharging compressed fluid. However, since mechanical valves are in solid contact, the durability of the valves, the problems of vibration and noise due to opening and closing of the valves, and the oil lubricant cannot be used in the extremely low temperature range. There was a problem with high-speed valve opening and closing. In addition, a pump device that effectively transports and compresses a low-temperature fluid disclosed in Patent Document 1 is also disclosed.
特開2010-19164号公報JP 2010-19164 A
 そこで、本発明は、気体や液体などの極低温流体の圧縮にピストンとシリンダーから構成される往復動容積型圧縮装置おいて、圧縮に高効率が得られる往復動容積型を用い、圧縮室への流体の吸入と圧縮室からの圧縮された流体の吐出は、回転するピストンとシリンダーとの間隙の差によって吸入および吐出口への流体の出入りを非接触に高速で行えうる高効率で恒久的な流体圧縮を可能にした往復動容積型圧縮装置を提供することを目的とするものである。 Therefore, the present invention uses a reciprocating positive displacement type compression device composed of a piston and a cylinder for compressing a cryogenic fluid such as a gas or a liquid. The suction and discharge of compressed fluid from the compression chamber is highly efficient and permanent because the difference between the gap between the rotating piston and cylinder allows the fluid to flow into and out of the suction port without contact. It is an object of the present invention to provide a reciprocating positive displacement type compression device that enables smooth fluid compression.
 上記課題は次のような手段により解決される。
 第1に、ピストンに所定の間隙を空けて外接するシリンダー内で往復運動するピストンを回転させ、回転するピストンの圧縮側の端部に所定の幅で外周円周方向に等間隔に溝を設け、シリンダー側には、等間隔に設けた溝と同期する吸入・吐出に繋がる口を設けて、往復動の圧縮過程では、溝部とシリンダー側の口が連通する側を吐出側、無溝部で所定の間隙で連通する口側を吸入側、吸入過程では、その逆の構成で、所定の間隙で流体を遮蔽し、ピストンの回転と溝部および無溝部の位置を同期させることにより非接触に恒久的に圧縮室への流体の吸入・吐出を切り替える機構を持つ往復動容積型圧縮装置の構成とした。
 第2に、回転するピストンの外周面の円周上に溝部と無溝部を複数設けてピストンが一回転する間に往復動動作を複数回行うことにより小型で圧縮容量を増加させた往復動容積型圧縮装置の構成とした。
The above problem is solved by the following means.
First, a piston that reciprocates in a cylinder circumscribing the piston with a predetermined gap is rotated, and grooves are provided at equal intervals in the outer circumferential direction with a predetermined width at the compression end of the rotating piston. The cylinder side is provided with a suction and discharge port that synchronizes with the grooves provided at equal intervals, and in the reciprocating compression process, the side where the groove and the cylinder side communicate with each other is determined by the discharge side and the non-groove part. The inlet side communicated with the gap of the suction side is the suction side, and in the reverse process, the fluid is shielded with a predetermined gap, and the rotation of the piston and the position of the groove part and the non-grooved part are synchronized to make contactless and permanent In addition, a reciprocating positive displacement compressor having a mechanism for switching between suction and discharge of fluid into the compression chamber is employed.
Second, a reciprocating volume that is compact and has a large compression capacity by providing a plurality of groove portions and non-grooved portions on the circumference of the outer peripheral surface of the rotating piston and performing the reciprocating operation a plurality of times while the piston rotates once. The configuration of the mold compression apparatus was adopted.
 本発明は、より詳しくは、
 (1)
原動手段と、前記原動手段に軸を介して連結されたピストンおよびそのピストンを回転しながら往復動させる回転往復動機構と、前記ピストンに所定の間隙を空けて外装されるシリンダーと、および前記シリンダー内に圧縮室を備えた往復動容積型圧縮装置において、
前記圧縮室の圧縮端部の外側のシリンダーの内面に位置して流体の吸入および圧縮された流体の吐出に繋がる一対の吸入口及び吐出口が対向して設けられ、前記ピストンの前記圧縮室側の端部に前記ピストンの往復方向に所定の幅を有する外周部の円周方向に等幅に所定の深さを有する溝部と溝のない無溝部が交互に設けられ、前記原動手段により前記ピストンが回転しながら往復動すると流体の吸入工程と圧縮・吐出工程とが繰り返され、
前記ピストンが圧縮室を拡張する方向に移動する一の吸入工程では、
前記ピストンが回転し、前記ピストンの溝部が前記吸入口に位置し、他方前記吐出口は前記ピストンの無溝部に機械的に非接触で位置することで、前記吸入口から流体が前記圧縮室に吸入され、他方前記吐出口では前記間隙による流体抵抗により前記流体の吸引を遮蔽し、
前記ピストンが圧縮室を縮小する方向に移動する一の圧縮・吐出工程では、
前記ピストンの溝部が前記吐出口に位置し、他方前記吸入口は前記ピストンの無溝部に機械的に非接触で位置することで、
前記吐出口から流体が前記圧縮室から吐出され、他方吸入口では前記間隙による流体抵抗により前記吸入口から前記流体の吐出を遮蔽することを特徴とする非接触吸入・吐出機構を設けた往復動容積型圧縮装置の構成とした。
 (2)
前記溝と無溝部および前記吸入口と吐出口を各交互に複数対設けて、かつ、前記ピストンが一回転する間に往復動動作を当該複数回行うことを特徴とする(1)に記載の非接触吸入・吐出機構を設けた往復動容積型圧縮装置の構成とした。
 (3)
前記複数は3であることを特徴とする(2)に記載の非接触吸入・吐出機構を設けた往復動容積型圧縮装置の構成とした。
 (4)
前記原動手段を常温状態に設置し、前記ピストンおよびピストン回転往復動機構、前記シリンダーを極低温状態に設置したことを特徴とする(1)乃至(3)のいずれかに記載された非接触吸入・吐出機構を設けた往復動容積型装置の構成とした。
 (5)
前記原動手段、前記ピストン(圧縮端を除く)および前記ピストン回転往復動機構を常温状態に設置し、前記ピストン(圧縮端)、前記シリンダーを極低温状態に設置したことを特徴とする(1)乃至(3)のいずれかに記載された非接触吸入・吐出機構を設けた往復動容積型装置の構成とした。
 (6)
前記原動手段、前記ピストンおよび前記ピストン回転往復動機構、前記シリンダーのすべてを常温状態に設置したことを特徴とする(1)乃至(3)のいずれかに記載された非接触吸入・吐出機構を設けた往復動容積型装置の構成とした。
 (7)
前記流体は、水素ガス、窒素ガス、ヘリウムガス、空気、ネオン、液体水素、液体窒素、液体ヘリウム、液体空気、液体ネオンの内から選択されるいずれか1種又はそれら2種以上の混合物であることを特徴とする(1)乃至(6)のいずれかに記載された非接触吸入・吐出機構を設けた往復動容積型装置の構成とした。
 (8)
前記ピストンとシリンダーとの間隙が、数十μmであることを特徴とする(1)乃至(7)のいずれかに記載された非接触吸入・吐出機構を設けた往復動容積型装置の構成とした。
More particularly, the present invention
(1)
A driving means; a piston coupled to the driving means via a shaft; a rotary reciprocating mechanism for reciprocating the piston while rotating; a cylinder mounted on the piston with a predetermined gap; and the cylinder In a reciprocating positive displacement compressor with a compression chamber inside,
A pair of suction ports and discharge ports, which are located on the inner surface of the cylinder outside the compression end of the compression chamber and are connected to the suction and discharge of the compressed fluid, are provided facing each other, and the piston is on the compression chamber side A groove portion having a predetermined depth and an equal width in the circumferential direction of the outer peripheral portion having a predetermined width in the reciprocating direction of the piston is alternately provided at the end portion of the piston, and the piston is driven by the driving means. When reciprocating while rotating, the fluid suction process and the compression / discharge process are repeated,
In one suction step in which the piston moves in the direction of expanding the compression chamber,
The piston rotates, the groove portion of the piston is positioned at the suction port, and the discharge port is positioned in a mechanical non-contact with the non-groove portion of the piston so that fluid flows from the suction port to the compression chamber. While being sucked, and at the discharge port, the suction of the fluid is shielded by the fluid resistance due to the gap,
In one compression / discharge process in which the piston moves in the direction of reducing the compression chamber,
The groove portion of the piston is positioned at the discharge port, while the suction port is mechanically non-contacted with the groove portion of the piston,
Reciprocating motion provided with a non-contact suction / discharge mechanism characterized in that fluid is discharged from the compression port from the compression chamber, and at the other suction port, discharge of the fluid from the suction port is shielded by fluid resistance due to the gap. It was set as the structure of the positive displacement compressor.
(2)
The groove and non-grooved portion and the suction port and the discharge port are alternately provided as a plurality of pairs, and the reciprocating operation is performed a plurality of times while the piston rotates once. A reciprocating positive displacement compressor equipped with a non-contact suction / discharge mechanism was adopted.
(3)
The plurality is 3, the reciprocating displacement type compression device provided with the non-contact suction / discharge mechanism according to (2).
(4)
The non-contact suction according to any one of (1) to (3), wherein the driving means is installed in a normal temperature state, and the piston and the piston rotation reciprocating mechanism and the cylinder are installed in a cryogenic state. -It was set as the structure of the reciprocating displacement positive displacement type apparatus which provided the discharge mechanism.
(5)
The driving means, the piston (excluding the compression end), and the piston rotation reciprocating mechanism are installed in a normal temperature state, and the piston (compression end) and the cylinder are installed in a cryogenic state (1) A reciprocating positive displacement apparatus provided with the non-contact suction / discharge mechanism described in any one of (3) to (3) is used.
(6)
The non-contact suction / discharge mechanism according to any one of (1) to (3), wherein the driving means, the piston, the piston reciprocating mechanism, and the cylinder are all installed at room temperature. It was set as the structure of the provided reciprocating volume type | mold apparatus.
(7)
The fluid is any one selected from hydrogen gas, nitrogen gas, helium gas, air, neon, liquid hydrogen, liquid nitrogen, liquid helium, liquid air, and liquid neon, or a mixture of two or more thereof. A reciprocating positive displacement apparatus having the non-contact suction / discharge mechanism described in any one of (1) to (6) is provided.
(8)
The configuration of the reciprocating positive displacement type device provided with the non-contact suction / discharge mechanism according to any one of (1) to (7), wherein a gap between the piston and the cylinder is several tens of μm; did.
 本発明によれば、往復動容積型圧縮装置の圧縮部の流体の吸入・吐出をピストンの外周面と固定側のシリンダーの内周面との間隙の差による流体抵抗の差で遮蔽効果を非接触で可能なため、常温から極低温まで、さらに常温以上においても、幅広い温度範囲で、しかも、高速で流体の吸入・吐出の切り替えができ、小型で恒久的動作が可能な吸入・吐出機構を持つ回転往復動容積型圧縮装置を提供することができることとなった。 According to the present invention, the suction and discharge of the fluid in the compression part of the reciprocating positive displacement compressor is not blocked by the difference in fluid resistance due to the difference in the gap between the outer peripheral surface of the piston and the inner peripheral surface of the fixed cylinder. Since it is possible to contact, a suction / discharge mechanism that can switch between suction and discharge of fluid at a high speed in a wide temperature range from room temperature to extremely low temperature, even at room temperature and above, and capable of permanent operation with a small size. It was possible to provide a rotary reciprocating positive displacement type compression device.
従来のバーバーニコルス社製遠心型液体窒素輸送ポンプの分解写真である。It is a disassembled photograph of the conventional centrifugal liquid nitrogen transport pump manufactured by Barber Nichols. 極低温流体を圧縮するために極低温で動作可能な軸受構成を施した本発明の吸入・吐出機構を用いた回転往復動圧縮装置の部分断面模式図である。FIG. 3 is a partial cross-sectional schematic view of a rotary reciprocating compression device using a suction / discharge mechanism of the present invention having a bearing configuration operable at a cryogenic temperature in order to compress a cryogenic fluid. 発熱の大きい駆動モータを常温部に設置し、モータの回転を磁気カップリングで連結した本発明の吸入・吐出機構を用いた回転往復動圧縮装置の部分断面模式図模式図である。It is a partial cross-sectional schematic diagram of a rotary reciprocating compression device using a suction / discharge mechanism of the present invention in which a drive motor generating a large amount of heat is installed in a room temperature portion and the rotation of the motor is connected by a magnetic coupling. 圧縮部のみを極低温に設置し、細長い断熱材で常温と極低温とを連結した本発明の吸入・吐出機構を用いた回転往復動圧縮装置の部分断面模式図模式図である。It is a partial cross-sectional schematic diagram of the rotary reciprocating compression apparatus using the suction / discharge mechanism of the present invention in which only the compression section is installed at a cryogenic temperature and the room temperature and the cryogenic temperature are connected by an elongated heat insulating material. 本発明の非接触吸入・吐出機構を用いた往復動容積型圧縮装置の圧縮過程での吸入・吐出機構の動作原理を示した部分断面図である。(a)ピストン軸左端(圧縮始め)、(b)ピストン軸中央、(c)ピストン軸右端(圧縮終了)を示す。It is the fragmentary sectional view which showed the operating principle of the suction / discharge mechanism in the compression process of the reciprocating volume type compression device using the non-contact suction / discharge mechanism of this invention. (A) Piston shaft left end (start of compression), (b) Piston shaft center, (c) Piston shaft right end (compression end). ピストン外周面に溝部と無溝部とを交互に複数個製作し、ピストンの1回転動作の間に複数回の往復動動作を行うことで圧縮・輸送容量を増大できる回転往復動圧縮装置の圧縮部の構造を示す図である。The compression part of the rotary reciprocating compression device that can increase the compression and transport capacity by making a plurality of grooves and non-groove parts alternately on the outer peripheral surface of the piston, and performing the reciprocating action a plurality of times during one revolution of the piston. FIG.
 以下、本願発明について、図面を参照しながら詳細に説明する。 Hereinafter, the present invention will be described in detail with reference to the drawings.
 本発明の往復動作に回転動作を加えて、流体の吸入・吐出の切り替えを非接触に行う往復動容積型圧縮装置の一例を図2に示す。 FIG. 2 shows an example of a reciprocating positive displacement compressor that performs a rotation operation in addition to a reciprocating operation of the present invention to perform non-contact switching between fluid suction and discharge.
 図2に示す構成は、ピストンの重量を支持して回転往復動動作を実現するために、ラジアル軸受には非接触の流体ラジアル軸受を、回転・往復動の変換および軸方向負荷支持には磁気を利用した回転往復動機構を採用することでピストンは全て非接触にシリンダー内に支持される。しかも、ピストン(後述の無溝部)とシリンダーとの間隙は数十μmのオーダーで保たれるので恒久的に、また、高温から極低温までの広い温度範囲で動作可能になる。回転往復動機構は、ピストンと、ピストンを非接触で支持するシリンダーと、ピストンを回転させる駆動モータと、ピストンを往復動させるピストン往復機構と、からなる。 The configuration shown in FIG. 2 supports a non-contact fluid radial bearing for the radial bearing and a magnetic for the rotation / reciprocation conversion and axial load support in order to support the weight of the piston and realize the rotational reciprocating motion. The piston is supported in the cylinder in a non-contact manner by adopting a rotary reciprocating mechanism using the. In addition, since the gap between the piston (no-groove portion to be described later) and the cylinder is maintained on the order of several tens of μm, it can be operated permanently and in a wide temperature range from high temperature to very low temperature. The rotary reciprocating mechanism includes a piston, a cylinder that supports the piston in a non-contact manner, a drive motor that rotates the piston, and a piston reciprocating mechanism that reciprocates the piston.
 ピストン往復機構は、原動手段である駆動モータにより回転する磁性材料から成るピストンと、シリンダーと、シリンダー内部中央部に固定された永久磁石と、からなり、磁性体と永久磁石の作用によって、ピストンの回転と同期したピストンの往復動運動が磁気力で生じる。ピストンの往復運動の圧縮過程と吸入過程にピストンの回転と同期してピストンとシリンダーとの間隙の差によって吸入・吐出する流体の遮蔽・開放が行われる。 The piston reciprocating mechanism is composed of a piston made of a magnetic material that is rotated by a drive motor that is a driving means, a cylinder, and a permanent magnet fixed to the center inside the cylinder. The reciprocating motion of the piston synchronized with the rotation is generated by the magnetic force. The fluid to be sucked and discharged is shielded and opened by the difference between the piston and the cylinder in synchronization with the rotation of the piston in the compression process and the suction process of the reciprocating motion of the piston.
 すなわち、図5(a)(b)に示したように流体の圧縮工程では、流体が圧縮室から吐出口に向かって流れる。このとき、吐出口はピストンの外周部の溝部と連通しているためほぼ流体抵抗を生じることなく流体は吐出口からシリンダー外に吐出される。 That is, as shown in FIGS. 5A and 5B, in the fluid compression process, the fluid flows from the compression chamber toward the discharge port. At this time, since the discharge port communicates with the groove portion on the outer peripheral portion of the piston, the fluid is discharged from the discharge port to the outside of the cylinder without causing a substantial fluid resistance.
 一方、このとき吸入口は、ピストンの無溝部に位置している。即ち、吸入口に位置するピストンとシリンダーとの間隙が非常に狭いため、圧縮された流体が吸入口に向かって流れるには大きな流体抵抗を生じることになり、吸入口に向かう流体は、その流体抵抗によって遮られる。このような動作により吸入・吐出する流体の遮蔽・開放が行われる。 On the other hand, at this time, the suction port is located in the non-grooved portion of the piston. In other words, since the gap between the piston and the cylinder located at the suction port is very narrow, a large fluid resistance is generated for the compressed fluid to flow toward the suction port. Blocked by resistance. By such an operation, the fluid to be sucked / discharged is shielded / opened.
 図3は、駆動モータの極低温での発熱を避けるため駆動モータのみを常温に設置し、回転は熱伝導の低い材料(低熱伝導材)で細く長くして磁気カップリング連結した往復動容積型圧縮装置を示したものである。 Figure 3 shows a reciprocating positive displacement type in which only the drive motor is installed at room temperature to avoid heat generation at extremely low temperatures, and the rotation is thin and long with a material with low thermal conductivity (low thermal conductivity material) and magnetically coupled. 1 shows a compression device.
 図4は、シリンダー内の往復動圧縮部のみを延設軸の先端部に位置させ、極低温領域に設置し、その他の機構は常温部に設置した往復動容積型圧縮装置を示したものである。この構造は、極低温部での熱の発生を極力抑えるために駆動モータ、軸受部を常温に設置したものである。  FIG. 4 shows a reciprocating positive displacement compressor in which only the reciprocating compression part in the cylinder is located at the tip of the extending shaft and installed in the cryogenic region, and the other mechanisms are installed in the normal temperature part. is there. In this structure, a drive motor and a bearing part are installed at room temperature in order to suppress the generation of heat in the cryogenic part as much as possible. *
 図5は、往復動容積型圧縮装置の圧縮過程におけるピストンとシリンダーとの間隙の差で流体の遮蔽・開放を行う動作原理の詳細を示したものである。この場合、ピストンが一回転するとピストンが一往復する構成である。 FIG. 5 shows the details of the operating principle of shielding and opening the fluid by the difference in the gap between the piston and the cylinder in the compression process of the reciprocating positive displacement compressor. In this case, when the piston rotates once, the piston reciprocates once.
 図5(a)は、回転するピストンが圧縮室の左端(ピストン圧縮始動位置)に位置している状態で、吐出口通路とピストンの往復動方向に所定の幅で外周面上半分に刻んだ凹んだ溝部に連通している。ここで、往復動方向の所定の幅とは、図5に図示したように、ピストンの往路あるいは復路の移動距離に、吸入口あるいは吐出口の直径を加え、さらに吸入口と吐出口が圧縮室に連通しないために設ける数mmの距離を足し合わせたものである。一方、吸入口通路は溝の刻んでいないピストン外周面の無溝部の部分に連通され、ピストンとシリンダーとの狭い間隙で通路が遮蔽されていることが分かる。 FIG. 5 (a) shows a state in which the rotating piston is located at the left end (piston compression start position) of the compression chamber and is cut into the upper half of the outer peripheral surface with a predetermined width in the reciprocating direction of the discharge passage and the piston. It communicates with the recessed groove. Here, the predetermined width in the reciprocating direction means that, as shown in FIG. 5, the diameter of the suction port or the discharge port is added to the travel distance of the forward or return path of the piston, and the suction port and the discharge port are further connected to the compression chamber. The distance of several mm provided so as not to communicate with each other is added. On the other hand, the suction passage is communicated with a non-grooved portion of the outer peripheral surface of the piston that is not engraved with a groove, and it can be seen that the passage is shielded by a narrow gap between the piston and the cylinder.
 図5(b)は、ピストンが回転しながら圧縮室の中央(ピストン中央位置)まで移動した場合で、図5(b)のように吐出側は凹んだ溝部に吐出口が連通したままであり、吸入側は間隙によって遮蔽状態のままであり、流体が吐出口から外部に押し出され続ける。 FIG. 5B shows a case where the piston moves to the center of the compression chamber (piston center position) while rotating, and the discharge port remains in communication with the recessed groove on the discharge side as shown in FIG. 5B. The suction side remains shielded by the gap, and the fluid continues to be pushed out from the discharge port.
 図5(c)は、回転するピストンが圧縮室の右端(ピストン圧縮終了位置)に位置した状態で、圧縮室の流体は吐き出され、吐出側は、間隙によって遮蔽され、吸入側は、吸入口に凹んだ溝部に連通された状態になっていることが分かる。この後、ピストンは左方矢印方向に向かって移動し、圧縮室には吸入口を通して流体が吸入される。 FIG. 5C shows a state in which the rotating piston is positioned at the right end (piston compression end position) of the compression chamber, the fluid in the compression chamber is discharged, the discharge side is shielded by the gap, and the suction side is the suction port. It turns out that it is in the state connected to the groove part dented in. Thereafter, the piston moves in the direction of the left arrow, and fluid is sucked into the compression chamber through the suction port.
 図6は、ピストン外周面に往復動方向の所定の幅で凹んだ溝部と無溝部とを交互に複数個作成し、シリンダー部には複数個の溝部と無溝部に見合った数の吸入・吐出口を設けることによりピストンが一回転する間に往復動作を複数回行うことによって、吐出量を増加させるように構成した往復動容積型圧縮装置を示したものである。 FIG. 6 shows that a plurality of grooves and non-grooves that are recessed with a predetermined width in the reciprocating direction are formed alternately on the outer peripheral surface of the piston, and the cylinder portion has a number of suction / discharge ports corresponding to the plurality of grooves and non-grooves. A reciprocating positive displacement compressor configured to increase a discharge amount by performing a reciprocating operation a plurality of times while a piston rotates once by providing an outlet is shown.
 なお、各図においては、一回転で3往復の動作をさせることにより3倍の圧縮容量・輸送量を得ることが出来る。なお、この往復動圧縮装置は、逆回転することにより膨張機の役目をさせることもできる。また、極低温領域のみならず常温での作動も可能である。 In each figure, three times the compression capacity and transport amount can be obtained by performing three reciprocations per rotation. In addition, this reciprocating compression apparatus can also serve as an expander by rotating in the reverse direction. In addition, it is possible to operate not only in the cryogenic region but also at room temperature.
 さらに、上記の例は、あくまでも本発明の理解を容易にするためのものであり、本発明はこれに限定されるものではない。すなわち、本発明の技術思想に基づく変形、他の態様は、当然本発明に包含されるものである。  Furthermore, the above example is only for facilitating understanding of the present invention, and the present invention is not limited to this. That is, modifications and other aspects based on the technical idea of the present invention are naturally included in the present invention.

Claims (8)

  1. 原動手段と、前記原動手段に軸を介して連結されたピストンおよびそのピストンを回転しながら往復動させる回転往復動機構と、前記ピストンに所定の間隙を空けて外装されるシリンダーと、および前記シリンダー内に圧縮室を備えた往復動容積型圧縮装置において、
    前記圧縮室の圧縮端部の外側のシリンダーの内面に位置して流体の吸入および圧縮された流体の吐出に繋がる一対の吸入口及び吐出口が対向して設けられ、前記ピストンの前記圧縮室側の端部に前記ピストンの往復方向に所定の幅を有する外周部の円周方向に等幅に所定の深さを有する溝部と溝のない無溝部が交互に設けられ、前記原動手段により前記ピストンが回転しながら往復動すると流体の吸入工程と圧縮・吐出工程とが繰り返され、
    前記ピストンが圧縮室を拡張する方向に移動する一の吸入工程では、
    前記ピストンが回転し、前記ピストンの溝部が前記吸入口に位置し、他方前記吐出口は前記ピストンの無溝部に機械的に非接触で位置することで、前記吸入口から流体が前記圧縮室に吸入され、他方前記吐出口では前記間隙による流体抵抗により前記流体の吸引を遮蔽し、
    前記ピストンが圧縮室を縮小する方向に移動する一の圧縮・吐出工程では、
    前記ピストンの溝部が前記吐出口に位置し、他方前記吸入口は前記ピストンの無溝部に機械的に非接触で位置することで、
    前記吐出口から流体が前記圧縮室から吐出され、他方吸入口では前記間隙による流体抵抗により前記吸入口から前記流体の吐出を遮蔽することを特徴とする非接触吸入・吐出機構を設けた往復動容積型圧縮装置。
    A driving means; a piston coupled to the driving means via a shaft; a rotary reciprocating mechanism for reciprocating the piston while rotating; a cylinder mounted on the piston with a predetermined gap; and the cylinder In a reciprocating positive displacement compressor with a compression chamber inside,
    A pair of suction ports and discharge ports, which are located on the inner surface of the cylinder outside the compression end of the compression chamber and are connected to the suction and discharge of the compressed fluid, are provided facing each other, and the piston is on the compression chamber side A groove portion having a predetermined depth and an equal width in the circumferential direction of the outer peripheral portion having a predetermined width in the reciprocating direction of the piston is alternately provided at the end portion of the piston, and the piston is driven by the driving means. When reciprocating while rotating, the fluid suction process and the compression / discharge process are repeated,
    In one suction step in which the piston moves in the direction of expanding the compression chamber,
    The piston rotates, the groove portion of the piston is positioned at the suction port, and the discharge port is positioned in a mechanical non-contact with the non-groove portion of the piston so that fluid flows from the suction port to the compression chamber. While being sucked, and at the discharge port, the suction of the fluid is shielded by the fluid resistance due to the gap,
    In one compression / discharge process in which the piston moves in the direction of reducing the compression chamber,
    The groove portion of the piston is positioned at the discharge port, while the suction port is mechanically non-contacted with the groove portion of the piston,
    Reciprocating motion provided with a non-contact suction / discharge mechanism characterized in that fluid is discharged from the compression port from the compression chamber, and at the other suction port, discharge of the fluid from the suction port is shielded by fluid resistance due to the gap. Positive displacement compressor.
  2. 前記溝と無溝部および前記吸入口と吐出口を各交互に複数対設けて、かつ、前記ピストンが一回転する間に往復動動作を当該複数回行うことを特徴とする請求項1に記載の非接触吸入・吐出機構を設けた往復動容積型圧縮装置。 2. The reciprocating operation is performed a plurality of times while a plurality of pairs of the grooves and non-grooved portions and the suction ports and discharge ports are provided alternately, and the piston is rotated once. A reciprocating positive displacement compressor with a non-contact suction / discharge mechanism.
  3. 前記複数は3であることを特徴とする請求項2に記載の非接触吸入・吐出機構を設けた往復動容積型圧縮装置。 The reciprocating positive displacement compressor with a non-contact suction / discharge mechanism according to claim 2, wherein the plurality is three.
  4. 前記原動手段を常温状態に設置し、前記ピストンおよびピストン回転往復動機構、前記シリンダーを極低温状態に設置したことを特徴とする請求項1乃至3のいずれか1項に記載された非接触吸入・吐出機構を設けた往復動容積型装置。 The non-contact inhalation according to any one of claims 1 to 3, wherein the driving means is installed in a normal temperature state, and the piston and the piston rotation reciprocating mechanism and the cylinder are installed in a cryogenic state. -A reciprocating positive displacement device with a discharge mechanism.
  5. 前記原動手段、前記ピストン(圧縮端を除く)および前記ピストン回転往復動機構を常温状態に設置し、前記ピストン(圧縮端)、前記シリンダーを極低温状態に設置したことを特徴とする請求項1乃至3のいずれか1項に記載された非接触吸入・吐出機構を設けた往復動容積型装置。 2. The driving means, the piston (excluding the compression end), and the piston rotation reciprocating mechanism are installed in a normal temperature state, and the piston (compression end) and the cylinder are installed in a cryogenic state. A reciprocating positive displacement type device provided with the non-contact suction / discharge mechanism according to any one of items 1 to 3.
  6. 前記原動手段、前記ピストンおよび前記ピストン回転往復動機構、前記シリンダーのすべてを常温状態に設置したことを特徴とする請求項1乃至3のいずれか1項に記載された非接触吸入・吐出機構を設けた往復動容積型装置。 The non-contact suction / discharge mechanism according to any one of claims 1 to 3, wherein all of the driving means, the piston, the piston rotary reciprocating mechanism, and the cylinder are installed at room temperature. A reciprocating positive displacement device provided.
  7. 前記流体は、水素ガス、窒素ガス、ヘリウムガス、空気、ネオン、液体水素、液体窒素、液体ヘリウム、液体空気、液体ネオンの内から選択されるいずれか1種又はそれら2種以上の混合物であることを特徴とする請求項1乃至6のいずれか1項に記載された非接触吸入・吐出機構を設けた往復動容積型装置。 The fluid is any one selected from hydrogen gas, nitrogen gas, helium gas, air, neon, liquid hydrogen, liquid nitrogen, liquid helium, liquid air, and liquid neon, or a mixture of two or more thereof. A reciprocating positive displacement apparatus provided with the non-contact suction / discharge mechanism according to any one of claims 1 to 6.
  8. 前記ピストンとシリンダーとの間隙が、数十μmであることを特徴とする請求項1乃至7のいずれか1項に記載された非接触吸入・吐出機構を設けた往復動容積型装置。 The reciprocating positive displacement type apparatus provided with the non-contact suction / discharge mechanism according to any one of claims 1 to 7, wherein a gap between the piston and the cylinder is several tens of micrometers.
PCT/JP2014/080207 2013-11-14 2014-11-14 Reciprocating displacement type compression device equipped with contactless suction/discharge mechanism WO2015072547A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015547808A JPWO2015072547A1 (en) 2013-11-14 2014-11-14 Reciprocating positive displacement compressor with non-contact suction / discharge mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-236064 2013-11-14
JP2013236064 2013-11-14

Publications (1)

Publication Number Publication Date
WO2015072547A1 true WO2015072547A1 (en) 2015-05-21

Family

ID=53057481

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080207 WO2015072547A1 (en) 2013-11-14 2014-11-14 Reciprocating displacement type compression device equipped with contactless suction/discharge mechanism

Country Status (2)

Country Link
JP (1) JPWO2015072547A1 (en)
WO (1) WO2015072547A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62503180A (en) * 1985-06-26 1987-12-17 エム・アンド・テイ−・ケミカルズ・インコ−ポレ−テッド positive displacement piston pump
JP2002250274A (en) * 2000-12-21 2002-09-06 Kazumasa Ikuta Suction/discharge device for fluid
JP2012031805A (en) * 2010-08-02 2012-02-16 Panasonic Corp Plunger pump and fuel cell electric power generation system with plunger pump

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4181429B2 (en) * 2003-03-04 2008-11-12 応研精工株式会社 Piston pump
JP2009052540A (en) * 2007-07-30 2009-03-12 Kayseven Co Ltd Fluid suction and discharge device
JP2009068421A (en) * 2007-09-13 2009-04-02 Kayseven Co Ltd Fluid suction delivery device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62503180A (en) * 1985-06-26 1987-12-17 エム・アンド・テイ−・ケミカルズ・インコ−ポレ−テッド positive displacement piston pump
JP2002250274A (en) * 2000-12-21 2002-09-06 Kazumasa Ikuta Suction/discharge device for fluid
JP2012031805A (en) * 2010-08-02 2012-02-16 Panasonic Corp Plunger pump and fuel cell electric power generation system with plunger pump

Also Published As

Publication number Publication date
JPWO2015072547A1 (en) 2017-03-16

Similar Documents

Publication Publication Date Title
TWI473956B (en) Cooler type freezer
EP2122170B1 (en) Reciprocating compressor
US9657970B2 (en) Cryogenic refrigerator
JP5446199B2 (en) Superconducting rotating machine
US20160061493A1 (en) Cryogenic refrigerator
CN102792105B (en) Displacer and method for producing same, and cooling storage refrigerator
JP6418655B2 (en) Magnetic rotary reciprocating mechanism
KR102210849B1 (en) Cryocooler with magnetic reciprocating piston
US20160025080A1 (en) Apparatus including swashplates fixed on shaft assembly and piston assemblies
Yap et al. Introduction of the novel cross vane expander-compressor unit for vapour compression cycle
WO2015072547A1 (en) Reciprocating displacement type compression device equipped with contactless suction/discharge mechanism
WO2015093034A1 (en) Heat engine
US10903732B2 (en) Moveable core-type reciprocating motor and reciprocating compressor having a moveable core-type reciprocating motor
JP6584175B2 (en) Cryogenic liquid pump
US20180180035A1 (en) Submerged cryogenic pump with a magnetic linear coupling
JP6792990B2 (en) Cryogenic freezer
WO2017137012A1 (en) Power system using relative pressure gas energy and power method
JP6320955B2 (en) Liquefaction system and power generation system
CN101818665B (en) Rotary volume-variable expansion compression engine
US20180180042A1 (en) Submergible cryogenic pump with linear electromagnetic motor drive
JP2010060246A (en) Selector valve and cold storage refrigerator
JP2016011831A (en) Cryogenic refrigerator
US10240562B2 (en) Machine system having submersible pumping system, and method
CN104481837A (en) Compressor with coplanar symmetric pistons connected with each other by concave plates with guide grooves
US8998597B2 (en) Compressor, engine or pump with a piston translating along a circular path

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861859

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015547808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861859

Country of ref document: EP

Kind code of ref document: A1