WO2015070460A1 - 一种ason网络的路径计算方法及装置 - Google Patents

一种ason网络的路径计算方法及装置 Download PDF

Info

Publication number
WO2015070460A1
WO2015070460A1 PCT/CN2013/087340 CN2013087340W WO2015070460A1 WO 2015070460 A1 WO2015070460 A1 WO 2015070460A1 CN 2013087340 W CN2013087340 W CN 2013087340W WO 2015070460 A1 WO2015070460 A1 WO 2015070460A1
Authority
WO
WIPO (PCT)
Prior art keywords
site
reachable
relay
station
list
Prior art date
Application number
PCT/CN2013/087340
Other languages
English (en)
French (fr)
Inventor
陈春晖
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to ES13897419.1T priority Critical patent/ES2644330T3/es
Priority to PCT/CN2013/087340 priority patent/WO2015070460A1/zh
Priority to CN201380002954.XA priority patent/CN103858441B/zh
Priority to EP13897419.1A priority patent/EP3059912B1/en
Publication of WO2015070460A1 publication Critical patent/WO2015070460A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L45/00Routing or path finding of packets in data switching networks
    • H04L45/62Wavelength based

Definitions

  • the present invention relates to the field of network technologies, and in particular, to a path calculation method and apparatus for an ASON network.
  • Wavelength division network refers to the use of wavelength division multiplexing (Wavelength Division) Multiplexing, WDM) Optical network for transmission principle.
  • WDM wavelength division multiplexing
  • Optical Add drop Multiplexer, ROADM Optical Add drop Multiplexer
  • tunable wavelength lasers enable the system to have flexible scheduling capabilities for wavelength channels to create a true optical layer network.
  • ROADM Optical Add drop Multiplexer
  • WDM network management will also change, and gradually develop towards WDM network management that can be scheduled, intelligent, and business-oriented.
  • Automatically switched optical network Automatically Switched Optical Network, ASON adds a control plane to the optical network, provides automatic resource discovery and automatic path calculation through routing protocols, and implements automatic connection management through signaling.
  • ASON Automatically switched optical network
  • the service source site is usually responsible for calculating the service path.
  • the path needs to meet the constraints of optical damage.
  • An electrical relay is required when the path is long. Therefore, ASON also needs to select an available electrical relay when calculating the service path.
  • the source site of the service calculates the path according to the actual topology of the network. Specifically, the shortest path algorithm is first adopted, that is, the path with the least path cost is calculated in the network topology.
  • the path cost can be determined according to different needs. For example, when the shortest distance is required, the path cost is the sum of the distances of the links on the path.
  • the offset algorithm is performed on the shortest path, and the finite number of suboptimal paths are calculated.
  • the available paths are selected among all possible paths by traversing all possible paths in the network.
  • the optical damage reachability map of each site is pre-calculated, and the virtual topology of each site is formed according to the reachable map as a service calculation path. That is, each site calculates a virtual topology of the entire network. Each line in the virtual topology represents a path where the optical damage meets the requirements without relaying between the two sites.
  • the source site performs calculations based on its own virtual topology of the entire network.
  • ASON network that use centralized computing routing require multiple configuration servers as centralized computing units, which increases costs.
  • the embodiments of the present invention provide a path calculation method and device for an ASON network, which can improve the success rate and efficiency of path calculation, and reduce the cost.
  • the first aspect provides a path calculation method for an ASON network, where each station in the ASON network calculates a reachable site as a reachable site without using a relay, to form a reachable site list, further in each Selecting a site with idle relay capability as a reachable relay site in the reachable site list to form a reachable relay site list, and flooding the reachable relay site list in the ASON network, the method includes: The reachable site in the reachable site list is added to the virtual topology; the site that can be reached if the relay is used is determined according to the source site's own reachable relay site list and the list of reachable relay sites of other sites received by the source site. The site that can be reached when the relay is used is added to the virtual topology; the actual topology path from the source site to the target site is determined according to the virtual topology and the actual topology of the ASON network.
  • the step of adding the reachable site in the source site's own reachable site list to the virtual topology includes: selecting the source site's own reachable site list The site is connected to the source site.
  • determining, according to the source station's own reachable relay site list and the reachable relay site list of other sites received by the source site includes: determining that the virtual topology has existing idleness according to the source site's own reachable relay site list a relay capable site; the source site receives a list of reachable relay sites of other sites, and connects existing sites with idle relay capability to reachable relay sites in the list of reachable relay sites; according to the source site itself
  • the reachable relay site list and the reachable relay site list of other sites received by the source site determine the site in the ASON network that does not have idle relay capability; the existing reachable relay site list contains the existing idle relay A site of a capable site that does not have idle relay capability is connected to an existing site with idle relay capability.
  • the step of determining an actual topology path from the source site to the target site according to the virtual topology and the actual topology of the ASON network includes: Calculate the shortest virtual topology path from the source site to the target site; determine the actual topology path by using the site with the idle relay capability of the virtual topology path as the mandatory site and referring to the actual topology of the ASON network.
  • each site in the ASON network floods the reachable relay site list to all sites in the ASON network by extending the OSPF protocol.
  • each site in the ASON network selects a site that meets optical impairment requirements for optical impairment of the transmission path without using a relay. As a reachable site.
  • the reachable site list is only stored in the respective site.
  • a second aspect provides a path computing device for an ASON network, wherein each site in the ASON network calculates a reachable site as a reachable site without using a relay, to form a reachable site list, further in each Selecting a site with an idle relay capability as a reachable relay site in the reachable site list to form a reachable relay site list, and flooding the reachable relay site list in the ASON network, the path calculation device includes: a first virtual The topology generation module is configured to join the reachable site in the source site's own reachable site list to the virtual topology; the second virtual topology generation module is configured to receive according to the source site's own reachable relay site list and the source site The list of reachable relay sites of other sites determines the site that the source site can reach in the case of using the relay, and the site that the source site can reach in the case of using the relay is added to the virtual topology; the actual topology path generation module is used according to The virtual topology and the actual topology of the ASON network determine the actual topology path from
  • the first virtual topology generation module further includes a first site connection unit, where the first site connection unit locates the reachable site and the source in the source site's own reachable site list The site is connected.
  • the second virtual topology generation module further includes a site determining unit and a second site connecting unit, where: the site determining unit is based on the source site itself The reachable relay site list determines the existing sites with idle relay capability in the virtual topology; the source site receives the list of reachable relay sites of other sites, and the second site connection unit connects the existing sites with idle relay capabilities with The reachable relay station in the reachable relay site list is connected; the site determining unit determines that the ASON network does not have idle according to the source site's own reachable relay site list and the other site's reachable relay site list received by the source site. a site with capabilities; the second site connection unit will include its own site with idle relay capability and a site with idle trunk capability in the list of its own reachable relay sites. Make a connection.
  • the actual topology path generating module further includes a computing path unit and a selecting path unit, where: calculating the path unit from the virtual topology Calculate the shortest virtual topology path from the source site to the target site; select the path unit to use the site with the idle relay capability of the virtual topology path as the mandatory site and determine the actual topology path with reference to the actual topology of the ASON network.
  • each site in the ASON network floods the reachable relay site list to all sites in the ASON network by extending the OSPF protocol.
  • each station in the ASON network selects a site that meets an optical impairment requirement for optical damage of the transmission path without using a relay. To the site.
  • the reachable site list is only stored in the respective site.
  • a third aspect provides a path computing device of an ASON network, where the path computing device includes a memory, a network interface, a processor, and a bus system.
  • the memory, the network interface, and the processor are respectively connected to the bus system, wherein: the memory stores the first program.
  • the first program is used by each station in the ASON network to calculate a reachable site as a reachable site without using a relay, to form a reachable site list, and further select to have idle in the respective reachable site list.
  • the capability-enabled site acts as a reachable relay site to form a reachable relay site list; the network interface is used to flood the reachable relay site list in the ASON network; the memory stores a second program, and the second program is used to source the site
  • the reachable site in its own reachable site list is added to the virtual topology, and can be reached according to the source site's own reachable relay site list and the list of reachable relay sites of other sites received by the source site.
  • Sites that will be joined to the virtual topology by the source site in the case of relays Further virtual topology is determined according to the actual topology and the actual arrival ASON network topological path from the source site to the destination site; a processor for executing the first program and the second program.
  • the second program is further configured to connect the reachable site in the source site's own reachable site list with the source site.
  • the second program is further configured to: determine that the virtual topology has an idle state according to the source station's own reachable relay site list.
  • the site of the capability; the source site receives the list of reachable relay sites of other sites, and connects the existing site with idle relay capability to the reachable relay site in the list of reachable relay sites; according to the source site itself
  • the reachable relay site list and the reachable relay site list of other sites received by the source site determine the sites in the ASON network that do not have idle relay capability; and the existing reachable relay site list includes the existing idle relay capability.
  • the site of the site that does not have idle relay capability is connected to the existing site with idle relay capability.
  • the second program is further configured to: calculate, from the virtual topology, a virtual topology path with the shortest hop from the source station to the target station;
  • the site with the idle relay capability of the virtual topology path serves as the mandatory site and determines the actual topology path with reference to the actual topology of the ASON network.
  • the network interface is further used by each site in the ASON network to flood the reachable relay site list to all sites in the ASON network by extending the OSPF protocol.
  • the first program is further used by each station in the ASON network to select optical damage satisfying optical of the transmission path without using the relay
  • the site required for damage is a reachable site.
  • the first program is further configured to store the reachable site list only in the respective site.
  • each station in the ASON network calculates a reachable site as a reachable site without using a relay, to form a site.
  • a list of reachable sites further selecting a site with idle relay capability as a reachable relay site in a list of respective reachable sites, forming a list of reachable relay sites, and flooding the list of reachable relay sites in the ASON network, and further Add the reachable site in the source site's own reachable site list to the virtual topology, and determine the use of the relay based on the source site's own reachable relay site list and the list of reachable relay sites of other sites received by the source site.
  • the site that can be reached when the relay is used is added to the virtual topology, and finally the actual topology path from the source site to the target site is determined according to the virtual topology and the actual topology of the ASON network.
  • the present invention only needs to calculate the reachable sites of each site, distributes the calculation amount to each site, improves the efficiency, and reduces the performance requirements on the site control board, and reduces the cost; further, in calculating After the reachable sites of each site, the reachable relay sites are determined according to the reachable sites, and the list of reachable relay sites formed by the relayed sites is flooded in the ASON network, so that each site can produce a virtual topology, and finally according to the virtual topology. And the actual topology obtains the actual topology path from the source site to the target site, which improves the success rate and efficiency of path computation.
  • FIG. 1 is a schematic diagram of an actual topology of an ASON network
  • FIG. 2 is a schematic diagram of a reachable site corresponding to some sites in an ASON network
  • FIG. 3 is a flowchart of a path calculation method of an ASON network according to a first embodiment of the present invention
  • FIG. 4 is a flowchart of a path calculation method of an ASON network according to a second embodiment of the present invention.
  • FIG. 5 is a schematic diagram of a topology formed when a path from a source site to a target site in an ASON network is calculated according to the method shown in FIG. 4;
  • FIG. 6 is a schematic structural diagram of a path calculation apparatus of an ASON network according to a third embodiment of the present invention.
  • FIG. 7 is a schematic structural diagram of a path calculation apparatus of an ASON network according to a fourth embodiment of the present invention.
  • FIG. 8 is a schematic structural diagram of a path calculation apparatus of an ASON network according to a fifth embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an actual topology structure of an ASON network
  • FIG. 2 is a schematic diagram of a reachable site corresponding to some sites in an ASON network.
  • sites A, B, C, D, E, F, G, and H respectively calculate the reachable sites without using the relay as reachable
  • the site is configured to form a reachable site list, and further select a site with idle relay capability as a reachable relay site in the respective reachable site list to form a reachable relay site list.
  • each station in the ASON network selects a site that meets optical impairment requirements for optical damage of the transmission path without using a relay as a reachable site.
  • the path between the sites in the site list and their reachable sites that meets the optical damage requirements without using relays in both directions can be achieved.
  • optical damage can be based on optical signal to noise ratio (OSNR, Optical Signal to Noise Rati) Degradation value calculation.
  • OSNR optical signal to noise ratio
  • FIG. 1 the value of the transmission path is identified between the station and the site.
  • the generation value of the transmission path is greater than or equal to a threshold, the optical damage of the transmission path may not be considered to meet the optical damage requirement.
  • This embodiment will enumerate the processes of calculating the reachable site list and the reachable relay site list by the sites A, D, and F to illustrate the process of calculating the reachable site list and the reachable relay site list by each site of the present invention. Specifically as shown in Figure 2.
  • the site A can calculate that the reachable sites that can be reached without using the relay are the sites B, C, E, and F, and the list of reachable sites of the site A is as shown in the figure. 2.1 is shown. Further, in the reachable site list of the site A (ie, FIG. 2.1), the site with the idle relay capability is selected, where the site with the idle relay capability specifically includes the idle relay R, and the condition is met.
  • the site is site F, that is, the list of reachable relay sites of site A is site F.
  • the site D calculates that the reachable sites that can be reached without using the relay are the sites B, C, E, F, and H, and the reach of the site D is The list of sites is shown in Figure 2.2. Further, in the reachable site list of the site D (ie, FIG. 2.2), the site with the idle relay capability is selected as the site F, that is, the list of the reachable relay sites of the site D is the site F.
  • the site F calculates that the reachable sites that can be reached without using the relay are sites A, D, E, and G, and the list of reachable sites of the site F is as shown in FIG. 2.3. Shown. Further, in the reachable site list of the site F (ie, FIG. 2.3), the site with the idle relay capability is selected as G, that is, the reachable relay site list of the site F is the site G.
  • the reachable site list of this embodiment is only stored in the respective sites. After each station in the ASON network obtains its own list of reachable relay sites according to the reachable site list, it floods the reachable relay site list in the ASON network. Optionally, each site is extended by an open shortest path first (Open The Shortest Path First (OSPF) protocol floods the list of reachable relay sites to all sites in the ASON network.
  • OSPF Open The Shortest Path First
  • the list of reachable sites and the list of reachable relay sites of each site in the ASON network are first calculated, and the list of relayed sites is flooded.
  • the network changes such as fiber breaks, fiber repair, and fiber attenuation changes
  • the invention spreads the calculation amount to each site, thereby improving the calculation efficiency and reducing the performance requirements of the site control board and reducing the cost.
  • FIG. 3 is a flowchart of a path calculation method of an ASON network according to a first embodiment of the present invention. It is worth noting that calculating the path from a source site to a target site in the ASON network is performed in the case of determining a list of reachable sites and a list of reachable site relay sites for each site. The process of determining the reachable site list and the reachable site relay site list of each site is as described above, and details are not described herein again. As shown in FIG. 3, the path calculation method of the ASON network includes the following steps:
  • Step S1 Add the reachable site in the source site's own reachable site list to the virtual topology.
  • Step S2 determining, according to the source station's own reachable relay station list and the reachable relay station list of other stations received by the source station, the reachable site when the relay is used, and the site that can be reached when the relay is used. Join the virtual topology.
  • Step S3 Determine an actual topology path from the source site to the target site according to the virtual topology and the actual topology of the ASON network.
  • the virtual topology of the source site is first formed according to the reachable site list of the source site and the reachable relay site list of other sites received by the source site, and then the source site reaches the target site according to the virtual topology and the actual topology of the source site.
  • the actual topology path which improves the success rate and efficiency of path calculation.
  • the present invention further provides another path calculation method for an ASON network, which is described in detail based on the path calculation method of an ASON network in the first embodiment shown in FIG.
  • this embodiment specifically enumerates a path calculation process from a source site to a target site according to the steps of the path calculation method of the ASON network.
  • FIG. 4 is a flowchart of a path calculation method of an ASON network according to a second embodiment of the present invention
  • FIG. 5 is a method for calculating a source in an ASON network according to the method shown in FIG. A topology diagram formed when a site is routed to a target site.
  • this embodiment assumes that the path from site A to site D needs to be calculated, then site A is the source site, and site D is the target site.
  • the method includes:
  • Step S11 Connect the reachable site in the source site's own reachable site list to the source site.
  • the reachable sites in the reachable site list of Site A are Sites B, C, E, and F. Connecting stations B, C, E, and F to site A results in the virtual topology shown in Figure 5.1.
  • Step S21 Determine a station with an idle relay capability existing in the virtual topology according to the source station's own reachable relay station list.
  • the reachable relay site list of the site A is F. Therefore, it is determined that the site with the idle relay capability existing in the virtual topology of the site A is the site F.
  • Step S22 The source station receives the list of reachable relay stations of other stations, and connects the existing station with idle relay capability to the reachable relay station in the list of reachable relay stations.
  • the list of reachable relay sites of other sites received by site A is specifically: the list of reachable relay sites of sites B and C is empty, and the list of reachable relay sites of sites D, E, and G are all F.
  • the list of reachable relay sites for Site F and Site H is G.
  • the list of reachable relay sites of the existing site F with idle relay capability is site G. Therefore, the site F is connected to the site G, as shown in FIG. 5.2.
  • Step S23 Determine a station in the ASON network that does not have idle relay capability according to the source station's own reachable relay station list and the reachable relay station list of other stations received by the source station.
  • the station does not have the idle relay capability except the source station, that is, the site that does not have the idle relay capability in the ASON network is the site B, C, D, relative to the site A. E and H.
  • Step S24 Connect the station having the idle relay capability of the existing station with the idle relay capability in the list of the reachable relay stations to the existing station with the idle relay capability.
  • the reachable relay site list of the sites D and E includes the site F with the idle relay capability, and the sites D and E are the sites without the idle relay capability, and the site D Connect with E and site F respectively, as shown in Figure 5.3.
  • the method further includes connecting, by its own reachable relay station, a station that does not have idle relay capability to an existing station with idle relay capability to connect with its own reachable relay station.
  • the reachable relay site of Site H is Site G
  • Site G can be connected to Site F with idle relay capability
  • Site H is a site that does not have idle relay capability
  • Site H and Site G is connected, as shown in Figure 5.3.
  • Step S31 Calculate the virtual topology path with the shortest hop from the source station to the target station from the virtual topology.
  • step S24 It can be seen from the virtual topology diagram 5.3 formed in step S24 that the virtual topology path with the shortest hop count to the site D is A-F-D with respect to the site A.
  • Step S32 Determine the actual topology path by using the site with the idle relay capability of the virtual topology path as the necessary site and referring to the actual topology of the ASON network.
  • step S31 the site with the idle relay capability of the virtual topology path A-F-D is the site F. Therefore, the site F is used as a necessary site for the path from the site A to the site D, and the path with the least optical damage in the path passing through the site F is further selected. As shown in FIG. 1, the path A-E-F-D can be satisfied. Thus, the path from site A to site D is A-E-F-D.
  • the virtual topology of the source site is first formed according to the reachable site list of the source site and the reachable relay site list of other sites received by the source site, and then the source site reaches the target site according to the virtual topology and the actual topology of the source site.
  • the actual topology path which improves the success rate and efficiency of path calculation.
  • FIG. 6 is a schematic structural diagram of a path calculation apparatus of an ASON network according to a third embodiment of the present invention. It is worth noting that calculating the path from a source site to a target site in the ASON network is performed in the case of determining a list of reachable sites and a list of reachable site relay sites for each site. The process of determining the reachable site list and the reachable site relay site list of each site is as described above, and details are not described herein again.
  • the path computing device 60 of the ASON network of the present invention includes a first virtual topology generating module 61, a second virtual topology generating module 62, and an actual topology path generating module 63.
  • the first virtual topology generating module 61 is configured to add the reachable site in the source site's own reachable site list to the virtual topology.
  • the second virtual topology generation module 62 is configured to determine, according to the source station's own reachable relay site list and the reachable relay site list of other sites received by the source site, the reachable site when the relay is used, and the relayed In the case, the site that the source site can reach joins to the virtual topology.
  • the actual topology path generation module 63 is configured to determine an actual topology path from the source site to the target site according to the virtual topology and the actual topology of the ASON network.
  • the first virtual topology generation module 61 and the second virtual topology generation module 62 form a virtual topology of the source site according to the reachable site list of the source site and the reachable relay site list of other sites received by the source site, and then form a virtual topology of the source site.
  • the actual topology path generation module 63 determines the actual topology path of the source station to the target site according to the virtual topology and the actual topology of the source site, thereby improving the success rate and efficiency of the path calculation.
  • the present invention also provides another path calculation device for an ASON network, which is described in detail based on the path calculation device of an ASON network of the third embodiment shown in FIG. 6.
  • the first virtual topology generation module 61 further includes a first site connection unit 611 that connects the reachable site in the source site's own reachable site list with the source site.
  • the second virtual topology generation module 62 further includes a site determining unit 621 and a second site connecting unit 622, wherein:
  • the site determining unit 621 determines a site having an idle relay capability existing in the virtual topology according to the source site's own reachable relay site list.
  • the source site receives a list of reachable relay sites of other sites, and the second site connection unit 622 connects the existing site with idle relay capability to the reachable relay site in the list of reachable relay sites.
  • the station determining unit 621 determines a station in the ASON network that does not have idle relay capability according to the source station's own reachable relay station list and the reachable relay station list of other stations received by the source station.
  • the second site connection unit 622 connects the site having the idle relay capability of the existing station having the idle relay capability in the list of the reachable relay sites to the existing site having the idle relay capability.
  • the actual topology path generation module 63 further includes a calculation path unit 631 and a selection path unit 632, where:
  • the calculation path unit 631 calculates the virtual topology path with the shortest number of hops from the source site to the target site from the virtual topology.
  • the selection path unit 632 determines the actual topology path by taking the site with the idle relay capability of the virtual topology path as a mandatory site and referring to the actual topology of the ASON network.
  • the path calculation device 60 of the ASON network in the embodiment calculates the path from the site A to the site D.
  • the topology diagram of the formation of the time is shown in FIG. 5, and the description of the specific calculation process is as described above, and details are not described herein again.
  • FIG. 8 is a path calculation device of an ASON network according to a fifth embodiment of the present invention.
  • the path computation device 80 of the ASON network of the present invention includes a memory 81, a network interface 82, a processor 83, and a bus system 84.
  • Memory 81, network interface 82, and processor 83 are coupled to bus system 84, respectively:
  • the memory 81 stores a first program, and the first program is used by each station in the ASON network to calculate a reachable site as a reachable site without using a relay, to form a reachable site list, as shown in FIG. Further, in the respective reachable site list, the site with the idle relay capability is selected as the reachable relay site to form a reachable relay site list, as shown in FIG. 2 .
  • the network interface 82 is used to flood the reachable relay site list in the ASON network.
  • the memory 81 stores a second program for adding the reachable site in the source site's own reachable site list to the virtual topology, and receiving according to the source site's own reachable relay site list and the source site.
  • the list of reachable relay sites of other sites determines the sites that can be reached when the relays are used, and the sites that the source sites can reach in the case of using the relays are added to the virtual topology, and further determined according to the virtual topology and the actual topology of the ASON network.
  • the processor 84 is configured to execute the first program and the second program.
  • the first program is further used by each station in the ASON network to select a site that meets the optical impairment requirement for optical damage of the transmission path without using the relay as the reachable site.
  • the reachable site list is only stored in the respective sites.
  • the network interface 82 is further used by each station in the ASON network to flood the reachable relay station list to all sites in the ASON network by extending the OSPF protocol.
  • the second program is further configured to connect the reachable site in the source site's own reachable site list with the source site.
  • the second program is further configured to: determine, according to the source station's own reachable relay site list, a site that has an existing idle capability in the virtual topology;
  • a station that does not have idle relay capability which includes an existing station with idle relay capability in its own reachable relay station list, is connected to an existing station with idle relay capability.
  • the second program is further configured to: calculate, from the virtual topology, a virtual topology path that has the shortest hop count from the source station to the target station;
  • the site with idle relay capability of the virtual topology path is regarded as a necessary site and the actual topology path is determined with reference to the actual topology of the ASON network.
  • the first step is to calculate the reachable site list and the reachable relay site list of each site in the ASON network, and distribute the calculation amount to each site, thereby improving the calculation efficiency and reducing the site control list. Board performance requirements reduce costs.
  • the relay site list forms the virtual topology of the source site, and then determines the actual topology path of the source site to the target site according to the virtual topology and the actual topology of the source site, thereby improving the success rate and efficiency of the path calculation.
  • the disclosed apparatus and method may be implemented in other manners.
  • the foregoing embodiment of the device embodiment is merely illustrative.
  • the division of the module or unit is only a logical function division, and the actual implementation may have another division manner, such as multiple units or Components can be combined or integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the embodiments of the present embodiment.
  • each functional unit in the embodiments of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the above integrated unit can be implemented in the form of hardware or in the form of a software functional unit.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as a standalone product, may be stored in a computer readable storage medium.
  • the instructions include a plurality of instructions for causing a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to perform all or part of the steps of the methods described in the various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read only memory (ROM, Read-Only) Memory, random access memory (RAM), disk or optical disk, and other media that can store program code.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明公开了一种ASON网络的路径计算方法及装置。其中,ASON网络中的各站点分别形成可达站点列表,进一步在各自的可达站点列表中选择具有空闲中继能力的站点作为可达中继站点,以形成可达中继站点列表,并在ASON网络中洪泛可达中继站点列表,该方法包括以下步骤:将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑,根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定使用中继的情况下能够到达的站点,并加入到虚拟拓扑,根据虚拟拓扑和ASON网络的实际拓扑确定从源站点到达目标站点的实际拓扑路径。通过上述方式,本发明可以提高路径计算的成功率和效率,并降低成本。

Description

一种ASON网络的路径计算方法及装置
【技术领域】
本发明涉及网络技术领域,特别是涉及一种ASON网络的路径计算方法及装置。
【背景技术】
波分网络是指采用波分复用(Wavelength Division Multiplexing,WDM)传输原理的光网络。从WDM技术的发展看,最早的WDM系统是简单的点到点系统,并非真正意义的光层组网。后来为满足带宽大颗粒化、动态化的组网需求,WDM网络建设逐渐采用动态光分插复用(Reconfiguration Optical Add drop Multiplexer,ROADM)以及可调波长激光器等技术,使系统具备波长通道的灵活调度能力,从而构建真正意义的光层网络。随着WDM组网技术的成熟和应用,WDM网络管理也将随之发生改变,逐步向着可调度、智能化、面向业务运营的WDM网络管理方向发展。自动交换光网络(Automatically Switched Optical Network,ASON)给光网络增加了控制平面,通过路由协议提供了资源自动发现和路径自动计算,通过信令实现了自动连接管理。
现有技术的自动交换光网络,通常由业务源站点负责计算业务路径。对于波分光层业务,计算业务路径时,路径需要满足光学损伤的约束。当路径较长时需要使用电中继。因此,ASON计算业务路径时还需要选择可用的电中继。
现有技术的第一种计算业务路径的方法为:
业务的源站点根据网络实际的拓扑计算路径。具体为:首先采用最短路径算法,即在网络拓扑中计算路径代价最小的路径。路径代价可以根据不同需求而定,例如需要最短距离时,路径代价是路径上各个链路的距离之和。
当最短路径不能满足要求时,在最短路径上进行偏移算法,计算有限次的次优路径。
当最短路径以及有限次的次优路径都不能满足要求时,通过遍历网络中所有可能路径,在所有可能路径中选择可用的路径。
现有技术的第二种计算业务路径的方法为:
预先计算各个站点的光学损伤可达图,根据可达图构成各站点的虚拟拓扑为业务计算路径。即每个站点都计算一个全网的虚拟拓扑,虚拟拓扑中每条线代表两站点间不用中继存在光学损伤满足要求的路径。在计算路径时,源站点根据自身的全网虚拟拓扑进行计算。
现有技术的第一种计算业务路径的方法的缺陷为:
采用最短路径算法或偏移有限次的次优路径方法时,由于中继站的位置因素,有可能遇到没有中继站加入到路径代价中,导致计算出的路径没有中继可用,因而计算路径失败。采用遍历所有可能路径的方法时,计算耗时长,不能满足重路由等功能对时间的要求。
现有技术的第二种计算业务路径的方法的缺陷为:
每个站点的全网的虚拟拓扑在网络有变化时需要实时计算,计算量大,计算时需要的时间和存储空间均较大。在分布式ASON网络中采用此方法,需要各个站点都配备高性能并且高成本的控制单板。使用集中计算路由的ASON网络,相比分布式ASON网络,需要多配置服务器作为集中计算单元,增加了成本。
【发明内容】
有鉴于此,本发明实施例提供了一种ASON网络的路径计算方法及装置,能够提高路径计算的成功率和效率,并降低成本。
第一方面提供一种ASON网络的路径计算方法,其中,ASON网络中的各站点分别计算在不使用中继的情况下能够到达的站点作为可达站点,以形成可达站点列表,进一步在各自的可达站点列表中选择具有空闲中继能力的站点作为可达中继站点,以形成可达中继站点列表,并在ASON网络中洪泛可达中继站点列表,该方法包括:将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑;根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定使用中继的情况下能够到达的站点,将使用中继的情况下能够到达的站点加入到虚拟拓扑;根据虚拟拓扑和ASON网络的实际拓扑确定从源站点到达目标站点的实际拓扑路径。
在第一方面的第一种可能的实现方式中,将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑的步骤包括:将源站点的自身的可达站点列表中的可达站点与源站点进行连接。
结合第一方面的第一种可能的实现方式,在第二种可能的实现方式中,根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定使用中继的情况下能够到达的站点,将使用中继的情况下源站点能够到达的站点加入到虚拟拓扑的步骤包括:根据源站点的自身的可达中继站点列表确定虚拟拓扑中已有的具有空闲中继能力的站点;源站点接收其他站点的可达中继站点列表,并将已有的具有空闲中继能力的站点与其可达中继站点列表中的可达中继站点进行连接;根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定ASON网络中的不具有空闲中继能力的站点;将自身的可达中继站点列表中包含已有的具有空闲中继能力的站点的不具有空闲中继能力的站点与已有的具有空闲中继能力的站点进行连接。
结合第一方面的第二种可能的实现方式,在第三种可能的实现方式中,根据虚拟拓扑和ASON网络的实际拓扑确定从源站点到达目标站点的实际拓扑路径的步骤包括:从虚拟拓扑中计算从源站点到达目标站点的跳数最短的虚拟拓扑路径;将虚拟拓扑路径的具有空闲中继能力的站点作为必经站点并参照ASON网络的实际拓扑确定实际拓扑路径。
在第一方面的第四种可能的实现方式中,ASON网络中的各站点分别通过扩展OSPF协议向ASON网络中的所有站点洪泛可达中继站点列表。
结合第一方面的第四种可能的实现方式中,在第五种可能的实现方式中,ASON网络中的各站点选择在不使用中继的情况下传输路径的光学损伤满足光学损伤要求的站点作为可达站点。
结合第一方面的第五种可能的实现方式中,在第六种可能的实现方式中,可达站点列表仅存储于各自的站点。
第二方面提供一种ASON网络的路径计算装置,其中,ASON网络中的各站点分别计算在不使用中继的情况下能够到达的站点作为可达站点,以形成可达站点列表,进一步在各自的可达站点列表中选择具有空闲中继能力的站点作为可达中继站点,以形成可达中继站点列表,并在ASON网络中洪泛可达中继站点列表,该路径计算装置包括:第一虚拟拓扑生成模块,用于将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑;第二虚拟拓扑生成模块,用于根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定使用中继的情况下源站点能够到达的站点,将使用中继的情况下源站点能够到达的站点加入到虚拟拓扑;实际拓扑路径生成模块,用于根据虚拟拓扑和ASON网络的实际拓扑确定从源站点到达目标站点的实际拓扑路径。
在第二方面的第一种可能的实现方式中,第一虚拟拓扑生成模块进一步包括第一站点连接单元,第一站点连接单元将源站点的自身的可达站点列表中的可达站点与源站点进行连接。
结合第二方面第一种可能的实现方式,在第二种可能的实现方式中,第二虚拟拓扑生成模块进一步包括站点确定单元以及第二站点连接单元,其中:站点确定单元根据源站点的自身的可达中继站点列表确定虚拟拓扑中已有的具有空闲中继能力的站点;源站点接收其他站点的可达中继站点列表,第二站点连接单元将已有的具有空闲中继能力的站点与其可达中继站点列表中的可达中继站点进行连接;站点确定单元根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定ASON网络中的不具有空闲中继能力的站点;第二站点连接单元将自身的可达中继站点列表中包含已有的具有空闲中继能力的站点的不具有空闲中继能力的站点与已有的具有空闲中继能力的站点进行连接。
结合第二方面第二种可能的实现方式,在第二方面的第三种可能的实现方式中,实际拓扑路径生成模块进一步包括计算路径单元和选择路径单元,其中:计算路径单元从虚拟拓扑中计算从源站点到达目标站点的跳数最短的虚拟拓扑路径;选择路径单元将虚拟拓扑路径的具有空闲中继能力的站点作为必经站点并参照ASON网络的实际拓扑确定实际拓扑路径。
在第二方面的第四种可能的实现方式中,ASON网络中的各站点分别通过扩展OSPF协议向ASON网络中的所有站点洪泛可达中继站点列表。
结合第二方面第四种可能的实现方式,在第五种可能的实现方式中,ASON网络中的各站点选择在不使用中继的情况下传输路径的光学损伤满足光学损伤要求的站点作为可达站点。
结合第二方面第五种可能的实现方式,在第六种可能的实现方式中,可达站点列表仅存储于各自的站点。
第三方面提供一种ASON网络的路径计算装置,路径计算装置包括存储器、网络接口、处理器以及总线系统,存储器、网络接口以及处理器分别与总线系统连接,其中:存储器存储有第一程序,第一程序用于ASON网络中的各站点分别计算在不使用中继的情况下能够到达的站点作为可达站点,以形成可达站点列表,进一步在各自的可达站点列表中选择具有空闲中继能力的站点作为可达中继站点,以形成可达中继站点列表;网络接口用于在ASON网络中洪泛可达中继站点列表;存储器存储有第二程序,第二程序用于将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑,并根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定使用中继的情况下能够到达的站点,将使用中继的情况下源站点能够到达的站点加入到虚拟拓扑,进一步根据虚拟拓扑和ASON网络的实际拓扑确定从源站点到达目标站点的实际拓扑路径;处理器用于执行第一程序和第二程序。
在第三方面的第一种可能的实现方式中,第二程序进一步用于将源站点的自身的可达站点列表中的可达站点与源站点进行连接。
结合第三方面第一种可能的实现方式,在第二种可能的实现方式中,第二程序进一步用于:根据源站点的自身的可达中继站点列表确定虚拟拓扑中已有的具有空闲中继能力的站点;源站点接收其他站点的可达中继站点列表,并将已有的具有空闲中继能力的站点与其可达中继站点列表中的可达中继站点进行连接;根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定ASON网络中的不具有空闲中继能力的站点;将自身的可达中继站点列表中包含已有的具有空闲中继能力的站点的不具有空闲中继能力的站点与已有的具有空闲中继能力的站点进行连接。
结合第三方面第二种可能的实现方式,在第三种可能的实现方式中,第二程序进一步用于:从虚拟拓扑中计算从源站点到达目标站点的跳数最短的虚拟拓扑路径;将虚拟拓扑路径的具有空闲中继能力的站点作为必经站点并参照ASON网络的实际拓扑确定实际拓扑路径。
在第三方面的第四种可能的实现方式中,网络接口进一步用于ASON网络中的各站点分别通过扩展OSPF协议向ASON网络中的所有站点洪泛可达中继站点列表。
结合第三方面第四种可能的实现方式,在第五种可能的实现方式中,第一程序进一步用于ASON网络中的各站点选择在不使用中继的情况下传输路径的光学损伤满足光学损伤要求的站点作为可达站点。
在第三方面的第五种可能的实现方式中,在第六种可能的实现方式中,第一程序进一步用于可达站点列表仅存储于各自的站点。
通过上述技术方案,本发明实施例提供了一种ASON网络的路径计算方法及装置,首先ASON网络中的各站点分别计算在不使用中继的情况下能够到达的站点作为可达站点,以形成可达站点列表,进一步在各自的可达站点列表中选择具有空闲中继能力的站点作为可达中继站点,以形成可达中继站点列表,并在ASON网络中洪泛可达中继站点列表,进而将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑,并根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定使用中继的情况下能够到达的站点,将使用中继的情况下能够到达的站点加入到虚拟拓扑,最后根据虚拟拓扑和ASON网络的实际拓扑确定从源站点到达目标站点的实际拓扑路径。通过上述方式,本发明只需计算各站点的可达站点,将计算量分散到各个站点中,提高了效率,并且降低了对站点控制单板的性能要求,降低成本;进一步地,在计算到各站点的可达站点后,根据可达站点确定可达中继站点,并在ASON网络中洪泛可达中继站点形成的可达中继站点列表,使各站点都可生产虚拟拓扑,最后根据虚拟拓扑和实际拓扑得到源站点到目标站点的实际拓扑路径,提高了路径计算的成功率以及效率。
【附图说明】
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是ASON网络的实际拓扑结构示意图;
图2是ASON网络中的部分站点对应的可达站点示意图;
图3是本发明第一实施例的一种ASON网络的路径计算方法的流程图;
图4为本发明第二实施例的一种ASON网络的路径计算方法的流程图;
图5是根据图4所示的方法计算ASON网络中一源站点到一目标站点的路径时形成的拓扑示意图;
图6是本发明第三实施例的一种ASON网络的路径计算装置的结构示意图;
图7是本发明第四实施例的一种ASON网络的路径计算装置的结构示意图;
图8是本发明第五实施例的一种ASON网络的路径计算装置的结构示意图。
【具体实施方式】
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
首先请参见图1和图2,图1是ASON网络的实际拓扑结构示意图,图2是ASON网络中的部分站点对应的可达站点示意图。在计算ASON网络中的源站点到目标站点的路径前,首先需要确定各个站点的可达站点列表和可达中继站点列表。具体而言,ASON网络中的各站点,如图1所示的站点A、B、C、D、E、F、G以及H分别计算在不使用中继的情况下能够到达的站点作为可达站点,以形成可达站点列表,进一步在各自的可达站点列表中选择具有空闲中继能力的站点作为可达中继站点,以形成可达中继站点列表。
可选地,ASON网络中的各站点选择在不使用中继的情况下传输路径的光学损伤满足光学损伤要求的站点作为可达站点。即可达站点列表中各站点和其可达站点间存在双向不使用中继就可满足光学损伤要求的路径。其中,光学损伤可根据光信噪比(OSNR,Optical Signal to Noise Rati)劣化值计算。如图1所示,站点与站点间均标识了传输路径的代价值,传输路径的代价值大于或等于一阈值时,可认为传输路径的光学损伤不满足光学损伤要求。本实施例将列举站点A、D以及F计算可达站点列表和可达中继站点列表的过程来说明本发明各站点计算可达站点列表和可达中继站点列表的过程。具体如图2所示。
假设传输路径的代价值大于或等于10时,传输路径的光学损伤不满足光学损伤要求。根据图1中标识的传输路径的代价值可得站点A计算在不使用中继的情况下能够到达的可达站点为站点B、C、E以及F,则站点A的可达站点列表如图2.1所示。进一步的,在站点A的可达站点列表(即图2.1)中选择具有空闲中继能力的站点,其中,具有空闲中继能力的站点具体为该站点包含有空闲中继R,满足该条件的站点为站点F,即站点A的可达中继站点列表为站点F。
同理,根据图1中标识的传输路径的代价值,站点D计算在不使用中继的情况下能够到达的可达站点为站点B、C、E、F以及H,则站点D的可达站点列表如图2.2所示。进一步的,在站点D的可达站点列表(即图2.2)中选择具有空闲中继能力的站点为站点F,即站点D的可达中继站点列表为站点F。
根据图1中标识的传输路径的代价值,站点F计算在不使用中继的情况下能够到达的可达站点为站点A、D、E以及G,则站点F的可达站点列表如图2.3所示。进一步的,在站点F的可达站点列表(即图2.3)中选择具有空闲中继能力的站点为G,即站点F的可达中继站点列表为站点G。
本实施例的可达站点列表仅存储于各自的站点。ASON网络中的各站点根据可达站点列表得到自身的可达中继站点列表后,在ASON网络中洪泛可达中继站点列表。可选地,各站点分别通过扩展开放式最短路径优先(Open Shortest Path First,OSPF)协议向ASON网络中的所有站点洪泛可达中继站点列表。
本发明中,首先计算的是ASON网络中各站点的可达站点列表和可达中继站点列表,并洪泛可达中继站点列表。当网络发生变化,例如光纤中断、光纤修复以及光纤衰减变化等时,只需重新计算各站点的可达站点列表和可达中继站点列表,并重新洪泛可达中继站点列表即可。本发明将计算量分散到了各个站点中,从而提高了计算的效率,并且降低了对站点控制单板的性能要求,降低了成本。
请参阅图3,图3是本发明第一实施例的一种ASON网络的路径计算方法的流程图。值得注意的是,计算ASON网络中一源站点到一目标站点的路径是在确定各个站点的可达站点列表和可达站点中继站点列表的情况下进行的。确定各个站点的可达站点列表和可达站点中继站点列表的过程如前文所述,在此不再赘述。如图3所示,ASON网络的路径计算方法包括以下步骤:
步骤S1:将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑。
步骤S2:根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定使用中继的情况下能够到达的站点,将使用中继的情况下能够到达的站点加入到虚拟拓扑。
经过步骤S1和S2后,形成了源站点的虚拟拓扑。
步骤S3:根据虚拟拓扑和ASON网络的实际拓扑确定从源站点到达目标站点的实际拓扑路径。
本实施例中,首先根据源站点的可达站点列表和其接收到的其他站点的可达中继站点列表形成源站点的虚拟拓扑,然后根据源站点的虚拟拓扑和实际拓扑确定源站点到达目标站点的实际拓扑路径,从而提高了路径计算的成功率以及效率。
本发明还提供另一种ASON网络的路径计算方法,其是在图3所示的第一实施例的一种ASON网络的路径计算方法的基础上进行详细描述。为了便于理解,本实施例将根据ASON网络的路径计算方法的步骤具体列举一源站点到一目标站点的路径计算过程。具体请一起参阅图4和图5,图4是本发明提供的第二实施例的一种ASON网络的路径计算方法的流程图,图5是根据图4所示的方法计算ASON网络中一源站点到一目标站点的路径时形成的拓扑示意图。其中,本实施例假设需要计算的是站点A到站点D的路径,那么站点A为源站点,站点D为目标站点。该方法包括:
步骤S11:将源站点的自身的可达站点列表中的可达站点与源站点进行连接。
由前文可知,站点A的可达站点列表中的可达站点为站点B、C、E以及F。将站点B、C、E以及F与站点A进行连接得到图5.1所示的虚拟拓扑。
步骤S21:根据源站点的自身的可达中继站点列表确定虚拟拓扑中已有的具有空闲中继能力的站点。
在本步骤中,站点A的可达中继站点列表为F,因此,确定站点A的虚拟拓扑中已有的具有空闲中继能力的站点为站点F。
步骤S22:源站点接收其他站点的可达中继站点列表,并将已有的具有空闲中继能力的站点与其可达中继站点列表中的可达中继站点进行连接。
在本步骤中,站点A接收到的其他站点的可达中继站点列表具体为:站点B和C的可达中继站点列表为空,站点D、E以及G的可达中继站点列表均为F,站点F和站点H的可达中继站点列表均为G。已有的具有空闲中继能力的站点F的可达中继站点列表为站点G,因此,将站点F与站点G连接,如图5.2所示。
步骤S23:根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定ASON网络中的不具有空闲中继能力的站点。
在本步骤中,确定的是除源站点以外的不具有空闲中继能力的站点,即相对于站点A而言,ASON网络中的不具有空闲中继能力的站点为站点B、C、D、E以及H。
步骤S24:将自身的可达中继站点列表中包含已有的具有空闲中继能力的站点的不具有空闲中继能力的站点与已有的具有空闲中继能力的站点进行连接。
本步骤中,相对于站点A而言,站点D和E的可达中继站点列表中包含具有空闲中继能力的站点F,且站点D和E为不具有空闲中继能力的站点,将站点D和E分别和站点F进行连接,如图5.3所示。
本步骤中,进一步包括将自身的可达中继站点可与已有的具有空闲中继能力的站点连接的不具有空闲中继能力的站点与其自身的可达中继站点进行连接。相对于站点A而言,站点H的可达中继站点为站点G,站点G可与具有空闲中继能力的站点F连接,且站点H为不具有空闲中继能力的站点,将站点H和站点G进行连接,如图5.3所示。
步骤S31:从虚拟拓扑中计算从源站点到达目标站点的跳数最短的虚拟拓扑路径。
由步骤S24形成的虚拟拓扑图5.3可知,相对于站点A而言,到站点D的跳数最短的虚拟拓扑路径为A-F-D。
步骤S32:将虚拟拓扑路径的具有空闲中继能力的站点作为必经站点并参照ASON网络的实际拓扑确定实际拓扑路径。
由步骤S31可知,虚拟拓扑路径A-F-D的具有空闲中继能力的站点为站点F。因此,将站点F作为站点A到站点D的路径的必经站点,并进一步选择经过站点F的路径中光学损伤最小的路径,结合图1所示,可得路径A-E-F-D满足条件。由此得到站点A到站点D的路径为A-E-F-D。
本实施例中,首先根据源站点的可达站点列表和其接收到的其他站点的可达中继站点列表形成源站点的虚拟拓扑,然后根据源站点的虚拟拓扑和实际拓扑确定源站点到达目标站点的实际拓扑路径,从而提高了路径计算的成功率以及效率。
请参阅图6,图6是本发明提供的第三实施例的一种ASON网络的路径计算装置的结构示意图。值得注意的是,计算ASON网络中一源站点到一目标站点的路径是在确定各个站点的可达站点列表和可达站点中继站点列表的情况下进行的。确定各个站点的可达站点列表和可达站点中继站点列表的过程如前文所述,在此不再赘述。如图6所示,本发明的ASON网络的路径计算装置60包括第一虚拟拓扑生成模块61、第二虚拟拓扑生成模块62以及实际拓扑路径生成模块63。
其中,第一虚拟拓扑生成模块61用于将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑。
第二虚拟拓扑生成模块62用于根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定使用中继的情况下能够到达的站点,将使用中继的情况下所述源站点能够到达的站点加入到所述虚拟拓扑。
实际拓扑路径生成模块63用于根据虚拟拓扑和ASON网络的实际拓扑确定从源站点到达目标站点的实际拓扑路径。
本实施例中,首先第一虚拟拓扑生成模块61和第二虚拟拓扑生成模块62根据源站点的可达站点列表和其接收到的其他站点的可达中继站点列表形成源站点的虚拟拓扑,然后实际拓扑路径生成模块63根据源站点的虚拟拓扑和实际拓扑确定源站点到达目标站点的实际拓扑路径,从而提高了路径计算的成功率以及效率。
本发明还提供另一种ASON网络的路径计算装置,其是在图6所示的第三实施例的一种ASON网络的路径计算装置的基础上进行详细描述。如图7所示,第一虚拟拓扑生成模块61进一步包括第一站点连接单元611,第一站点连接单元611将源站点的自身的可达站点列表中的可达站点与源站点进行连接。
第二虚拟拓扑生成模块62进一步包括站点确定单元621以及第二站点连接单元622,其中:
站点确定单元621根据源站点的自身的可达中继站点列表确定虚拟拓扑中已有的具有空闲中继能力的站点。
源站点接收其他站点的可达中继站点列表,第二站点连接单元622将已有的具有空闲中继能力的站点与其可达中继站点列表中的可达中继站点进行连接。
站点确定单元621根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定ASON网络中的不具有空闲中继能力的站点。
第二站点连接单元622将自身的可达中继站点列表中包含已有的具有空闲中继能力的站点的不具有空闲中继能力的站点与已有的具有空闲中继能力的站点进行连接。
实际拓扑路径生成模块63进一步包括计算路径单元631和选择路径单元632,其中:
计算路径单元631从虚拟拓扑中计算从源站点到达目标站点的跳数最短的虚拟拓扑路径。
选择路径单元632将虚拟拓扑路径的具有空闲中继能力的站点作为必经站点并参照ASON网络的实际拓扑确定实际拓扑路径。
假设本实施例中,计算站点A到站点D的路径,那么站点A为源站点,站点D为目标站点,则根据本实施例中的ASON网络的路径计算装置60计算站点A到站点D的路径时的形成的拓扑示意图如图5所示,具体计算过程的描述如前文所述,在此不再赘述。
请参见图8,图8是本发明第五实施例的一种ASON网络的路径计算装置。如图8所示,本发明的ASON网络的路径计算装置80包括存储器81、网络接口82、处理器83以及总线系统84。存储器81、网络接口82以及处理器83分别与总线系统84连接,其中:
存储器81存储有第一程序,第一程序用于ASON网络中的各站点分别计算在不使用中继的情况下能够到达的站点作为可达站点,以形成可达站点列表,如图2所示,进一步在各自的可达站点列表中选择具有空闲中继能力的站点作为可达中继站点,以形成可达中继站点列表,如图2所示。
网络接口82用于在ASON网络中洪泛可达中继站点列表。
存储器81存储有第二程序,第二程序用于将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑,并根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定使用中继的情况下能够到达的站点,将使用中继的情况下源站点能够到达的站点加入到虚拟拓扑,进一步根据虚拟拓扑和ASON网络的实际拓扑确定从源站点到达目标站点的实际拓扑路径。
处理器84用于执行第一程序和第二程序。
可选地,第一程序进一步用于ASON网络中的各站点选择在不使用中继的情况下传输路径的光学损伤满足光学损伤要求的站点作为可达站点。
在本实施例中,可达站点列表仅存储于各自的所述站点。
可选地,网络接口82进一步用于ASON网络中的各站点分别通过扩展OSPF协议向ASON网络中的所有站点洪泛可达中继站点列表。
可选地,第二程序进一步用于将源站点的自身的可达站点列表中的可达站点与所述源站点进行连接。
可选地,第二程序进一步用于:根据源站点的自身的可达中继站点列表确定虚拟拓扑中已有的具有空闲中继能力的站点;
将已有的具有空闲中继能力的站点与其可达中继站点列表中的可达中继站点进行连接;
根据源站点的自身的可达中继站点列表和源站点接收的其他站点的可达中继站点列表确定ASON网络中的不具有空闲中继能力的站点;
将自身的可达中继站点列表中包含已有的具有空闲中继能力的站点的不具有空闲中继能力的站点与已有的具有空闲中继能力的站点进行连接。
可选地,第二程序进一步用于:从虚拟拓扑中计算从源站点到达目标站点的跳数最短的虚拟拓扑路径;
将虚拟拓扑路径的具有空闲中继能力的站点作为必经站点并参照ASON网络的实际拓扑确定实际拓扑路径。
在本实施例中,首先计算的是ASON网络中各站点的可达站点列表和可达中继站点列表,将计算量分散到了各个站点中,从而提高了计算的效率,并且降低了对站点控制单板的性能要求,降低了成本。
确定ASON网络中各站点的可达站点列表和可达中继站点列表之后,在计算一源站点到一目标站点的路径时,根据源站点的可达站点列表和其接收到的其他站点的可达中继站点列表形成源站点的虚拟拓扑,然后根据源站点的虚拟拓扑和实际拓扑确定源站点到达目标站点的实际拓扑路径,从而提高了路径计算的成功率以及效率。
在本申请所提供的几个实施方式中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例实施方式仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例实施方式方案的目的。
另外,在本申请各个实施例实施方式中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例实施方式所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (21)

  1. 一种ASON网络的路径计算方法,其特征在于,所述ASON网络中的各站点分别计算在不使用中继的情况下能够到达的站点作为可达站点,以形成可达站点列表,进一步在各自的所述可达站点列表中选择具有空闲中继能力的站点作为可达中继站点,以形成可达中继站点列表,并在所述ASON网络中洪泛所述可达中继站点列表,所述方法包括以下步骤:
    将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑;
    根据所述源站点的自身的可达中继站点列表和所述源站点接收的其他站点的可达中继站点列表确定使用中继的情况下所述源站点能够到达的站点,将使用中继的情况下所述源站点能够到达的站点加入到所述虚拟拓扑;
    根据所述虚拟拓扑和所述ASON网络的实际拓扑确定从所述源站点到达目标站点的实际拓扑路径。
  2. 根据权利要求1所述的方法,其特征在于,所述将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑的步骤包括:
    将所述源站点的自身的可达站点列表中的可达站点与所述源站点进行连接。
  3. 根据权利要求2所述的方法,其特征在于,所述根据所述源站点的自身的所述可达中继站点列表和所述源站点接收的其他站点的所述可达中继站点列表确定使用中继的情况下所述源站点能够到达的站点,将使用中继的情况下所述源站点能够到达的站点加入到所述虚拟拓扑的步骤包括:
    根据所述源站点的自身的所述可达中继站点列表确定所述虚拟拓扑中已有的具有空闲中继能力的站点;
    所述源站点接收其他站点的所述可达中继站点列表,并将所述已有的具有空闲中继能力的站点与其可达中继站点列表中的可达中继站点进行连接;
    根据所述源站点的自身的所述可达中继站点列表和所述源站点接收的其他站点的所述可达中继站点列表确定所述ASON网络中的不具有空闲中继能力的站点;
    将自身的所述可达中继站点列表中包含所述已有的具有空闲中继能力的站点的所述不具有空闲中继能力的站点与所述已有的具有空闲中继能力的站点进行连接。
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述虚拟拓扑和所述ASON网络的实际拓扑确定从所述源站点到达目标站点的实际拓扑路径的步骤包括:
    从所述虚拟拓扑中计算从所述源站点到达所述目标站点的跳数最短的虚拟拓扑路径;
    将所述虚拟拓扑路径的具有空闲中继能力的站点作为必经站点并参照所述ASON网络的实际拓扑确定所述实际拓扑路径。
  5. 根据权利要求1所述的方法,其特征在于,所述ASON网络中的各站点分别通过扩展OSPF协议向所述ASON网络中的所有站点洪泛所述可达中继站点列表。
  6. 根据权利要求5所述的方法,其特征在于,所述ASON网络中的各站点选择在不使用中继的情况下传输路径的光学损伤满足光学损伤要求的站点作为所述可达站点。
  7. 根据权利要求6所述的方法,其特征在于,所述可达站点列表仅存储于各自的所述站点。
  8. 一种ASON网络的路径计算装置,其特征在于,所述ASON网络中的各站点分别计算在不使用中继的情况下能够到达的站点作为可达站点,以形成可达站点列表,进一步在各自的所述可达站点列表中选择具有空闲中继能力的站点作为可达中继站点,以形成可达中继站点列表,并在所述ASON网络中洪泛所述可达中继站点列表,所述路径计算装置包括:
    第一虚拟拓扑生成模块,用于将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑;
    第二虚拟拓扑生成模块,用于根据所述源站点的自身的可达中继站点列表和所述源站点接收的其他站点的可达中继站点列表确定使用中继的情况下所述源站点能够到达的站点,将使用中继的情况下所述源站点能够到达的站点加入到所述虚拟拓扑;
    实际拓扑路径生成模块,用于根据所述虚拟拓扑和所述ASON网络的实际拓扑确定从所述源站点到达目标站点的实际拓扑路径。
  9. 根据权利要求8所述的路径计算装置,其特征在于,所述第一虚拟拓扑生成模块进一步包括第一站点连接单元,所述第一站点连接单元将所述源站点的自身的所述可达站点列表中的可达站点与所述源站点进行连接。
  10. 根据权利要求9所述的路径计算装置,其特征在于,所述第二虚拟拓扑生成模块进一步包括站点确定单元以及第二站点连接单元,其中:
    所述站点确定单元根据所述源站点的自身的所述可达中继站点列表确定所述虚拟拓扑中已有的具有空闲中继能力的站点;
    所述源站点接收其他站点的所述可达中继站点列表,所述第二站点连接单元将所述已有的具有空闲中继能力的站点与其可达中继站点列表中的可达中继站点进行连接;
    所述站点确定单元根据所述源站点的自身的所述可达中继站点列表和所述源站点接收的其他站点的所述可达中继站点列表确定所述ASON网络中的不具有空闲中继能力的站点;
    所述第二站点连接单元将自身的所述可达中继站点列表中包含所述已有的具有空闲中继能力的站点的所述不具有空闲中继能力的站点与所述已有的具有空闲中继能力的站点进行连接。
  11. 根据权利要求10所述的路径计算装置,其特征在于,所述实际拓扑路径生成模块进一步包括计算路径单元和选择路径单元,其中:
    所述计算路径单元从所述虚拟拓扑中计算从所述源站点到达所述目标站点的跳数最短的虚拟拓扑路径;
    所述选择路径单元将所述虚拟拓扑路径的具有空闲中继能力的站点作为必经站点并参照所述ASON网络的实际拓扑确定所述实际拓扑路径。
  12. 根据权利要求8所述的路径计算装置,其特征在于,所述ASON网络中的各站点分别通过扩展OSPF协议向所述ASON网络中的所有站点洪泛所述可达中继站点列表。
  13. 根据权利要求12所述的路径计算装置,其特征在于,所述ASON网络中的各站点选择在不使用中继的情况下传输路径的光学损伤满足光学损伤要求的站点作为所述可达站点。
  14. 根据权利要求13所述的路径计算装置,其特征在于,所述可达站点列表仅存储于各自的所述站点。
  15. 一种ASON网络的路径计算装置,其特征在于,所述路径计算装置包括存储器、网络接口、处理器以及总线系统,所述存储器、所述网络接口以及所述处理器分别与所述总线系统连接,其中:
    所述存储器存储有第一程序,所述第一程序用于所述ASON网络中的各站点分别计算在不使用中继的情况下能够到达的站点作为可达站点,以形成可达站点列表,进一步在各自的所述可达站点列表中选择具有空闲中继能力的站点作为可达中继站点,以形成可达中继站点列表;
    所述网络接口用于在所述ASON网络中洪泛所述可达中继站点列表;
    所述存储器存储有第二程序,所述第二程序用于将源站点的自身的可达站点列表中的可达站点加入到虚拟拓扑,并根据所述源站点的自身的可达中继站点列表和所述源站点接收的其他站点的可达中继站点列表确定使用中继的情况下所述源站点能够到达的站点,将使用中继的情况下所述源站点能够到达的站点加入到所述虚拟拓扑,进一步根据所述虚拟拓扑和所述ASON网络的实际拓扑确定从所述源站点到达目标站点的实际拓扑路径;
    所述处理器用于执行所述第一程序和所述第二程序。
  16. 根据权利要求15所述的路径计算装置,其特征在于,所述第二程序进一步用于将所述源站点的自身的所述可达站点列表中的可达站点与所述源站点进行连接。
  17. 根据权利要求16所述的路径计算装置,其特征在于,所述第二程序进一步用于:
    根据所述源站点的自身的所述可达中继站点列表确定所述虚拟拓扑中已有的具有空闲中继能力的站点;
    所述源站点接收其他站点的所述可达中继站点列表,并将所述已有的具有空闲中继能力的站点与其可达中继站点列表中的可达中继站点进行连接;
    根据所述源站点的自身的所述可达中继站点列表和所述源站点接收的其他站点的所述可达中继站点列表确定所述ASON网络中的不具有空闲中继能力的站点;
    将自身的所述可达中继站点列表中包含所述已有的具有空闲中继能力的站点的所述不具有空闲中继能力的站点与所述已有的具有空闲中继能力的站点进行连接。
  18. 根据权利要求17所述的路径计算装置,其特征在于,所述第二程序进一步用于:
    从所述虚拟拓扑中计算从所述源站点到达所述目标站点的跳数最短的虚拟拓扑路径;
    将所述虚拟拓扑路径的具有空闲中继能力的站点作为必经站点并参照所述ASON网络的实际拓扑确定所述实际拓扑路径。
  19. 根据权利要求15所述的路径计算装置,其特征在于,所述网络接口进一步用于所述ASON网络中的各站点分别通过扩展OSPF协议向所述ASON网络中的所有站点洪泛所述可达中继站点列表。
  20. 根据权利要求19所述的路径计算装置,其特征在于,所述第一程序进一步用于所述ASON网络中的各站点选择在不使用中继的情况下传输路径的光学损伤满足光学损伤要求的站点作为所述可达站点。
  21. 根据权利要求20所述的路径计算装置,其特征在于,所述第一程序进一步用于所述可达站点列表仅存储于各自的所述站点。
PCT/CN2013/087340 2013-11-18 2013-11-18 一种ason网络的路径计算方法及装置 WO2015070460A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
ES13897419.1T ES2644330T3 (es) 2013-11-18 2013-11-18 Método de cálculo de camino y aparato para ASON
PCT/CN2013/087340 WO2015070460A1 (zh) 2013-11-18 2013-11-18 一种ason网络的路径计算方法及装置
CN201380002954.XA CN103858441B (zh) 2013-11-18 2013-11-18 一种ason网络的路径计算方法及装置
EP13897419.1A EP3059912B1 (en) 2013-11-18 2013-11-18 Path calculation method and apparatus for ason

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/087340 WO2015070460A1 (zh) 2013-11-18 2013-11-18 一种ason网络的路径计算方法及装置

Publications (1)

Publication Number Publication Date
WO2015070460A1 true WO2015070460A1 (zh) 2015-05-21

Family

ID=50864350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/087340 WO2015070460A1 (zh) 2013-11-18 2013-11-18 一种ason网络的路径计算方法及装置

Country Status (4)

Country Link
EP (1) EP3059912B1 (zh)
CN (1) CN103858441B (zh)
ES (1) ES2644330T3 (zh)
WO (1) WO2015070460A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104869011A (zh) * 2015-04-16 2015-08-26 浪潮通信信息系统有限公司 一种电路调度方法及装置
CN105634954B (zh) * 2016-01-08 2019-04-16 烽火通信科技股份有限公司 基于wson网络考虑光损伤的最短路径计算方法
CN108494597B (zh) * 2018-03-23 2020-09-29 北京邮电大学 智能光网络仿真系统及方法
CN113840183B (zh) * 2020-06-08 2023-05-12 烽火通信科技股份有限公司 一种光电多层重路由保护协同方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902406A (zh) * 2010-08-12 2010-12-01 中兴通讯股份有限公司 一种计算路径的方法及装置
CN102316390A (zh) * 2011-09-07 2012-01-11 中兴通讯股份有限公司 利用虚拟拓扑提高约束条件下路径计算效率的方法及装置
CN102917287A (zh) * 2012-11-21 2013-02-06 北京邮电大学 一种面向内容中心的智能光网络交换装置和边缘缓存方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4764790B2 (ja) * 2006-09-20 2011-09-07 富士通株式会社 信号中継装置、ノード装置、ネットワークシステム、リンク生成方法およびリンク生成プログラム
US20100104281A1 (en) * 2008-10-29 2010-04-29 Dhillon Abinder S Selecting Regeneration Nodes During Path Computation

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101902406A (zh) * 2010-08-12 2010-12-01 中兴通讯股份有限公司 一种计算路径的方法及装置
CN102316390A (zh) * 2011-09-07 2012-01-11 中兴通讯股份有限公司 利用虚拟拓扑提高约束条件下路径计算效率的方法及装置
CN102917287A (zh) * 2012-11-21 2013-02-06 北京邮电大学 一种面向内容中心的智能光网络交换装置和边缘缓存方法

Also Published As

Publication number Publication date
CN103858441B (zh) 2017-07-28
EP3059912B1 (en) 2017-09-06
EP3059912A4 (en) 2016-11-16
EP3059912A1 (en) 2016-08-24
ES2644330T3 (es) 2017-11-28
CN103858441A (zh) 2014-06-11

Similar Documents

Publication Publication Date Title
Widjaja et al. Light core and intelligent edge for a flexible, thin-layered, and cost-effective optical transport network
KR100537746B1 (ko) 광인터넷에서의 MPλS 보호 및 절체방법
US8068483B2 (en) Method for migration between a permanent connection and a switched connection in a transmission network
WO2015070460A1 (zh) 一种ason网络的路径计算方法及装置
CN100382504C (zh) 自动交换光网络中主备保护的跨域端到端连接的建立方法
JP2010016691A (ja) 通信システム及び通信装置
EP2096802B1 (en) A hierarchical routing query method of automatic switched optical network
JP4732987B2 (ja) パケット転送装置
Ou et al. Survivable virtual concatenation for data over SONET/SDH in optical transport networks
US20040076114A1 (en) Method and apparatus for shared protection in an optical transport network ring based on the ODU management
WO2016000107A1 (zh) 动态路由设备的主备系统切换的方法及其装置
US8750286B2 (en) Network communication system, communication device, network linkage method and program thereof
WO2014005522A1 (zh) 路由计算方法及装置
WO2012081852A2 (ko) 다계층 네트워크에서의 gmpls 기반의 다계층 링크 관리 방법 및 장치
WO2006079286A1 (fr) Procede d'enclenchement d'un reroutage de service
US9241203B2 (en) Apparatus for controlling a transmission path
US20140040476A1 (en) Method and system for network restructuring in multilayer network
US8724507B2 (en) System and method for implementing an automatic discovery function in a DWDM network
JP7414081B2 (ja) 光通信システム及び制御方法
Babarczi et al. Optimal dedicated protection approach to shared risk link group failures using network coding
Huang et al. A generalized protection framework using a new link-State availability model for reliable optical networks
WO2015103729A1 (zh) 一种重路由方法、系统以及网络设备
WO2007134506A1 (fr) Procédé de commutation de service dans un réseau optique, système de réseau optique, dispositif de commutation et dispositif de délimitation de réseau du fournisseur
JP4062071B2 (ja) Gmplsラベル管理装置
WO2015017974A1 (zh) 一种拓扑生成方法、虚拟集群及控制器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13897419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2013897419

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013897419

Country of ref document: EP