WO2015072503A1 - Heat accumulator - Google Patents

Heat accumulator Download PDF

Info

Publication number
WO2015072503A1
WO2015072503A1 PCT/JP2014/080049 JP2014080049W WO2015072503A1 WO 2015072503 A1 WO2015072503 A1 WO 2015072503A1 JP 2014080049 W JP2014080049 W JP 2014080049W WO 2015072503 A1 WO2015072503 A1 WO 2015072503A1
Authority
WO
WIPO (PCT)
Prior art keywords
graphite
heat
granular material
pipe
silicon carbide
Prior art date
Application number
PCT/JP2014/080049
Other languages
French (fr)
Japanese (ja)
Inventor
裕昭 桐木
明旭 韓
久保 修一
Original Assignee
イビデン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by イビデン株式会社 filed Critical イビデン株式会社
Publication of WO2015072503A1 publication Critical patent/WO2015072503A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K5/00Heat-transfer, heat-exchange or heat-storage materials, e.g. refrigerants; Materials for the production of heat or cold by chemical reactions other than by combustion
    • C09K5/02Materials undergoing a change of physical state when used
    • C09K5/06Materials undergoing a change of physical state when used the change of state being from liquid to solid or vice versa
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D20/00Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00
    • F28D20/02Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat
    • F28D20/023Heat storage plants or apparatus in general; Regenerative heat-exchange apparatus not covered by groups F28D17/00 or F28D19/00 using latent heat the latent heat storage material being enclosed in granular particles or dispersed in a porous, fibrous or cellular structure
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Definitions

  • the present invention relates to a heat accumulator.
  • Patent Document 1 discloses a heat storage system that stores water by freezing water in a heat storage tank with a refrigerant that flows through the circulation pipe disposed in the heat storage tank, and each of the circulation pipes is connected to each of the circulation pipes.
  • a heat storage system is described, wherein the bent portions are continuously bent so as to be located in a zigzag shape in a parallel plane, and the refrigerant flow directions of adjacent circulation pipes are reversed. Yes.
  • a structure that bends continuously so as to be zigzag in a plane is also called a serpentine structure, and it is widely used as a method of arranging pipes that deliver heat within a limited area, such as air conditioners and automobile radiators. Has been.
  • the heat storage system described in Patent Document 1 maintains the liquid (water) in the heat storage tank at a predetermined temperature by exchanging heat through a pipe. Since the heat storage body (liquid in the heat storage tank) is a liquid, heat transfer is premised on convection. For this reason, when the viscosity increases in the temperature range to which the heat storage body is exposed, or when solidification or boiling occurs, the heat storage performance is significantly lowered, and in some cases, the heat storage device is damaged. For this reason, the temperature range in which the heat accumulator can be used is greatly affected by the type of the heat accumulator used.
  • An object of the present invention is to provide a heat accumulator that can be used in a wide range of temperature, has little deterioration in performance even at low temperatures, can be used at high temperatures, has high heat transfer performance, and has little performance deterioration.
  • the heat accumulator of the present invention for solving the above problems is composed of a pipe, a granular material mainly composed of graphite in which the pipe is embedded, a container for accommodating the pipe and the granular material.
  • the heat accumulator of the present invention since the granular material mainly composed of graphite stores heat, the graphite itself can transfer heat without convection, and the mechanism of heat storage and heat transfer does not change from low temperature to high temperature. . For this reason, heat can be stored without depending on temperature.
  • the heat accumulator of the present invention since the granular material mainly composed of graphite stores heat, it is a material that has high heat resistance and is not easily deteriorated. Can be used for use.
  • the granular material contains silicon carbide.
  • Silicon carbide is a hard ceramic, and graphite is a soft ceramic.
  • silicon carbide polishes the graphite by friction between particles constituting the granular material due to vibration, thermal deformation, etc. during repeated use, increasing the contact area and facilitating heat conduction. .
  • the pipe has a serpentine structure.
  • the pipe of the heat accumulator of the present invention further has a serpentine structure, deformation of the pipe at the time of temperature rise or temperature drop occurs at various places, and friction between particles constituting the granular material is generated at that place. It tends to occur.
  • the part with a large thermal deformation by thermal expansion and contraction is also a part with a large heat flow around a pipe, the heat storage to a heat storage body can be performed efficiently.
  • the pipe has a plurality of serpentine structures facing each other, and a graphite plate is embedded between the plurality of serpentine structures.
  • the heat accumulator of the present invention has a plurality of serpentine structures in which the pipes face each other, and a graphite plate is embedded between the plurality of rows of serpentine structures, thereby forming two substantially parallel graphite plates.
  • the pipes constituting the serpentine structure are arranged in the space, and the pipes are arranged to be embedded in the powder particles.
  • phase change material absorbs or releases a lot of heat with a phase transition. Therefore, when holding the granular material which is a heat storage body at the temperature more than a phase transition temperature, a temperature fall can be suppressed. Moreover, when holding the granular material which is a heat storage body at the temperature below a phase transition temperature, a temperature rise can be suppressed. In addition, since heat transfer is performed by powder particles without using a phase change material, there is little deterioration in performance even at low temperatures, and it can be used at high temperatures, providing a heat accumulator with high heat transfer performance and low performance deterioration. be able to.
  • the granular material having graphite as a main component stores heat
  • the graphite itself can transfer heat without convection, and the mechanism of heat storage and heat transfer does not change from low temperature to high temperature. For this reason, heat can be stored without depending on temperature.
  • the heat accumulator of the present invention since the granular material mainly composed of graphite stores heat, it is a material that has high heat resistance and is not easily deteriorated. Can be used for use.
  • FIG.1 (a) is a top view of the external appearance of the thermal accumulator of Embodiment 1 which concerns on this invention
  • FIG.1 (b) is the side view
  • 2A is a cross-sectional view taken along line AA ′ of FIG. 1A
  • FIG. 2B is a cross-sectional view taken along line BB ′ of FIG. 1A
  • FIG. FIG. 2 is a cross-sectional view taken along the line CC ′ of FIG.
  • the heat accumulator of the present invention is composed of a pipe, a granular material mainly composed of graphite in which the pipe is embedded, a container that accommodates the pipe and the granular material.
  • the heat accumulator of the present invention since the granular material mainly composed of graphite stores heat, the graphite itself can transfer heat without convection, and the mechanism of heat storage and heat transfer does not change from low temperature to high temperature. . For this reason, heat can be stored without depending on temperature.
  • the heat accumulator of the present invention since the granular material mainly composed of graphite stores heat, it is a material that has high heat resistance and is not easily deteriorated. Can be used for use.
  • the material and thickness of the pipe of the present invention are not particularly limited.
  • the material of the pipe is preferably a metal, and for example, stainless steel, iron, copper, aluminum and the like can be used.
  • the powder is not particularly limited as long as graphite is a main component. Any kind of graphite such as natural graphite, artificial graphite, quiche graphite, and expanded graphite can be used.
  • a granular material containing graphite as a main component means that 50 to 100% by weight of the granular material is graphite.
  • the weight of graphite contained in the granular material is desirably 70 to 100% by weight of the granular material. If 50% by weight or more of the granular material is graphite, the graphite is likely to be worn by friction, and if it is 70% by weight or more, it is more likely to be worn. When the graphite is worn, the contact area between the particles increases, and the heat transfer performance in the heat storage body can be improved.
  • the form of the granular material is not particularly limited. For example, the following forms are mentioned.
  • A The form of the granular material formed by mixing graphite and another substance.
  • B The form of the granular material formed by partially converting the surface of the graphite particles into another substance.
  • C The form of a granular material in which other substances are present inside the graphite particles.
  • the “other substance” is not particularly limited, but may be, for example, silicon carbide.
  • graphite is a gas such as carbon dioxide or carbon monoxide that is a reaction product with oxygen and does not form a film. For this reason, it can remove by heating in air
  • the container for storing the granular material is not particularly limited.
  • a ceramic container, a metal container, or the like can be used.
  • the average particle diameter of the granular material of the regenerator of the present invention is not particularly limited. It can be fine or coarse. Among these, the average particle size of the desirable powder is 1 to 50 mm. When the average particle diameter is 1 mm or more, the number of contacts between the particles can be reduced, so that the heat transfer performance between the powder particles can be increased. When the average particle diameter is 50 mm or less, the heat transfer performance can be improved because the pipes inside the heat accumulator can be contacted at many places. Further, the particle size distribution of the granular material is not particularly limited, but preferably has a plurality of peaks. When the particle size distribution of the granular material is a particle size distribution having a plurality of peaks, fine particles can enter the gaps between the coarse particles, so that the heat transfer performance can be further improved and the heat storage capacity can be increased.
  • the powder body mainly composed of graphite preferably contains silicon carbide.
  • Silicon carbide is a hard ceramic, and graphite is a soft ceramic. The coexistence of these allows silicon carbide to polish the graphite by friction between the particles constituting the granular material due to vibration, thermal deformation, etc., increasing the contact area and facilitating heat conduction.
  • a granular material contains graphite and silicon carbide
  • the form of a granular material is "other substances" in the form (a), (b), or (c) of the granular material mentioned above. It is desirable that the granular material is silicon carbide.
  • Such a method for producing a granular material when the granular material contains graphite and silicon carbide is exemplified below.
  • A When a granular material is a form formed by mixing graphite and silicon carbide, the granular material can be obtained, for example, by mixing graphite particles and silicon carbide particles.
  • the granular material When the granular material is in a form in which the surface of the graphite particle is partially converted to silicon carbide, the surface of the granular material reacts due to the action of SiO gas or the like in a high temperature atmosphere of 1500 ° C. or higher. It can be obtained by pulverizing the converted graphite lump.
  • the powder When the powder is in a form in which silicon carbide is present inside the graphite particles, the powder is mixed with, for example, silicon carbide powder in coke, which is a raw material of graphite, and a binder such as pitch is added. It can be obtained by further pulverizing the graphite material obtained by kneading, press molding, firing and graphitization.
  • Such a granular material has a structure in which silicon carbide particles are uniformly dispersed inside graphite.
  • a preferable content of silicon carbide is 20 to 30% by weight.
  • the silicon carbide content is in the range of 20 to 30% by weight, the ratio of silicon carbide as the abrasive to the polished graphite is appropriate, and the contact area between the particles tends to increase due to wear.
  • the pipe of the regenerator of the present invention preferably has a serpentine structure.
  • the pipe of the regenerator of the present invention has a serpentine structure, deformation of the pipe when the temperature rises occurs at various places, and friction between the particles constituting the granular material easily occurs at that place.
  • the part with a large thermal deformation by thermal expansion and contraction is also a part with a large heat flow around a pipe, the heat storage to a heat storage body can be performed efficiently.
  • the serpentine structure is a state where a snake-like bent structure is formed, and a linear object is alternately folded back to form a surface. Since the serpentine structure can diffuse a linearly flowing fluid in a planar shape, heat can be transmitted to more powder particles by using it as a heat storage body.
  • the pipe of the regenerator of the present invention preferably has a plurality of serpentine structures facing each other, and a graphite plate is embedded between the plurality of serpentine structures.
  • the heat accumulator of the present invention has a plurality of serpentine structures in which the pipes face each other, and a graphite plate is embedded between the plurality of rows of serpentine structures, thereby forming two substantially parallel graphite plates.
  • the pipes constituting the serpentine structure are arranged in the space, and the pipes are arranged to be embedded in the powder particles.
  • the space formed by the granular material of the present invention is filled with a phase change material.
  • a phase change material absorbs or releases a lot of heat with a phase transition. Therefore, when holding the granular material which is a heat storage body at the temperature more than a phase transition temperature, a temperature fall can be suppressed. Moreover, when holding the granular material which is a heat storage body at the temperature below a phase transition temperature, a temperature rise can be suppressed.
  • heat transfer is performed by powder and granular material without depending on phase change material, so there is little deterioration in performance even at low temperatures, it can be used at high temperatures, and it should be a heat storage device with high heat transfer performance and low performance deterioration. Can do.
  • phase transition material sodium nitrate, potassium nitrate, etc. can be used. Since these substances have a melting point in the temperature range that can be used in the regenerator of the present invention, the high temperature can be maintained for a longer time when heated exceeding the melting point. Moreover, when it cools below melting
  • the heat storage body of the present invention is composed of a granular material containing graphite as a main component, it can be used at a high temperature.
  • it can be suitably used as a heat storage body that stores the heat of solar thermal power generation.
  • it is preferable to maintain a higher temperature.
  • it is preferable not to use a phase change substance or to use sodium nitrate etc., for example.
  • phase change materials can be used stably up to a temperature exceeding 380 ° C., and can be used without degrading the performance of the regenerator.
  • FIG.1 (a) is a top view of the external appearance of the thermal accumulator of Embodiment 1 which concerns on this invention
  • FIG.1 (b) is the side view
  • 2A is a cross-sectional view taken along line AA ′ of FIG. 1A
  • FIG. 2B is a cross-sectional view taken along line BB ′ of FIG. 1A
  • FIG. FIG. 2 is a cross-sectional view taken along the line CC ′ of FIG.
  • the cross section along the line AA ′ is a cross section at the position of the pipe
  • the cross section along the line BB ′ is a cross section at the position of the graphite plate.
  • the heat accumulator 10 As shown in FIGS. 1A and 1B, the heat accumulator 10 according to the first embodiment is accommodated in a container 3 made of a rectangular parallelepiped stainless steel having outer dimensions of a length of 1412 mm, a height of 798 mm, and a width of 1400 mm.
  • a heat insulating material having a thickness of 50 mm is attached to the upper surface, the lower surface, and the side surface of the inside of the container 3.
  • the heat insulating material is made of alumina.
  • joints 4 connected to the internal pipe 1.
  • the opening of the joint 4 has an inner diameter of ⁇ 150 mm.
  • the pipe 1 is bent so that the inside of the heat accumulator 10 has a serpentine structure.
  • the thickness of the pipe 1 is ⁇ 30 mm.
  • the pipe 1 having such a serpentine structure has five rows so as to be connected in parallel to the joints 4 at both ends, and a graphite plate 5 of 448 ⁇ 360 ⁇ 10 mm is formed between the surfaces formed by the pipe having the serpentine structure. Each is inserted.
  • the pipe 1 and the graphite plate 5 having a serpentine structure are filled with a granular material 2 mainly composed of graphite.
  • the void formed by the particles of the granular material is further filled with a phase change material made of sodium nitrate.
  • the granular material 2 is obtained as follows, for example.
  • the graphite mass is placed in an environment of 1500 to 2200 ° C., and SiO gas is introduced. Thereby, silicon carbide is formed on the surface of the graphite particles by the reaction shown in the following (formula 1).
  • 2C + SiO ⁇ SiC + CO ⁇ (Formula 1)
  • a granular material whose main component is graphite, in which part of the surface is made of particles converted to silicon carbide is obtained.
  • the proportion of graphite converted from graphite before reaction to silicon carbide can be calculated stoichiometrically from the weight change W ′ due to the reaction. .
  • the atomic weight of silicon is 28, it can be expressed by the following (formula 2).
  • C 3 ⁇ (W′ ⁇ 1) / 2 (Formula 2)
  • the heat accumulating material is composed of a granular material mainly composed of graphite and a phase change material.
  • the phase change material can be used stably if it is 380 ° C. or lower.
  • the heat accumulator can transfer heat without convection and can be used in a wide temperature range.
  • the granular material contains silicon carbide, the contact area of the granular material can be gradually increased by friction between graphite and silicon carbide during use, and therefore a heat storage device having high heat transfer performance is provided. Can do.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Combustion & Propulsion (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Ceramic Products (AREA)

Abstract

A heat accumulator (10) comprises: piping (1); a powdered/granular body in which the piping is buried and the principal component of which is graphite (2); and a vessel (3) that houses the piping (1) and the powdered/granular body. As a result, the powdered/granular body that has graphite as a principal component accumulates heat, and the graphite is thereby inherently able to transfer heat without relying on convection, and mechanisms of heat accumulation and heat transfer are unchanged from low temperatures to high temperatures. The present invention can therefore accumulate heat independent of temperature. Further, because the powdered/granular body that has graphite as a principal component accumulates heat, and because the material thereof is highly heat resistant and does not easily deteriorate, the present invention can be used even at high temperatures and, in addition, can be used over long periods of time.

Description

蓄熱器Heat accumulator
 本発明は、蓄熱器に関する。 The present invention relates to a heat accumulator.
 蓄熱器は、空調システム、冷蔵装置など熱を扱う分野において、広く利用されている。
 特許文献1には、蓄熱槽内の水を、該蓄熱槽内に配設された循環管を通流する冷媒にて氷結させて蓄熱する蓄熱システムであり、複数の循環管を、それぞれの各屈曲部が平行する平面内にてジグザグ状に位置するように連続的に屈曲して、相隣する各循環管の冷媒通流方向を逆方向にしたことを特徴とする蓄熱システムが記載されている。
Thermal accumulators are widely used in fields that handle heat, such as air conditioning systems and refrigerators.
Patent Document 1 discloses a heat storage system that stores water by freezing water in a heat storage tank with a refrigerant that flows through the circulation pipe disposed in the heat storage tank, and each of the circulation pipes is connected to each of the circulation pipes. A heat storage system is described, wherein the bent portions are continuously bent so as to be located in a zigzag shape in a parallel plane, and the refrigerant flow directions of adjacent circulation pipes are reversed. Yes.
 平面内にてジグザグ状に位置するように連続的に屈曲する構造をサーペンタイン構造ともいい、限られた面積の中で、熱を受け渡しするパイプの配置方法として、エアコンデショナー、自動車のラジエーターなど広く利用されている。 A structure that bends continuously so as to be zigzag in a plane is also called a serpentine structure, and it is widely used as a method of arranging pipes that deliver heat within a limited area, such as air conditioners and automobile radiators. Has been.
実開平1-78835号公報Japanese Utility Model Publication No. 1-78835
 しかしながら、特許文献1に記載された蓄熱システムは、パイプを通して熱交換を行うことにより蓄熱槽内の液体(水)を所定の温度に保つものである。蓄熱体(蓄熱槽内の液体)は液体であるので熱移動は対流を前提としたものである。このため蓄熱体が曝される温度域で粘度が高くなったり、凝固、沸騰が起きると大幅に蓄熱性能が低下し、場合によっては蓄熱器の破損の原因となる。
 このため、使用する蓄熱体の種類によって蓄熱器を使用可能な温度域が大きく影響を受ける。
However, the heat storage system described in Patent Document 1 maintains the liquid (water) in the heat storage tank at a predetermined temperature by exchanging heat through a pipe. Since the heat storage body (liquid in the heat storage tank) is a liquid, heat transfer is premised on convection. For this reason, when the viscosity increases in the temperature range to which the heat storage body is exposed, or when solidification or boiling occurs, the heat storage performance is significantly lowered, and in some cases, the heat storage device is damaged.
For this reason, the temperature range in which the heat accumulator can be used is greatly affected by the type of the heat accumulator used.
 本発明は、幅広い温度域で使用可能であって、低温でも性能の低下が少なく、高温で使用することができ、伝熱性能が高く、性能劣化の少ない構成の蓄熱器を提供することを目的とする。 An object of the present invention is to provide a heat accumulator that can be used in a wide range of temperature, has little deterioration in performance even at low temperatures, can be used at high temperatures, has high heat transfer performance, and has little performance deterioration. And
 前記課題を解決するための本発明の蓄熱器は、パイプと、前記パイプを埋設する黒鉛を主成分とする粉粒体と、前記パイプと、前記粉粒体とを収容する容器とからなる。
 本発明の蓄熱器によれば、黒鉛を主成分とする粉粒体が蓄熱するので、対流によることなく黒鉛自体が伝熱することができ、蓄熱および伝熱の機構は低温から高温まで変わらない。このため、温度に依存することなく蓄熱することができる。
 本発明の蓄熱器によれば、黒鉛を主成分とする粉粒体が蓄熱するので、耐熱性が高い上に、劣化しにくい素材であるので、高温でも使用することができ、さらに長期間の使用に用いることができる。
The heat accumulator of the present invention for solving the above problems is composed of a pipe, a granular material mainly composed of graphite in which the pipe is embedded, a container for accommodating the pipe and the granular material.
According to the heat accumulator of the present invention, since the granular material mainly composed of graphite stores heat, the graphite itself can transfer heat without convection, and the mechanism of heat storage and heat transfer does not change from low temperature to high temperature. . For this reason, heat can be stored without depending on temperature.
According to the heat accumulator of the present invention, since the granular material mainly composed of graphite stores heat, it is a material that has high heat resistance and is not easily deteriorated. Can be used for use.
 さらに本発明の蓄熱器は次の態様が望ましい。
(1)前記粉粒体は、炭化珪素を含有する。
炭化珪素は、硬いセラミックであり、黒鉛は軟らかいセラミックである。これらが共存することにより、使用を繰り返すうちに振動、熱変形などによる粉粒体を構成する粒子間の摩擦により炭化珪素が黒鉛を研磨し、接触面積が増え、熱伝導しやすくさせることができる。
Furthermore, the following aspect is desirable for the heat accumulator of the present invention.
(1) The granular material contains silicon carbide.
Silicon carbide is a hard ceramic, and graphite is a soft ceramic. By coexisting with each other, silicon carbide polishes the graphite by friction between particles constituting the granular material due to vibration, thermal deformation, etc. during repeated use, increasing the contact area and facilitating heat conduction. .
(2)前記パイプは、サーペンタイン構造を有する。
 本発明の蓄熱器のパイプが、さらにサーペンタイン構造を有すると、温度上昇時または温度下降時のパイプの変形は様々な箇所で発生し、その箇所では、粉粒体を構成する粒子間の摩擦が発生しやすくなる。また、熱膨張、熱収縮による熱変形の大きい部分は、パイプ周辺の熱の流れの大きい部分でもあるので、蓄熱体への蓄熱を効率良く行うことができる。
(2) The pipe has a serpentine structure.
When the pipe of the heat accumulator of the present invention further has a serpentine structure, deformation of the pipe at the time of temperature rise or temperature drop occurs at various places, and friction between particles constituting the granular material is generated at that place. It tends to occur. Moreover, since the part with a large thermal deformation by thermal expansion and contraction is also a part with a large heat flow around a pipe, the heat storage to a heat storage body can be performed efficiently.
(3)前記パイプは、互いに対向する複数列のサーペンタイン構造を有し、前記複数列のサーペンタイン構造の間に黒鉛板が埋設されている。
 本発明の蓄熱器は、前記パイプが互いに対向する複数列のサーペンタイン構造を有し、複数列のサーペンタイン構造の間に黒鉛板が埋設されることによって、略平行な2枚の黒鉛板が形成する空間に、サーペンタイン構造を構成するパイプが配置されるとともに、パイプは粉粒体に埋設される配置となる。
(3) The pipe has a plurality of serpentine structures facing each other, and a graphite plate is embedded between the plurality of serpentine structures.
The heat accumulator of the present invention has a plurality of serpentine structures in which the pipes face each other, and a graphite plate is embedded between the plurality of rows of serpentine structures, thereby forming two substantially parallel graphite plates. The pipes constituting the serpentine structure are arranged in the space, and the pipes are arranged to be embedded in the powder particles.
 このような配置をとることで、サーペンタイン構造のパイプの熱膨張または熱収縮による変形が生じたとき、略平行な2枚の黒鉛板と粉粒体によりその動きが拘束され、パイプ周辺の粉粒体には強い摩擦力が生じる。このため、粉粒体を構成する粒子間の接触面積が大きくなり、粉粒体を構成する粒子間を伝熱しやすくすることができ、伝熱性能を高めることができる。 By adopting such an arrangement, when a serpentine-structured pipe is deformed due to thermal expansion or contraction, its movement is constrained by two substantially parallel graphite plates and powder particles, and the powder particles around the pipe A strong frictional force is generated on the body. For this reason, the contact area between the particles constituting the granular material is increased, heat can be easily transferred between the particles constituting the granular material, and the heat transfer performance can be enhanced.
(4)前記粉粒体の粒子が形成する空隙に相転移物質が充填されている。
相転移物質は、相転移に伴って多くの熱を吸収又は放出する。そのため、蓄熱体である粉粒体を相転移温度以上の温度で保持する際に、温度低下を抑制することができる。また、蓄熱体である粉粒体を相転移温度以下の温度で保持する際に、温度上昇を抑制することができる。また、伝熱は相転移物質によることなく粉粒体により行われるので、低温でも性能の低下が少なく、高温で使用することができ、伝熱性能が高く、性能劣化の少ない蓄熱器を提供することができる。
(4) The space formed by the particles of the granular material is filled with a phase change material.
A phase change material absorbs or releases a lot of heat with a phase transition. Therefore, when holding the granular material which is a heat storage body at the temperature more than a phase transition temperature, a temperature fall can be suppressed. Moreover, when holding the granular material which is a heat storage body at the temperature below a phase transition temperature, a temperature rise can be suppressed. In addition, since heat transfer is performed by powder particles without using a phase change material, there is little deterioration in performance even at low temperatures, and it can be used at high temperatures, providing a heat accumulator with high heat transfer performance and low performance deterioration. be able to.
 本発明によれば、黒鉛を主成分とする粉粒体が蓄熱するので、対流によることなく黒鉛自体が伝熱することができ、蓄熱および伝熱の機構は低温から高温まで変わらない。このため、温度に依存することなく蓄熱することができる。
 本発明の蓄熱器によれば、黒鉛を主成分とする粉粒体が蓄熱するので、耐熱性が高い上に、劣化しにくい素材であるので、高温でも使用することができ、さらに長期間の使用に用いることができる。
According to the present invention, since the granular material having graphite as a main component stores heat, the graphite itself can transfer heat without convection, and the mechanism of heat storage and heat transfer does not change from low temperature to high temperature. For this reason, heat can be stored without depending on temperature.
According to the heat accumulator of the present invention, since the granular material mainly composed of graphite stores heat, it is a material that has high heat resistance and is not easily deteriorated. Can be used for use.
図1(a)は、本発明に係る実施形態1の蓄熱器の外観の平面図であり、図1(b)は、その側面図である。Fig.1 (a) is a top view of the external appearance of the thermal accumulator of Embodiment 1 which concerns on this invention, FIG.1 (b) is the side view. 図2(a)は、図1(a)のA-A’線断面図であり、図2(b)は図1(a)のB-B’線断面図であり、図2(c)は図1(a)のC-C’線断面図である。2A is a cross-sectional view taken along line AA ′ of FIG. 1A, FIG. 2B is a cross-sectional view taken along line BB ′ of FIG. 1A, and FIG. FIG. 2 is a cross-sectional view taken along the line CC ′ of FIG.
 本発明の蓄熱器は、パイプと、前記パイプを埋設する黒鉛を主成分とする粉粒体と、前記パイプと、前記粉粒体とを収容する容器とからなる。
 本発明の蓄熱器によれば、黒鉛を主成分とする粉粒体が蓄熱するので、対流によることなく黒鉛自体が伝熱することができ、蓄熱および伝熱の機構は低温から高温まで変わらない。このため、温度に依存することなく蓄熱することができる。
 本発明の蓄熱器によれば、黒鉛を主成分とする粉粒体が蓄熱するので、耐熱性が高い上に、劣化しにくい素材であるので、高温でも使用することができ、さらに長期間の使用に用いることができる。
The heat accumulator of the present invention is composed of a pipe, a granular material mainly composed of graphite in which the pipe is embedded, a container that accommodates the pipe and the granular material.
According to the heat accumulator of the present invention, since the granular material mainly composed of graphite stores heat, the graphite itself can transfer heat without convection, and the mechanism of heat storage and heat transfer does not change from low temperature to high temperature. . For this reason, heat can be stored without depending on temperature.
According to the heat accumulator of the present invention, since the granular material mainly composed of graphite stores heat, it is a material that has high heat resistance and is not easily deteriorated. Can be used for use.
 本発明のパイプの材質、厚さなどは特に限定されない。中でもパイプの材質は、金属であることが好ましく、例えばステンレス、鉄、銅、アルミニウムなどが利用できる。
 粉粒体は、黒鉛が主成分であれば特に限定されない。黒鉛の種類としては、天然黒鉛、人造黒鉛、キッシュ黒鉛、膨張黒鉛などどのようなものでも利用することができる。
The material and thickness of the pipe of the present invention are not particularly limited. Among these, the material of the pipe is preferably a metal, and for example, stainless steel, iron, copper, aluminum and the like can be used.
The powder is not particularly limited as long as graphite is a main component. Any kind of graphite such as natural graphite, artificial graphite, quiche graphite, and expanded graphite can be used.
 本明細書において、「黒鉛を主成分とする粉粒体」とは、粉粒体の50~100重量%が黒鉛であることを意味する。なお、粉粒体に含まれる黒鉛の重量としては、粉粒体の70~100重量%であることが望ましい。粉粒体の50重量%以上が黒鉛であると、摩擦によって黒鉛が摩耗されやすくなり、70重量%以上であるとさらに摩耗されやすくなる。黒鉛が摩耗されることにより、粒子間の接触面積が増え、蓄熱体内の伝熱性能を高めることができる。 In the present specification, “a granular material containing graphite as a main component” means that 50 to 100% by weight of the granular material is graphite. The weight of graphite contained in the granular material is desirably 70 to 100% by weight of the granular material. If 50% by weight or more of the granular material is graphite, the graphite is likely to be worn by friction, and if it is 70% by weight or more, it is more likely to be worn. When the graphite is worn, the contact area between the particles increases, and the heat transfer performance in the heat storage body can be improved.
 粉粒体は、特にその形態は限定されない。例えば次のような形態が挙げられる。
(a)黒鉛と他の物質とが混合してなる粉粒体の形態。
(b)黒鉛粒子の表面が部分的に他の物質に転化してなる粉粒体の形態。
(c)黒鉛粒子の内部に他の物質が存在してなる粉粒体の形態。
 なお、「他の物質」としては、特に限定されないが、例えば、炭化珪素であってもよい。
The form of the granular material is not particularly limited. For example, the following forms are mentioned.
(A) The form of the granular material formed by mixing graphite and another substance.
(B) The form of the granular material formed by partially converting the surface of the graphite particles into another substance.
(C) The form of a granular material in which other substances are present inside the graphite particles.
The “other substance” is not particularly limited, but may be, for example, silicon carbide.
 粉粒体中の黒鉛の含有量についての測定方法を説明する。
 黒鉛は、他のセラミックと異なり、酸素との反応生成物が二酸化炭素、一酸化炭素などのガスであり、被膜などを作ることがない。このため、大気中で加熱することにより、取り除くことができる。このため、黒鉛の表面が露出するように粉砕して、大気中で燃焼することにより、加熱前後の重量変化を測定し、黒鉛の含有量を測定することができる。
The measuring method about content of the graphite in a granular material is demonstrated.
Unlike other ceramics, graphite is a gas such as carbon dioxide or carbon monoxide that is a reaction product with oxygen and does not form a film. For this reason, it can remove by heating in air | atmosphere. For this reason, by pulverizing the graphite surface to be exposed and burning in the air, the weight change before and after heating can be measured, and the graphite content can be measured.
 本発明の蓄熱器において、粉粒体を収納する容器は特に限定されない。例えば、セラミックの容器、金属の容器などを利用することができる。なお、蓄熱器を、600℃を超える温度で使用する場合には、外気と接触しないよう密閉されていることが好ましい。 In the heat accumulator of the present invention, the container for storing the granular material is not particularly limited. For example, a ceramic container, a metal container, or the like can be used. In addition, when using a thermal accumulator at the temperature over 600 degreeC, it is preferable to be sealed so that it may not contact external air.
 本発明の蓄熱器の粉粒体の平均粒子径は特に限定されない。細かなものでも粗いものでも良い。中でも望ましい粉粒体の平均粒子径は、1~50mmである。平均粒子径が1mm以上であると、粒子間の接点の数が少なくできるので、各粉粒体間の伝熱性能を高くすることができる。平均粒子径が50mm以下であると、蓄熱器の内部のパイプにより多くの箇所で接触することができるので、伝熱性能を高めることができる。
 また、粉粒体の粒度分布は、特に限定されないが、複数のピークを有することが望ましい。粉粒体の粒度分布が、複数のピークを有する粒度分布であると、粗い粒子の隙間に細かな粒子が入ることができ、より伝熱性能を高め、蓄熱の容量を大きくすることができる。
The average particle diameter of the granular material of the regenerator of the present invention is not particularly limited. It can be fine or coarse. Among these, the average particle size of the desirable powder is 1 to 50 mm. When the average particle diameter is 1 mm or more, the number of contacts between the particles can be reduced, so that the heat transfer performance between the powder particles can be increased. When the average particle diameter is 50 mm or less, the heat transfer performance can be improved because the pipes inside the heat accumulator can be contacted at many places.
Further, the particle size distribution of the granular material is not particularly limited, but preferably has a plurality of peaks. When the particle size distribution of the granular material is a particle size distribution having a plurality of peaks, fine particles can enter the gaps between the coarse particles, so that the heat transfer performance can be further improved and the heat storage capacity can be increased.
 本発明の蓄熱器において黒鉛を主成分とする粉粒体は、炭化珪素を含有することが好ましい。
 炭化珪素は、硬いセラミックであり、黒鉛は軟らかいセラミックである。これらが共存することにより、振動、熱変形などによる粉粒体を構成する粒子間の摩擦により炭化珪素が黒鉛を研磨し、接触面積が増え、熱伝導しやすくさせることができる。
In the heat accumulator of the present invention, the powder body mainly composed of graphite preferably contains silicon carbide.
Silicon carbide is a hard ceramic, and graphite is a soft ceramic. The coexistence of these allows silicon carbide to polish the graphite by friction between the particles constituting the granular material due to vibration, thermal deformation, etc., increasing the contact area and facilitating heat conduction.
 なお、粉粒体が、黒鉛と、炭化珪素とを含む場合、粉粒体の形態は、上述した粉粒体の形態(a)、(b)、又は(c)において「他の物質」が炭化珪素である粉粒体であることが望ましい。
 このような、粉粒体が黒鉛と炭化珪素とを含む場合の粉粒体の製造方法を以下に例示する。
(a)粉粒体が、黒鉛と炭化珪素とが混合してなる形態の場合、粉粒体は、例えば黒鉛粒子と炭化珪素粒子とを混合することによって得ることができる。
(b)粉粒体が、黒鉛粒子の表面が部分的に炭化珪素に転化してなる形態の場合、粉粒体は、例えば、1500℃以上の高温雰囲気でSiOガスなどの作用により表面が反応転化した黒鉛の塊状体を粉砕することによって得ることができる。
(c)粉粒体が、黒鉛粒子の内部に炭化珪素が存在してなる形態の場合、粉粒体は、例えば、黒鉛の原材料であるコークスに炭化珪素の粉を混ぜピッチなどのバインダを加え混練し、プレス成形し、焼成、黒鉛化して得られた黒鉛材料をさらに粉砕することによって得ることができる。このような粉粒体は、黒鉛の内部に均一に炭化珪素の粒子が分散した構造となる。
In addition, when a granular material contains graphite and silicon carbide, the form of a granular material is "other substances" in the form (a), (b), or (c) of the granular material mentioned above. It is desirable that the granular material is silicon carbide.
Such a method for producing a granular material when the granular material contains graphite and silicon carbide is exemplified below.
(A) When a granular material is a form formed by mixing graphite and silicon carbide, the granular material can be obtained, for example, by mixing graphite particles and silicon carbide particles.
(B) When the granular material is in a form in which the surface of the graphite particle is partially converted to silicon carbide, the surface of the granular material reacts due to the action of SiO gas or the like in a high temperature atmosphere of 1500 ° C. or higher. It can be obtained by pulverizing the converted graphite lump.
(C) When the powder is in a form in which silicon carbide is present inside the graphite particles, the powder is mixed with, for example, silicon carbide powder in coke, which is a raw material of graphite, and a binder such as pitch is added. It can be obtained by further pulverizing the graphite material obtained by kneading, press molding, firing and graphitization. Such a granular material has a structure in which silicon carbide particles are uniformly dispersed inside graphite.
 炭化珪素の好ましい含有量は、20~30重量%である。炭化珪素の含有量が20~30重量%の範囲であると研磨材である炭化珪素と研磨される黒鉛の比率が適度であって、摩耗によって粒子間の接触面積が大きくなりやすい。 A preferable content of silicon carbide is 20 to 30% by weight. When the silicon carbide content is in the range of 20 to 30% by weight, the ratio of silicon carbide as the abrasive to the polished graphite is appropriate, and the contact area between the particles tends to increase due to wear.
 本発明の蓄熱器のパイプは、サーペンタイン構造を有することが好ましい。
 本発明の蓄熱器のパイプが、サーペンタイン構造を有すると、温度上昇時のパイプの変形は様々な箇所で発生し、その箇所では、粉粒体を構成する粒子間の摩擦が発生しやすくなる。また、熱膨張、熱収縮による熱変形の大きい部分は、パイプ周辺の熱の流れの大きい部分でもあるので、蓄熱体への蓄熱を効率良く行うことができる。
The pipe of the regenerator of the present invention preferably has a serpentine structure.
When the pipe of the regenerator of the present invention has a serpentine structure, deformation of the pipe when the temperature rises occurs at various places, and friction between the particles constituting the granular material easily occurs at that place. Moreover, since the part with a large thermal deformation by thermal expansion and contraction is also a part with a large heat flow around a pipe, the heat storage to a heat storage body can be performed efficiently.
 サーペンタイン(serpentine)構造とは、ヘビのように曲がっている構造をしめし、線状の物体が交互に折り返されながら、面を形成する状態である。
 サーペンタイン構造は、線状に流れる流体を面状に拡散することができるので、蓄熱体として使用することにより、より多くの粉粒体に熱を伝えることができる。
The serpentine structure is a state where a snake-like bent structure is formed, and a linear object is alternately folded back to form a surface.
Since the serpentine structure can diffuse a linearly flowing fluid in a planar shape, heat can be transmitted to more powder particles by using it as a heat storage body.
 本発明の蓄熱器のパイプは、互いに対向する複数列のサーペンタイン構造を有し、複数列のサーペンタイン構造の間に黒鉛板が埋設されていることが好ましい。 The pipe of the regenerator of the present invention preferably has a plurality of serpentine structures facing each other, and a graphite plate is embedded between the plurality of serpentine structures.
 本発明の蓄熱器は、前記パイプが互いに対向する複数列のサーペンタイン構造を有し、複数列のサーペンタイン構造の間に黒鉛板が埋設されることによって、略平行な2枚の黒鉛板が形成する空間に、サーペンタイン構造を構成するパイプが配置されるとともに、パイプは粉粒体に埋設される配置となる。 The heat accumulator of the present invention has a plurality of serpentine structures in which the pipes face each other, and a graphite plate is embedded between the plurality of rows of serpentine structures, thereby forming two substantially parallel graphite plates. The pipes constituting the serpentine structure are arranged in the space, and the pipes are arranged to be embedded in the powder particles.
 このような配置をとることで、サーペンタイン構造のパイプの熱膨張または熱収縮による変形が生じたとき、略平行な2枚の黒鉛板と粉粒体によりその動きが拘束され、パイプ周辺の粉粒体には強い摩擦力が生じる。このため、粉粒体を構成する粒子間の接触面積が大きくなり、粉粒体を構成する粒子間を伝熱しやすくすることができ、伝熱性能を高めることができる。
 また、パイプが互いに対向する複数列のサーペンタイン構造を有することにより、線状に流れる流体を蓄熱器の内部の粉粒体の隅々にまで行き渡らせることができる。
By adopting such an arrangement, when a serpentine-structured pipe is deformed due to thermal expansion or contraction, its movement is constrained by two substantially parallel graphite plates and powder particles, and the powder particles around the pipe A strong frictional force is generated on the body. For this reason, the contact area between the particles constituting the granular material is increased, heat can be easily transferred between the particles constituting the granular material, and the heat transfer performance can be enhanced.
In addition, since the pipe has a plurality of serpentine structures facing each other, the fluid flowing linearly can be spread to every corner of the granular material inside the heat accumulator.
 本発明の前記粉粒体の形成する空隙には、相転移物質が充填されていることが好ましい。
 相転移物質は、相転移に伴って多くの熱を吸収又は放出する。そのため、蓄熱体である粉粒体を相転移温度以上の温度で保持する際に、温度低下を抑制することができる。また、蓄熱体である粉粒体を相転移温度以下の温度で保持する際に、温度上昇を抑制することができる。
 また、伝熱は相転移物質によることなく粉粒体により行われるので、低温でも性能の低下が少なく、高温で使用することができ、伝熱性能が高く、性能劣化の少ない蓄熱器とすることができる。
It is preferable that the space formed by the granular material of the present invention is filled with a phase change material.
A phase change material absorbs or releases a lot of heat with a phase transition. Therefore, when holding the granular material which is a heat storage body at the temperature more than a phase transition temperature, a temperature fall can be suppressed. Moreover, when holding the granular material which is a heat storage body at the temperature below a phase transition temperature, a temperature rise can be suppressed.
In addition, heat transfer is performed by powder and granular material without depending on phase change material, so there is little deterioration in performance even at low temperatures, it can be used at high temperatures, and it should be a heat storage device with high heat transfer performance and low performance deterioration. Can do.
 相転移物質としては、硝酸ナトリウム、硝酸カリウム等が利用できる。これらの物質は、本発明の蓄熱器に使用できる温度域に融点を有しているので、融点を超えて加熱した際により長く高温を維持することができる。また、融点以下に冷却した際に、より長く低温を維持することができる。 As the phase transition material, sodium nitrate, potassium nitrate, etc. can be used. Since these substances have a melting point in the temperature range that can be used in the regenerator of the present invention, the high temperature can be maintained for a longer time when heated exceeding the melting point. Moreover, when it cools below melting | fusing point, it can maintain low temperature for a long time.
 本発明の蓄熱体は、黒鉛を主成分とする粉粒体よりなるので、高い温度で使用することができ、例えば太陽熱発電の熱を蓄える蓄熱体として好適に使用することができる。太陽熱発電に用いる場合、より高い温度を保持することが好ましい。また、相転移物質は、用いないか、例えば硝酸ナトリウムなどを使用することが好ましい。これらの相転移物質は、380℃を超える温度まで安定して使用することができ、蓄熱器の性能を低下させることなく使用することができる。 Since the heat storage body of the present invention is composed of a granular material containing graphite as a main component, it can be used at a high temperature. For example, it can be suitably used as a heat storage body that stores the heat of solar thermal power generation. When used for solar thermal power generation, it is preferable to maintain a higher temperature. Moreover, it is preferable not to use a phase change substance or to use sodium nitrate etc., for example. These phase change materials can be used stably up to a temperature exceeding 380 ° C., and can be used without degrading the performance of the regenerator.
 以下本発明の実施形態1について図を用いて説明する。
 図1(a)は、本発明に係る実施形態1の蓄熱器の外観の平面図であり、図1(b)は、その側面図である。
図2(a)は、図1(a)のA-A’線断面図であり、図2(b)は図1(a)のB-B’線断面図であり、図2(c)は図1(a)のC-C’線断面図である。
 なお、A-A’線断面は、パイプの位置の断面であり、B-B’線断面は、黒鉛板の位置の断面である。
Embodiment 1 of the present invention will be described below with reference to the drawings.
Fig.1 (a) is a top view of the external appearance of the thermal accumulator of Embodiment 1 which concerns on this invention, FIG.1 (b) is the side view.
2A is a cross-sectional view taken along line AA ′ of FIG. 1A, FIG. 2B is a cross-sectional view taken along line BB ′ of FIG. 1A, and FIG. FIG. 2 is a cross-sectional view taken along the line CC ′ of FIG.
The cross section along the line AA ′ is a cross section at the position of the pipe, and the cross section along the line BB ′ is a cross section at the position of the graphite plate.
 図1(a)及び(b)に示すように、実施形態1の蓄熱器10は、外寸が長さ1412mm、高さ798mm、幅1400mmの直方体のステンレスからなる容器3に収容されている。容器3の内側の上面、下面、側面には50mmの厚さの断熱材が取り付けられている。断熱材はアルミナからなる。
 容器3の長さ方向の両端部には、それぞれ内部のパイプ1につながる継ぎ手4を有している。継ぎ手4の開口は、内径φ150mmである。蓄熱器10の内部はサーペンタイン構造となるようにパイプ1が曲げられている。パイプ1の太さはφ30mmである。このようなサーペンタイン構造をとるパイプ1は、それぞれ両端の継ぎ手4に並列接続となるように5列有し、サーペンタイン構造をとるパイプが形成する面の間に448×360×10mmの黒鉛板5がそれぞれ挿入されている。サーペンタイン構造をとるパイプ1および黒鉛板5は、黒鉛を主成分とする粉粒体2によって充填されている。粉粒体の粒子が形成する空隙には、さらに硝酸ナトリウムからなる相転移物質が充填されている。
As shown in FIGS. 1A and 1B, the heat accumulator 10 according to the first embodiment is accommodated in a container 3 made of a rectangular parallelepiped stainless steel having outer dimensions of a length of 1412 mm, a height of 798 mm, and a width of 1400 mm. A heat insulating material having a thickness of 50 mm is attached to the upper surface, the lower surface, and the side surface of the inside of the container 3. The heat insulating material is made of alumina.
At both ends in the length direction of the container 3, there are joints 4 connected to the internal pipe 1. The opening of the joint 4 has an inner diameter of φ150 mm. The pipe 1 is bent so that the inside of the heat accumulator 10 has a serpentine structure. The thickness of the pipe 1 is φ30 mm. The pipe 1 having such a serpentine structure has five rows so as to be connected in parallel to the joints 4 at both ends, and a graphite plate 5 of 448 × 360 × 10 mm is formed between the surfaces formed by the pipe having the serpentine structure. Each is inserted. The pipe 1 and the graphite plate 5 having a serpentine structure are filled with a granular material 2 mainly composed of graphite. The void formed by the particles of the granular material is further filled with a phase change material made of sodium nitrate.
 粉粒体2は、例えば以下のようにして得られる。黒鉛の塊状体を1500~2200℃の環境下に置き、SiOガスを導入する。これにより下記(式1)に示す反応により黒鉛粒子の表面に炭化珪素が形成される。
 2C+SiO→SiC+CO↑              (式1)
炭化珪素の形成された黒鉛の塊状体を粉砕することにより、表面の一部が、炭化珪素に転化した粒子からなる黒鉛を主成分とする粉粒体が得られる。出発物質を黒鉛とし、SiOガスで炭化珪素に転化する場合には、反応前の黒鉛から炭化珪素に転化した黒鉛の割合を、反応による重量変化W’から化学量論的に計算することができる。
The granular material 2 is obtained as follows, for example. The graphite mass is placed in an environment of 1500 to 2200 ° C., and SiO gas is introduced. Thereby, silicon carbide is formed on the surface of the graphite particles by the reaction shown in the following (formula 1).
2C + SiO → SiC + CO ↑ (Formula 1)
By pulverizing the graphite lump in which silicon carbide is formed, a granular material whose main component is graphite, in which part of the surface is made of particles converted to silicon carbide, is obtained. When the starting material is graphite and converted to silicon carbide with SiO gas, the proportion of graphite converted from graphite before reaction to silicon carbide can be calculated stoichiometrically from the weight change W ′ due to the reaction. .
 すなわち、炭化珪素に転化した黒鉛の重量と、反応前黒鉛の重量との比C(C=炭化珪素に転化した黒鉛の重量/反応前黒鉛の重量)は、炭素(黒鉛)の原子量を12とし、珪素の原子量を28とすると、下記(式2)で示すことができる。
 C=3×(W’-1)/2               (式2)
例えば、反応による重量増がなければ(反応後の反応物の重量が元の重量と同じ:W’=1)、炭化珪素に転化した黒鉛は全くないことになる。
 反応による重量増が66.7%であれば(W’=1.667)、全ての黒鉛が炭化珪素に転化したことになる。
 反応による重量増加が22%であれば(W’=1.22)、反応前黒鉛の33%が炭化珪素に転化したことになる。
That is, the ratio C of the weight of graphite converted to silicon carbide and the weight of graphite before reaction (C = weight of graphite converted to silicon carbide / weight of graphite before reaction) is defined as the atomic weight of carbon (graphite) being 12. When the atomic weight of silicon is 28, it can be expressed by the following (formula 2).
C = 3 × (W′−1) / 2 (Formula 2)
For example, if there is no weight increase due to the reaction (the weight of the reaction product after the reaction is the same as the original weight: W ′ = 1), there will be no graphite converted into silicon carbide.
If the weight increase due to the reaction is 66.7% (W ′ = 1.667), all the graphite has been converted to silicon carbide.
If the weight increase due to the reaction is 22% (W ′ = 1.22), 33% of the pre-reaction graphite has been converted to silicon carbide.
 本実施形態の蓄熱器によれば、蓄熱材が黒鉛を主成分とする粉粒体および相転移物質からなる。相転移物質は、380℃以下であれば安定して使用することができる。蓄熱器は、対流によることなく伝熱でき、広い温度域で使用が可能となる。
 また粉粒体は、炭化珪素を含有しているので使用時に黒鉛と炭化珪素の摩擦により徐々に粉粒体の接触面積を大きくすることができるので、伝熱性能の高い蓄熱器を提供することができる。
According to the heat accumulator of this embodiment, the heat accumulating material is composed of a granular material mainly composed of graphite and a phase change material. The phase change material can be used stably if it is 380 ° C. or lower. The heat accumulator can transfer heat without convection and can be used in a wide temperature range.
In addition, since the granular material contains silicon carbide, the contact area of the granular material can be gradually increased by friction between graphite and silicon carbide during use, and therefore a heat storage device having high heat transfer performance is provided. Can do.
1 パイプ
2 粉粒体
3 容器
4 継ぎ手
5 黒鉛板
10 蓄熱器
DESCRIPTION OF SYMBOLS 1 Pipe 2 Granule 3 Container 4 Joint 5 Graphite plate 10 Regenerator

Claims (5)

  1. パイプと、
    前記パイプを埋設する黒鉛を主成分とする粉粒体と、
    前記パイプと、前記粉粒体とを収容する容器とからなる蓄熱器。
    Pipes,
    A granular material mainly composed of graphite embedded in the pipe;
    A heat accumulator comprising the pipe and a container for accommodating the powder and granular material.
  2. 前記粉粒体は、炭化珪素を含有することを特徴とする請求項1記載の蓄熱器。 The heat storage device according to claim 1, wherein the granular material contains silicon carbide.
  3. 前記パイプは、サーペンタイン構造を有することを特徴とする請求項1または2に記載の蓄熱器。 The regenerator according to claim 1, wherein the pipe has a serpentine structure.
  4. 前記パイプは、互いに対向する複数列のサーペンタイン構造を有し、前記複数列のサーペンタイン構造の間に黒鉛板が埋設されていることを特徴とする請求項3に記載の蓄熱器。 The regenerator according to claim 3, wherein the pipe has a plurality of serpentine structures facing each other, and a graphite plate is embedded between the plurality of serpentine structures.
  5. 前記粉粒体の粒子が形成する空隙に相転移物質が充填されていることを特徴とする請求項1~4のいずれか一項に記載の蓄熱器。 The heat accumulator according to any one of claims 1 to 4, wherein a gap formed by the particles of the granular material is filled with a phase change material.
PCT/JP2014/080049 2013-11-15 2014-11-13 Heat accumulator WO2015072503A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013236676A JP2017036841A (en) 2013-11-15 2013-11-15 Accumulator
JP2013-236676 2013-11-15

Publications (1)

Publication Number Publication Date
WO2015072503A1 true WO2015072503A1 (en) 2015-05-21

Family

ID=53057437

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/080049 WO2015072503A1 (en) 2013-11-15 2014-11-13 Heat accumulator

Country Status (2)

Country Link
JP (1) JP2017036841A (en)
WO (1) WO2015072503A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017020566A1 (en) * 2015-07-31 2017-02-09 江苏启能新能源材料有限公司 Phase change heat storage device
US10591225B2 (en) 2015-07-31 2020-03-17 Pioneer Energy (Jiangsu) Co., Ltd. Phase change heat storage device

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI746807B (en) 2017-02-28 2021-11-21 日商三菱綜合材料股份有限公司 Copper/ceramic bonded body, insulating circuit substrate, method of manufacturing copper/ceramic bonded body and method of manufacturing insulating circuit substrate

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161786A (en) * 1990-03-30 2000-06-16 Babcock Hitachi Kk Heat storage unit
JP2004003815A (en) * 2002-04-09 2004-01-08 Energy Support Corp Regenerator
JP2006329604A (en) * 2005-05-27 2006-12-07 Yamaguchi Michiko Dry type heat-exchanging thermal accumulator
JP2007315704A (en) * 2006-05-26 2007-12-06 Webasto Ag Cold accumulator or heat accumulator and its manufacturing method
JP2011127832A (en) * 2009-12-17 2011-06-30 Teijin Ltd Heat storage device improved in heat exchange performance
JP2012093004A (en) * 2010-10-25 2012-05-17 Ibiden Co Ltd Thermal receiver and solar thermal power generation device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000161786A (en) * 1990-03-30 2000-06-16 Babcock Hitachi Kk Heat storage unit
JP2004003815A (en) * 2002-04-09 2004-01-08 Energy Support Corp Regenerator
JP2006329604A (en) * 2005-05-27 2006-12-07 Yamaguchi Michiko Dry type heat-exchanging thermal accumulator
JP2007315704A (en) * 2006-05-26 2007-12-06 Webasto Ag Cold accumulator or heat accumulator and its manufacturing method
JP2011127832A (en) * 2009-12-17 2011-06-30 Teijin Ltd Heat storage device improved in heat exchange performance
JP2012093004A (en) * 2010-10-25 2012-05-17 Ibiden Co Ltd Thermal receiver and solar thermal power generation device

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017020566A1 (en) * 2015-07-31 2017-02-09 江苏启能新能源材料有限公司 Phase change heat storage device
US10591225B2 (en) 2015-07-31 2020-03-17 Pioneer Energy (Jiangsu) Co., Ltd. Phase change heat storage device

Also Published As

Publication number Publication date
JP2017036841A (en) 2017-02-16

Similar Documents

Publication Publication Date Title
Ambreen et al. Experimental investigation on the performance of RT-44HC-nickel foam-based heat sinks for thermal management of electronic gadgets
Zhong et al. Encapsulation of high-temperature inorganic phase change materials using graphite as heat transfer enhancer
WO2015072503A1 (en) Heat accumulator
Li et al. Carbonate salt based composite phase change materials for medium and high temperature thermal energy storage: From component to device level performance through modelling
JP2006511782A (en) Flexible graphite thermal management device
Song et al. High-performance thermal energy storage and thermal management via starch-derived porous ceramics-based phase change devices
Tony Recent frontiers in solar energy storage via nanoparticles enhanced phase change materials: Succinct review on basics, applications, and their environmental aspects
Mansir et al. Numerical simulation of dimensions and arrangement of triangular fins mounted on cylindrical lithium-ion batteries in passive thermal management
Kumar et al. Experimental analysis of salt hydrate latent heat thermal energy storage system with porous aluminum fabric and salt hydrate as phase change material with enhanced stability and supercooling
Togun et al. A critical review on phase change materials (PCM) based heat exchanger: Different hybrid techniques for the enhancement
Abdoos et al. A comprehensive review of nano‐phase change materials with a focus on the effects of influential factors
Rathod et al. Experimental study on the effect of graphene and Al2O3 nanofluids in a miniature flat heat pipe
US20120138849A1 (en) Composite material for storing heat energy at high temperatures
Hariss et al. A practical guide on numerical and experimental investigations of solid-liquid phase-change heat transfer using some heat transfer enhancement techniques: Case study in Morocco
CN212253781U (en) Heat pipe
JP6662239B2 (en) Thermal switch device
JP2009256520A (en) Chemical thermal storage medium composite and method for producing the same
Zhao et al. Heat transfer of phase change materials (PCMs) in porous materials
CN202814181U (en) Heat storing-heat exchanging device
WO2015133381A1 (en) Heat regenerator
JP2013194927A (en) Regenerative heat exchanger and heat input/output method using the same
Venkatakrishnan et al. A state-of-the-art review on advancements in phase change material encapsulation techniques for electronics cooling
CN110360865A (en) A kind of finned multiple phase change materials heat-storing sphere
Park et al. Thermal performance of a heat pipe with two dissimilar condensers for a medium-temperature thermal storage system
Wang et al. Thermal performance enhancement of high durability alloy microencapsulated phase change material (MEPCM)/ceramic composites based on industrial graphene

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861447

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP