WO2015072202A1 - Information-processing device, method and program for detecting eye fatigue on basis of pupil diameter - Google Patents

Information-processing device, method and program for detecting eye fatigue on basis of pupil diameter Download PDF

Info

Publication number
WO2015072202A1
WO2015072202A1 PCT/JP2014/071805 JP2014071805W WO2015072202A1 WO 2015072202 A1 WO2015072202 A1 WO 2015072202A1 JP 2014071805 W JP2014071805 W JP 2014071805W WO 2015072202 A1 WO2015072202 A1 WO 2015072202A1
Authority
WO
WIPO (PCT)
Prior art keywords
information processing
fatigue
pupil diameter
processing apparatus
unit
Prior art date
Application number
PCT/JP2014/071805
Other languages
French (fr)
Japanese (ja)
Inventor
亜由美 加藤
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Publication of WO2015072202A1 publication Critical patent/WO2015072202A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/11Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring interpupillary distance or diameter of pupils
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/163Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state by tracking eye movement, gaze, or pupil change
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B2503/00Evaluating a particular growth phase or type of persons or animals
    • A61B2503/20Workers
    • A61B2503/24Computer workstation operators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/161Flicker fusion testing
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/16Devices for psychotechnics; Testing reaction times ; Devices for evaluating the psychological state
    • A61B5/168Evaluating attention deficit, hyperactivity
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6801Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient specially adapted to be attached to or worn on the body surface
    • A61B5/6802Sensor mounted on worn items
    • A61B5/6803Head-worn items, e.g. helmets, masks, headphones or goggles
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/68Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient
    • A61B5/6887Arrangements of detecting, measuring or recording means, e.g. sensors, in relation to patient mounted on external non-worn devices, e.g. non-medical devices
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0118Head-up displays characterised by optical features comprising devices for improving the contrast of the display / brillance control visibility
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/0138Head-up displays characterised by optical features comprising image capture systems, e.g. camera
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B2027/014Head-up displays characterised by optical features comprising information/image processing systems
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0179Display position adjusting means not related to the information to be displayed
    • G02B2027/0187Display position adjusting means not related to the information to be displayed slaved to motion of at least a part of the body of the user, e.g. head, eye
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/017Head mounted

Definitions

  • the present disclosure relates to an information processing device, a control method, and a program.
  • Patent Document 1 discloses a visual fatigue level detection device that measures a fatigue level based on a temporal change in pupil diameter with respect to a predetermined light stimulus.
  • Patent Document 2 a stress determination system that detects a light reaction of a pupil when flash light is emitted to a subject from a captured image and determines a stress level of the subject based on the detected light reaction. Is disclosed.
  • the user's body temperature, brain wave, blinking frequency, skin electrical resistance, pupil size, heart rate, and other biological information are used to determine the user's tension state or fatigue state.
  • produces the stimulus which gives the effect of tension relaxation or fatigue reduction based on the determination result is disclosed.
  • the generated stimulus for example, a relaxing odor, color, or sound is given.
  • the conventional fatigue detection technology and stress care technology required a place and time for detecting fatigue, and dedicated equipment for measuring the pupil diameter.
  • the present disclosure proposes an information processing apparatus, a control method, and a program that can automatically detect eye fatigue and perform output control for reducing fatigue without the user being aware of it.
  • an imaging unit that is provided in an information processing device mounted on a user's head and that measures the pupil diameter based on an imaging unit that images the user's eyes and an image captured by the imaging unit.
  • a detection unit that detects eye fatigue based on the pupil diameter measured by the measurement unit, and a control unit that performs predetermined output control for reducing eye fatigue detected by the detection unit,
  • An information processing apparatus comprising:
  • an information processing device mounted on a user's head the steps of imaging the user's eyes, measuring the pupil diameter based on the captured image, and A control method is proposed, which includes a step of detecting eye fatigue based on the pupil diameter and a step of performing predetermined output control for reducing the detected eye fatigue.
  • a computer in an information processing device mounted on a user's head, and an image capturing unit that captures an image of the user's eyes and a pupil diameter based on a captured image captured by the image capturing unit.
  • a measurement unit for measuring, a detection unit for detecting eye fatigue based on the pupil diameter measured by the measurement unit, and a control for performing predetermined output control for reducing eye fatigue detected by the detection unit We propose a program to function as a part.
  • the information processing apparatus 1 is a glasses-type HMD (Head Mounted Display), and is worn by a user by, for example, a pattern extending over both heads being put on both ear shells. .
  • HMD Head Mounted Display
  • the information processing apparatus 1 (glasses type HMD), in a wearing state, immediately before the user's eyes, that is, a pair of display units 2a for the left eye and right eye, in a place where a lens in normal glasses is located 2b is arranged.
  • the display part 2 when it is not necessary to distinguish between the display parts 2a and 2b, they are collectively referred to as the display part 2.
  • the display unit 2 displays a navigation screen, a mail screen, a news screen, a calendar screen, a screen for giving a warning or notification to a user, and plays a video or a photograph.
  • the display unit 2 may be a transmissive type, and the information processing device 1 causes the display unit 2 to be in a through state, that is, a transparent or translucent state, so that the user can make the information processing device 1 like glasses. Even if it is always worn, it will not interfere with normal life.
  • the user browses emails and news on the display unit 2 located in the lens part of the glasses type at any time while having a normal life with the information processing device 1 (glasses type HMD) mounted on the head, Navigation can be displayed.
  • the information processing apparatus 1 is provided with an inner camera 4 that is arranged inward so as to image the user's eyes in a worn state.
  • the information processing apparatus 1 is provided with an illuminance sensor 6 for detecting ambient brightness.
  • the information processing apparatus 1 is provided with a pair of earphone speakers 3a and 3b that can be inserted into the user's right ear hole and left ear hole when worn.
  • microphones 5 a and 5 b that collect external sound are disposed on the right side of the display unit 2 for the right eye and on the left side of the display unit 2 for the left eye.
  • the information processing apparatus 1 may be formed of a mounting unit that is generally of a glasses type or a head mounted type, and it is sufficient that at least the movement of the user's head can be detected.
  • one display unit 2 may be provided corresponding to one eye.
  • the inner camera 4 is disposed inward on the right eye side, but may be disposed on the left eye side or may be disposed on both sides.
  • the illuminance sensor 6 is disposed inward on the left eye side, but may be disposed on the right eye side or may be disposed on both sides.
  • the earphone speakers 3a and 3b may not be left and right stereo speakers, but only one earphone speaker 3a and 3b may be provided to be worn only on one ear.
  • the microphone may be one of the microphones 5a and 5b. Furthermore, a configuration without the inner camera 4, the microphones 5a and 5b, or the earphone speakers 3a and 3b is also conceivable.
  • the information processing apparatus 1 that can automatically detect eye fatigue (eye fatigue / eye strain) and perform output control to reduce fatigue without the user being aware of it.
  • I will provide a.
  • a transmissive head wearable device information processing apparatus 1 that a user wears on the head on a daily basis, it is possible to detect eye fatigue without worrying about location or time. Become.
  • the information processing apparatus 1 actively detects eye fatigue for the user, even if the user is not aware of fatigue, the user is made aware of fatigue or reduces (cancels) fatigue. Output control can be performed.
  • FIG. 2 is a block diagram illustrating a basic configuration of the information processing apparatus 1 according to the present embodiment.
  • the information processing apparatus 1 includes a main control unit 10, a display unit 2, an audio output unit 3, an inner camera 4, an audio input unit 5, an illuminance sensor 6, a communication unit 12, and a storage unit 14. .
  • the inner camera 4 includes a lens system including an imaging lens, an aperture, a zoom lens, a focus lens, and the like, a drive system that causes the lens system to perform a focusing operation and a zoom operation, and imaging light obtained by the lens system.
  • the solid-state imaging device array may be realized by, for example, a CCD (Charge Coupled Device) sensor array or a CMOS (Complementary Metal Oxide Semiconductor) sensor array.
  • the inner camera 4 is arranged facing inward with the information processing apparatus 1 attached to the user. For this reason, the inner camera 4 can always image the user's eyes while the information processing apparatus 1 is worn by the user. A captured image of the user's eye captured by the inner camera 4 is output to the main control unit 10.
  • the illuminance sensor 6 has a function of detecting ambient brightness, and outputs a detection result to the main control unit 10.
  • a specific configuration of the illuminance sensor 6 is not particularly limited.
  • the pupil diameter of the user's eye is measured by the measurement unit 110 described later, and fatigue is detected based on the pupil diameter by the detection unit 120.
  • the pupil can contract due to the influence of external light.
  • the pupil usually shrinks when it is bright and expands in the dark. Therefore, in this embodiment, the illuminance sensor 6 is provided in order to distinguish between shrinkage due to the influence of external light and shrinkage due to fatigue.
  • the main control unit 10 includes, for example, a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a nonvolatile memory, and an interface unit. To control.
  • a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a nonvolatile memory, and an interface unit. To control.
  • the main control unit 10 functions as a measurement unit 110, a detection unit 120, and an output control unit 130 as shown in FIG.
  • the measurement unit 110 measures the pupil diameter based on the captured image captured by the inner camera 4.
  • the detection unit 120 detects eye fatigue based on the pupil diameter measured by the measurement unit 110. Usually, since the human pupil area is reduced (miosis) during fatigue, the detection unit 120 detects a miosis that is considered fatigue based on whether the measured pupil diameter is less than a predetermined value. Can do.
  • the predetermined value at the time of determining fatigue may be set to a general value (specifically, for example, 2 mm) based on medical knowledge, or set to a value that is personalized by performing calibration in advance. May be.
  • the detection unit 120 can detect eye fatigue based on the change of the pupil diameter over time. Specifically, the detection unit 120 detects eye fatigue by comparing with data on the change speed of the pupil diameter when the external light collected in advance is normal (before fatigue). Usually, the area of the pupil of the human eye changes according to the brightness of external light (referred to as “extrapupillary light reaction”), and the external pupillary light response is lower than normal when fatigued. Therefore, the detection unit 120 can detect eye fatigue when the extra-pupil light reaction is lower than normal. For example, the maximum pupil contraction rate, contraction speed, and re-expansion speed are used as the measurement index of the extra-pupil light reaction.
  • the detection unit 120 can detect the progress of fatigue based on the change in pupil diameter that is considered fatigue and the change rate.
  • the output control unit 130 performs predetermined output control so as to reduce (eliminate) eye fatigue detected by the detection unit 120. Further, the output control unit 130 may perform predetermined output control for gradually reducing eye fatigue according to the course of eye fatigue detected by the detection unit 120. Specific examples of output control for reducing (eliminating) eye fatigue will be described in detail with reference to FIGS. 3 to 9. For example, the size, thickness, and screen of characters displayed on the display unit 2 are described. For example, controlling the contrast. Moreover, as a specific example of output control, notifying the user that the user is tired or prompting the user to take a break can be cited.
  • the communication unit 12 has a function of transmitting / receiving data by connecting to an external device by wireless / wired.
  • the communication unit 12 according to the present embodiment is connected to a server on the network, for example, and transmits and receives electronic mail.
  • the communication part 12 may connect with the smart phone, tablet terminal, etc. which a user possesses, and may receive an image
  • the audio input unit 5 includes the microphones 5a and 5b shown in FIG. 1, and a microphone amplifier unit and an A / D converter for amplifying the audio signals obtained by the microphones 5a and 5b. To the unit 10.
  • the main control unit 10 enables voice input by the user by performing voice recognition on the voice data obtained by the voice input unit 5 after performing processing such as noise removal and sound source separation.
  • the display unit 2 displays image data according to control by the main control unit 10. Further, as described above, the display unit 2 may be a transmissive display device.
  • the audio output unit 3 includes a pair of earphone speakers 3a and 3b shown in FIG. 1 and an amplifier circuit for the earphone speakers 3a and 3b. Moreover, the audio
  • the storage unit 14 stores programs for the main control unit 10 to execute various processes.
  • the configuration of the information processing apparatus 1 according to the present embodiment has been described in detail above.
  • the information processing apparatus 1 is realized by a wearable device that is worn on the head on a daily basis, so that changes in the pupil diameter can be continuously observed regardless of the user's consciousness. When this is detected, output control for automatically reducing fatigue can be performed.
  • FIG. 3 is a flowchart showing an operation process of fatigue detection based on the pupil diameter according to the present embodiment.
  • the main control unit 10 of the information processing apparatus 1 activates the inner camera 4.
  • the activation of the inner camera 4 is performed as one of initial operations when the user wears the information processing apparatus 1 that is a glasses-type HMD (an example of a head wearable device) on the head and turns on the power. Is assumed.
  • the measurement unit 110 performs normal pupil diameter measurement and performs an operation of registering the normal pupil diameter of the user. Specifically, the measurement unit 110 registers the pupil diameter at the normal time in a plurality of time zones and environments having different brightness as an initial operation, and performs calibration. By performing such an operation, it is possible to perform a robust fatigue detection process that is more personalized.
  • step S109 the illuminance sensor 6 detects the brightness of external light.
  • step S ⁇ b> 112 the measurement unit 110 measures the pupil diameter based on the captured image of the user's eye captured by the inner camera 4.
  • the detection unit 120 determines whether or not the miosis is considered to be fatigue, and performs fatigue detection. Specifically, the detection unit 120 considers the brightness of the external light detected by the illuminance sensor 6 and has a miosis that falls below a predetermined value despite no change in the brightness of the external light. It is determined that the miosis is regarded as fatigue, and fatigue is detected.
  • step S118 the output control unit 130 performs predetermined output control to reduce fatigue.
  • predetermined output control for reducing fatigue will be described with reference to FIGS.
  • FIG. 4 is a diagram for explaining display output control for reducing fatigue.
  • FIG. 4 shows an example of an e-mail display screen 20 displayed on the display unit 2 when the eye state is normal.
  • the output control unit 130 increases the size of the character, makes it thicker, or increases the contrast, as shown in the display screen 21 in FIG. Or reducing the brightness, the fatigue of the user's eyes is reduced. This is because, for example, reading a large character is less burdensome on the eyes than reading a small character.
  • an icon for notifying the user that the mode has shifted to the fatigue mode may be displayed. Specifically, for example, by displaying an icon image 30 shown on the display screen 21 in FIG. 4, the user is notified of the transition to the fatigue mode. Thereby, the user can be aware of fatigue of his / her eyes and take active measures such as taking a rest.
  • the output control unit 130 may perform control to forcibly stop the display output because of a serious matter related to health when the degree of fatigue is larger than a specified value.
  • the output control unit 130 may only issue a warning when the degree of fatigue is smaller than a specified value.
  • a fatigue warning is shown in FIG.
  • the output control unit 130 displays an icon image 32 that warns about eye fatigue above the e-mail display screen 22, thereby prompting the user to rest.
  • the output control unit 130 may perform output control of, for example, a fatigue healing application function.
  • a fatigue healing application function for example, a massage around the eyes by a vibration unit (not shown) built in the information processing apparatus 1 or a heating / cooling element (not shown) such as a Peltier element built in the information processing apparatus 1 is used.
  • a hot and cold massage of the eyes can be mentioned.
  • step S121 of FIG. 3 the main control unit 10 determines whether or not an instruction to cancel output control for reducing fatigue has been input.
  • an instruction to cancel output control for reducing fatigue when eye fatigue is detected regardless of the user's consciousness, output control for automatically reducing fatigue is performed, so it may be assumed that some users want to return to a normal state. Therefore, the convenience of the information processing apparatus 1 can be further improved by making it possible to cancel the output control for reducing fatigue.
  • the setting menu may be called to change the output control mode from the fatigue mode to the normal mode.
  • the information processing apparatus 1 may be provided with a physical button, and the fatigue mode / normal mode may be switched when the button is pressed for a long time.
  • step S124 when a release instruction is received (S121 / Yes), in step S124, the output control unit 130 returns to normal output control.
  • the fatigue detection operation process based on the pupil diameter according to the present embodiment has been specifically described above.
  • FIG. 6 is a flowchart showing an operation process when fatigue detection is performed based on the miosis speed.
  • the same step number is attached
  • step S ⁇ b> 103 the main control unit 10 of the information processing apparatus 1 activates the inner camera 4.
  • step S104 the measurement unit 110 continuously measures the pupil diameter at the normal time and registers the pupil miosis / mydriatic velocity at the normal time of the user. Specifically, as an initial operation, the measurement unit 110 registers the miosis / mydriatic velocity of the pupil according to changes in external light during normal times in a plurality of time zones and environments with different brightnesses, and performs calibration. .
  • step S109 the illuminance sensor 6 detects the brightness of external light.
  • step S110 the main control unit 10 determines whether the brightness of the external light has changed based on the detection result by the illuminance sensor 6. Further, S109 and S110 are repeatedly performed.
  • the measurement unit 110 calculates the pupil diameter based on the captured images of the user's eyes continuously captured by the inner camera 4. Measure continuously. Note that the measurement of the pupil diameter by the measurement unit 110 is not limited to the measurement after the change of the external light, and the pupil diameter before and after the change of the external light may be continuously measured.
  • the detection unit 120 determines whether the miosis / mydriatic velocity is a miosis / mydriatic velocity that is considered fatigue based on the continuously measured pupil diameter. And fatigue detection. Specifically, the detection unit 120 is a miosis / mydriasis that is regarded as eye fatigue when the speed of miosis / mydriasis corresponding to the brightness of external light is lower than normal. And fatigue is detected.
  • step S118 as in the same step shown in FIG. 3, the output control unit 130 performs predetermined output control for reducing fatigue, and a release instruction is input by the user in steps S121 to S124. If so, return to normal output control.
  • FIG. 7 is a flowchart showing an operation process of fatigue detection based on the miosis / mydriatic velocity according to the change in luminance according to the present embodiment.
  • step S103 the main control unit 10 of the information processing apparatus 1 activates the inner camera 4.
  • the measurement unit 110 continuously measures the pupil diameter at the normal time and registers the pupil miosis / mydriatic velocity at the normal time of the user. Specifically, the measurement unit 110 registers the miosis / mydriatic velocity of the pupil according to a change in the luminance of the display unit 2 in a normal state in a plurality of time zones and environments with different brightness as an initial operation, and performs calibration. Perform
  • step S107 the main control unit 10 checks the luminance of the display unit 2.
  • step S108 the main control unit 10 determines whether or not the luminance of the display unit 2 has changed.
  • the change in luminance of the display unit 2 may be a change that inevitably occurs in accordance with a change in display content or screen transition. In this case, fatigue can be detected without making the user aware of it. However, there is a concern that fatigue detection opportunities are affected by user behavior. Therefore, the main control unit 10 may detect the fatigue by changing the luminance of the display unit 2 when the luminance change due to switching of the display content does not occur for a certain period of time. Also, S107 and S108 are repeated.
  • step S113 the measurement unit 110 continuously measures the pupil diameter based on the captured image of the user's eye continuously captured by the inner camera 4. To do.
  • the detection unit 120 determines whether or not the speed of miosis / mydriasis is the speed of miosis / mydriasis that is considered fatigue based on the continuously measured pupil diameter. Judgment and fatigue detection. Specifically, the detection unit 120 determines that the miosis / mydriasis is considered to be eye fatigue when the speed of miosis / mydriasis corresponding to a change in luminance is lower than normal. And detect fatigue.
  • step S118 as in the same step shown in FIG. 3, the output control unit 130 performs predetermined output control for reducing fatigue, and in steps S121 to S124, a release instruction is input by the user. If it does, return to normal output control.
  • FIG. 8 is a flowchart showing an operation process for improving the accuracy of fatigue detection according to the present embodiment.
  • a case where the accuracy of the fatigue detection process based on the pupil diameter described with reference to FIG. 3 is improved will be described.
  • step S106 the measurement unit 110 measures the pupil diameter at the normal time to start up. Perform calibration.
  • the detection unit 120 detects fatigue according to the pupil diameter based on the captured image of the user's eye captured by the inner camera 4.
  • calibration is also repeatedly performed.
  • step S117 the measurement unit 110 stores the measured pupil diameter as a normal pupil diameter. Store in the unit 14. In this way, not only at startup, but also when repeatedly detecting eye fatigue, normal memory in various environments can be obtained by continuously storing the normal pupil diameter and increasing the number of calibrations. Values can be collected and the accuracy of fatigue detection can be improved.
  • step S118 the output control unit 130 performs predetermined output control for reducing fatigue, and returns to normal output control when a release instruction is input by the user in steps S121 to S124. .
  • predetermined output control is performed to reduce fatigue.
  • the output control unit 130 according to the present embodiment is adapted to the progress of fatigue. It may be done step by step.
  • a specific description will be given with reference to FIG.
  • FIG. 9 is a flowchart showing an operation process of stepwise output control for reducing fatigue according to the present embodiment.
  • output control in the fatigue detection process based on the pupil miosis / mydriatic velocity described with reference to FIG. 6 is performed in stages.
  • steps S103 to S116 fatigue detection based on the miosis / mydriatic velocity of the pupil diameter is performed as in the same step shown in FIG.
  • step S119 when the miosis / mydriatic velocity regarded as fatigue is measured (S116 / Yes), in step S119, the output control unit 130 performs predetermined output control for reducing fatigue according to the progress of fatigue. Step by step.
  • the output control unit 130 performs fatigue warning control when the miosis / mydriatic velocity regarded as fatigue is within the predetermined value range of the first stage, and displays when the range is the predetermined value range of the second stage. Display control is performed so as not to put a burden on the eyes by enlarging the characters displayed on the unit 2 or increasing the contrast. Further, the output control unit 130 performs control to forcibly stop the display output of the display unit 2 when the miosis / mydriatic velocity regarded as fatigue is within a predetermined range of the third stage.
  • output control for reducing fatigue can be performed in a plurality of stages according to the progress of eye fatigue.
  • step S121 to S124 the output control unit 130 returns to normal output control when a release instruction is input by the user.
  • the information processing apparatus 1 is realized by a transmissive head wearable device that a user wears on the head on a daily basis, and automatically causes eye fatigue without the user being conscious. It is possible to detect (eye fatigue / eye strain) and perform output control for reducing fatigue.
  • the information processing apparatus 1 automatically detects eye fatigue (eye fatigue / eye strain) even if the user is not conscious, but there is an active operation by the user. Eye fatigue may be detected in response to a user operation.
  • this technique can also take the following structures.
  • An imaging unit that is provided in an information processing device mounted on a user's head and that images the user's eyes;
  • a measurement unit that measures a pupil diameter based on a captured image captured by the imaging unit;
  • a detection unit for detecting eye fatigue based on the pupil diameter measured by the measurement unit;
  • a control unit that performs predetermined output control for reducing eye fatigue detected by the detection unit;
  • An information processing apparatus comprising: (2) The information processing apparatus according to (1), wherein the detection unit detects eye fatigue based on a change in the pupil diameter.
  • the detection unit detects eye fatigue by comparing the change of the pupil diameter with data of the change speed of the pupil diameter when the external light collected in advance is normal.
  • the information processing apparatus according to any one of (1) to (7).
  • the control unit performs control so as to stop display output when eye fatigue is detected.
  • the control unit controls to drive an eye strain treatment application.
  • the information processing apparatus is a glasses-type wearable device.
  • the information processing apparatus is a glasses-type wearable device.
  • An imaging unit that is provided in an information processing device mounted on a user's head and that images the user's eyes; A measurement unit that measures a pupil diameter based on a captured image captured by the imaging unit; A detection unit for detecting eye fatigue based on the pupil diameter measured by the measurement unit; A control unit that performs predetermined output control for reducing eye fatigue detected by the detection unit; Program to function as

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Public Health (AREA)
  • General Health & Medical Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Physics & Mathematics (AREA)
  • Veterinary Medicine (AREA)
  • Biophysics (AREA)
  • Medical Informatics (AREA)
  • Biomedical Technology (AREA)
  • Psychiatry (AREA)
  • Pathology (AREA)
  • Social Psychology (AREA)
  • Psychology (AREA)
  • Hospice & Palliative Care (AREA)
  • Educational Technology (AREA)
  • Developmental Disabilities (AREA)
  • Child & Adolescent Psychology (AREA)
  • Ophthalmology & Optometry (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

The purpose of the present invention is to provide an information-processing device, control method and program for detecting eye fatigue automatically without the user having to be conscious thereof and being capable of performing output control to reduce fatigue. An information-processing device is worn on the user's head and is provided with: an image pickup unit provided on the information-processing device for imaging the user's eyes; a measurement section for measuring pupil diameter on the basis of the image taken by the image pickup unit; a detection section for detecting eye fatigue on the basis of the pupil diameter measured by the measurement section; and a control section for performing a specified output control to reduce the eye fatigue detected by the detection section.

Description

[規則37.2に基づきISAが決定した発明の名称] 瞳孔径に基づく眼の疲労検出のための情報処理装置、方法、およびプログラム[Name of invention determined by ISA based on Rule 37.2] Information processing device, method, and program for eye fatigue detection based on pupil diameter
 本開示は、情報処理装置、制御方法、およびプログラムに関する。 The present disclosure relates to an information processing device, a control method, and a program.
 近年、視覚疲労が大きな問題として取り上げられている。その要因としては、テレビやPC(パーソナルコンピュータ)、携帯電話端末、スマートフォン等の電子機器の普及により、電子画面を見る時間が大幅に増えたことが考えられる。 In recent years, visual fatigue has been taken up as a major problem. As a cause of this, it is considered that the time for viewing an electronic screen has significantly increased due to the spread of electronic devices such as televisions, PCs (personal computers), mobile phone terminals, and smartphones.
 このような視覚疲労に関する技術として、例えば下記特許文献1が提案されている。特許文献1では、所定の光刺激に対する瞳孔径の経時変化に基づいて疲労度の測定を行う視覚疲労度検出装置が開示されている。 For example, the following Patent Document 1 has been proposed as a technique related to such visual fatigue. Patent Document 1 discloses a visual fatigue level detection device that measures a fatigue level based on a temporal change in pupil diameter with respect to a predetermined light stimulus.
 また、下記特許文献2では、被験者に対してフラッシュ光を発光させた際の瞳孔の対光反応を撮像画像から検出し、検出した対光反応に基づいて被験者のストレス度を判定するストレス判定システムが開示されている。 Further, in Patent Document 2 below, a stress determination system that detects a light reaction of a pupil when flash light is emitted to a subject from a captured image and determines a stress level of the subject based on the detected light reaction. Is disclosed.
 また、下記特許文献3では、ユーザの体表温や脳波、眼の瞬きの頻度、皮膚の電気抵抗、瞳孔の大きさ、心拍数等の生体情報を用いてユーザの緊張状態若しくは疲労状態を判定し、判定結果に基づいて、緊張緩和もしくは疲労軽減の効果を与える刺激を発生するストレスケア装置が開示されている。発生する刺激としては、例えばリラックス効果のある匂いや色、音が与えられている。 Moreover, in the following Patent Document 3, the user's body temperature, brain wave, blinking frequency, skin electrical resistance, pupil size, heart rate, and other biological information are used to determine the user's tension state or fatigue state. And the stress care apparatus which generate | occur | produces the stimulus which gives the effect of tension relaxation or fatigue reduction based on the determination result is disclosed. As the generated stimulus, for example, a relaxing odor, color, or sound is given.
特開2012-50759号公報JP 2012-50759 A 特開2009-142469号公報JP 2009-142469 A 特開2006-320621号公報JP 2006-320621 A
 しかしながら、従来の疲労検出技術やストレスケア技術では、疲労を検出するための場所や時間が必要であったり、瞳孔径を計測するための専用の機材が必要であったりした。 However, the conventional fatigue detection technology and stress care technology required a place and time for detecting fatigue, and dedicated equipment for measuring the pupil diameter.
 また、上述した疲労検出技術やストレスケア技術は、ユーザが意識して能動的に検出装置等を操作するものであるので、ユーザが自身で疲労を意識したときでなければ利用されなかった。このため、ユーザ自身が疲労を感じることができない状態において、ユーザに疲労を気付かせたり、ストレスケアを提供したりすることは困難であった。 In addition, since the above-described fatigue detection technology and stress care technology are those in which the user consciously operates the detection device and the like, they are not used unless the user is conscious of fatigue by himself / herself. For this reason, it is difficult to make the user aware of fatigue or provide stress care in a state where the user cannot feel fatigue.
 そこで、本開示では、ユーザが意識しなくとも自動的に眼の疲労を検出し、疲労を軽減するための出力制御を行うことが可能な情報処理装置、制御方法、およびプログラムを提案する。 Therefore, the present disclosure proposes an information processing apparatus, a control method, and a program that can automatically detect eye fatigue and perform output control for reducing fatigue without the user being aware of it.
 本開示によれば、ユーザの頭部に装着される情報処理装置に設けられ、前記ユーザの眼を撮像する撮像部と、前記撮像部により撮像された撮像画像に基づいて瞳孔径を計測する計測部と、前記計測部により計測された瞳孔径に基づいて眼の疲労を検出する検出部と、前記検出部により検出された眼の疲労を軽減するための所定の出力制御を行う制御部と、を備える、情報処理装置を提案する。 According to the present disclosure, an imaging unit that is provided in an information processing device mounted on a user's head and that measures the pupil diameter based on an imaging unit that images the user's eyes and an image captured by the imaging unit. A detection unit that detects eye fatigue based on the pupil diameter measured by the measurement unit, and a control unit that performs predetermined output control for reducing eye fatigue detected by the detection unit, An information processing apparatus comprising:
 本開示によれば、ユーザの頭部に装着される情報処理装置に設けられ、前記ユーザの眼を撮像するステップと、撮像された撮像画像に基づいて瞳孔径を計測するステップと、計測された瞳孔径に基づいて眼の疲労を検出するステップと、検出された眼の疲労を軽減するための所定の出力制御を行うステップと、を含む、制御方法を提案する。 According to the present disclosure, provided in an information processing device mounted on a user's head, the steps of imaging the user's eyes, measuring the pupil diameter based on the captured image, and A control method is proposed, which includes a step of detecting eye fatigue based on the pupil diameter and a step of performing predetermined output control for reducing the detected eye fatigue.
 本開示によれば、コンピュータを、ユーザの頭部に装着される情報処理装置に設けられ、前記ユーザの眼を撮像する撮像部と、前記撮像部により撮像された撮像画像に基づいて瞳孔径を計測する計測部と、前記計測部により計測された瞳孔径に基づいて眼の疲労を検出する検出部と、前記検出部により検出された眼の疲労を軽減するための所定の出力制御を行う制御部と、として機能させるための、プログラムを提案する。 According to the present disclosure, a computer is provided in an information processing device mounted on a user's head, and an image capturing unit that captures an image of the user's eyes and a pupil diameter based on a captured image captured by the image capturing unit. A measurement unit for measuring, a detection unit for detecting eye fatigue based on the pupil diameter measured by the measurement unit, and a control for performing predetermined output control for reducing eye fatigue detected by the detection unit We propose a program to function as a part.
 以上説明したように本開示によれば、ユーザが意識しなくとも自動的に眼の疲労を検出し、疲労を軽減するための出力制御を行うことが可能となる。 As described above, according to the present disclosure, it is possible to automatically detect eye fatigue and perform output control for reducing fatigue without the user being aware of it.
 なお、上記の効果は必ずしも限定的なものではなく、上記の効果とともに、または上記の効果に代えて、本明細書に示されたいずれかの効果、または本明細書から把握され得る他の効果が奏されてもよい。 Note that the above effects are not necessarily limited, and any of the effects shown in the present specification, or other effects that can be grasped from the present specification, together with or in place of the above effects. May be played.
本開示の一実施形態による情報処理装置の概要について説明するための図である。It is a figure for demonstrating the outline | summary of the information processing apparatus by one Embodiment of this indication. 本実施形態による情報処理装置の基本構成を示すブロック図である。It is a block diagram which shows the basic composition of the information processing apparatus by this embodiment. 本実施形態による瞳孔径に基づく疲労検出の動作処理を示すフローチャートである。It is a flowchart which shows the operation | movement process of the fatigue detection based on the pupil diameter by this embodiment. 疲労を軽減するための表示出力制御について説明するための図である。It is a figure for demonstrating the display output control for reducing fatigue. 本実施形態による疲労警告の一例を示す図である。It is a figure which shows an example of the fatigue warning by this embodiment. 縮瞳速度に基づいて疲労検出を行う場合の動作処理を示すフローチャートである。It is a flowchart which shows the operation | movement process in the case of performing a fatigue detection based on a miosis speed. 本実施形態による輝度の変化に応じた縮瞳/散瞳速度に基づく疲労検出の動作処理を示すフローチャートである。It is a flowchart which shows the operation | movement process of the fatigue detection based on the miosis / mydriatic speed according to the change of the brightness | luminance by this embodiment. 本実施形態による疲労検出の精度を向上させるための動作処理を示すフローチャートである。It is a flowchart which shows the operation | movement process for improving the precision of the fatigue detection by this embodiment. 本実施形態による疲労を軽減するための段階的な出力制御の動作処理を示すフローチャートである。It is a flowchart which shows the operation | movement process of the stepwise output control for reducing the fatigue by this embodiment.
 以下に添付図面を参照しながら、本開示の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。 Hereinafter, preferred embodiments of the present disclosure will be described in detail with reference to the accompanying drawings. In addition, in this specification and drawing, about the component which has the substantially same function structure, duplication description is abbreviate | omitted by attaching | subjecting the same code | symbol.
 また、説明は以下の順序で行うものとする。
 1.本開示の一実施形態による情報処理装置の概要
 2.基本構成
 3.動作処理
  3-1.瞳孔径に基づく疲労検出
  3-2.縮瞳/散瞳速度に基づく疲労検出
  3-3.輝度の変化に応じた縮瞳/散瞳速度に基づく疲労検出
  3-4.疲労検出の精度向上
  3-5.疲労を軽減するための段階的な出力制御
 4.まとめ
The description will be made in the following order.
1. 1. Overview of information processing apparatus according to an embodiment of the present disclosure Basic configuration Operation processing 3-1. Fatigue detection based on pupil diameter 3-2. Fatigue detection based on miosis / mydriatic velocity 3-3. Fatigue detection based on miosis / mydriatic velocity according to changes in brightness 3-4. Improvement of fatigue detection accuracy 3-5. 3. Stepwise output control to reduce fatigue Summary
  <<1.本開示の一実施形態による情報処理装置の概要>>
 まず、本開示の一実施形態による情報処理装置1の概要について図1を参照して説明する。図1に示すように、本実施形態による情報処理装置1は、メガネ型のHMD(Head Mounted Display)であって、例えば両側頭部にかけて延びる柄が両耳殻にかけられることでユーザに装着される。
<< 1. Overview of Information Processing Device According to One Embodiment of Present Disclosure >>
First, an overview of an information processing apparatus 1 according to an embodiment of the present disclosure will be described with reference to FIG. As shown in FIG. 1, the information processing apparatus 1 according to the present embodiment is a glasses-type HMD (Head Mounted Display), and is worn by a user by, for example, a pattern extending over both heads being put on both ear shells. .
 また、情報処理装置1(メガネ型HMD)は、装着状態において、ユーザの両眼の直前、即ち通常の眼鏡におけるレンズが位置する場所に、左眼用と右眼用の一対の表示部2a、2bが配置される構成となっている。以下、表示部2a、2bを区別する必要がない場合は両者を総称して表示部2と記載する。 In addition, the information processing apparatus 1 (glasses type HMD), in a wearing state, immediately before the user's eyes, that is, a pair of display units 2a for the left eye and right eye, in a place where a lens in normal glasses is located 2b is arranged. Hereinafter, when it is not necessary to distinguish between the display parts 2a and 2b, they are collectively referred to as the display part 2.
 表示部2は、ナビゲーション画面や、メール画面、ニュース画面、カレンダー画面、ユーザへの警告や通知を行う画面を表示したり、映像や写真等を再生したりする。また、表示部2は透過型であってもよく、情報処理装置1により表示部2がスルー状態、即ち透明または半透明の状態とされることで、ユーザが情報処理装置1を眼鏡のように常時装着しても通常の生活には支障が生じない。ユーザは、情報処理装置1(メガネ型HMD)を頭部に装着した状態で、通常の生活をしながら、いつでもメガネ型のレンズ部分に位置する表示部2で、メールやニュースを閲覧したり、ナビゲーションを表示させたりすることができる。 The display unit 2 displays a navigation screen, a mail screen, a news screen, a calendar screen, a screen for giving a warning or notification to a user, and plays a video or a photograph. In addition, the display unit 2 may be a transmissive type, and the information processing device 1 causes the display unit 2 to be in a through state, that is, a transparent or translucent state, so that the user can make the information processing device 1 like glasses. Even if it is always worn, it will not interfere with normal life. The user browses emails and news on the display unit 2 located in the lens part of the glasses type at any time while having a normal life with the information processing device 1 (glasses type HMD) mounted on the head, Navigation can be displayed.
 また、情報処理装置1には、装着された状態でユーザの眼を撮像するために内側に向けて配置された内側カメラ4が設けられる。 In addition, the information processing apparatus 1 is provided with an inner camera 4 that is arranged inward so as to image the user's eyes in a worn state.
 また、情報処理装置1には、周囲の明るさを検知するための照度センサ6が設けられる。 Further, the information processing apparatus 1 is provided with an illuminance sensor 6 for detecting ambient brightness.
 また、情報処理装置1には、装着状態でユーザの右耳孔および左耳孔に挿入できる一対のイヤホンスピーカ3a、3bが設けられる。また、右眼用の表示部2の右方と、左眼用の表示部2の左方に、外部音声を集音するマイクロホン5a、5bが配置される。 Also, the information processing apparatus 1 is provided with a pair of earphone speakers 3a and 3b that can be inserted into the user's right ear hole and left ear hole when worn. In addition, microphones 5 a and 5 b that collect external sound are disposed on the right side of the display unit 2 for the right eye and on the left side of the display unit 2 for the left eye.
 なお、図1に示す情報処理装置1の外観は一例であり、情報処理装置1をユーザが装着するための構造は多様に考えられる。情報処理装置1は、一般にメガネ型、あるいは頭部装着型とされる装着ユニットで形成されればよく、少なくともユーザの頭部の動きを検知できればよい。 Note that the appearance of the information processing apparatus 1 shown in FIG. 1 is an example, and various structures for the user to wear the information processing apparatus 1 can be considered. The information processing apparatus 1 may be formed of a mounting unit that is generally of a glasses type or a head mounted type, and it is sufficient that at least the movement of the user's head can be detected.
 また、表示部2は、両眼に対応して一対設けられる他、片側の眼に対応して1つ設けられる構成でもよい。また、内側カメラ4は、図1に示す例では右眼側に内側に向けて配置されているが、左眼側に配置されてもよいし、両側に配置されてもよい。また、照度センサ6は、図1に示す例では左眼側に内側に向けて配置されているが、右眼側に配置されてもよいし、両側に配置されてもよい。 In addition to a pair of display units 2 corresponding to both eyes, one display unit 2 may be provided corresponding to one eye. Further, in the example shown in FIG. 1, the inner camera 4 is disposed inward on the right eye side, but may be disposed on the left eye side or may be disposed on both sides. Further, in the example shown in FIG. 1, the illuminance sensor 6 is disposed inward on the left eye side, but may be disposed on the right eye side or may be disposed on both sides.
 また、イヤホンスピーカ3a、3bは、左右のステレオスピーカとせずに、一方の耳にのみ装着するために1つ設けられるのみでもよい。また、マイクロホンも、マイクロホン5a、5bのうちの一方でもよい。さらに、内側カメラ4、マイクロホン5a、5b、またはイヤホンスピーカ3a、3bを備えない構成も考えられる。 Further, the earphone speakers 3a and 3b may not be left and right stereo speakers, but only one earphone speaker 3a and 3b may be provided to be worn only on one ear. Further, the microphone may be one of the microphones 5a and 5b. Furthermore, a configuration without the inner camera 4, the microphones 5a and 5b, or the earphone speakers 3a and 3b is also conceivable.
  (背景)
 ここで、従来の技術では、上述したように、疲労を検出するための場所や時間が必要であったり、瞳孔径を計測するための専用の機材が必要であったりした。また、従来の疲労検出技術やストレスケア技術は、ユーザが自身で疲労を意識したときでなければ利用されなかった。
(background)
Here, in the conventional technique, as described above, a place and time for detecting fatigue are required, and a dedicated device for measuring the pupil diameter is required. In addition, conventional fatigue detection technology and stress care technology are not used unless the user is aware of fatigue by himself / herself.
 そこで、本実施形態では、ユーザが意識しなくとも自動的に眼の疲労(眼疲労/眼精疲労)を検出し、疲労を軽減するための出力制御を行うことを可能とする情報処理装置1を提供する。具体的には、日常的にユーザが頭部に装着する透過型頭部ウェラブルデバイス(情報処理装置1)を用いることで、場所や時間を気にせず眼の疲労を検出することが可能になる。また、情報処理装置1は、ユーザに対して能動的に眼の疲労の検出を行うので、ユーザが疲労を意識していなくとも、ユーザに対して疲労を気付かせたり、疲労を軽減(解消)するための出力制御を行ったりすることができる。 Therefore, in this embodiment, the information processing apparatus 1 that can automatically detect eye fatigue (eye fatigue / eye strain) and perform output control to reduce fatigue without the user being aware of it. I will provide a. Specifically, by using a transmissive head wearable device (information processing apparatus 1) that a user wears on the head on a daily basis, it is possible to detect eye fatigue without worrying about location or time. Become. Further, since the information processing apparatus 1 actively detects eye fatigue for the user, even if the user is not aware of fatigue, the user is made aware of fatigue or reduces (cancels) fatigue. Output control can be performed.
 以上、本開示の一実施形態による情報処理装置1の概要について説明した。続いて、本開示による情報処理装置1の基本構成について説明する。 The overview of the information processing apparatus 1 according to an embodiment of the present disclosure has been described above. Subsequently, a basic configuration of the information processing apparatus 1 according to the present disclosure will be described.
  <<2.基本構成>>
 図2は、本実施形態による情報処理装置1の基本構成を示すブロック図である。図2に示すように、情報処理装置1は、主制御部10、表示部2、音声出力部3、内側カメラ4、音声入力部5、照度センサ6、通信部12、および記憶部14を有する。
<< 2. Basic configuration >>
FIG. 2 is a block diagram illustrating a basic configuration of the information processing apparatus 1 according to the present embodiment. As illustrated in FIG. 2, the information processing apparatus 1 includes a main control unit 10, a display unit 2, an audio output unit 3, an inner camera 4, an audio input unit 5, an illuminance sensor 6, a communication unit 12, and a storage unit 14. .
  (内側カメラ)
 内側カメラ4は、撮像レンズ、絞り、ズームレンズ、及びフォーカスレンズ等により構成されるレンズ系と、レンズ系に対してフォーカス動作やズーム動作を行わせる駆動系と、レンズ系で得られる撮像光を光電変換して撮像信号を生成する固体撮像素子アレイ等とを有する撮像部である。固体撮像素子アレイは、例えばCCD(Charge Coupled Device)センサアレイや、CMOS(Complementary Metal Oxide Semiconductor)センサアレイにより実現されてもよい。
(Inside camera)
The inner camera 4 includes a lens system including an imaging lens, an aperture, a zoom lens, a focus lens, and the like, a drive system that causes the lens system to perform a focusing operation and a zoom operation, and imaging light obtained by the lens system. An imaging unit having a solid-state imaging element array or the like that generates an imaging signal through photoelectric conversion. The solid-state imaging device array may be realized by, for example, a CCD (Charge Coupled Device) sensor array or a CMOS (Complementary Metal Oxide Semiconductor) sensor array.
 内側カメラ4は、図1に示すように、情報処理装置1がユーザに装着された状態で、内側に向けて配置される。このため、内側カメラ4は、情報処理装置1がユーザに装着されている間、常にユーザの眼を撮像することができる。内側カメラ4により撮像されたユーザの眼の撮像画像は、主制御部10に出力される。 As shown in FIG. 1, the inner camera 4 is arranged facing inward with the information processing apparatus 1 attached to the user. For this reason, the inner camera 4 can always image the user's eyes while the information processing apparatus 1 is worn by the user. A captured image of the user's eye captured by the inner camera 4 is output to the main control unit 10.
  (照度センサ)
 照度センサ6は、周囲の明るさを検知する機能を有し、検知結果を主制御部10に出力する。照度センサ6の具体的な構成については特に限定しない。本実施形態では、後述する計測部110によりユーザの眼の瞳孔径を計測し、検出部120により瞳孔径に基づいて疲労を検出するが、瞳孔は外光の影響によっても収縮し得る。例えば、通常、瞳孔は明るいと縮小し、暗闇で拡大する。したがって、本実施形態では、外光の影響による収縮と疲労による収縮とを区別するために、照度センサ6を設ける。
(Illuminance sensor)
The illuminance sensor 6 has a function of detecting ambient brightness, and outputs a detection result to the main control unit 10. A specific configuration of the illuminance sensor 6 is not particularly limited. In the present embodiment, the pupil diameter of the user's eye is measured by the measurement unit 110 described later, and fatigue is detected based on the pupil diameter by the detection unit 120. However, the pupil can contract due to the influence of external light. For example, the pupil usually shrinks when it is bright and expands in the dark. Therefore, in this embodiment, the illuminance sensor 6 is provided in order to distinguish between shrinkage due to the influence of external light and shrinkage due to fatigue.
  (主制御部)
 主制御部10は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、不揮発性メモリ、インターフェース部を備えたマイクロコンピュータにより構成され、情報処理装置1の各構成を制御する。
(Main control unit)
The main control unit 10 includes, for example, a microcomputer including a CPU (Central Processing Unit), a ROM (Read Only Memory), a RAM (Random Access Memory), a nonvolatile memory, and an interface unit. To control.
 また、本実施形態による主制御部10は、図2に示すように、計測部110、検出部120、および出力制御部130として機能する。計測部110は、内側カメラ4により撮像された撮像画像に基づいて瞳孔径を計測する。 Further, the main control unit 10 according to the present embodiment functions as a measurement unit 110, a detection unit 120, and an output control unit 130 as shown in FIG. The measurement unit 110 measures the pupil diameter based on the captured image captured by the inner camera 4.
 検出部120は、計測部110により計測された瞳孔径に基づいて眼の疲労を検出する。通常、人間の瞳孔面積は、疲労時に縮小(縮瞳)するため、検出部120は、計測された瞳孔径が所定値を下回るか否かに基づいて、疲労とみなされる縮瞳を検出することができる。ここで、疲労と判断する際の所定値は、医学的知見に基づく一般的な値(具体的には、例えば2mm)に設定してもよいし、予めキャリブレーションを行ってパーソナライズした値に設定してもよい。 The detection unit 120 detects eye fatigue based on the pupil diameter measured by the measurement unit 110. Usually, since the human pupil area is reduced (miosis) during fatigue, the detection unit 120 detects a miosis that is considered fatigue based on whether the measured pupil diameter is less than a predetermined value. Can do. Here, the predetermined value at the time of determining fatigue may be set to a general value (specifically, for example, 2 mm) based on medical knowledge, or set to a value that is personalized by performing calibration in advance. May be.
 また、本実施形態による検出部120は、瞳孔径の経時的な変化に基づいて眼の疲労を検出することも可能である。具体的には、検出部120は、正常時(疲労前)において予め収集された外光が変化した時の瞳孔径の変化速度のデータと比較して、眼の疲労を検出する。通常、人間の眼の瞳孔の面積は、外光の明るさに応じて変化する(瞳孔外光反応と称す)し、疲労時には正常時よりも瞳孔外光反応が低下する。したがって、検出部120は、瞳孔外光反応が正常時より低下した場合に、眼の疲労を検出することができる。なお瞳孔外光反応の計測指標としては、例えば最大瞳孔収縮率、収縮速度、再拡張速度が用いられる。 Also, the detection unit 120 according to the present embodiment can detect eye fatigue based on the change of the pupil diameter over time. Specifically, the detection unit 120 detects eye fatigue by comparing with data on the change speed of the pupil diameter when the external light collected in advance is normal (before fatigue). Usually, the area of the pupil of the human eye changes according to the brightness of external light (referred to as “extrapupillary light reaction”), and the external pupillary light response is lower than normal when fatigued. Therefore, the detection unit 120 can detect eye fatigue when the extra-pupil light reaction is lower than normal. For example, the maximum pupil contraction rate, contraction speed, and re-expansion speed are used as the measurement index of the extra-pupil light reaction.
 また、検出部120は、疲労とみなされる瞳孔径の変化や、変化速度の経過に基づいて、疲労経過を検出することも可能である。 Also, the detection unit 120 can detect the progress of fatigue based on the change in pupil diameter that is considered fatigue and the change rate.
 出力制御部130は、検出部120により検出された眼の疲労を軽減(解消)するよう所定の出力制御を行う。また、出力制御部130は、検出部120により検出された眼の疲労経過に応じて、段階的に眼の疲労を軽減するための所定の出力制御を行ってもよい。眼の疲労を軽減(解消)するための出力制御の具体例については図3~図9を参照して詳細に説明するが、例えば表示部2に表示される文字の大きさ、太さ、画面のコントラスト等を制御することが挙げられる。また、出力制御の具体例として、疲労していることをユーザに通知したり、休憩を取るよう促したりすることも挙げられる。 The output control unit 130 performs predetermined output control so as to reduce (eliminate) eye fatigue detected by the detection unit 120. Further, the output control unit 130 may perform predetermined output control for gradually reducing eye fatigue according to the course of eye fatigue detected by the detection unit 120. Specific examples of output control for reducing (eliminating) eye fatigue will be described in detail with reference to FIGS. 3 to 9. For example, the size, thickness, and screen of characters displayed on the display unit 2 are described. For example, controlling the contrast. Moreover, as a specific example of output control, notifying the user that the user is tired or prompting the user to take a break can be cited.
  (通信部)
 通信部12は、無線/有線により外部装置と接続し、データの送受信を行う機能を有する。本実施形態による通信部12は、例えばネットワーク上のサーバと接続し、電子メールの送受信を行う。また、通信部12は、ユーザが所持するスマートフォンやタブレット端末等と接続し、映像や写真、音楽等を受信してもよい。
(Communication Department)
The communication unit 12 has a function of transmitting / receiving data by connecting to an external device by wireless / wired. The communication unit 12 according to the present embodiment is connected to a server on the network, for example, and transmits and receives electronic mail. Moreover, the communication part 12 may connect with the smart phone, tablet terminal, etc. which a user possesses, and may receive an image | video, a photograph, music, etc.
  (音声入力部)
 音声入力部5は、図1に示したマイクロホン5a、5bと、そのマイクロホン5a、5bで得られた音声信号を増幅処理するマイクアンプ部やA/D変換器を有し、音声データを主制御部10に出力する。主制御部10では、音声入力部5で得られた音声データに対して、ノイズ除去、音源分離等の処理を行った上で音声認識を行うことで、ユーザによる音声入力を可能にする。
(Voice input part)
The audio input unit 5 includes the microphones 5a and 5b shown in FIG. 1, and a microphone amplifier unit and an A / D converter for amplifying the audio signals obtained by the microphones 5a and 5b. To the unit 10. The main control unit 10 enables voice input by the user by performing voice recognition on the voice data obtained by the voice input unit 5 after performing processing such as noise removal and sound source separation.
  (表示部)
 表示部2は、主制御部10による制御に従って、画像データを表示する。また、表示部2は、上述したように、透過型の表示デバイスであってもよい。
(Display section)
The display unit 2 displays image data according to control by the main control unit 10. Further, as described above, the display unit 2 may be a transmissive display device.
  (音声出力部)
 音声出力部3は、図1に示した一対のイヤホンスピーカ3a、3bと、そのイヤホンスピーカ3a、3bに対するアンプ回路を有する。また、音声出力部3は、いわゆる骨伝導スピーカとして構成されてもよい。音声出力部3は、主制御部10による制御に従って、音声信号データを出力(再生)する。
(Audio output part)
The audio output unit 3 includes a pair of earphone speakers 3a and 3b shown in FIG. 1 and an amplifier circuit for the earphone speakers 3a and 3b. Moreover, the audio | voice output part 3 may be comprised as what is called a bone conduction speaker. The audio output unit 3 outputs (reproduces) audio signal data according to control by the main control unit 10.
  (記憶部)
 記憶部14は、主制御部10が各種処理を実行するためのプログラム等を記憶する。
(Memory part)
The storage unit 14 stores programs for the main control unit 10 to execute various processes.
 以上、本実施形態による情報処理装置1の構成について詳細に説明した。上述した構成により、情報処理装置1は、日常的に頭部に装着されるウェアラブルデバイスにより実現されることで、ユーザの意識に関わらず、瞳孔径の変化を継続的に観測でき、眼の疲労が検出された場合に自動的に疲労を軽減するための出力制御を行うことができる。 The configuration of the information processing apparatus 1 according to the present embodiment has been described in detail above. With the configuration described above, the information processing apparatus 1 is realized by a wearable device that is worn on the head on a daily basis, so that changes in the pupil diameter can be continuously observed regardless of the user's consciousness. When this is detected, output control for automatically reducing fatigue can be performed.
 続いて、本実施形態による情報処理装置1の動作処理について図4~図9を参照して具体的に説明する。 Subsequently, the operation processing of the information processing apparatus 1 according to the present embodiment will be specifically described with reference to FIGS.
  <<3.動作処理>>
  <3-1.瞳孔径に基づく疲労検出>
 図3は、本実施形態による瞳孔径に基づく疲労検出の動作処理を示すフローチャートである。図3に示すように、まず、ステップS103において、情報処理装置1の主制御部10は、内側カメラ4を起動する。内側カメラ4の起動は、ユーザがメガネ型HMD(頭部ウェラブルデバイスの一例)である情報処理装置1を頭部に装着して電源を入れた場合に、初期動作の一つとして行われることを想定する。
<< 3. Action processing >>
<3-1. Fatigue detection based on pupil diameter>
FIG. 3 is a flowchart showing an operation process of fatigue detection based on the pupil diameter according to the present embodiment. As shown in FIG. 3, first, in step S <b> 103, the main control unit 10 of the information processing apparatus 1 activates the inner camera 4. The activation of the inner camera 4 is performed as one of initial operations when the user wears the information processing apparatus 1 that is a glasses-type HMD (an example of a head wearable device) on the head and turns on the power. Is assumed.
 次に、ステップS106において、計測部110は、正常時の瞳孔径計測を行い、ユーザの正常時における瞳孔径を登録する作業を行う。具体的には、計測部110は、初期動作として複数の時間帯や明るさの異なる環境で正常時における瞳孔径を登録し、キャリブレーションを行う。このような動作を行うことにより、より個人に特化したロバストな疲労検出処理が可能となる。 Next, in step S106, the measurement unit 110 performs normal pupil diameter measurement and performs an operation of registering the normal pupil diameter of the user. Specifically, the measurement unit 110 registers the pupil diameter at the normal time in a plurality of time zones and environments having different brightness as an initial operation, and performs calibration. By performing such an operation, it is possible to perform a robust fatigue detection process that is more personalized.
 次いで、ステップS109において、照度センサ6は、外光の明るさを検知する。 Next, in step S109, the illuminance sensor 6 detects the brightness of external light.
 続いて、ステップS112において、計測部110は、内側カメラ4で撮像したユーザの眼の撮像画像に基づいて、瞳孔径を計測する。 Subsequently, in step S <b> 112, the measurement unit 110 measures the pupil diameter based on the captured image of the user's eye captured by the inner camera 4.
 次に、ステップS115において、検出部120は、計測された瞳孔径に基づいて、疲労とみなされる縮瞳であるか否かを判断し、疲労検出を行う。具体的には、検出部120は、照度センサ6により検知された外光の明るさを考慮して、外光の明るさに変化がないにも関わらず、所定値を下回る縮瞳である場合、疲労とみなされる縮瞳であると判断し、疲労を検出する。 Next, in step S115, based on the measured pupil diameter, the detection unit 120 determines whether or not the miosis is considered to be fatigue, and performs fatigue detection. Specifically, the detection unit 120 considers the brightness of the external light detected by the illuminance sensor 6 and has a miosis that falls below a predetermined value despite no change in the brightness of the external light. It is determined that the miosis is regarded as fatigue, and fatigue is detected.
 上記S109~S115の処理は、疲労とみなされる縮瞳であると判断されるまで繰り返される(S115/No)。なお、このような縮瞳の判断は、内側カメラ4で常時撮像を行ってチェックされることが望ましいが、消費電力の観点から、定期的/不定期的、また、所定の設定時間に行うようにしてもよい。若しくは、デスクワークを長時間行っている時間帯には、縮瞳の判断の頻度を上げるようにしてもよい。ユーザがデスクワークを行っているか否かは、例えばユーザのスケジュール情報と、情報処理装置1に設けられた加速度センサやジャイロセンサ等によるセンサ値とを組み合わせて判断してもよい。 The processes of S109 to S115 are repeated until it is determined that the miosis is regarded as fatigue (S115 / No). Note that it is desirable that such miosis determination is checked by always taking an image with the inner camera 4, but from the viewpoint of power consumption, it should be performed periodically / irregularly or at a predetermined set time. It may be. Alternatively, the frequency of determination of miosis may be increased in a time zone in which desk work is performed for a long time. Whether or not the user is performing desk work may be determined by combining, for example, the user's schedule information and sensor values provided by an acceleration sensor, a gyro sensor, or the like provided in the information processing apparatus 1.
 次いで、疲労とみなされる縮瞳であると判断され、疲労が検出された場合(S115/Yes)、ステップS118において、出力制御部130は、疲労を軽減するよう所定の出力制御を行う。ここで、疲労を軽減するための所定の出力制御の具体例について図4~図5を参照して説明する。 Next, when it is determined that the miosis is regarded as fatigue and fatigue is detected (S115 / Yes), in step S118, the output control unit 130 performs predetermined output control to reduce fatigue. Here, a specific example of the predetermined output control for reducing fatigue will be described with reference to FIGS.
 図4は、疲労を軽減するための表示出力制御について説明するための図である。図4上には、眼の状態が正常時の場合に、表示部2に表示される電子メールの表示画面20の一例を示す。ここで、検出部120により眼の疲労が検出されると、出力制御部130は、図4下の表示画面21に示すように、文字の大きさをより大きく、太くしたり、コントラストを高くしたり、輝度を低くしたりすることで、ユーザの眼の疲労を軽減させる。通常、例えば小さい文字を読むより、大きい文字を読む方が眼の負担は少ないためである。 FIG. 4 is a diagram for explaining display output control for reducing fatigue. FIG. 4 shows an example of an e-mail display screen 20 displayed on the display unit 2 when the eye state is normal. Here, when eye fatigue is detected by the detection unit 120, the output control unit 130 increases the size of the character, makes it thicker, or increases the contrast, as shown in the display screen 21 in FIG. Or reducing the brightness, the fatigue of the user's eyes is reduced. This is because, for example, reading a large character is less burdensome on the eyes than reading a small character.
 また、出力制御部130はこのように疲労を軽減するための出力制御を行った場合、疲労モードに移行したことをユーザに通知するためのアイコンを表示してもよい。具体的には、例えば図4の表示画面21に示すアイコン画像30を表示することで、疲労モードに移行されたことをユーザに通知する。これにより、ユーザは自身の眼の疲れを自覚し、休息を取る等の能動的な対応を行うことができる。 In addition, when the output control unit 130 performs output control for reducing fatigue in this way, an icon for notifying the user that the mode has shifted to the fatigue mode may be displayed. Specifically, for example, by displaying an icon image 30 shown on the display screen 21 in FIG. 4, the user is notified of the transition to the fatigue mode. Thereby, the user can be aware of fatigue of his / her eyes and take active measures such as taking a rest.
 また、出力制御部130は、疲労の度合いが規定値より大きい場合等は、健康に関わる重大な事項のため、表示出力を強制的に停止する制御を行ってもよい。 Further, the output control unit 130 may perform control to forcibly stop the display output because of a serious matter related to health when the degree of fatigue is larger than a specified value.
 また、出力制御部130は、疲労の度合いが規定値より小さい場合等は、警告を出すだけでもよい。ここで、疲労警告の一例を図5に示す。出力制御部130は、図5に示すように、電子メールの表示画面22の上方に、眼の疲労を警告するアイコン画像32を表示することで、ユーザに休息を促す。 Further, the output control unit 130 may only issue a warning when the degree of fatigue is smaller than a specified value. Here, an example of the fatigue warning is shown in FIG. As shown in FIG. 5, the output control unit 130 displays an icon image 32 that warns about eye fatigue above the e-mail display screen 22, thereby prompting the user to rest.
 上述した表示出力制御の他、出力制御部130は、例えば疲労治癒アプリケーション機能の出力制御を行ってもよい。疲労治癒アプリケーション機能としては、例えば情報処理装置1に内蔵される振動部(不図示)による眼の周りのマッサージや、情報処理装置1に内蔵されるペルチェ素子等の温冷素子(不図示)による目元の温冷マッサージが挙げられる。 In addition to the display output control described above, the output control unit 130 may perform output control of, for example, a fatigue healing application function. As the fatigue healing application function, for example, a massage around the eyes by a vibration unit (not shown) built in the information processing apparatus 1 or a heating / cooling element (not shown) such as a Peltier element built in the information processing apparatus 1 is used. A hot and cold massage of the eyes can be mentioned.
 以上、出力制御部130による疲労を軽減するための各種出力制御の具体例について説明した。なお、疲労検出時に上記いずれの疲労軽減のための出力制御を行うかについては、ユーザにより予め設定されてもよい。 The specific examples of various output controls for reducing fatigue by the output control unit 130 have been described above. It should be noted that the above-described output control for reducing fatigue may be preset by the user when detecting fatigue.
 続いて、図3のステップS121において、主制御部10は、疲労を軽減するための出力制御の解除指示が入力されたか否かを判断する。本実施形態では、ユーザの意識に関係なく眼の疲労を検出した場合に自動的に疲労を軽減するための出力制御を行うため、ユーザによっては通常の状態に戻したい場合も想定される。そこで、疲労軽減のための出力制御の解除できるようにすることで、情報処理装置1の利便性をより向上させることができる。解除指示の入力方法は様々考え得るが、例えば設定メニューを呼び出して出力制御モードを疲労モードから通常モードに変更してもよい。また、情報処理装置1に、物理的なボタンを設け、当該ボタンが長押しされると疲労モード/通常モードを切り替えるようにしてもよい。 Subsequently, in step S121 of FIG. 3, the main control unit 10 determines whether or not an instruction to cancel output control for reducing fatigue has been input. In the present embodiment, when eye fatigue is detected regardless of the user's consciousness, output control for automatically reducing fatigue is performed, so it may be assumed that some users want to return to a normal state. Therefore, the convenience of the information processing apparatus 1 can be further improved by making it possible to cancel the output control for reducing fatigue. There are various ways of inputting the release instruction. For example, the setting menu may be called to change the output control mode from the fatigue mode to the normal mode. Further, the information processing apparatus 1 may be provided with a physical button, and the fatigue mode / normal mode may be switched when the button is pressed for a long time.
 次いで、解除指示を受け付けた場合(S121/Yes)、ステップS124において、出力制御部130は、通常の出力制御に戻す。 Next, when a release instruction is received (S121 / Yes), in step S124, the output control unit 130 returns to normal output control.
 以上、本実施形態による瞳孔径に基づく疲労検出の動作処理について具体的に説明した。 The fatigue detection operation process based on the pupil diameter according to the present embodiment has been specifically described above.
  <3-2.縮瞳/散瞳速度に基づく疲労検出>
 上述した動作処理では、瞳孔径が所定値を下回るか否かに基づいて疲労が検出されているが、本実施形態はこれに限定されず、例えば縮瞳/散瞳速度に基づいて疲労を検出してもよい。以下、図6を参照して具体的に説明する。
<3-2. Fatigue detection based on miosis / mydriatic velocity>
In the operation processing described above, fatigue is detected based on whether or not the pupil diameter is less than a predetermined value. However, this embodiment is not limited to this. For example, fatigue is detected based on the miosis / mydriatic velocity. May be. Hereinafter, a specific description will be given with reference to FIG.
 図6は、縮瞳速度に基づいて疲労検出を行う場合の動作処理を示すフローチャートである。なお図6に示す各ステップにおいて、図3に示すステップと同じ処理が行われる場合は、同じステップ番号が付されている。 FIG. 6 is a flowchart showing an operation process when fatigue detection is performed based on the miosis speed. In addition, in each step shown in FIG. 6, when the same process as the step shown in FIG. 3 is performed, the same step number is attached | subjected.
 図6に示すように、まず、ステップS103において、情報処理装置1の主制御部10は、内側カメラ4を起動する。 As shown in FIG. 6, first, in step S <b> 103, the main control unit 10 of the information processing apparatus 1 activates the inner camera 4.
 次に、ステップS104において、計測部110は、正常時の瞳孔径を継続的に計測し、ユーザの正常時における瞳孔の縮瞳/散瞳速度を登録する作業を行う。具体的には、計測部110は、初期動作として複数の時間帯や明るさの異なる環境で正常時における外光の変化に応じた瞳孔の縮瞳/散瞳速度を登録し、キャリブレーションを行う。 Next, in step S104, the measurement unit 110 continuously measures the pupil diameter at the normal time and registers the pupil miosis / mydriatic velocity at the normal time of the user. Specifically, as an initial operation, the measurement unit 110 registers the miosis / mydriatic velocity of the pupil according to changes in external light during normal times in a plurality of time zones and environments with different brightnesses, and performs calibration. .
 次いで、ステップS109において、照度センサ6は、外光の明るさを検知する。 Next, in step S109, the illuminance sensor 6 detects the brightness of external light.
 次に、ステップS110において、主制御部10は、照度センサ6による検知結果に基づいて、外光の明るさが変化したか否かを判断する。また、上記S109およびS110は、繰り返し行われる。 Next, in step S110, the main control unit 10 determines whether the brightness of the external light has changed based on the detection result by the illuminance sensor 6. Further, S109 and S110 are repeatedly performed.
 続いて、外光の明るさが変化した場合(S110/Yes)、ステップS113において、計測部110は、内側カメラ4により継続的に撮像されたユーザの眼の撮像画像に基づいて、瞳孔径を継続的に計測する。なお計測部110による瞳孔径の計測は、外光変化後の計測に限定されず、外光変化前後の瞳孔径を継続的に計測してもよい。 Subsequently, when the brightness of the external light changes (S110 / Yes), in step S113, the measurement unit 110 calculates the pupil diameter based on the captured images of the user's eyes continuously captured by the inner camera 4. Measure continuously. Note that the measurement of the pupil diameter by the measurement unit 110 is not limited to the measurement after the change of the external light, and the pupil diameter before and after the change of the external light may be continuously measured.
 次いで、ステップS116において、検出部120は、継続的に計測された瞳孔径に基づいて、縮瞳/散瞳の速度が、疲労とみなされる縮瞳/散瞳の速度であるか否かを判断し、疲労検出を行う。具体的には、検出部120は、外光の明るさに応じた縮瞳/散瞳の速度が、正常時よりも低下している場合、眼の疲労とみなされる縮瞳/散瞳であると判断し、疲労を検出する。 Next, in step S116, the detection unit 120 determines whether the miosis / mydriatic velocity is a miosis / mydriatic velocity that is considered fatigue based on the continuously measured pupil diameter. And fatigue detection. Specifically, the detection unit 120 is a miosis / mydriasis that is regarded as eye fatigue when the speed of miosis / mydriasis corresponding to the brightness of external light is lower than normal. And fatigue is detected.
 次に、ステップS118において、図3に示す同ステップと同様に、出力制御部130は、疲労を軽減するための所定の出力制御を行い、ステップS121~S124において、ユーザにより解除指示が入力された場合は通常の出力制御に戻す。 Next, in step S118, as in the same step shown in FIG. 3, the output control unit 130 performs predetermined output control for reducing fatigue, and a release instruction is input by the user in steps S121 to S124. If so, return to normal output control.
  <3-3.輝度の変化に応じた縮瞳/散瞳速度に基づく疲労検出>
 図6を参照して上述した動作処理では、外光の変化に応じた縮瞳/散瞳の速度に基づいて、眼の疲労を検出しているが、本実施形態はこれに限定されず、例えば表示部2の輝度の変化に応じた縮瞳/散瞳速度に基づいて眼の疲労を検出してもよい。以下、図7を参照して具体的に説明する。
<3-3. Fatigue detection based on miosis / mydriatic velocity in response to changes in brightness>
In the operation processing described above with reference to FIG. 6, eye fatigue is detected based on the speed of miosis / mydriasis according to changes in external light, but this embodiment is not limited to this, For example, eye fatigue may be detected based on the miosis / mydriatic velocity corresponding to the change in the luminance of the display unit 2. Hereinafter, a specific description will be given with reference to FIG.
 図7は、本実施形態による輝度の変化に応じた縮瞳/散瞳速度に基づく疲労検出の動作処理を示すフローチャートである。 FIG. 7 is a flowchart showing an operation process of fatigue detection based on the miosis / mydriatic velocity according to the change in luminance according to the present embodiment.
 図7示すように、まず、ステップS103において、情報処理装置1の主制御部10は、内側カメラ4を起動する。 As shown in FIG. 7, first, in step S103, the main control unit 10 of the information processing apparatus 1 activates the inner camera 4.
 次に、ステップS104’において、計測部110は、正常時の瞳孔径を継続的に計測し、ユーザの正常時における瞳孔の縮瞳/散瞳速度を登録する作業を行う。具体的には、計測部110は、初期動作として複数の時間帯や明るさの異なる環境で正常時における表示部2の輝度の変化に応じた瞳孔の縮瞳/散瞳速度を登録し、キャリブレーションを行う。 Next, in step S104 ', the measurement unit 110 continuously measures the pupil diameter at the normal time and registers the pupil miosis / mydriatic velocity at the normal time of the user. Specifically, the measurement unit 110 registers the miosis / mydriatic velocity of the pupil according to a change in the luminance of the display unit 2 in a normal state in a plurality of time zones and environments with different brightness as an initial operation, and performs calibration. Perform
 次いで、ステップS107において、主制御部10は、表示部2の輝度を確認する。 Next, in step S107, the main control unit 10 checks the luminance of the display unit 2.
 次に、ステップS108において、主制御部10は、表示部2の輝度が変化したか否かを判断する。なお、本実施形態において、表示部2の輝度の変化とは、表示内容の変化や画面遷移に応じて必然的に生じる変化であってもよい。この場合、ユーザに意識させることなく、疲労検出を行うことができる。しかし、疲労の検出の機会がユーザの行動に影響されてしまうという点も懸念される。したがって、主制御部10は、表示内容の切換え等による輝度の変化が一定時間生じない場合、表示部2の輝度を変化させ、疲労の検出を行ってもよい。また、上記S107およびS108は、繰り返し行われる。 Next, in step S108, the main control unit 10 determines whether or not the luminance of the display unit 2 has changed. In the present embodiment, the change in luminance of the display unit 2 may be a change that inevitably occurs in accordance with a change in display content or screen transition. In this case, fatigue can be detected without making the user aware of it. However, there is a concern that fatigue detection opportunities are affected by user behavior. Therefore, the main control unit 10 may detect the fatigue by changing the luminance of the display unit 2 when the luminance change due to switching of the display content does not occur for a certain period of time. Also, S107 and S108 are repeated.
 続いて、輝度が変化した場合(S108/Yes)、ステップS113において、計測部110は、内側カメラ4により継続的に撮像されたユーザの眼の撮像画像に基づいて、瞳孔径を継続的に計測する。 Subsequently, when the luminance changes (S108 / Yes), in step S113, the measurement unit 110 continuously measures the pupil diameter based on the captured image of the user's eye continuously captured by the inner camera 4. To do.
 次いで、ステップS116’において、検出部120は、継続的に計測された瞳孔径に基づいて、縮瞳/散瞳の速度が、疲労とみなされる縮瞳/散瞳の速度であるか否かを判断し、疲労検出を行う。具体的には、検出部120は、輝度の変化に応じた縮瞳/散瞳の速度が、正常時よりも低下している場合、眼の疲労とみなされる縮瞳/散瞳であると判断し、疲労を検出する。 Next, in step S116 ′, the detection unit 120 determines whether or not the speed of miosis / mydriasis is the speed of miosis / mydriasis that is considered fatigue based on the continuously measured pupil diameter. Judgment and fatigue detection. Specifically, the detection unit 120 determines that the miosis / mydriasis is considered to be eye fatigue when the speed of miosis / mydriasis corresponding to a change in luminance is lower than normal. And detect fatigue.
 次に、ステップS118において、図3に示す同ステップと同様に、出力制御部130は、疲労を軽減するための所定の出力制御が行われ、ステップS121~S124において、ユーザにより解除指示が入力された場合は通常の出力制御に戻す。 Next, in step S118, as in the same step shown in FIG. 3, the output control unit 130 performs predetermined output control for reducing fatigue, and in steps S121 to S124, a release instruction is input by the user. If it does, return to normal output control.
 これにより、表示部2が非透過状態に制御され、ユーザの眼に対して外光の変化が影響しない場合でも、表示部2の輝度の変化に応じたユーザの眼の縮瞳/散瞳の速度に基づいて眼の疲労を検出することができる。また、表示部2の輝度の変化が、表示内容の変化や画面遷移に応じて必然的に生じる変化であるので、ユーザに意識させることなく、疲労検出を行うことができる。 As a result, even when the display unit 2 is controlled to be in a non-transparent state and a change in external light does not affect the user's eyes, the miosis / mydriasis of the user's eyes according to the change in the luminance of the display unit 2 Eye fatigue can be detected based on speed. Moreover, since the change in the brightness of the display unit 2 is a change that inevitably occurs in accordance with a change in display content or screen transition, fatigue detection can be performed without making the user aware of it.
  <3-4.疲労検出の精度向上>
 上述した各動作処理では、正常時の瞳孔径や瞳孔の縮瞳/散瞳の速度を内側カメラ4の起動時に計測してキャリブレーションを行っているが、当該キャリブレーションをより多く行うことで、本実施形態による疲労検出の精度を向上させることができる。以下、図8を参照して具体的に説明する。
<3-4. Improved accuracy in fatigue detection>
In each operation process described above, the normal pupil diameter and pupil pupil miosis / mydriatic speed are measured and calibrated when the inner camera 4 is activated, but by performing more calibration, The accuracy of fatigue detection according to the present embodiment can be improved. Hereinafter, a specific description will be given with reference to FIG.
 図8は、本実施形態による疲労検出の精度を向上させるための動作処理を示すフローチャートである。ここでは、一例として、図3を参照して説明した瞳孔径に基づく疲労検出処理の精度を向上させる場合について説明する。 FIG. 8 is a flowchart showing an operation process for improving the accuracy of fatigue detection according to the present embodiment. Here, as an example, a case where the accuracy of the fatigue detection process based on the pupil diameter described with reference to FIG. 3 is improved will be described.
 図8に示すように、まず、ステップS103において、主制御部10が内側カメラ4を起動させると、次に、ステップS106において、計測部110は、正常時の瞳孔径を計測して起動時のキャリブレーションを行う。 As shown in FIG. 8, first, when the main control unit 10 activates the inner camera 4 in step S103, next, in step S106, the measurement unit 110 measures the pupil diameter at the normal time to start up. Perform calibration.
 次いで、ステップS109~S115において、図3に示す同ステップと同様に、検出部120は、内側カメラ4で撮像したユーザの眼の撮像画像に基づいて、瞳孔径に応じた疲労の検出を行う。本実施形態では、かかる疲労の検出処理が繰り返し行われる際、キャリブレーションも繰り返し行われる。 Next, in steps S109 to S115, as in the same step shown in FIG. 3, the detection unit 120 detects fatigue according to the pupil diameter based on the captured image of the user's eye captured by the inner camera 4. In the present embodiment, when such fatigue detection processing is repeatedly performed, calibration is also repeatedly performed.
 具体的には、上記ステップS115で、疲労とみなされる縮瞳ではないと判断された場合(S115/No)、ステップS117において、計測部110は、計測した瞳孔径を正常時の瞳孔径として記憶部14に記憶させる。このように、起動時のみならず、眼の疲労検出を繰り返し行っている際も、正常時の瞳孔径を継続的に記憶してキャリブレーションの回数を増やすことで、多様な環境下での正常値を収集することができ、疲労検出の精度を向上させることができる。 Specifically, when it is determined in step S115 that the miosis is not considered to be fatigue (S115 / No), in step S117, the measurement unit 110 stores the measured pupil diameter as a normal pupil diameter. Store in the unit 14. In this way, not only at startup, but also when repeatedly detecting eye fatigue, normal memory in various environments can be obtained by continuously storing the normal pupil diameter and increasing the number of calibrations. Values can be collected and the accuracy of fatigue detection can be improved.
 なお、疲労とみなされる縮瞳であると判断された場合(S115/Yes)、ステップS118~S124において、図3と同様の処理が行われる。具体的には、ステップS118において、出力制御部130は、疲労を軽減するための所定の出力制御を行い、ステップS121~S124において、ユーザにより解除指示が入力された場合は通常の出力制御に戻す。 If it is determined that the miosis is regarded as fatigue (S115 / Yes), the same processing as in FIG. 3 is performed in steps S118 to S124. Specifically, in step S118, the output control unit 130 performs predetermined output control for reducing fatigue, and returns to normal output control when a release instruction is input by the user in steps S121 to S124. .
  <3-5.疲労を軽減するための段階的な出力制御>
 上述した各動作処理では、検出部120により疲労が検出された場合に疲労を軽減するための所定の出力制御を行っているが、本実施形態による出力制御部130は、疲労の経過に応じて段階的に行ってもよい。以下、図9を参照して具体的に説明する。
<3-5. Stepwise output control to reduce fatigue>
In each of the operation processes described above, when the detection unit 120 detects fatigue, predetermined output control is performed to reduce fatigue. However, the output control unit 130 according to the present embodiment is adapted to the progress of fatigue. It may be done step by step. Hereinafter, a specific description will be given with reference to FIG.
 図9は、本実施形態による疲労を軽減するための段階的な出力制御の動作処理を示すフローチャートである。ここでは、一例として、図6を参照して説明した瞳孔の縮瞳/散瞳速度に基づく疲労検出処理における出力制御を段階的に行う場合について説明する。 FIG. 9 is a flowchart showing an operation process of stepwise output control for reducing fatigue according to the present embodiment. Here, as an example, a case will be described in which output control in the fatigue detection process based on the pupil miosis / mydriatic velocity described with reference to FIG. 6 is performed in stages.
 図9に示すように、ステップS103~S116において、図6に示す同ステップと同様に、瞳孔径の縮瞳/散瞳速度に基づく疲労検出が行われる。 As shown in FIG. 9, in steps S103 to S116, fatigue detection based on the miosis / mydriatic velocity of the pupil diameter is performed as in the same step shown in FIG.
 次いで、疲労とみなされる縮瞳/散瞳速度が計測された場合(S116/Yes)、ステップS119において、出力制御部130は、疲労を軽減するための所定の出力制御を、疲労の経過に応じて段階的に行う。 Next, when the miosis / mydriatic velocity regarded as fatigue is measured (S116 / Yes), in step S119, the output control unit 130 performs predetermined output control for reducing fatigue according to the progress of fatigue. Step by step.
 具体的には、例えば出力制御部130は、疲労とみなされる縮瞳/散瞳速度が第1段階の所定値範囲の場合は疲労警告制御を行い、第2段階の所定値範囲の場合は表示部2に表示する文字を大きくしたりコントラストを高くしたりして眼に負担がかからないように表示制御する。また、出力制御部130は、疲労とみなされる縮瞳/散瞳速度が第3段階の所定値範囲の場合、表示部2の表示出力を強制的に停止する制御を行う。このように、本実施形態では、眼の疲労の経過に応じて、疲労を軽減するための出力制御を複数段階で行うことができる。 Specifically, for example, the output control unit 130 performs fatigue warning control when the miosis / mydriatic velocity regarded as fatigue is within the predetermined value range of the first stage, and displays when the range is the predetermined value range of the second stage. Display control is performed so as not to put a burden on the eyes by enlarging the characters displayed on the unit 2 or increasing the contrast. Further, the output control unit 130 performs control to forcibly stop the display output of the display unit 2 when the miosis / mydriatic velocity regarded as fatigue is within a predetermined range of the third stage. Thus, in this embodiment, output control for reducing fatigue can be performed in a plurality of stages according to the progress of eye fatigue.
 続いて、ステップS121~S124において、図6に示す同ステップと同様に、出力制御部130は、ユーザにより解除指示が入力された場合は通常の出力制御に戻す。 Subsequently, in steps S121 to S124, as in the same step shown in FIG. 6, the output control unit 130 returns to normal output control when a release instruction is input by the user.
  <<4.まとめ>>
 上述したように、本開示の実施形態による情報処理装置1は、日常的にユーザが頭部に装着する透過型頭部ウェラブルデバイスにより実現され、ユーザが意識しなくとも自動的に眼の疲労(眼疲労/眼精疲労)を検出し、疲労を軽減するための出力制御を行うことができる。
<< 4. Summary >>
As described above, the information processing apparatus 1 according to the embodiment of the present disclosure is realized by a transmissive head wearable device that a user wears on the head on a daily basis, and automatically causes eye fatigue without the user being conscious. It is possible to detect (eye fatigue / eye strain) and perform output control for reducing fatigue.
 以上、添付図面を参照しながら本開示の好適な実施形態について詳細に説明したが、本技術はかかる例に限定されない。本開示の技術分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本開示の技術的範囲に属するものと了解される。 The preferred embodiments of the present disclosure have been described in detail above with reference to the accompanying drawings, but the present technology is not limited to such examples. It is obvious that a person having ordinary knowledge in the technical field of the present disclosure can come up with various changes or modifications within the scope of the technical idea described in the claims. Of course, it is understood that it belongs to the technical scope of the present disclosure.
 例えば、上述した情報処理装置1に内蔵されるCPU、ROM、およびRAM等のハードウェアに、情報処理装置1の機能を発揮させるためのコンピュータプログラムも作成可能である。また、当該コンピュータプログラムを記憶させたコンピュータ読み取り可能な記憶媒体も提供される。 For example, it is possible to create a computer program for causing hardware such as a CPU, ROM, and RAM incorporated in the information processing apparatus 1 described above to exhibit the functions of the information processing apparatus 1. A computer-readable storage medium storing the computer program is also provided.
 また、上述した実施形態による情報処理装置1は、ユーザが意識しなくとも自動的に眼の疲労(眼疲労/眼精疲労)を検出しているが、ユーザの能動的な操作があった場合、ユーザ操作に応じて眼の疲労を検出してもよい。 In addition, the information processing apparatus 1 according to the above-described embodiment automatically detects eye fatigue (eye fatigue / eye strain) even if the user is not conscious, but there is an active operation by the user. Eye fatigue may be detected in response to a user operation.
 また、本明細書に記載された効果は、あくまで説明的または例示的なものであって限定的ではない。つまり、本開示に係る技術は、上記の効果とともに、または上記の効果に代えて、本明細書の記載から当業者には明らかな他の効果を奏しうる。 In addition, the effects described in this specification are merely illustrative or illustrative, and are not limited. That is, the technology according to the present disclosure can exhibit other effects that are apparent to those skilled in the art from the description of the present specification in addition to or instead of the above effects.
 なお、本技術は以下のような構成も取ることができる。
(1)
 ユーザの頭部に装着される情報処理装置に設けられ、前記ユーザの眼を撮像する撮像部と、
 前記撮像部により撮像された撮像画像に基づいて瞳孔径を計測する計測部と、
 前記計測部により計測された瞳孔径に基づいて眼の疲労を検出する検出部と、
 前記検出部により検出された眼の疲労を軽減するための所定の出力制御を行う制御部と、
を備える、情報処理装置。
(2)
 前記検出部は、前記瞳孔径の変化に基づいて眼の疲労を検出する、前記(1)に記載の情報処理装置。
(3)
 前記検出部は、前記瞳孔径の変化を、正常時において予め収集された外光が変化した時の前記瞳孔径の変化速度のデータと比較して、眼の疲労を検出する、前記(2)に記載の情報処理装置。
(4)
 前記計測部は、外光条件が変化した際の前記瞳孔径の変化速度を計測する、前記(1)~(3)のいずれか1項に記載の情報処理装置。
(5)
 前記計測部は、表示部の輝度が変化した際の前記瞳孔径の変化速度を計測する、前記(1)~(3)のいずれか1項に記載の情報処理装置。
(6)
 前記検出部は、前記瞳孔径の変化速度の経過に応じて眼の疲労経過を検出する、前記(4)または(5)に記載の情報処理装置。
(7)
 前記制御部は、前記眼の疲労経過に応じて、段階的に前記眼の疲労を軽減するための所定の出力制御を行う、前記(6)に記載の情報処理装置。
(8)
 前記制御部は、前記眼の疲労が検出された場合、現在表示している文字の状態を、より大きく、太く、コントラストを高く、または輝度を低くする制御の少なくともいずれかを行う、前記(1)~(7)のいずれか1項に記載の情報処理装置。
(9)
 前記制御部は、前記眼の疲労が検出された場合、表示出力を停止するよう制御する、前記(1)~(7)のいずれか1項に記載の情報処理装置。
(10)
 前記制御部は、前記眼の疲労が検出された場合、眼精疲労治療アプリケーションを駆動するよう制御する、前記(1)~(7)のいずれか1項に記載の情報処理装置。
(11)
 前記情報処理装置は、メガネ型のウェアラブルデバイスである、前記(1)~(8)のいずれか1項に記載の情報処理装置。
(12)
 ユーザの頭部に装着される情報処理装置に設けられ、前記ユーザの眼を撮像するステップと、
 撮像された撮像画像に基づいて瞳孔径を計測するステップと、
 計測された瞳孔径に基づいて眼の疲労を検出するステップと、
 検出された眼の疲労を軽減するための所定の出力制御を行うステップと、
を含む、制御方法。
(13)
 コンピュータを、
 ユーザの頭部に装着される情報処理装置に設けられ、前記ユーザの眼を撮像する撮像部と、
 前記撮像部により撮像された撮像画像に基づいて瞳孔径を計測する計測部と、
 前記計測部により計測された瞳孔径に基づいて眼の疲労を検出する検出部と、
 前記検出部により検出された眼の疲労を軽減するための所定の出力制御を行う制御部と、
として機能させるための、プログラム。
In addition, this technique can also take the following structures.
(1)
An imaging unit that is provided in an information processing device mounted on a user's head and that images the user's eyes;
A measurement unit that measures a pupil diameter based on a captured image captured by the imaging unit;
A detection unit for detecting eye fatigue based on the pupil diameter measured by the measurement unit;
A control unit that performs predetermined output control for reducing eye fatigue detected by the detection unit;
An information processing apparatus comprising:
(2)
The information processing apparatus according to (1), wherein the detection unit detects eye fatigue based on a change in the pupil diameter.
(3)
The detection unit detects eye fatigue by comparing the change of the pupil diameter with data of the change speed of the pupil diameter when the external light collected in advance is normal. (2) The information processing apparatus described in 1.
(4)
The information processing apparatus according to any one of (1) to (3), wherein the measurement unit measures a change speed of the pupil diameter when an external light condition changes.
(5)
The information processing apparatus according to any one of (1) to (3), wherein the measurement unit measures a change speed of the pupil diameter when the luminance of the display unit changes.
(6)
The information processing apparatus according to (4) or (5), wherein the detection unit detects an eye fatigue process according to a change rate of the pupil diameter.
(7)
The information processing apparatus according to (6), wherein the control unit performs predetermined output control for reducing the eye fatigue step by step according to the progress of the eye fatigue.
(8)
When the eye fatigue is detected, the control unit performs at least one of control of making the currently displayed character larger, thicker, higher in contrast, or lower in luminance. The information processing apparatus according to any one of (1) to (7).
(9)
The information processing apparatus according to any one of (1) to (7), wherein the control unit performs control so as to stop display output when eye fatigue is detected.
(10)
The information processing apparatus according to any one of (1) to (7), wherein when the eye fatigue is detected, the control unit controls to drive an eye strain treatment application.
(11)
The information processing apparatus according to any one of (1) to (8), wherein the information processing apparatus is a glasses-type wearable device.
(12)
Provided in an information processing device mounted on a user's head, imaging the user's eyes;
Measuring the pupil diameter based on the captured image,
Detecting eye fatigue based on the measured pupil diameter;
Performing predetermined output control for reducing detected eye fatigue;
Including a control method.
(13)
Computer
An imaging unit that is provided in an information processing device mounted on a user's head and that images the user's eyes;
A measurement unit that measures a pupil diameter based on a captured image captured by the imaging unit;
A detection unit for detecting eye fatigue based on the pupil diameter measured by the measurement unit;
A control unit that performs predetermined output control for reducing eye fatigue detected by the detection unit;
Program to function as
 1、  情報処理装置
 2、2a、2b  表示部
 3  音声出力部
 3a、3b  イヤホンスピーカ
 4  内側カメラ
 5  音声入力部
 5a、5b  マイクロホン
 6  照度センサ
 10  主制御部
 110  計測部
 120  検出部
 130  出力制御部
 12  通信部
 14  記憶部
 
 
 
DESCRIPTION OF SYMBOLS 1, Information processing apparatus 2, 2a, 2b Display part 3 Audio | voice output part 3a, 3b Earphone speaker 4 Inner camera 5 Audio | voice input part 5a, 5b Microphone 6 Illuminance sensor 10 Main control part 110 Measurement part 120 Detection part 130 Output control part 12 Communication unit 14 Storage unit

Claims (13)

  1.  ユーザの頭部に装着される情報処理装置に設けられ、前記ユーザの眼を撮像する撮像部と、
     前記撮像部により撮像された撮像画像に基づいて瞳孔径を計測する計測部と、
     前記計測部により計測された瞳孔径に基づいて眼の疲労を検出する検出部と、
     前記検出部により検出された眼の疲労を軽減するための所定の出力制御を行う制御部と、
    を備える、情報処理装置。
    An imaging unit that is provided in an information processing device mounted on a user's head and that images the user's eyes;
    A measurement unit that measures a pupil diameter based on a captured image captured by the imaging unit;
    A detection unit for detecting eye fatigue based on the pupil diameter measured by the measurement unit;
    A control unit that performs predetermined output control for reducing eye fatigue detected by the detection unit;
    An information processing apparatus comprising:
  2.  前記検出部は、前記瞳孔径の変化に基づいて眼の疲労を検出する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the detection unit detects eye fatigue based on a change in the pupil diameter.
  3.  前記検出部は、前記瞳孔径の変化を、正常時において予め収集された外光が変化した時の前記瞳孔径の変化速度のデータと比較して、眼の疲労を検出する、請求項2に記載の情報処理装置。 The detection unit detects eye fatigue by comparing the change of the pupil diameter with data of the change speed of the pupil diameter when the external light collected in advance is normal. The information processing apparatus described.
  4.  前記計測部は、外光条件が変化した際の前記瞳孔径の変化速度を計測する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the measurement unit measures a change speed of the pupil diameter when an external light condition is changed.
  5.  前記計測部は、表示部の輝度が変化した際の前記瞳孔径の変化速度を計測する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the measurement unit measures a change speed of the pupil diameter when the luminance of the display unit is changed.
  6.  前記検出部は、前記瞳孔径の変化速度の経過に応じて眼の疲労経過を検出する、請求項4に記載の情報処理装置。 The information processing apparatus according to claim 4, wherein the detection unit detects an eye fatigue process according to a change rate of the pupil diameter.
  7.  前記制御部は、前記眼の疲労経過に応じて、段階的に前記眼の疲労を軽減するための所定の出力制御を行う、請求項6に記載の情報処理装置。 The information processing apparatus according to claim 6, wherein the control unit performs predetermined output control for reducing the eye fatigue step by step according to the progress of the eye fatigue.
  8.  前記制御部は、前記眼の疲労が検出された場合、現在表示している文字の状態を、より大きく、太く、コントラストを高く、または輝度を低くする制御の少なくともいずれかを行う、請求項1に記載の情報処理装置。 2. The control unit performs at least one of control of making a currently displayed character larger, thicker, higher in contrast, or lower in luminance when the eye fatigue is detected. The information processing apparatus described in 1.
  9.  前記制御部は、前記眼の疲労が検出された場合、表示出力を停止するよう制御する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the control unit controls to stop the display output when the eye fatigue is detected.
  10.  前記制御部は、前記眼の疲労が検出された場合、眼精疲労治療アプリケーションを駆動するよう制御する、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the control unit controls to drive an eye strain treatment application when the eye fatigue is detected.
  11.  前記情報処理装置は、メガネ型のウェアラブルデバイスである、請求項1に記載の情報処理装置。 The information processing apparatus according to claim 1, wherein the information processing apparatus is a glasses-type wearable device.
  12.  ユーザの頭部に装着される情報処理装置に設けられ、前記ユーザの眼を撮像するステップと、
     撮像された撮像画像に基づいて瞳孔径を計測するステップと、
     計測された瞳孔径に基づいて眼の疲労を検出するステップと、
     検出された眼の疲労を軽減するための所定の出力制御を行うステップと、
    を含む、制御方法。
    Provided in an information processing device mounted on a user's head, imaging the user's eyes;
    Measuring the pupil diameter based on the captured image,
    Detecting eye fatigue based on the measured pupil diameter;
    Performing predetermined output control for reducing detected eye fatigue;
    Including a control method.
  13.  コンピュータを、
     ユーザの頭部に装着される情報処理装置に設けられ、前記ユーザの眼を撮像する撮像部と、
     前記撮像部により撮像された撮像画像に基づいて瞳孔径を計測する計測部と、
     前記計測部により計測された瞳孔径に基づいて眼の疲労を検出する検出部と、
     前記検出部により検出された眼の疲労を軽減するための所定の出力制御を行う制御部と、
    として機能させるための、プログラム。
    Computer
    An imaging unit that is provided in an information processing device mounted on a user's head and that images the user's eyes;
    A measurement unit that measures a pupil diameter based on a captured image captured by the imaging unit;
    A detection unit for detecting eye fatigue based on the pupil diameter measured by the measurement unit;
    A control unit that performs predetermined output control for reducing eye fatigue detected by the detection unit;
    Program to function as
PCT/JP2014/071805 2013-11-18 2014-08-20 Information-processing device, method and program for detecting eye fatigue on basis of pupil diameter WO2015072202A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013237898 2013-11-18
JP2013-237898 2013-11-18

Publications (1)

Publication Number Publication Date
WO2015072202A1 true WO2015072202A1 (en) 2015-05-21

Family

ID=53057147

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/071805 WO2015072202A1 (en) 2013-11-18 2014-08-20 Information-processing device, method and program for detecting eye fatigue on basis of pupil diameter

Country Status (1)

Country Link
WO (1) WO2015072202A1 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106333643A (en) * 2015-07-10 2017-01-18 中兴通讯股份有限公司 Monitor method, monitor device and monitor terminal for user health
WO2017140936A1 (en) * 2016-02-15 2017-08-24 Universidad Complutense De Madrid Detector and method for detecting the level of aversion of the ocular system to a light source
WO2018100875A1 (en) * 2016-11-30 2018-06-07 ソニー株式会社 Information processing apparatus, information processing method, and program
CN108814630A (en) * 2018-07-11 2018-11-16 长安大学 A kind of driving behavior monitor detection device and method
JP2018187132A (en) * 2017-05-09 2018-11-29 義則 宮▲崎▼ Asthenopia determination support method, and determination device and determination program for determining asthenopia
CN109416733A (en) * 2016-07-07 2019-03-01 哈曼国际工业有限公司 Portable personalization
US10791608B2 (en) 2017-01-12 2020-09-29 Signify Holding B.V. Lighting control
WO2020194529A1 (en) * 2019-03-26 2020-10-01 日本電気株式会社 Interest determination device, interest determination system, interest determination method, and non-transitory computer-readable medium having program stored therein
CN111767885A (en) * 2020-07-07 2020-10-13 歌尔科技有限公司 Fatigue state identification method, device, equipment, readable storage medium and system
CN111867447A (en) * 2018-03-26 2020-10-30 三星电子株式会社 Electronic device for monitoring eye health of user and operation method thereof
WO2021021498A1 (en) * 2019-07-30 2021-02-04 Apple Inc. Utilization of luminance changes to determine user characteristics
US11340461B2 (en) 2018-02-09 2022-05-24 Pupil Labs Gmbh Devices, systems and methods for predicting gaze-related parameters
WO2022107288A1 (en) * 2020-11-19 2022-05-27 日本電信電話株式会社 Estimation device, estimation method, and estimation program
WO2022123746A1 (en) * 2020-12-10 2022-06-16 日本電信電話株式会社 Information processing method, information processing device, and program
US11393251B2 (en) 2018-02-09 2022-07-19 Pupil Labs Gmbh Devices, systems and methods for predicting gaze-related parameters
WO2022200936A1 (en) * 2021-03-25 2022-09-29 株式会社半導体エネルギー研究所 Electronic device and display system
US11556741B2 (en) 2018-02-09 2023-01-17 Pupil Labs Gmbh Devices, systems and methods for predicting gaze-related parameters using a neural network
US11676422B2 (en) 2019-06-05 2023-06-13 Pupil Labs Gmbh Devices, systems and methods for predicting gaze-related parameters
US12099654B1 (en) 2021-06-21 2024-09-24 Apple Inc. Adaptation of electronic content

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237581A (en) * 1998-02-20 1999-08-31 Shimadzu Corp Head-mount display device
JP2006044403A (en) * 2004-08-03 2006-02-16 Suzuki Motor Corp Vehicular display device
JP2009142469A (en) * 2007-12-14 2009-07-02 Panasonic Electric Works Co Ltd Stress determining system
JP2009268783A (en) * 2008-05-09 2009-11-19 Toyota Motor Corp Visual fatigue recovery support apparatus for vehicle

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11237581A (en) * 1998-02-20 1999-08-31 Shimadzu Corp Head-mount display device
JP2006044403A (en) * 2004-08-03 2006-02-16 Suzuki Motor Corp Vehicular display device
JP2009142469A (en) * 2007-12-14 2009-07-02 Panasonic Electric Works Co Ltd Stress determining system
JP2009268783A (en) * 2008-05-09 2009-11-19 Toyota Motor Corp Visual fatigue recovery support apparatus for vehicle

Cited By (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3320841A4 (en) * 2015-07-10 2018-07-25 ZTE Corporation User health monitoring method, monitoring device, and monitoring terminal
CN106333643A (en) * 2015-07-10 2017-01-18 中兴通讯股份有限公司 Monitor method, monitor device and monitor terminal for user health
WO2017140936A1 (en) * 2016-02-15 2017-08-24 Universidad Complutense De Madrid Detector and method for detecting the level of aversion of the ocular system to a light source
CN109416733A (en) * 2016-07-07 2019-03-01 哈曼国际工业有限公司 Portable personalization
WO2018100875A1 (en) * 2016-11-30 2018-06-07 ソニー株式会社 Information processing apparatus, information processing method, and program
EP3549525A4 (en) * 2016-11-30 2019-12-18 Sony Corporation Information processing apparatus, information processing method, and program
US10791608B2 (en) 2017-01-12 2020-09-29 Signify Holding B.V. Lighting control
JP2018187132A (en) * 2017-05-09 2018-11-29 義則 宮▲崎▼ Asthenopia determination support method, and determination device and determination program for determining asthenopia
US11340461B2 (en) 2018-02-09 2022-05-24 Pupil Labs Gmbh Devices, systems and methods for predicting gaze-related parameters
US11393251B2 (en) 2018-02-09 2022-07-19 Pupil Labs Gmbh Devices, systems and methods for predicting gaze-related parameters
US11556741B2 (en) 2018-02-09 2023-01-17 Pupil Labs Gmbh Devices, systems and methods for predicting gaze-related parameters using a neural network
US11839495B2 (en) 2018-03-26 2023-12-12 Samsung Electronics Co., Ltd Electronic device for monitoring health of eyes of user and method for operating the same
CN111867447A (en) * 2018-03-26 2020-10-30 三星电子株式会社 Electronic device for monitoring eye health of user and operation method thereof
CN111867447B (en) * 2018-03-26 2023-12-05 三星电子株式会社 Electronic device for monitoring eye health of user and operation method thereof
CN108814630A (en) * 2018-07-11 2018-11-16 长安大学 A kind of driving behavior monitor detection device and method
WO2020194529A1 (en) * 2019-03-26 2020-10-01 日本電気株式会社 Interest determination device, interest determination system, interest determination method, and non-transitory computer-readable medium having program stored therein
US11887349B2 (en) 2019-03-26 2024-01-30 Nec Corporation Interest determination apparatus, interest determination system, interest determination method, and non-transitory computer readable medium storing program
US11676422B2 (en) 2019-06-05 2023-06-13 Pupil Labs Gmbh Devices, systems and methods for predicting gaze-related parameters
CN114175045B (en) * 2019-07-30 2023-05-12 苹果公司 Determining user characteristics using brightness variations
CN114175045A (en) * 2019-07-30 2022-03-11 苹果公司 Determining user characteristics using brightness variation
WO2021021498A1 (en) * 2019-07-30 2021-02-04 Apple Inc. Utilization of luminance changes to determine user characteristics
US11861837B2 (en) 2019-07-30 2024-01-02 Apple Inc. Utilization of luminance changes to determine user characteristics
US11354805B2 (en) 2019-07-30 2022-06-07 Apple Inc. Utilization of luminance changes to determine user characteristics
CN111767885A (en) * 2020-07-07 2020-10-13 歌尔科技有限公司 Fatigue state identification method, device, equipment, readable storage medium and system
WO2022107288A1 (en) * 2020-11-19 2022-05-27 日本電信電話株式会社 Estimation device, estimation method, and estimation program
JP7444286B2 (en) 2020-11-19 2024-03-06 日本電信電話株式会社 Estimation device, estimation method, and estimation program
WO2022123746A1 (en) * 2020-12-10 2022-06-16 日本電信電話株式会社 Information processing method, information processing device, and program
WO2022200936A1 (en) * 2021-03-25 2022-09-29 株式会社半導体エネルギー研究所 Electronic device and display system
US12099654B1 (en) 2021-06-21 2024-09-24 Apple Inc. Adaptation of electronic content

Similar Documents

Publication Publication Date Title
WO2015072202A1 (en) Information-processing device, method and program for detecting eye fatigue on basis of pupil diameter
CN110874129B (en) Display system
TWI666429B (en) Electronic device and method for enhancing accuracy of a contactless body temperature measurement
WO2017140054A1 (en) Emotion adjustment apparatus, wearable device and hat for easing emotion
US20160210407A1 (en) Method and device for processing content based on bio-signals
US9848796B2 (en) Method and apparatus for controlling media play device
JP2008099834A (en) Display device and display method
JP2008067219A (en) Imaging apparatus and imaging method
KR20160129752A (en) Sound outputting apparatus, electronic apparatus, and control method therof
CN110520041B (en) Brain wave data analysis system, information processing terminal, electronic device, and information presentation method for cognitive disorder examination
WO2008029570A1 (en) Display device and display method
US12093457B2 (en) Creation of optimal working, learning, and resting environments on electronic devices
CN113383295A (en) Biofeedback methods to adjust digital content to elicit greater pupil radius response
WO2015068440A1 (en) Information processing apparatus, control method, and program
CN115953826A (en) Determining user characteristics using brightness variation
EP4161387B1 (en) Sound-based attentive state assessment
WO2016192271A1 (en) Display device, parameter following adjusting system and adjusting method thereof
US20240164672A1 (en) Stress detection
CN114432565A (en) Ideal consciousness information recovery system
JP2008288821A (en) Imaging apparatus and imaging method
US20180197564A1 (en) Information processing apparatus, information processing method, and program
US20230259203A1 (en) Eye-gaze based biofeedback
CN113835804A (en) Information display method and electronic equipment
CN115336968A (en) Sleep state detection method and electronic equipment
JP7501348B2 (en) Information output device and information output method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861301

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14861301

Country of ref document: EP

Kind code of ref document: A1