WO2015070469A1 - 膜分离装置 - Google Patents

膜分离装置 Download PDF

Info

Publication number
WO2015070469A1
WO2015070469A1 PCT/CN2013/087374 CN2013087374W WO2015070469A1 WO 2015070469 A1 WO2015070469 A1 WO 2015070469A1 CN 2013087374 W CN2013087374 W CN 2013087374W WO 2015070469 A1 WO2015070469 A1 WO 2015070469A1
Authority
WO
WIPO (PCT)
Prior art keywords
chamber
medium
membrane
separation
rotor
Prior art date
Application number
PCT/CN2013/087374
Other languages
English (en)
French (fr)
Inventor
周小山
孙明
雷激
Original Assignee
周小山
孙明
雷激
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 周小山, 孙明, 雷激 filed Critical 周小山
Priority to NZ720020A priority Critical patent/NZ720020A/en
Priority to EP13897278.1A priority patent/EP3069783B1/en
Priority to AU2013405511A priority patent/AU2013405511B2/en
Priority to US15/036,639 priority patent/US10195568B2/en
Publication of WO2015070469A1 publication Critical patent/WO2015070469A1/zh
Priority to PH12016500876A priority patent/PH12016500876B1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/16Rotary, reciprocated or vibrated modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/08Flat membrane modules
    • B01D63/087Single membrane modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/20Specific housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/24Specific pressurizing or depressurizing means
    • B01D2313/243Pumps
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/02Rotation or turning
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/22Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by diffusion

Definitions

  • the present invention relates to a membrane separation apparatus which is mainly used in the technical field of gas (liquid) medium separation.
  • Membrane separation emerged in the early 20th century. A new separation technology that emerged rapidly after the 1960s refers to the selective separation of molecules of different particle sizes at the molecular level through a semipermeable membrane.
  • the semi-permeable membrane is also called the separation membrane or the membrane.
  • the membrane wall is covered with small pores. According to the pore size, it can be divided into: microfiltration membrane (MF), ultrafiltration membrane (UF), nanofiltration membrane (NF), reverse osmosis membrane ( RO), etc., membrane separation uses cross-flow filtration.
  • MF microfiltration membrane
  • UF ultrafiltration membrane
  • NF nanofiltration membrane
  • RO reverse osmosis membrane
  • Membrane separation technology has been widely used in food, medicine, biology and environmental protection due to its functions of separation, concentration, purification and refining.
  • the present invention provides a simple and compact structure that combines a gas compression (or liquid pump) with a separation chamber, eliminating the need for complex gas (liquid) lines. Its biggest feature is high integration, high unit volume per unit, low cost, especially when multi-stage coaxial series is used, the volume and cost increase are not much, which is very beneficial to solve the separation concentration of current membrane separation equipment. Description
  • a membrane separation device comprising: an outer casing, an inner surface of the outer casing being a curved surface, the outer casing being provided with at least one inlet medium port, and at least one for discharging being separated Media outlet of the medium;
  • a rotor the rotor is disposed in the outer casing, and the outer surface of the rotor is provided with at least two contact ends that are always in sliding contact with the inner surface of the outer casing, and the outer surface of the rotor is adjacent to the inner surface of the outer casing Forming a sealed separate cavity between the contact ends, each individual cavity being separated by the contact end, the inner portion of the rotor being empty, the inner portion serving as a reservoir chamber; the separation chamber, the separation chamber being disposed at the rotor The inside is a part of the rotor, and a separation chamber is arranged between the adjacent contact ends.
  • the separation chamber is filled with a membrane, and the membrane separates the separation chamber into inner and outer portions, and the separation outdoor wall is provided with a check valve corresponding to each individual chamber.
  • the separation chamber inner wall is provided with a medium port corresponding to the storage medium chamber, and the storage medium chamber is connected with the outlet medium port of the outer casing;
  • the medium entering the individual cavity through the inlet port on the outer casing enters the separation chamber through the one-way valve under the action of pressure, and the medium separated by the membrane enters the storage medium from the outlet port of the separation inner wall.
  • the chamber is then passed through the outlet of the outer casing.
  • the membrane may be a flat membrane.
  • the separated medium enters the gas storage chamber through the outlet membrane through the outlet membrane.
  • the outer casing is further provided with at least one discharge medium port for discharging the remaining medium
  • the storage chamber of the rotor is divided into two parts by a partition: a first storage medium chamber storing the separated medium and a second storage medium chamber storing the remaining medium;
  • the separation chamber inner wall is provided with the outlet medium port corresponding to the first storage medium chamber, and the space between the membrane and the outer wall of each separation chamber is connected to the second storage medium chamber through the conduit, and the first storage medium chamber and the outer casing The medium port is connected, and the second storage medium chamber is connected to the discharge port of the outer casing;
  • the medium entering the individual cavity through the inlet port of the outer casing enters the separation chamber through the one-way valve under the action of pressure, and the medium separated by the membrane is separated from the outlet port of the inner wall into the first storage.
  • the remaining medium enters the second gas storage chamber through the conduit and is discharged through the discharge port of the outer casing.
  • the membrane may also be a hollow fiber tube membrane.
  • the outlet of the hollow fiber tube membrane is connected to the outlet port of the inner wall of the chamber, and the separated medium passes through the tube of the hollow fiber tube membrane and is separated from the inner wall.
  • the outlet port enters the reservoir chamber.
  • the outer casing is further provided with at least one discharge medium port for discharging the remaining medium;
  • the storage chamber of the rotor is divided into two parts by a partition: a first storage medium chamber storing the separated medium and a second storage medium chamber storing the remaining medium;
  • the separation chamber inner wall is provided with the outlet medium port corresponding to the first storage medium chamber, and the inner wall of each separation chamber is respectively provided with a discharge medium port communicating with the second storage medium chamber, and the first storage medium chamber and the outlet medium outlet of the outer casing Connected, the second storage medium chamber communicates with the discharge medium port of the outer casing; during the rotation of the rotor, the medium that enters the separate cavity through the inlet port of the outer casing enters the separation chamber through the check valve under the action of pressure, and passes through the membrane The separated medium enters the first storage medium chamber from the outlet port of the separation inner wall, and the remaining medium enters the second storage chamber through the discharge medium port of the separation indoor wall, and is discharged through the discharge medium port of the outer casing.
  • the membrane separating device further includes an external gear fixed at a center of the casing and fixed to a transmission shaft.
  • An internal gear is disposed at a center of the rotor, and the external gear meshes with the internal gear, and the number of teeth of the external gear is smaller than the number of teeth of the internal gear.
  • the inner surface of the outer casing is a symmetrical curved surface, and the arcuate trajectory is obtained by the following equation:
  • R is the creation radius
  • e is the distance between the center of the rotor and the center of the casing
  • ⁇ e [0° , 360° ]
  • t is time
  • the outer side of the radial position of the outer casing is provided with an air inlet
  • the axial position of the outer casing has two end covers on both sides, and the one end cover is provided with an end face discharge port, and the other end
  • the side end cover is provided with an end outlet medium port
  • the rotor is provided with three contact ends which are always in sliding contact with the inner surface of the outer casing
  • the gas storage chamber is divided by the partition into a first gas storage chamber for storing the separated gas and Two parts of the second gas storage chamber for storing the remaining gas, and the separation chamber passes Description
  • the curved trajectory of the inner surface of the outer casing is obtained by the following equation:
  • the medium can be a gas or a liquid.
  • the separation chamber is disposed inside the rotor, and the whole device has a reasonable layout and a compact structure, no complicated gas (liquid) pipeline is required, and the membrane is used for medium separation, and the unit volume permeates.
  • Figure 1-4 is a schematic structural view of the triangular rotor flat membrane separation device of the invention of the first embodiment
  • Figure 1-5, Figure 1-5-1, Figure 1-6, Figure 1-6-1, Figure 1-7, Figure 1 -8 is the structural diagram of the invention of the triangular rotor fiber tube membrane separation device
  • Figure 2-1, Figure 2-1-1, Figure 2-1-2, Figure 2-1-3, Figure 2-2, Figure 2-2-1, Figure 2-3, Figure 2-4 are implementation cases 3 Schematic diagram of the structure of the four-corner rotor flat membrane separation device;
  • Figure 2-5, Figure 2-5-1, Figure 2-6, Figure 2-6-1, Figure 2-7, Figure 2-8 are the implementation case 4 invention Schematic diagram of the structure of the four-corner rotor fiber membrane separation device.
  • FIG. 1-1, FIG. 1-3, FIG. 1-4 are front views of the flat membrane separation device of the present invention
  • FIG. 1-1-1 is a side cross-sectional view of the flat membrane separation device of the present invention
  • FIG. FIG. 1-1-3 is a perspective view of the gas storage module of the flat membrane separation device of the present invention
  • FIG. 1-2 is an overall exploded view of the flat membrane separation device of the present invention
  • FIG. 2-1 is a perspective view of an end cap on the exhaust port side of the flat membrane separation device of the present invention.
  • one end end cover is provided with an exhaust port 91, the other side end cover is provided with an air outlet port 9, and the air outlet port 9 is provided with a pressure relief valve.
  • the rotor 2 is disposed in the outer casing 1 and is rotatable.
  • the rotor 2 is provided with three contact ends which are always in sliding contact with the inner surface 11 of the outer casing 1, respectively, as the contact end 24, the contact end 25, the contact end 26, and the contour of the rotor 2. Obtained by the following equation:
  • the rotor 2 forms a sealed separate cavity with the inner surface 11 of the outer casing between adjacent contact ends.
  • the separate cavity is an air cavity
  • the separate cavity The body is a liquid chamber.
  • this embodiment is exemplified by gas separation.
  • the inner portion of the rotor 2 is used as a gas storage chamber 4, and the gas storage chamber 4 is divided by the partition plate 7 into a gas storage chamber 41 and a gas storage chamber 42.
  • the gas storage chamber 41 is for storing the separated gas
  • the gas storage chamber 42 is for storing the remaining gas.
  • the air outlet 9 on the end surface of the outer casing 1 communicates with the gas storage chamber 41 for discharging the separated gas
  • the exhaust port 91 on the other end surface of the outer casing 1 communicates with the gas storage chamber 42 for discharging the remaining gas.
  • a separation chamber is disposed inside the rotor 2, the separation chamber is a part of the rotor, and a separation chamber is adjacent between the adjacent contact ends, and the separation chambers are isolated from each other.
  • a separation chamber 32, a contact end 24, and a contact end 25 are formed between the contact end 24 and the contact end 26.
  • a separation chamber 36 is formed between the separation chamber 34, the contact end 25 and the contact end 26.
  • Each of the separation chambers is filled with a flat membrane 5, and the flat membrane 5 partitions the separation chamber into two inner and outer spaces, and the separation outdoor walls are provided with a check valve 302, a check valve 304, and a check valve 306 corresponding to the respective air chambers. Connected to the air chamber. Referring to FIG. 1-1-3, each of the separation indoor walls is provided with an air outlet corresponding to the air storage chamber 41.
  • the inner wall of the separation chamber 32 is provided with an air outlet 21, the inner wall of the separation chamber 34 is provided with an air outlet 22, and the inner wall of the separation chamber 36 is provided with an air outlet 23 a check valve is disposed in the air outlet 21, the air outlet 22, and the air outlet 23, and the gas can only enter the air chamber 41 from the separation chamber; the space between the flat membrane 5 and the outer wall of the separation chamber in the three separation chambers
  • the gas storage chambers 42 are connected by a conduit: a conduit 81 is disposed between the separation chamber 32 and the gas storage chamber 42, a conduit 82 is disposed between the separation chamber 34 and the gas storage chamber 42, and a conduit is disposed between the separation chamber 36 and the gas storage chamber 42. 83.
  • the remaining gas enters the gas storage chamber 42 through the conduit, and the discharge end of the conduit 81, the conduit 82, and the conduit 83 is provided with a pressure relief valve.
  • the center of the rotor 2 does not coincide with the center of the outer casing 1, and the center of the rotor 2 rotates around the center of the outer casing 1 during the rotation.
  • an outer gear 19 is disposed at the center of the outer casing 1, and the center of the outer gear 19 is fixed to a propeller shaft 3, and an inner gear 29 is disposed at the center of the rotor 2, and the outer gear 19 and the inner gear 29 mesh with each other, and the outer gear 19
  • the number of teeth is smaller than the number of teeth of the internal gear 29.
  • the exhaust port 91 on the outer casing 1 is disposed on the end cover on the side close to the transmission shaft 3, and the air outlet port 9 is provided on the other end cover.
  • the gas flat membrane separation device of the invention has the following working processes:
  • Figure 1-1 shows the initial stage, the contact end 24 of the rotor 2 is located at the clockwise side of the air inlet 12, and the contact end 26 is located at the counterclockwise side of the air inlet 12, i.e., separated. Description
  • the air chamber A formed by the chamber 32, the contact end 24, the contact end 26 and the inner surface 11 of the outer casing is in a new stage of intake, and the torque transmitted by the transmission shaft 3 drives the outer gear 19 to rotate to drive the rotor 2 to rotate clockwise. After the contact end 26 on the rotor 2 moves clockwise past the intake port 12, the intake air ends. During this process, the volume of the air chamber A gradually increases.
  • Figures 1-3 show the compression process and prepare for the air outlet phase.
  • the contact end 24 slides to the air outlet 14, and as the rotor 2 continues to rotate clockwise, the volume of the air chamber A is further reduced.
  • the air chamber A compressed gas enters the separation chamber 32 through the one-way valve and passes through the flat membrane 5, and the velocity of the different gases passing through the flat membrane 5 is different under the same pressure, so the permeation speed per unit time passes through the membrane. More, the penetration rate is slower through the membrane, thus achieving the effect of separating the gas.
  • the separated gas enters the gas storage chamber 41 through the gas outlet 21, and then exits through the gas outlet 9 on the side end cover; the remaining gas remaining in the separation chamber 32 It is discharged through the conduit 81 into the gas storage chamber 42, and then exits through the exhaust port 91 on the other side end cover.
  • the valve is closed to stop the exhaust.
  • Figures 1-4 show the new intake phase. As the rotor 2 continues to rotate clockwise, the volume of the air chamber A gradually decreases. At this stage, the volume of the air chamber A is minimized, and the next step begins. Stage intake, compressed gas, separation gas process.
  • FIG. 1-7, FIG. 1-8 are front views of the hollow fiber tube membrane separation device of the present invention
  • FIG. 1-5-1 is a perspective view of the gas storage module of the hollow fiber tube membrane separation device of the present invention.
  • Figure 1-6 is an overall exploded view of the hollow fiber tube membrane separation device of the present invention
  • Figure 1-6-1 is a hair extension Description
  • each separation chamber is filled with a hollow fiber tube membrane 6, instead of the flat membrane 5 in the first embodiment, in each separation chamber.
  • the outlets of the hollow fiber tube membrane 6 are respectively communicated with the outlet ports of the inner walls of the corresponding separation chambers: the outlet of the hollow fiber tube membrane 6 in the separation chamber 32 communicates with the outlet port 21 of the inner wall of the separation chamber 32, and the separation chamber 34
  • the outlet of the hollow fiber tubular membrane 6 communicates with the gas outlet 22 of the inner wall of the separation chamber 34, and the outlet of the hollow fiber membrane 6 in the separation chamber 36 communicates with the gas outlet 23 of the inner wall of the separation chamber 36 because of the hollow fiber membrane 6
  • An exhaust port 201 is disposed between the separation port 33, the separation chamber 34, and the gas storage chamber 42.
  • An exhaust port 203 is disposed between the separation chamber 36 and the gas storage chamber 42, and the exhaust port 201, the exhaust port 202
  • the gas hollow fiber tube membrane separation device of the invention has the following working processes:
  • Figures 1-5 are initial stages, the contact end 24 of the rotor 2 is located at the clockwise side of the air inlet 12, and the contact end 26 is located at the counterclockwise side of the air inlet 12, that is, the separation chamber 32,
  • the air chamber A formed by the contact end 24, the contact end 26 and the inner surface 11 of the outer casing is in a new stage of intake, and the torque transmitted by the transmission shaft 3 drives the outer gear 19 to rotate to drive the rotor 2 to rotate clockwise, with the rotor 2
  • the intake air ends.
  • the volume of the air chamber A gradually increases.
  • Figures 1-7 show the compression process and prepare the gas outlet phase.
  • the contact end 24 slides to the inlet port 14.
  • the rotor 2 continues to rotate clockwise, the volume of the gas chamber
  • the compressed air of the air chamber A enters the separation chamber 32 through the one-way valve, and the gas passes through the hollow fiber tube membrane 6. Since the speed of the different gases passing through the tube film is different, the permeation speed per unit time passes through the membrane. There are many into the tubes, and the slow penetration rate through the membrane enters the tube less, thus achieving the effect of separating the gas.
  • the separated gas exits the outlet of the hollow fiber tube membrane 6 through the gas outlet 21 into the gas storage chamber 41, and then exits through the gas outlet 9 on the side end cover. The remaining gas enters the gas storage chamber 42 through the exhaust port 201, and is discharged through the exhaust port 91 on the other side end cover.
  • Figures 1-8 show the new intake phase. As the rotor 2 continues to rotate clockwise, the volume of the air chamber A gradually decreases. At this stage, the volume of the air chamber A is minimized, and the next step begins. Stage intake, compressed gas, separation gas process.
  • FIG 2-1, Figure 2-3, Figure 2-4 are front views of the flat membrane separation device of the present invention
  • Figure 2-1-1 is a side cross-sectional view of the flat membrane separation device of the present invention
  • Figure 2-1-2 Fig. 2-1-3 is a perspective view of the gas storage chamber module in the flat membrane separation device of the present invention
  • Fig. 2-2 is an overall exploded view of the flat membrane separation device of the present invention
  • Fig. 2 -2-1 is a perspective view of the end cap on the side of the exhaust port of the flat membrane separation device of the present invention.
  • the flat membrane separation device in this embodiment comprises: a casing 10 and a rotor 20.
  • An air inlet 120, an air inlet 140, and an air inlet 160 are disposed on the outer casing 10 at the boundary between adjacent two curved surfaces.
  • the outer casing 1 has two end caps on both sides of the axial position, one end end cover is provided with an exhaust port 910, the other end end cover is provided with an air outlet port 90, and the air outlet port 90 is provided with a pressure relief valve.
  • the rotor 20 is disposed within the housing 10 and is rotatable.
  • the rotor 20 is provided with four contact ends that are in sliding contact with the inner surface 100 of the housing: the contact end 250, the contact end 260, the contact end 270, the contact end 280, the contour of the rotor 20
  • the line is obtained by the following equation:
  • the outer casing inner surface 100 forms a sealed separate cavity between adjacent contact ends.
  • the separate cavity is an air cavity
  • the separate cavity is a liquid Cavity
  • this embodiment uses gas separation as an example.
  • the inner portion of the rotor 20 is used as a gas storage chamber 40.
  • the gas storage chamber 40 is divided into two parts, a gas storage chamber 410 and a gas storage chamber 420, and the gas storage chamber 410 is used for storing the separated gas.
  • the gas, the gas storage chamber 420 is used to store the remaining gas.
  • the air outlet 90 on the end surface of the outer casing 10 communicates with the air storage chamber 410 for discharging the separated gas, and the exhaust port 910 on the other end surface of the outer casing 10 is connected and stored.
  • Room 420 is for discharging residual gas.
  • a separation chamber is disposed inside the rotor 20, the separation chamber is a part of the rotor, and a separation chamber is provided between the adjacent contact ends, and the separation chambers are isolated from each other.
  • a separation chamber 320 is formed between the contact end 250 and the contact end 280
  • a separation chamber 340 is formed between the contact end 250 and the contact end 260
  • a separation chamber 360 and a contact end 270 are formed between the contact end 260 and the contact end 270.
  • a separation chamber 380 is formed between the contact end 280.
  • Each of the separation chambers is filled with a flat membrane 50.
  • the flat membrane 50 separates the separation chamber into two inner and outer spaces, and the separation outdoor walls are provided with a check valve 3020, a check valve 3040, and a check valve 3060 corresponding to each air chamber.
  • the one-way valve 3080 is in communication with the air chamber.
  • each of the separation indoor walls is provided with an air outlet corresponding to the air storage chamber 410.
  • the air outlet 210 is disposed on the inner wall of the separation chamber 320
  • the air outlet 220 is disposed on the inner wall of the separation chamber 340
  • the air outlet 230 is disposed on the inner wall of the separation chamber 360.
  • An air outlet 240 is provided on the inner wall of the separation chamber 380.
  • a check valve is disposed in the air outlet 210, the air outlet 220, the air outlet 230, and the air outlet 240, and the gas can only enter the air storage chamber 410 from the separation chamber; between the flat membrane 50 and the outer wall of the separation chamber in the four separation chambers
  • the space is connected to the gas storage chamber 420 through a conduit: a conduit 810 is disposed between the separation chamber 320 and the gas storage chamber 420, a conduit 820 is disposed between the separation chamber 340 and the gas storage chamber 420, and the separation chamber 360 and the gas storage chamber 420 are disposed.
  • a conduit 840 is disposed between the separation conduit 830, the separation chamber 380, and the gas storage chamber 420, and the remaining gas enters the gas storage chamber 420 through the conduit.
  • the exhaust end of the conduit 810, the conduit 820, the conduit 830, and the conduit 840 are provided with a pressure relief valve.
  • the center of the rotor 20 does not coincide with the center of the casing 10, and the center of the rotor 20 rotates around the center of the casing during the rotation. More specifically, an outer gear 190 is disposed at the center of the outer casing 10, and an inner gear 290 is disposed at the center of the rotor 20, Instruction manual
  • the outer gear 190 and the inner gear 290 mesh with each other, and the number of teeth of the outer gear 190 is smaller than the number of teeth of the inner gear 290.
  • the gas flat membrane separation device of the invention has the following working processes:
  • FIG. 2-1 is an initial stage, the contact end 250 of the rotor 20 is located at the clockwise side of the air inlet 120, and the contact end 280 is located at the counterclockwise side of the air inlet 120, that is, the separation chamber 320, During the intake of the air chamber B formed by the contact end 250, the contact end 280 and the inner surface 100 of the outer casing, the torque transmitted by the transmission shaft 30 drives the outer gear 190 to rotate to drive the rotor 20 to rotate clockwise, with the rotor 20 After the upper contact end 280 moves clockwise across the air inlet 120, the intake air ends. During this process, the volume of the air chamber B gradually increases.
  • Figure 2-3 shows the compression process and prepares the air outlet phase.
  • the contact end 250 slides over the air inlet 140.
  • the volume of the air chamber B decreases.
  • the air chamber B continues to compress the gas into the separation chamber 320 through the flat membrane 50.
  • the speed of the different gases passing through the flat membrane is different, so the permeation speed per unit time is high, and the permeation rate is slow. Less, this achieves the effect of separating gases.
  • the separated gas enters the gas storage chamber 410 through the gas outlet 210, and then exits through the gas outlet 90 on the side end cover, leaving the remaining in the separation chamber 320.
  • the gas is discharged through the conduit 810 into the gas storage chamber 420, and then discharged through the exhaust port 910 on the other side end cover.
  • the valve is closed. Stop the exhaust.
  • Figures 2-4 show a new cycle. As the rotor 20 continues to rotate clockwise, the volume of the air chamber B gradually decreases. At this stage, the volume of the air chamber B is minimized. Description
  • FIG. 2-5, 2-7, and 2-8 are front views of the hollow fiber tube membrane separation device of the present invention
  • Fig. 2-5-1 is a perspective view of the gas storage chamber module of the hollow fiber tube membrane separation device of the present invention.
  • 2-6 is an overall exploded view of the hollow fiber tube membrane separation device of the present invention
  • FIG. 2-6-1 is a perspective view of the side of the exhaust port of the hollow fiber tube membrane separation device of the present invention.
  • the structure of the membrane separation device of the present embodiment is basically the same as that of the embodiment 3, and the only difference is that: each separation chamber is filled with a hollow fiber tube membrane 60 instead of the flat membrane 50 in the third embodiment, in each separation chamber.
  • the outlets of the hollow fiber tube membranes 60 are respectively communicated with the outlet ports of the inner wall of the outlet of the corresponding separation chamber: the outlet of the hollow fiber tube membrane 60 in the separation chamber 320 communicates with the outlet port 210 of the inner wall of the separation chamber 320, and the separation chamber 340
  • the outlet of the hollow fiber tube membrane 60 communicates with the gas outlet port 220 of the inner wall of the separation chamber 340, and the outlet of the hollow fiber tube membrane 60 in the separation chamber 360 communicates with the gas outlet port 230 of the inner wall of the separation chamber 360, in the separation chamber 380.
  • the outlet of the hollow fiber tube membrane 60 communicates with the gas outlet 240 of the inner wall of the separation chamber 380.
  • the inner wall is respectively provided with an exhaust port communicating with the gas storage chamber 420.
  • An exhaust port 2010 is disposed between the separation chamber 320 and the gas storage chamber 420, and an exhaust port 2020 is provided between the separation chamber 340 and the gas storage chamber 420.
  • An exhaust port 2030 is disposed between the chamber 360 and the air storage chamber 420, and an exhaust port 2040 is disposed between the separation chamber 380 and the air storage chamber 420.
  • the exhaust port 2010, the exhaust port 2020, the exhaust port 2030, and the exhaust port 2040 are disposed.
  • the gas hollow fiber tube membrane separation device of the invention has the following working processes:
  • the contact end 250 of the rotor 20 is located at the clockwise side of the inlet 120, and the contact end 280 is located at the counterclockwise side of the inlet 120, g
  • the contact end 250, the contact end 280 and the inner surface 100 of the outer casing 100 are in the new stage of the intake process, and the torque transmitted by the drive shaft 30 drives the outer tooth fi 190 to rotate to drive the rotor 20 to rotate clockwise.
  • the contact end 28 on the rotor 20! After the clockwise movement over the intake port 120, the intake air ends. During this process, the air chamber B & volume gradually increases.
  • Figures 2-7 illustrate the compression process and the ready-to-air phase, with contact 240 sliding over intake port 140, as the rotor 20 continues to rotate clockwise, the accumulation of air chamber B decreases.
  • the air chamber B continues to compress the gas into the separation chamber 320, and the gas passes through the medium fiber tube film 60. Since the speed of the different gases passing through the tube film is different, the permeation rate per unit time is high through the membrane into the tube, and the permeation rate is slow through the membrane. There is less entry into the tube, which achieves the effect of separating the gas.
  • the gas separating J exits from the outlet of the hollow fiber tube membrane 60 through the gas outlet 210 into the gas storage 410, and then exits through the gas outlet 90 on the side end cap.
  • the remaining gas enters the gas storage chamber 420 through the exhaust port 2010 and is discharged through the exhaust port 910 on the other end cover.
  • the valve is closed to stop the exhaust.
  • Figures 2-8 show a new cycle. As the rotor 20 continues to rotate in a clockwise manner, the volume of the air chamber B gradually decreases. At this stage, the volume of the air chamber B is minimized. Description

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)

Abstract

一种膜分离装置包括:外壳(1),外壳内表面(11)为弧面,外壳(1)上设置有至少一个进介质口、至少一个用于排出被分离介质的出介质口;设置在外壳(1)内的转子(2),转子(2)外表面设置有至少两个与外壳内表面(11)始终保持滑动接触的接触端(24,26),转子(2)外表面与外壳内表面(11)在相邻接触端(24,26)之间形成封闭的单独腔体,转子(2)内空的部分作为储介质室;设置在转子(2)内部的分离室(32,34,36),分离室(32,34,36)内部装填膜(6),分离室(32,34,36)外壁对应各单独腔体设置单向阀同单独腔体连通,各分离室(32,34,36)内壁对应储介质室设置出介质口,储介质室与外壳(1)的出介质口连通。

Description

说 明 书
膜分离装置
技术领域
本发明涉及一种膜分离装置, 主要应用于气体(液体)介质分离 的技术领域之中。
背景技术
膜分离是在 20世纪初出现, 20世纪 60年代后迅速崛起的一门 分离新技术,是指在分子水平上不同粒径分子的混合物在通过半透膜 时, 实现选择性分离的技术。 半透膜又称分离膜或滤膜, 膜壁布满小 孔 , 根据孔径大小可以分为: 微滤膜 (MF)、 超滤膜 (UF)、 纳滤 膜 (NF)、 反渗透膜 (RO ) 等, 膜分离都采用错流过滤方式。 膜分 离技术由于兼有分离、 浓缩、 纯化和精制的功能, 又有高效、 节能、 环保、 分子级过滤及过滤过程简单、 易于控制等特征, 因此, 已广泛 应用于食品、 医药、 生物、 环保、 化工、 冶金、 能源、 石油、 水处理、 电子、 仿生等领域, 产生了巨大的经济效益和社会效益, 已成为当今 分离科学中最重要的手段之一。 不断研究和发展膜分离技术 (包括膜 材料、 膜组件及优化、 膜技术等等:)已成为世界各国在高新技术领域 中竞争的热点。
发明内容
本发明提供了一种结构简单紧凑, 将气体压缩(或液体泵)与分 离室结合成一体, 不再需要复杂的气体(液体)管路。 其最大特点是 高度整合, 装置单位体积渗透率高, 成本低, 尤其是多级同轴串联使 用时体积同成本增加不多,非常有利于解决目前膜分离设备分离浓度 说 明 书
偏低的问题。
本发明是通过以下技术方案来实现的: 一种膜分离装置, 包括: 外壳, 所述外壳的内表面为弧面, 所述外壳上设置有至少一个进 介质口、 至少一个用于排出被分离介质的出介质口;
转子, 所述转子设置在所述外壳内, 所述转子外表面设置有至少 两个与所述外壳内表面始终保持滑动接触的接触端,所述转子外表面 与所述外壳内表面在相邻接触端之间形成密封的单独腔体,各单独腔 体由所述接触端进行分隔,所述转子内空,内空的部分作为储介质室; 分离室, 所述分离室设置在所述转子内部, 为转子的一部分, 相 邻接触端之间为一个分离室, 所述分离室内部装填膜, 膜将分离室隔 成内外两部分,所述分离室外壁对应各单独腔体设置单向阀同单独腔 体连通, 所述各分离室内壁对应储介质室设置出介质口, 所述储介质 室与外壳的出介质口连通;
转子转动过程中,通过外壳上的进介质口进入单独腔体的介质在 压力的作用下, 通过单向阀进入分离室, 通过膜后被分离的介质由分 离室内壁的出介质口进入储介质室, 再经过外壳的出介质口出来。
所述膜可以选用平板膜, 当选取平板膜时, 被分离的介质通过平 板膜由出介质口进入储气室。
当选取平板膜时, 优化的, 所述外壳上还设有至少一个排出剩余 介质的排介质口;
所述转子的储介质室被隔板分成两部分:储存被分离介质的第一 储介质室以及储存剩余介质的第二储介质室; 说 明 书
所述各分离室内壁对应第一储介质室设置所述出介质口,所述各 分离室的膜与外壁之间的空间与第二储介质室通过导管相连,第一储 介质室与外壳的出介质口连通, 第二储介质室与外壳的排介质口连 通;
转子转动过程中,通过外壳的进介质口进入单独腔体的介质在压 力的作用下, 通过单向阀进入分离室, 通过膜后被分离的介质由分离 室内壁的出介质口进入第一储气室,剩余的介质通过导管进入第二储 气室, 再经过外壳的排介质口排出。
所述膜还可以选用中空纤维管膜, 当选取中空纤维管膜时, 中空 纤维管膜的出口连通分离室内壁的出介质口,被分离的介质通过中空 纤维管膜的管子后由分离室内壁的出介质口进入储介质室。
当选取中空纤维管膜时, 优化的, 所述外壳上还设有至少一个排 出剩余介质的排介质口;
所述转子的储介质室被隔板分成两部分:储存被分离介质的第一 储介质室以及储存剩余介质的第二储介质室;
所述各分离室内壁对应第一储介质室设置所述出介质口,每个分 离室的内壁分别设置与第二储介质室连通的排介质口,第一储介质室 与外壳的出介质口连通, 第二储介质室与外壳的排介质口连通; 转子转动过程中,通过外壳的进介质口进入单独腔体的介质在压 力的作用下, 通过单向阀进入分离室, 通过膜后被分离的介质由分离 室内壁的出介质口进入第一储介质室,剩余的介质通过分离室内壁的 排介质口进入第二储气室, 再经过外壳的排介质口排出。 说 明 书
具体的, 上述转子的中心与上述外壳中心不重合, 上述转子在旋 转过程中其中心绕外壳的中心转动,所述膜分离装置还包括位于外壳 中心处的固定在一传动轴上的外齿轮, 上述转子中心处设置有内齿 轮, 上述外齿轮与上述内齿轮相互啮合, 上述外齿轮的齿数小于上述 内齿轮的齿数。
作为其中一个实施案例, 所述外壳的内表面为对称的弧面, 其弧 形轨迹由下列方程得到:
x=R*cos a +e*cos3 α;
y=R*sin a +e*sin3 α;
转子的轮廓线由下列方程得到:
ν= 30+ t* 60
d= - 3* e* sin( 3 * v) / R
u= 2* v- asin( d)
x= 2* e* cos( u) * cos( 3 * v) + R* cos( 2* v)
y= 2* e* sin( u) * cos( 3* v) + R* sin( 2* v)
上述公式中, R为创成半径, e为转子的中心与外壳中心的距离, α e [0° , 360° ], t为时间。
该实施案例中, 所述外壳的径向位置的两侧各设有一个进气口, 外壳的轴向位置两侧有两个端盖, 一侧端盖上设有端面排介质口, 另 一侧端盖上设有端面出介质口,转子设置有三个与外壳内表面始终保 持滑动接触的接触端,所述储气室被隔板分成用于储存被分离气体的 第一储气室和用来储存剩余气体的第二储气室两部分,分离室内通过 说 明 书
膜后被分离的介质进入第一储气室, 剩余的介质进入第二储气室, 端 面出介质口连通第一储气室, 端面排介质口连通第二储气室。
作为另一个实施案例,所述外壳内表面的弧形轨迹由下列方程得 到:
X = e * cos(«) + R * cos(a 14)
Y = e * η{α) + R * sin(a 14)
转子的轮廓线由下列方程得到:
Figure imgf000007_0001
_„ / nN 5 sin(a I 2) - K sin(3a / 10)
5 cos(a I 2) + K cos(3a /10) 上述公式中, a e [0° , 360° ], e为偏心距, R为创成半径,
K=R/eD
所述介质可以是气体也可以是液体。
本发明的有益效果:
本发明在结构上与传统的相比将分离室设置于转子的内部,整套 装置布局合理, 结构更加紧凑, 不再需要复杂的气体 (液体) 管路, 利用膜进行介质分离, 装置单位体积渗透率高, 成本低, 尤其是同轴 多级串联使用时体积同成本增加不多而分离浓度更高,是一种较佳的 新型膜分离装置。 附图说明
图 1-1、 图 1-1-1、 图 1-1-2、 图 1-1-3、 图 1-2、 图 1-2-1、 图 1-3、 说 明 书
图 1-4为实施案例 1发明三角转子平板膜分离装置的结构示意图; 图 1-5、 图 1-5-1、 图 1-6、 图 1-6-1、 图 1-7、 图 1-8为实施案例 2 发明三角转子纤维管膜分离装置的结构示意图;
图 2-1、 图 2-1-1、 图 2-1-2、 图 2-1-3、 图 2-2、 图 2-2-1、 图 2-3、 图 2-4为实施案例 3发明四角转子平板膜分离装置的结构示意图; 图 2-5、 图 2-5-1、 图 2-6、 图 2-6-1、 图 2-7、 图 2-8为实施案例 4 发明四角转子纤维管膜分离装置的结构示意图.
具体实施方式
下面根据附图和实施案例对本发明作进一歩详细说明。
实施案例 1 :
图 1-1、图 1-3、图 1-4本发明平板膜分离装置的正视图, 图 1-1-1 为本发明平板膜分离装置的侧面剖视图, 图 1-1-2为本发明平板膜分 离装置的斜视图, 图 1-1-3为本发明平板膜分离装置的储气室模块的 斜侧视图, 图 1-2为本发明平板膜分离装置的整体爆炸图, 图 1-2-1 为本发明平板膜分离装置的排气口一侧的端盖斜视图。 参照图 1-1、 图 1-1-1、 图 1-1-2、 图 1-1-3、 图 1-2、 图 1-2-1、 图 1-3、 图 1-4, 本 实施例中平板膜分离装置包括: 外壳 1、 转子 2。
其中, 外壳 1的内表面 11为弧面, 其弧形轨迹由下列方程得到: x=R*cos a +e*cos3 α;
y=R*sin a +e*sin3 α;
a e [0。 , 360。 ] e=1.5 R=10
所述外壳 1 径向位置的两侧各设有一个进气口 12、 14。 外壳 1 说 明 书
轴向位置两侧有两个端盖, 一侧端盖上设有排气口 91, 另一侧的端 盖上设有出气口 9, 出气口 9内设有泄压阀。
转子 2设置在外壳 1内并可旋转,转子 2设置有三个与外壳 1内 表面 11始终保持滑动接触的接触端,分别记为接触端 24、接触端 25、 接触端 26, 转子 2的轮廓线由下列方程得到:
e=1.5 R=10
v= 30+ 1* 60
d= - 3* e* sin( 3 * v) / R
u= 2* v- asin( d)
x= 2* e* cos( u) * cos( 3 * v) + R* cos( 2* v)
y= 2* e* sin( u) * cos( 3* v) + R* sin( 2* v)
转子 2与外壳内表面 11在相邻接触端之间形成密封的单独腔体, 当该装置应用于气体分离时, 该单独腔体为气腔, 当该装置应用于液 体分离时, 该单独腔体为液体腔。 为方便叙述, 该实施案例以气体分 离作为举例。 所述转子 2内空, 内空的部分作为储气室 4, 所述储气 室 4被隔板 7分成储气室 41和储气室 42两部分。 储气室 41用来储 存被分离的气体, 储气室 42用来储存剩余气体。 外壳 1的端面上的 出气口 9连通储气室 41, 用于排出被分离气体, 外壳 1的另一端面 上的排气口 91连通储气室 42, 用于排出剩余气体。
转子 2内部设置分离室, 所述分离室为转子的一部分, 相邻接触 端之间为一个分离室, 各分离室相互隔离。参照图 1-1, 本实施例中, 接触端 24和接触端 26之间形成分离室 32、 接触端 24和接触端 25 说 明 书
之间形成分离室 34、 接触端 25和接触端 26之间形成分离室 36。 所 述各分离室内部装填有平板膜 5, 平板膜 5将分离室隔成内外两个空 间, 所述各分离室外壁对应各气腔设置单向阀 302、 单向阀 304、 单 向阀 306同气腔连通。 同时参照图 1-1-3, 所述各分离室内壁对应储 气室 41设置出气口: 分离室 32内壁设置出气口 21、 分离室 34内壁 设置出气口 22、 分离室 36内壁设置出气口 23, 出气口 21、 出气口 22、出气口 23内设置有单向阀,气体只能够从分离室进入储气室 41 ; 所述三个分离室中平板膜 5与分离室外壁之间的空间与储气室 42之 间通过导管相连: 分离室 32与储气室 42之间设置导管 81、 分离室 34与储气室 42之间设置导管 82、分离室 36与储气室 42之间设置导 管 83, 剩余气体通过导管进入储气室 42, 导管 81、 导管 82、 导管 83的排气端设置有泄压阀。
在本实施案例中, 参照图 1-1-2, 转子 2的中心与外壳 1中心不 重合, 转子 2在旋转过程中其中心绕外壳 1的中心转动。 更具体地, 外壳 1中心处设置有外齿轮 19, 外齿轮 19的中心固定在一传动轴 3 上, 转子 2中心处设置有内齿轮 29, 外齿轮 19与内齿轮 29相互啮 合, 外齿轮 19的齿数小于内齿轮 29的齿数。 参照图 1-2和图 1-2-1, 上述外壳 1上的排气口 91设在靠近传动轴 3的一侧的端盖上, 出气 口 9设在另一侧的端盖上。
本发明气体平板膜分离装置, 其工作过程为:
参照图 1-1, 图 1-1为初始阶段, 转子 2的接触端 24位于进气口 12的顺时针侧处, 接触端 26位于进气口 12的逆时针侧处, 即分离 说 明 书
室 32、 接触端 24、 接触端 26与外壳内表面 11所构成的气腔 A处于 新阶段进气过程中, 传动轴 3传递的扭矩带动外齿轮 19旋转从而带 动转子 2顺时针旋转, 随着转子 2上的接触端 26顺时针移动越过进 气口 12后, 进气结束。 在此过程中, 气腔 A的容积逐渐增大。
参照图 1-2和 1-3, 图 1-3为压缩过程并准备出气阶段, 接触端 24滑至出气口 14处, 随着转子 2的继续顺时针旋转, 气腔 A的容积 进一歩减小, 此过程中气腔 A压缩气体通过单向阀进入分离室 32后 通过平板膜 5, 在同样的压力下不同气体通过平板膜 5的速度不同, 所以单位时间内渗透速度快的穿过膜的多, 渗透速度慢的穿过膜的 少, 这样就达到了分离气体的效果。 参照图 1-2和 1-2-1, 分离出的 气体通过出气口 21进入到储气室 41里,再经过这侧端盖上的出气口 9出来; 留在分离室 32里的剩余气体通过导管 81排到储气室 42里, 再经过另一侧端盖上排气口 91出来。当分离室 32内剩余气体压力达 到导管 81排气端泄压阀的阀值时阀门关闭停止排气。
参照图 1-4, 图 1-4为新的进气阶段, 随着转子 2的继续顺时针 旋转, 气腔 A的容积逐渐减小, 此阶段气腔 A的容积达到最小, 开 始进入下一阶段进气、 压缩气体、 分离气体过程。 实施案例 2:
图 1-5、图 1-7、图 1-8为本发明中空纤维管膜分离装置的正视图, 图 1-5-1为本发明中空纤维管膜分离装置的储气室模块的斜视图, 图 1-6为本发明中空纤维管膜分离装置的整体爆炸图, 图 1-6-1 为本发 说 明 书
明中空纤维管膜分离装置的排气口一侧的端盖斜视图。本实施案例的 膜分离装置的结构与实施案例 1基本相同, 区别点仅在于: 各分离室 中填充的是中空纤维管膜 6, 而不是实施案例 1中的平板膜 5, 各分 离室中的中空纤维管膜 6 的出口分别与对应的分离室的内壁的出气 口相连通:分离室 32中的中空纤维管膜 6的出口与分离室 32内壁的 出气口 21相连通、 分离室 34中的中空纤维管膜 6的出口与分离室 34内壁的出气口 22相连通、 分离室 36中的中空纤维管膜 6的出口 与分离室 36内壁的出气口 23相连通, 因为中空纤维管膜 6的特点, 无须设置实施案例 1中的导管用于排出剩余气体,只需要在每个分离 室的内壁分别设置与储气室 42连通的排气口即可:分离室 32与储气 室 42之间设置排气口 201、 分离室 34与储气室 42之间设置排气口 202、 分离室 36与储气室 42之间设置排气口 203, 排气口 201、 排气 口 202、 排气口 203内设有泄压阀, 可参照图 1-5-1。
本发明气体中空纤维管膜分离装置, 其工作过程为:
参照图 1-5, 图 1-5为初始阶段, 转子 2的接触端 24位于进气口 12的顺时针侧处, 接触端 26位于进气口 12的逆时针侧处, 即分离 室 32、 接触端 24、 接触端 26与外壳内表面 11所构成的气腔 A处于 新阶段进气过程中, 传动轴 3传动的扭矩来带动外齿轮 19旋转从而 带动转子 2顺时针旋转, 随着转子 2上的接触端 26顺时针移动越过 进气口 12后, 进气结束。 在此过程中, 气腔 A的容积逐渐增大。
参照图 1-6和 1-7, 图 1-7为压缩过程并准备出气阶段, 接触端 24滑至进气口 14处, 随着转子 2的继续顺时针旋转, 气腔 A的容积 说 明 书
进一歩减小, 此过程中气腔 A压缩气体通过单向阀进入分离室 32, 气体通过中空纤维管膜 6, 由于不同气体通过管膜的速度不同, 所以 单位时间内渗透速度快的通过膜进入管内的多,渗透速度慢的通过膜 进入管内的少,这样就达到了分离气体的效果。参照图 1-6和图 1-6-1, 分离出的气体从中空纤维管膜 6的出口出来通过出气口 21进入到储 气室 41里, 再经过这侧端盖上的出气口 9出来, 剩余气体通过排气 口 201进入到储气室 42里, 再经过另一侧端盖上的排气口 91排出。 当分离室 32内剩余气体压力达到分离室 32内壁的排气口 201内泄压 阀的阀值时阀门关闭停止排气。
参照图 1-8, 图 1-8为新的进气阶段, 随着转子 2的继续顺时针 旋转, 气腔 A的容积逐渐减小, 此阶段气腔 A的容积达到最小, 开 始进入下一阶段进气、 压缩气体、 分离气体过程。 实施案例 3:
图 2-1、 图 2-3、 图 2-4为本发明平板膜分离装置的正视图, 图 2-1-1为本发明平板膜分离装置的侧面剖视图,图 2-1-2为本发明平板 膜分离装置的斜视图, 图 2-1-3为本发明平板膜分离装置中的储气室 模块的斜视图, 图 2-2 为本发明平板膜分离装置的整体爆炸图, 图 2-2-1 为本发明平板膜分离装置的排气口一侧的端盖斜视图。 本实施 例中平板膜分离装置包括: 外壳 10、 转子 20。
外壳 10的内表面 100由三个同圆心的相同弧度的弧面连续组成, 其弧形轨迹由下列方程得到: 说 明 书 x = e * cos(«) + cos(a 14) Y = e * sin(< ) + R * sin(a 14) a ≡[0 ° , 360。 ], e为偏心距, e=12 , R为创成半径, R=96。 外壳 10上在相邻的两个弧面的交界处设置有进气口 120、 进气 口 140与进气口 160。 外壳 1轴向位置两侧有两个端盖, 一侧端盖上 设有排气口 910, 另一侧的端盖上设有出气口 90, 出气口 90内设有 泄压阀。
转子 20设置在外壳 10内并可旋转, 转子 20设置有 4个与外壳 内表面 100始终保持滑动接触的接触端: 接触端 250、 接触端 260、 接触端 270、 接触端 280, 转子 20的轮廓线由下列方程得到:
Figure imgf000014_0001
_„ / nN 5 sin(a I 2) - K sin(3a / 10)
5 cos(a I 2) + K cos(3a /10) a e [0° , 360° ], e为偏心距, e=12 , R为创成半径, R=96 K=R/e 转子 20与外壳内表面 100在相邻接触端之间形成密封的单独腔 体, 当该装置应用于气体分离时, 该单独腔体为气腔, 当该装置应用 于液体分离时, 该单独腔体为液体腔, 为方便叙述, 该实施案例以气 体分离作为举例。 所述转子 20内空, 内空的部分作为储气室 40, 所 述储气室 40被隔板 70分成储气室 410和储气室 420两部分,储气室 410用来储存被分离的气体, 储气室 420用来储存剩余气体。 同时参 照图 2-2和图 2-2-1, 外壳 10的端面上的出气口 90连通储气室 410, 用于排出被分离气体, 外壳 10的另一端面上的排气口 910连通储气 说 明 书
室 420, 用于排出剩余气体。
转子 20内部设置分离室, 所述分离室为转子的一部分, 相邻接 触端之间为一个分离室, 各分离室相互隔离。 本实施案例中, 接触端 250和接触端 280之间形成分离室 320、 接触端 250和接触端 260之 间形成分离室 340、 接触端 260和接触端 270之间形成分离室 360、 接触端 270和接触端 280之间形成分离室 380。 所述各分离室内部装 填有平板膜 50, 平板膜 50将分离室隔成内外两个空间, 所述各分离 室外壁对应各气腔设置单向阀 3020、 单向阀 3040、 单向阀 3060、 单 向阀 3080同气腔连通。参照图 2-1-3, 所述各分离室内壁对应储气室 410设置出气口: 分离室 320内壁设置出气口 210、 分离室 340内壁 设置出气口 220、 分离室 360内壁设置出气口 230、 分离室 380内壁 设置出气口 240。 出气口 210、 出气口 220、 出气口 230、 出气口 240 内设置有单向阀, 气体只能够从分离室进入储气室 410; 所述四个分 离室中平板膜 50与分离室外壁之间的空间与储气室 420之间通过导 管相连: 分离室 320与储气室 420之间设置导管 810、 分离室 340与 储气室 420之间设置导管 820、 分离室 360与储气室 420之间设置导 管 830、 分离室 380与储气室 420之间设置导管 840, 剩余气体通过 导管进入储气室 420, 导管 810、 导管 820、 导管 830、 导管 840的排 气端设置有泄压阀。
在本实施案例中, 参照图 2-1-2, 转子 20的中心与外壳 10中心 不重合, 转子 20在旋转过程中其中心绕外壳的中心转动。更具体地, 外壳 10中心处设置有外齿轮 190,转子 20中心处设置有内齿轮 290, 说 明 书
外齿轮 190与内齿轮 290相互啮合, 外齿轮 190的齿数小于内齿轮 290的齿数。
本发明气体平板膜分离装置, 其工作过程为:
参照图 2-1, 图 2-1为初始阶段, 转子 20的接触端 250位于进气 口 120的顺时针侧处, 接触端 280位于进气口 120的逆时针侧处, 即 分离室 320、 接触端 250、 接触端 280与外壳内表面 100所构成的气 腔 B处于新阶段的进气过程中,传动轴 30传递的扭矩带动外齿轮 190 旋转从而带动转子 20顺时针旋转,随着转子 20上的接触端 280顺时 针移动越过进气口 120后, 进气结束。 在此过程中, 气腔 B的容积 逐渐增大。
参照图 2-2和 2-3, 图 2-3为压缩过程并准备出气阶段, 接触端 250滑过进气口 140, 随着转子 20的继续顺时针旋转, 气腔 B的容 积进一歩减小,气腔 B继续压缩气体进入分离室 320通过平板膜 50, 在同样的压力下不同气体通过平板膜的速度不同,所以单位时间内渗 透速度快的通过膜的多, 渗透速度慢的通过膜的少, 这样就达到了分 离气体的效果。参照图 2-2和图 2-2-1, 分离出的气体通过出气口 210 进入到储气室 410里, 再经过这侧端盖上的出气口 90出来, 留在分 离室 320里的剩余气体通过导管 810排到储气室 420里,再经过另一 侧端盖上的排气口 910排出,当分离室 320内剩余气体压力达到导管 810排气端泄压阀的阀值时阀门关闭停止排气。
参照图 2-4, 图 2-4为新的循环阶段, 随着转子 20的继续顺时针 旋转, 气腔 B的容积逐渐减小, 此阶段气腔 B的容积达到最小, 开 说 明 书
始进入下一阶段进气、 压缩气体、 分离气体过程。 实施案例 4:
图 2-5、图 2-7、图 2-8为本发明中空纤维管膜分离装置的正视图, 图 2-5-1为本发明中空纤维管膜分离装置的储气室模块的斜视图, 图 2-6为本发明中空纤维管膜分离装置的整体爆炸图, 图 2-6-1 为本发 明中空纤维管膜分离装置的排气口一侧的斜视图。本实施案例的膜分 离装置的结构与实施案例 3基本相同, 区别点仅在于: 各分离室中填 充的是中空纤维管膜 60, 而不是实施案例 3中的平板膜 50, 各分离 室中的中空纤维管膜 60的出口分别与对应的分离室的出气口内壁的 出气口相连通:分离室 320中的中空纤维管膜 60的出口与分离室 320 内壁的出气口 210相连通、 分离室 340中的中空纤维管膜 60的出口 与分离室 340内壁的出气口 220相连通、分离室 360中的中空纤维管 膜 60的出口与分离室 360内壁的出气口 230相连通、 分离室 380中 的中空纤维管膜 60的出口与分离室 380内壁的出气口 240相连通, 因为中空纤维管膜 60的特点, 无须设置实施案例 3中的导管用于排 出剩余气体,只需要在每个分离室的内壁分别设置与储气室 420连通 的排气口即可: 分离室 320与储气室 420之间设置排气口 2010、 分 离室 340与储气室 420之间设置排气口 2020、 分离室 360与储气室 420之间设置排气口 2030、分离室 380与储气室 420之间设置排气口 2040, 排气口 2010、 排气口 2020、 排气口 2030、 排气口 2040内设 有泄压阀, 可参照图 2-5-1。 说 明 书
本发明气体中空纤维管膜分离装置, 其工作过程为:
参照图 2-5, 图 2-5为初始阶段, 转子 20的接触端 250位于进^ 口 120的顺时针侧处, 接触端 280位于进气口 120的逆时针侧处, g| 分离室 320、 接触端 250、 接触端 280与外壳内表面 100所构成的 ^ 腔 B处于新阶段的进气过程中, 传动轴 30传动的扭矩来带动外齿 fi 190旋转从而带动转子 20顺时针旋转, 随着转子 20上的接触端 28! 顺时针移动越过进气口 120后, 进气结束。 在此过程中, 气腔 B & 容积逐渐增大。
参照图 2-6和 2-7, 图 2-7为压缩过程并准备出气阶段, 接触 240滑过进气口 140, 随着转子 20的继续顺时针旋转, 气腔 B的 积进一歩减小, 气腔 B继续压缩气体进入分离室 320, 气体通过中 纤维管膜 60, 由于不同气体通过管膜的速度不同, 所以单位时间 渗透速度快的通过膜进入管内的多,渗透速度慢的通过膜进入管内 少, 这样就达到了分离气体的效果。 参照图 2-6和图 2-6-1, 分离 J 的气体从中空纤维管膜 60的出口出来通过出气口 210进入到储气 410里, 再经过这侧端盖上的出气口 90出来, 剩余气体通过排气匚 2010进入到储气室 420里, 再经过另一端盖上的排气口 910排出。 当分离室 320内剩余气体压力达到分离室 320内壁的排气口 2010 ^ 的泄压阀的阀值时阀门关闭停止排气。
参照图 2-8, 图 2-8为新的循环阶段, 随着转子 20的继续顺时奢 旋转, 气腔 B的容积逐渐减小, 此阶段气腔 B的容积达到最小, 于 说 明 书
以上的 4个实施案例均是以气体分离为例进行的说明,此装置设 计同样也可用于液体分离, 且工作原理与气体分离完全相同, 不再赘 述, 只是, 在叙述此装置用于液体分离的结构和工作原理的时候, 以 上所有讲到 "气" 的地方, 换成 "液体" 即可, 如: 以上所有讲到 "气腔" 的地方换成 "液体腔"; 所有讲到 "进气"、 "排气" 的地方 换成 "进液"、 "排液"。
上述实施案例只为说明本发明的技术构思及特点,其目的在于让 熟悉此领域技术的人士能够了解本发明内容并加以实施,并不能以此 限制本发明的保护范围。凡根据本发明精神实质所作的等效变化或修 饰, 都应涵盖在本发明的保护范围内。

Claims

权 利 要 求 书
1. 一种膜分离装置, 其特征在于, 包括:
外壳, 所述外壳的内表面为弧面, 所述外壳上设置有至少一个进 介质口、 至少一个用于排出被分离介质的出介质口;
转子, 所述转子设置在所述外壳内, 所述转子外表面设置有至少 两个与所述外壳内表面始终保持滑动接触的接触端,所述转子外表面 与所述外壳内表面在相邻接触端之间形成密封的单独腔体,各单独腔 体由所述接触端进行分隔,所述转子内空,内空的部分作为储介质室; 分离室, 所述分离室设置在所述转子内部, 为转子的一部分, 相 邻接触端之间为一个分离室, 所述分离室内部装填膜, 膜将分离室隔 成内外两部分,所述分离室外壁对应各单独腔体设置单向阀同单独腔 体连通, 所述各分离室内壁对应储介质室设置出介质口, 所述储介质 室与外壳的出介质口连通;
转子转动过程中,通过外壳的进介质口进入单独腔体的介质在压 力的作用下, 通过单向阀进入分离室, 通过膜后被分离的介质由分离 室内壁的出介质口进入储介质室, 再经过外壳的出介质口出来。
2.如权利要求 1所述的一种膜分离装置, 其特征在于, 膜选用平 板膜, 当选取平板膜时, 被分离的介质通过平板膜由出介质口进入储 气室。
3.如权利要求 2所述的膜分离装置, 其特征在于,
所述外壳上还设有至少一个排出剩余介质的排介质口;
所述转子的储介质室被隔板分成两部分:储存被分离介质的第一 储介质室以及储存剩余介质的第二储介质室; 权 利 要 求 书
所述各分离室内壁对应第一储介质室设置所述出介质口,所述各 分离室的膜与外壁之间的空间与第二储介质室通过导管相连,第一储 介质室与外壳的出介质口连通, 第二储介质室与外壳的排介质口连 通;
转子转动过程中,通过外壳的进介质口进入单独腔体的介质在压 力的作用下, 通过单向阀进入分离室, 通过膜后被分离的介质由分离 室内壁的出介质口进入第一储气室,剩余的介质通过导管进入第二储 气室, 再经过外壳的排介质口排出。
4.如权利要求 1所述的膜分离装置, 其特征在于, 膜选用中空纤 维管膜, 当选取中空纤维管膜时, 中空纤维管膜的出口连通分离室内 壁的出介质口,被分离的介质通过中空纤维管膜的管子后由分离室内 壁的出介质口进入储介质室。
5.如权利要求 4所述的膜分离装置, 其特征在于,
所述外壳上还设有至少一个排出剩余介质的排介质口; 所述转子的储介质室被隔板分成两部分:储存被分离介质的第一 储介质室以及储存剩余介质的第二储介质室;
所述各分离室内壁对应第一储介质室设置所述出介质口,每个分 离室的内壁分别设置与第二储介质室连通的排介质口,第一储介质室 与外壳的出介质口连通, 第二储介质室与外壳的排介质口连通; 转子转动过程中,通过外壳的进介质口进入单独腔体的介质在压 力的作用下, 通过单向阀进入分离室, 通过膜后被分离的介质由分离 室内壁的出介质口进入第一储介质室,剩余的介质通过分离室内壁的 权 利 要 求 书
排介质口进入第二储气室, 再经过外壳的排介质口排出。
6.如权利要求 1所述的膜分离装置, 其特征在于, 上述转子的中 心与上述外壳中心不重合,上述转子在旋转过程中其中心绕外壳的中 心转动,所述膜分离装置还包括位于外壳中心处的固定在一传动轴上 的外齿轮, 上述转子中心处设置有内齿轮, 上述外齿轮与上述内齿轮 相互啮合, 上述外齿轮的齿数小于上述内齿轮的齿数。
7.如权利要求 1所述的膜分离装置, 其特征在于, 所述外壳的内 表面为对称的弧面, 其弧形轨迹由下列方程得到:
x=R*cos a +e*cos3 α;
y=R*sin a +e*sin3 α;
转子的轮廓线由下列方程得到:
ν= 30+ t* 60
d= - 3* e* sin( 3 * v) / R
u= 2* v- asin( d)
x= 2* e* cos( u) * cos( 3 * v) + R* cos( 2* v)
y= 2* e* sin( u) * cos( 3* v) + R* sin( 2* v)
上述公式中, R为创成半径, e为转子的中心与外壳中心的距离, α e [0° , 360° ], t为时间。
8.如权利要求 7所述的膜分离装置, 其特征在于, 所述外壳的径 向位置的两侧各设有一个进气口, 外壳的轴向位置两侧有两个端盖, 一侧端盖上设有端面排介质口, 另一侧端盖上设有端面出介质口, 转 子设置有三个与外壳内表面始终保持滑动接触的接触端,所述储气室 权 利 要 求 书
被隔板分成用于储存被分离气体的第一储气室和用来储存剩余气体 的第二储气室两部分,分离室内通过膜后被分离的介质进入第一储气 室, 剩余的介质进入第二储气室, 端面出介质口连通第一储气室, 端 面排介质口连通第二储气室。
9.如权利要求 1所述的膜分离装置, 其特征在于, 所述外壳内表 面的弧形轨迹由下列方程得到:
X = e * cos(«) + R* cos(a 14)
Y = e* η{α) + R* sin(a 14)
转子的轮廓线由下列方程得到:
¾ =e*co^+e*cos^-^3> *cos^4-^3)
Figure imgf000023_0001
_„ / nN 5 sin(a I2)-K sin(3a / 10)
5 cos(a I2) + K cos(3a /10) 上述公式中, a e[0° , 360° ], e为偏心距, R为创成半径,
K=R/eD
10.如权利要求 1 所述的膜分离装置, 其特征在于, 所述介质是
:体或者是液体。
PCT/CN2013/087374 2013-11-15 2013-11-19 膜分离装置 WO2015070469A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
NZ720020A NZ720020A (en) 2013-11-15 2013-11-19 Membrane separation apparatus
EP13897278.1A EP3069783B1 (en) 2013-11-15 2013-11-19 Membrane separation apparatus
AU2013405511A AU2013405511B2 (en) 2013-11-15 2013-11-19 Membrane separation apparatus
US15/036,639 US10195568B2 (en) 2013-11-15 2013-11-19 Membrane separation device
PH12016500876A PH12016500876B1 (en) 2013-11-15 2016-05-11 Membrane separation device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310571976.XA CN103551038B (zh) 2013-11-15 2013-11-15 膜分离装置
CN201310571976.X 2013-11-15

Publications (1)

Publication Number Publication Date
WO2015070469A1 true WO2015070469A1 (zh) 2015-05-21

Family

ID=50005500

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087374 WO2015070469A1 (zh) 2013-11-15 2013-11-19 膜分离装置

Country Status (8)

Country Link
US (1) US10195568B2 (zh)
EP (1) EP3069783B1 (zh)
CN (1) CN103551038B (zh)
AU (1) AU2013405511B2 (zh)
NZ (1) NZ720020A (zh)
PH (1) PH12016500876B1 (zh)
TW (1) TWI535481B (zh)
WO (1) WO2015070469A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87103201A (zh) * 1986-03-20 1987-12-16 东丽株式会社 用于分离细胞悬浮液的装置
CN1276268A (zh) * 1999-06-03 2000-12-13 赫默内蒂克斯公司 带有滤芯的离心转筒
CA2178118C (en) * 1996-06-04 2002-06-25 Antony Moilliet Centrifugal reverse-osmosis desalination unit incorporating an annular membrane cartridge
CN102728188A (zh) * 2011-04-05 2012-10-17 王灏 泵式膜法增压富氧机

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3475331A (en) * 1968-02-23 1969-10-28 Dow Chemical Co Permeability separatory apparatus and process of making and using same
GB1393547A (en) * 1972-04-13 1975-05-07 Dresser Ind Fluid separation apparatus and method
US5143630A (en) * 1991-05-30 1992-09-01 Membrex, Inc. Rotary disc filtration device
US5263924A (en) * 1991-09-25 1993-11-23 Baxter International Inc. Integrated low priming volume centrifugal pump and membrane oxygenator
WO1994003266A1 (en) * 1992-08-03 1994-02-17 Maloney James V Jr Improved mass and thermal transfer means for use in heart lung machines, dialyzers, and other applications
JP2007237004A (ja) * 2006-02-09 2007-09-20 Terumo Corp ガス濃縮装置およびその制御方法
US20080226480A1 (en) * 2007-03-15 2008-09-18 Ion Metrics, Inc. Multi-Stage Trochoidal Vacuum Pump
AT508893B1 (de) * 2010-03-29 2011-05-15 Pantreon Gmbh Vorrichtung zum filtrieren von flüssigkeiten
WO2013181426A2 (en) * 2012-06-01 2013-12-05 Kkj, Inc. Graywater separation device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN87103201A (zh) * 1986-03-20 1987-12-16 东丽株式会社 用于分离细胞悬浮液的装置
CA2178118C (en) * 1996-06-04 2002-06-25 Antony Moilliet Centrifugal reverse-osmosis desalination unit incorporating an annular membrane cartridge
CN1276268A (zh) * 1999-06-03 2000-12-13 赫默内蒂克斯公司 带有滤芯的离心转筒
CN102728188A (zh) * 2011-04-05 2012-10-17 王灏 泵式膜法增压富氧机

Also Published As

Publication number Publication date
EP3069783A1 (en) 2016-09-21
US10195568B2 (en) 2019-02-05
NZ720020A (en) 2016-11-25
CN103551038A (zh) 2014-02-05
TWI535481B (zh) 2016-06-01
AU2013405511B2 (en) 2016-12-08
CN103551038B (zh) 2015-03-11
PH12016500876A1 (en) 2016-06-20
TW201517969A (zh) 2015-05-16
AU2013405511A1 (en) 2016-06-02
PH12016500876B1 (en) 2016-06-20
EP3069783A4 (en) 2017-07-19
US20160288055A1 (en) 2016-10-06
EP3069783B1 (en) 2018-08-22

Similar Documents

Publication Publication Date Title
EP1963673B1 (en) Highly efficient durable fluid pump and method
JP5603323B2 (ja) 正浸透用の螺旋状に巻かれた膜モジュール
US10166510B2 (en) Batch pressure-driven membrane separation with closed-flow loop and reservoir
CN105585161B (zh) 增压管道式净水机及其包装方法
CN110559887B (zh) 一种界面微流法制备超薄复合膜的制备方法
US20200391158A1 (en) Reverse osmosis centrifuge
US9925322B2 (en) Dialysate supply device and blood dialyzing apparatus having the same
Gu et al. Multilayered microfilter using a nanoporous PES membrane and applicable as the dialyzer of a wearable artificial kidney
CN205973907U (zh) 一种集成阀驱动式反渗透净水系统
TWI535481B (zh) 膜分離裝置
CN211111196U (zh) 滤芯和净水机
CN106428504A (zh) 一种小型反渗透海水淡化装置
CN110697844A (zh) 滤芯和净水机
CN115385419B (zh) 一种多重滤腔的反渗透膜装置
CN216764397U (zh) 一种侧流膜滤芯组件
CN105964045B (zh) 一种防漏水滤筒盖及滤芯
CN205061720U (zh) 纳滤装置
US11185620B2 (en) Fluid pumping device and blood purifying apparatus having the same
CN201061755Y (zh) 串接式超滤器
CN219950739U (zh) 一种冰川水的处理系统
CN215780394U (zh) 一种高效安全的血液滤过透析器和透析装置
CN218665510U (zh) 一种ro膜的净水器
JP3456795B2 (ja) 往復動ポンプ式動力回収システム
TWM462144U (zh) 低壓過濾器結構及其裝置
CN114011246A (zh) 一种侧流膜滤芯组件

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897278

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 12016500876

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: 15036639

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013897278

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013897278

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2013405511

Country of ref document: AU

Date of ref document: 20131119

Kind code of ref document: A