WO2015070504A1 - 闪烁脉冲越过阈值的时间点获取方法及装置 - Google Patents

闪烁脉冲越过阈值的时间点获取方法及装置 Download PDF

Info

Publication number
WO2015070504A1
WO2015070504A1 PCT/CN2013/090392 CN2013090392W WO2015070504A1 WO 2015070504 A1 WO2015070504 A1 WO 2015070504A1 CN 2013090392 W CN2013090392 W CN 2013090392W WO 2015070504 A1 WO2015070504 A1 WO 2015070504A1
Authority
WO
WIPO (PCT)
Prior art keywords
pulse signal
threshold
time
crosses
time point
Prior art date
Application number
PCT/CN2013/090392
Other languages
English (en)
French (fr)
Inventor
奚道明
刘苇
谢庆国
Original Assignee
苏州瑞派宁科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州瑞派宁科技有限公司 filed Critical 苏州瑞派宁科技有限公司
Priority to JP2016529452A priority Critical patent/JP6251393B2/ja
Priority to EP13897366.4A priority patent/EP3070847B1/en
Priority to US15/035,996 priority patent/US10120342B2/en
Publication of WO2015070504A1 publication Critical patent/WO2015070504A1/zh

Links

Classifications

    • GPHYSICS
    • G04HOROLOGY
    • G04FTIME-INTERVAL MEASURING
    • G04F13/00Apparatus for measuring unknown time intervals by means not provided for in groups G04F5/00 - G04F10/00
    • G04F13/02Apparatus for measuring unknown time intervals by means not provided for in groups G04F5/00 - G04F10/00 using optical means
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01TMEASUREMENT OF NUCLEAR OR X-RADIATION
    • G01T1/00Measuring X-radiation, gamma radiation, corpuscular radiation, or cosmic radiation
    • G01T1/16Measuring radiation intensity
    • G01T1/20Measuring radiation intensity with scintillation detectors

Definitions

  • the invention relates to the fields of digital signal processing, photoelectric signal processing and radiation detection and measurement, and particularly relates to a method and a device for acquiring a time point of a scintillation pulse crossing a threshold, which can be applied to high energy particle detection and medical imaging equipment.
  • scintillation detectors are often used for the detection of high-energy particles.
  • the basic working principle is as follows: The high-energy particles are converted into visible light by using a scintillation crystal, and then converted into an electric pulse signal by using a photodetector. A typical electrical signal is shown in FIG. By further processing the electrical pulse, information such as energy, time, and the like of the high energy particles can be obtained.
  • the time information for obtaining an electrical pulse across the threshold is widely used in the art.
  • the time information of high-energy particles in the conventional method is mostly obtained by detecting the time point at which the electric pulse crosses a preset threshold.
  • a multi-threshold sampling device for digitizing an electric pulse by obtaining time information of an electric pulse crossing a plurality of over-threshold points to face a conventional analog-to-digital converter (Analog to Digital Converter)
  • Analog to Digital Converter Analog to Digital Converter
  • the detection of the electrical pulse over the threshold time point is mostly realized by a combination of a comparator and a time-to-digital converter.
  • the comparator is used to compare the relative magnitude between the electrical pulse and the threshold, and output a corresponding high and low level signal.
  • the time that the pulse crosses the threshold is the high and low transition point in the comparator output signal, and the time of the trip point can be captured by the time digitizer.
  • the comparator tends to output multiple high and low transitions during the period when the pulse crosses the threshold point.
  • an object of the present invention is to provide a time point acquisition method and apparatus for a scintillation pulse crossing a threshold value for solving the problem that the time point due to noise cannot be accurately obtained.
  • the present invention provides the following technical solutions:
  • a time point acquisition method in which a scintillation pulse crosses a threshold wherein: the steps are as follows:
  • the relationship between the flicker pulse and the threshold is converted into a level signal by a comparator, and the high level is output when the flicker pulse amplitude is higher than the threshold, and the output is output when the flicker pulse amplitude is lower than the threshold.
  • the threshold is set, the flicker pulse signal crosses and is lower than the set threshold, the scintillation pulse signal is lower than the set threshold, the scintillation pulse signal crosses and is higher than the set threshold, and the scintillation pulse signal is higher than the set threshold, the above five stages Stage sequence occurs;
  • the comparator output remains at a constant high level for the flicker pulse signal below the set threshold phase and the flicker pulse signal is above the set threshold period. Low level, no recording is performed for the time when the flicker pulse crosses the threshold.
  • the flicker pulse signal is a positive pulse signal
  • the scintillation pulse signal crosses and is higher than the set threshold stage. Including N time points generated by N times of hopping, the time point at which the scintillation pulse crosses the threshold is recorded as the weighted value or median value of any one of the N time points or any two or more time points of the phase.
  • the phase includes M time points due to M hops, and the time point when the scintillation pulse crosses the threshold is recorded as any one of the M time points of the phase or Weighted value or median of any two or more time points; when the flicker pulse signal is a negative pulse signal, for the scintillation pulse signal crossing and lowering the threshold stage, the phase includes P times hopping At the time points of P, the time point at which the scintillation pulse crosses the threshold is recorded as the weighted value or the median value of any one of the P time points or any two or more time points in the phase, for the scintillation pulse signal to cross And above the set threshold phase, the phase includes S time points due to S times of hopping, and the time point at which the scintillation pulse crosses the threshold is recorded as S in the phase A weighted or median of any one of the time points or any two or more time points.
  • the scintillation pulse signal is a positive pulse signal
  • the characteristics of the five-stage level signals are respectively, and the scintillation pulse signal is low.
  • the set threshold is: a low level signal; the flicker pulse signal crosses and is higher than the set threshold: the signal jumps from a low level to a high level, and follows the high and low level flips to finally become a high level;
  • the flicker pulse signal is higher than the set threshold: the high level signal is continuous; the flicker pulse signal crosses and falls below the set threshold: the signal jumps from high level to low level, and follows the high and low level flips and finally becomes Low level; flicker pulse signal is lower than the set threshold: continuous low level signal; when the flicker pulse signal is negative direction pulse signal, the characteristics of the five stage level signals are respectively, the scintillation pulse signal is higher than the set threshold : Continuous high level signal;
  • the flashing pulse signal crosses and falls below the set threshold: The signal jumps from high level to low level, and follows the high and low level flips and finally becomes low.
  • the time point when the scintillation pulse crosses the threshold is recorded as N in the phase.
  • the median point of the time point and/or at least one set of low level points that jump to a high level The weighting value, for the scintillation pulse signal crossing and lower than the set threshold period, the time point at which the scintillation pulse crosses the threshold is recorded as the median point of M time points in the phase and/or at least one set of high level jumps to low power
  • the weighting value of the flat time point, when the flicker pulse signal is a negative pulse signal, for the scintillation pulse signal to cross and fall below the set threshold period, the time point when the scintillation pulse crosses the threshold is recorded as the middle of the P time points in the phase.
  • a weighting value of a time point and/or a time point at which at least one set of high level jumps to a low level, for the scintillation pulse signal crossing and above a set threshold period, the time point at which the scintillation pulse crosses the threshold is recorded as S in the stage
  • the median point of each time point and/or the weighted value of at least one set of low level jumps to a high level, wherein the first low level jumps to a high level and the last time
  • the two time points obtained are called a group, the first time is high.
  • the time point when the level jumps to the low level and the time point when the first time the high level jumps to the low level, the time point when the second high level jumps to the low level, and the second time after the last time are called a group.
  • the flicker pulse signal when the flicker pulse signal is a positive pulse signal, the flicker pulse signal crosses and is higher than the set threshold period, and flickers
  • the time point when the pulse crosses the threshold is recorded as the time when the first low level jumps to the high level and the time point when the first low level jumps to the high level in the stage, and the blinking pulse signal is crossed.
  • the time point when the flicker pulse crosses the threshold is recorded as the time when the first high level jumps to the low level and the time when the countdown first high level jumps to the low level.
  • Weighted value when the flicker pulse signal is a negative pulse signal, for the flicker pulse signal to cross and fall below the set threshold period, the time point when the flicker pulse crosses the threshold is recorded as the first high level jump to the low level in the phase.
  • the time of the level and the weighting value of the time point when the first high level jumps to the low level for the first time, for the time when the scintillation pulse signal crosses and is higher than the set threshold period, the time when the scintillation pulse crosses the threshold The point is recorded as the weight of the first time the low level jumps to the high level and the time point when the first low level jumps to the high level.
  • the flicker pulse signal when the flicker pulse signal is a positive pulse signal, the flicker pulse signal crosses and is higher than the set threshold period, and flickers
  • the time point when the pulse crosses the threshold is recorded as the second low level jump to high power in this phase.
  • the flat time and the weighted value of the time point when the second low level jumps to the high level.
  • the time point when the flicker pulse crosses the threshold is recorded as the second stage of the stage.
  • the weighting value, for the scintillation pulse signal crossing and higher than the set threshold period, the time point when the scintillation pulse crosses the threshold is recorded as the second low-level jump to the high level and the second lowest level in the phase. The weighted value of the time point that jumps to the high level.
  • the flicker pulse signal when the flicker pulse signal is a positive pulse signal, the flicker pulse signal crosses and is higher than the set threshold period, and flickers
  • the time point when the pulse crosses the threshold is recorded as weighting the N time points.
  • the time point when the scintillation pulse crosses the threshold is recorded as weighting the M time points, when the flicker is obtained.
  • the flashing pulse signal is crossed and lower than the set threshold period, and the time point when the blinking pulse crosses the threshold is recorded as weighting the P time points, and the blinking pulse signal is crossed and higher than the In the threshold phase, the time point at which the scintillation pulse crosses the threshold is recorded as weighting the S time points.
  • the flicker pulse signal when the flicker pulse signal is a positive pulse signal, the flicker pulse signal crosses and is higher than the set threshold period, and flickers
  • the time point when the pulse crosses the threshold is recorded as the median point of the N time points of the phase.
  • the time point when the scintillation pulse crosses the threshold is recorded as the M time points of the phase.
  • the median point, when the flicker pulse signal is a negative pulse signal, for the scintillation pulse signal crossing and lower than the set threshold phase, the time point when the scintillation pulse crosses the threshold is recorded as the median point of the P time points of the phase.
  • the time point at which the scintillation pulse crosses the threshold is recorded as the median point of the S time points of the phase.
  • a point in time acquisition device for a scintillation pulse crossing a threshold comprising:
  • a comparing unit configured to output a level signal according to a relationship between the amplitude of the flicker pulse signal and the set threshold, output a high level when the flicker pulse amplitude is higher than the threshold, and output when the flicker pulse amplitude is lower than the threshold Low level
  • the delay chain is connected by a plurality of delay units, wherein the delay unit is configured to receive and output high and low level signals;
  • the scintillation pulse state time code recording unit includes a square wave signal of equal frequency, a counter, and a data buffer unit, wherein the counter is used to record the number of arrivals of the rising edge of the square wave, the data
  • the buffer unit is configured to record the output signals of the delay units in the delay chain at the rising edge of the square wave signal, and the output signals of the delay chain and the arrival times of the corresponding rising edges of the square wave are combined into one time code;
  • a time code classification unit for classifying an output signal of the delay chain according to the characteristics of the recorded delay chain output signal
  • a relative time interpreting unit for interpreting a time interval of the hopping signal relative to a rising edge of the subsequent square wave; a time calculating and transmitting unit, calculating time information of each flipping at the time of hopping according to the time information obtained by the time interpreting unit, Selecting a point in time or weighting any two or more points in time yields an accurate point at which the scintillation pulse crosses the threshold and transmits to the next unit.
  • each delay unit in the delay chain outputs the opposite value of the currently received signal state, and after the dt time, transmits the state of the previous time to the next one.
  • the cascaded delay unit simultaneously accepts the signal transmitted by the delay unit of the previous cascade and outputs the opposite value of the state.
  • the frequency range of the square wave signal of the medium frequency of the scintillation pulse state time code recording unit is 20 GHz to 10 MHz.
  • the output signals of the delay chain in the time code classification unit are classified into five categories, and for a forward scintillation pulse, the scintillation pulse signal is specifically divided into lower
  • the threshold is set, the scintillation pulse signal is crossed and is higher than the set threshold, the scintillation pulse signal is higher than the set threshold, the scintillation pulse signal is crossed and lower than the set threshold, and the scintillation pulse signal is lower than the set threshold
  • the above five stages Sequence occurs, for a negative blinking pulse, specifically divided into a flicker pulse signal higher than the set threshold, the scintillation pulse signal is crossed and below the set threshold, the scintillation pulse signal is lower than the set threshold, and the scintillation pulse signal is crossed and higher than
  • the set threshold and the flicker pulse signal are higher than the set threshold five stages, and the above five stages occur sequentially.
  • each The characteristic of the class is that the flicker pulse signal is lower than the set threshold: all are continuous T; the flicker pulse signal crosses and is higher than the set threshold: the output signal from the low effective bit to the high effective bit is a plurality of consecutive '0, after Convert to T and follow '0' multiple times, T transform is a number of consecutive T; flicker pulse signal is higher than the set threshold: all are continuous '0,; the flicker pulse signal crosses and is lower than the set threshold: output The signal is converted from a low-significant bit to a high-significant bit to a plurality of consecutive Ts, and is followed by a number of ⁇ , '0, and converted to a plurality of consecutive '0'; the scintillation pulse signal is below the set threshold: All are continuous ⁇ ; When the flicker pulse signal is a negative pulse signal, each type is characterized by a flicker pulse signal higher than the set threshold: all are continuous '0,; the flicker pulse signal
  • the relative time interpreting unit when the scintillation pulse signal crosses and is higher than the set threshold state, From the low to the high position, the number of delay units in the first occurrence of ⁇ is used to characterize the time when the first low level jumps to the high level. From the low order to the high level, the last occurrence of '0, the time delay unit The number of times is used to represent the time when the last low level jumps to the high level; when the blinking pulse signal crosses and is lower than the set threshold state, the number of delay units when the last occurrence of ⁇ occurs from the low to the high level.
  • the flicker pulse signal is a negative pulse signal
  • the relative time interpreting unit when the flicker pulse signal crosses and is lower than the set threshold state, the first occurrence from the low bit to the high bit counts' 0, the number of time delay units is used to characterize the time when the first high level jumps to the low level. From the low order to the high level, the number of delay units in the last occurrence of the ⁇ is used to represent the last high power.
  • the time to jump to the low level; when the flicker pulse signal crosses and is higher than the set threshold, the last occurrence of '0 from the low to the high level is used to characterize the first low power.
  • the time to jump to the high level the number of delay units from the low to the high level is the first time the ⁇ is used to represent the last low power. The time to jump to the high level.
  • the time point acquisition method and apparatus for the scintillation pulse of the present invention exceeds the threshold by using the obtained time of the multiple transition edges by selecting one transition time point or for any two or more transitions.
  • the time point is weighted to obtain a more accurate time at which the pulse actually crosses the threshold, in particular by obtaining the time when the scintillation pulse crosses the first hop and the last hop in the threshold phase, by weighting the two times, More accurately obtaining the time point at which the scintillation pulse actually crosses the threshold, the present invention also finds the first hop by searching for the output of the delay chain looking for '0-1, or '1-0, the position of the hopping and the relationship between them.
  • FIG. 1 is a schematic diagram of a typical scintillation pulse waveform in the prior art
  • FIG. 2 is a schematic diagram of another scintillation pulse waveform in the prior art
  • FIG. 3 is a schematic diagram showing a state in which the logic output signal formed by the scintillation pulse in FIG. 2 passes through the comparator and the corresponding delay chain output signal from the low significant bit (LSB) to the high significant bit (MSB);
  • FIG. 4 is a schematic diagram of time sampling points at four different thresholds obtained by a time point acquisition method in which the scintillation pulse of the present invention crosses a threshold.
  • DETAILED DESCRIPTION OF THE INVENTION The present invention discloses a method and apparatus for acquiring a time point at which a scintillation pulse crosses a threshold value, which is used to solve the problem that the time point due to noise cannot be accurately obtained.
  • the flicker pulse signal can be a positive pulse signal or a negative pulse signal
  • the present invention describes both positive and negative pulses.
  • the method for acquiring a time point at which a scintillation pulse of the present invention crosses a threshold is as follows:
  • the relationship between the flicker pulse and the threshold is converted into a level signal by a comparator, and the high level is output when the flicker pulse amplitude is higher than the threshold, and the output is output when the flicker pulse amplitude is lower than the threshold. level.
  • the threshold is set, the flicker pulse signal crosses and is lower than the set threshold, the scintillation pulse signal is lower than the set threshold, the scintillation pulse signal crosses and is higher than the set threshold, and the scintillation pulse signal is higher than the set threshold, the above five stages The sequence of phases takes place.
  • the flicker pulse signal when the flicker pulse signal is a positive pulse signal, the characteristics of the five-stage level signals are respectively, the flicker pulse signal is lower than the set threshold: the low level signal is continued; the flicker pulse signal crosses and is higher than the set threshold : The signal jumps from low level to high level, and follows the high and low level flips and finally turns to high level; the flicker pulse signal is higher than the set threshold: continuous high level signal; flicker pulse signal crossing and low Set the threshold: The signal jumps from high level to low level, and follows the high and low level flips and finally turns to low level; the flicker pulse signal is lower than the set threshold: continuous low level signal.
  • the flicker pulse signal when the flicker pulse signal is a negative pulse signal, the characteristics of the five-stage level signals are respectively, the flicker pulse signal is higher than the set threshold: the high level signal is continued; the flicker pulse signal crosses and is lower than the set threshold : The signal jumps from high level to low level, and follows the high and low level flips and finally turns to low level; the flicker pulse signal is lower than the set threshold: continuous low level signal; flicker pulse signal crossing and high Set the threshold: The signal jumps from low level to high level, and follows the high and low level flips and finally turns to high level; the flicker pulse signal is higher than the set threshold: Continuous high level signal.
  • the scintillation pulse signal is low.
  • the comparator output maintains a constant level (either high level or low level), and the time in both cases is generally not recorded.
  • the pulse signal crosses the threshold phase and triggers the comparator to generate a high-low level flip, the time is recorded, so the time point when the flicker pulse in these two phases crosses the threshold is not recorded.
  • the phase When the flicker pulse signal is a positive pulse signal, for the flicker pulse signal to cross and exceed the set threshold phase, the phase includes N time points due to N times of hopping, and the time point at which the scintillation pulse crosses the threshold is recorded as A weighting value or a median value of any one of the N time points or any two or more time points of the phase, for the scintillation pulse signal crossing and lower than the set threshold phase, the phase including the M hopping M time points, the time point at which the flicker pulse crosses the threshold is recorded as the weighted value or median value of any one of the M time points or any two or more time points in the phase; when the flicker pulse signal is negative For the pulse signal, for the scintillation pulse signal crossing and lowering the threshold period, the phase includes P time points due to P times of hopping, and the time point when the scintillation pulse crosses the threshold is recorded as P time points in the phase.
  • the weighted value or median of any one time point or any two or more time points, for the scintillation pulse signal to cross and exceed the set threshold Segment, this phase includes S time points due to S times of hopping, and the time point at which the scintillation pulse crosses the threshold is recorded as any one of the S time points in the phase or any two or more time points. Weighted or median.
  • the present invention can arbitrarily select some of the time points after the time point of the N (M, P, S) hopping (may be one of the points, or
  • the two points can also be n points, which can be continuous or non-continuous, can be extracted regularly or irregularly, or all time points can be weighted or taken.
  • the median point to represent the exact point in time.
  • the further superior protection range of the invention with respect to the step (3) is: when the scintillation pulse signal is a positive pulse signal, the time point at which the scintillation pulse crosses the threshold is recorded as the median point of the N time points in the phase and/or a weighting value of at least one set of low-level jumps to a high level, for the scintillation pulse signal crossing and lower than the set threshold period, the time point at which the scintillation pulse crosses the threshold is recorded as the middle of the M time points in the phase a weighted value of a point in time and/or at least one set of high level jumps to a low level, when the flicker pulse signal is a negative pulse signal, the flicker pulse signal is crossed and is lower than the set threshold step Segment, the time point at which the scintillation pulse crosses the threshold is recorded as the weighted value of the median point of the P time points of the phase and/or the time point of at least one set of the high level jumping to the low level, for the scint
  • the time point when the first low level jumps to the high level and the time point when the first low level jumps to the high level, and the time point when the second low level jumps to the high level And the time point when the penultimate low level jumps to the high level and the two time points obtained by the analogy are called a group
  • a time point when a second high level jumps to a low level a time point when a second high level jumps to a low level
  • the two time points obtained by analogy are called a group.
  • the first further superior protection range of the invention with respect to the step (3) is: when the scintillation pulse signal is a positive pulse signal, the time for the scintillation pulse to cross the threshold for the scintillation pulse signal crossing and above the set threshold phase
  • the point record is the weighted value of the time when the first low level jumps to the high level and the time point when the first low level jumps to the high level in the stage, and the flashing pulse signal is crossed and lower than the set value.
  • the threshold phase the time point at which the flicker pulse crosses the threshold is recorded as the weighted value of the time when the first high level jumps to the low level and the time point when the countdown first high level jumps to the low level.
  • the time point when the flicker pulse crosses the threshold is recorded as the time when the first high level jumps to the low level in the stage.
  • the weighting value of the time point when the first high level jumps to the low level, and the flashing pulse signal crosses and is higher than the set threshold period, and the time point when the blinking pulse crosses the threshold is recorded as the stage.
  • the second further superior protection range of the present invention with respect to the step (3) is: when the scintillation pulse signal is a positive pulse signal, the time when the scintillation pulse signal crosses the threshold for the scintillation pulse signal crossing and above the set threshold period
  • the point record is the weighted value of the time when the second low level jumps to the high level at this stage and the time point when the second low level jumps to the high level, and the flashing pulse signal is crossed and lower than the set value.
  • the time point at which the blinking pulse crosses the threshold is recorded as the weighted value of the time when the second high level jumps to the low level and the time point when the second last high level jumps to the low level.
  • the flashing pulse signal crosses and is lower than the set threshold period, flashing
  • the time point when the blinking pulse crosses the threshold is recorded as the weighting value of the time when the second high level jumps to the low level and the time point when the second highest level jumps to the low level, for the blinking pulse signal.
  • the time point when the flicker pulse crosses the threshold is recorded as the time when the second low level jumps to the high level and the time when the second last low level jumps to the high level. The weight of the point.
  • the third further superior protection range of the present invention with respect to the step (3) is: when the scintillation pulse signal is a positive pulse signal, the time when the scintillation pulse signal crosses the threshold for the scintillation pulse signal crossing and above the set threshold period The point record is obtained by weighting the N time points. For the scintillation pulse signal to cross and lower than the set threshold period, the time point when the scintillation pulse crosses the threshold is recorded as weighting the M time points, and the scintillation pulse signal is negative.
  • the time point when the flicker pulse crosses the threshold is recorded as weighting the P time points, and the flicker pulse signal is crossed and higher than the set threshold period, and flickering The point in time when the pulse crosses the threshold is recorded as weighting the S time points.
  • the fourth further superior protection range of the present invention with respect to the step (3) is: when the scintillation pulse signal is a positive pulse signal, the time when the scintillation pulse signal crosses the threshold for the scintillation pulse signal crossing and above the set threshold phase The point is recorded as the median point of the N time points of the phase. For the scintillation pulse signal to cross and fall below the set threshold phase, the time point at which the scintillation pulse crosses the threshold is recorded as the median point of the M time points of the phase.
  • the time point at which the scintillation pulse crosses the threshold is recorded as the median point of the P time points of the phase, and the scintillation pulse signal is crossed. And above the set threshold phase, the time point at which the scintillation pulse crosses the threshold is recorded as the median point of the S time points of the phase.
  • the time point at which the blinking pulse actually crosses the threshold can be obtained not only by the weighting of the first hopping and the last hopping time, but also by the second and the second last. Sub-weighted (and so on).
  • the median point can also be used, or even by the method of likelihood estimation.
  • the invention mainly finds the time of the first hop, the last hop and even all the middle hops by analyzing the output of the delay chain to find ' ⁇ - ⁇ or '1-0, the position of the hopping and the relationship between them. Obtain.
  • the present invention also discloses a time point acquisition device for a scintillation pulse crossing a threshold, comprising: a comparison unit, a delay chain, a scintillation pulse state time code recording unit, a time code classification unit, a relative time interpretation unit, and a time calculation and transmission unit.
  • the comparing unit is configured to output a level signal according to a relationship between the amplitude of the flicker pulse signal and the set threshold, output a high level when the flicker pulse amplitude is higher than the threshold, and output a low level when the flicker pulse amplitude is lower than the threshold.
  • the delay chain is formed by concatenating a plurality of delay units for accepting and outputting high and low level signals.
  • Each delay unit in the delay chain outputs the opposite value of the currently accepted signal state, and after the dt time, transmits the state of the previous time to the next cascaded delay unit, and accepts the previous cascaded delay unit. The signal transmitted to and outputs the opposite value of the state.
  • the flicker pulse state time code recording unit includes a square wave signal of equal frequency, a counter and a data buffer unit, wherein the counter is used to record the number of arrivals of the rising edge of the square wave, and the data buffer unit is configured to record the square wave signal.
  • the output signal of each delay unit in the delay chain at the rising edge time, the output signal of the delay chain and the number of arrivals of the corresponding rising edge of the square wave are combined into one time code.
  • the frequency range of the equal-frequency square wave signal is 20 GHz to 10 MHz.
  • the counter is used to record the number of arrivals of the rising edge of the square wave
  • the data buffer unit is configured to record the output signals of the delay units in the delay chain at the rising edge of the square wave signal, the output signal of the delay chain and the corresponding The number of arrivals of the rising edge of the square wave is combined into one time code.
  • the time code classification unit is configured to classify the output signal of the delay chain according to the characteristics of the recorded delay chain output signal.
  • the output signals of the delay chain in the time code classification unit are classified into five types.
  • a forward flicker pulse the scintillation pulse signal is specifically lower than the set threshold, the scintillation pulse signal is crossed and higher than the set threshold, and the scintillation pulse is The signal is above the set threshold, the scintillation pulse signal is crossed and below The set threshold and the flicker pulse signal are lower than the set threshold.
  • the above five stages occur sequentially.
  • For a negative flicker pulse the scintillation pulse signal is higher than the set threshold, and the scintillation pulse signal is crossed and lower.
  • the above five stages are sequentially generated in the five stages of setting the threshold, the flicker pulse signal is lower than the set threshold, the scintillation pulse signal is crossed and higher than the set threshold, and the scintillation pulse signal is higher than the set threshold.
  • each type of characteristic is that the flicker pulse signal is lower than the set threshold: all are continuous T; the flicker pulse signal crosses and is higher than the set threshold: the output signal is low effective bit
  • the high effective bit is a plurality of consecutive '0's, then converted to T and followed by multiple '0', and the T transform is a plurality of consecutive T; the scintillation pulse signal is higher than the set threshold: all are consecutive '0, ;
  • the flicker pulse signal crosses and falls below the set threshold: The output signal is from continuous low to high active bit for multiple consecutive
  • each type is characterized by a flicker pulse signal higher than the set threshold: all are continuous '0,; the flicker pulse signal crosses and falls below the set threshold: the output signal is low
  • the valid bit to the high significant bit is converted to '0 after multiple consecutive turns, and is followed by multiple ⁇ , '0, after conversion is a plurality of consecutive '0'; the flicker pulse signal is lower than the set threshold: all are continuous
  • the flashing pulse signal crosses and is above the set threshold: the output signal is from continuous low to high active.
  • ⁇ transform is a number of consecutive ⁇ ; flicker pulse signal is higher than the set threshold: all are consecutive '0'.
  • the relative time interpretation unit is configured to interpret the time interval of the hopping signal relative to the rising edge of the subsequent square wave.
  • the flicker pulse signal is a forward pulse signal
  • the first time delay time unit of the ⁇ time period is counted from the low bit to the high bit
  • the number is used to characterize the time when the first low level jumps to the high level. From the low to the high level, the last occurrence of '0, the number of delay units is used to represent the last low level jump to high power.
  • Flat time in the state where the flicker pulse signal crosses and is lower than the set threshold, the number of delay units from the low bit to the high bit count last time is used to characterize the first high level jump to the low level.
  • Time from the low to the high level, the first occurrence of '0, the number of delay units is used to represent the time when the last high level jumped to low level.
  • the flicker pulse signal is a negative pulse signal
  • the first time occurrence of '0 the time delay unit from the low bit to the high bit count
  • the number of times is used to characterize the time when the first high level jumps to the low level. From the low order to the high level, the number of delay units when the last occurrence of T is used to represent the last high level jump to low power.
  • the time calculation and the transmission unit calculate the time information of each flip when the hop occurs according to the time information obtained by the time interpretation unit, and obtain an accurate time by selecting a time point or weighting any two or more time points.
  • the flashing pulse crosses the threshold time point and is transmitted to the next unit.
  • FIG. 3 is a schematic diagram showing a state in which a logic output signal formed when a scintillation pulse passes through a comparator and a corresponding delay chain output signal from a low significant bit (LSB) to a high significant bit (MSB).
  • LSB low significant bit
  • MSB high significant bit
  • time information when the scintillation pulse crosses the reference threshold voltage is captured. Since the rising edge of the pulse is not affected by noise, the logic signal is stably maintained in a high state after only one transition occurs when the pulse crosses and exceeds the threshold; the falling edge of the pulse is partially affected by noise when the pulse crosses and falls below the threshold. When a transition occurs, it is stabilized in a logic low state after a number of state changes.
  • A, B, and C respectively represent the upper edge of the pulse crossing and above the threshold phase; the pulse crosses and falls below the first lower edge and the last lower edge of the threshold phase.
  • the logic signal is input into the delay chain.
  • the output of the delay chain under the rising edge of different clocks is shown on the left side of the figure.
  • three delay chains are used in this example to record the time when A, B, and C occur, and three delay chains use three different coding modes.
  • the delay chain used is composed of m adder cascades, the addend of each stage adder is set to 1, and all addends are set to 0, when connected to the carry-in chain of the first stage adder of the carry chain
  • the adder output Sum will transition from high to low, as indicated by point A in Figure 3.
  • the carry chain is composed of m adder cascades, the addend of each adder is set to 1, and all addends are set to 0, when connected to the comparator output of the carry stage of the first stage adder of the carry chain
  • the adder output Sum will transition from high to low, as indicated by point B in Figure 3, by encoding into the delay chain from the high (MSB) to the low ( LSB)
  • N The number N of consecutive occurrences. If the delay of each adder is T, then N*T is the time interval between the time of B and the rising edge of the current clock.
  • the carry chain is composed of m adder cascades, the addend of each adder is set to 1, and all addends are set to 0.
  • the adder output Sum will transition from high to low, as indicated by point C in Figure 3, by encoding into the delay chain from the low (LSB) to the high ( MSB) The number N of consecutive occurrences. If the delay of each adder is T, then (mN) *T is the time interval between the C time and the rising edge of the current clock.
  • the time interval obtained by the above method, and the time of three times A, B, and C can be obtained according to the number of clock cycles recorded by the time counter.
  • the time sampling points at different thresholds obtained by the method are given in FIG. 4 (the results of four different thresholds are given in FIG. 4, that is, the acquisition of the time using points under each threshold is adopted in the present invention.
  • the method described where the dot is the actual acquired sample point.
  • the time at which the scintillation pulse actually crosses the threshold is obtained by weighting the two sample points obtained by the falling edge portion of the scintillation pulse, that is, the point marked by the asterisk in the figure.
  • the present invention provides a method for solving the problem of inaccurate sampling of voltage time due to noise.
  • the conventional method does not consider the noise of the falling edge portion of the scintillation pulse, and directly adopts the first transition edge as the time point at which the pulse crosses the threshold. In this way, in the case of noise, the collected time must be earlier than the time when the pulse actually crosses the threshold, and the acquisition accuracy is insufficient.
  • the invention proposes a time acquisition method for realizing all the transition edges of the pulse crossing the threshold phase
  • the invention obtains these time points mainly by studying the output state on the carry chain. To the point in time of each jump.
  • the present invention achieves the time to acquire the first edge and the last edge. Take advantage of the two points obtained.
  • the time point acquisition method and apparatus for the scintillation pulse of the present invention crossing the threshold value obtains a more accurate pulse by using the obtained time of the plurality of transition edges by the median point and/or at least one set of hopping along the time to obtain a more accurate pulse.
  • the point in time of the threshold is obtained by using the obtained time of the plurality of transition edges by the median point and/or at least one set of hopping along the time to obtain a more accurate pulse.
  • the present invention finds '0-1, or '1-0, the position of the hopping and the relationship between them by analyzing the output of the delay chain to realize the time acquisition of the first hop, the last hop, and even all the intermediate hops. .

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Molecular Biology (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Measurement Of Radiation (AREA)
  • Nuclear Medicine (AREA)

Abstract

一种闪烁脉冲越过阈值的时间点获取方法,其步骤为:将脉冲与阈值的关系转换为高低电平信号;将输出的电平信号进行分段,对于脉冲信号越过并高于所设阈值阶段和脉冲信号越过并低于所设阈值阶段,该两个阶段分别包括若干次跳变产生的若干个时间点,脉冲越过阈值的时间点记录为任意一个跳变时间点或者任意两个或两个以上跳变时间点的加权值。本发明利用获得的若干次跳变沿的时间,通过选择一个跳变时间点或者对任意两个或两个以上跳变时间点进行加权获得更为准确的脉冲实际越过阈值的时间点。

Description

闪烁脉沖越过阈值的时间点获取方法及装置 本申请要求于 2013 年 11 月 14 日提交中国专利局、 申请号为 201310572921.0、 发明名称为 "闪烁脉沖越过阈值的时间点获取方法及装置" 的中国专利申请的优先权, 其全部内容通过引用结合在本申请中。 技术领域
本发明涉及数字信号处理、光电信号处理和辐射探测与测量领域, 具体涉 及一种闪烁脉沖越过阈值的时间点获取方法及装置,可应用于高能粒子探测及 医疗影像设备。
背景技术
在正电子发射断层成像 ( Positron Emission Tomography, 以下筒称 PET ) 以及辐射探测与测量领域中, 闪烁体探测器常用于高能粒子的检测。其基本工 作原理为: 利用闪烁晶体将高能粒子转换成可见光,再利用光电探测器转换为 电脉沖信号,典型的电信号如图 1所示。通过对该电脉沖的进一步处理可以获 得高能粒子的能量、 时间等信息。
获取电脉沖越过阈值的时间信息在本领域中应用广泛。传统方法中高能粒 子的时间信息多是通过检测电脉沖越过预先设置阈值的时间点来获取的。 同 时,现有技术中有通过获得电脉沖越过多个过阈值点的时间信息来实现电脉沖 数字化的多阈值采样装置, 以面对传统模拟数字转换器 (Analog to Digital Converter, 以下筒称 ADC )在对该类电脉沖数字化时采样率不足及功耗过高 的问题。
目前电脉沖过阈值时间点的检测多由比较器和时间数字转换器组合实现 的。其中比较器用于比较电脉沖与阈值之间的相对大小, 并输出相应的高低电 平信号。理想情况下,脉沖越过阈值的时间即为比较器输出信号中高低电平的 跳变点, 利用时间数字转换器捕获该跳变点的时间即可。 实际情况下, 由于脉 沖中含有噪声,在脉沖越过阈值点的时间段内比较器往往会输出多个高低电平 的跳变。 如图 2所示, 在闪烁脉沖的下降沿部分, 当闪烁脉沖越过所设定的阈 值时, 受噪声的影响比较器的输出将会在 B到 C的时间段内发生多次跳变, 其中 B为第一次跳变的时间点, C为最后一次跳变的时间点。显然准确的闪烁 脉沖越过阈值的时间点应介于 B和 C之间。 传统上, 将会采用捕获第一次电 平跳变的时间点作为脉沖越过阈值的时刻即为图中 B的时间点。这种方法虽然 在电路实现上较为筒单, 但所获得的时间点, 不够准确。
因此, 针对上述技术问题, 有必要提供一种新的闪烁脉沖越过阈值的时间 点获取方法, 用于解决因噪声带来的时间点无法准确获取的问题,从而提供更 为准确的电脉沖过阈值点的时间信息。
发明内容
有鉴于此,本发明的目的在于提供一种闪烁脉沖越过阈值的时间点获取方 法及装置, 用于解决因噪声带来的时间点无法准确获取的问题。
为实现上述目的, 本发明提供如下技术方案:
一种闪烁脉沖越过阈值的时间点获取方法, 其特征在于: 步骤如下:
( 1 )根据所设置的阈值, 通过一比较器将闪烁脉沖与阈值的关系转换为 电平信号, 当闪烁脉沖幅度高于阈值时输出高电平, 当闪烁脉沖幅度低于阈值 时输出氐电平;
( 2 )对输出的高低电平信号进行分段, 对于一个正向的闪烁脉沖, 具体 分为闪烁脉沖信号低于所设阈值、 闪烁脉沖信号越过并高于所设阈值、 闪烁脉 沖信号高于所设阈值、 闪烁脉沖信号越过并低于所设阈值、 闪烁脉沖信号低于 所设阈值五个阶段, 上述五个阶段顺序发生, 对于一个负向的闪烁脉沖, 具体 分为闪烁脉沖信号高于所设阈值、 闪烁脉沖信号越过并低于所设阈值、 闪烁脉 沖信号低于所设阈值、 闪烁脉沖信号越过并高于所设阈值、 闪烁脉沖信号高于 所设阈值五个阶段, 上述五个阶段顺序发生;
( 3 ) 当闪烁脉沖信号为正向或负向的脉沖信号时, 对于闪烁脉沖信号低 于所设阈值阶段和闪烁脉沖信号高于所设阈值阶段,比较器输出均保持恒定的 高电平或低电平,对闪烁脉沖越过阈值的时间点不进行记录, 当闪烁脉沖信号 为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所设阈值阶段, 该阶段包 括由于 N次跳变产生的 N个时间点, 闪烁脉沖越过阈值的时间点记录为该阶 段 N个时间点中任意一个时间点或者任意两个或两个以上的时间点的加权值 或者中值, 对于闪烁脉沖信号越过并低于所设阈值阶段, 该阶段包括由于 M 次跳变产生的 M个时间点, 闪烁脉沖越过阈值的时间点记录为该阶段 M个时 间点中任意一个时间点或者任意两个或两个以上的时间点的加权值或者中值; 当闪烁脉沖信号为负向的脉沖信号时,对于闪烁脉沖信号越过并于低所设阈值 阶段,该阶段包括由于 P次跳变产生的 P个时间点, 闪烁脉沖越过阈值的时间 点记录为该阶段 P 个时间点中任意一个时间点或者任意两个或两个以上的时 间点的加权值或者中值,对于闪烁脉沖信号越过并高于所设阈值阶段, 该阶段 包括由于 S次跳变产生的 S个时间点,闪烁脉沖越过阈值的时间点记录为该阶 段中 S 个时间点中任意一个时间点或者任意两个或两个以上的时间点的加权 值或者中值。
优选的, 在上述闪烁脉沖越过阈值的时间点获取方法中, 所述步骤(2 ) 中当闪烁脉沖信号为正向的脉沖信号时,五个阶段电平信号的特点分别为, 闪 烁脉沖信号低于所设阈值: 持续低电平信号; 闪烁脉沖信号越过并高于所设阈 值:信号由低电平跳转到高电平,并跟随多次高低电平的翻转最终变为高电平; 闪烁脉沖信号高于所设阈值: 持续高电平信号; 闪烁脉沖信号越过并低于所设 阈值: 信号由高电平跳转到低电平, 并跟随多次高低电平的翻转最终变为低电 平; 闪烁脉沖信号低于所设阈值: 持续低电平信号; 当闪烁脉沖信号为负向的 脉沖信号时, 五个阶段电平信号的特点分别为, 闪烁脉沖信号高于所设阈值: 持续高电平信号; 闪烁脉沖信号越过并低于所设阈值: 信号由高电平跳转到低 电平, 并跟随多次高低电平的翻转最终变为低电平; 闪烁脉沖信号低于所设阈 值: 持续低电平信号; 闪烁脉沖信号越过并高于所设阈值: 信号由低电平跳转 到高电平, 并跟随多次高低电平的翻转最终变为高电平; 闪烁脉沖信号高于所 设阈值: 持续高电平信号。
优选的, 在上述闪烁脉沖越过阈值的时间点获取方法中, 所述步骤(3 ) 中, 当闪烁脉沖信号为正向的脉沖信号时, 闪烁脉沖越过阈值的时间点记录为 该阶段中 N个时间点的中值点和 /或至少一组低电平跳转到高电平的时间点的 加权值,对于闪烁脉沖信号越过并低于所设阈值阶段, 闪烁脉沖越过阈值的时 间点记录为该阶段中 M个时间点的中值点和 /或至少一组高电平跳转到低电平 的时间点的加权值, 当闪烁脉沖信号为负向的脉沖信号时,对于闪烁脉沖信号 越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段 P个时间 点的中值点和 /或至少一组高电平跳转到低电平的时间点的加权值, 对于闪烁 脉沖信号越过并高于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段 中 S个时间点的中值点和 /或至少一组低电平跳转到高电平的时间点的加权值, 其中,第一次低电平跳转到高电平的时间点和倒数第一次低电平跳转到高电平 的时间点、第二次低电平跳转到高电平的时间点和倒数第二次低电平跳转到高 电平的时间点及以此类推得到的两个时间点称为一组,第一次高电平跳转到低 电平的时间点和倒数第一次高电平跳转到低电平的时间点、第二次高电平跳转 到低电平的时间点和倒数第二次高电平跳转到低电平的时间点及以此类推得 到的两个时间点称为一组。
优选的, 在上述闪烁脉沖越过阈值的时间点获取方法中, 所述步骤(3 ) 中, 当闪烁脉沖信号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所设 阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第一次低电平跳转到高电 平的时间和倒数第一次低电平跳转到高电平的时间点的加权值,对于闪烁脉沖 信号越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第一 次高电平跳转到低电平的时间和倒数第一次高电平跳转到低电平的时间点的 加权值, 当闪烁脉沖信号为负向的脉沖信号时,对于闪烁脉沖信号越过并低于 所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第一次高电平跳转到 低电平的时间和倒数第一次高电平跳转到低电平的时间点的加权值,对于闪烁 脉沖信号越过并高于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段 第一次低电平跳转到高电平的时间和倒数第一次低电平跳转到高电平的时间 点的加权值。
优选的, 在上述闪烁脉沖越过阈值的时间点获取方法中, 所述步骤(3 ) 中, 当闪烁脉沖信号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所设 阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第二次低电平跳转到高电 平的时间和倒数第二次低电平跳转到高电平的时间点的加权值,对于闪烁脉沖 信号越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第二 次高电平跳转到低电平的时间和倒数第二次高电平跳转到低电平的时间点的 加权值, 当闪烁脉沖信号为负向的脉沖信号时,对于闪烁脉沖信号越过并低于 所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第二次高电平跳转到 低电平的时间和倒数第二次高电平跳转到低电平的时间点的加权值,对于闪烁 脉沖信号越过并高于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段 第二次低电平跳转到高电平的时间和倒数第二次低电平跳转到高电平的时间 点的加权值。
优选的, 在上述闪烁脉沖越过阈值的时间点获取方法中, 所述步骤(3 ) 中, 当闪烁脉沖信号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所设 阈值阶段, 闪烁脉沖越过阈值的时间点记录为对 N个时间点进行加权获得, 对于闪烁脉沖信号越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录 为对 M个时间点进行加权获得, 当闪烁脉沖信号为负向的脉沖信号时, 对于 闪烁脉沖信号越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为对 P个时间点进行加权获得, 对于闪烁脉沖信号越过并高于所设阈值阶段, 闪烁 脉沖越过阈值的时间点记录为对 S个时间点进行加权获得。
优选的, 在上述闪烁脉沖越过阈值的时间点获取方法中, 所述步骤(3 ) 中, 当闪烁脉沖信号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所设 阈值阶段, 闪烁脉沖越过阈值的时间点记录为该阶段的 N个时间点的中值点, 对于闪烁脉沖信号越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录 为该阶段的 M个时间点的中值点, 当闪烁脉沖信号为负向的脉沖信号时, 对 于闪烁脉沖信号越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为 该阶段的 P个时间点的中值点, 对于闪烁脉沖信号越过并高于所设阈值阶段, 闪烁脉沖越过阈值的时间点记录为该阶段的 S个时间点的中值点。
一种闪烁脉沖越过阈值的时间点获取装置, 其包括:
比较单元,用以根据闪烁脉沖信号幅度与所设阈值之间的关系输出电平信 号, 当闪烁脉沖幅度高于阈值时输出高电平, 当闪烁脉沖幅度低于阈值时输出 低电平;
延迟链, 所述延迟链由若干延迟单元级连而成, 所述延迟单元用以接受和 输出高低电平信号;
闪烁脉沖状态时间码记录单元,所述闪烁脉沖状态时间码记录单元包括等 频率的方波信号、 计数器及数据緩存单元, 其中, 所述计数器用以记录方波上 升沿的到达次数,所述数据緩存单元用以记录方波信号上升沿时刻下延迟链中 各个延迟单元的输出信号,延迟链的输出信号及其所对应的方波上升沿的到达 次数合并成一个时间码;
时间码分类单元, 用以根据所记录的延迟链输出信号的特点,对延迟链的 输出信号进行分类;
相对时间解释单元, 用以解释跳变信号相对随后方波上升沿的时间间隔; 时间计算与传输单元,依据时间解释单元所获得的时间信息计算出跳变发 生时候每次翻转的时间信息,通过选择一个时间点或者对任意两个或两个以上 时间点进行加权得到准确的闪烁脉沖越过阈值的时间点, 并传输到下一单元。
优选的,在上述闪烁脉沖越过阈值的时间点获取装置中, 所述延迟链中各 个延迟单元输出当前所接受到的信号状态的相反值, 经过 dt时间后将上一时 刻的状态传输到下一个级连的延迟单元,同时自身接受上一个级连的延迟单元 传输到的信号并输出该状态的相反值。
优选的,在上述闪烁脉沖越过阈值的时间点获取装置中, 所述闪烁脉沖状 态时间码记录单元中等频率的方波信号的频率范围为 20GHz到 10MHz。
优选的,在上述闪烁脉沖越过阈值的时间点获取装置中, 所述时间码分类 单元中延迟链的输出信号分为五类,对于一个正向的闪烁脉沖, 具体分为闪烁 脉沖信号低于所设阈值、 闪烁脉沖信号越过并高于所设阈值、 闪烁脉沖信号高 于所设阈值、 闪烁脉沖信号越过并低于所设阈值、 闪烁脉沖信号低于所设阈值 五个阶段, 上述五个阶段顺序发生, 对于一个负向的闪烁脉沖, 具体分为闪烁 脉沖信号高于所设阈值、 闪烁脉沖信号越过并低于所设阈值、 闪烁脉沖信号低 于所设阈值、 闪烁脉沖信号越过并高于所设阈值、 闪烁脉沖信号高于所设阈值 五个阶段, 上述五个阶段顺序发生, 当闪烁脉沖信号为正向的脉沖信号时, 每 类的特点为, 闪烁脉沖信号低于所设阈值: 全部为连续的 T ; 闪烁脉沖信号 越过并高于所设阈值: 输出信号由低有效位到高有效位为多个连续的' 0,之后 变换为 T并跟随多次' 0,、 T变换后为多个连续的 T ; 闪烁脉沖信号高于所设 阈值: 全部为连续的 '0,; 闪烁脉沖信号越过并低于所设阈值: 输出信号由低 有效位到高有效位为多个连续的 T之后变换为' 0,并跟随多次 τ、 '0,变换后为 多个连续的' 0,; 闪烁脉沖信号低于所设阈值: 全部为连续的 Τ ; 当闪烁脉沖 信号为负向的脉沖信号时, 每类的特点为, 闪烁脉沖信号高于所设阈值: 全部 为连续的' 0,; 闪烁脉沖信号越过并低于所设阈值: 输出信号由低有效位到高 有效位为多个连续的 Τ之后变换为' 0,并跟随多次 τ、 '0,变换后为多个连续的 '0'; 闪烁脉沖信号低于所设阈值: 全部为连续的 Τ ; 闪烁脉沖信号越过并高 于所设阈值: 输出信号由低有效位到高有效位为多个连续的' 0,之后变换为 Τ 并跟随多次' 0,、 Τ变换后为多个连续的 Τ ; 闪烁脉沖信号高于所设阈值: 全 部为连续的' 0'。
优选的,在上述闪烁脉沖越过阈值的时间点获取装置中, 当闪烁脉沖信号 为正向的脉沖信号时, 所述相对时间解释单元中,在闪烁脉沖信号越过并高于 所设阈值状态下, 从低位到高位统计第一次出现 Τ时延时单元的个数用于表 征第一次低电平跳转到高电平的时间, 从低位到高位统计最后一次出现' 0,时 延时单元的个数用于表征最后一次低电平跳转到高电平的时间;在闪烁脉沖信 号越过并低于所设阈值状态下, 从低位到高位统计最后一次出现 Τ 时延时 单元的个数用于表征第一次高电平跳转到低电平的时间,从低位到高位统计第 一次出现 '0, 时延时单元的个数用于表征最后一次高电平跳转到低电平的时 间; 当闪烁脉沖信号为负向的脉沖信号时, 所述相对时间解释单元中, 在闪烁 脉沖信号越过并低于所设阈值状态下, 从低位到高位统计第一次出现' 0,时延 时单元的个数用于表征第一次高电平跳转到低电平的时间,从低位到高位统计 最后一次出现 Τ时延时单元的个数用于表征最后一次高电平跳转到低电平的 时间; 在闪烁脉沖信号越过并高于所设阈值状态下,从低位到高位统计最后一 次出现 '0, 时延时单元的个数用于表征第一次低电平跳转到高电平的时间, 从低位到高位统计第一次出现 Τ 时延时单元的个数用于表征最后一次低电 平跳转到高电平的时间。
从上述技术方案可以看出,本发明的闪烁脉沖越过阈值的时间点获取方法 及装置利用获得的多个跳变沿的时间通过选择一个跳变时间点或者对任意两 个或两个以上跳变时间点进行加权获得更为准确的脉沖实际越过阈值的时间 点,特别是通过获取闪烁脉沖越过阈值阶段中的第一次跳变和最后一次跳变的 时间,通过对两次时间的加权处理, 更准确的获得闪烁脉实际越过阈值的时间 点, 本发明还通过分析延迟链的输出寻找 '0-1, 或 '1-0, 跳变的位置以及相 互之间的关系实现第一次跳变、 最后一次跳变乃至中间所有次跳变的时间获 取。 附图说明 为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施 例或现有技术描述中所需要使用的附图作筒单地介绍,显而易见地, 下面描述 中的有关本发明的附图仅仅是本发明的一些实施例,对于本领域普通技术人员 来讲, 在不付出创造性劳动的前提下, 还可以根据这些附图获得其他的附图。
图 1为现有技术中一种典型的闪烁脉沖波形的示意图;
图 2为现有技术中另一种闪烁脉沖波形的示意图;
图 3为图 2中闪烁脉沖经过比较器时所形成的逻辑输出信号以及对应的延 迟链输出信号由低有效位 ( LSB )到高有效位 ( MSB ) 的状态示意图;
图 4 为采用本发明闪烁脉沖越过阈值的时间点获取方法获取的四个不同 阈值下的时间采样点的示意图。 具体实施方式 本发明公开了一种闪烁脉沖越过阈值的时间点获取方法及装置,用于解决 因噪声带来的时间点无法准确获取的问题。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行详 细地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, 而不是全部的 实施例。基于本发明中的实施例, 本领域普通技术人员在没有做出创造性劳动 的前提下所获得的所有其他实施例, 都属于本发明保护的范围。
由于闪烁脉沖信号可以为正向的脉沖信号,也可以为负向的脉沖信号, 因 此本发明对正负向脉沖均进行描述。
本发明公开的闪烁脉沖越过阈值的时间点获取方法, 其步骤如下:
( 1 )根据所设置的阈值, 通过一比较器将闪烁脉沖与阈值的关系转换为 电平信号, 当闪烁脉沖幅度高于阈值时输出高电平, 当闪烁脉沖幅度低于阈值 时输出氐电平。
( 2 )对输出的高低电平信号进行分段, 对于一个正向的闪烁脉沖, 具体 分为闪烁脉沖信号低于所设阈值、 闪烁脉沖信号越过并高于所设阈值、 闪烁脉 沖信号高于所设阈值、 闪烁脉沖信号越过并低于所设阈值、 闪烁脉沖信号低于 所设阈值五个阶段, 上述五个阶段顺序发生, 对于一个负向的闪烁脉沖, 具体 分为闪烁脉沖信号高于所设阈值、 闪烁脉沖信号越过并低于所设阈值、 闪烁脉 沖信号低于所设阈值、 闪烁脉沖信号越过并高于所设阈值、 闪烁脉沖信号高于 所设阈值五个阶段, 上述五个阶段顺序发生。
其中, 当闪烁脉沖信号为正向的脉沖信号时,五个阶段电平信号的特点分 别为, 闪烁脉沖信号低于所设阈值: 持续低电平信号; 闪烁脉沖信号越过并高 于所设阈值: 信号由低电平跳转到高电平, 并跟随多次高低电平的翻转最终变 为高电平; 闪烁脉沖信号高于所设阈值: 持续高电平信号; 闪烁脉沖信号越过 并低于所设阈值: 信号由高电平跳转到低电平, 并跟随多次高低电平的翻转最 终变为低电平; 闪烁脉沖信号低于所设阈值: 持续低电平信号。
其中, 当闪烁脉沖信号为负向的脉沖信号时,五个阶段电平信号的特点分 别为, 闪烁脉沖信号高于所设阈值: 持续高电平信号; 闪烁脉沖信号越过并低 于所设阈值: 信号由高电平跳转到低电平, 并跟随多次高低电平的翻转最终变 为低电平; 闪烁脉沖信号低于所设阈值: 持续低电平信号; 闪烁脉沖信号越过 并高于所设阈值: 信号由低电平跳转到高电平, 并跟随多次高低电平的翻转最 终变为高电平; 闪烁脉沖信号高于所设阈值: 持续高电平信号。
( 3 ) 当闪烁脉沖信号为正向或负向的脉沖信号时, 对于闪烁脉沖信号低 于所设阈值阶段和闪烁脉沖信号高于所设阈值阶段,比较器输出均保持恒定的 电平 (或者高电平或者低电平), 一般不会记录这两种情况下的时间, 只有在脉 沖信号越过阈值阶段并触发比较器产生高低电平翻转时, 才会记录时间, 所以 对这两种阶段下的闪烁脉沖越过阈值的时间点不进行记录。当闪烁脉沖信号为 正向的脉沖信号时,对于闪烁脉沖信号越过并高于所设阈值阶段, 该阶段包括 由于 N次跳变产生的 N个时间点, 闪烁脉沖越过阈值的时间点记录为该阶段 N 个时间点中任意一个时间点或者任意两个或两个以上的时间点的加权值或 者中值, 对于闪烁脉沖信号越过并低于所设阈值阶段, 该阶段包括由于 M次 跳变产生的 M个时间点, 闪烁脉沖越过阈值的时间点记录为该阶段 M个时间 点中任意一个时间点或者任意两个或两个以上的时间点的加权值或者中值;当 闪烁脉沖信号为负向的脉沖信号时,对于闪烁脉沖信号越过并于低所设阈值阶 段,该阶段包括由于 P次跳变产生的 P个时间点, 闪烁脉沖越过阈值的时间点 记录为该阶段 P 个时间点中任意一个时间点或者任意两个或两个以上的时间 点的加权值或者中值,对于闪烁脉沖信号越过并高于所设阈值阶段, 该阶段包 括由于 S次跳变产生的 S个时间点,闪烁脉沖越过阈值的时间点记录为该阶段 中 S 个时间点中任意一个时间点或者任意两个或两个以上的时间点的加权值 或者中值。
从步骤(3 ) 的描述可知, 本发明在拿到了 N ( M、 P、 S ) 次跳变的时间 点后, 可以任意的选择其中的一些时间点(可以是其中的一个点, 或者是其中 的两个点,还可以是其中的 n个点,这些点可以是连续的,也可以是非连续的, 可以有规律的抽取,也可以是无规律的抽取)或者全部的时间点进行加权或者 取中值点来表征准确的时间点。
本发明关于步骤(3 ) 的进一步优级保护范围是: 当闪烁脉沖信号为正向 的脉沖信号时, 闪烁脉沖越过阈值的时间点记录为该阶段中 N个时间点的中 值点和 /或至少一组低电平跳转到高电平的时间点的加权值, 对于闪烁脉沖信 号越过并低于所设阈值阶段, 闪烁脉沖越过阈值的时间点记录为该阶段中 M 个时间点的中值点和 /或至少一组高电平跳转到低电平的时间点的加权值, 当 闪烁脉沖信号为负向的脉沖信号时,对于闪烁脉沖信号越过并低于所设阈值阶 段, 闪烁脉沖越过阈值的时间点记录为该阶段 P个时间点的中值点和 /或至少 一组高电平跳转到低电平的时间点的加权值,对于闪烁脉沖信号越过并高于所 设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段中 S个时间点的中值点 和 /或至少一组低电平跳转到高电平的时间点的加权值。
其中,第一次低电平跳转到高电平的时间点和倒数第一次低电平跳转到高 电平的时间点、第二次低电平跳转到高电平的时间点和倒数第二次低电平跳转 到高电平的时间点及以此类推得到的两个时间点称为一组,第一次高电平跳转 到低电平的时间点和倒数第一次高电平跳转到低电平的时间点、第二次高电平 跳转到低电平的时间点和倒数第二次高电平跳转到低电平的时间点及以此类 推得到的两个时间点称为一组。
本发明关于步骤(3 ) 的第一个更进一步优级保护范围是: 当闪烁脉沖信 号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所设阈值阶段, 闪烁脉 沖越过阈值的时间点记录为该阶段第一次低电平跳转到高电平的时间和倒数 第一次低电平跳转到高电平的时间点的加权值,对于闪烁脉沖信号越过并低于 所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第一次高电平跳转到 低电平的时间和倒数第一次高电平跳转到低电平的时间点的加权值,当闪烁脉 沖信号为负向的脉沖信号时,对于闪烁脉沖信号越过并低于所设阈值阶段, 闪 烁脉沖越过阈值的时间点记录为该阶段第一次高电平跳转到低电平的时间和 倒数第一次高电平跳转到低电平的时间点的加权值,对于闪烁脉沖信号越过并 高于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第一次低电平跳 转到高电平的时间和倒数第一次低电平跳转到高电平的时间点的加权值。
本发明关于步骤(3 ) 的第二个更进一步优级保护范围是: 当闪烁脉沖信 号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所设阈值阶段, 闪烁脉 沖越过阈值的时间点记录为该阶段第二次低电平跳转到高电平的时间和倒数 第二次低电平跳转到高电平的时间点的加权值,对于闪烁脉沖信号越过并低于 所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第二次高电平跳转到 低电平的时间和倒数第二次高电平跳转到低电平的时间点的加权值,当闪烁脉 沖信号为负向的脉沖信号时,对于闪烁脉沖信号越过并低于所设阈值阶段, 闪 烁脉沖越过阈值的时间点记录为该阶段第二次高电平跳转到低电平的时间和 倒数第二次高电平跳转到低电平的时间点的加权值,对于闪烁脉沖信号越过并 高于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第二次低电平跳 转到高电平的时间和倒数第二次低电平跳转到高电平的时间点的加权值。
本发明关于步骤(3 ) 的第三个更进一步优级保护范围是: 当闪烁脉沖信 号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所设阈值阶段, 闪烁脉 沖越过阈值的时间点记录为对 N个时间点进行加权获得, 对于闪烁脉沖信号 越过并低于所设阈值阶段, 闪烁脉沖越过阈值的时间点记录为对 M个时间点 进行加权获得, 当闪烁脉沖信号为负向的脉沖信号时,对于闪烁脉沖信号越过 并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为对 P个时间点进行加 权获得,对于闪烁脉沖信号越过并高于所设阈值阶段, 闪烁脉沖越过阈值的时 间点记录为对 S个时间点进行加权获得。
本发明关于步骤(3 ) 的第四个更进一步优级保护范围是: 当闪烁脉沖信 号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所设阈值阶段, 闪烁脉 沖越过阈值的时间点记录为该阶段的 N个时间点的中值点, 对于闪烁脉沖信 号越过并低于所设阈值阶段, 闪烁脉沖越过阈值的时间点记录为该阶段的 M 个时间点的中值点, 当闪烁脉沖信号为负向的脉沖信号时,对于闪烁脉沖信号 越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段的 P个时 间点的中值点,对于闪烁脉沖信号越过并高于所设阈值阶段, 闪烁脉沖越过阈 值的时间点记录为该阶段的 S个时间点的中值点。
上述"中值点 "的定义为: 一组数据序列 x(i) ,i=l,2, . . . . . . ,η,将数据按数值大 小顺序排列, 取其中值点作为该点的输出, 即为中值点。 如果 η为奇数, 取中 值点; 如果 η为偶数, 则取中间两个值的平均值作为该点的输出。
上述"中值点 "指的是中间次跳变产生的时间, 比如跳变次数 Μ=8时, "中 值点"为第四次和第五次跳变对应的时间点的平均值; 比如跳变次数 Μ=7时, "中值点 "为第四次跳变对应的时间点。 跳变次数 Ν与之相同。
综上所述,本发明技术方案中闪烁脉实际越过阈值的时间点不仅仅可以通 过第一次跳变和最后一次跳变时间的加权获得 ,也可以通过第二次和倒数第二 次加权获得(等等)。 同时可以通过获得跳变阶段的每个跳变沿的时间, 通过 对所有的时间进行加权获得,也可以采用中值点, 甚至可以通过似然估计的方 法获得。
本发明主要是通过分析延迟链的输出寻找 'Ο-Γ 或 '1-0, 跳变的位置以 及相互之间的关系实现第一次跳变、最后一次跳变乃至中间所有次跳变的时间 获取。
本发明还公开的闪烁脉沖越过阈值的时间点获取装置,其包括:比较单元、 延迟链、 闪烁脉沖状态时间码记录单元、 时间码分类单元、相对时间解释单元 及时间计算与传输单元。
所述比较单元用以根据闪烁脉沖信号幅度与所设阈值之间的关系输出电 平信号, 当闪烁脉沖幅度高于阈值时输出高电平, 当闪烁脉沖幅度低于阈值时 输出低电平。
所述延迟链由若干延迟单元级连而成,所述延迟单元用以接受和输出高低 电平信号。 所述延迟链中各个延迟单元输出当前所接受到的信号状态的相反 值, 经过 dt时间后将上一时刻的状态传输到下一个级连的延迟单元, 同时自 身接受上一个级连的延迟单元传输到的信号并输出该状态的相反值。
所述闪烁脉沖状态时间码记录单元包括等频率的方波信号、计数器及数据 緩存单元, 其中, 所述计数器用以记录方波上升沿的到达次数, 所述数据緩存 单元用以记录方波信号上升沿时刻下延迟链中各个延迟单元的输出信号,延迟 链的输出信号及其所对应的方波上升沿的到达次数合并成一个时间码。
其中, 等频率的方波信号的频率范围为 20GHz到 10MHz。
其中, 所述计数器用以记录方波上升沿的到达次数, 所述数据緩存单元用 以记录方波信号上升沿时刻下延迟链中各个延迟单元的输出信号,延迟链的输 出信号及其所对应的方波上升沿的到达次数合并成一个时间码。
所述时间码分类单元用以根据所记录的延迟链输出信号的特点,对延迟链 的输出信号进行分类。所述时间码分类单元中延迟链的输出信号分为五类, 对 于一个正向的闪烁脉沖, 具体分为闪烁脉沖信号低于所设阈值、 闪烁脉沖信号 越过并高于所设阈值、 闪烁脉沖信号高于所设阈值、 闪烁脉沖信号越过并低于 所设阈值、 闪烁脉沖信号低于所设阈值五个阶段, 上述五个阶段顺序发生, 对 于一个负向的闪烁脉沖, 具体分为闪烁脉沖信号高于所设阈值、 闪烁脉沖信号 越过并低于所设阈值、 闪烁脉沖信号低于所设阈值、 闪烁脉沖信号越过并高于 所设阈值、 闪烁脉沖信号高于所设阈值五个阶段, 上述五个阶段顺序发生。
当闪烁脉沖信号为正向的脉沖信号时,每类的特点为, 闪烁脉沖信号低于 所设阈值: 全部为连续的 T ; 闪烁脉沖信号越过并高于所设阈值: 输出信号 由低有效位到高有效位为多个连续的' 0,之后变换为 T并跟随多次' 0,、 T变换 后为多个连续的 T; 闪烁脉沖信号高于所设阈值: 全部为连续的 '0,; 闪烁脉 沖信号越过并低于所设阈值: 输出信号由低有效位到高有效位为多个连续的
T之后变换为' 0,并跟随多次 τ、 '0,变换后为多个连续的 '0,; 闪烁脉沖信号低 于所设阈值: 全部为连续的 τ。
当闪烁脉沖信号为负向的脉沖信号时,每类的特点为, 闪烁脉沖信号高于 所设阈值: 全部为连续的 '0,; 闪烁脉沖信号越过并低于所设阈值: 输出信号 由低有效位到高有效位为多个连续的 Τ之后变换为 '0,并跟随多次 Τ、 '0,变换 后为多个连续的' 0,; 闪烁脉沖信号低于所设阈值: 全部为连续的 Τ ; 闪烁脉 沖信号越过并高于所设阈值: 输出信号由低有效位到高有效位为多个连续的
'0,之后变换为 Τ并跟随多次' 0,、 Τ变换后为多个连续的 Τ; 闪烁脉沖信号高 于所设阈值: 全部为连续的 '0'。
所述相对时间解释单元用以解释跳变信号相对随后方波上升沿的时间间 隔。
当闪烁脉沖信号为正向的脉沖信号时, 所述相对时间解释单元中,在闪烁 脉沖信号越过并高于所设阈值状态下, 从低位到高位统计第一次出现 Τ时延 时单元的个数用于表征第一次低电平跳转到高电平的时间,从低位到高位统计 最后一次出现 '0,时延时单元的个数用于表征最后一次低电平跳转到高电平的 时间; 在闪烁脉沖信号越过并低于所设阈值状态下,从低位到高位统计最后一 次出现 Τ 时延时单元的个数用于表征第一次高电平跳转到低电平的时间, 从低位到高位统计第一次出现 '0, 时延时单元的个数用于表征最后一次高电 平跳转到低电平的时间。 当闪烁脉沖信号为负向的脉沖信号时, 所述相对时间解释单元中,在闪烁 脉沖信号越过并低于所设阈值状态下, 从低位到高位统计第一次出现 '0,时延 时单元的个数用于表征第一次高电平跳转到低电平的时间,从低位到高位统计 最后一次出现 T时延时单元的个数用于表征最后一次高电平跳转到低电平的 时间; 在闪烁脉沖信号越过并高于所设阈值状态下,从低位到高位统计最后一 次出现 '0, 时延时单元的个数用于表征第一次低电平跳转到高电平的时间, 从低位到高位统计第一次出现 T 时延时单元的个数用于表征最后一次低电 平跳转到高电平的时间。
所述时间计算与传输单元依据时间解释单元所获得的时间信息计算出跳 变发生时候每次翻转的时间信息,通过选择一个时间点或者对任意两个或两个 以上时间点进行加权得到准确的闪烁脉沖越过阈值的时间点,并传输到下一单 元。
下面将结合几个具体的实施例对本发明进行进一步描述。
如图 3所示,图 3为闪烁脉沖经过比较器时所形成的逻辑输出信号以及对 应的延迟链输出信号由低有效位(LSB )到高有效位 ( MSB ) 的状态示意图。 本实施例中捕获了闪烁脉沖越过参考阈值电压时的时间信息。由于脉沖上升沿 部分未受到噪声的影响在脉沖越过并高于阈值时仅产生一次跳变后逻辑信号 便稳定维持在高电平状态;脉沖下降沿部分受到噪声的影响在脉沖越过并低于 阈值时产生一次跳变后经过多次状态变化才稳定在逻辑低电平状态。 图中 A、 B、 C分别代表了脉沖越过并高于阈值阶段的上跳沿; 脉沖越过并低于阈值阶 段第一个下跳沿和最后一个下跳沿。将该逻辑信号输入到延时链中, 不同时钟 上升沿下延时链的输出如图中左侧所示。针对该情况,本例中采用三条延迟链, 分别用于记录 A、 B、 C发生的时间, 三条延迟链采用了三套不同的编码方式。 捕获 A时刻时, 所使用的延迟链由 m个加法器级联组成, 将每一级加法器的 被加数置 1 , 所有加数置 0, 当连接到进位链第一级加法器进位端的比较器输 出逻辑电平从低到高跳变时, 加法器输出 Sum将从高电平跳变到低电平, 如 图 3中 A点所示。通过使用优先编码器编码延时链从低位( LSB )到高位( MSB ) 连续出现的 0的个数 N, 如果每个加法器的延迟为 T, 那么 N*T即为 A时刻 与当前时钟上升沿之间的时间间隔。 对于捕获 B时刻, 进位链由 m个加法器 级联组成, 将每一级加法器的被加数置 1 , 所有加数置 0, 当连接到进位链第 一级加法器进位端的比较器输出逻辑电平从低到高跳变时, 加法器输出 Sum 将从高电平跳变到低电平, 如图 3 中 B 点所示, 通过编码进延时链从高位 ( MSB )到低位( LSB )连续出现的 0的个数 N, 如果每个加法器的延迟为 T, 那么 N*T即为 B时刻与当前时钟上升沿之间的时间间隔。 捕获 C时刻时, 进 位链由 m个加法器级联组成, 将每一级加法器的被加数置 1 , 所有加数置 0, 当连接到进位链第一级加法器进位端的比较器输出逻辑电平从低到高跳变时, 加法器输出 Sum将从高电平跳变到低电平, 如图 3中 C点所示, 通过编码进 延时链从低位 ( LSB )到高位(MSB )连续出现的 1的个数 N, 如果每个加法 器的延迟为 T, 那么 (m-N ) *T即为 C时刻与当前时钟上升沿之间的时间间 隔。
通过上述方式获得的时间间隔,同时根据时种计数器所记录下的时钟周期 数就可以获得 A、 B、 C三个时刻的时间。 图 4中给出了利用本方法获取的不 同阈值下的时间采样点(图 4中给出了四个不同阈值的结果, 即每个阈值下的 时间采用点的获取均采用的是本发明中描述的方法), 其中圓点是实际获取的 采样点。考虑到闪烁脉沖下降沿部分的噪声, 闪烁脉沖实际越过阈值的时间由 闪烁脉沖下降沿部分获取的两个采样点通过加权的方式所获得,即图中星号所 标¾的点。
本发明提供了一种方法用于解决因噪声引起的电压时间对采样不准确的 问题。传统方法并没有考虑闪烁脉沖下降沿部分的噪声, 直接采用第一个跳变 沿作为脉沖越过阈值的时间点。这种方法使得在有噪声的情况下, 所采集到的 时间一定会早于脉沖实际越过阈值的时间点, 采集准确度不足。
本发明提出了实现脉沖越过阈值阶段的所有跳变沿的时间获取方法,通过
S ) 次跳变的时间点, 并对其分析和处理来更加准确的还原脉沖形状, 降低噪 声对脉沖重建的影响。
本发明获取这些时间点主要是通过对进位链上的输出状态进行研究来拿 到每个跳变的时间点。
本发明实现了获取第一个跳变沿和最后一个跳变沿的时间。利用获得的两 点。
本发明的闪烁脉沖越过阈值的时间点获取方法及装置利用获得的多个跳 变沿的时间通过中值点和 /或至少一组跳变沿时间进行加权的方法获得更为准 确的脉沖实际越过阈值的时间点。
本发明通过分析延迟链的输出寻找 '0-1, 或 '1-0, 跳变的位置以及相互 之间的关系实现第一次跳变、 最后一次跳变乃至中间所有次跳变的时间获取。
对于本领域技术人员而言, 显然本发明不限于上述示范性实施例的细节, 而且在不背离本发明的精神或基本特征的情况下,能够以其他的具体形式实现 本发明。 因此, 无论从哪一点来看, 均应将实施例看作是示范性的, 而且是非 限制性的, 本发明的范围由所附权利要求而不是上述说明限定, 因此旨在将落 在权利要求的等同要件的含义和范围内的所有变化嚢括在本发明内。不应将权 利要求中的任何附图标记视为限制所涉及的权利要求。
此外, 应当理解, 虽然本说明书按照实施方式加以描述, 但并非每个实施 方式仅包含一个独立的技术方案, 说明书的这种叙述方式仅仅是为清楚起见, 本领域技术人员应当将说明书作为一个整体,各实施例中的技术方案也可以经 适当组合, 形成本领域技术人员可以理解的其他实施方式。

Claims

权 利 要 求
1、 一种闪烁脉沖越过阈值的时间点获取方法, 其特征在于: 步骤如下: 根据所设置的阈值,通过一比较器将闪烁脉沖与阈值的关系转换为电平信 号, 当闪烁脉沖幅度高于阈值时输出高电平, 当闪烁脉沖幅度低于阈值时输出 低电平;
对输出的高、低电平信号进行分段,对于一个正向的闪烁脉沖,具体分为: 闪烁脉沖信号低于所设阈值、 闪烁脉沖信号越过并高于所设阈值、 闪烁脉沖信 号高于所设阈值、闪烁脉沖信号越过并低于所设阈值和闪烁脉沖信号低于所设 阈值五个阶段, 上述正向的闪烁脉沖的五个阶段顺序发生; 对于一个负向的闪 烁脉沖, 具体分为: 闪烁脉沖信号高于所设阈值、 闪烁脉沖信号越过并低于所 设阈值、 闪烁脉沖信号低于所设阈值、 闪烁脉沖信号越过并高于所设阈值和闪 烁脉沖信号高于所设阈值五个阶段, 上述负向的闪烁脉沖五个阶段顺序发生; 当闪烁脉沖信号为正向或负向的脉沖信号时,对于闪烁脉沖信号低于所设 阈值阶段和闪烁脉沖信号高于所设阈值阶段,比较器输出均保持恒定的高电平 或低电平, 对闪烁脉沖越过阈值的时间点不进行记录;
当闪烁脉沖信号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所设 阈值阶段, 该阶段包括由于 N次跳变产生的 N个时间点, 闪烁脉沖越过阈值 的时间点记录为该阶段 N个时间点中任意一个时间点, 或者, 任意两个或两 个以上的时间点的加权值或者中值;对于闪烁脉沖信号越过并低于所设阈值阶 段, 该阶段包括由于 M次跳变产生的 M个时间点, 闪烁脉沖越过阈值的时间 点记录为该阶段 M个时间点中任意一个时间点, 或者, 任意两个或两个以上 的时间点的加权值或者中值;
当闪烁脉沖信号为负向的脉沖信号时,对于闪烁脉沖信号越过并于低所设 阈值阶段,该阶段包括由于 P次跳变产生的 P个时间点, 闪烁脉沖越过阈值的 时间点记录为该阶段 P个时间点中任意一个时间点,或者,任意两个或两个以 上的时间点的加权值或者中值; 对于闪烁脉沖信号越过并高于所设阈值阶段, 该阶段包括由于 S次跳变产生的 S个时间点,闪烁脉沖越过阈值的时间点记录 为该阶段中 S个时间点中任意一个时间点,或者,任意两个或两个以上的时间 点的加权值或者中值。
2、 根据权利要求 1所述的闪烁脉沖越过阈值的时间点获取方法, 其特征 在于: 当闪烁脉沖信号为正向的脉沖信号时,正向的脉沖信号的五个阶段电平 信号的特点分别对应为: 持续低电平信号; 信号由低电平跳转到高电平, 并跟 随多次高低电平的翻转最终变为高电平; 持续高电平信号; 信号由高电平跳转 到低电平, 并跟随多次高低电平的翻转最终变为低电平; 以及, 持续低电平信 号;
当闪烁脉沖信号为负向的脉沖信号时,负向的脉沖信号的五个阶段电平信 号的特点分别对应为, 持续高电平信号; 信号由高电平跳转到低电平, 并跟随 多次高低电平的翻转最终变为低电平; 持续低电平信号; 信号由低电平跳转到 高电平,并跟随多次高低电平的翻转最终变为高电平;以及,持续高电平信号。
3、 根据权利要求 1或 2任一所述的闪烁脉沖越过阈值的时间点获取方法, 其特征在于: 当闪烁脉沖信号为正向的脉沖信号时, 闪烁脉沖越过阈值的时间 点记录为该阶段中 N个时间点的中值点和 /或至少一组低电平跳转到高电平的 时间点的加权值,对于闪烁脉沖信号越过并低于所设阈值阶段, 闪烁脉沖越过 阈值的时间点记录为该阶段中 M个时间点的中值点和 /或至少一组高电平跳转 到低电平的时间点的加权值;
当闪烁脉沖信号为负向的脉沖信号时,对于闪烁脉沖信号越过并低于所设 阈值阶段, 闪烁脉沖越过阈值的时间点记录为该阶段 P个时间点的中值点和 / 或至少一组高电平跳转到低电平的时间点的加权值,对于闪烁脉沖信号越过并 高于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段中 S个时间点的 中值点和 /或至少一组低电平跳转到高电平的时间点的加权值, 其中, 第一次 低电平跳转到高电平的时间点和倒数第一次低电平跳转到高电平的时间点、第 二次低电平跳转到高电平的时间点和倒数第二次低电平跳转到高电平的时间 点及以此类推得到的两个时间点称为一组,第一次高电平跳转到低电平的时间 点和倒数第一次高电平跳转到低电平的时间点、第二次高电平跳转到低电平的 时间点和倒数第二次高电平跳转到低电平的时间点及以此类推得到的两个时 间点称为一组。
4、 根据权利要求 3所述的闪烁脉沖越过阈值的时间点获取方法, 其特征 在于: 当闪烁脉沖信号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所 设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第一次低电平跳转到高 电平的时间和倒数第一次低电平跳转到高电平的时间点的加权值,对于闪烁脉 沖信号越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第 一次高电平跳转到低电平的时间和倒数第一次高电平跳转到低电平的时间点 的力口权值;
当闪烁脉沖信号为负向的脉沖信号时,对于闪烁脉沖信号越过并低于所设 阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第一次高电平跳转到低电 平的时间和倒数第一次高电平跳转到低电平的时间点的加权值,对于闪烁脉沖 信号越过并高于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第一 次低电平跳转到高电平的时间和倒数第一次低电平跳转到高电平的时间点的 加权值。
5、 根据权利要求 3所述的闪烁脉沖越过阈值的时间点获取方法, 其特征 在于: 当闪烁脉沖信号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所 设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第二次低电平跳转到高 电平的时间和倒数第二次低电平跳转到高电平的时间点的加权值,对于闪烁脉 沖信号越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第 二次高电平跳转到低电平的时间和倒数第二次高电平跳转到低电平的时间点 的加权值; 当闪烁脉沖信号为负向的脉沖信号时,对于闪烁脉沖信号越过并低 于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶段第二次高电平跳转 到低电平的时间和倒数第二次高电平跳转到低电平的时间点的加权值,对于闪 烁脉沖信号越过并高于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为该阶 段第二次低电平跳转到高电平的时间和倒数第二次低电平跳转到高电平的时 间点的加权值。
6、 根据权利要求 3所述的闪烁脉沖越过阈值的时间点获取方法, 其特征 在于: 当闪烁脉沖信号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所 设阈值阶段, 闪烁脉沖越过阈值的时间点记录为对 N个时间点进行加权获得, 对于闪烁脉沖信号越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录 为对 M个时间点进行加权获得, 当闪烁脉沖信号为负向的脉沖信号时, 对于 闪烁脉沖信号越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录为对 P个时间点进行加权获得, 对于闪烁脉沖信号越过并高于所设阈值阶段, 闪烁 脉沖越过阈值的时间点记录为对 S个时间点进行加权获得。
7、 根据权利要求 3所述的闪烁脉沖越过阈值的时间点获取方法, 其特征 在于: 当闪烁脉沖信号为正向的脉沖信号时,对于闪烁脉沖信号越过并高于所 设阈值阶段, 闪烁脉沖越过阈值的时间点记录为该阶段的 N个时间点的中值 点,对于闪烁脉沖信号越过并低于所设阈值阶段, 闪烁脉沖越过阈值的时间点 记录为该阶段的 M个时间点的中值点, 当闪烁脉沖信号为负向的脉沖信号时, 对于闪烁脉沖信号越过并低于所设阈值阶段,闪烁脉沖越过阈值的时间点记录 为该阶段的 P 个时间点的中值点, 对于闪烁脉沖信号越过并高于所设阈值阶 段, 闪烁脉沖越过阈值的时间点记录为该阶段的 S个时间点的中值点。
8、 一种闪烁脉沖越过阈值的时间点获取装置, 其特征在于: 其包括: 比较单元,用以根据闪烁脉沖信号幅度与所设阈值之间的关系输出电平信 号, 当闪烁脉沖幅度高于阈值时输出高电平, 当闪烁脉沖幅度低于阈值时输出 低电平;
延迟链, 所述延迟链由若干延迟单元级连而成, 所述延迟单元用以接收和 输出高低电平信号;
闪烁脉沖状态时间码记录单元,所述闪烁脉沖状态时间码记录单元包括等 频率的方波信号、 计数器及数据緩存单元, 其中, 所述计数器用以记录方波上 升沿的到达次数,所述数据緩存单元用以记录方波信号上升沿时刻下延迟链中 各个延迟单元的输出信号,延迟链的输出信号及其所对应的方波上升沿的到达 次数合并成一个时间码;
时间码分类单元, 用以根据所记录的延迟链输出信号的特点,对延迟链的 输出信号进行分类;
相对时间解释单元, 用以解释跳变信号相对随后方波上升沿的时间间隔; 时间计算与传输单元,依据时间解释单元所获得的时间信息计算出跳变发 生时候每次翻转的时间信息,通过选择一个时间点或者对任意两个或两个以上 时间点进行加权得到准确的闪烁脉沖越过阈值的时间点, 并传输到下一单元。
9、 根据权利要求 8所述的闪烁脉沖越过阈值的时间点获取装置, 其特征 在于: 所述延迟链中各个延迟单元输出当前所接受到的信号状态的相反值, 经 过 dt时间后将上一时刻的状态传输到下一个级连的延迟单元, 同时自身接受 上一个级连的延迟单元传输到的信号并输出该状态的相反值。
10、 根据权利要求 8所述的闪烁脉沖越过阈值的时间点获取装置,其特征 在于: 所述闪烁脉沖状态时间码记录单元中等频率的方波信号的频率范围为 20GHz到 10MHz。
11、 根据权利要求 8所述的闪烁脉沖越过阈值的时间点获取装置,其特征 在于: 所述时间码分类单元中延迟链的输出信号分为五类,对于一个正向的闪 烁脉沖, 具体分为: 闪烁脉沖信号低于所设阈值、 闪烁脉沖信号越过并高于所 设阈值、 闪烁脉沖信号高于所设阈值、 闪烁脉沖信号越过并低于所设阈值和闪 烁脉沖信号低于所设阈值五个阶段, 上述正向的闪烁脉沖五个阶段顺序发生; 对于一个负向的闪烁脉沖, 具体分为闪烁脉沖信号高于所设阈值、 闪烁脉沖信 号越过并低于所设阈值、 闪烁脉沖信号低于所设阈值、 闪烁脉沖信号越过并高 于所设阈值和闪烁脉沖信号高于所设阈值五个阶段,上述负向的闪烁脉沖五个 阶段顺序发生;当闪烁脉沖信号为正向的脉沖信号时,每类的特点分别对应为: 全部为连续的 T , 输出信号由低有效位到高有效位为多个连续的 '0,之后变换 为 T并跟随多次' 0,、 T变换后为多个连续的 T , 全部为连续的 '0,, 输出信号 由低有效位到高有效位为多个连续的 T之后变换为 '0,并跟随多次 T、 '0,变换 后为多个连续的' 0,, 以及, 全部为连续的 T ; 当闪烁脉沖信号为负向的脉沖 信号时, 每类的特点分别对应为: 全部为连续的 '0,, 输出信号由低有效位到 高有效位为多个连续的 T之后变换为' 0,并跟随多次 τ、 '0,变换后为多个连续 的' 0,, 全部为连续的 Τ , 输出信号由低有效位到高有效位为多个连续的' 0,之 后变换为 Τ并跟随多次' 0,、 Τ变换后为多个连续的 Τ , 以及, 全部为连续的 '0,。
12、 根据权利要求 11所述的闪烁脉沖越过阈值的时间点获取装置, 其特 征在于: 当闪烁脉沖信号为正向的脉沖信号时, 所述相对时间解释单元中, 在 闪烁脉沖信号越过并高于所设阈值状态下, 从低位到高位统计第一次出现 T 时延时单元的个数用于表征第一次低电平跳转到高电平的时间,从低位到高位 统计最后一次出现' 0,时延时单元的个数用于表征最后一次低电平跳转到高电 平的时间; 在闪烁脉沖信号越过并低于所设阈值状态下,从低位到高位统计最 后一次出现 T 时延时单元的个数用于表征第一次高电平跳转到低电平的时 间, 从低位到高位统计第一次出现 '0, 时延时单元的个数用于表征最后一次 高电平跳转到低电平的时间;
当闪烁脉沖信号为负向的脉沖信号时, 所述相对时间解释单元中,在闪烁 脉沖信号越过并低于所设阈值状态下, 从低位到高位统计第一次出现 '0,时延 时单元的个数用于表征第一次高电平跳转到低电平的时间,从低位到高位统计 最后一次出现 T时延时单元的个数用于表征最后一次高电平跳转到低电平的 时间; 在闪烁脉沖信号越过并高于所设阈值状态下,从低位到高位统计最后一 次出现 '0, 时延时单元的个数用于表征第一次低电平跳转到高电平的时间, 从低位到高位统计第一次出现 T 时延时单元的个数用于表征最后一次低电 平跳转到高电平的时间。
PCT/CN2013/090392 2013-11-14 2013-12-25 闪烁脉冲越过阈值的时间点获取方法及装置 WO2015070504A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2016529452A JP6251393B2 (ja) 2013-11-14 2013-12-25 微光パルスがしきい値を通過した時点を取得するための方法およびデバイス
EP13897366.4A EP3070847B1 (en) 2013-11-14 2013-12-25 Method and device for acquiring time point where glimmering pulse passes over threshold
US15/035,996 US10120342B2 (en) 2013-11-14 2013-12-25 Method and device for acquiring time point where glimmering pulse passes over threshold

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310572921.0A CN104639123B (zh) 2013-11-14 2013-11-14 闪烁脉冲越过阈值的时间点获取方法及装置
CN201310572921.0 2013-11-14

Publications (1)

Publication Number Publication Date
WO2015070504A1 true WO2015070504A1 (zh) 2015-05-21

Family

ID=53056675

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/090392 WO2015070504A1 (zh) 2013-11-14 2013-12-25 闪烁脉冲越过阈值的时间点获取方法及装置

Country Status (6)

Country Link
US (1) US10120342B2 (zh)
EP (1) EP3070847B1 (zh)
JP (1) JP6251393B2 (zh)
CN (1) CN104639123B (zh)
HU (1) HUE042347T2 (zh)
WO (1) WO2015070504A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105842544B (zh) * 2016-03-18 2018-09-18 南京瑞派宁信息科技有限公司 一种迭代的闪烁脉冲时间标记及其交叉验证方法
JP6932265B2 (ja) * 2018-08-17 2021-09-08 三菱電機株式会社 放射線計測装置
CN109171787B (zh) 2018-08-27 2021-02-26 苏州瑞派宁科技有限公司 脉冲信号的采样方法、装置和计算机程序介质
CN110061733B (zh) * 2019-04-19 2023-04-04 苏州瑞迈斯医疗科技有限公司 脉冲信号的计数方法、重建方法及芯片
CN111158039B (zh) * 2020-01-02 2022-01-04 苏州瑞派宁科技有限公司 信号采样、重建方法及装置
CN115113512B (zh) * 2022-05-26 2024-03-29 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 脉冲的采样方法、采样系统、装置及计算机可读存储介质
CN115032877B (zh) * 2022-05-26 2024-03-29 合肥综合性国家科学中心人工智能研究院(安徽省人工智能实验室) 脉冲的采样方法、采样系统、装置及计算机可读存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303174A (zh) * 1999-12-10 2001-07-11 吕跃进 内烁脉冲器及用途
CN102262238A (zh) * 2011-04-19 2011-11-30 苏州瑞派宁科技有限公司 一种提取闪烁脉冲信息的方法及装置
CN202177701U (zh) * 2011-04-19 2012-03-28 苏州瑞派宁科技有限公司 一种提取闪烁脉冲信息的装置
CN102843139A (zh) * 2012-09-20 2012-12-26 苏州瑞派宁科技有限公司 一种闪烁脉冲数字化的方法及装置
CN202801645U (zh) * 2012-09-20 2013-03-20 苏州瑞派宁科技有限公司 一种闪烁脉冲数字化的装置

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5148178A (en) * 1988-10-11 1992-09-15 Santa Barbara Research Center Precision ranging system
US7617270B2 (en) * 2002-10-07 2009-11-10 Nikitin Alexei V Method and apparatus for adaptive real-time signal conditioning, processing, analysis, quantification, comparison, and control
JP4279798B2 (ja) 2004-04-02 2009-06-17 財團法人国家衛生研究院 アナログ/デジタル変換器を使用せず、ガンマ線エネルギーをデジタル化し、ピーク期間と減衰期間の時間定数を特徴付けする装置及び使用法
GB2421317B (en) * 2004-12-15 2009-02-11 Agilent Technologies Inc A method and apparatus for detecting leading pulse edges
JP5421102B2 (ja) 2006-07-28 2014-02-19 コーニンクレッカ フィリップス エヌ ヴェ 陽電子放出型断層撮影における飛行時間測定
JP5161444B2 (ja) 2006-08-11 2013-03-13 テクトロニクス・インコーポレイテッド ジッタ特性分析プログラム及びジッタ特性の表又はグラフ表示方法
GB2441572B (en) 2006-09-05 2009-01-28 Stream Technology Ltd M Switching amplifier
WO2008040384A1 (en) * 2006-10-04 2008-04-10 Cern - European Organization For Nuclear Research Readout circuit for use in a combined pet-ct apparatus
JP2008092387A (ja) * 2006-10-04 2008-04-17 Nagasaki Univ アナログ・デジタル変換回路、タイミング信号発生回路および制御装置
JP4585545B2 (ja) 2007-06-29 2010-11-24 株式会社豊田中央研究所 ノイズ除去回路及びそれを備えたコンパレータ回路
US8258480B2 (en) * 2008-03-03 2012-09-04 The Board Of Trustees Of The Leland Stanford Junior University High energy photon detection using pulse width modulation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1303174A (zh) * 1999-12-10 2001-07-11 吕跃进 内烁脉冲器及用途
CN102262238A (zh) * 2011-04-19 2011-11-30 苏州瑞派宁科技有限公司 一种提取闪烁脉冲信息的方法及装置
CN202177701U (zh) * 2011-04-19 2012-03-28 苏州瑞派宁科技有限公司 一种提取闪烁脉冲信息的装置
CN102843139A (zh) * 2012-09-20 2012-12-26 苏州瑞派宁科技有限公司 一种闪烁脉冲数字化的方法及装置
CN202801645U (zh) * 2012-09-20 2013-03-20 苏州瑞派宁科技有限公司 一种闪烁脉冲数字化的装置

Also Published As

Publication number Publication date
CN104639123A (zh) 2015-05-20
JP2017501387A (ja) 2017-01-12
EP3070847A1 (en) 2016-09-21
US10120342B2 (en) 2018-11-06
CN104639123B (zh) 2017-08-25
HUE042347T2 (hu) 2019-06-28
JP6251393B2 (ja) 2017-12-20
EP3070847B1 (en) 2018-12-19
US20160274547A1 (en) 2016-09-22
EP3070847A4 (en) 2017-08-02

Similar Documents

Publication Publication Date Title
WO2015070504A1 (zh) 闪烁脉冲越过阈值的时间点获取方法及装置
US8970421B1 (en) High resolution sampling-based time to digital converter
US7345604B2 (en) Analog to digital conversion using recurrent neural networks
Wang et al. A 3.0-ps rms precision 277-MSamples/s throughput time-to-digital converter using multi-edge encoding scheme in a Kintex-7 FPGA
US6492929B1 (en) Analogue to digital converter and method of analogue to digital conversion with non-uniform sampling
CN109936360B (zh) 脉冲计数装置及辐射探测系统
WO2012144635A1 (ja) 信号処理システム及び方法
WO2014121530A1 (zh) 一种多阈值采样数字化器件的阈值校正方法
JP5666813B2 (ja) 時間幅測定装置
US20090304140A1 (en) Asynchronous ping-pong counter and therof method
CN110061733B (zh) 脉冲信号的计数方法、重建方法及芯片
CN108964663A (zh) 一种基于预测算法的心电信号特征参数提取方法
KR20150127928A (ko) 카운터, 그 카운터를 포함하는 아날로그/디지털 컨버터 및 그 아날로그/디지털 컨버터를 포함하는 이미지 센싱 장치
CN110988961B (zh) 信号处理方法、装置和探测系统
US9793914B2 (en) Analog-to-digital converter, electronic device, and method of controlling analog-to-digital converter
CN106712776A (zh) 连续渐近式类比数位转换器及其控制方法
Delagnes What is the theoretical time precision achievable using a dCFD algorithm?
KR101463062B1 (ko) 신호 처리 장치 및 방법, 그를 이용한 수신기 그리고 거리 측정 장치
CN104749407B (zh) 示波器触发脉宽检测方法、装置及一种示波器
CN107241101B (zh) 数据串行化电路
CN116412906A (zh) 单光子多脉冲探测方法、系统及功能电路
CN115113512B (zh) 脉冲的采样方法、采样系统、装置及计算机可读存储介质
CN111669182B (zh) 信号采样装置、系统及方法
KR102109839B1 (ko) 항법신호를 수신하는 수신기 및 이의 항법신호 측정 방법
TW200822571A (en) Sampling control system and method for A/D converter

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897366

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2016529452

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15035996

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013897366

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013897366

Country of ref document: EP