WO2015070696A1 - 一种臂架控制方法和装置及混凝土泵车及布料机 - Google Patents

一种臂架控制方法和装置及混凝土泵车及布料机 Download PDF

Info

Publication number
WO2015070696A1
WO2015070696A1 PCT/CN2014/089440 CN2014089440W WO2015070696A1 WO 2015070696 A1 WO2015070696 A1 WO 2015070696A1 CN 2014089440 W CN2014089440 W CN 2014089440W WO 2015070696 A1 WO2015070696 A1 WO 2015070696A1
Authority
WO
WIPO (PCT)
Prior art keywords
boom
coordinate system
control device
dimensional
remote control
Prior art date
Application number
PCT/CN2014/089440
Other languages
English (en)
French (fr)
Inventor
谭凌群
蒲东亮
武利冲
Original Assignee
三一汽车制造有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三一汽车制造有限公司 filed Critical 三一汽车制造有限公司
Publication of WO2015070696A1 publication Critical patent/WO2015070696A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0445Devices for both conveying and distributing with distribution hose with booms
    • E04G21/0463Devices for both conveying and distributing with distribution hose with booms with boom control mechanisms, e.g. to automate concrete distribution
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B66HOISTING; LIFTING; HAULING
    • B66CCRANES; LOAD-ENGAGING ELEMENTS OR DEVICES FOR CRANES, CAPSTANS, WINCHES, OR TACKLES
    • B66C13/00Other constructional features or details
    • B66C13/18Control systems or devices
    • B66C13/40Applications of devices for transmitting control pulses; Applications of remote control devices
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04GSCAFFOLDING; FORMS; SHUTTERING; BUILDING IMPLEMENTS OR AIDS, OR THEIR USE; HANDLING BUILDING MATERIALS ON THE SITE; REPAIRING, BREAKING-UP OR OTHER WORK ON EXISTING BUILDINGS
    • E04G21/00Preparing, conveying, or working-up building materials or building elements in situ; Other devices or measures for constructional work
    • E04G21/02Conveying or working-up concrete or similar masses able to be heaped or cast
    • E04G21/04Devices for both conveying and distributing
    • E04G21/0418Devices for both conveying and distributing with distribution hose
    • E04G21/0436Devices for both conveying and distributing with distribution hose on a mobile support, e.g. truck

Definitions

  • the invention relates to the field of engineering machinery, in particular to a boom control method and device and a concrete pump truck and a distributing machine.
  • the concrete pump truck and the distributing machine mainly transport the concrete to the position to be poured through the boom system, and the control of the moving direction of the end of the boom is completely controlled by the operator.
  • the boom system of the concrete pump truck and the distributing machine is hinged by a plurality of joint mechanical arms, and a plurality of operating handles are arranged on the remote control device. If the boom system is hinged by 5 arms, the remote control device has 5 operating handles and operating handles for rotating the boom, each operating handle controls the movement of each boom, the operation of each boom is not related to each other, and the moving direction of the end of the boom is completely controlled by the experience of the operator. Operation with multiple poles is extremely inconvenient. The accuracy of the movement direction of the end of the boom is poor.
  • the invention relates to a device for correlating the direction of the manipulation of the operating hand, the swinging direction of the operating handle of the remote control device and the moving direction of the end of the boom, thereby reducing the difficulty of the operation of the operator and improving the accuracy of the moving direction of the end of the boom, which is of great significance.
  • the present invention provides a boom control method and apparatus and a concrete pump truck and a distributing machine to solve the problem of the accuracy of the moving direction of the boom end and the difficulty of operating the operator.
  • the present invention provides a boom control method comprising the following steps:
  • Step 1 Establish a two-dimensional absolute coordinate system on the horizontal plane; establish a two-dimensional dynamic coordinate system on the horizontal plane; the origin of the two-dimensional absolute coordinate system and the origin of the two-dimensional dynamic coordinate system are one axis of the two-dimensional dynamic coordinate system; The origin of the two-dimensional absolute coordinate system is located at the center point of the boom rotation or the end point of the boom, and the origin of the two-dimensional dynamic coordinate system is located on the remote control device;
  • Step 2 obtaining an angle formed by a swing direction of the operation handle of the remote control device and a coordinate axis of the two-dimensional dynamic coordinate system; and acquiring an angle of rotation of the two-dimensional dynamic coordinate system with respect to the two-dimensional absolute coordinate system;
  • Step 3 Through the coordinate system conversion calculation, the angle formed by the swinging direction of the operating handle of the remote control device and the coordinate axis of the two-dimensional absolute coordinate system is obtained.
  • Step 4 Control the end of the boom to move in the direction of the corresponding angle formed by the swinging direction of the operating handle and the coordinate axis in the two-dimensional absolute coordinate system.
  • acquiring an angle of rotation of the boom in the two-dimensional absolute coordinate system acquiring an angle signal between the end point of the boom and the rotation center of the boom and the three-point position of the remote control device, and the connection between the three and the horizontal plane,
  • the angle of rotation of the two-dimensional dynamic coordinate system with respect to the two-dimensional absolute coordinate system is obtained by trigonometric function calculation.
  • a boom control device including a controller and a remote control device.
  • the remote control device includes an operating handle, the operating handle can swing in any direction, and includes a sensing device to establish a two-dimensional absolute coordinate system on a horizontal plane; Establish a two-dimensional dynamic coordinate system; the origin of the two-dimensional absolute coordinate system and the origin of the two-dimensional dynamic coordinate system are connected to one axis of the two-dimensional dynamic coordinate system; the origin of the two-dimensional absolute coordinate system is located at the center point or boom of the boom rotation The end point, the origin of the two-dimensional dynamic coordinate system is located on the remote control device;
  • the controller acquires the sensing device signal, and obtains an angle formed by the swinging direction of the operating handle of the remote control device and the coordinate axis of the two-dimensional absolute coordinate system; the controller controls the swinging end of the arm toward the operating handle and the coordinate axis of the two-dimensional absolute coordinate system The direction of the corresponding angle formed is moved.
  • the sensing device includes a first sensing device for acquiring the orientation of the pivot center position of the boom, a second sensing device for acquiring the positional orientation of the boom end, and a third sensing device for acquiring the positional orientation of the remote control device.
  • the sensing device and the second sensing device and the third sensing device signal can receive signals and transmit signals to each other, and the controller acquires the first sensing device and the second sensing device and the third sensing device signal.
  • first sensing device and the second sensing device and the third sensing device are ranging devices, measuring the center position of the boom, the position of the end of the boom, and the distance between the three positions of the remote control device, and the connection between the three. The angle between the plane and the water level.
  • first sensing device and the second sensing device and the third sensing device are angle measuring devices, and measure the angle of the pivot center position of the boom to the end position of the arm frame and the position of the remote control device at three points; or measure the end position of the arm frame. The angle to the three-point connection between the center of rotation of the boom and the position of the remote control.
  • the sensing device is a radar or an ultrasonic or ranging sensor.
  • the controller controls the direction of movement of the end of the boom on the horizontal plane in parallel with the projection of the swinging direction of the operating handle of the remote control device on the horizontal plane.
  • the operating handle can also move up and down vertically; when the operating handle moves vertically up and down, the controller controls the end of the boom to move up and down.
  • a concrete pump truck including the above-described boom control device.
  • a fabric machine including the above-described boom control device.
  • the invention provides a boom control method and device and a concrete pump truck and a distributing machine, which associate the operator's sensing direction, the operating handle swinging direction of the remote control device, and the arm end moving direction. Simplifies the handling of the boom and transforms the individual boom control into control of the movement of the end of the boom. Obtain the conversion angle between the absolute coordinate system and the dynamic coordinate system by means of radar or ultrasonic or ranging sensor, so that the angle of the movement direction of the end of the boom between the two-dimensional absolute coordinate system can be calculated, so that the remote control device
  • the swinging direction of the operating handle is consistent with the moving direction of the end of the boom, and the degree of intelligence is high, which reduces the operator's operation difficulty and improves the movement precision and flexibility of the end of the boom.
  • the purpose of automatic pouring can also be achieved.
  • FIG. 1 is a schematic diagram of the principle of a boom control method according to a first embodiment of the present invention
  • FIG. 2 is a schematic diagram showing the principle of a boom control method according to a second embodiment of the present invention.
  • FIG. 3 is a block diagram showing the structure of the boom control device of the present invention.
  • the boom control method of the preferred embodiment includes acquiring the operating handle swing direction F1 of the remote control device, controlling the arm end moving direction F2 and the remote control device.
  • the operating handle swing direction F1 is parallel.
  • the moving direction of the boom end on the horizontal plane is parallel to the projection direction of the operating handle swinging direction F1 of the remote control device on the horizontal plane.
  • the operating handle of the remote control device moves up and down vertically, the end of the boom moves up and down.
  • the operator's sense direction, the operating handle swing direction F1 of the remote control device, and the boom end moving direction F2 are associated with each other, simplifying the manipulation of the boom, and converting each single-arm boom control into the control of the end movement of the boom. .
  • the swing direction F1 of the operating handle is consistent with the moving direction of the end of the boom, and the degree of intelligence is very high, which greatly reduces the operator's operation difficulty and improves the movement precision and flexibility of the end of the boom.
  • the purpose of automatic pouring can also be achieved.
  • the concrete pump truck or boom rotation center is the two-dimensional absolute coordinate system origin A
  • the concrete pump truck has the X-axis in the longitudinal direction and the Y-axis in the lateral direction of the concrete pump truck, and a two-dimensional absolute coordinate system is established.
  • B' is the projection of the position of the end of the boom on the plane of the two-dimensional absolute coordinate system
  • C' is the projection of the position of the remote control device on the plane of the two-dimensional absolute coordinate system.
  • Connected by two points B’ and C’ As the X-axis of the two-dimensional dynamic coordinate system, the vertical axis of the X-axis is the Y-axis, and the C' point is the origin of the two-dimensional dynamic coordinate system.
  • Measuring the distance between AB' and B'C' and AC' by the sensing device first obtaining the distance between the concrete pump truck, the end of the boom and the remote control device and the angle between the line and the horizontal plane, and then The distance between AB' and B'C' and AC' is calculated by a trigonometric function, and then the ⁇ angle is calculated by a trigonometric function, and the boom rotation angle ⁇ is obtained by a rotary encoder.
  • the operating handle swing direction F1 of the device coincides with the moving direction of the end of the boom on the horizontal plane, that is, parallel.
  • the operator sense direction, the operating handle swing direction F1 of the remote control device, and the boom end moving direction F2 can be correlated with each other.
  • the swinging direction F1 of the operating handle of the remote control device is aligned with the moving direction of the end of the arm frame on the horizontal plane, thereby improving the intelligent degree of the boom control, greatly reducing the operator's operation difficulty, and improving the movement precision and flexible performance of the boom end.
  • the purpose of automatic pouring can also be achieved.
  • the concrete pump truck or boom rotation center is the two-dimensional absolute coordinate system origin A
  • the concrete pump truck has the X-axis in the longitudinal direction and the Y-axis in the lateral direction of the concrete pump truck, and a two-dimensional absolute coordinate system is established.
  • B' is the projection of the position of the end of the boom on the plane of the two-dimensional absolute coordinate system
  • C' is the projection of the position of the remote control device on the plane of the two-dimensional absolute coordinate system.
  • the line connecting the two points A and C' is taken as the X-axis of the two-dimensional dynamic coordinate system
  • the vertical axis of the X-axis is the Y-axis
  • the C' point is the origin of the two-dimensional dynamic coordinate system.
  • the distance between the concrete pump truck, the end of the boom and the remote control device can be first obtained, and between the three
  • the angle between the line and the horizontal plane is calculated by a trigonometric function between AB' and B'C' and AC', and then the K angle is calculated by a trigonometric function, and the boom rotation angle ⁇ is obtained by a rotary encoder.
  • the operator sense direction, the operating handle swing direction F1 of the remote control device, and the boom end moving direction F2 can be correlated with each other.
  • the swinging direction F1 of the operating handle of the remote control device is aligned with the moving direction of the end of the arm frame on the horizontal plane, thereby improving the intelligent degree of the boom control, greatly reducing the operator's operation difficulty, and improving the movement precision and flexible performance of the boom end.
  • the purpose of automatic pouring can also be achieved.
  • the angle ⁇ , or ⁇ angle and K angle between the two-dimensional absolute coordinate system and the two-dimensional dynamic coordinate system can be measured directly by the radar.
  • the boom control device of the preferred embodiment includes: a remote control device and a sensing device and a controller.
  • the remote control device includes an operating handle, and the operating handle can be on the operation panel. 360 degrees swing in any direction, the sensing device is used to measure the operating handle swing direction F1 of the remote control device, the controller acquires the sensing device signal, and controls the arm end moving direction F2 to be parallel with the operating handle swinging direction F1 of the remote control device.
  • the operating handle of the remote control device is swung 360 degrees, the moving direction of the end of the boom at the horizontal plane and the remote control device
  • the operating handle swing direction F1 is parallel to the projection direction on the horizontal plane.
  • the sensing device is a radar or ultrasonic or ranging sensor, and the position of the remote control device and the relative position of the concrete pump truck and/or the end of the boom are used to sense the direction of the operator, the operating handle swing direction of the remote control device, and the boom.
  • the end moving direction F2 is associated with each other.
  • the sensing device includes a first sensing device for acquiring the position of the boom rotation center or the position of the concrete pump truck, and is mounted on the concrete pump truck or at the center of rotation.
  • a second sensing device for obtaining the positional orientation of the end of the boom is mounted on the end of the boom.
  • a third sensing device for obtaining the positional orientation of the remote control device is mounted on the remote control device.
  • the third sensing device has a set of signal generating and receiving devices, and can receive the signals of the first sensing device and the second sensing device in real time, so that the orientation signal of the end of the boom and the orientation signal of the pumping vehicle can be received in real time; meanwhile, the device The angle of the operating handle and the angle of the received signal in the horizontal plane can be automatically calculated from the direction of the received signal. It is also possible to measure the distance between the remote control device to the end of the concrete pump truck and the boom, and the angle between the connection between the remote control device and the concrete pump truck and the end of the boom and the horizontal plane, and calculate the remote control device to the concrete pump truck and The projection distance of the distance between the ends of the boom on a horizontal plane. The third sensing device transmits the measured data to the controller.
  • the second sensing device also has a set of signal generating and receiving devices, which can receive the first sensing device and the third sensing device signal in real time, so that the remote control device azimuth signal and the pumping vehicle azimuth signal can be received in real time; the device can be based on The two signals received automatically calculate the ⁇ angle of the two signals in the horizontal plane and send them to the controller through wireless or wired signals. Or measuring the distance between the end of the boom to the concrete pump truck and the remote control device, and the angle between the end of the boom and the connection between the concrete pump truck and the remote control device and the horizontal plane, and calculating the end of the boom to The projection distance of the concrete pump truck and the remote control on the horizontal plane. It is sent to the controller via a wireless or wired signal.
  • the first sensing device also has a set of signal generating and receiving devices, which can receive the second sensing device and the third sensing device signal in real time, so that the remote device positioning signal and the azimuth signal at the end of the boom can be received in real time;
  • the K angle of the two signals in the horizontal plane is automatically calculated and sent to the controller through a wireless or wired signal.
  • the controller is mainly used for calculating the running direction of the operating handle of the remote control device F1 reflected to the running direction of the end of the boom relative to the center of rotation of the boom, that is, the direction of the running direction of the end point of the boom in the two-dimensional absolute coordinate system in the horizontal plane. angle.
  • the controller acquires the sensing device signal, and controls the arm end moving direction F2 to be parallel with the operating handle swinging direction F1 of the remote control device.
  • the operating handle of the remote control device also moves up and down vertically on the operation panel.
  • the operating handle of the remote control device moves vertically up and down, the end of the boom moves up and down.
  • the operating handle of the remote control device is in the neutral position, the end of the boom stops moving.
  • the present invention also provides a concrete pump truck and a distributing machine having the boom control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Mechanical Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Jib Cranes (AREA)
  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)

Abstract

一种臂架控制方法、臂架控制装置以及具有该臂架控制装置的混凝土泵车或布料机,臂架控制方法包括以下步骤:1. 在水平面上建立二维绝对坐标系;2. 在水平面上建立二维动态坐标系;3. 二维绝对坐标系的原点(A)与二维动态坐标系的原点(C')连线为二维动态坐标系的一轴;4. 二维绝对坐标系的原点(A)位于臂架旋转中心点或臂架末端点,二维动态坐标系的原点(C')位于遥控装置上;5. 获取遥控装置的操作手柄摆动方向(F1)与二维动态坐标系坐标轴形成的角度(λ);6. 获取二维动态坐标系相对二维绝对坐标系旋转的角度(Ф);7. 通过坐标系转换计算,获得遥控装置的操作手柄摆动方向(F1)与二维绝对坐标系坐标轴形成的角度,控制臂架末端移动。该方法减少了操作员操作难度,提高了臂架末端的移动精度和灵活性能。

Description

一种臂架控制方法和装置及混凝土泵车及布料机
本申请要求于2013年11月23日提交中国专利局、申请号为201310562374.8、发明名称为“一种臂架控制方法和装置及混凝土泵车及布料机”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及工程机械领域,特别涉及一种臂架控制方法和装置及混凝土泵车及布料机。
背景技术
混凝土泵车和布料机主要通过臂架系统将混凝土输送到待浇注点位置,臂架末端移动方向的控制完全由操作手经验控制。目前,混凝土泵车和布料机的臂架系统由多关节的各节机械臂铰接而成,遥控装置上布置有多个操作手柄,如果臂架系统由5节臂铰接而成,遥控装置就有5个操作手柄和臂架转动的操作手柄,每一个操作手柄控制每一节臂架的运动,每一节臂架的操作相互不关联,其臂架末端移动方向完全由操作手的经验把握,多杆联动时操作极为不便。臂架末端移动方向精度差,如果操作手经验不足,臂架末端移动方向控制困难。因此,发明一种将操作手感知方向、遥控装置的操作手柄摆动方向及臂架末端移动方向相互关联起来的装置,减轻操作手操作难度,提高臂架末端移动方向精度,具有极为重要的意义。
发明内容
有鉴于此,本发明提出一种臂架控制方法和装置及混凝土泵车及布料机,以解决臂架末端移动方向精度和减轻操作手操作难度的问题。
一方面,本发明提供了一种臂架控制方法,包括以下几个步骤:
步骤1、在水平面上建立二维绝对坐标系;在水平面上建立二维动态坐标系;二维绝对坐标系的原点与二维动态坐标系的原点连线为二维动态坐标系的一轴;二维绝对坐标系的原点位于臂架旋转中心点或臂架末端点,二维动态坐标系的原点位于遥控装置上;
步骤2、获取遥控装置的操作手柄摆动方向与二维动态坐标系坐标轴形成的角度;获取二维动态坐标系相对二维绝对坐标系旋转的角度;
步骤3:通过坐标系转换计算,获得遥控装置的操作手柄摆动方向与二维绝对坐标系坐标轴形成的角度。
步骤4:控制臂架末端朝操作手柄摆动方向与二维绝对坐标系中坐标轴形成的相应角度的方向移动。
进一步地,获取臂架在二维绝对坐标系中旋转的角度;获取臂架末端点和臂架旋转中心及遥控装置三点位置距离以及三者之间的连线与水平面之间的角度信号,通过三角函数计算获得二维动态坐标系相对二维绝对坐标系旋转的角度。
进一步地,当遥控装置的操作手柄垂直上下移动时,臂架末端上下移动。
另外还提供了一种臂架控制装置,包括控制器和遥控装置,遥控装置包括一个操作手柄,操作手柄可任意方向摆动,还包括感知装置,在水平面上建立二维绝对坐标系;在水平面上建立二维动态坐标系;二维绝对坐标系的原点与二维动态坐标系的原点连线为二维动态坐标系的一轴;二维绝对坐标系的原点位于臂架旋转中心点或臂架末端点,二维动态坐标系的原点位于遥控装置上;
控制器获取感知装置信号,并通过计算获得遥控装置的操作手柄摆动方向与二维绝对坐标系坐标轴形成的角度;控制器控制臂架末端朝操作手柄摆动方向与二维绝对坐标系中坐标轴形成的相应角度的方向移动。
进一步地,感知装置包括用于获取臂架旋转中心位置方位的第一感知装置,用于获取臂架末端位置方位的第二感知装置,用于获取遥控装置位置方位的第三感知装置,第一感知装置和第二感知装置及第三感知装置信号可以相互接收信号和发送信号,控制器获取第一感知装置和第二感知装置及第三感知装置信号。
进一步地,第一感知装置和第二感知装置及第三感知装置为测距装置,测量臂架旋转中心位置、臂架末端位置及遥控装置位置三点连线距离以及三者之间的连线与水平面之间的角度。
进一步地,第一感知装置和第二感知装置及第三感知装置为测角装置,测量臂架旋转中心位置至臂架末端位置和遥控装置位置三点连线的角度;或者测量臂架末端位置至臂架旋转中心位置和遥控装置位置三点连线的角度。
进一步地,感知装置为雷达或超声波或测距传感器。
进一步地,当操作手柄任意方向摆动时,控制器控制臂架末端在水平面上的移动方向与遥控装置的操作手柄摆动方向在水平面上的投影平行。
进一步地,操作手柄还可垂直上下移动;当操作手柄垂直上下移动时,控制器控制臂架末端上下移动。
一方面还提供了一种混凝土泵车,包括上述的臂架控制装置。
另一方面还提供了一种布料机,包括上述的臂架控制装置。
本发明提供的一种臂架控制方法和装置及混凝土泵车及布料机,将操作员感知方向、遥控装置的操作手柄摆动方向、臂架末端移动方向相互关联起来。简化了臂架的操控,将各个单节臂架控制转变为对臂架末端移动的控制。通过雷达或超声波或测距传感器等设备,获取绝对坐标系和动态坐标系之间的转换角度,从而可以计算出臂架末端的移动方向在二维绝对坐标系之间的角度,使遥控装置的操作手柄摆动方向与臂架末端的移动方向一致,智能化程度高,减少了操作员操作难度,提高了臂架末端的移动精度和灵活性能。同时还可以实现自动浇注的目的。
附图说明
构成本发明的一部分的附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1为本发明第一实施例的臂架控制方法的原理示意图;
图2为本发明第二实施例的臂架控制方法的原理示意图;
图3为本发明的臂架控制装置结构框图。
具体实施方式
需要说明的是,在不冲突的情况下,本发明中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
下面结合图1和图2,对本发明的优选实施例作进一步详细说明,本优选实施例的臂架控制方法包括获取遥控装置的操作手柄摆动方向F1,控制臂架末端移动方向F2与遥控装置的操作手柄摆动方向F1平行。当遥控装置的操作手柄360度摆动,臂架末端在水平面上的移动方向与遥控装置的操作手柄摆动方向F1在水平面上的投影方向平行。当遥控装置的操作手柄垂直上下移动时,臂架末端上下移动。当将遥控装置的操作手柄处于中位时,臂架末端停止移动。这样就将操作员感知方向、遥控装置的操作手柄摆动方向F1、臂架末端移动方向F2相互关联起来,简化了臂架的操控,将各个单节臂架控制转变为对臂架末端移动的控制。通过雷达或超声波或测距传感器等设备,获取绝对坐标系和动态坐标系之间的转换角度,从而可以计算出臂架末端的移动方向在二维绝对坐标系之间的角度,使遥控装置的操作手柄摆动方向F1与臂架末端的移动方向一致,智能化程度非常高,大大减少了操作员操作难度,提高了臂架末端的移动精度和灵活性能。同时还可以实现自动浇注的目的。
如图1所示,以混凝土泵车或者臂架旋转中心为二维绝对坐标系原点A,混凝土泵车的纵向为X轴、混凝土泵车的横向为Y轴,建立二维绝对坐标系。B’为臂架末端位置点在二维绝对坐标系平面上的投影,C’为遥控装置位置点在二维绝对坐标系平面上的投影。以B’和C’两点的连线 作为二维动态坐标系的X轴,X轴的垂直轴为Y轴,以C’点为二维动态坐标系的原点。通过感知装置测量AB’和B’C’及AC’之间的距离,首先获取混凝土泵车、臂架末端和遥控装置之间距离和三者之间的连线与水平面之间的角度,然后经过三角函数计算AB’和B’C’及AC’之间的距离,然后经过三角函数计算得到δ角度,臂架旋转角α通过旋转编码器获取。通过计算可以获取二维绝对坐标系与二维动态坐标系之间转换角度Φ,Φ=δ+α,如果遥控装置的操作手柄摆动方向F1在二维动态坐标系的角度为λ;要使遥控装置的操作手柄摆动方向F1与臂架末端在水平面上移动方向一致,也就是平行。臂架末端在水平面上移动方向在二维绝对坐标系中的角度为θ,通过坐标系计算公式就可以获得θ角度,θ=λ-Φ,也就是θ=λ-δ-α。这样不论遥控装置位置方位在哪里,可以将操作员感知方向、遥控装置的操作手柄摆动方向F1、臂架末端移动方向F2相互关联起来。使遥控装置的操作手柄摆动方向F1与臂架末端在水平面上移动方向一致,提高臂架控制智能化程度,大大减少了操作员操作难度,提高了臂架末端的移动精度和灵活性能。同时还可以实现自动浇注的目的。
如图2所示,以混凝土泵车或者臂架旋转中心为二维绝对坐标系原点A,混凝土泵车的纵向为X轴、混凝土泵车的横向为Y轴,建立二维绝对坐标系。B’为臂架末端位置点在二维绝对坐标系平面上的投影,C’为遥控装置位置点在二维绝对坐标系平面上的投影。以A和C’两点的连线作为二维动态坐标系的X轴,X轴的垂直轴为Y轴,以C’点为二维动态坐标系的原点。通过感知装置测量AB’和B’C’及AC’之间的距离,可以首先获取混凝土泵车、臂架末端和遥控装置之间距离,以及三者之间的 连线与水平面之间的角度,经过三角函数计算AB’和B’C’及AC’之间的距离,然后经过三角函数计算得到K角度,臂架旋转角α通过旋转编码器获取。通过计算可以获取二维绝对坐标系与二维动态坐标系之间转换角度Φ,Φ=180°-K+α,如果遥控装置的操作手柄摆动方向F1在二维动态坐标系的角度为λ;要使遥控装置的操作手柄摆动方向F1与臂架末端在水平面上移动方向一致,也就是平行。臂架末端在水平面上移动方向在二维绝对坐标系中的角度为θ,通过坐标系计算公式就可以获得θ角度,θ=360°-λ-Φ,也就是θ=180°-λ+K-α。这样不论遥控装置位置方位在哪里,可以将操作员感知方向、遥控装置的操作手柄摆动方向F1、臂架末端移动方向F2相互关联起来。使遥控装置的操作手柄摆动方向F1与臂架末端在水平面上移动方向一致,提高臂架控制智能化程度,大大减少了操作员操作难度,提高了臂架末端的移动精度和灵活性能。同时还可以实现自动浇注的目的。
获取二维绝对坐标系与二维动态坐标系之间转换角度Φ的方法很多,可以直接通过雷达测量二维绝对坐标系与二维动态坐标系之间转换角度Φ,或者δ角度和K角度。
下面结合图3,对本发明的优选实施例作进一步详细说明,本优选实施例的臂架控制装置包括:遥控装置和感知装置及控制器,遥控装置包括一个操作手柄,操作手柄可在操作面板上360度任意方向摆动,感知装置用于测量遥控装置的操作手柄摆动方向F1,控制器获取感知装置信号,控制臂架末端移动方向F2与遥控装置的操作手柄摆动方向F1平行。当遥控装置的操作手柄360度摆动,臂架末端在水平面上的移动方向与遥控装置 的操作手柄摆动方向F1在水平面上的投影方向平行。感知装置为雷达或超声波或测距传感器等设备,用测量遥控装置位置方位和混凝土泵车和/或臂架末端相对位置方位,将操作员感知方向、遥控装置的操作手柄摆动方向F1、臂架末端移动方向F2相互关联起来。
感知装置包括用于获取臂架旋转中心或混凝泵车位置方位的第一感知装置,安装于混凝土泵车上或旋转中心位置。用于获取臂架末端位置方位的第二感知装置,安装于臂架末端上。用于获取遥控装置位置方位的第三感知装置,安装于遥控装置上。
第三感知装置拥有一套信号发生与接收装置,可以实时接收到第一感知装置和第二感知装置信号,从而可以实时接收到臂架末端的方位信号及泵车的方位信号;同时,该装置可以根据接收到的信号的方向自动计算得出操作手柄的方向与所接收的信号在水平面内的λ夹角。还可以测得遥控装置至混凝土泵车和臂架末端之间距离,以及遥控装置至混凝土泵车和臂架末端之间连线与水平面之间的角度,通过计算获得遥控装置至混凝土泵车和臂架末端之间距离在水平面上的投影距离。第三感知装置将测量的数据发送到控制器。
第二感知装置也拥有一套信号发生与接收装置,可以实时接收到第一感知装置和第三感知装置信号,从而可以实时接收到的遥控装置方位信号及泵车的方位信号;该装置可以根据所接收到的两个信号,自动计算出两信号在水平面内的δ夹角,并通过无线或有线信号发送给控制器。或者测得臂架末端至混凝土泵车和遥控装置之间距离,以及臂架末端至混凝土泵车和遥控装置之间的连线与水平面之间的角度,通过计算获得臂架末端至 混凝土泵车和遥控装置在水平面上的投影距离。并通过无线或有线信号发送给控制器。
第一感知装置也拥有一套信号发生与接收装置,可以实时接收到第二感知装置和第三感知装置信号,从而可以实时接收到的遥控装置方位信号及臂架末端的方位信号;该装置可以根据所接收到的两个信号,自动计算出两信号在水平面内的K夹角,并通过无线或有线信号发送给控制器。或者测得混凝土泵车至臂架末端和遥控装置之间距离,以及混凝土泵车至臂架末端和遥控装置之间的连线与水平面之间的角度,通过计算获得混凝土泵车至臂架末端和遥控装置之间距离在水平面上的投影距离。并通过无线或有线信号发送给控制器。
控制器主要用于计算遥控装置的操作手柄摆动方向F1反映到臂架末端相对与臂架旋转中心的运行方向,即在水平面内,臂架末端点的运行方向在二维绝对坐标系中的方向角度。控制器获取感知装置信号,控制臂架末端移动方向F2与遥控装置的操作手柄摆动方向F1平行。
遥控装置的操作手柄还在操作面板上垂直上下移动,当遥控装置的操作手柄垂直上下移动时,臂架末端上下移动。当将遥控装置的操作手柄处于中位时,臂架末端停止移动。
本发明还提供了具有该臂架控制装置的混凝土泵车和布料机。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种臂架控制方法,其特征在于,包括以下几个步骤:
    步骤1、在水平面上建立二维绝对坐标系;在水平面上建立二维动态坐标系;二维绝对坐标系的原点与二维动态坐标系的原点连线为二维动态坐标系的一轴;二维绝对坐标系的原点位于臂架旋转中心点或臂架末端点,二维动态坐标系的原点位于遥控装置上;
    步骤2、获取遥控装置的操作手柄摆动方向与二维动态坐标系坐标轴形成的角度;获取二维动态坐标系相对二维绝对坐标系旋转的角度;
    步骤3:通过坐标系转换计算,获得遥控装置的操作手柄摆动方向与二维绝对坐标系坐标轴形成的角度。
    步骤4:控制臂架末端朝操作手柄摆动方向与二维绝对坐标系中坐标轴形成的相应角度的方向移动。
  2. 根据权利要求1所述的臂架控制方法,其特征在于,在步骤2中,获取臂架在二维绝对坐标系中旋转的角度;获取臂架末端点和臂架旋转中心及遥控装置三点位置距离以及三者之间的连线与水平面之间的角度信号,通过三角函数计算获得二维动态坐标系相对二维绝对坐标系旋转的角度。
  3. 根据权利要求1或2所述的臂架控制方法,其特征在于,当遥控装置的操作手柄垂直上下移动时,臂架末端上下移动。
  4. 一种臂架控制装置,包括控制器和遥控装置,遥控装置包括一个操作手柄,操作手柄可任意方向摆动,其特征在于,还包括感知装置,在控制器上建立二维绝对坐标系和二维动态坐标系;二维绝对坐标系的原点与二维动态坐标系的原点连线为二维动态坐标系的一轴;二维绝对坐标系的原点位于臂架旋转中心点或臂架末端点,二维动态坐标系的原点位于遥控装置上;
    控制器获取感知装置信号,并通过计算获得遥控装置的操作手柄摆动方向与二维绝对坐标系坐标轴形成的角度;控制器控制臂架末端朝操作手柄摆动方向与二维绝对坐标系中坐标轴形成的相应角度的方向移动。
  5. 根据权利要求所述的臂架控制装置,其特征在于,感知装置包括用于获取臂架旋转中心位置方位的第一感知装置,用于获取臂架末端位置方位的第二感知装置,用于获取遥控装置位置方位的第三感知装置,第一感知装置和第二感知装置及第三感知装置信号可以相互接收信号和发送信号,控制器获取第一感知装置和第二感知装置及第三感知装置信号。
  6. 根据权利要求5所述的臂架控制装置,其特征在于,第一感知装置和第二感知装置及第三感知装置为测距装置,测量臂架旋转中心位置、臂架末端位置及遥控装置位置三点连线距离以及三者之间的连线与水平面之间的角度。
  7. 根据权利要求5所述的臂架控制装置,其特征在于,第一感知装置和第二感知装置及第三感知装置为测角装置,测量臂架旋转中心位置至臂架末端位置和遥控装置位置三点连线的角度;或者测量臂架末端位置至臂 架旋转中心位置和遥控装置位置三点连线的角度。
  8. 根据权利要求4所述的臂架控制装置,其特征在于,感知装置为雷达或超声波或测距传感器。
  9. 根据权利要求4至8任意一项所述的臂架控制装置,其特征在于,当操作手柄任意方向摆动时,控制器控制臂架末端在水平面上的移动方向与遥控装置的操作手柄摆动方向在水平面上的投影平行。
  10. 根据权利要求4至7任意一项所述的臂架控制装置,其特征在于,操作手柄还可垂直上下移动;当操作手柄垂直上下移动时,控制器控制臂架末端上下移动。
  11. 一种混凝土泵车,其特征在于,包括如权利要求4至10任意一项所述的臂架控制装置。
  12. 一种布料机,其特征在于,包括如权利要求4至10任意一项所述的臂架控制装置。
PCT/CN2014/089440 2013-11-13 2014-10-24 一种臂架控制方法和装置及混凝土泵车及布料机 WO2015070696A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310562374.8 2013-11-13
CN201310562374.8A CN103590606B (zh) 2013-11-13 2013-11-13 一种臂架控制方法和装置及混凝土泵车及布料机

Publications (1)

Publication Number Publication Date
WO2015070696A1 true WO2015070696A1 (zh) 2015-05-21

Family

ID=50080906

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089440 WO2015070696A1 (zh) 2013-11-13 2014-10-24 一种臂架控制方法和装置及混凝土泵车及布料机

Country Status (2)

Country Link
CN (1) CN103590606B (zh)
WO (1) WO2015070696A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112776005A (zh) * 2021-01-13 2021-05-11 中联重科股份有限公司 多臂节的臂架检测方法、装置、系统和存储介质
CN114227674A (zh) * 2021-12-08 2022-03-25 广东天凛高新科技有限公司 一种基于视觉识别定位的机械臂导航方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103590606B (zh) * 2013-11-13 2015-10-28 三一汽车制造有限公司 一种臂架控制方法和装置及混凝土泵车及布料机
CN104018676B (zh) * 2014-03-04 2017-08-29 三一汽车制造有限公司 一种工程机械和臂架控制系统及方法
CN103914082B (zh) * 2014-03-27 2017-01-11 三一汽车制造有限公司 智能臂空间运动控制方法及装置
JP6279097B2 (ja) * 2015-05-18 2018-02-14 エスゼット ディージェイアイ テクノロジー カンパニー リミテッドSz Dji Technology Co.,Ltd ヘッドレスモードに基づく無人機の制御方法とデバイス
CN110242051A (zh) * 2019-06-24 2019-09-17 长沙赛搏机器智能有限公司 一种臂架末端控制方法及系统
CN113445752B (zh) * 2021-05-25 2022-03-25 中联重科股份有限公司 臂架末端运动的控制方法、装置、系统、介质及工程机械
CN114753640B (zh) * 2022-04-01 2023-04-07 中联重科股份有限公司 臂架末端运动规划方法、装置、控制系统及工程机械

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675617A (ja) * 1992-08-24 1994-03-18 Nec Corp カメラ視点変更方式
DE4306127A1 (de) * 1993-02-27 1994-09-01 Putzmeister Maschf Großmanipulator, insbesondere für Autobetonpumpen
JPH09196671A (ja) * 1996-01-22 1997-07-31 Takenaka Komuten Co Ltd 双方向自動追尾システムによる位置決め方法及び装置
CN102535852A (zh) * 2012-01-16 2012-07-04 三一重工股份有限公司 一种机械臂操控系统、方法及工程机械
CN102561700A (zh) * 2012-01-16 2012-07-11 三一重工股份有限公司 一种机械臂控制系统、方法及工程机械
CN102589493A (zh) * 2012-02-08 2012-07-18 三一重工股份有限公司 臂架系统、工程机械和臂架系统末端位置参数获取方法
CN103309352A (zh) * 2013-07-03 2013-09-18 中联重科股份有限公司 一种臂架智能控制装置、系统、方法和工程机械
CN103590606A (zh) * 2013-11-13 2014-02-19 三一汽车制造有限公司 一种臂架控制方法和装置及混凝土泵车及布料机

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10143199A1 (de) * 2001-09-04 2003-03-20 Hudelmaier Joerg Verfahren und Vorrichtung zum gezielten Ausbringen und Verteilen von Dickstoff
CN102621993B (zh) * 2012-04-01 2015-03-18 三一汽车制造有限公司 臂架控制系统、控制方法和混凝土泵车
CN102828621B (zh) * 2012-08-06 2015-07-15 中联重科股份有限公司 一种工程机械臂架控制方法、装置及系统
CN103061510B (zh) * 2012-12-11 2013-10-16 北汽福田汽车股份有限公司 臂架控制方法及装置、泵车
CN103092103B (zh) * 2013-02-07 2014-04-09 中联重科股份有限公司 折叠臂架的控制方法和控制系统以及工程机械

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0675617A (ja) * 1992-08-24 1994-03-18 Nec Corp カメラ視点変更方式
DE4306127A1 (de) * 1993-02-27 1994-09-01 Putzmeister Maschf Großmanipulator, insbesondere für Autobetonpumpen
JPH09196671A (ja) * 1996-01-22 1997-07-31 Takenaka Komuten Co Ltd 双方向自動追尾システムによる位置決め方法及び装置
CN102535852A (zh) * 2012-01-16 2012-07-04 三一重工股份有限公司 一种机械臂操控系统、方法及工程机械
CN102561700A (zh) * 2012-01-16 2012-07-11 三一重工股份有限公司 一种机械臂控制系统、方法及工程机械
CN102589493A (zh) * 2012-02-08 2012-07-18 三一重工股份有限公司 臂架系统、工程机械和臂架系统末端位置参数获取方法
CN103309352A (zh) * 2013-07-03 2013-09-18 中联重科股份有限公司 一种臂架智能控制装置、系统、方法和工程机械
CN103590606A (zh) * 2013-11-13 2014-02-19 三一汽车制造有限公司 一种臂架控制方法和装置及混凝土泵车及布料机

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112776005A (zh) * 2021-01-13 2021-05-11 中联重科股份有限公司 多臂节的臂架检测方法、装置、系统和存储介质
CN112776005B (zh) * 2021-01-13 2022-04-15 中联重科股份有限公司 多臂节的臂架检测方法、装置、系统和存储介质
CN114227674A (zh) * 2021-12-08 2022-03-25 广东天凛高新科技有限公司 一种基于视觉识别定位的机械臂导航方法

Also Published As

Publication number Publication date
CN103590606A (zh) 2014-02-19
CN103590606B (zh) 2015-10-28

Similar Documents

Publication Publication Date Title
WO2015070696A1 (zh) 一种臂架控制方法和装置及混凝土泵车及布料机
US20200089235A1 (en) Self-moving robot movement boundary determining method
CN108287544B (zh) 一种智能机器人路线规划及沿原路径返回的方法及系统
US10876307B2 (en) Construction management system and method
EP2357486B1 (en) Position detecting device and method of concrete pump vehicle and concrete pump vehicle
JP6995767B2 (ja) 計測システム、作業機械及び計測方法
US20160223313A1 (en) Determining the position of a movable measurement point on a machine
CN102561700B (zh) 一种机械臂控制系统、方法及工程机械
EP1939134A3 (en) An intelligent boom control device
US20190160667A1 (en) Cartesian control of a boom tip of a large manipulator, in particular a concrete pump
WO2011012033A1 (zh) 一种大型工程机械手的控制方法及控制系统
CN103195251B (zh) 臂架末端的运动控制方法、装置、系统和多节臂架车辆
CN105222711A (zh) 一种基于激光测距技术的合拢管现场测量装置及测量方法
CN109764805A (zh) 一种基于激光扫描的机械臂定位装置与方法
CN104563459A (zh) 一种抹墙机及其找平方法
JP2009019923A (ja) 距離測定方法および距離測定装置
CN103557821A (zh) 在非整平、对中、量高状态下实现三维空间测量方法
CN103454661B (zh) 一种基于gps与测距测角技术的定位系统
WO2016107213A1 (zh) 一种用于海洋工程水池假底布置的定位装置
JP7341632B2 (ja) 反射ターゲット
CN103114727B (zh) 臂架末端的运动控制方法、装置、系统和多节臂架车辆
CN103914082B (zh) 智能臂空间运动控制方法及装置
CN103365301B (zh) 臂架移动控制方法和装置、混凝土泵车
CN205066693U (zh) 一种基于激光测距技术的合拢管现场测量装置
CN103853172B (zh) 智能臂空间运动规划方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14862179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14862179

Country of ref document: EP

Kind code of ref document: A1