WO2015072175A1 - Exhaust valve operating mechanism, diesel engine, and method for cooling exhaust valve of exhaust valve operating mechanism - Google Patents

Exhaust valve operating mechanism, diesel engine, and method for cooling exhaust valve of exhaust valve operating mechanism Download PDF

Info

Publication number
WO2015072175A1
WO2015072175A1 PCT/JP2014/067799 JP2014067799W WO2015072175A1 WO 2015072175 A1 WO2015072175 A1 WO 2015072175A1 JP 2014067799 W JP2014067799 W JP 2014067799W WO 2015072175 A1 WO2015072175 A1 WO 2015072175A1
Authority
WO
WIPO (PCT)
Prior art keywords
exhaust valve
operating mechanism
valve
hydraulic oil
valve operating
Prior art date
Application number
PCT/JP2014/067799
Other languages
French (fr)
Japanese (ja)
Inventor
村田 聡
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to KR1020167011918A priority Critical patent/KR101760648B1/en
Priority to CN201480059077.4A priority patent/CN105683512B/en
Publication of WO2015072175A1 publication Critical patent/WO2015072175A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/16Cooling of valves by means of a fluid flowing through or along valve, e.g. air
    • F01L3/18Liquid cooling of valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L3/00Lift-valve, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces; Parts or accessories thereof
    • F01L3/12Cooling of valves
    • F01L3/16Cooling of valves by means of a fluid flowing through or along valve, e.g. air
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L9/00Valve-gear or valve arrangements actuated non-mechanically
    • F01L9/10Valve-gear or valve arrangements actuated non-mechanically by fluid means, e.g. hydraulic

Definitions

  • the present invention relates to an exhaust valve operating mechanism, a diesel engine, and an exhaust valve cooling method for the exhaust valve operating mechanism.
  • a gaseous refrigerant or a plurality of transitionable at least partially into a gaseous state can be made inside a valve disposed in one gas passage of a two-stroke large-sized diesel engine
  • a cooling mechanism is disclosed that feeds a refrigerant consisting of the following components.
  • the present invention has been made to solve the above-mentioned problems, and an object thereof is an exhaust valve operating mechanism capable of cooling an exhaust valve to improve reliability and durability, a diesel engine, and It is an object of the present invention to provide an exhaust valve cooling method of an exhaust valve operating mechanism.
  • the exhaust valve actuating mechanism according to the present invention is an exhaust valve actuating mechanism including an exhaust valve which is opened using a driving force transmitted from a lower valve operating mechanism to an upper valve operating mechanism by compressing hydraulic oil.
  • the outlet opening of the refrigerant circulation channel and the inlet opening of the oil discharge channel communicate with each other to generate a flow in a part of the hydraulic oil.
  • the refrigerant circulation flow path formed inside the valve body of the exhaust valve and introducing a part of the hydraulic oil and provided through the casing of the upper valve operating mechanism Since the outlet opening of the refrigerant circulation channel is communicated with the inlet opening of the oil discharge channel at the time of opening and closing operation of the exhaust valve, and the flow is generated in a part of the hydraulic oil
  • the exhaust valve can be reliably cooled by effectively utilizing a portion of the hydraulic oil used in the valve mechanism.
  • a flow control part in the above-mentioned oil drainage channel, and, thereby, the flow of hydraulic oil used for cooling can be controlled appropriately.
  • the servo valve etc. which can optimize a flow-path cross-sectional area according to a load other than an orifice can be illustrated.
  • the piston stroke of the lower valve operating mechanism is set by adding a value corresponding to the amount of oil discharge of the hydraulic fluid to a value necessary for the opening and closing operation of the exhaust valve.
  • the piston stroke of the lower valve operating mechanism may be set to a value that is longer by the amount of hydraulic oil supplied equivalent to the amount of hydraulic oil as compared with the case where the exhaust valve cooling with hydraulic oil is not performed.
  • the exhaust valve lift amount at which the exhaust valve lift L equalizes the seat portion area and the passage minimum area at the position where the outlet opening of the refrigerant circulation flow channel communicates with the inlet opening of the oil discharge channel It is preferable to set (L1) or more (L ⁇ L1), and this enables exhaust valve cooling using a part of hydraulic fluid without affecting engine performance.
  • a diesel engine according to the present invention includes the above-described exhaust valve operating mechanism.
  • the exhaust valve cooling method of the exhaust valve actuating mechanism comprises an exhaust valve having an exhaust valve which is opened using a driving force transmitted from a lower valve operating mechanism to an upper valve operating mechanism by compressing hydraulic oil.
  • the exhaust valve cooling method of the valve mechanism is characterized in that a part of hydraulic oil is introduced as a cooling medium into the inside of the valve body and circulated at the time of opening and closing operation of the exhaust valve.
  • the exhaust valve cooling method of the exhaust valve operating mechanism as described above, a part of the hydraulic oil is introduced into the inside of the valve body as a cooling medium and circulated when the exhaust valve is opened and closed.
  • the exhaust valve can be reliably cooled by effectively utilizing a portion of the hydraulic oil used.
  • a part of the hydraulic oil used for the valve operating mechanism of the exhaust valve can be effectively used for reliable cooling, and the reliability and durability of the exhaust valve can be improved.
  • the structure can be easily changed as compared with the case where a new refrigerant and a refrigerant supply system are provided.
  • FIG. 2 is a view showing one embodiment of an exhaust valve operating mechanism, a diesel engine, and an exhaust valve cooling method of the exhaust valve operating mechanism according to the present invention, wherein a part of hydraulic oil introduced into the upper valve operating mechanism is guided inside a valve body
  • It is principal part sectional drawing which shows the branch part of a refrigerant
  • FIG. 6 is a cross-sectional view of the main parts showing the communication (flow) state of the refrigerant circulation flow path and the oil discharge flow path accompanying the opening and closing operation of the exhaust valve, showing a state where both flow paths are in communication and the hydraulic fluid flows.
  • It is sectional drawing which shows the piston stroke of a lower valve-operating mechanism, and shows a conventional structure.
  • adopted Formula is shown.
  • the diesel engine of the present embodiment is, for example, a diesel engine for a ship main engine, and includes an exhaust valve 5 which is opened using a driving force transmitted from the lower valve operating mechanism 10 to the upper valve operating mechanism 20 by compressing hydraulic oil.
  • the exhaust valve valve mechanism 4 is provided.
  • an exhaust flow path 3 is provided in communication with the upper portion of the combustion chamber 2 formed in the cylinder 1, and the exhaust flow path 3 is opened and closed.
  • An exhaust valve 5 is provided.
  • the exhaust valve valve operating mechanism 4 shown in FIG. 8 includes a lower valve operating mechanism 10 and an upper valve operating mechanism 20.
  • the exhaust valve actuating mechanism 4 is pushed up by the air spring 21 of the upper actuating mechanism 20 using a driving force which is supplied to the upper actuating mechanism 20 to transmit the hydraulic oil compressed by the lower actuating mechanism 10 to the upper actuating mechanism 20.
  • the exhaust valve 5 in the closed state is pushed open by the pressure of the hydraulic oil.
  • symbol 6 in the figure is a hydraulic fluid flow path which connects between the lower valve operating mechanism 10 and the upper valve operating mechanism 20. As shown in FIG.
  • the lower valve operating mechanism 10 shown in FIG. 8 operates the solenoid valve unit 11 having the main valves 11a and 11b and pushes up the piston 13 in the hydraulic cylinder 12, it is an electronically controlled type, but is not limited thereto Absent.
  • a cam type in which the piston 13 is pushed up by the cam 15 may be employed as the lower valve actuating mechanism 10A.
  • reference numeral 16 in the drawing is a spring which biases the piston 13 downward.
  • the electronically controlled exhaust valve actuating mechanism 4 and the cam-type exhaust valve actuating mechanism 4A have the same configuration and operation on the side of the upper valve actuating mechanism 20 described later, regardless of which mechanism is employed.
  • the upper valve operating mechanism 20 is an opening / closing support member that supports the vertical movement of the shaft 5 a so that the exhaust valve 5 can move in the vertical direction to open and close the exhaust flow path 3.
  • the upper valve operating mechanism 20 includes, in addition to the air spring 21 described above, a piston 23 installed in a cylinder portion 22 that receives the hydraulic oil supplied from the lower valve operating mechanism 10.
  • the piston 23 is attached to the upper end portion of the shaft 5a and operates integrally.
  • the shaft 5 a is supported by the bearing 24 so as to be vertically slidable between the air spring 21 and the umbrella 5 b.
  • the exhaust valve valve of the marine engine diesel engine provided with the exhaust valve 5 opened using the driving force transmitted from the lower valve operating mechanism 10, 10A to the upper valve operating mechanism 20 by compressing the hydraulic oil.
  • the mechanism 4 is formed inside the valve body of the exhaust valve 5 to introduce a refrigerant circulation channel 30 for introducing a part of the hydraulic oil and And an oil discharge passage 40 provided through the housing 25 of the upper valve operating mechanism 20.
  • the refrigerant circulation passage 30 and the oil discharge passage 40 communicate with the outlet opening 31 of the refrigerant circulation passage 30 and the inlet opening 41 of the oil passage 40 when the exhaust valve 5 is opened and closed. A flow is generated in a portion of the hydraulic oil introduced into the flow path 30.
  • the refrigerant circulation flow passage 30 is opened to the piston 23 so that the hydraulic fluid inlet 32 communicates with the inside of the cylinder portion 22, and reaches the umbrella portion 5b through the inside of the piston 23 and the shaft portion 5a.
  • the refrigerant circulation flow path 30 provided inside the umbrella portion 5 b passes the position as close to the bottom as possible, all around, and passes through the shaft 5 a again to the outlet opening 31. That is, as for the umbrella portion 5b of the exhaust valve 5 where temperature rise easily occurs, it is desirable to provide the refrigerant circulation flow path 30 which passes through the entire circumference as close to the surface as possible.
  • the outlet opening 31 is opened to the inside of the air spring 21, but in order to prevent the hydraulic oil from flowing out from the outlet opening 31, the ring wall 27 is fixed to the upper surface of the flange 26. It is provided. As a result, the outlet opening 31 is blocked by the wall surface from the bearing portion 24 to the ring wall 27 except for the position communicating with the inlet opening 41 of the oil discharge passage 40 in the opening / closing operation range of the exhaust valve 5 become.
  • the oil discharge passage 40 is provided so as to penetrate the housing 25 of the upper valve mechanism 20, and the inlet opening 41 is at a position where the exhaust valve 5 is open and communicates with the inlet opening 31 of the refrigerant circulation passage 30. is there.
  • the other end of the oil discharge passage 40 is connected to a hydraulic oil tank (not shown).
  • an orifice 42 is provided at a suitable position of the oil discharge passage 40, for example, in the vicinity of the outer wall surface of the housing 25 as a flow rate control unit for controlling the flow rate of the hydraulic oil.
  • the orifice 42 prevents the outflow of hydraulic oil from becoming excessive. Note that, instead of the orifice 42, a servo valve or the like that can optimize the flow passage cross-sectional area according to the load may be adopted.
  • part of the hydraulic oil flowing into the cylinder portion 23 flows into the refrigerant circulation flow path 30 from the inlet 32. Then, as shown in FIG. 3B, when the positions of the outlet opening 31 and the inlet opening 41 coincide or substantially coincide and are in communication with each other, the hydraulic oil in the refrigerant circulation channel 30 is indicated by an arrow f in the figure.
  • the hydraulic oil that has cooled the exhaust valve 5 flows out from the oil flow path 40 to the orifice 42 and flows out, and new hydraulic oil flows in from the inlet 32 so as to replenish the outflow.
  • the hydraulic oil in the refrigerant circulation flow path 30 circulates in the flow path only at the timing when the exhaust valve 5 operates and communicates with the oil discharge flow path 40 of the hydraulic oil, and the hydraulic oil having a low temperature is used.
  • the exhaust valve 5 is cooled efficiently and reliably.
  • the piston stroke of the lower valve operating mechanism 10, 10A that is, the piston stroke given to the piston 13 in the hydraulic cylinder 12 is a part of the working oil (arrow f) due to the cooling of the exhaust valve 5
  • a piston stroke (H ⁇ H + .DELTA.H) obtained by adding a piston stroke .DELTA.H for compensating the amount of oil drainage to the conventional piston stroke H shown in FIG. 4A is set.
  • the piston stroke of the present embodiment set in the lower valve mechanism 10 is longer by the amount of hydraulic oil supply equivalent to the amount of oil discharge compared to the case where exhaust valve cooling is not performed (conventional structure). It should be set.
  • 4A and 4B show the electronically controlled exhaust valve actuating mechanism 4, but the same applies to a cam type exhaust valve actuating mechanism 4A.
  • the position where the outlet opening 31 of the refrigerant circulation passage 30 and the inlet opening 41 of the oil discharge passage 40 communicate is a part of the hydraulic oil without affecting the engine performance.
  • a setting that enables exhaust valve cooling using the above is desirable. Therefore, as shown in FIG. 5, the exhaust valve lift L determined by the fully closed position shown by the solid line and the open position of the exhaust valve 5 shown by the imaginary line is formed between the exhaust valve 5 and the seat portion.
  • the exhaust valve lift L is set to be L1 or more (L ⁇ L1), where L1 represents an exhaust valve lift amount equal to the sheet portion area Sa and the passage minimum area Sb set in the exhaust flow path 3.
  • FIG. 6 is an explanatory view of a preferable setting of the communication position of the refrigerant circulation flow passage 30 and the oil discharge flow passage 40.
  • FIG. 6 (a) shows the relationship between the exhaust valve lift and the crank angle
  • FIG. 6 (b) shows the relationship between the opening area (seat area Sa) and the crank angle.
  • the exhaust valve lift and the opening area of the exhaust valve 5 increase as the crank angle advances, and become smaller and close after maintaining a constant value within a predetermined crank angle range.
  • the solid line in the figure indicates the case where the exhaust valve cooling is not performed, and the broken line indicates the portion that changes due to the exhaust valve cooling.
  • the effective area used for exhausting is the area shaded in FIG. 6B, and the area of the sheet portion (opening area) Sa is smaller than the passage minimum area Sb.
  • the exhaust valve cooling can be performed without affecting the engine performance because the effective area is not shaded.
  • the exhaust valve actuating mechanism 4, 4A of the diesel engine for a ship main engine compresses the hydraulic oil and transmits the driving force transmitted from the lower valve actuating mechanism 10, 10A to the upper valve actuating mechanism 20.
  • a part of hydraulic oil used in the exhaust valve operating mechanism 4, 4A as a cooling medium at the time of opening and closing operation of the exhaust valve 5 is introduced into the valve body and circulated. As a result, it is possible to cool the exhaust valve 5 reliably by effectively utilizing a part of the hydraulic oil used for the exhaust valve operating mechanism 4, 4A.
  • the present embodiment described above it is possible to reliably cool by effectively using a part of the hydraulic oil used for the exhaust valve operating mechanism 4, 4A, and the reliability and durability of the exhaust valve 5 can be obtained. Can be improved. Further, since a part of the hydraulic oil is effectively used, it is easy to change the structure of the diesel engine for ship main engine as compared with the case of providing a new refrigerant and refrigerant supply system.
  • the present invention is not limited to the above-described embodiment, and can be suitably modified without departing from the scope of the invention, such as being applicable to diesel engines other than similar marine main engines.

Abstract

Provided are: an exhaust valve operating mechanism in which an exhaust valve is cooled to improve reliability and durability; a diesel engine; and a method for cooling the exhaust valve of an exhaust valve operating mechanism. An exhaust valve operating mechanism comprises an exhaust valve which is opened by drive force obtained by compressing hydraulic oil and transmitted from a lower valve operating mechanism to an upper valve operating mechanism (20). The exhaust valve operating mechanism further comprises: a refrigerant circulation passage (30) which is formed within the valve body of the exhaust valve and into which a part of the hydraulic oil is introduced; and an oil discharge passage which is provided extending through the housing (25) of the upper valve operating mechanism (20). During the opening and closing operation of the exhaust valve, the outlet opening of the refrigerant circulation passage (30) and the inlet opening of the oil discharge passage connect to each other to cause a part of the hydraulic oil to flow.

Description

排気弁動弁機構、ディーゼルエンジン及び排気弁動弁機構の排気弁冷却方法Exhaust valve valve mechanism, diesel engine and exhaust valve cooling method for exhaust valve mechanism
 本発明は、排気弁動弁機構、ディーゼルエンジン及び排気弁動弁機構の排気弁冷却方法に関する。 The present invention relates to an exhaust valve operating mechanism, a diesel engine, and an exhaust valve cooling method for the exhaust valve operating mechanism.
 近年、舶用ディーゼルエンジンは、出力向上に伴って燃焼室の壁面温度が上昇する傾向にある。特に、一般的に無冷却式である排気弁は、底面部が高温の燃焼ガスに接して温度上昇するので、摩耗による排気弁の損耗が報告されている。このような排気弁の損耗は、排気弁が大きく冷却が困難な大口径エンジン(ピストン直径60cm以上)ほど大きな問題となる。
 従来の舶用ディーゼルエンジンにおいては、排気弁の材質変更等により損耗の低減を図ることが行われている。
In recent years, the wall temperature of the combustion chamber of the marine diesel engine tends to rise with the improvement of the output. In particular, exhaust valves that are generally non-cooling type have been reported to suffer from wear and tear because they have their temperature rise in contact with the high temperature combustion gas at the bottom. Such exhaust valve wear and tear becomes a serious problem for large-diameter engines (piston diameter of 60 cm or more) whose exhaust valves are large and difficult to cool.
In conventional marine diesel engines, it has been attempted to reduce wear and tear by changing the material of exhaust valves and the like.
 また、下記の特許文献1には、例えば2サイクル大型ディーゼルエンジンの一つのガス通路に配置されるバルブの内部に、ガス状の冷媒、または、少なくとも部分的にガス状の状態に遷移可能な複数の成分からなる冷媒を送り込む冷却機構が開示されている。 Further, in Patent Document 1 listed below, for example, a gaseous refrigerant or a plurality of transitionable at least partially into a gaseous state can be made inside a valve disposed in one gas passage of a two-stroke large-sized diesel engine A cooling mechanism is disclosed that feeds a refrigerant consisting of the following components.
特表2013-522513号公報Japanese Patent Publication No. 2012-522513
 上述したように、近年の船舶主機用ディーゼルエンジンは、高出力化に伴って排気弁の損耗が問題となっている。しかし、船舶主機用ディーゼルエンジンの信頼性や耐久性を向上させるためにも、排気弁を効率よく冷却することが望まれる。
 本発明は、上記の課題を解決するためになされたもので、その目的とするところは、排気弁を冷却して信頼性や耐久性を向上させることができる排気弁動弁機構、ディーゼルエンジン及び排気弁動弁機構の排気弁冷却方法を提供することにある。
As described above, in recent diesel engines for ship main engines, the exhaust valve wear has become a problem with the increase in power. However, efficient cooling of the exhaust valve is also desired to improve the reliability and durability of the ship main engine diesel engine.
The present invention has been made to solve the above-mentioned problems, and an object thereof is an exhaust valve operating mechanism capable of cooling an exhaust valve to improve reliability and durability, a diesel engine, and It is an object of the present invention to provide an exhaust valve cooling method of an exhaust valve operating mechanism.
 本発明は、上記の課題を解決するため、下記の手段を採用した。
 本発明に係る排気弁動弁機構は、作動油を圧縮して下部動弁機構から上部動弁機構へ伝達される駆動力を用いて開かれる排気弁を備えた排気弁動弁機構において、前記排気弁の弁体内部に形成されて前記作動油の一部を導入する冷媒循環流路と、前記上部動弁機構の筐体を貫通して設けられた排油流路とを備え、前記排気弁の開閉動作時に、前記冷媒循環流路の出口開口と前記排油流路の入口開口とが連通して前記作動油の一部に流れを生じさせることを特徴とするものである。
The present invention adopts the following means in order to solve the above-mentioned problems.
The exhaust valve actuating mechanism according to the present invention is an exhaust valve actuating mechanism including an exhaust valve which is opened using a driving force transmitted from a lower valve operating mechanism to an upper valve operating mechanism by compressing hydraulic oil. A refrigerant circulation channel formed inside a valve body of an exhaust valve and introducing a part of the hydraulic oil, and an oil discharge channel provided penetrating through a case of the upper valve mechanism, the exhaust At the time of the opening and closing operation of the valve, the outlet opening of the refrigerant circulation channel and the inlet opening of the oil discharge channel communicate with each other to generate a flow in a part of the hydraulic oil.
 このような排気弁動弁機構によれば、排気弁の弁体内部に形成されて作動油の一部を導入する冷媒循環流路と、上部動弁機構の筐体を貫通して設けられた排油流路とを備え、排気弁の開閉動作時に、冷媒循環流路の出口開口と排油流路の入口開口とが連通して作動油の一部に流れを生じさせるので、排気弁動弁機構に用いる作動油の一部を有効利用して排気弁を確実に冷却することができる。 According to such an exhaust valve operating mechanism, the refrigerant circulation flow path formed inside the valve body of the exhaust valve and introducing a part of the hydraulic oil and provided through the casing of the upper valve operating mechanism Since the outlet opening of the refrigerant circulation channel is communicated with the inlet opening of the oil discharge channel at the time of opening and closing operation of the exhaust valve, and the flow is generated in a part of the hydraulic oil The exhaust valve can be reliably cooled by effectively utilizing a portion of the hydraulic oil used in the valve mechanism.
 上記の発明において、前記排油流路には流量制御部を設けることが好ましく、これにより、冷却に使用する作動油の流量を適切に制御することができる。なお、好適な流量制御部としては、オリフィスの他、負荷に応じて流路断面積を最適化できるサーボ弁等を例示できる。 In the above-mentioned invention, it is preferable to provide a flow control part in the above-mentioned oil drainage channel, and, thereby, the flow of hydraulic oil used for cooling can be controlled appropriately. In addition, as a suitable flow control part, the servo valve etc. which can optimize a flow-path cross-sectional area according to a load other than an orifice can be illustrated.
 上記の発明において、前記下部動弁機構のピストンストロークは、前記排気弁の開閉動作に必要な値に対して前記作動油の排油量に応じた値を加えて設定されることが好ましく、これにより、排気弁の冷却により一部の作動油が排油流路へ流出する排油量を補うことができる。すなわち、下部動弁機構のピストンストロークは、作動油による排気弁冷却を行わない場合と比較して、排油量に相当する作動油供給量分だけ長い値に設定すればよい。 In the above invention, it is preferable that the piston stroke of the lower valve operating mechanism is set by adding a value corresponding to the amount of oil discharge of the hydraulic fluid to a value necessary for the opening and closing operation of the exhaust valve. As a result, by cooling the exhaust valve, it is possible to compensate for the amount of oil discharged from the part of the hydraulic oil to the oil discharge channel. That is, the piston stroke of the lower valve operating mechanism may be set to a value that is longer by the amount of hydraulic oil supplied equivalent to the amount of hydraulic oil as compared with the case where the exhaust valve cooling with hydraulic oil is not performed.
 上記の発明において、前記冷媒循環流路の出口開口と前記排油流路の入口開口とが連通する位置は、排気弁リフトLが、シート部面積と通路最小面積とを等しくした排気弁リフト量(L1)以上(L≧L1)となるように設定されることが好ましく、これにより、エンジン性能に影響を与えることなく作動油の一部を利用した排気弁冷却が可能になる。 In the above invention, the exhaust valve lift amount at which the exhaust valve lift L equalizes the seat portion area and the passage minimum area at the position where the outlet opening of the refrigerant circulation flow channel communicates with the inlet opening of the oil discharge channel. It is preferable to set (L1) or more (L ≧ L1), and this enables exhaust valve cooling using a part of hydraulic fluid without affecting engine performance.
 本発明に係るディーゼルエンジンは、上記の排気弁動弁機構を備える。 A diesel engine according to the present invention includes the above-described exhaust valve operating mechanism.
 本発明に係る排気弁動弁機構の排気弁冷却方法は、作動油を圧縮して下部動弁機構から上部動弁機構へ伝達される駆動力を用いて開かれる排気弁を備えた排気弁動弁機構の排気弁冷却方法において、排気弁の開閉動作時に冷却媒体として作動油の一部を弁体内部に導入して循環させることを特徴とするものである。 The exhaust valve cooling method of the exhaust valve actuating mechanism according to the present invention comprises an exhaust valve having an exhaust valve which is opened using a driving force transmitted from a lower valve operating mechanism to an upper valve operating mechanism by compressing hydraulic oil. The exhaust valve cooling method of the valve mechanism is characterized in that a part of hydraulic oil is introduced as a cooling medium into the inside of the valve body and circulated at the time of opening and closing operation of the exhaust valve.
 このような排気弁動弁機構の排気弁冷却方法によれば、排気弁の開閉動作時に冷却媒体として作動油の一部を弁体内部に導入して循環させるので、排気弁の動弁機構に用いる作動油の一部を有効利用して排気弁を確実に冷却することができる。 According to the exhaust valve cooling method of the exhaust valve operating mechanism as described above, a part of the hydraulic oil is introduced into the inside of the valve body as a cooling medium and circulated when the exhaust valve is opened and closed. The exhaust valve can be reliably cooled by effectively utilizing a portion of the hydraulic oil used.
 上述した本発明によれば、排気弁の動弁機構に用いる作動油の一部を有効利用して確実に冷却できるようになり、排気弁の信頼性や耐久性を向上させることができる。また、作動油の一部を有効利用するので、新たな冷媒及び冷媒供給系統を設ける場合と比較して構造変更が容易である。 According to the present invention described above, a part of the hydraulic oil used for the valve operating mechanism of the exhaust valve can be effectively used for reliable cooling, and the reliability and durability of the exhaust valve can be improved. In addition, since a part of the hydraulic oil is effectively used, the structure can be easily changed as compared with the case where a new refrigerant and a refrigerant supply system are provided.
本発明に係る排気弁動弁機構、ディーゼルエンジン及び排気弁動弁機構の排気弁冷却方法の一実施形態を示す図で、上部動弁機構に導入した作動油の一部を弁体内部に導く冷媒循環流路の分岐部を示す要部断面図である。FIG. 2 is a view showing one embodiment of an exhaust valve operating mechanism, a diesel engine, and an exhaust valve cooling method of the exhaust valve operating mechanism according to the present invention, wherein a part of hydraulic oil introduced into the upper valve operating mechanism is guided inside a valve body It is principal part sectional drawing which shows the branch part of a refrigerant | coolant circulation flow path. 排気弁の弁体内部に設けられた冷媒循環流路を示す要部断面図である。It is principal part sectional drawing which shows the refrigerant | coolant circulation flow path provided in the inside of the valve body of an exhaust valve. 排気弁の開閉動作に伴う冷媒循環流路及び排油流路の連通(流動)状態を示す要部断面図であり、両流路が連通しないため作動油が非流動の状態を示す。It is principal part sectional drawing which shows the connection (flow) state of the refrigerant | coolant circulation flow path and the oil discharge flow path accompanying opening / closing operation | movement of an exhaust valve, and since both flow paths do not connect, hydraulic oil shows the non-flowing state. 排気弁の開閉動作に伴う冷媒循環流路及び排油流路の連通(流動)状態を示す要部断面図であり、両流路が連通して作動油が流動する状態を示す。FIG. 6 is a cross-sectional view of the main parts showing the communication (flow) state of the refrigerant circulation flow path and the oil discharge flow path accompanying the opening and closing operation of the exhaust valve, showing a state where both flow paths are in communication and the hydraulic fluid flows. 下部動弁機構のピストンストロークを示す断面図であり、従来構造を示す。It is sectional drawing which shows the piston stroke of a lower valve-operating mechanism, and shows a conventional structure. 下部動弁機構のピストンストロークを示す断面図であり、作動油の一部を排気弁冷却に利用する場合の構造を示す。It is sectional drawing which shows the piston stroke of a lower valve mechanism, and shows the structure in the case of utilizing a part of hydraulic fluid for exhaust valve cooling. 排気弁リフト、シート部面積及びシート最小面積を示す説明図である。It is an explanatory view showing an exhaust valve lift, a seat part area, and a seat minimum area. 冷媒循環流路及び排油流路の連通位置について好ましい設定の説明図であり、(a)はクランク角度に対する排気弁リフトの関係、(b)はクランク角度に対する開口面積の関係を示している。It is explanatory drawing of a preferable setting about the communication position of a refrigerant | coolant circulation flow path and a discharge oil flow path, (a) is the relationship of the exhaust valve lift with respect to a crank angle, (b) has shown the relationship of the opening area with respect to a crank angle. 冷媒循環流路及び排油流路の連通位置について好ましくない設定の説明図であり、(a)はクランク角度に対する排気弁リフトの関係、(b)はクランク角度に対する開口面積の関係を示している。It is explanatory drawing of the setting which is not preferable about the communication position of a refrigerant | coolant circulation flow path and a discharge oil flow path, (a) is the relationship of the exhaust valve lift with respect to a crank angle, (b) has shown the relationship of opening area with a crank angle. . 作動油を圧縮して下部動弁機構から上部動弁機構へ伝達される駆動力を用いて開かれる排気弁を備えた排気弁動弁機構の概略構成図であり、下部動弁機構として電子制御式を採用した排気弁の構成例を示している。It is a schematic block diagram of an exhaust valve actuating valve mechanism provided with an exhaust valve which is opened using a driving force transmitted from a lower valve operating mechanism to an upper valve operating mechanism by compressing hydraulic oil, and electronically controlled as the lower valve operating mechanism. The structural example of the exhaust valve which employ | adopted Formula is shown. 作動油を圧縮して下部動弁機構から上部動弁機構へ伝達される駆動力を用いて開かれる排気弁を備えた排気弁動弁機構の概略構成図であり、下部動弁機構としてカム式を採用した排気弁の構成例を示している。It is a schematic block diagram of an exhaust valve actuating valve mechanism provided with an exhaust valve which is opened using a driving force transmitted from a lower valve operating mechanism to an upper valve operating mechanism by compressing hydraulic oil, and is a cam type as a lower valve operating mechanism. Shows a configuration example of an exhaust valve adopting
 以下、本発明に係る排気弁動弁機構、ディーゼルエンジン及び排気弁動弁機構の排気弁冷却方法の一実施形態を図面に基づいて説明する。
 本実施形態のディーゼルエンジンは、例えば船舶主機用ディーゼルエンジンであり、作動油を圧縮して下部動弁機構10から上部動弁機構20へ伝達される駆動力を用いて開かれる排気弁5を備えた排気弁動弁機構4を備えている。
BEST MODE FOR CARRYING OUT THE INVENTION Hereinafter, an embodiment of an exhaust valve operating mechanism, a diesel engine, and an exhaust valve cooling method for an exhaust valve operating mechanism according to the present invention will be described based on the drawings.
The diesel engine of the present embodiment is, for example, a diesel engine for a ship main engine, and includes an exhaust valve 5 which is opened using a driving force transmitted from the lower valve operating mechanism 10 to the upper valve operating mechanism 20 by compressing hydraulic oil. The exhaust valve valve mechanism 4 is provided.
 図8に示す排気弁構造において、気筒1内に形成された燃焼室2の上部に連通して排気流路3が設けられ、この排気流路3を開閉するようにして排気弁動弁機構4を備えた排気弁5が設けられている。
 図8に示す排気弁動弁機構4は、下部動弁機構10及び上部動弁機構20を備えている。この排気弁動弁機構4は、下部動弁機構10で圧縮した作動油を上部動弁機構20へ供給して伝達される駆動力を用い、上部動弁機構20の空気ばね21に押し上げられて閉じた状態にある排気弁5を、作動油の圧力により押し下げて開くものである。なお、図中の符号6は、下部動弁機構10と上部動弁機構20との間を接続する作動油流路である。
In the exhaust valve structure shown in FIG. 8, an exhaust flow path 3 is provided in communication with the upper portion of the combustion chamber 2 formed in the cylinder 1, and the exhaust flow path 3 is opened and closed. An exhaust valve 5 is provided.
The exhaust valve valve operating mechanism 4 shown in FIG. 8 includes a lower valve operating mechanism 10 and an upper valve operating mechanism 20. The exhaust valve actuating mechanism 4 is pushed up by the air spring 21 of the upper actuating mechanism 20 using a driving force which is supplied to the upper actuating mechanism 20 to transmit the hydraulic oil compressed by the lower actuating mechanism 10 to the upper actuating mechanism 20. The exhaust valve 5 in the closed state is pushed open by the pressure of the hydraulic oil. In addition, the code | symbol 6 in the figure is a hydraulic fluid flow path which connects between the lower valve operating mechanism 10 and the upper valve operating mechanism 20. As shown in FIG.
 図8に示す下部動弁機構10は、メインバルブ11a,11bを備えた電磁弁ユニット11を操作し、油圧シリンダ12内のピストン13を押し上げる電子制御式であるが、これに限定されることはない。例えば図9に示す排気弁動弁機構4Aのように、下部動弁機構10Aとしてピストン13をカム15により押し上げるカム式を採用してもよい。図9において、図中の符号16はピストン13を下向きに付勢しているばねである。
 なお、電子制御式の排気弁動弁機構4及びカム式の排気弁動弁機構4Aは、何れの機構を採用しても後述する上部動弁機構20側の構成及び動作は同じである。
Although the lower valve operating mechanism 10 shown in FIG. 8 operates the solenoid valve unit 11 having the main valves 11a and 11b and pushes up the piston 13 in the hydraulic cylinder 12, it is an electronically controlled type, but is not limited thereto Absent. For example, as in the exhaust valve actuating mechanism 4A shown in FIG. 9, a cam type in which the piston 13 is pushed up by the cam 15 may be employed as the lower valve actuating mechanism 10A. In FIG. 9, reference numeral 16 in the drawing is a spring which biases the piston 13 downward.
The electronically controlled exhaust valve actuating mechanism 4 and the cam-type exhaust valve actuating mechanism 4A have the same configuration and operation on the side of the upper valve actuating mechanism 20 described later, regardless of which mechanism is employed.
 上部動弁機構20は、排気弁5が上下方向に移動して排気流路3を開閉する動作を可能にするため、軸部5aの上下方向移動を可能に支持する開閉動作支持部材である。この上部動弁機構20は、上述した空気ばね21に加えて、下部動弁機構10から供給される作動油を受け入れるシリンダ部22内に設置されたピストン23を備えている。このピストン23は、軸部5aの上端部に取り付けられて一体に動作する。
 また、軸部5aは、空気ばね21と傘部5bとの間において、軸受部24で上下方向のスライドが可能に支持されている。
The upper valve operating mechanism 20 is an opening / closing support member that supports the vertical movement of the shaft 5 a so that the exhaust valve 5 can move in the vertical direction to open and close the exhaust flow path 3. The upper valve operating mechanism 20 includes, in addition to the air spring 21 described above, a piston 23 installed in a cylinder portion 22 that receives the hydraulic oil supplied from the lower valve operating mechanism 10. The piston 23 is attached to the upper end portion of the shaft 5a and operates integrally.
The shaft 5 a is supported by the bearing 24 so as to be vertically slidable between the air spring 21 and the umbrella 5 b.
 このように、作動油を圧縮して下部動弁機構10,10Aから上部動弁機構20へ伝達される駆動力を用いて開かれる排気弁5を備えた船舶主機用ディーゼルエンジンの排気弁動弁機構4は、本実施形態において、図1,図2,図3A及び図3Bに示すように、排気弁5の弁体内部に形成されて作動油の一部を導入する冷媒循環流路30と、上部動弁機構20の筐体25を貫通して設けられた排油流路40とを備えている。そして、冷媒循環流路30及び排油流路40は、排気弁5の開閉動作時において、冷媒循環流路30の出口開口31と排油流路40の入口開口41とが連通し、冷媒循環流路30に導入される作動油の一部に流れを生じさせる。 Thus, the exhaust valve valve of the marine engine diesel engine provided with the exhaust valve 5 opened using the driving force transmitted from the lower valve operating mechanism 10, 10A to the upper valve operating mechanism 20 by compressing the hydraulic oil. In the present embodiment, as shown in FIGS. 1, 2, 3A and 3B, the mechanism 4 is formed inside the valve body of the exhaust valve 5 to introduce a refrigerant circulation channel 30 for introducing a part of the hydraulic oil and And an oil discharge passage 40 provided through the housing 25 of the upper valve operating mechanism 20. The refrigerant circulation passage 30 and the oil discharge passage 40 communicate with the outlet opening 31 of the refrigerant circulation passage 30 and the inlet opening 41 of the oil passage 40 when the exhaust valve 5 is opened and closed. A flow is generated in a portion of the hydraulic oil introduced into the flow path 30.
 冷媒循環流路30は、作動油の入口32がシリンダ部22内に連通するようピストン23に開口し、ピストン23及び軸部5aの内部を通って傘部5bに至る。傘部5bの内部に設けられる冷媒循環流路30は、可能な限り底面に近い位置を全周にわたって通り、再度軸部5aを通って出口開口31に至る。すなわち、温度上昇しやすい排気弁5の傘部5bについては、できるだけ表面に近い位置を全周にわたって通る冷媒循環流路30を設けることが望ましい。
 また、排気弁5が閉じた状態において、出口開口31は空気ばね21の内部に開口するが、出口開口31からの作動油流出を防止するため、フランジ26の上面に固定してリング壁27を設けてある。この結果、出口開口31は、排気弁5の開閉動作範囲において、排油流路40の入口開口41と連通する位置を除いて、軸受部24からリング壁27まで壁面により塞がれた状態となる。
The refrigerant circulation flow passage 30 is opened to the piston 23 so that the hydraulic fluid inlet 32 communicates with the inside of the cylinder portion 22, and reaches the umbrella portion 5b through the inside of the piston 23 and the shaft portion 5a. The refrigerant circulation flow path 30 provided inside the umbrella portion 5 b passes the position as close to the bottom as possible, all around, and passes through the shaft 5 a again to the outlet opening 31. That is, as for the umbrella portion 5b of the exhaust valve 5 where temperature rise easily occurs, it is desirable to provide the refrigerant circulation flow path 30 which passes through the entire circumference as close to the surface as possible.
Further, when the exhaust valve 5 is closed, the outlet opening 31 is opened to the inside of the air spring 21, but in order to prevent the hydraulic oil from flowing out from the outlet opening 31, the ring wall 27 is fixed to the upper surface of the flange 26. It is provided. As a result, the outlet opening 31 is blocked by the wall surface from the bearing portion 24 to the ring wall 27 except for the position communicating with the inlet opening 41 of the oil discharge passage 40 in the opening / closing operation range of the exhaust valve 5 Become.
 排油流路40は、上部動弁機構20の筐体25を貫通して設けられ、その入口開口41は、排気弁5が開となり、冷媒循環流路30の入口開口31と連通する位置にある。そして、排油流路40の他端は、図示省略の作動油タンクに接続されている。
 また、排油流路40の適所には、例えば筐体25の外壁面近傍等に、作動油の流出流量を制御する流量制御部としてオリフィス42を設けてある。このオリフィス42は、作動油の流出量が過大になることを防止するものである。なお、オリフィス42に代えて、負荷に応じて流路断面積を最適化できるサーボ弁等を採用してもよい。
The oil discharge passage 40 is provided so as to penetrate the housing 25 of the upper valve mechanism 20, and the inlet opening 41 is at a position where the exhaust valve 5 is open and communicates with the inlet opening 31 of the refrigerant circulation passage 30. is there. The other end of the oil discharge passage 40 is connected to a hydraulic oil tank (not shown).
Further, an orifice 42 is provided at a suitable position of the oil discharge passage 40, for example, in the vicinity of the outer wall surface of the housing 25 as a flow rate control unit for controlling the flow rate of the hydraulic oil. The orifice 42 prevents the outflow of hydraulic oil from becoming excessive. Note that, instead of the orifice 42, a servo valve or the like that can optimize the flow passage cross-sectional area according to the load may be adopted.
 上述した本実施形態によれば、排気弁5が全閉の状態では、下部動弁機構10からの作動油供給がなく、従って、排気弁5は空気ばね21から上向きの付勢を受けてシート面に密着している。このとき、冷媒循環流路30内の作動油は、作動油の供給がないことに加えて出口開口31が塞がれているため、流動することなく流路内に留まっている。
 しかし、下部動弁機構10が動作すると作動油流路6を流れる作動油の流れ(矢印F)が生じ、上部動弁機構20のシリンダ部22内に流入する。このため、ピストン23には作動油の圧力が作用し、軸部5aを下向きに押し下げる力が発生するので、この力が空気ばねの付勢に打ち勝つことにより、ピストン23及び排気弁5が押し下げられて排気流路3は開状態となる。
According to the above-described embodiment, when the exhaust valve 5 is fully closed, there is no hydraulic oil supply from the lower valve mechanism 10, and accordingly, the exhaust valve 5 is biased upward from the air spring 21 and the seat is Close to the surface. At this time, the hydraulic fluid in the refrigerant circulation channel 30 remains in the channel without flowing because the outlet opening 31 is closed in addition to the supply of the hydraulic fluid.
However, when the lower valve operating mechanism 10 operates, a flow (arrow F) of the hydraulic oil flowing in the hydraulic oil flow path 6 is generated, and flows into the cylinder portion 22 of the upper valve operating mechanism 20. For this reason, the pressure of the hydraulic fluid acts on the piston 23 to generate a force to push down the shaft portion 5a downward. This force overcomes the bias of the air spring, and the piston 23 and the exhaust valve 5 are pushed down. Thus, the exhaust flow path 3 is in the open state.
 また、シリンダ部23に流入した作動油の一部は、入口32から冷媒循環流路30に流入する。そして、図3Bに示すように、出口開口31及び入口開口41の位置が一致または略一致して互いに連通状態になると、冷媒循環流路30内の作動油は、図中に矢印fで示すように流れて排気弁5を冷却する。このとき、排気弁5を冷却した作動油は排油流路40からオリフィス42に流量制御されて流出し、この流出分を補充するようにして新たな作動油が入口32から流入してくる。このため、冷媒循環流路30内の作動油は、排気弁5が作動して作動油の排油流路40と連通するタイミングでのみ流路内を循環して流れ、温度の低い作動油により効率よく確実に排気弁5を冷却する。 Further, part of the hydraulic oil flowing into the cylinder portion 23 flows into the refrigerant circulation flow path 30 from the inlet 32. Then, as shown in FIG. 3B, when the positions of the outlet opening 31 and the inlet opening 41 coincide or substantially coincide and are in communication with each other, the hydraulic oil in the refrigerant circulation channel 30 is indicated by an arrow f in the figure. To cool the exhaust valve 5. At this time, the hydraulic oil that has cooled the exhaust valve 5 flows out from the oil flow path 40 to the orifice 42 and flows out, and new hydraulic oil flows in from the inlet 32 so as to replenish the outflow. Therefore, the hydraulic oil in the refrigerant circulation flow path 30 circulates in the flow path only at the timing when the exhaust valve 5 operates and communicates with the oil discharge flow path 40 of the hydraulic oil, and the hydraulic oil having a low temperature is used. The exhaust valve 5 is cooled efficiently and reliably.
 ところで、下部動弁機構10,10Aのピストンストロークは、すなわち油圧シリンダ12内のピストン13に与えられたピストンストロークは、排気弁5の冷却により一部の作動油(矢印f)が排油流路40へ流出する排油量を補うため、排気弁開閉動作に必要な値に対して、作動油の排油量に応じた値を加えて設定することが望ましい。 By the way, the piston stroke of the lower valve operating mechanism 10, 10A, that is, the piston stroke given to the piston 13 in the hydraulic cylinder 12 is a part of the working oil (arrow f) due to the cooling of the exhaust valve 5 In order to compensate for the amount of oil discharged to 40, it is desirable to set a value corresponding to the amount of oil discharged from the hydraulic oil to the value required for the exhaust valve opening / closing operation.
 具体的には、図4Aに示す従来のピストンストロークHに対して、図4Bに示すように、排油量を補うためのピストンストロークΔHを加えたピストンストローク(H<H+ΔH)に設定する。すなわち、下部動弁機構10に設定される本実施形態のピストンストロークは、排気弁冷却を行わない場合(従来構造)と比較して、排油量に相当する作動油供給量分だけ長い値に設定すればよい。
 なお、図4A,図4Bは電子制御式の排気弁動弁機構4を示しているが、カム式の排気弁動弁機構4Aについても同様である。
Specifically, as shown in FIG. 4B, a piston stroke (H <H + .DELTA.H) obtained by adding a piston stroke .DELTA.H for compensating the amount of oil drainage to the conventional piston stroke H shown in FIG. 4A is set. . That is, the piston stroke of the present embodiment set in the lower valve mechanism 10 is longer by the amount of hydraulic oil supply equivalent to the amount of oil discharge compared to the case where exhaust valve cooling is not performed (conventional structure). It should be set.
4A and 4B show the electronically controlled exhaust valve actuating mechanism 4, but the same applies to a cam type exhaust valve actuating mechanism 4A.
 また、冷媒循環流路30の出口開口31と排油流路40の入口開口41とが連通する位置(冷却油流路の連通位置)は、エンジン性能に影響を与えることなく作動油の一部を利用した排気弁冷却を可能とする設定が望ましい。このため、図5に示すように、実線で示す全閉位置と想像線で示す排気弁5の開位置とにより定まる排気弁リフトLについては、排気弁5とシート部との間に形成されるシート部面積Saと、排気流路3に設定されている通路最小面積Sbとが等しい排気弁リフト量をL1として、排気弁リフトLがL1以上(L≧L1)となるように設定する。 Further, the position where the outlet opening 31 of the refrigerant circulation passage 30 and the inlet opening 41 of the oil discharge passage 40 communicate (the communication position of the cooling oil passage) is a part of the hydraulic oil without affecting the engine performance. A setting that enables exhaust valve cooling using the above is desirable. Therefore, as shown in FIG. 5, the exhaust valve lift L determined by the fully closed position shown by the solid line and the open position of the exhaust valve 5 shown by the imaginary line is formed between the exhaust valve 5 and the seat portion. The exhaust valve lift L is set to be L1 or more (L ≧ L1), where L1 represents an exhaust valve lift amount equal to the sheet portion area Sa and the passage minimum area Sb set in the exhaust flow path 3.
 図6は、冷媒循環流路30及び排油流路40の連通位置について、好ましい設定の説明図である。図6(a)は、クランク角度に対する排気弁リフトの関係を示し、図6(b)は、クランク角度に対する開口面積(シート部面積Sa)の関係を示している。
 排気弁5の排気弁リフト及び開口面積は、クランク角度が進むにつれて大きくなり、所定のクランク角度範囲内で一定値を維持した後に小さくなって閉じる。なお、図中の実線表示は排気弁冷却を行わない場合であり、破線表示が排気弁冷却により変化する部分である。
FIG. 6 is an explanatory view of a preferable setting of the communication position of the refrigerant circulation flow passage 30 and the oil discharge flow passage 40. FIG. 6 (a) shows the relationship between the exhaust valve lift and the crank angle, and FIG. 6 (b) shows the relationship between the opening area (seat area Sa) and the crank angle.
The exhaust valve lift and the opening area of the exhaust valve 5 increase as the crank angle advances, and become smaller and close after maintaining a constant value within a predetermined crank angle range. The solid line in the figure indicates the case where the exhaust valve cooling is not performed, and the broken line indicates the portion that changes due to the exhaust valve cooling.
 一方、排気に使用される有効面積は、図6(b)に網掛けを施した領域であり、シート部面積(開口面積)Saが通路最小面積Sbより小さい領域の面積となる。
 そして、図6(a)に示すように、通路最小面積Sbに対応するクランク角度の排気弁リフトLが、「シート部面積Sa=通路最小面積Sb」の排気弁リフト量L1となる。
 従って、冷却油通路の連通位置については、排気弁リフトLが通路最小面積Sbに対応する排気弁リフトL1より大きな値となる領域に設定すれば、排気弁冷却により生じる面積の減少は排気に使用される有効面積の網掛け外となるため、エンジン性能に影響することなく排気弁冷却を行うことができる。
On the other hand, the effective area used for exhausting is the area shaded in FIG. 6B, and the area of the sheet portion (opening area) Sa is smaller than the passage minimum area Sb.
And as shown to Fig.6 (a), the exhaust valve lift L of the crank angle corresponding to the passage minimum area Sb becomes the exhaust valve lift amount L1 of "seat part area Sa = passage minimum area Sb."
Therefore, for the communication position of the cooling oil passage, if the exhaust valve lift L is set to a region where the value becomes larger than the exhaust valve lift L1 corresponding to the passage minimum area Sb, the reduction of the area caused by the exhaust valve cooling is used for exhaust The exhaust valve cooling can be performed without affecting the engine performance because the effective area is not shaded.
 しかし、図7(a),(b)に示すように、冷却油通路の連通が排気に使用される有効面積内の領域で行われると、作動油の一部が冷却に使用されて開弁操作に使用できる量が減少するので、排気弁5が開弁して燃焼室2内の燃焼排ガスを排出する際には、排気弁リフト及び開口面積の遅延が生じる。すなわち、破線で示す排気弁リフト及び開口面積は、排気に使用される有効面積内において実線表示よりクランク角度が進んだ方向に移動するので、このような遅延により図7(b)に示すハッチング部の面積が減少し、この結果、ガス交換不良によるエンジン性能が悪化することとなる。換言すれば、冷却油通路の連通位置について、排気弁リフトLが通路最小面積Sbに対応する排気弁リフトL1より大きな値となる領域に設定することにより、図7(b)のハッチング部に相当する領域は排気に使用される有効面積外となり、この結果、ガス交換不良によるエンジン性能の悪化を防止することができる。 However, as shown in FIGS. 7 (a) and 7 (b), when the communication of the cooling oil passage is performed in the area within the effective area used for the exhaust, a part of the hydraulic oil is used for cooling and valve opening Since the amount that can be used for operation decreases, when the exhaust valve 5 is opened to discharge the combustion exhaust gas in the combustion chamber 2, a delay of the exhaust valve lift and the opening area occurs. That is, since the exhaust valve lift and the opening area shown by the broken line move in the direction in which the crank angle is advanced compared to the solid line display within the effective area used for the exhaust, the hatched portion shown in FIG. As a result, the engine performance is deteriorated due to the poor gas exchange. In other words, by setting the communication position of the cooling oil passage in a region where the exhaust valve lift L has a larger value than the exhaust valve lift L1 corresponding to the passage minimum area Sb, it corresponds to the hatched portion in FIG. This region is outside the effective area used for exhaust, and as a result, it is possible to prevent deterioration of engine performance due to poor gas exchange.
 また、上述した本実施形態の船舶主機用ディーゼルエンジンの排気弁動弁機構4,4Aは、作動油を圧縮して下部動弁機構10,10Aから上部動弁機構20へ伝達される駆動力を用いて開かれる排気弁5の排気弁冷却方法として、排気弁5の開閉動作時に冷却媒体として排気弁動弁機構4,4Aで使用する作動油の一部を弁体内部に導入して循環させることが可能になり、この結果、排気弁動弁機構4,4Aに用いる作動油の一部を有効利用して排気弁5を確実に冷却することができる。 In addition, the exhaust valve actuating mechanism 4, 4A of the diesel engine for a ship main engine according to the present embodiment described above compresses the hydraulic oil and transmits the driving force transmitted from the lower valve actuating mechanism 10, 10A to the upper valve actuating mechanism 20. As an exhaust valve cooling method of the exhaust valve 5 which is opened by using, a part of hydraulic oil used in the exhaust valve operating mechanism 4, 4A as a cooling medium at the time of opening and closing operation of the exhaust valve 5 is introduced into the valve body and circulated. As a result, it is possible to cool the exhaust valve 5 reliably by effectively utilizing a part of the hydraulic oil used for the exhaust valve operating mechanism 4, 4A.
 このように、上述した本実施形態によれば、排気弁動弁機構4,4Aに用いる作動油の一部を有効利用して確実に冷却できるようになり、排気弁5の信頼性や耐久性を向上させることができる。また、作動油の一部を有効利用するので、新たな冷媒及び冷媒供給系統を設ける場合と比較して船舶主機用ディーゼルエンジンの構造変更が容易である。
 なお、本発明は上述した実施形態に限定されることはなく、たとえば類似する舶用主機以外のディーゼルエンジンにも適用可能であるなど、その要旨を逸脱しない範囲内において適宜変更することができる。
As described above, according to the present embodiment described above, it is possible to reliably cool by effectively using a part of the hydraulic oil used for the exhaust valve operating mechanism 4, 4A, and the reliability and durability of the exhaust valve 5 can be obtained. Can be improved. Further, since a part of the hydraulic oil is effectively used, it is easy to change the structure of the diesel engine for ship main engine as compared with the case of providing a new refrigerant and refrigerant supply system.
The present invention is not limited to the above-described embodiment, and can be suitably modified without departing from the scope of the invention, such as being applicable to diesel engines other than similar marine main engines.
  1  気筒
  2  燃焼室
  3  排気流路
  4,4A  排気弁動弁機構
  5  排気弁
  5a  軸部
  5b  傘部
  6  作動流路
 10,10A  下部動弁機構
 11  電磁弁ユニット
 12  油圧シリンダ
 13  ピストン
 15  カム
 16  ばね
 20  上部動弁機構
 21  空気ばね
 22  シリンダ部
 23  ピストン
 24  軸受部
 25  筐体
 26  フランジ
 27  リング壁
 30  冷媒循環流路
 31  出口開口
 32  入口
 40  排油流路
 41  入口開口
 42  オリフィス(流量制御部)
1 cylinder 2 combustion chamber 3 exhaust flow path 4, 4A exhaust valve operating mechanism 5 exhaust valve 5a shaft portion 5b umbrella portion 6 actuation flow path 10, 10A lower valve operating mechanism 11 solenoid valve unit 12 hydraulic cylinder 13 piston 15 cam 16 spring Reference Signs List 20 upper valve mechanism 21 air spring 22 cylinder portion 23 piston 24 bearing portion 25 housing 26 flange 27 ring wall 30 refrigerant circulation channel 31 outlet opening 32 inlet 40 oil drain channel 41 inlet opening 42 orifice (flow control unit)

Claims (6)

  1.  作動油を圧縮して下部動弁機構から上部動弁機構へ伝達される駆動力を用いて開かれる排気弁を備えた排気弁動弁機構において、
     前記排気弁の弁体内部に形成されて前記作動油の一部を導入する冷媒循環流路と、前記上部動弁機構の筐体を貫通して設けられた排油流路とを備え、
     前記排気弁の開閉動作時に、前記冷媒循環流路の出口開口と前記排油流路の入口開口とが連通して前記作動油の一部に流れを生じさせることを特徴とする排気弁動弁機構。
    In an exhaust valve valve mechanism provided with an exhaust valve that is opened using a driving force that compresses hydraulic oil and is transmitted from a lower valve mechanism to an upper valve mechanism,
    A refrigerant circulation passage formed inside the valve body of the exhaust valve and introducing a part of the hydraulic oil; and an oil passage provided through the casing of the upper valve mechanism;
    At the time of opening and closing operation of the exhaust valve, the outlet opening of the refrigerant circulation channel and the inlet opening of the oil discharge channel are communicated to generate a flow in a part of the hydraulic oil. mechanism.
  2.  前記排油流路に流量制御部を設けたことを特徴とする請求項1に記載の排気弁動弁機構。 The exhaust valve valve mechanism according to claim 1, wherein a flow rate control unit is provided in the oil discharge flow path.
  3.  前記下部動弁機構のピストンストロークは、前記排気弁の開閉動作に必要な値に対して前記作動油の排油量に応じた値を加えて設定されることを特徴とする請求項1または2に記載の排気弁動弁機構。 The piston stroke of the lower valve operating mechanism is set by adding a value corresponding to the amount of oil discharged from the hydraulic fluid to a value necessary for the opening and closing operation of the exhaust valve. Exhaust valve valve mechanism described in.
  4.  前記冷媒循環流路の出口開口と前記排油流路の入口開口とが連通する位置は、排気弁リフトLが、シート部面積と通路最小面積とを等しくした排気弁リフト量(L1)以上(L≧L1)となるように設定されることを特徴とする請求項1から3のいずれか1項に記載の排気弁動弁機構。 The position where the outlet opening of the refrigerant circulation channel and the inlet opening of the oil discharge channel communicate with each other is the exhaust valve lift L equal to or larger than the exhaust valve lift amount (L1) equal to the sheet area and the passage minimum area The exhaust valve actuating mechanism according to any one of claims 1 to 3, wherein L L L1).
  5.  請求項1から4のいずれか1項に記載の排気弁動弁機構を備えるディーゼルエンジン。 A diesel engine provided with the exhaust valve operating mechanism according to any one of claims 1 to 4.
  6.  作動油を圧縮して下部動弁機構から上部動弁機構へ伝達される駆動力を用いて開かれる排気弁を備えた排気弁動弁機構の排気弁冷却方法において、
     前記排気弁の開閉動作時に冷却媒体として前記作動油の一部を弁体内部に導入して循環させることを特徴とする排気弁動弁機構の排気弁冷却方法。
    In an exhaust valve cooling method of an exhaust valve operating mechanism having an exhaust valve which is opened by compressing hydraulic oil and using a driving force transmitted from a lower valve operating mechanism to an upper valve operating mechanism,
    A method of cooling an exhaust valve of an exhaust valve operating mechanism, wherein a part of the hydraulic oil as a cooling medium is introduced into the inside of a valve body and circulated at the time of opening and closing operation of the exhaust valve.
PCT/JP2014/067799 2013-11-18 2014-07-03 Exhaust valve operating mechanism, diesel engine, and method for cooling exhaust valve of exhaust valve operating mechanism WO2015072175A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020167011918A KR101760648B1 (en) 2013-11-18 2014-07-03 Exhaust valve operating mechanism, diesel engine, and method for cooling exhaust valve of exhaust valve operating mechanism
CN201480059077.4A CN105683512B (en) 2013-11-18 2014-07-03 The air bleeding valve cooling means of air bleeding valve valve mechanism, diesel engine and air bleeding valve valve mechanism

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013238013A JP6091008B2 (en) 2013-11-18 2013-11-18 Exhaust valve valve mechanism, diesel engine, and exhaust valve cooling method for exhaust valve valve mechanism
JP2013-238013 2013-11-18

Publications (1)

Publication Number Publication Date
WO2015072175A1 true WO2015072175A1 (en) 2015-05-21

Family

ID=53057123

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/067799 WO2015072175A1 (en) 2013-11-18 2014-07-03 Exhaust valve operating mechanism, diesel engine, and method for cooling exhaust valve of exhaust valve operating mechanism

Country Status (4)

Country Link
JP (1) JP6091008B2 (en)
KR (1) KR101760648B1 (en)
CN (1) CN105683512B (en)
WO (1) WO2015072175A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115003899A (en) * 2020-07-14 2022-09-02 富士乌兹克斯株式会社 Cooling material filling device for umbrella hollow engine valve and cooling material filling method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6703868B2 (en) 2016-03-08 2020-06-03 三菱重工業株式会社 Valve gear and crosshead internal combustion engine
CN114829183A (en) 2019-10-15 2022-07-29 复合材料传动系统有限责任公司 Composite vehicle driveshaft assembly with integrated end yoke and method of producing the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952108U (en) * 1982-09-30 1984-04-05 いすゞ自動車株式会社 Internal combustion engine intake and exhaust valve cooling system
JPS60152009U (en) * 1984-03-21 1985-10-09 小沢 理夫 exhaust valve device
JPH07293212A (en) * 1994-04-28 1995-11-07 Nittan Valve Kk Exhaust valve cooler
JP2000087708A (en) * 1998-09-09 2000-03-28 Man B & W Diesel As Valve for internal combustion engine and cooling method for the same
JP2009144725A (en) * 2009-02-04 2009-07-02 Man Diesel Filial Af Man Diesel Se Tyskland Cam-drive exhaust valve operation system for large-sized two-cycle diesel engine
JP2010261315A (en) * 2009-04-30 2010-11-18 Ats Inc Resting device of cylinder

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5560409U (en) * 1978-10-23 1980-04-24
DK0570649T3 (en) * 1992-05-19 1996-09-02 New Sulzer Diesel Ag Device for controlling the flow of a hydraulic pressure medium, especially for fuel injection in a piston combustion engine
DE10249941B4 (en) * 2002-10-26 2005-11-10 Man B & W Diesel A/S Method and device for cooling a valve
DE102005048566A1 (en) * 2005-10-11 2007-04-12 Man Nutzfahrzeuge Ag Auto-ignition internal combustion engine with combustion chambers for high ignition pressures
DE102010011070B4 (en) 2010-03-11 2012-04-05 Man Diesel & Turbo, Filial Af Man Diesel & Turbo Se, Tyskland valve assembly

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5952108U (en) * 1982-09-30 1984-04-05 いすゞ自動車株式会社 Internal combustion engine intake and exhaust valve cooling system
JPS60152009U (en) * 1984-03-21 1985-10-09 小沢 理夫 exhaust valve device
JPH07293212A (en) * 1994-04-28 1995-11-07 Nittan Valve Kk Exhaust valve cooler
JP2000087708A (en) * 1998-09-09 2000-03-28 Man B & W Diesel As Valve for internal combustion engine and cooling method for the same
JP2009144725A (en) * 2009-02-04 2009-07-02 Man Diesel Filial Af Man Diesel Se Tyskland Cam-drive exhaust valve operation system for large-sized two-cycle diesel engine
JP2010261315A (en) * 2009-04-30 2010-11-18 Ats Inc Resting device of cylinder

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115003899A (en) * 2020-07-14 2022-09-02 富士乌兹克斯株式会社 Cooling material filling device for umbrella hollow engine valve and cooling material filling method
CN115003899B (en) * 2020-07-14 2024-03-08 富士乌兹克斯株式会社 Device and method for filling cooling material into umbrella hollow engine valve

Also Published As

Publication number Publication date
JP2015098795A (en) 2015-05-28
CN105683512A (en) 2016-06-15
CN105683512B (en) 2018-08-03
JP6091008B2 (en) 2017-03-08
KR20160067937A (en) 2016-06-14
KR101760648B1 (en) 2017-07-24

Similar Documents

Publication Publication Date Title
US20040140445A1 (en) Rotor valve and seal
US10662860B2 (en) Coolant control valve unit and engine cooling system having the same
US20120291724A1 (en) Actuating mechanism to regulate a controllable coolant pump
WO2015072175A1 (en) Exhaust valve operating mechanism, diesel engine, and method for cooling exhaust valve of exhaust valve operating mechanism
US10184361B2 (en) Combustion engine with pneumatic valve return spring
JP3928945B2 (en) Thermostat for dual cooling system
US10577988B2 (en) Actuator for axial displacement of an object
KR102394584B1 (en) Coolant control valve unit, and cooling system having this
US10794262B2 (en) Integrated flow rate control valve assembly and engine cooling system including the same
JP2015098795A5 (en)
JP2006057635A (en) Mounting arrangement for electric water pump
JP5169881B2 (en) Variable compression ratio device for internal combustion engine
JP2010031843A (en) Cylinder head structure having valve cooling device and valve lubricating device
US10690022B2 (en) Pneumatic actuator for an engine valve
US10119435B2 (en) Combustion engine and mantle assembly therefore
RU2677020C2 (en) Internal combustion engine
JP4395474B2 (en) Internal combustion engine equipped with scavenging control device
US20160108777A1 (en) Gas exchange valve actuator for axial displacement of a gas exchange valve of a combustion engine
WO2020067034A1 (en) Oil supply device for internal combustion engine
JP4126924B2 (en) Valve operating device for internal combustion engine
EP3788244B1 (en) A method for starting a four-stroke reciprocating internal combustion piston engine and a four-stroke reciprocating internal combustion piston engine
US20120272932A1 (en) Fluid pressure control valve
JP2007187137A (en) Internal combustion engine
JP4381245B2 (en) Internal combustion engine equipped with scavenging control device
JPH0742513A (en) Opening/closing device for auxiliary combustion chamber outlet control valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14861705

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20167011918

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14861705

Country of ref document: EP

Kind code of ref document: A1