WO2015069015A1 - 통신 시스템에서 빔 훈련 방법 및 장치 - Google Patents

통신 시스템에서 빔 훈련 방법 및 장치 Download PDF

Info

Publication number
WO2015069015A1
WO2015069015A1 PCT/KR2014/010574 KR2014010574W WO2015069015A1 WO 2015069015 A1 WO2015069015 A1 WO 2015069015A1 KR 2014010574 W KR2014010574 W KR 2014010574W WO 2015069015 A1 WO2015069015 A1 WO 2015069015A1
Authority
WO
WIPO (PCT)
Prior art keywords
beam training
quality factor
channel quality
network node
factor value
Prior art date
Application number
PCT/KR2014/010574
Other languages
English (en)
French (fr)
Inventor
조오현
권창열
김재화
노동휘
김현무
박동혁
오종호
윤성록
이석용
장상현
정도영
Original Assignee
삼성전자주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성전자주식회사 filed Critical 삼성전자주식회사
Priority to US15/035,212 priority Critical patent/US10291305B2/en
Priority to EP14860312.9A priority patent/EP3068058B1/en
Publication of WO2015069015A1 publication Critical patent/WO2015069015A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0408Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas using two or more beams, i.e. beam diversity
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side

Definitions

  • the present invention relates to a beam training scheme in a communication system supporting beamforming.
  • a terminal and a base station must each perform a beam training process for finding an optimal uplink transmit / receive beam and downlink transmit / receive beam.
  • the 802.11ad standard defines various beamforming protocols for beam training methods for finding an optimal beam, but does not present a specific method for applying various beamforming protocols.
  • an embodiment of the present invention provides a method and apparatus for selecting a beam training method based on a channel state in a communication system supporting beamforming.
  • Another embodiment of the present invention is to provide a method and apparatus for determining whether to repeat beam training based on a channel state in a communication system supporting beamforming.
  • Another embodiment of the present invention is to provide a method and apparatus for adaptively adjusting the size of a beam width based on a beam training method in a communication system supporting beamforming.
  • Another embodiment of the present invention is to provide a method and apparatus for adaptively adjusting the size of a beam width based on whether a beam training method is repeatedly performed in a communication system supporting beamforming.
  • Another embodiment of the present invention is to provide a method and apparatus for selecting a beam training method based on preset conditions in order to ensure channel state and quality of service in a communication system supporting beamforming.
  • a method of a network node for beam training in a communication system includes measuring at least one channel quality factor value indicating channel link performance with a counterpart network node, and measuring the measured channel quality factor.
  • the method may include selecting a beam training method based on a value, and performing beam training with the counterpart network node using the selected beam training method.
  • an apparatus of a network node for beam training in a communication system may include a channel estimator configured to measure at least one channel quality factor value indicating channel link performance with a counterpart network node, and the measured channel. It may include a beamforming control unit for selecting a beam training method based on the quality factor value, and controls to perform beam training with the counterpart network node in the selected beam training method.
  • the service in the most efficient manner according to the channel situation It is possible to find the optimal beam to maintain the and to obtain an effect that can minimize the time spent on beam training.
  • FIG. 1 is a block diagram of a network node in a beamforming system according to an embodiment of the present invention
  • FIG. 2 is a diagram illustrating a beamforming procedure of a network node in a beamforming system according to an embodiment of the present invention
  • FIG. 3 is a diagram illustrating a table for selecting a beam training method according to an embodiment of the present invention
  • 4C is a diagram illustrating beam shapes of a beam training partner network node according to an embodiment of the present invention.
  • an expression such as “having”, “may have”, “comprises”, or “comprises” may refer to the existence of a corresponding function, operation, or component, which is disclosed. It does not limit one or more additional functions, operations or components.
  • the terms “comprise” or “having” are intended to indicate that there is a feature, number, step, operation, component, part, or combination thereof described in the specification, It should be understood that it does not exclude in advance the possibility of the presence or addition of one or more other features or numbers, steps, operations, components, parts or combinations thereof.
  • the expression “A or B” or “at least one of A or / and B” includes any and all combinations of words listed together.
  • each of “A or B” or “at least one of A or / and B” may include A, may include B, or may include both A and B.
  • Expressions such as “first”, “second”, “first” or “second” used in various embodiments of the present disclosure may modify various elements of the various embodiments, but do not limit the corresponding elements. .
  • the above expressions do not limit the order and / or importance of the corresponding elements.
  • the above expressions may be used to distinguish one component from another.
  • both a first user device and a second user device are user devices and represent different user devices.
  • the first component may be referred to as a second component, and similarly, the second component may also be referred to as a first component.
  • a component When a component is said to be “connected” or “connected” to another component, the component may or may not be directly connected to or connected to the other component. It is to be understood that there may be new other components between the other components. On the other hand, when a component is referred to as being “directly connected” or “directly connected” to another component, it will be understood that there is no new other component between the component and the other component. Should be able.
  • the expression “configured to” used in this document is, for example, “having the capacity to” depending on the circumstances, for example, “suitable for,” “. It may be used interchangeably with “designed to,” “adapted to,” “made to,” or “capable of.”
  • the term “configured to” may not necessarily mean only “specifically designed to” in hardware. Instead, in some situations, the expression “device configured to” may mean that the device “can” along with other devices or components.
  • the phrase “processor configured (or configured) to perform A, B, and C” refers to a dedicated processor (eg, an embedded processor) for performing the operation, or one or more software programs stored in a memory device. By doing so, it may mean a general-purpose processor (for example, a CPU or an application processor) capable of performing the corresponding operations.
  • the present specification describes a wireless communication network
  • the operation performed in the wireless communication network is performed in the process of controlling the network and transmitting data in the system (for example, the base station) that is in charge of the wireless communication network, or the corresponding wireless Work may be done at the terminal coupled to the network.
  • a wireless communication system includes a plurality of base stations (BSs). Each base station provides a communication service for a specific geographic area (generally called a cell). The cell may in turn be divided into a number of regions (or sectors).
  • BSs base stations
  • Each base station provides a communication service for a specific geographic area (generally called a cell).
  • the cell may in turn be divided into a number of regions (or sectors).
  • a mobile station may be fixed or mobile, and may include a user equipment (UE), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, and a personal digital assistant (PDA). It may be called other terms such as digital assistant, wireless modem, handheld device.
  • UE user equipment
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • a base station generally refers to a fixed station communicating with a terminal, and may be referred to as other terms such as an evolved-NodeB (eNB), a base transceiver system (BTS), and an access point.
  • eNB evolved-NodeB
  • BTS base transceiver system
  • access point an access point
  • a network node is meant to include all devices that can configure a network, such as a base station, a terminal, a repeater, etc., and have a beamforming antenna to perform beam training.
  • beamforming protocols defined in the 802.11ad standard will be described as an example.
  • SLS sector level sweep
  • BRP Beam Refinement Protocol
  • BT Beam Tracking
  • SLS is a protocol for performing link detection in an 802.11ad system.
  • a network node continuously transmits and receives a frame including the same information while changing only the direction of a beam.
  • Indicators that indicate performance are beam training methods that select the best beam direction.
  • BRP is a protocol for fine-tuning the beam direction that can maximize the data rate in the beam direction determined by SLS or other means.
  • the BRP includes beam training information defined for the BRP protocol and information reporting the training results. Beam training is performed using the frame. For example, the BRP transmits and receives a BRP frame using a beam determined by previous beam training, and performs beam training substantially using a beam training sequence included at the end of the successfully transmitted and received BRP frame. It is a beam training method.
  • BT Beam Tracking
  • PHY header of the data frame includes a sequence for beam training at the end of the data frame. It is a beam training method for performing beam training while transmitting.
  • FIG. 1 is a block diagram of a network node in a beamforming system according to an exemplary embodiment of the present invention.
  • the network node 150 may include a controller 100, a transceiver 110, a storage 120, and a channel estimator 130.
  • the controller 100 performs a control function for the overall operation of the network node 150.
  • the control unit 100 may include a beamforming control unit 102 according to an embodiment of the present invention.
  • the beamforming control unit 102 selects a beam training method based on a channel state, and performs a beam training method and a beam training method.
  • a function for adaptively adjusting the size of the beam width to be used for the beam training is performed based on whether the repetition is performed.
  • the beamforming control unit 102 detects a performance change of a channel link while communicating with a counterpart network node, and performs beam training based on at least one channel quality estimation value representing the performance of the channel link. It is possible to determine whether or not, and to select a beam training method. For example, when the beamforming controller 102 detects a change in the performance of the channel link while providing a service having a minimum requirement of MCS level n, at least one channel quality factor (or parameter) indicating the performance of the channel link. ) And compare the measured channel quality factor with a reference value (or reference channel quality factor value) set for the beam training performance condition included in the pre-stored beam training method selection table as shown in FIG. 3. You can decide whether to perform the training.
  • the beamforming control unit 102 determines that the beam training is necessary and determines at least one channel quality factor indicating the channel link performance. Any one of SLS, BRP, and BT may be selected in comparison with reference values set for the first beam training selection condition and the second beam training selection condition included in the method selection table. In addition, the beamforming control unit 102 may determine whether to perform the beam training by comparing at least one channel quality factor value indicating the channel link performance with a reference value set for the beam training repeating condition included in the beam training selection table. have.
  • the reference values for the conditions in the beam training method selection table as shown in FIG. 3 may be set based on the required quality of the service.
  • the reference values for the first beam training selection condition may be set to channel quality factor values that satisfy the Modulation and Coding Scheme (MCS) level n, and the reference values for the second beam training selection condition are the MCS level.
  • MCS Modulation and Coding Scheme
  • Channel quality factor values satisfying zero may be set.
  • channel quality factors indicating the performance of a channel link include error vector magnitude (EVM), signal to interference and noise ratio (SINR), received signal strength indication (RSSI), packet error rate (PER), and Although Tput (Throughput) is described as an example, other channel quality factors indicating the performance of the channel link may be used.
  • the beamforming control unit 102 may detect that the beam training is required for each preset beam training period, and may select the beam training method in the manner described above.
  • the beamforming control unit 102 may adaptively change the beam width size to be used for the beam training based on the beam training method and whether the beam training is repeated. For example, the beamforming control unit 102 may define a beam width size of the transmit / receive antenna in a plurality of stages to determine an appropriate beam width size according to the beam training method. It may be determined to use a beam width size that is smaller than the size of the beam width used. For example, assuming that the beam width size is defined in two steps, the beamforming control unit 102 sets the beam width size of the transmit / receive antenna as the first step having the beam width size 401 as shown in FIG. 4A. And the beam width size of the second stage with the beam width size 411 as shown in FIG. 4B.
  • the beamforming control unit 102 may determine to use the first stage beam width size for the SLS beam training and the BRP beam training, and may determine to use the second stage beam width size for the BT beam training. In addition, the beamforming control unit 102 repeats the beam width size of the second stage having a beam width size smaller than the beam width size of the first stage when the SLS beam training and / or the BRP beam training is repeatedly performed. Can be used for Here, for convenience of description, it is assumed that the beam width size is defined in two steps, and the beam width size may be defined in two or more steps by the system designer.
  • the beam width size used in the SLS beam training, the BRP beam training, and the BT beam training is exemplary, and the size of the beam width used in each beam training may be set differently according to the design method. Of course it is.
  • the beam training may be repeated a plurality of times according to the channel link state and the beam training repeat condition set by the system designer, and the beamforming control unit 102 may determine the beam to be used for beam training whenever it is determined to perform the beam training repeat. It can be determined that the width size has a smaller size than the beam width size used in previous beam training.
  • the beamforming control unit 102 controls the beamforming unit 112 to form a plurality of transmit and receive beams having different directionalities with the determined beam width size in order to perform beam training with the selected beam training method and the determined beam width size.
  • the beam training signal is transmitted and received by a selected beam training method, and a function for selecting an optimal transmission and reception beam is controlled and processed.
  • the beamforming control unit 102 may generate a beamforming vector for forming a transmission beam and / or a reception beam having a determined beam width size, and provide the generated beamforming vector to the beamforming unit 112. Can be.
  • the transceiver 110 transmits and receives signals through the plurality of antennas 140-1 to 140 -N under the control of the controller 100.
  • the transceiver 110 may include a beamformer 112. Additionally, although not shown in the drawing, the transceiver 110 may include a plurality of encoders, a plurality of modulators, a plurality of subcarrier mappers, a plurality of modulators, and a plurality of RF transmitters.
  • the beamforming unit 112 may form a beam for transmitting and receiving a signal with a counterpart network node by using the beamforming vector provided from the controller 100.
  • the beamforming unit 112 uses at least one of digital beamforming, beamforming physically moving the antenna, antennas corresponding to each predefined beam direction, antenna bundles, or antenna arrays. A transmission / reception beam requested from the controller 100 may be formed.
  • the storage unit 120 stores various data and programs necessary for the overall operation of the network node 150.
  • the storage unit 120 may store the beam training method selection table as shown in FIG. 3.
  • the beam training method selection table may include at least one reference value indicating a condition used to determine whether to perform beam training, at least one reference value indicating a condition used to select the beam training method, and whether to repeat the beam training. It may include at least one reference value indicating a condition used to.
  • the conditions used to select the beam training method may be divided into a plurality of conditions according to the number of beam training selection methods, wherein the beam training method selection table may include at least one criterion for each of the plurality of beam training selection conditions. May contain a value.
  • the beam training scheme selection table may include reference values for five channel quality factors for each of the two beam training selection conditions. have.
  • the channel estimator 130 uses at least one channel quality factor indicating channel link performance by using signals (eg, a pilot signal, a sounding signal, and a data signal) received from a counterpart network node under the control of the controller 100. Estimates and provides the estimated at least one channel quality factor to the controller 100.
  • signals eg, a pilot signal, a sounding signal, and a data signal
  • FIG. 2 illustrates a beamforming procedure of a network node in a beamforming system according to an embodiment of the present invention.
  • the network node 150 performs data transmission / reception for a service having a minimum quality of service requirement of MCS level n.
  • the network node 150 checks whether a preset beam training period is reached during data transmission and reception for a corresponding service. If the preset beam period is reached, the network node may proceed to step 211 below to determine that beam training is required.
  • the network node 150 checks whether a link change is detected during data transmission / reception for the corresponding service in step 205. For example, the network node 150 determines whether a link change is detected based on signal reception strength including data for service, whether data transmission is successful, whether data reception is successful, and a channel quality factor value indicating link performance. Can be determined. If no link change is detected, the network node 150 may return to step 201 to perform the following steps again.
  • the network node 150 measures the performance of the channel link with the partner network node in step 207. For example, at least one of EVM, SINR, RSSI, PER, and Tput may be measured.
  • the network node 150 checks whether the channel state with the counterpart network node 150 satisfies the beam training performance condition based on the link performance measured in step 209. That is, the network node 150 compares the channel quality factor value indicating the measured channel link performance with a reference value set for the beam training condition, and checks whether the beam training condition is satisfied. For example, as shown in FIG. 3, when the beam training performance condition is set, the network node measures the PER by the performance of the channel link, compares the measured PER with the PER th1 set for the beam training performance condition.
  • the PER is a channel quality factor value that can specifically indicate the satisfaction of the service experienced by the user.
  • the PER is used to check whether the beam training performance condition is satisfied, but the other channel quality factor value or multiple channels
  • the quality factor values may be used to check whether the beam training performance condition is satisfied. For example, it may be checked whether the beam training execution condition is satisfied using at least one of EVM, SINR, RSSI, PER, and Tput.
  • the network node 150 detects that the data transmission / reception beam needs to be changed due to the deterioration of service quality in step 211, and the beam training is performed to change the transmission / reception beam. Determine if this is necessary.
  • the network node 150 checks whether the channel condition satisfies the first beam training selection condition. For example, the network node 150 compares the channel quality factor value representing the channel link performance measured in step 207 with a reference value set for the first beam training selection condition to determine whether the first beam training selection condition is satisfied. Check it.
  • the network node determines the measured channel quality factor value and the reference value set for the first beam training selection condition. Based on the comparison result, it may be determined whether the MCS level n is used. For example, as shown in FIG.
  • the network node 150 measures the EVM with the performance for the channel link, and sets the measured EVM and the beam training performing condition. Comparing EVM th2 , if the measured EVM value is greater than or equal to EVM th2 , it is determined that the first beam training selection condition is satisfied and MCS level n is available, and if the measured EVM value is less than EVM th2 , It may be determined that the MCS level n is not available without satisfying the 1 beam training selection condition.
  • the EVM is a channel quality factor value highly correlated with the PER, and may specifically indicate the satisfaction of the service experienced by the user.
  • another channel quality factor value or a plurality of channel quality factor values may be used to check whether the first beam training selection condition is satisfied. .
  • the network node 150 proceeds to step 215 to select the BT beam training scheme and determines that the second stage beam width size is used.
  • the second stage beam width size refers to a beam width size having the second largest size among the beam width sizes defined by the plurality of stages, and according to an embodiment, a beam of a stage different from the BT beam training scheme Width size may be used.
  • the network node 150 proceeds to step 217 to perform BT beam training by using a transmit / receive beam having a beam width of the second stage, and proceeds to step 229.
  • the network node 150 may select an optimal transmission / reception beam with the counterpart network node through BT beam training, and may continuously perform data transmission / reception of a service performed in step 201 using the selected transmission / reception beam.
  • the network node 150 proceeds to step 219 to check whether the channel condition satisfies the second beam training selection condition. For example, the network node 150 compares the channel quality factor value representing the channel link performance measured in step 207 with a reference value set for the second beam training selection condition to determine whether the second beam training selection condition is satisfied. Check it.
  • the reference values for the second beam training selection condition are set to minimum values for enabling the use of MCS level 0
  • the network node 150 is configured for the measured channel quality factor value and the second beam training selection condition. It may be determined whether the MCS level 0 is used based on the comparison result of the reference values. For example, as shown in FIG.
  • the network node 150 measures the EVM with the performance for the channel link, and sets the measured EVM and the beam training performing condition. Comparing EVM th3 , if the measured EVM value is greater than or equal to EVM th3 , it is determined that the second beam training selection condition is satisfied and MCS level n is available, and if the measured EVM value is less than EVM th3 , It may be determined that the MCS level n is not available without satisfying the 2 beam training selection condition.
  • the EVM is a channel quality factor value highly correlated with the PER, and may specifically indicate the satisfaction of the service experienced by the user.
  • an example of checking whether the second beam training selection condition is satisfied by using the EVM is illustrated as an example. However, the second beam training selection condition may be checked by using another channel quality factor value or a plurality of channel quality factor values. .
  • the network node 150 proceeds to step 221 to select the SLS beam training scheme and determines that the first stage beam width size is used.
  • the first step beam width size means a beam width size having the largest size among the beam width sizes defined by the plurality of steps, and according to an embodiment, the beam width size of the step different from the SLS beam training method according to the embodiment. Can also be used.
  • the network node 150 proceeds to step 223 to perform SLS beam training using a transmit / receive beam having a beam width of the first stage, and proceeds to step 229.
  • the network node 150 may select an optimal transmission / reception beam with the counterpart network node through SLS beam training, and may continuously perform data transmission / reception of a service performed in step 201 using the selected transmission / reception beam.
  • the counterpart network node should not have a specific beam direction, as shown in FIG. 4C, but should have the same gain in all directions.
  • the network node 150 proceeds to step 225 to select the BRP beam training method and determines that the first stage beam width size is used.
  • the first stage beam width size means a beam width size having the largest size among the beam width sizes defined by the plurality of stages, and according to the embodiment, the beam width size of the other stage is different from the BRP beam training method. Can also be used.
  • the network node 150 proceeds to step 227 to perform BRP beam training using the transmit / receive beam having the first step beam width size, and proceeds to step 229.
  • the network node 150 may select an optimal transmission / reception beam with the counterpart network node through BRP beam training, and may continuously perform data transmission / reception of a service performed in step 201 using the selected transmission / reception beam.
  • the network node 150 checks whether the channel state of the transmission / reception beam selected based on the beam training satisfies the beam training repetition condition. That is, the network node 150 measures a channel quality factor value indicating channel link performance for the transmitted / received beam selected by performing 217 BT beam training, 223 SLS beam training, or 227 BRP beam training. The measured channel quality factor value is compared with the reference value set for the beam training repetition condition, and it is checked whether the beam training repetition condition is satisfied.
  • the reference values for the beam training repetition condition are set to minimum values for enabling the use of the MCS level n
  • the network node 150 compares the measured channel quality factor value with the reference value set for the beam training repetition condition.
  • the network node 150 measures the EVM with the performance for the channel link, and the EVM th4 set for the measured EVM and the beam training performing condition. In comparison, when the measured EVM value is less than EVM th4 , the beam training repeat condition is not satisfied, and it is determined that MCS level n is available, and when the measured EVM value is less than or equal to EVM th4 , the beam training repeat condition , It can be determined that MCS level n is not available.
  • the EVM is a channel quality factor value highly correlated with the PER, and may specifically indicate the satisfaction of the service experienced by the user.
  • another channel quality factor value or a plurality of channel quality factor values may be used to check whether the beam training repetition condition is satisfied.
  • the network node 150 continuously performs data transmission / reception for service through the transmission / reception beam selected based on the beam training. Then, the procedure according to the embodiment of the present invention ends.
  • the network node 150 selects to perform the corresponding beam training repetition in step 231 and reduces the size of the beam width. Can be. For example, if the BRP beam training was previously performed with the first stage beamwidth size, the network node 150 re-performs the BRP beam training with the second stage beamwidth size having a beamwidth size smaller than the first stage beamwidth size. You can decide.
  • the network node 150 may determine to re-perform the SLS beam training with the second stage beamwidth size having a beamwidth size smaller than the first stage beamwidth size. Can be. As another example, if the BT beam training was previously performed in the second stage beamwidth size, the network node 150 re-performs the BT beam training in the third stage beamwidth size having a beamwidth size smaller than the second stage beamwidth size. You can decide. In another embodiment, the network node 150 may select a beam training method different from the previous beam training method when performing the beam repetition training. For example, if the SLS beam training has been performed before, it may be determined that the beam training is repeated by selecting the BRP beam training method.
  • the network node 150 repeatedly performs the beam training with the reduced beam width size. Accordingly, the network node 150 may reselect an optimal transmission / reception beam with the counterpart network node, and may continuously perform data transmission / reception of a service performed in step 201 using the reselected transmission / reception beam. Thereafter, the network node 150 terminates the procedure according to the embodiment of the present invention.
  • Each beam training method (SLS, BRP, BT) described above may be implemented by combining a hardware component, a software component, or a hardware component and a software component.
  • each beam training method may be implemented using a hardware component, and a separate state for beam training may be defined for the hardware component from the general data transmission state and the data reception state.
  • the beamforming state may be defined on a finite state machine (FSM) that is a hardware component.
  • FSM finite state machine
  • the BRP beam training can provide an advantage of guaranteeing a 3us interval between BRP frames.
  • a method of a network node for beam training in a communication system may include measuring at least one channel quality factor value indicating channel link performance with a counterpart network node, and measuring the measured channel quality.
  • the method may include selecting a beam training method based on a factor value, and performing beam training with the counterpart network node using the selected beam training method.
  • the step of performing beam training with the counterpart network node using the selected beam training method may include determining a beam width based on the selected beam training method, and determining the determined beam width.
  • the method may include forming a plurality of transmit and receive beams having different directions, and transmitting and receiving a beam training signal using the selected beam training method using the formed transmit and receive beams.
  • the method of the network node may include selecting a transmission / reception beam based on a result of performing the beam training, and forming a channel link with the counterpart network node by using the selected transmission / reception beam. Communicating, at least one channel quality factor indicating a performance of the channel link using the selected transmission / reception beam, at least one reference channel quality factor value set to determine whether to repeat the beam training, and the measured The method may further include determining whether to repeat beam training based on the channel quality factor value.
  • the at least one reference channel quality factor may be set for each channel quality factor based on the service request quality.
  • the method of the network node may further include determining a beam width to be used when performing the beam training repetition when it is determined to perform the beam training repetition.
  • the beam width to be used when performing the beam training repetition may be smaller than the beam width used for the previous beam training.
  • the method may further include determining a beam training method to be used when performing the beam training repetition.
  • the selecting of the beam training method based on the measured channel quality factor value may include: setting at least one reference channel preset for each of the plurality of beam training methods.
  • the method may include comparing with a quality factor value, and selecting one beam training method from among the plurality of beam training methods based on the comparison result.
  • the method of the network node may determine whether to perform beam training based on at least one reference channel quality factor value set to determine whether to perform beam training and the measured channel quality factor value.
  • the method may further include a process of selecting a beam training method when the beam training is determined to be performed.
  • the beam training method may include at least one of a sector level sweep (SLS) beam training method, a beam refinement protocol (BRP) beam training method, and a BT tracking beam training method.
  • SLS sector level sweep
  • BRP beam refinement protocol
  • BT tracking beam training method BT tracking beam training method
  • the channel quality factor may include an Error Vector Magnitude (EVM), a Signal to Interference and Noise Ratio (SINR), a Received Signal Strength Indication (RSSI), a Packet Error Rate (PER), and a Tput (Throughput). It may include at least one of.
  • EVM Error Vector Magnitude
  • SINR Signal to Interference and Noise Ratio
  • RSSI Received Signal Strength Indication
  • PER Packet Error Rate
  • Tput Thoughput
  • an apparatus of a network node for beam training in a communication system may include a channel estimator configured to measure at least one channel quality factor value indicating channel link performance with a counterpart network node, and the measured channel. It may include a beamforming control unit for selecting a beam training method based on the quality factor value, and controls to perform beam training with the counterpart network node by the selected beam training method.
  • the beamforming control unit determines a beam width based on the selected beam training method, forms a plurality of transmit and receive beams in different directions having the determined beam width, and performs the selected beam training. It can be controlled to transmit and receive the beam training signal in a manner.
  • the beamforming control unit selects a transmission / reception beam based on a result of performing the beam training, forms a channel link with the counterpart network node using the selected transmission / reception beam, and communicates with the Control at least one channel quality factor value indicating the performance of the channel link using the selected transmission and reception beams, and at least one reference channel quality factor value set to determine whether to repeat the beam training and the measured channel quality It may be determined whether to repeat the beam training based on the factor value.
  • the at least one reference channel quality factor may be set for each channel quality factor based on the service request quality.
  • the beamforming control unit may determine a beam width to be used when performing the beam training repetition, and a beam width to be used when performing the beam training repetition. May be smaller than the beam width used for previous beam training.
  • the beamforming control unit may determine a beam training method to be used when performing the beam training repetition.
  • the beamforming control unit compares the measured channel quality factor value with at least one reference channel quality factor value preset for each of a plurality of beam training schemes, and based on the comparison result.
  • One beam training method may be selected from the plurality of beam training methods.
  • the beamforming control unit may determine whether to perform beam training based on at least one reference channel quality factor value set to determine whether to perform beam training and the measured channel quality factor value. .
  • the beam training method may include at least one of a sector level sweep (SLS) beam training method, a beam refinement protocol (BRP) beam training method, and a BT tracking beam training method.
  • SLS sector level sweep
  • BRP beam refinement protocol
  • BT tracking beam training method BT tracking beam training method
  • the channel quality factor may include an Error Vector Magnitude (EVM), a Signal to Interference and Noise Ratio (SINR), a Received Signal Strength Indication (RSSI), a Packet Error Rate (PER), and a Tput (Throughput). It may include at least one of.
  • EVM Error Vector Magnitude
  • SINR Signal to Interference and Noise Ratio
  • RSSI Received Signal Strength Indication
  • PER Packet Error Rate
  • Tput Thoughput
  • Operations according to an embodiment of the present invention may be implemented by a single control unit.
  • program instructions for performing various computer-implemented operations may be recorded on a computer-readable medium.
  • the computer-determinable medium may include program instructions, data files, data structures, and the like, alone or in combination.
  • the program instructions may be those specially designed and constructed for the purposes of the present invention, or they may be of the kind well-known and available to those skilled in the art.
  • Examples of computer readable recording media include magnetic media such as hard disks, floppy disks and magnetic tape, optical recording media such as CD-ROMs or DVDs, magnetic-optical media such as floppy disks and ROMs.
  • Examples of program instructions include not only machine code generated by a compiler, but also high-level language code that can be executed by a computer using an interpreter or the like.
  • a computer readable recording medium storing the computer program is also included in the present invention. Therefore, the scope of the present invention should not be limited to the described embodiments, but should be determined not only by the claims below but also by the equivalents of the claims.

Abstract

본 발명은 통신 시스템에서 빔 훈련 방법 및 장치에 관한 것으로서, 통신 시스템에서 빔 훈련을 위한 네트워크 노드의 방법은, 상대 네트워크 노드와의 채널 링크 성능을 나타내는 적어도 하나의 채널 품질 인자 값을 측정하는 과정과, 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 방식을 선택하는 과정과, 상기 선택된 빔 훈련 방식으로 상기 상대 네트워크 노드와의 빔 훈련을 수행하는 과정을 포함하여, 채널 상황에 따라 가장 효율적인 방식으로 서비스를 유지하기 위한 최적의 빔을 찾을 수 있고, 빔 훈련에 소모되는 시간을 최소화할 수 있는 효과를 얻을 수 있다.

Description

통신 시스템에서 빔 훈련 방법 및 장치
본 발명은 빔포밍을 지원하는 통신 시스템에서 빔 훈련 방식에 관한 것이다.
최근, 높은 데이터 전송률을 제공하기 위한 방안으로 30Ghz이상의 초고주파 대역에서의 통신 기술 즉, 밀리미터 웨이브 시스템을 도입하기 위한 연구가 진행되고 있다. 밀리미터 웨이브 시스템에서는 전파 경로 손실이 심각하게 발생하여 셀 커버리지가 상당히 감소하게 된다. 따라서, 상기 밀리미터 웨이브 시스템에서 전파 경로 손실을 해결하기 위해, 송수신 전력을 좁은 공간에 집중하여 안테나의 송수신 효율을 높이는 빔포밍(Beam Forming) 기술을 적용하기 위한 연구가 활발히 진행되고 있다.
일반적으로, 빔포밍을 지원하는 통신 시스템에서는 단말과 기지국 각각이 최적의 상향링크 송수신 빔 및 하향링크 송수신 빔을 찾는 빔 훈련 과정을 수행해야 한다. 이를 위해, 802.11ad 표준에서는 최적의 빔을 찾기 위한 빔 훈련 방식에 대한 다양한 빔포밍 프로토콜들을 정의하고 있지만, 다양한 빔포밍 프로토콜들을 적용하기 위한 구체적인 방안을 제시하고 있지 않은 실정이다.
따라서, 본 발명의 실시 예는 빔포밍을 지원하는 통신 시스템에서 채널 상태를 기반으로 빔 훈련 방식을 선택하는 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 실시 예는 빔포밍을 지원하는 통신 시스템에서 채널 상태를 기반으로 빔 훈련의 반복 수행 여부를 결정하는 방법 및 장치를 제공함에 있다.
본 발명의 다른 실시 예는 빔포밍을 지원하는 통신 시스템에서 빔 훈련 방식을 기반으로 빔 폭의 크기를 적응적으로 조절하는 방법 및 장치를 제공함에 있다.
본 발명의 다른 실시 예는 빔포밍을 지원하는 통신 시스템에서 빔 훈련 방식의 반복 수행 여부를 기반으로 빔 폭의 크기를 적응적으로 조절하는 방법 및 장치를 제공함에 있다.
본 발명의 또 다른 실시 예는 빔포밍을 지원하는 통신 시스템에서 채널 상태와 서비스 품질을 보장하기 위해 미리 설정된 조건을 기반으로 빔 훈련 방식을 선택하는 방법 및 장치를 제공함에 있다.
본 발명의 실시 예에 따르면, 통신 시스템에서 빔 훈련을 위한 네트워크 노드의 방법은, 상대 네트워크 노드와의 채널 링크 성능을 나타내는 적어도 하나의 채널 품질 인자 값을 측정하는 과정과, 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 방식을 선택하는 과정과, 선택된 빔 훈련 방식으로 상기 상대 네트워크 노드와의 빔 훈련을 수행하는 과정을 포함할 수 있다.
본 발명의 실시 예에 따르면, 통신 시스템에서 빔 훈련을 위한 네트워크 노드의 장치는, 상대 네트워크 노드와의 채널 링크 성능을 나타내는 적어도 하나의 채널 품질 인자 값을 측정하는 채널 추정부와, 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 방식을 선택하고, 선택된 빔 훈련 방식으로 상기 상대 네트워크 노드와의 빔 훈련을 수행하도록 제어하는 빔포밍 제어부를 포함할 수 있다.
본 발명에서는 통신 시스템에서 채널 상태를 기반으로 빔 훈련 방식을 선택하고, 빔 훈련 방식 및 빔 훈련 반복 수행 여부를 기반으로 빔 폭의 크기를 적응적으로 조절함으로써, 채널 상황에 따라 가장 효율적인 방식으로 서비스를 유지하기 위한 최적의 빔을 찾을 수 있고, 빔 훈련에 소모되는 시간을 최소화할 수 있는 효과를 얻을 수 있다.
도 1은 본 발명의 실시 예에 따른 빔포밍 시스템에서 네트워크 노드의 블록 구성을 도시하는 도면,
도 2는 본 발명의 실시 예에 따른 빔포밍 시스템에서 네트워크 노드의 빔포밍 절차를 도시하는 도면,
도 3은 본 발명의 실시 예에 따른 빔 훈련 방식 선택을 위한 테이블을 예로 들어 나타내는 도면,
도 4a 및 도 4b는 본 발명의 실시 예에 따라 적응적으로 변경되는 빔 폭 크기를 예로 들어 나타내는 도면, 및
도 4c는 본 발의 실시 예에 따라 빔 훈련 상대 네트워크 노드의 빔 형태를 나타내는 도면.
이하, 본 발명의 다양한 실시 예는 첨부된 도면과 연관되어 기재된다. 본 발명의 다양한 실시 예는 다양한 변경을 가할 수 있고 여러 가지 실시예를 가질 수 있는 바, 특정 실시 예들이 도면에 예시되고 관련된 상세한 설명이 기재되어 있다. 그러나, 이는 본 발명의 다양한 실시예를 특정한 실시 형태에 대해 한정하려는 것이 아니며, 본 발명의 다양한 실시예의 사상 및 기술 범위에 포함되는 모든 변경 및/또는 균등물 내지 대체물을 포함하는 것으로 이해되어야 한다. 도면의 설명과 관련하여, 유사한 구성요소에 대해서는 유사한 참조 부호가 사용되었다.
본 발명의 다양한 실시 예에서 "가진다", "가질 수 있다",“포함한다” 또는 “포함할 수 있다” 등의 표현은 개시(disclosure)된 해당 기능, 동작 또는 구성요소 등의 존재를 가리키며, 추가적인 하나 이상의 기능, 동작 또는 구성요소 등을 제한하지 않는다. 또한, 본 발명의 다양한 실시 예에서, "포함하다" 또는 "가지다" 등의 용어는 명세서상에 기재된 특징, 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 동작, 구성요소, 부품 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 발명의 다양한 실시 예에서 “A 또는 B” 또는 “A 또는/및 B 중 적어도 하나” 등의 표현은 함께 나열된 단어들의 어떠한, 그리고 모든 조합을 포함한다. 예를 들어, “A 또는 B” 또는 “A 또는/및 B 중 적어도 하나” 각각은, A를 포함할 수도, B를 포함할 수도, 또는 A 와 B 모두를 포함할 수도 있다.
본 발명의 다양한 실시 예에서 사용된 “제 1”, “제 2”, “첫째” 또는 “둘째” 등의 표현들은 다양한 실시 예들의 다양한 구성요소들을 수식할 수 있지만, 해당 구성요소들을 한정하지 않는다. 예를 들어, 상기 표현들은 해당 구성요소들의 순서 및/또는 중요도 등을 한정하지 않는다. 상기 표현들은 한 구성요소를 다른 구성요소와 구분하기 위해 사용될 수 있다. 예를 들어, 제 1 사용자 기기와 제 2 사용자 기기는 모두 사용자 기기이며, 서로 다른 사용자 기기를 나타낸다. 예를 들어, 본 발명의 다양한 실시 예의 권리 범위를 벗어나지 않으면서 제 1 구성요소는 제 2 구성요소로 명명될 수 있고, 유사하게 제 2 구성요소도 제 1 구성요소로 명명될 수 있다.
어떤 구성요소가 다른 구성요소에 "연결되어" 있다거나 "접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소가 상기 다른 구성요소에 직접적으로 연결되어 있거나 또는 접속되어 있을 수도 있지만, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 새로운 다른 구성요소가 존재할 수도 있다고 이해되어야 할 것이다. 반면에, 어떤 구성요소가 다른 구성요소에 "직접 연결되어" 있다거나 "직접 접속되어" 있다고 언급된 때에는, 상기 어떤 구성요소와 상기 다른 구성요소 사이에 새로운 다른 구성요소가 존재하지 않는 것으로 이해될 수 있어야 할 것이다.
본 문서에서 사용된 표현 “~하도록 구성된(또는 설정된)(configured to)”은 상황에 따라, 예를 들면, “~에 적합한(suitable for),” “~하는 능력을 가지는 (having the capacity to),” “~하도록 설계된(designed to),” “~하도록 변경된(adapted to),” “~하도록 만들어진(made to),”또는 “~를 할 수 있는 (capable of)”과 바꾸어 사용될 수 있다. 용어 “~하도록 구성 (또는 설정)된”은 하드웨어적으로 “특별히 설계된 (specifically designed to)”것만을 반드시 의미하지 않을 수 있다. 대신, 어떤 상황에서는, “~하도록 구성된 장치”라는 표현은, 그 장치가 다른 장치 또는 부품들과 함께 “~할 수 있는” 것을 의미할 수 있다. 예를 들면, 문구 “A, B, 및 C를 수행하도록 구성 (또는 설정)된 프로세서”는 해당 동작을 수행하기 위한 전용 프로세서 (예: 임베디드 프로세서), 또는 메모리 장치에 저장된 하나 이상의 소프트웨어 프로그램들을 실행함으로써, 해당 동작들을 수행할 수 있는 범용 프로세서(generic-purpose processor)(예: CPU 또는 application processor)를 의미할 수 있다.
본 발명의 다양한 실시 예에서 사용한 용어는 단지 특정한 실시 예를 설명하기 위해 사용된 것으로, 본 발명의 다양한 실시 예를 한정하려는 의도가 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
다르게 정의되지 않는 한, 기술적이거나 과학적인 용어를 포함해서 여기서 사용되는 모든 용어들은 본 발명의 다양한 실시 예가 속하는 기술 분야에서 통상의 지식을 가진 자에 의해 일반적으로 이해되는 것과 동일한 의미를 가지고 있다. 일반적으로 사용되는 사전에 정의되어 있는 것과 같은 용어들은 관련 기술의 문맥 상 가지는 의미와 일치하는 의미를 가지는 것으로 해석되어야 하며, 본 발명의 다양한 실시예에서 명백하게 정의되지 않는 한, 이상적이거나 과도하게 형식적인 의미로 해석되지 않는다.
또한 본 명세서는 무선 통신 네트워크를 대상으로 설명하며, 무선 통신 네트워크에서 이루어지는 작업은 해당 무선 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 무선 네트워크에 결합한 단말에서 작업이 이루어질 수 있다.
본 발명의 실시 예에 따른 무선통신 시스템은 다수의 기지국(Base Station, BS)을 포함한다. 각 기지국은 특정한 지리적 영역(일반적으로 셀(cell)이라고 함)에 대해 통신 서비스를 제공한다. 셀은 다시 다수의 영역(혹은 섹터라고 함)으로 나누어질 수 있다.
단말(mobile station, MS)은 고정되거나 이동성을 가질 수 있으며, UE(user equipment), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다.
기지국은 일반적으로 단말과 통신하는 고정된 지점(fixed station)을 말하며, eNB(evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point) 등 다른 용어로 불릴 수 있다.
이하 설명에서는 빔포밍을 지원하는 통신 시스템에서 채널 상태를 기반으로 빔 훈련 방식을 선택하고, 빔 훈련 방식 및 빔 훈련 반복 수행 여부를 기반으로 빔 폭의 크기를 적응적으로 조절하는 방식에 대해 설명할 것이다. 이하 설명에서, 네트워크 노드는 기지국, 단말, 중계기 등과 같이 네트워크를 구성하고, 빔포밍 안테나를 구비하여 빔 훈련을 수행할 수 있는 모든 기기를 포함하는 의미이다.
이하 본 발명의 실시 예에서는, 802.11ad 표준에서 정의하고 있는 빔포밍 프로토콜들을 예로 들어 설명할 것이다. 예컨대, 이하 본 발명의 실시 예에서는 채널 상황을 기반으로 802.11ad 표준에서 정의된 SLS(Sector Level Sweep), BRP(Beam Refinement Protocol), 및 BT(Beam Tracking) 중 어느 하나의 빔 훈련 방식을 선택하는 것을 예로 들어 설명한다. 그러나, 이하 본 발명의 실시 예들은, 송수신에 이용될 빔을 찾는 다른 방식의 빔포밍 프로토콜에도 적용될 수 있음은 당연하다. SLS는 802.11ad 시스템에서 링크 감지(link detection)를 수행하는 프로토콜로서, 네트워크 노드들이 빔의 방향만을 변경하면서 동일한 정보를 포함하는 프레임을 연속적으로 송수신하고, 성공적으로 수신된 프레임들 중에서 수신 채널 링크의 성능을 나타내는 지표(예: SNR(Signal to Ratio), RSSI(Received Signal Strength Indicator) 등)이 가장 좋은 빔 방향을 선택하는 빔 훈련 방식이다. BRP는 SLS 혹은 다른 수단에 의해 결정된 빔 방향에서 데이터 전송율을 최대화할 수 있는 빔 방향을 세밀하게 조절하는 프로토콜로서, BRP 프로토콜을 위해 정의된, 빔 훈련 정보와 훈련 결과를 보고하는 정보를 포함하는 BRP 프레임을 이용하여 빔 훈련을 수행한다. 예컨대, BRP는 이전 빔 훈련에 의해 결정된 빔을 이용하여 BRP 프레임을 송수신하고, 성공적으로 송수신된 BRP 프레임의 끝 부분에 포함된 빔 훈련 시퀀스(beam training sequence)를 이용하여 실질적으로 빔 훈련을 수행하는 빔 훈련 방식이다., SLS는 빔 훈련을 위해서 프레임 자체를 이용하나, BRP는 빔 훈련 시퀀스만을 이용한다는 점에서 상이할 수 있다. BT(Beam Tracking)는 데이터 송신과 빔 훈련을 동시에 수행할 수 있는 프로토콜로서, 데이터 프레임의 PHY 헤더에 빔 훈련 정보를 포함시키고, 데이터 프레임의 끝 부분에 빔 훈련을 위한 시퀀스를 포함시킴으로써, 데이터를 송신함과 동시에 빔 훈련을 수행하는 빔 훈련 방식이다.
도 1은 본 발명의 실시 예에 따른 빔포밍 시스템에서 네트워크 노드의 블록 구성을 도시하고 있다.
도 1을 참조하면, 네트워크 노드(150)는 제어부(100), 송수신부(110), 저장부(120) 및 채널 추정부(130)를 포함하여 구성될 수 있다.
제어부(100)는 네트워크 노드(150)의 전반적인 동작을 위한 제어 기능을 수행한다. 제어부(100)는 본 발명의 실시 예에 따른 빔포밍 제어부(102)를 포함할 수 있다., 빔포밍 제어부(102)는 채널 상태를 기반으로 빔 훈련 방식을 선택하고, 빔 훈련 방식 및 빔 훈련 반복 수행 여부를 기반으로 빔 훈련에 이용될 빔 폭의 크기를 적응적으로 조절하기 위한 기능을 수행한다.
상세히 설명하면, 빔포밍 제어부(102)는 상대 네트워크 노드와 통신하여 서비스를 제공하는 중에 채널 링크의 성능 변화를 감지하고, 채널 링크의 성능을 나타내는 적어도 하나의 채널 품질 추정 값을 기반으로 빔 훈련 수행 여부를 결정하고, 빔 훈련 방식을 선택할 수 있다. 예를 들어, 빔포밍 제어부(102)는 최소 요구 사항이 MCS 레벨 n인 서비스를 제공하는 중에 채널 링크의 성능 변화가 감지되면, 채널 링크의 성능을 나타내는 적어도 하나의 채널 품질 인자(factor, or parameter)를 측정하고, 측정된 채널 품질 인자를 도 3에 도시된 바와 같이, 미리 저장된 빔 훈련 방식 선택 테이블에 포함된 빔 훈련 수행 조건에 대해 설정된 기준 값(혹은 기준 채널 품질 인자 값)과 비교하여 빔 훈련 수행 여부를 결정할 수 있다. 빔포밍 제어부(102)는 측정된 채널 품질 인자 값이 빔 훈련 수행 조건에 대해 설정된 기준 값을 만족할 시, 빔 훈련이 필요한 상황으로 결정하고, 채널 링크 성능을 나타내는 적어도 하나의 채널 품질 인자를 빔 훈련 방식 선택 테이블에 포함된 제 1 빔 훈련 선택 조건 및 제 2 빔 훈련 선택 조건에 대해 설정된 기준 값과 비교하여 SLS, BRP, 및 BT 중 어느 하나의 빔 훈련 방식을 선택할 수 있다. 또한, 빔포밍 제어부(102)는 채널 링크 성능을 나타내는 적어도 하나의 채널 품질 인자 값을 빔 훈련 선택 테이블에 포함된 빔 훈련 반복 조건에 대해 설정된 기준 값과 비교하여, 빔 훈련 반복 수행 여부를 결정할 수 있다. 여기서, 도 3에 도시된 바와 같은 빔 훈련 방식 선택 테이블에서 각 조건들에 대한 기준 값들은 서비스의 요구 품질을 기반으로 설정될 수 있다. 예를 들어, 제 1 빔 훈련 선택 조건에 대한 기준 값들은 MCS(Modulation and Coding Scheme) 레벨 n을 만족하는 채널 품질 인자 값들로 설정될 수 있고, 제 2 빔 훈련 선택 조건에 대한 기준 값들은 MCS 레벨 0을 만족하는 채널 품질 인자 값들로 설정될 수 있다. 본 발명의 실시 예에서는 채널 링크의 성능을 나타내는 채널 품질 인자로, EVM(Error Vector Magnitude), SINR(Signal to Interference and Noise Ratio), RSSI(Received Signal Strength Indication), PER(Packet Error Rate), 및 Tput(Throughput)을 예로 들어 설명하나, 채널 링크의 성능을 나타내는 다른 채널 품질 인자를 이용할 수도 있다.
추가로, 빔포밍 제어부(102)는 미리 설정된 빔 훈련 주기마다 빔 훈련이 필요한 상황임을 감지하고, 상술한 바와 같은 방식으로 빔 훈련 방식을 선택할 수 있다.
더욱이, 빔포밍 제어부(102)는 빔 훈련 방식 및 빔 훈련 반복 수행 여부를 기반으로 빔 훈련에 이용될 빔 폭 크기를 적응적으로 변경할 수 있다. 예컨대, 빔포밍 제어부(102)는 송수신 안테나의 빔 폭 크기를 다수 개의 단계로 정의하여, 빔 훈련 방식에 따라 적절한 빔 폭 크기를 결정할 수 있으며, 빔 훈련 방식을 반복 수행할 시에는 최초 빔 훈련에 이용된 빔 폭의 크기보다 작은 빔 폭 크기를 이용함을 결정할 수 있다. 예를 들어, 빔 폭 크기를 2 단계로 정의하는 경우를 가정하면, 빔포밍 제어부(102)는 송수신 안테나의 빔 폭 크기를 도 4a에 도시된 바와 같은 빔 폭 크기(401)를 갖는 제 1 단계의 빔 폭 크기와, 도 4b에 도시된 바와 같은 빔 폭 크기(411)를 갖는 제 2 단계의 빔 폭 크기로 정의할 수 있다. 빔포밍 제어부(102)는 SLS 빔 훈련 및 BRP 빔 훈련시 제 1 단계의 빔 폭 크기를 이용함을 결정할 수 있고, BT 빔 훈련시 제 2 단계의 빔 폭 크기를 이용함을 결정할 수 있다. 또한, 빔포밍 제어부(102)는 SLS 빔 훈련 및/혹은 BRP 빔 훈련을 반복 수행할 시, 제 1 단계의 빔 폭 크기보다 작은 빔 폭 크기를 갖는 제 2 단계의 빔 폭 크기를 반복되는 빔 훈련에 이용함을 결정할 수 있다. 여기서는, 설명의 편의를 위해, 빔 폭 크기를 두 단계로 정의하는 경우를 가정한 것으로서, 빔 폭 크기는 시스템 설계자에 의해 두 개 이상의 단계로 정의될 수 있음은 당연하다. 또한, 상술한 설명에서 SLS 빔 훈련, BRP 빔 훈련, BT 빔 훈련 시에 이용되는 빔 폭 크기는 예시적인 것으로서, 각각의 빔 훈련 시에 이용되는 빔 폭의 크기는 설계 방식에 따라 다르게 설정될 수 있음은 당연하다. 추가적으로, 빔 훈련은 채널 링크 상태 및 시스템 설계자에 의해 설정된 빔 훈련 반복 조건에 따라 다수 번 반복 수행될 수 있으며, 빔포밍 제어부(102)는 빔 훈련 반복 수행이 결정될 때마다, 빔 훈련에 이용될 빔 폭 크기가 이전 빔 훈련에서 이용된 빔 폭 크기보다 작은 크기를 갖도록 결정할 수 있다.
빔포밍 제어부(102)는 선택된 빔 훈련 방식 및 결정된 빔 폭 크기로 빔 훈련을 수행하기 위해, 빔포밍부(112)를 제어하여 결정된 빔 폭 크기로 서로 다른 방향성을 갖는 다수의 송수신 빔을 형성하고, 형성된 송수신 빔을 이용하여 선택된 빔 훈련 방식으로 빔 훈련 신호를 송수신하고, 최적의 송수신 빔을 선택하기 위한 기능을 제어 및 처리한다. 예를 들어, 빔포밍 제어부(102)는 결정된 빔 폭 크기를 갖는 송신 빔 및/혹은 수신 빔을 형성하기 위한 빔포밍 벡터를 생성하고, 생성된 빔포밍 벡터를 빔포밍부(112)로 제공할 수 있다.
송수신부(110)는 제어부(100)의 제어에 따라 다수의 안테나(140-1 내지 140-N)를 통해 신호를 송수신한다. 송수신부(110)는 빔포밍부(112)를 포함하여 구성될 수 있다. 추가적으로, 송수신부(110)는 도면에 도시되지는 않았으나 다수의 부호화기, 다수의 변조기, 다수의 부반송파 매핑기, 다수의 변조기 및 다수의 RF 송신기를 포함하여 구성될 수 있다. 빔포밍부(112)는 제어부(100)로부터 제공되는 빔포밍 벡터를 이용하여 상대 네트워크 노드와의 신호를 송수신하기 위한 빔을 형성할 수 있다. 여기서, 빔포밍부(112)는 디지털 빔포밍, 안테나를 물리적으로 움직이는 빔포밍, 사전에 정의된 각 빔 방향에 대응되는 안테나들, 안테나 묶음들 혹은 안테나 어레이(array)들 중 적어도 하나를 이용하여 제어부(100)로부터 요청되는 송수신 빔을 형성할 수 있다.
저장부(120)는 네트워크 노드(150)의 전반적인 동작에 필요한 각종 데이터 및 프로그램을 저장한다. 본 실시 예에 따라 저장부(120)는 도 3에 도시된 바와 같은 빔 훈련 방식 선택 테이블을 저장할 수 있다. 빔 훈련 방식 선택 테이블은, 빔 훈련 수행 여부를 판단하는데 이용되는 조건을 나타내는 적어도 하나의 기준 값, 빔 훈련 방식을 선택하는데 이용되는 조건을 나타내는 적어도 하나의 기준 값, 및 빔 훈련 반복 수행 여부를 판단하는데 이용되는 조건을 나타내는 적어도 하나의 기준 값을 포함할 수 있다. 여기서, 빔 훈련 방식을 선택하는데 이용되는 조건은, 빔 훈련 선택 방식의 수에 따라 다수 개의 조건으로 구분될 수 있으며, 이때 빔 훈련 방식 선택 테이블은 다수 개의 빔 훈련 선택 조건 각각에 대한 적어도 하나의 기준 값을 포함할 수 있다. 예를 들어, 도 3에 도시된 바와 같이 3개의 빔 훈련 방식을 선택하기 위해, 빔 훈련 방식 선택 테이블에 두 개의 빔 훈련 선택 조건 각각에 대해, 5개의 채널 품질 인자에 대한 기준 값들을 포함할 수 있다.
채널 추정부(130)는 상기 제어부(100)의 제어에 따라 상대 네트워크 노드로부터 수신되는 신호(예: 파일럿 신호, 사운딩 신호, 데이터 신호)를 이용하여 채널 링크 성능을 나타내는 적어도 하나의 채널 품질 인자를 추정하고, 추정된 적어도 하나의 채널 품질 인자를 제어부(100)로 제공한다.
도 2는 본 발명의 실시 예에 따른 빔포밍 시스템에서 네트워크 노드의 빔포밍 절차를 도시하고 있다.
도 2를 참조하면, 네트워크 노드(150)는 201단계에서 서비스 품질에 대한 최소 요구 사항이 MCS 레벨 n인 서비스를 위한 데이터 송수신을 수행한다. 네트워크 노드(150)는 203단계에서 해당 서비스를 위한 데이터 송수신 중에 미리 설정된 빔 훈련 주기가 되는지 여부를 검사한다. 만일, 미리 설정된 빔 주기가 될 시, 네트워크 노드는 하기 211단계로 진행하여 빔 훈련이 필요한 상황임을 판단할 수 있다.
반면, 미리 설정된 빔 주기가 아닐 시, 네트워크 노드(150)는 205단계에서 해당 서비스를 위한 데이터 송수신 중에 링크 변화가 감지되는지 여부를 검사한다. 예를 들어, 네트워크 노드(150)는 서비스를 위한 데이터를 포함하는 신호 수신 세기, 데이터 전송 성공 여부, 데이터 수신 성공 여부, 및 링크 성능을 나타내는 채널 품질 인자 값 등을 기반으로 링크 변화가 감지되는지 여부를 판단할 수 있다. 링크 변화가 감지되지 않을 시, 네트워크 노드(150)는 201단계로 되돌아가 이하 단계를 재수행할 수 있다.
링크 변화가 감지될 시, 네트워크 노드(150)는 207단계에서 상대 네트워크 노드와의 채널 링크에 대한 성능을 측정한다. 예를 들어, EVM, SINR, RSSI, PER, 및 Tput 중 적어도 하나를 측정할 수 있다.
이후, 네트워크 노드(150)는 209단계에서 측정된 링크 성능을 기반으로 상대 네트워크 노드(150)와의 채널 상태가 빔 훈련 수행 조건을 만족하는지 여부를 검사한다. 즉, 네트워크 노드(150)는 측정된 채널 링크 성능을 나타내는 채널 품질 인자 값을 빔 훈련 수행 조건에 대해 설정된 기준 값과 비교하여, 빔 훈련 수행 조건을 만족하는지 여부를 검사한다. 예를 들어, 도 3에 도시된 바와 같이, 빔 훈련 수행 조건이 설정된 경우, 네트워크 노드는 채널 링크에 대한 성능으로 PER을 측정하고, 측정된 PER과 빔 훈련 수행 조건에 대해 설정된 PERth1을 비교하여, 측정된 PER값이 PERth1보다 작거나 같을 경우 빔 훈련 수행 조건을 만족하는 것으로 판단하고, 측정된 PER값이 PERth1보다 클 경우 빔 훈련 수행 조건을 만족하지 않는 것으로 판단할 수 있다. PER은 사용자가 경험하는 서비스의 만족도를 구체적으로 나타낼 수 있는 채널 품질 인자 값으로서, 여기서는 PER을 이용하여 빔 훈련 수행 조건을 만족하는지 검사하는 것을 예로 들었으나, 다른 채널 품질 인자 값, 혹은 다수 개의 채널 품질 인자 값들을 이용하여 빔 훈련 수행 조건을 만족하는지 검사할 수 있다. 예를 들어, EVM, SINR, RSSI, PER, Tput 중 적어도 하나를 이용하여 빔 훈련 수행 조건 만족 여부를 검사할 수 있다. 네트워크 노드(150)는 상대 네트워크 노드와의 채널 상태가 빔 훈련 수행 조건을 만족하지 않을 시, 201단계로 되돌아가 이하 단계를 재수행한다.
네트워크 노드(150)는 상대 네트워크 노드와의 채널 상태가 빔 훈련 수행 조건을 만족할 시, 211단계에서 서비스 품질 저하로 인해 데이터 송수신 빔의 변경이 필요한 상황임을 감지하고, 송수신 빔 변경을 위해 빔 훈련이 필요한 상황임을 결정한다.
이후, 네트워크 노드(150)는 213단계에서 채널 상태가 제 1 빔 훈련 선택 조건을 만족하는지 여부를 검사한다. 예컨대, 네트워크 노드(150)는 207단계를 통해 측정된 채널 링크 성능을 나타내는 채널 품질 인자 값을 제 1 빔 훈련 선택 조건에 대해 설정된 기준 값과 비교하여, 제 1 빔 훈련 선택 조건을 만족하는지 여부를 검사한다. 여기서, 제 1 빔 훈련 선택 조건에 대한 기준 값들이 MCS 레벨 n의 이용이 가능하도록 하는 최소 값들로 설정된 경우, 네트워크 노드는 측정된 채널 품질 인자 값과 제 1 빔 훈련 선택 조건에 대해 설정된 기준 값의 비교 결과를 기반으로 MCS 레벨 n의 사용 여부를 판단할 수 있다. 예를 들어, 도 3에 도시된 바와 같이, 제 1 빔 훈련 선택 조건이 설정된 경우, 네트워크 노드(150)는 채널 링크에 대한 성능으로 EVM을 측정하고, 측정된 EVM과 빔 훈련 수행 조건에 대해 설정된 EVMth2를 비교하여, 측정된 EVM값이 EVMth2보다 크거나 같을 경우 제 1 빔 훈련 선택 조건을 만족하고, MCS 레벨 n의 이용이 가능한 것으로 판단하고, 측정된 EVM값이 EVMth2보다 작을 경우 제 1 빔 훈련 선택 조건을 만족하지 않고, MCS 레벨 n의 이용이 불가능한 것으로 판단할 수 있다. EVM은 PER과 상관 관계가 높은 채널 품질 인자 값으로서, 사용자가 경험하는 서비스의 만족도를 구체적으로 나타낼 수 있다. 여기서는 EVM을 이용하여 제 1 빔 훈련 선택 조건을 만족하는지 검사하는 것을 예로 들었으나, 다른 채널 품질 인자 값, 혹은 다수 개의 채널 품질 인자 값을 이용하여 제 1 빔 훈련 선택 조건을 만족하는지 검사할 수 있다.
채널 상태가 제 1 빔 훈련 선택 조건을 만족하는 경우, 네트워크 노드(150)는 215단계로 진행하여 BT 빔 훈련 방식을 선택하고, 제 2 단계 빔 폭 크기를 이용함을 결정한다. 여기서, 제 2 단계 빔 폭 크기는, 다수개의 단계로 정의된 빔 폭의 크기들 중에서 두 번째로 큰 크기를 갖는 빔 폭 크기를 의미하는 것으로서, 실시 예에 따라 BT 빔 훈련 방식에 다른 단계의 빔 폭 크기를 이용할 수도 있다. 이후, 네트워크 노드(150)는 217단계로 진행하여 제 2 단계 빔 폭 크기를 갖는 송수신 빔을 이용하여 BT 빔 훈련을 수행하고, 하기 229단계로 진행한다. 이때, 네트워크 노드(150)는 BT 빔 훈련을 통해 상대 네트워크 노드와의 최적의 송수신 빔을 선택할 수 있고, 선택된 송수신 빔을 이용하여 201단계에서 수행한 서비스의 데이터 송수신을 계속적으로 수행할 수 있다.
반면, 채널 상태가 제 1 빔 훈련 선택 조건을 만족하지 않는 경우, 네트워크 노드(150)는 219단계로 진행하여 채널 상태가 제 2 빔 훈련 선택 조건을 만족하는지 여부를 검사한다. 예컨대, 네트워크 노드(150)는 207단계를 통해 측정된 채널 링크 성능을 나타내는 채널 품질 인자 값을 제 2 빔 훈련 선택 조건에 대해 설정된 기준 값과 비교하여, 제 2 빔 훈련 선택 조건을 만족하는지 여부를 검사한다. 여기서, 제 2 빔 훈련 선택 조건에 대한 기준 값들이 MCS 레벨 0의 이용이 가능하도록 하는 최소 값들로 설정된 경우, 네트워크 노드(150)는 측정된 채널 품질 인자 값과 제 2 빔 훈련 선택 조건에 대해 설정된 기준 값의 비교 결과를 기반으로 MCS 레벨 0의 사용 여부를 판단할 수 있다. 예를 들어, 도 3에 도시된 바와 같이, 제 2 빔 훈련 선택 조건이 설정된 경우, 네트워크 노드(150)는 채널 링크에 대한 성능으로 EVM을 측정하고, 측정된 EVM과 빔 훈련 수행 조건에 대해 설정된 EVMth3을 비교하여, 측정된 EVM값이 EVMth3보다 크거나 같을 경우 제 2 빔 훈련 선택 조건을 만족하고, MCS 레벨 n의 이용이 가능한 것으로 판단하고, 측정된 EVM값이 EVMth3보다 작을 경우 제 2 빔 훈련 선택 조건을 만족하지 않고, MCS 레벨 n의 이용이 불가능한 것으로 판단할 수 있다. EVM은 PER과 상관 관계가 높은 채널 품질 인자 값으로서, 사용자가 경험하는 서비스의 만족도를 구체적으로 나타낼 수 있다. 여기서는 EVM을 이용하여 제 2 빔 훈련 선택 조건을 만족하는지 검사하는 것을 예로 들었으나, 다른 채널 품질 인자 값, 혹은 다수 개의 채널 품질 인자 값을 이용하여 제 2 빔 훈련 선택 조건을 만족하는지 검사할 수 있다.
채널 상태가 제 2 빔 훈련 선택 조건을 만족하지 않는 경우, 네트워크 노드(150)는 221단계로 진행하여 SLS 빔 훈련 방식을 선택하고, 제 1 단계 빔 폭 크기를 이용함을 결정한다. 여기서, 제 1 단계 빔 폭 크기는, 다수개의 단계로 정의된 빔 폭의 크기들 중에서 가장 큰 크기를 갖는 빔 폭 크기를 의미하는 것으로서, 실시 예에 따라 SLS 빔 훈련 방식에 다른 단계의 빔 폭 크기를 이용할 수도 있다. 이후, 네트워크 노드(150)는 223단계로 진행하여 제 1 단계 빔 폭 크기를 갖는 송수신 빔을 이용하여 SLS 빔 훈련을 수행하고, 하기 229단계로 진행한다. 이때, 네트워크 노드(150)는 SLS 빔 훈련을 통해 상대 네트워크 노드와의 최적의 송수신 빔을 선택할 수 있고, 선택된 송수신 빔을 이용하여 201단계에서 수행한 서비스의 데이터 송수신을 계속적으로 수행할 수 있다. 추가로, 네트워크 노드(150)가 SLS 빔 훈련 시에, 상대 네트워크 노드는 도 4c에 도시된 바와 같이, 특정한 빔 방향을 형성하지 않고, 전 방향으로 동일한 게인(gain)을 갖도록 해야 한다.
반면, 채널 상태가 제 2 빔 훈련 선택 조건을 만족하는 경우, 네트워크 노드(150)는 225단계로 진행하여 BRP 빔 훈련 방식을 선택하고, 제 1 단계 빔 폭 크기를 이용함을 결정한다. 여기서, 제 1 단계 빔 폭 크기는, 다수개의 단계로 정의된 빔 폭의 크기들 중에서 가장 큰 크기를 갖는 빔 폭 크기를 의미하는 것으로서, 실시 예에 따라 BRP 빔 훈련 방식에 다른 단계의 빔 폭 크기를 이용할 수도 있다. 이후, 네트워크 노드(150)는 227단계로 진행하여 제 1 단계 빔 폭 크기를 갖는 송수신 빔을 이용하여 BRP 빔 훈련을 수행하고, 하기 229단계로 진행한다. 이때, 네트워크 노드(150)는 BRP 빔 훈련을 통해 상대 네트워크 노드와의 최적의 송수신 빔을 선택할 수 있고, 선택된 송수신 빔을 이용하여 201단계에서 수행한 서비스의 데이터 송수신을 계속적으로 수행할 수 있다.
이후, 네트워크 노드(150)는 229단계에서 빔 훈련을 기반으로 선택된 송수신 빔에 대한 채널 상태가 빔 훈련 반복 조건을 만족하는지 여부를 검사한다. 즉, 네트워크 노드(150)는 217단계의 BT 빔 훈련, 223단계의 SLS 빔 훈련, 혹은 227단계의 BRP 빔 훈련 수행에 의해 선택된 송수신 빔에 대한 채널 링크 성능을 나타내는 채널 품질 인자 값을 측정하고, 측정된 채널 품질 인자 값과 빔 훈련 반복 조건에 대해 설정된 기준 값을 비교하여, 빔 훈련 반복 조건을 만족하는지 여부를 검사한다. 여기서, 빔 훈련 반복 조건에 대한 기준 값들이 MCS 레벨 n의 이용이 가능하도록 하는 최소 값들로 설정된 경우, 네트워크 노드(150)는 측정된 채널 품질 인자 값과 빔 훈련 반복 조건에 대해 설정된 기준 값의 비교 결과를 기반으로 MCS 레벨 n의 사용 여부를 판단할 수 있다. 예를 들어, 도 3에 도시된 바와 같이, 빔 훈련 반복 조건이 설정된 경우, 네트워크 노드(150)는 채널 링크에 대한 성능으로 EVM을 측정하고, 측정된 EVM과 빔 훈련 수행 조건에 대해 설정된 EVMth4를 비교하여, 측정된 EVM값이 EVMth4보다 작을 경우 빔 훈련 반복 조건을 만족하지 않고, MCS 레벨 n의 이용이 가능한 것으로 판단하고, 측정된 EVM값이 EVMth4보다 작거나 같을 경우 빔 훈련 반복 조건을 만족하고, MCS 레벨 n의 이용이 불가능한 것으로 판단할 수 있다. EVM은 PER과 상관 관계가 높은 채널 품질 인자 값으로서, 사용자가 경험하는 서비스의 만족도를 구체적으로 나타낼 수 있다. 여기서는 EVM을 이용하여 빔 훈련 반복 조건을 만족하는지 검사하는 것을 예로 들었으나, 다른 채널 품질 인자 값, 혹은 다수 개의 채널 품질 인자 값을 이용하여 빔 훈련 반복 조건을 만족하는지 검사할 수 있다.
만일, 빔 훈련을 기반으로 선택된 송수신 빔에 대한 채널 상태가 빔 훈련 반복 조건을 만족하지 않는 경우, 네트워크 노드(150)는 빔 훈련을 기반으로 선택된 송수신 빔을 통해 서비스를 위한 데이터 송수신을 계속하여 수행하고, 본 발명의 실시 예에 따른 절차를 종료한다.
반면, 빔 훈련을 기반으로 선택된 송수신 빔에 대한 채널 상태가 빔 훈련 반복 조건을 만족하는 경우, 네트워크 노드(150)는 231단계에서 해당 빔 훈련 반복하여 수행함을 선택하고, 빔 폭의 크기를 감소시킬 수 있다. 예를 들어, 이전에 제 1 단계 빔폭 크기로 BRP 빔 훈련을 수행한 경우, 네트워크 노드(150)는 제 1 단계 빔폭 크기보다 작은 빔폭 크기를 갖는 제 2 단계 빔폭 크기로 BRP 빔 훈련을 재수행함을 결정할 수 있다. 다른 예로, 이전에 제 1 단계 빔폭 크기로 SLS 빔 훈련을 수행한 경우, 네트워크 노드(150)는 제 1 단계 빔폭 크기보다 작은 빔폭 크기를 갖는 제 2 단계 빔폭 크기로 SLS 빔 훈련을 재수행함을 결정할 수 있다. 또 다른 예로, 이전에 제 2 단계 빔폭 크기로 BT 빔 훈련을 수행한 경우, 네트워크 노드(150)는 제 2 단계 빔폭 크기보다 작은 빔폭 크기를 갖는 제 3 단계 빔폭 크기로 BT 빔 훈련을 재수행함을 결정할 수 있다. 다른 실시 예로, 네트워크 노드(150)는 빔 반복 훈련 수행 시, 이전 빔 훈련 방식과 다른 빔 훈련 방식을 선택할 수 있다. 예를 들어, 이전에 SLS 빔 훈련을 수행한 경우, BRP 빔 훈련 방식을 선택하여 빔 훈련을 반복함을 결정할 수 있다.
이후, 네트워크 노드(150)는 233단계에서 감소된 빔 폭 크기로 해당 빔 훈련을 반복하여 수행한다. 이에 따라, 네트워크 노드(150)는 상대 네트워크 노드와의 최적의 송수신 빔을 재선택할 수 있고, 재선택된 송수신 빔을 이용하여 201단계에서 수행한 서비스의 데이터 송수신을 계속하여 수행할 수 있다. 이후, 네트워크 노드(150)는 본 발명의 실시 예에 따른 절차를 종료한다.
상술한 각 빔 훈련 방식(SLS, BRP, BT)은 하드웨어 구성 요소, 소프트웨어 구성 요소, 혹은 하드웨어 구성 요소와 소프트웨어 구성 요소를 결합하여 구현할 수 있다. 실시 예에 따라 각 빔 훈련 방식은 하드웨어 구성 요소를 이용하여 구현하면서, 하드웨어 구성 요소에 대해 일반적인 데이터 송신 상태 및 데이터 수신 상태와 구분되는 빔 훈련을 위한 별도의 상태를 정의할 수 있다. 예를 들어, 하드웨어 구성 요소인 FSM(Finite State Machine) 상에 빔포밍 상태를 정의할 수 있다. 이와 같이 하드웨어 구성 요소에 별도의 빔포밍 상태를 정의할 경우, BRP 빔 훈련 시, BRP 프레임 사이의 간격을 3us로 보장할 수 있는 이점을 얻을 수 있다.
본 발명의 다양한 실시 예에 따르면, 통신 시스템에서 빔 훈련을 위한 네트워크 노드의 방법은, 상대 네트워크 노드와의 채널 링크 성능을 나타내는 적어도 하나의 채널 품질 인자 값을 측정하는 과정과, 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 방식을 선택하는 과정과, 선택된 빔 훈련 방식으로 상기 상대 네트워크 노드와의 빔 훈련을 수행하는 과정을 포함할 수 있다.
본 발명의 다양한 실시 예에 따르면, 상기 선택된 빔 훈련 방식으로 상기 상대 네트워크 노드와의 빔 훈련을 수행하는 과정은, 상기 선택된 빔 훈련 방식을 기반으로 빔 폭을 결정하는 과정과, 상기 결정된 빔 폭을 갖는 서로 다른 방향의 다수의 송수신 빔을 형성하는 과정과, 상기 형성된 송수신 빔을 이용하여 상기 선택된 빔 훈련 방식으로 빔 훈련 신호를 송수신하는 과정을 포함할 수 있다.
본 발명의 다양한 실시 예에 따르면, 상기 네트워크 노드의 방법은, 상기 빔 훈련 수행 결과를 기반으로 송수신 빔을 선택하는 과정과, 상기 선택된 송수신 빔을 이용하여 상기 상대 네트워크 노드와의 채널 링크를 형성하여 통신하는 과정과, 상기 선택된 송수신 빔을 이용한 채널 링크의 성능을 나타내는 적어도 하나의 채널 품질 인자를 측정하는 과정과, 빔 훈련 반복 여부를 판단하기 위해 설정된 적어도 하나의 기준 채널 품질 인자 값과 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 반복 수행 여부를 결정하는 과정을 더 포함할 수 있다.
본 발명의 다양한 실시 예에 따르면 상기 적어도 하나의 기준 채널 품질 인자는 서비스 요구 품질을 기반으로 각 채널 품질 인자별로 설정될 수 있다.
추가적으로, 본 발명의 다양한 실시 예에 따르면, 상기 네트워크 노드의 방법은, 상기 빔 훈련 반복 수행이 결정될 시, 상기 빔 훈련 반복 수행시에 이용될 빔 폭 크기를 결정하는 과정을 더 포함할 수 있으며, 상기 빔 훈련 반복 수행시에 이용될 빔 폭은, 이전 빔 훈련에 이용된 빔 폭보다 작을 수 있다.
추가적으로, 본 발명의 다양한 실시 예에 따르면, 상기 빔 훈련 반복 수행이 결정될 시, 상기 빔 훈련 반복 수행시에 이용될 빔 훈련 방식을 결정하는 과정을 더 포함할 수 있다.
본 발명의 다양한 실시 예에 따르면, 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 방식을 선택하는 과정은, 상기 측정된 채널 품질 인자를 다수개의 빔 훈련 방식 각각에 대해 미리 설정된 적어도 하나의 기준 채널 품질 인자 값과 비교하는 과정과, 상기 비교 결과를 기반으로 상기 다수개의 빔 훈련 방식 중 하나의 빔 훈련 방식을 선택하는 과정을 포함할 수 있다.
본 발명의 다양한 실시 예에 따르면, 상기 네트워크 노드의 방법은, 빔 훈련 수행 여부를 판단하기 위해 설정된 적어도 하나의 기준 채널 품질 인자 값과 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 수행 여부를 결정하는 과정을 더 포함할 수 있으며, 상기 빔 훈련 수행이 결정될 시, 상기 빔 훈련 방식을 선택하는 과정을 수행할 수 있다.
본 발명의 다양한 실시 예에 따르면, 상기 빔 훈련 방식은, SLS(Sector Level Sweep) 빔 훈련 방식, BRP(Beam Refinement Protocol) 빔 훈련 방식, 및 BT(Beam Tracking) 빔 훈련 방식 중 적어도 하나를 포함할 수 있다.
본 발명의 다양한 실시 예에 따르면 상기 채널 품질 인자는, EVM(Error Vector Magnitude), SINR(Signal toInterference and Noise Ratio), RSSI(Received Signal Strength Indication), PER(Packet Error Rate), 및 Tput(Throughput) 중 적어도 하나를 포함할 수 있다.
본 발명의 다양한 실시 예에 따르면 통신 시스템에서 빔 훈련을 위한 네트워크 노드의 장치는, 상대 네트워크 노드와의 채널 링크 성능을 나타내는 적어도 하나의 채널 품질 인자 값을 측정하는 채널 추정부와, 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 방식을 선택하고, 상기 선택된 빔 훈련 방식으로 상기 상대 네트워크 노드와의 빔 훈련을 수행하도록 제어하는 빔포밍 제어부를 포함할 수 있다.
본 발명의 다양한 실시 예에 따르면 상기 빔포밍 제어부는, 상기 선택된 빔 훈련 방식을 기반으로 빔 폭을 결정하고, 상기 결정된 빔 폭을 갖는 서로 다른 방향의 다수의 송수신 빔을 형성하여, 상기 선택된 빔 훈련 방식으로 빔 훈련 신호를 송수신하도록 제어할 수 있다.
본 발명의 다양한 실시 예에 따르면 상기 빔포밍 제어부는, 상기 빔 훈련 수행 결과를 기반으로 송수신 빔을 선택하고, 상기 선택된 송수신 빔을 이용하여 상기 상대 네트워크 노드와의 채널 링크를 형성하여 통신하고, 상기 선택된 송수신 빔을 이용한 채널 링크의 성능을 나타내는 적어도 하나의 채널 품질 인자 값을 측정하기 위한 기능을 제어하고, 빔 훈련 반복 여부를 판단하기 위해 설정된 적어도 하나의 기준 채널 품질 인자 값과 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 반복 수행 여부를 결정할 수 있다.
본 발명의 다양한 실시 예에 따르면 상기 적어도 하나의 기준 채널 품질 인자는 서비스 요구 품질을 기반으로 각 채널 품질 인자별로 설정될 수 있다.
본 발명의 다양한 실시 예에 따르면 상기 빔포밍 제어부는, 상기 빔 훈련 반복 수행이 결정될 시, 상기 빔 훈련 반복 수행시에 이용될 빔 폭을 결정할 수 있으며, 상기 빔 훈련 반복 수행시에 이용될 빔 폭은, 이전 빔 훈련에 이용된 빔 폭보다 작을 수 있다.
본 발명의 다양한 실시 예에 따르면 상기 빔포밍 제어부는, 상기 빔 훈련 반복 수행이 결정될 시, 상기 빔 훈련 반복 수행시에 이용될 빔 훈련 방식을 결정할 수 있다.
본 발명의 다양한 실시 예에 따르면 상기 빔포밍 제어부는, 상기 측정된 채널 품질 인자 값을 다수개의 빔 훈련 방식 각각에 대해 미리 설정된 적어도 하나의 기준 채널 품질 인자 값과 비교하고, 상기 비교 결과를 기반으로 상기 다수개의 빔 훈련 방식 중 하나의 빔 훈련 방식을 선택할 수 있다.
본 발명의 다양한 실시 예에 따르면 상기 빔포밍 제어부는, 빔 훈련 수행 여부를 판단하기 위해 설정된 적어도 하나의 기준 채널 품질 인자 값과 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 수행 여부를 결정할 수 있다.
본 발명의 다양한 실시 예에 따르면 상기 빔 훈련 방식은, SLS(Sector Level Sweep) 빔 훈련 방식, BRP(Beam Refinement Protocol) 빔 훈련 방식, 및 BT(Beam Tracking) 빔 훈련 방식 중 적어도 하나를 포함할 수 있다.
본 발명의 다양한 실시 예에 따르면 상기 채널 품질 인자는, EVM(Error Vector Magnitude), SINR(Signal toInterference and Noise Ratio), RSSI(Received Signal Strength Indication), PER(Packet Error Rate), 및 Tput(Throughput) 중 적어도 하나를 포함할 수 있다.
이상과 같이 본 발명은 비록 한정된 실시 예와 도면에 의해 설명되었으나 본 발명은 상술한 실시 예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.
본 발명의 실시 예에 따른 동작들은 단일의 제어부에 의해 그 동작이 구현될 수 있을 것이다. 이러한 경우 다양한 컴퓨터로 구현되는 동작을 수행하기 위한 프로그램 명령이 컴퓨터 판독 가능 매체에 기록될 수 있다. 상기 컴퓨터 판단 가능 매체는 프로그램 명령, 데이터 파일, 데이터 구조 등을 단독으로 또는 조합하여 포함할 수 있다. 상기 프로그램 명령은 본 발명을 위하여 특별히 설계되고 구성된 것들이거나 당업자에게 공지되어 사용 가능한 것일 수도 있다. 컴퓨터 판독 가능 기록 매체의 예에는 하드 디스크, 플로피 디스크 및 자기 테이프와 같은 자기 매체, CD-ROM이나 DVD와 같은 광기록 매체, 플롭티컬 디스크(floptical disk)와 같은 자기-광 매체 및 롬(ROM), 램(RAM), 플래시 메모리 등과 같은 프로그램 명령을 저장하고 수행하도록 특별히 구성된 하드웨어 장치가 포함된다. 프로그램 명령의 예에는 컴파일러에 의해 만들어지는 것과 같은 기계어 코드뿐만 아니라 인터프리터 등을 사용해서 컴퓨터에 의해서 실행될 수 있는 고급 언어 코드를 포함한다. 본 발명에서 설명된 기지국 또는 릴레이의 전부 또는 일부가 컴퓨터 프로그램으로 구현된 경우 상기 컴퓨터 프로그램을 저장한 컴퓨터 판독 가능 기록 매체도 본 발명에 포함된다. 그러므로 본 발명의 범위는 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐만 아니라 이 특허청구범위와 균등한 것들에 의해 정해져야 할 것이다.
한편 본 발명의 상세한 설명에서는 구체적인 실시 예에 관해 설명하였으나, 본 발명의 범위에서 벗어나지 않는 한도 내에서 여러 가지 변형이 가능하다. 그러므로 본 발명의 범위는 설명된 실시 예에 국한되어 정해져서는 아니 되며 후술하는 특허청구의 범위뿐만 아니라 이 특허청구의 범위와 균등한 것들에 의해 정해져야 한다.

Claims (15)

  1. 통신 시스템에서 빔 훈련을 위한 네트워크 노드의 방법에 있어서,
    상대 네트워크 노드와의 채널 링크 성능을 나타내는 적어도 하나의 채널 품질 인자 값을 측정하는 과정과,
    상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 방식을 선택하는 과정과,
    상기 선택된 빔 훈련 방식으로 상기 상대 네트워크 노드와의 빔 훈련을 수행하는 과정을 포함하는 방법.
  2. 제 1항에 있어서, 상기 선택된 빔 훈련 방식으로 상기 상대 네트워크 노드와의 빔 훈련을 수행하는 과정은,
    상기 선택된 빔 훈련 방식을 기반으로 빔 폭을 결정하는 과정과,
    상기 결정된 빔 폭을 갖는 서로 다른 방향의 다수의 송수신 빔을 형성하는 과정과,
    상기 형성된 송수신 빔을 이용하여 상기 선택된 빔 훈련 방식으로 빔 훈련 신호를 송수신하는 과정을 포함하는 방법.
  3. 제 1항에 있어서,
    상기 빔 훈련 수행 결과를 기반으로 송수신 빔을 선택하는 과정과,
    상기 선택된 송수신 빔을 이용하여 상기 상대 네트워크 노드와의 채널 링크를 형성하여 통신하는 과정과,
    상기 선택된 송수신 빔을 이용한 채널 링크의 성능을 나타내는 적어도 하나의 채널 품질 인자를 측정하는 과정과,
    빔 훈련 반복 여부를 판단하기 위해 설정된 적어도 하나의 기준 채널 품질 인자 값과 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 반복 수행 여부를 결정하는 과정을 더 포함하는 방법.
  4. 제 3항에 있어서,
    상기 빔 훈련 반복 수행이 결정될 시, 상기 빔 훈련 반복 수행시에 이용될 빔 폭 및 빔 훈련 방식 중 적어도 하나를 결정하는 과정을 더 포함하며,
    상기 빔 훈련 반복 수행시에 이용될 빔 폭은, 이전 빔 훈련에 이용된 빔 폭보다 작은 방법.
  5. 제 3항에 있어서,
    상기 적어도 하나의 기준 채널 품질 인자는, 서비스 요구 품질을 기반으로 각 채널 품질 인자별로 설정되는 방법.
  6. 제 1항에 있어서,
    상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 방식을 선택하는 과정은,
    상기 측정된 채널 품질 인자를 다수개의 빔 훈련 방식 각각에 대해 미리 설정된 적어도 하나의 기준 채널 품질 인자 값과 비교하는 과정과,
    상기 비교 결과를 기반으로 상기 다수개의 빔 훈련 방식 중 하나의 빔 훈련 방식을 선택하는 과정을 포함하는 방법.
  7. 제 1항에 있어서,
    빔 훈련 수행 여부를 판단하기 위해 설정된 적어도 하나의 기준 채널 품질 인자 값과 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 수행 여부를 결정하는 과정을 더 포함하며,
    상기 빔 훈련 수행이 결정될 시, 상기 빔 훈련 방식을 선택하는 과정을 수행하는 방법.
  8. 제 1항에 있어서,
    상기 빔 훈련 방식은, SLS(Sector Level Sweep) 빔 훈련 방식, BRP(Beam Refinement Protocol) 빔 훈련 방식, 및 BT(Beam Tracking) 빔 훈련 방식 중 적어도 하나를 포함하는 방법.
  9. 제 1항에 있어서,
    상기 채널 품질 인자는, EVM(Error Vector Magnitude), SINR(Signal toInterference and Noise Ratio), RSSI(Received Signal Strength Indication), PER(Packet Error Rate), 및 Tput(Throughput) 중 적어도 하나를 포함하는 방법.
  10. 통신 시스템에서 빔 훈련을 위한 네트워크 노드의 장치에 있어서,
    상대 네트워크 노드와의 채널 링크 성능을 나타내는 적어도 하나의 채널 품질 인자 값을 측정하는 채널 추정부와,
    상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 방식을 선택하고, 상기 선택된 빔 훈련 방식으로 상기 상대 네트워크 노드와의 빔 훈련을 수행하도록 제어하는 빔포밍 제어부를 포함하는 장치.
  11. 제 10항에 있어서,
    상기 빔포밍 제어부는, 상기 선택된 빔 훈련 방식을 기반으로 빔 폭을 결정하고, 상기 결정된 빔 폭을 갖는 서로 다른 방향의 다수의 송수신 빔을 형성하여, 상기 선택된 빔 훈련 방식으로 빔 훈련 신호를 송수신하도록 제어하는 장치.
  12. 제 10항에 있어서,
    상기 빔포밍 제어부는, 상기 빔 훈련 수행 결과를 기반으로 송수신 빔을 선택하고, 상기 선택된 송수신 빔을 이용하여 상기 상대 네트워크 노드와의 채널 링크를 형성하여 통신하고, 상기 선택된 송수신 빔을 이용한 채널 링크의 성능을 나타내는 적어도 하나의 채널 품질 인자 값을 측정하기 위한 기능을 제어하고, 빔 훈련 반복 여부를 판단하기 위해 설정된 적어도 하나의 기준 채널 품질 인자 값과 상기 측정된 채널 품질 인자 값을 기반으로 빔 훈련 반복 수행 여부를 결정하는 장치.
  13. 제 12항에 있어서,
    상기 빔포밍 제어부는, 상기 빔 훈련 반복 수행이 결정될 시, 상기 빔 훈련 반복 수행시에 이용될 빔 폭 및 빔 훈련 방식 중 적어도 하나를 결정하며,
    상기 빔 훈련 반복 수행시에 이용될 빔 폭은, 이전 빔 훈련에 이용된 빔 폭보다 작은 장치.
  14. 제 10항에 있어서,
    상기 빔포밍 제어부는, 상기 측정된 채널 품질 인자 값을 다수개의 빔 훈련 방식 각각에 대해 미리 설정된 적어도 하나의 기준 채널 품질 인자 값과 비교하고, 상기 비교 결과를 기반으로 상기 다수개의 빔 훈련 방식 중 하나의 빔 훈련 방식을 선택하는 장치.
  15. 제 11항에 있어서,
    제 6항 내지 제 9항 중 어느 하나의 방법을 수행하도록 구성되는 장치.
PCT/KR2014/010574 2013-11-06 2014-11-05 통신 시스템에서 빔 훈련 방법 및 장치 WO2015069015A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US15/035,212 US10291305B2 (en) 2013-11-06 2014-11-05 Beam training method and device in communication system
EP14860312.9A EP3068058B1 (en) 2013-11-06 2014-11-05 Beam training method and device in communication system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130133898A KR102088529B1 (ko) 2013-11-06 2013-11-06 통신 시스템에서 빔 훈련 방법 및 장치
KR10-2013-0133898 2013-11-06

Publications (1)

Publication Number Publication Date
WO2015069015A1 true WO2015069015A1 (ko) 2015-05-14

Family

ID=53041722

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010574 WO2015069015A1 (ko) 2013-11-06 2014-11-05 통신 시스템에서 빔 훈련 방법 및 장치

Country Status (4)

Country Link
US (1) US10291305B2 (ko)
EP (1) EP3068058B1 (ko)
KR (1) KR102088529B1 (ko)
WO (1) WO2015069015A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099954A1 (en) * 2015-12-09 2017-06-15 Google Inc. Backhaul-optimized beamforming in ieee 802.11ad networks

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016078083A1 (zh) * 2014-11-21 2016-05-26 华为技术有限公司 确定调制编码阶数的方法、装置和设备
CN107431272A (zh) * 2015-03-06 2017-12-01 何晓溪 波束赋形方法和装置
KR102321994B1 (ko) * 2015-04-01 2021-11-04 삼성전자주식회사 무선 통신 시스템에서 무선 링크를 관리하기 위한 장치 및 방법
US20160301588A1 (en) * 2015-04-13 2016-10-13 Litepoint Corporation System and method for testing wireless data packet signal transceiver
US9960877B2 (en) * 2015-04-30 2018-05-01 Inten IP Corporation Apparatus, system and method of beamforming
GB2539730B (en) 2015-06-25 2021-04-07 Airspan Ip Holdco Llc Node role assignment in networks
GB2539722B (en) 2015-06-25 2021-10-13 Airspan Ip Holdco Llc Bearing calculation
GB2539732A (en) 2015-06-25 2016-12-28 Airspan Networks Inc A configurable antenna and method of operating such a configurable antenna
WO2016207603A1 (en) 2015-06-25 2016-12-29 Airspan Networks Inc. Managing external interference in a wireless network
GB2539735A (en) 2015-06-25 2016-12-28 Airspan Networks Inc Sub-sampling antenna elements
GB2539727B (en) 2015-06-25 2021-05-12 Airspan Ip Holdco Llc A configurable antenna and method of operating such a configurable antenna
GB2539733A (en) * 2015-06-25 2016-12-28 Airspan Networks Inc An antenna apparatus and method of configuring a transmission beam for the antenna apparatus
GB2539731B (en) 2015-06-25 2021-08-04 Airspan Ip Holdco Llc Quality of service in wireless backhauls
GB2539736A (en) 2015-06-25 2016-12-28 Airspan Networks Inc Wireless network configuration using path loss determination between nodes
US9923619B2 (en) * 2015-12-21 2018-03-20 Intel Corporation Techniques for passive beamforming training
KR102489755B1 (ko) * 2016-09-23 2023-01-18 삼성전자 주식회사 무선 통신 시스템에서 데이터 재전송 방법 및 장치
WO2018072210A1 (zh) * 2016-10-21 2018-04-26 华为技术有限公司 波束训练方法、装置及无线设备
US10440716B1 (en) * 2017-01-06 2019-10-08 Sprint Spectrum L.P. Dynamic increase of control channel modulation order conditional on beamforming to a poor-RF UE
US10448303B2 (en) * 2017-01-12 2019-10-15 Qualcomm Incorporated Beamforming triggering for wireless devices
US11228348B2 (en) * 2017-01-13 2022-01-18 Qualcomm Incorporated Efficient beamforming technique
KR20180099130A (ko) * 2017-02-28 2018-09-05 삼성전자주식회사 무선 통신 시스템에서 네트워크 환경 관리 방법 및 장치
WO2019014385A1 (en) * 2017-07-13 2019-01-17 Intel Corporation ENHANCED FAST BEAM DETECTION PROTOCOL FRAME PROCESSING METHOD FOR WIRELESS COMMUNICATIONS
WO2019045213A1 (ko) * 2017-09-01 2019-03-07 엘지전자 주식회사 무선랜 시스템에서 빔포밍을 지원하는 방법 및 이를 위한 장치
CN108683441B (zh) * 2018-04-28 2020-09-29 电子科技大学 混合预编码中的多用户波束赋形方法
US10715238B2 (en) 2018-09-28 2020-07-14 At&T Intellectual Property I, L.P. Outcome based receiver beam tuning
JP7398874B2 (ja) * 2019-04-11 2023-12-15 キヤノン株式会社 通信装置並びにその通信方法、情報処理装置並びにその制御方法、及び、プログラム
TWI729566B (zh) 2019-11-15 2021-06-01 財團法人工業技術研究院 協調波束掃瞄排程的方法及智能控制器
WO2021133374A1 (en) * 2019-12-23 2021-07-01 Intel Corporation Processing circuitry, processing means, methods and computer programs for a base station and a user equipment
US20240007154A1 (en) * 2022-06-30 2024-01-04 Qualcomm Incorporated Beamforming techniques in wi-fi frequency bands

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100214169A1 (en) * 2009-02-23 2010-08-26 Nokia Corporation Beamforming training for functionally-limited apparatuses
US20120287797A1 (en) * 2011-05-12 2012-11-15 Wilocity, Ltd. Techniques for minimizing the beam forming time in wireless local area networks
US20130017836A1 (en) * 2011-07-15 2013-01-17 Samsung Electronics Co., Ltd. Apparatus and method for beam locking in a wireless communication system
WO2013154584A1 (en) * 2012-04-13 2013-10-17 Intel Corporation Millimeter-wave transceiver with coarse and fine beamforming with interference suppression and method

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6895258B1 (en) * 2000-08-14 2005-05-17 Kathrein-Werke Kg Space division multiple access strategy for data service
US20030228857A1 (en) * 2002-06-06 2003-12-11 Hitachi, Ltd. Optimum scan for fixed-wireless smart antennas
PL2342837T3 (pl) 2008-11-04 2016-09-30 Asymetryczny protokół sterowania wiązką
US8116694B2 (en) * 2008-12-23 2012-02-14 Nokia Corporation System for facilitating beam training
US8611288B1 (en) * 2009-03-05 2013-12-17 Marvell International Ltd Systems and methods for link adaptation in wireless communication systems
EP2498415A4 (en) * 2009-11-04 2017-05-03 Nec Corporation Control method for wireless communication system, wireless communication system, and wireless communication device
US8843076B2 (en) * 2010-07-06 2014-09-23 Intel Corporation Device, system and method of wireless communication over a beamformed communication link
US20130089000A1 (en) 2011-10-11 2013-04-11 Broadcom Corporation Beamforming training within a wireless communication system utilizing a directional antenna
US9077415B2 (en) * 2011-12-19 2015-07-07 Samsung Electronics Co., Ltd. Apparatus and method for reference symbol transmission in an OFDM system
US9318805B2 (en) * 2012-08-21 2016-04-19 Qualcomm Incorporated Updating a beam pattern table
US9258046B2 (en) * 2013-10-14 2016-02-09 Broadcom Corporation Efficient beacon transmission and reception

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100214169A1 (en) * 2009-02-23 2010-08-26 Nokia Corporation Beamforming training for functionally-limited apparatuses
US20120287797A1 (en) * 2011-05-12 2012-11-15 Wilocity, Ltd. Techniques for minimizing the beam forming time in wireless local area networks
US20130017836A1 (en) * 2011-07-15 2013-01-17 Samsung Electronics Co., Ltd. Apparatus and method for beam locking in a wireless communication system
WO2013154584A1 (en) * 2012-04-13 2013-10-17 Intel Corporation Millimeter-wave transceiver with coarse and fine beamforming with interference suppression and method

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CARLOS CORDEIRO ET AL.: "PHY/MAC Complete Proposal Spécification", IEEE 802.11-10/0433R0, 2 May 2010 (2010-05-02), XP055013643 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017099954A1 (en) * 2015-12-09 2017-06-15 Google Inc. Backhaul-optimized beamforming in ieee 802.11ad networks
US9872337B2 (en) 2015-12-09 2018-01-16 Google Llc Backhaul-optimized beamforming in IEEE 802.11ad networks

Also Published As

Publication number Publication date
KR20150052482A (ko) 2015-05-14
US10291305B2 (en) 2019-05-14
EP3068058B1 (en) 2020-07-01
EP3068058A1 (en) 2016-09-14
US20160277087A1 (en) 2016-09-22
EP3068058A4 (en) 2017-07-05
KR102088529B1 (ko) 2020-03-12

Similar Documents

Publication Publication Date Title
WO2015069015A1 (ko) 통신 시스템에서 빔 훈련 방법 및 장치
EP3497805B1 (en) Method for uplink transmission
WO2019161786A1 (en) Default beam for uplink transmission after beam failure recovery
US9271176B2 (en) System and method for backhaul based sounding feedback
WO2013191517A1 (en) Communication method and apparatus using beamforming in a wireless communication system
JP7157515B2 (ja) ユーザ装置、無線通信方法、基地局及びシステム
KR20130043078A (ko) 무선통신 시스템에서 상향링크 제어 방법 및 장치
US20220408485A1 (en) Wireless frame transmission method and apparatus
JP2019208237A (ja) ワイヤレス通信における再使用を増加させるための方法および装置
JP7039181B2 (ja) non-PCP/AP通信装置および通信方法
KR100957413B1 (ko) 무선 이동 통신 시스템에서 간섭 제거를 위한 장치 및 방법그리고 그 시스템
CN108811161B (zh) 一种信道接入的方法及装置
US11528671B2 (en) Frame structure to support long distance transmission
US20170005708A1 (en) Sta assisted dynamic sounding in multiuser beamforming
JP2022081595A (ja) Pcp/ap通信装置および通信方法
JP6728483B2 (ja) アンライセンスバンドにおける送信方法、及び指向性クリアチャネルアセスメントを実行するノード
US10805121B2 (en) Wireless device, and method performed therein for managing communication in a wireless communication network
US11019658B2 (en) Wireless communication device and wireless communication method
US11284326B2 (en) Handover control
CN113632385A (zh) 下行链路参考信号的波束成形接收
US11405061B2 (en) Interference mitigation in a communications network
US20230299816A1 (en) Multi-Antenna Wireless Transmitter and Method with MIMO Beamforming
US20240137981A1 (en) Apparatus for channel access in wlan system and operating method of the apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860312

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 15035212

Country of ref document: US

REEP Request for entry into the european phase

Ref document number: 2014860312

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014860312

Country of ref document: EP