WO2015068958A1 - Novel alkyl halide compound and method for preparing same - Google Patents

Novel alkyl halide compound and method for preparing same Download PDF

Info

Publication number
WO2015068958A1
WO2015068958A1 PCT/KR2014/009717 KR2014009717W WO2015068958A1 WO 2015068958 A1 WO2015068958 A1 WO 2015068958A1 KR 2014009717 W KR2014009717 W KR 2014009717W WO 2015068958 A1 WO2015068958 A1 WO 2015068958A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
compound
alkyl halide
halide compound
reaction
Prior art date
Application number
PCT/KR2014/009717
Other languages
French (fr)
Korean (ko)
Inventor
김윤희
권순기
윤희준
Original Assignee
경상대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 경상대학교산학협력단 filed Critical 경상대학교산학협력단
Publication of WO2015068958A1 publication Critical patent/WO2015068958A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/07Acyclic saturated compounds containing halogen atoms containing iodine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/01Acyclic saturated compounds containing halogen atoms containing chlorine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C19/00Acyclic saturated compounds containing halogen atoms
    • C07C19/075Acyclic saturated compounds containing halogen atoms containing bromine
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C43/00Ethers; Compounds having groups, groups or groups
    • C07C43/02Ethers
    • C07C43/03Ethers having all ether-oxygen atoms bound to acyclic carbon atoms
    • C07C43/04Saturated ethers
    • C07C43/12Saturated ethers containing halogen

Definitions

  • the present invention relates to a novel alkyl halide compound and a method for preparing the same, wherein the alkyl halide compound according to the present invention is applied to all polymers and monomolecules used in organic semiconductors, so that the organic semiconductor material into which the new alkyl group is introduced is soluble due to the new alkyl group. It is possible to improve the device characteristics by adding various solvents to facilitate the fabrication of the device through a solution process such as spin coating, die casting, printing, etc., and to improve the device characteristics by controlling the form and crystallinity of the film.
  • Organic thin film transistor is an electronic device that has been actively researched and developed recently due to its many advantages. Especially, the organic thin film transistor is easy for flexible electronic circuit boards that can be bent or folded without breaking due to the simple manufacturing process and low cost. Can be applied.
  • organic thin film transistors have a large number of researches due to the simple manufacturing process, low cost production, and high compatibility with other electronic components. Is being done.
  • the organic thin film transistor element includes a substrate, a gate electrode, an insulating layer, a channel layer, a source / drain electrode, and a protective layer that prevents external moisture and oxygen transmission.
  • Organic thin film transistors are fabricated by replacing organic silicon or organic materials exhibiting semiconductor characteristics by replacing conventional silicon-based inorganic materials in the channel layer, which has the greatest effect on device characteristics and is the key part of charge transfer.
  • the organic semiconductor compound constituting the organic thin film transistor can be classified into low molecules and polymers according to molecular weight, and classified into n-type organic semiconductors or p-type organic semiconductors depending on whether electrons or holes are transferred.
  • the low molecular organic semiconductor when used to form an organic semiconductor layer, the low molecular organic semiconductor is easy to purify and almost removes impurities, so the charge transfer characteristics are excellent.
  • spin coating and printing are not possible, so that the thin film is deposited by vacuum deposition. Since it is necessary to manufacture, the manufacturing process is complicated and expensive compared to the polymer organic semiconductor has a disadvantage.
  • the polymer organic semiconductor it is difficult to purify the high purity, but excellent heat resistance, spin coating and printing is possible, there is an advantage in the manufacturing process, cost, mass production.
  • the use of a polymer organic semiconductor has the advantage that the manufacturing cost can be reduced compared to the low molecular organic semiconductor compound because of the advantage that the thin film can be easily formed by the solution process.
  • Representative semiconductor compounds for polymer-based organic thin film transistors developed to date include P3HT [poly (3-hexylthiophene)] and F8T2 [poly (9,9-dioctylfluorene-co-bithiophene)].
  • P3HT poly (3-hexylthiophene)
  • F8T2 poly (9,9-dioctylfluorene-co-bithiophene
  • the polymer organic semiconductor compound has a disadvantage of low charge mobility, which is an important evaluation measure of OTFT performance, and in order to overcome such disadvantages, the polymer organic semiconductor incorporating a thiophene group substituted with an alkyl group in a side chain is disclosed in Korean Patent No. 1082477. Compounds are disclosed.
  • the present inventors applied various substituents to polymers and single molecules used in organic semiconductors to improve the solubility of organic semiconductor materials and improve device characteristics, and at the ends of long carbon chains of at least five carbons.
  • the present invention was accomplished by finding a sex.
  • an object of the present invention is to provide a novel alkyl halide compound that can be applied to an organic semiconductor material to improve solubility and device characteristics, and a method for preparing the same.
  • the present invention relates to a novel alkyl halide compound and a method for preparing the same, wherein the alkyl halide compound according to the present invention is applied to all polymers and monomolecules used in organic semiconductors, so that the organic semiconductor material into which the new alkyl group is introduced is soluble due to the new alkyl group. It is possible to improve the device characteristics by adding various solvents to facilitate the fabrication of the device through a solution process such as spin coating, die casting, printing, etc., and to improve the device characteristics by controlling the form and crystallinity of the film.
  • the present invention provides an alkyl halide compound represented by the following formula (1).
  • R 1 and R 2 independently of one another are (C5-C50) alkyl, (C5-C50) alkoxy, (C5-C50) alkoxycarbonyl, (C6-C50) aryl or (C6-C50) aryl (C5-C50) Alkyl;
  • L is a single bond or O
  • X is I, Br or Cl
  • n is an integer from 2 to 50.
  • the alkyl halide compound of Formula 1 of the present invention is characterized by a structure in which halogen is substituted on carbon 1 and R 1 and R 2 are substituted on carbon (n + 3).
  • a halogen atom is substituted at one of both ends of a long carbon chain having at least 5 carbons, and R 1 and R 2 are substituted at the other end. Therefore, when the alkyl group of the alkyl halide compound of Formula 1 is introduced into the organic semiconductor material, it is possible to obtain morphology and crystallinity which can increase solubility and improve device properties.
  • R 1 and R 2 are each independently (C5-C50) alkyl or (C6-C50) aryl (C5-C50) alkyl, and are introduced into an organic semiconductor material to improve In terms of solubility and excellent morphology and crystallinity, linear alkyl having 20 or more of the sum of the carbon atoms of R 1 and R 2 is more preferable.
  • alkyl halide compound of Formula 1 according to the present invention may be represented by the following compounds, but is not limited thereto.
  • X is I, Br or Cl.
  • the alkyl halide compound of formula 1 according to the present invention can be applied to all polymers and single molecules used in organic semiconductor materials, and can exhibit excellent properties such as increased solubility and improved device properties due to the alkyl of the alkyl halide compound of formula 1 .
  • solubility is greatly improved due to the long carbon chain and the substituted R 1 and R 2 at the terminal, mass production at low cost is possible when manufacturing organic thin film transistor through solution process such as spin coating, die casting, printing, etc. It has the effect of cost reduction.
  • the alkyl of the alkyl halide compound of Formula 1 of the present invention enters into a long alkyl spacer form when applied to all polymers and single molecules used in organic semiconductor materials, it is even more than conventional organic semiconductor materials.
  • the device fabrication process can be easily performed, and the performance of the organic semiconductor material can be improved.
  • it has high arrangement and crystallinity between organic semiconductor materials and at the same time induces interdigitation and improves pi-pi stacking ( ⁇ - ⁇ staking) to improve charge and hole transfer between molecules and molecules. Since the properties are further improved, the organic semiconductor properties can be significantly improved.
  • the present invention also provides a method for preparing an alkyl halide compound represented by the formula (1).
  • the present invention provides a method for producing an alkyl halide compound which is simpler and more industrially applicable.
  • One method is to prepare an alkyl halide compound in which L is a single bond, comprising the following steps:
  • R 1 and R 2 independently of one another are (C5-C50) alkyl, (C5-C50) alkoxy, (C5-C50) alkoxycarbonyl, (C6-C50) aryl or (C6-C50) aryl (C5-C50) Alkyl;
  • L is a single bond or O
  • X is I, Br or Cl
  • n is an integer from 2 to 50.
  • the present invention is to prepare an alkyl halide compound of Formula 1-1, by reacting the monohalide compound of Formula 2 with metal magnesium, an alkylmagnesium halide compound of Formula 3 as a Grignard reagent (organometallic reagent) After the preparation, a metal halide reaction with the dihalide compound of Chemical Formula 4 was added to an acid, extracted with an organic solvent, concentrated, and column purified to prepare an alkyl halide compound of Chemical Formula 1-1.
  • a metal halide reaction with the dihalide compound of Chemical Formula 4 was added to an acid, extracted with an organic solvent, concentrated, and column purified to prepare an alkyl halide compound of Chemical Formula 1-1.
  • the amount of magnesium used in step a) is related to the reaction time. The higher the amount used, the shorter the reaction time, but a large amount of acid is required for removal after completion of the reaction.
  • the reaction temperature is also related to the reaction time. When the reaction proceeds at a high temperature, the reaction time is shortened, but it is preferable to use an appropriate amount because a number of side reactions are generated due to the violent reaction and the yield is reduced. Therefore, the amount of magnesium used in the present invention is used in 0.5 to 5 equivalents, preferably 0.8 to 1.5 equivalents, based on the monohalide compound of Formula 2.
  • the reaction temperature of step a) is 25 to 100 °C, preferably carried out at 50 to 80 °C.
  • step a) The reaction of step a) is carried out in an inert reaction medium, the inert reaction medium is diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, t-butyl- methylether, diisopropyl ether, diphenyl ether methylene Chloride, 1,2-dimethoxyethane or bis (2-methoxyethyl) ether or any mixture thereof.
  • step b) the amount of the dihalide compound represented by Chemical Formula 4 in step b) is preferably used in an amount of 1 to 5 equivalents based on the monohalide compound represented by Chemical Formula 2.
  • the reaction of step b) is preferably carried out at a temperature of -10 to 30 °C.
  • step b) may be carried out further comprising a catalytic amount of copper salts, lithium salts or mixtures thereof, the catalytic amount of copper salts, lithium salts or mixtures thereof to improve the yield in the metal substitution reaction It acts as a catalyst to help metal replacement reactions occur well.
  • Copper bromide (CuBr) and lithium chloride (LiCl) are preferably used.
  • step b) is carried out in an inert reaction medium
  • the inert reaction medium is diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, t-butyl-methylether, diisopropyl ether, diphenyl Ether methylene chloride, 1,2-dimethoxyethane or bis (2-methoxyethyl) ether or any mixture thereof.
  • an acid was added to the reaction solution, extracted with an organic solvent, concentrated, and column purified to obtain an alkyl halide compound of Chemical Formula 1-1.
  • the acid used may be sulfuric acid, hydrochloric acid, acetic acid, and the like, and the extraction solvent may be ethyl acetate, ether, benzene, toluene, nitrobenzene, methylene chloride, chloroform, or the like.
  • Another method is to prepare an alkyl halide compound of Formula 1-2 by reacting metal sodium with a monool compound of Formula 5 and then reacting with a dihalide compound of Formula 4 when L is oxygen. to be.
  • R 1 and R 2 are each independently of (C5-C50) alkyl, (C5-C50) alkoxy, (C5-C50) alkoxycarbonyl, (C6-C50) aryl or (C6-C50) aryl (C5-C50) alkyl;
  • L is a single bond or O
  • X is I, Br or Cl
  • n is an integer from 2 to 50.
  • the amount of sodium used is 0.5 to 5 equivalents, preferably 0.8 to 1.5 equivalents, based on the monool compound of Formula 5.
  • the reaction is also carried out in a reflux reaction, in an inert reaction medium, the inert reaction medium is diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, t-butyl-methyl ether, diisopropyl ether, diphenyl ether Methylene chloride, 1,2-dimethoxyethane or bis (2-methoxyethyl) ether or any mixture thereof.
  • the dihalide compound of Formula 4 is preferably used in an amount of 1 to 5 equivalents based on the monool compound of Formula 5.
  • the reaction solution is extracted with an organic solvent, concentrated and purified by column to obtain the alkyl halide compound of Formula 1-1.
  • the extraction solvent may be ethyl acetate, ether, benzene, toluene, nitrobenzene, methylene chloride, chloroform and the like.
  • the present invention relates to a novel alkyl halide compound and a method for preparing the same, wherein the alkyl halide compound according to the present invention has a halogen atom substituted at one of both ends of a long carbon chain consisting of 5 carbons and R 1 at the other end thereof.
  • the alkyl halide compound according to the present invention has a halogen atom substituted at one of both ends of a long carbon chain consisting of 5 carbons and R 1 at the other end thereof.
  • Triphenylphosphine (17.9 g, 0.06544 mol) was added to MC in a well-dried 500 mL three-neck round bottom flask, and the temperature was lowered to 0 o C and bromine (10.5 g, 0.06544 mol). Was dropped and stirred for 10 minutes. Then, 2-tetradecyloctadecan-1-ol (25.5 g, 0.05462 mol) dissolved in MC was dropped and stirred for 16 hours. Extraction with MC, the organic layer was washed with water, dried over MgSO 4 and the solvent was removed using a rotary evaporator.
  • the solvent was dissolved in hexane to filter free solids (triphenylphosphine side reactions) as impurities, and the solvent dissolved in hexane was removed using a rotary evaporator. Separation by column chromatography using n -hexane afforded 15- (bromomethyl) hentracontane as a target compound (22.56 g, 78%).
  • 1,5-dibromopentane (12.18 g, 52.96 mmol, 3 equiv)
  • CuBr 33 mg, 0.23 mmol, 0.01 equiv
  • LiCl 20 mg, 0.46 mmol, 0.02 equiv
  • Triphenylphosphine (23.72 g, 0.0862 mol) was dissolved in MC in a well-dried 500 mL three neck round bottom flask, and the temperature was lowered to 0 o C and bromine (13.84 g, 0.06544 mol). Was dropped and stirred for 10 minutes. Then, 2-decyltetradecan-1-ol (25.5 g, 0.0719 mol) dissolved in MC was dropped and stirred for 16 hours. Extraction with MC, the organic layer was washed with water, dried over MgSO 4 and the solvent was removed using a rotary evaporator.
  • 1,5-dibromopentane (110.13 g, 0.478 mol, 2.5 equiv)
  • CuBr (0.27 g, 1.915 mmol, 0.01 equiv)
  • LiCl 0.162 g, 3.383 mmol, 0.02 equiv
  • the present invention relates to a novel alkyl halide compound and a method for preparing the same, wherein the alkyl halide compound according to the present invention has a halogen atom substituted at one of both ends of a long carbon chain consisting of 5 carbons and R 1 at the other end thereof.
  • R 2 is substituted so that when the alkyl group of the alkyl halide compound of Formula 1 is introduced into the organic semiconductor material, morphology and crystallinity can be obtained to increase solubility and improve device characteristics.
  • mass production at low cost is possible when manufacturing organic thin film transistor through solution process such as spin coating, die casting, printing, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Thin Film Transistor (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

The present invention relates to a novel alkyl halide compound and a method for preparing the same. The alkyl halide compound according to the present invention can be applied to all polymers and single molecules used in an organic semiconductor, and thus the organic semiconductor materials incorporating the novel alkyl group have an improved solubility due to the novel alkyl group, thereby facilitating fabrication of a device via solution processes of spin coating, dye casting, printing, etc. In addition, the alkyl halide compound can improve properties of the device by adjusting the form and crystallinity of a film.

Description

신규한 알킬 할라이드 화합물 및 이의 제조방법Novel alkyl halide compounds and preparation methods thereof
본 발명은 신규한 알킬 할라이드 화합물 및 이의 제조방법에 관한 것으로, 본 발명에 따른 알킬 할라이드 화합물은 유기반도체에 쓰이는 모든 고분자 및 단분자에 적용되어 신규 알킬기가 도입된 유기반도체 재료는 신규 알킬기로 인하여 용해도가 향상되어 각종 용매를 첨가하여 스핀코팅, 다이 캐스팅, 프린팅 등의 용액공정을 통한 소자의 제작을 용이하게 하며, 필름의 형태 및 결정성을 조절하여 소자 특성을 향상시킬 수 있다.The present invention relates to a novel alkyl halide compound and a method for preparing the same, wherein the alkyl halide compound according to the present invention is applied to all polymers and monomolecules used in organic semiconductors, so that the organic semiconductor material into which the new alkyl group is introduced is soluble due to the new alkyl group. It is possible to improve the device characteristics by adding various solvents to facilitate the fabrication of the device through a solution process such as spin coating, die casting, printing, etc., and to improve the device characteristics by controlling the form and crystallinity of the film.
유기 박막트랜지스터는 다수의 장점으로 인해 최근에 연구 및 개발이 활발히 이루어지고 있는 전자 소자로, 특히 제작 공정이 간단하고 비용이 저렴하며 충격에 의해 깨지지 않고 구부리거나 접을 수 있는 가요성 전자회로기판에 용이하게 적용될 수 있다.Organic thin film transistor is an electronic device that has been actively researched and developed recently due to its many advantages. Especially, the organic thin film transistor is easy for flexible electronic circuit boards that can be bent or folded without breaking due to the simple manufacturing process and low cost. Can be applied.
또한, 비정질 실리콘 및 폴리실리콘을 이용하는 기존의 박막트랜지스터에 비해 유기박막트랜지스터는 제조공정이 간단하며, 저비용으로 생산할 수 있고, 다른 전자부품을 탑재한 기판들과 호환성이 뛰어나다는 장점으로 인해 최근 많은 연구가 이루어지고 있다.In addition, compared with conventional thin film transistors using amorphous silicon and polysilicon, organic thin film transistors have a large number of researches due to the simple manufacturing process, low cost production, and high compatibility with other electronic components. Is being done.
유기박막트랜지스터 소자는 기판, 게이트 전극, 절연막, 채널층, 소스/드레인 전극, 그리고 외부 습기 및 산소투과를 막아주는 보호층으로 이루어진다. 유기박막 트랜지스터는 소자특성에 가장 크게 영향을 미치고 전하 이동이 일어나는 핵심부분인 채널층에 기존의 실리콘 계의 무기 재료를 대체하여 반도체 특성을 나타내는 유기 화합물 혹은 고분자 물질로 대체하여 제작한다.The organic thin film transistor element includes a substrate, a gate electrode, an insulating layer, a channel layer, a source / drain electrode, and a protective layer that prevents external moisture and oxygen transmission. Organic thin film transistors are fabricated by replacing organic silicon or organic materials exhibiting semiconductor characteristics by replacing conventional silicon-based inorganic materials in the channel layer, which has the greatest effect on device characteristics and is the key part of charge transfer.
유기 박막 트랜지스터를 구성하는 유기 반도체화합물은 분자량에 따라 저분자와 고분자로 나눌 수 있으며, 전자 또는 정공전달 여부에 따라 n-형 유기반도체 또는 p-형 유기반도체로 분류한다. The organic semiconductor compound constituting the organic thin film transistor can be classified into low molecules and polymers according to molecular weight, and classified into n-type organic semiconductors or p-type organic semiconductors depending on whether electrons or holes are transferred.
일반적으로, 유기 반도체층 형성시 저분자 유기반도체를 이용하는 경우, 저분자 유기반도체는 정제하기가 용이하여 불순물을 거의 제거할 수 있으므로 전하이동특성이 우수하나, 스핀코팅 및 프린팅이 불가능하여 진공증착을 통해 박막을 제조해야 하므로, 고분자 유기반도체에 비해 제조공정이 복잡하고, 비용이 많이 드는 단점이 있다. 고분자 유기반도체의 경우, 고순도의 정제가 어려우나, 내열성이 우수하고, 스핀코팅 및 프린팅이 가능하여 제조공정 및 비용, 대량생산에 있어서 유리한 장점이 있다. In general, when a low molecular organic semiconductor is used to form an organic semiconductor layer, the low molecular organic semiconductor is easy to purify and almost removes impurities, so the charge transfer characteristics are excellent. However, spin coating and printing are not possible, so that the thin film is deposited by vacuum deposition. Since it is necessary to manufacture, the manufacturing process is complicated and expensive compared to the polymer organic semiconductor has a disadvantage. In the case of the polymer organic semiconductor, it is difficult to purify the high purity, but excellent heat resistance, spin coating and printing is possible, there is an advantage in the manufacturing process, cost, mass production.
특히, 고분자 유기반도체를 이용할 경우 용액공정으로 쉽게 박막을 형성할 수 있다는 장점 때문에 저분자 유기반도체 화합물에 비해 제조 원가가 절감 될 수 있다는 장점을 가지고 있다.In particular, the use of a polymer organic semiconductor has the advantage that the manufacturing cost can be reduced compared to the low molecular organic semiconductor compound because of the advantage that the thin film can be easily formed by the solution process.
현재까지 개발된 대표적인 고분자계 유기 박막 트랜지스터용 반도체 화합물로는 P3HT[폴리(3-헥실티오펜)]과 F8T2[폴리(9,9-디옥틸플루오렌-코-비티오펜)]이 있다. OTFT의 성능은 여러 가지가 있으나, 그 중 중요한 평가척도는 전하이동도와 점멸비(on/off ratio)이며, 가장 중요한 평가 척도는 전하이동도이다. 전하이동도는 반도체 재료의 종류, 박막형성방법(구조 및 형태학), 구동전압 등에 따라 다르게 나타난다. Representative semiconductor compounds for polymer-based organic thin film transistors developed to date include P3HT [poly (3-hexylthiophene)] and F8T2 [poly (9,9-dioctylfluorene-co-bithiophene)]. There are many performances of OTFT, but the most important evaluation scale is charge mobility and on / off ratio, and the most important evaluation scale is charge mobility. The charge mobility varies depending on the type of semiconductor material, thin film formation method (structure and morphology), driving voltage, and the like.
한편 고분자 유기 반도체 화합물은 OTFT 성능의 중요한 평가척도인 전하이동도가 낮은 단점을 가지고 있으며, 이러한 단점을 극복하기 위해 한국등록특허 제1072477호에 곁사슬에 알킬기가 치환된 티오펜기를 도입한 고분자 유기반도체 화합물을 개시하고 있다.On the other hand, the polymer organic semiconductor compound has a disadvantage of low charge mobility, which is an important evaluation measure of OTFT performance, and in order to overcome such disadvantages, the polymer organic semiconductor incorporating a thiophene group substituted with an alkyl group in a side chain is disclosed in Korean Patent No. 1082477. Compounds are disclosed.
그러나 여전히 저분자 유기반도체가 가지는 장점인 높은 전하이동도와 낮은 점멸비를 가지면서도 제조공정이나 비용면에서 유리하고 용액공정이 가능한 고분자 유기반도체에 대한 개발이 요구되고 있다.However, there is still a need for the development of a polymer organic semiconductor having high charge mobility and low flashing ratio, which are advantages of low molecular organic semiconductors, and which is advantageous in terms of manufacturing process and cost and is capable of solution process.
본 발명자들은 유기반도체 재료의 용해도를 향상시킴과 동시에 소자특성을 향상시키기 위해 다양한 치환기를 유기반도체에 사용되는 고분자 및 단분자에 적용시키던 중, 적어도 다섯 개의 탄소로 이루어진 길이가 긴 탄소 사슬의 양 말단 중 한 말단에 할로겐 원자가 치환되고 다른 말단에는 두 개의 알킬이 치환되어 있는 알킬 할라이드 화합물과 유기반도체에 사용되는 고분자 또는 단분자를 반응시킨 경우 용해도를 증가시키고 소자 특성을 높일 수 있는 모폴리지와 결정성을 얻는 것을 발견하고 본 발명을 완성하였다.The present inventors applied various substituents to polymers and single molecules used in organic semiconductors to improve the solubility of organic semiconductor materials and improve device characteristics, and at the ends of long carbon chains of at least five carbons. A morphology and crystal that can increase solubility and improve device characteristics when an alkyl halide compound having a halogen atom substituted at one end and two alkyls at the other end react with a polymer or a single molecule used in an organic semiconductor The present invention was accomplished by finding a sex.
따라서, 본 발명은 유기반도체 재료에 적용되어 용해도 및 소자특성을 향상시켜 줄 수 있는 신규한 알킬 할라이드 화합물 및 이의 제조방법을 제공하는데 목적이 있다.Accordingly, an object of the present invention is to provide a novel alkyl halide compound that can be applied to an organic semiconductor material to improve solubility and device characteristics, and a method for preparing the same.
본 발명은 신규한 알킬 할라이드 화합물 및 이의 제조방법에 관한 것으로, 본 발명에 따른 알킬 할라이드 화합물은 유기반도체에 쓰이는 모든 고분자 및 단분자에 적용되어 신규 알킬기가 도입된 유기반도체 재료는 신규 알킬기로 인하여 용해도가 향상되어 각종 용매를 첨가하여 스핀코팅, 다이 캐스팅, 프린팅 등의 용액공정을 통한 소자의 제작을 용이하게 하며, 필름의 형태 및 결정성을 조절하여 소자 특성을 향상시킬 수 있다.The present invention relates to a novel alkyl halide compound and a method for preparing the same, wherein the alkyl halide compound according to the present invention is applied to all polymers and monomolecules used in organic semiconductors, so that the organic semiconductor material into which the new alkyl group is introduced is soluble due to the new alkyl group. It is possible to improve the device characteristics by adding various solvents to facilitate the fabrication of the device through a solution process such as spin coating, die casting, printing, etc., and to improve the device characteristics by controlling the form and crystallinity of the film.
이하 본 발명을 상세히 설명한다.Hereinafter, the present invention will be described in detail.
본 발명은 하기 화학식 1로 표시되는 알킬 할라이드 화합물을 제공한다.The present invention provides an alkyl halide compound represented by the following formula (1).
[화학식 1][Formula 1]
Figure PCTKR2014009717-appb-I000001
Figure PCTKR2014009717-appb-I000001
상기 화학식 1에서, In Chemical Formula 1,
R1 및 R2는 서로 독립적으로 (C5-C50)알킬, (C5-C50)알콕시, (C5-C50)알콕시카보닐, (C6-C50)아릴 또는 (C6-C50)아릴(C5-C50)알킬이고;R 1 and R 2 independently of one another are (C5-C50) alkyl, (C5-C50) alkoxy, (C5-C50) alkoxycarbonyl, (C6-C50) aryl or (C6-C50) aryl (C5-C50) Alkyl;
L은 단일결합 또는 O이고;L is a single bond or O;
X는 I, Br 또는 Cl이고; 및X is I, Br or Cl; And
n은 2 내지 50의 정수이다. n is an integer from 2 to 50.
또한, 본 발명의 화학식 1의 알킬 할라이드 화합물은 1번 탄소에 할로겐이 치환되어 있고 (n+3)번 탄소에 R1과 R2가 치환된 구조를 특징으로 한다. 종래의 3번 탄소에 R1과 R2가 치환된 구조에 비해 적어도 5개의 탄소로 이루어진 길이가 긴 탄소 사슬의 양 말단 중 한 말단에 할로겐 원자가 치환되고 다른 말단에는 R1과 R2가 치환되어 있어 유기반도체 재료에 화학식 1의 알킬 할라이드 화합물의 알킬기를 도입시키는 경우 용해도를 증가시키고 소자 특성을 높일 수 있는 모폴리지와 결정성을 얻을 수 있다. In addition, the alkyl halide compound of Formula 1 of the present invention is characterized by a structure in which halogen is substituted on carbon 1 and R 1 and R 2 are substituted on carbon (n + 3). Compared to a structure in which R 1 and R 2 are substituted with a conventional carbon 3, a halogen atom is substituted at one of both ends of a long carbon chain having at least 5 carbons, and R 1 and R 2 are substituted at the other end. Therefore, when the alkyl group of the alkyl halide compound of Formula 1 is introduced into the organic semiconductor material, it is possible to obtain morphology and crystallinity which can increase solubility and improve device properties.
본 발명의 화학식 1의 알킬 할라이드 화합물에서 바람직하게 상기 R1 및 R2는 각각 독립적으로 (C5-C50)알킬 또는 (C6-C50)아릴(C5-C50)알킬이며, 유기반도체 재료에 도입되어 향상된 용해도와 우수한 모폴로지 및 결정성을 얻기 위한 측면에서 상기 R1 및 R2의 탄소수의 합이 20개 이상인 선형 알킬이 경우가 보다 바람직하다.In the alkyl halide compound of the general formula (1) of the present invention, preferably, R 1 and R 2 are each independently (C5-C50) alkyl or (C6-C50) aryl (C5-C50) alkyl, and are introduced into an organic semiconductor material to improve In terms of solubility and excellent morphology and crystallinity, linear alkyl having 20 or more of the sum of the carbon atoms of R 1 and R 2 is more preferable.
구체적으로 본 발명에 따른 화학식 1의 알킬 할라이드 화합물은 다음 화합물로 나타낼 수 있으나 이에 한정이 있는 것은 아니다.Specifically, the alkyl halide compound of Formula 1 according to the present invention may be represented by the following compounds, but is not limited thereto.
Figure PCTKR2014009717-appb-I000002
Figure PCTKR2014009717-appb-I000002
Figure PCTKR2014009717-appb-I000003
Figure PCTKR2014009717-appb-I000003
Figure PCTKR2014009717-appb-I000004
Figure PCTKR2014009717-appb-I000004
상기 X는 I, Br 또는 Cl이다.X is I, Br or Cl.
본 발명에 따른 화학식 1의 알킬 할라이드 화합물은 유기반도체 재료에 사용되는 모든 고분자 및 단분자에 적용이 가능하며 화학식 1의 알킬 할라이드 화합물의 알킬로 인하여 용해도 증가 및 소자특성 향상 등 우수한 특성을 나타낼 수 있다. 특히 길이가 긴 탄소사슬 및 말단에 치환된 R1과 R2로 인하여 용해도가 매우 향상되기 때문에 스핀코팅, 다이 캐스팅, 프린팅 등의 용액공정을 통하여 유기박막트랜지스터를 제작시 저비용으로 대량생산을 가능케 하여 원가절감의 효과를 가진다.The alkyl halide compound of formula 1 according to the present invention can be applied to all polymers and single molecules used in organic semiconductor materials, and can exhibit excellent properties such as increased solubility and improved device properties due to the alkyl of the alkyl halide compound of formula 1 . In particular, since the solubility is greatly improved due to the long carbon chain and the substituted R 1 and R 2 at the terminal, mass production at low cost is possible when manufacturing organic thin film transistor through solution process such as spin coating, die casting, printing, etc. It has the effect of cost reduction.
또한, 본 발명의 화학식 1의 알킬 할라이드 화합물의 알킬이 유기반도체 재료에 사용되는 모든 고분자 및 단분자에 적용시 롱체인 스페이서(Linear alkyl spacer) 형태로 들어감으로써, 기존의 유기반도체 재료에 비해 더욱 더 용해성을 향상시켜 소자제작 공정을 쉽게 할 수 있으며, 유기반도체 재료의 성능을 향상 시킬 수 있다. 구체적으로는 유기반도체 재료간의 높은 배열성과 결정성을 가짐과 동시에 깍지낌 현상(Interdigitation)을 더욱 더 유도하여 파이-파이 스택킹 (π-π staking)을 향상시킴으로 분자내 또는 분자간의 전하, 정공 이동특성이 보다 향상되므로 유기반도체 특성을 월등하게 향상 시킬 수 있다. In addition, since the alkyl of the alkyl halide compound of Formula 1 of the present invention enters into a long alkyl spacer form when applied to all polymers and single molecules used in organic semiconductor materials, it is even more than conventional organic semiconductor materials. By improving the solubility, the device fabrication process can be easily performed, and the performance of the organic semiconductor material can be improved. Specifically, it has high arrangement and crystallinity between organic semiconductor materials and at the same time induces interdigitation and improves pi-pi stacking (π-π staking) to improve charge and hole transfer between molecules and molecules. Since the properties are further improved, the organic semiconductor properties can be significantly improved.
또한, 본 발명은 화학식 1로 표시되는 알킬 할라이드 화합물의 제조방법을 제공한다.The present invention also provides a method for preparing an alkyl halide compound represented by the formula (1).
본 발명은 보다 간단하면서도 공업적으로 적용이 용이한 알킬 할라이드 화합물을 제조하는 방법을 제공하는 것이다.The present invention provides a method for producing an alkyl halide compound which is simpler and more industrially applicable.
상기 화학식 1로 표시되는 알킬 할라이드 화합물을 제조하기 위한 방법은 L에 따라 두 가지의 방법이 있다.There are two methods for preparing the alkyl halide compound represented by Formula 1 according to L.
한가지 방법은 L이 단일결합인 알킬 할라이드 화합물의 제조방법으로, 하기의 단계를 포함한다:One method is to prepare an alkyl halide compound in which L is a single bond, comprising the following steps:
a) 금속 마그네슘과 하기 화학식 2의 모노할라이드 화합물을 반응시켜 하기 화학식 3의 알킬마그네슘할라이드 화합물을 제조하는 단계; 및 a) reacting a metal magnesium compound with a monohalide compound of Formula 2 to prepare an alkylmagnesium halide compound of Formula 3; And
b) 상기 제조된 화학식 3의 알킬마그네슘할라이드 화합물을 하기 화학식 4의 다이할라이드 화합물과 금속치환반응(transmetalation reaction)시켜 하기 화학식 1-1의 알킬 할라이드 화합물을 제조하는 단계. b) preparing an alkyl halide compound of Formula 1-1 by performing a metal substitution reaction of the prepared alkylmagnesium halide compound of Formula 3 with a dihalide compound of Formula 4 below.
[화학식 1-1] [Formula 1-1]
Figure PCTKR2014009717-appb-I000005
Figure PCTKR2014009717-appb-I000005
[화학식 2][Formula 2]
Figure PCTKR2014009717-appb-I000006
Figure PCTKR2014009717-appb-I000006
[화학식 3][Formula 3]
Figure PCTKR2014009717-appb-I000007
Figure PCTKR2014009717-appb-I000007
[화학식 4][Formula 4]
Figure PCTKR2014009717-appb-I000008
Figure PCTKR2014009717-appb-I000008
상기 화학식 1-1, 2, 3 및 4에서, In Chemical Formulas 1-1, 2, 3, and 4,
R1 및 R2는 서로 독립적으로 (C5-C50)알킬, (C5-C50)알콕시, (C5-C50)알콕시카보닐, (C6-C50)아릴 또는 (C6-C50)아릴(C5-C50)알킬이고;R 1 and R 2 independently of one another are (C5-C50) alkyl, (C5-C50) alkoxy, (C5-C50) alkoxycarbonyl, (C6-C50) aryl or (C6-C50) aryl (C5-C50) Alkyl;
L은 단일결합 또는 O이고;L is a single bond or O;
X는 I, Br 또는 Cl이고; 및X is I, Br or Cl; And
n은 2 내지 50의 정수이다. n is an integer from 2 to 50.
본 발명은 상기 화학식 1-1의 알킬 할라이드 화합물을 제조하기 위하여, 상기 화학식 2의 모노할라이드 화합물을 금속 마그네슘과 반응시켜 그린냐드 시약(grignard reagent, 유기금속시약)인 상기 화학식 3의 알킬마그네슘할라이드 화합물을 제조한 후, 상기 화학식 4의 다이할라이드 화합물과 금속치환반응시켜 산을 가하여 유기용매로 추출한 후 농축한 후 컬럼 정제하여 목적화합물인 화학식 1-1의 알킬 할라이드 화합물을 제조한다.The present invention is to prepare an alkyl halide compound of Formula 1-1, by reacting the monohalide compound of Formula 2 with metal magnesium, an alkylmagnesium halide compound of Formula 3 as a Grignard reagent (organometallic reagent) After the preparation, a metal halide reaction with the dihalide compound of Chemical Formula 4 was added to an acid, extracted with an organic solvent, concentrated, and column purified to prepare an alkyl halide compound of Chemical Formula 1-1.
상기 a)단계에서 사용하는 마그네슘의 양은 반응시간과 관계가 있다. 사용량이 많을수록 반응 시간은 짧아지지만 반응완결 후 제거를 위해 많은 양의 산이 필요하게 된다. 또한, 반응온도 역시 반응시간과 관계가 있는데, 고온에서 반응이 진행되면 반응시간은 짧아지지만 격렬한 반응으로 인해 많은 부반응이 생성되어 수율이 감소하는 역효과가 있으므로 적량을 사용하는 것이 바람직하다. 따라서, 본 발명에서 사용하는 마그네슘의 사용량은 상기 화학식 2의 모노할라이드 화합물에 대하여 0.5 내지 5 당량으로 사용하며, 바람직하기로는 0.8 내지 1.5 당량을 사용한다. 또한 상기 a)단계의 반응온도는 25 내지 100℃이고, 바람직하기로는 50 내지 80 ℃에서 수행한다.The amount of magnesium used in step a) is related to the reaction time. The higher the amount used, the shorter the reaction time, but a large amount of acid is required for removal after completion of the reaction. In addition, the reaction temperature is also related to the reaction time. When the reaction proceeds at a high temperature, the reaction time is shortened, but it is preferable to use an appropriate amount because a number of side reactions are generated due to the violent reaction and the yield is reduced. Therefore, the amount of magnesium used in the present invention is used in 0.5 to 5 equivalents, preferably 0.8 to 1.5 equivalents, based on the monohalide compound of Formula 2. In addition, the reaction temperature of step a) is 25 to 100 ℃, preferably carried out at 50 to 80 ℃.
상기 a)단계의 반응은 불활성 반응 매질 중에서 수행되며, 상기 불활성 반응 매질은 디에틸에테르, 테트라하이드로푸란, 2-메틸테트라하이드로푸란, t-부틸-메틸에테르, 디이소프로필에테르, 디페닐에테르 메틸렌클로라이드, 1,2-디메톡시에탄 또는 비스(2-메톡시에틸)에테르 또는 이들의 임의의 혼합물로 이루어진 그룹으로부터 선택된다.The reaction of step a) is carried out in an inert reaction medium, the inert reaction medium is diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, t-butyl- methylether, diisopropyl ether, diphenyl ether methylene Chloride, 1,2-dimethoxyethane or bis (2-methoxyethyl) ether or any mixture thereof.
또한, 상기 b)단계에서 화학식 4의 다이할라이드 화합물의 사용량은 화학식 2의 모노할라이드 화합물에 대하여 1 내지 5 당량으로 사용하는 것이 바람직하다. 또한, 상기 b)단계의 반응은 -10 내지 30 ℃의 온도에서 실시하는 것이 바람직하다.In addition, the amount of the dihalide compound represented by Chemical Formula 4 in step b) is preferably used in an amount of 1 to 5 equivalents based on the monohalide compound represented by Chemical Formula 2. In addition, the reaction of step b) is preferably carried out at a temperature of -10 to 30 ℃.
또한, 상기 b)단계의 반응은 촉매량의 구리염, 리튬염 또는 이들의 혼합물을 더 포함하여 수행될 수 있으며, 촉매량의 구리염, 리튬염 또는 이들의 혼합물은 상기 금속치환반응에서 보다 수율을 향상시키고 금속치환반응이 잘 일어날 수 있도록 돕는 촉매 역할을 한다. 바람직하게는 브롬화구리(CuBr)와 염화리튬(LiCl)을 사용한다.In addition, the reaction of step b) may be carried out further comprising a catalytic amount of copper salts, lithium salts or mixtures thereof, the catalytic amount of copper salts, lithium salts or mixtures thereof to improve the yield in the metal substitution reaction It acts as a catalyst to help metal replacement reactions occur well. Copper bromide (CuBr) and lithium chloride (LiCl) are preferably used.
또한, 상기 b)단계의 반응은 불활성 반응 매질 중에서 수행되며, 상기 불활성 반응 매질은 디에틸에테르, 테트라하이드로푸란, 2-메틸테트라하이드로푸란, t-부틸-메틸에테르, 디이소프로필에테르, 디페닐에테르 메틸렌클로라이드, 1,2-디메톡시에탄 또는 비스(2-메톡시에틸)에테르 또는 이들의 임의의 혼합물로 이루어진 그룹으로부터 선택된다.In addition, the reaction of step b) is carried out in an inert reaction medium, the inert reaction medium is diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, t-butyl-methylether, diisopropyl ether, diphenyl Ether methylene chloride, 1,2-dimethoxyethane or bis (2-methoxyethyl) ether or any mixture thereof.
상기 반응이 완결되면 반응용액에 산을 가하고 유기용매로 추출한 후 농축하고 컬럼 정제하여 상기 화학식 1-1의 알킬 할라이드 화합물을 수득한다. 이때 사용되는 산으로 황산, 염산, 초산 등이 있으며, 상기 추출용매로는 에틸아세테이트, 에테르, 벤젠, 톨루엔, 니트로벤젠, 메틸렌클로라이드, 클로로포름 등을 사용할 수 있다.Upon completion of the reaction, an acid was added to the reaction solution, extracted with an organic solvent, concentrated, and column purified to obtain an alkyl halide compound of Chemical Formula 1-1. The acid used may be sulfuric acid, hydrochloric acid, acetic acid, and the like, and the extraction solvent may be ethyl acetate, ether, benzene, toluene, nitrobenzene, methylene chloride, chloroform, or the like.
또다른 한가지 방법은 L이 산소인 경우로, 금속 나트륨과 하기 화학식 5의 모노올 화합물을 반응시킨 다음, 하기 화학식 4의 다이할라이드 화합물과 반응시켜 하기 화학식 1-2의 알킬 할라이드 화합물을 제조하는 방법이다.Another method is to prepare an alkyl halide compound of Formula 1-2 by reacting metal sodium with a monool compound of Formula 5 and then reacting with a dihalide compound of Formula 4 when L is oxygen. to be.
[화학식 1-2][Formula 1-2]
Figure PCTKR2014009717-appb-I000009
Figure PCTKR2014009717-appb-I000009
[화학식 5][Formula 5]
Figure PCTKR2014009717-appb-I000010
Figure PCTKR2014009717-appb-I000010
[화학식 4][Formula 4]
Figure PCTKR2014009717-appb-I000011
Figure PCTKR2014009717-appb-I000011
상기 화학식 1-2, 4 및 5에서, R1 및 R2는 서로 독립적으로 (C5-C50)알킬, (C5-C50)알콕시, (C5-C50)알콕시카보닐, (C6-C50)아릴 또는 (C6-C50)아릴(C5-C50)알킬이고;In Formulas 1-2, 4, and 5, R 1 and R 2 are each independently of (C5-C50) alkyl, (C5-C50) alkoxy, (C5-C50) alkoxycarbonyl, (C6-C50) aryl or (C6-C50) aryl (C5-C50) alkyl;
L은 단일결합 또는 O이고;L is a single bond or O;
X는 I, Br 또는 Cl이고; 및X is I, Br or Cl; And
n은 2 내지 50의 정수이다. n is an integer from 2 to 50.
상기 사용하는 나트륨의 양은 상기 화학식 5의 모노올 화합물에 대하여 0.5 내지 5 당량으로 사용하며, 바람직하기로는 0.8 내지 1.5 당량을 사용한다. 또한 상기 반응은 환류반응으로, 불활성 반응 매질 중에서 수행되며, 상기 불활성 반응 매질은 디에틸에테르, 테트라하이드로푸란, 2-메틸테트라하이드로푸란, t-부틸-메틸에테르, 디이소프로필에테르, 디페닐에테르 메틸렌클로라이드, 1,2-디메톡시에탄 또는 비스(2-메톡시에틸)에테르 또는 이들의 임의의 혼합물로 이루어진 그룹으로부터 선택된다. 또한, 상기 화학식 4의 다이할라이드 화합물의 사용량은 화학식 5의 모노올 화합물에 대하여 1 내지 5 당량으로 사용하는 것이 바람직하다. The amount of sodium used is 0.5 to 5 equivalents, preferably 0.8 to 1.5 equivalents, based on the monool compound of Formula 5. The reaction is also carried out in a reflux reaction, in an inert reaction medium, the inert reaction medium is diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, t-butyl-methyl ether, diisopropyl ether, diphenyl ether Methylene chloride, 1,2-dimethoxyethane or bis (2-methoxyethyl) ether or any mixture thereof. In addition, the dihalide compound of Formula 4 is preferably used in an amount of 1 to 5 equivalents based on the monool compound of Formula 5.
상기 반응이 완결되면 반응용액을 유기용매로 추출한 후 농축하고 컬럼 정제하여 상기 화학식 1-1의 알킬 할라이드 화합물을 수득한다. 상기 추출용매로는 에틸아세테이트, 에테르, 벤젠, 톨루엔, 니트로벤젠, 메틸렌클로라이드, 클로로포름 등을 사용할 수 있다.When the reaction is completed, the reaction solution is extracted with an organic solvent, concentrated and purified by column to obtain the alkyl halide compound of Formula 1-1. The extraction solvent may be ethyl acetate, ether, benzene, toluene, nitrobenzene, methylene chloride, chloroform and the like.
본 발명은 신규한 알킬 할라이드 화합물 및 이의 제조방법에 관한 것으로, 본 발명에 따른 알킬 할라이드 화합물은 5개의 탄소로 이루어진 길이가 긴 탄소 사슬의 양 말단 중 한 말단에 할로겐 원자가 치환되고 다른 말단에는 R1과 R2가 치환되어 있어 유기반도체 재료에 화학식 1의 알킬 할라이드 화합물의 알킬기를 도입시키는 경우 용해도를 증가시키고 소자 특성을 높일 수 있는 모폴리지와 결정성을 얻을 수 있다. 특히 길이가 긴 탄소사슬 및 말단에 치환된 R1과 R2로 인하여 용해도가 매우 향상되기 때문에 스핀코팅, 다이 캐스팅, 프린팅 등의 용액공정을 통하여 유기박막트랜지스터를 제작시 저비용으로 대량생산을 가능케 하여 원가절감의 효과를 가질 뿐만 아니라, 필름의 형태 및 결정성을 조절하여 소자 특성을 향상시킬 수 있다.The present invention relates to a novel alkyl halide compound and a method for preparing the same, wherein the alkyl halide compound according to the present invention has a halogen atom substituted at one of both ends of a long carbon chain consisting of 5 carbons and R 1 at the other end thereof. When R 2 is substituted and the alkyl group of the alkyl halide compound of Formula 1 is introduced into the organic semiconductor material, morphology and crystallinity can be obtained to increase solubility and improve device properties. In particular, since the solubility is greatly improved due to the long carbon chain and R 1 and R 2 substituted at the terminal, mass production at low cost is possible when manufacturing organic thin film transistor through solution process such as spin coating, die casting, printing, etc. In addition to the cost reduction effect, it is possible to improve the device characteristics by adjusting the shape and crystallinity of the film.
이하, 본 발명을 구체적인 실시예를 들어 상세히 설명하기로 하되, 본 발명이 하기 실시예로만 한정되는 것은 아니다.Hereinafter, the present invention will be described in detail with reference to specific examples, but the present invention is not limited to the following examples.
[실시예 1] 15-(6-브로모헥실)헨트리아콘탄 (15-(6-bromohexyl)hentriacontane)의 합성Example 1 Synthesis of 15- (6-bromohexyl) hentriacontane (15- (6-bromohexyl) hentriacontane)
Figure PCTKR2014009717-appb-I000012
Figure PCTKR2014009717-appb-I000012
2-테트라데실옥타데칸-1-올 (2-tetradecyloctadecan-1-ol )의 합성Synthesis of 2-tetradecyloctadecan-1-ol (2-tetradecyloctadecan-1-ol)
잘 건조시킨 500 mL 삼구 둥근 바닥 플라스크에 헥사데칸-1-올(hexadecan-1-ol) (50.0 g, 0.1032 mol), KOH (0.32 g, 0.0057mol) 및 Ni 분말 (0.0625 g, 1.0645 mmol)을 넣고, 온도를 250oC로 올렸다. 질소 기류 하에서 1 시간 동안 교반한 다음, 단순증류관(simple distillation)을 이용해 물을 제거하였다. 3시간동안 온도를 250oC로 유지하고, 그 후 상온으로 온도를 내려주고 메틸렌클로라이드(MC)로 추출하고 유기층을 물로 여러 번 씻어준 다음, 회전식 증발기를 사용하여 용매를 제거하였다. 그 후 진공 디스틸레이션을 이용해서 출발 물질을 제거하고 생성물인 2-테트라데실옥타데칸-1-올을 수득하였다(34 g, 70.62%).In a well-dried 500 mL three neck round bottom flask, hexadecan-1-ol (50.0 g, 0.1032 mol), KOH (0.32 g, 0.0057 mol) and Ni powder (0.0625 g, 1.0645 mmol) were added. Put, and raise the temperature to 250 o C. After stirring for 1 hour under a nitrogen stream, water was removed using simple distillation. The temperature was maintained at 250 ° C. for 3 hours, after which the temperature was lowered to room temperature, extracted with methylene chloride (MC), the organic layer was washed several times with water, and the solvent was removed using a rotary evaporator. The starting material was then removed using vacuum distillation to yield the product 2-tetradecyloctadecane-1-ol (34 g, 70.62%).
1H-NMR (300 MHz, CDCl3): δ 4.86-4.85 (s, 1 H), 3.67-3.53 (m, 2 H), 1.58-155 (d, 1 H), 1.28-1.21 (m, 56 H), 0.91-0.87 (t, 6H) 1 H-NMR (300 MHz, CDCl 3 ): δ 4.86-4.85 (s, 1 H), 3.67-3.53 (m, 2 H), 1.58-155 (d, 1 H), 1.28-1.21 (m, 56 H), 0.91-0.87 (t, 6H)
15-(브로모메틸)헨트리아콘탄 (15-(bromomethyl)hentriacontane)의 합성Synthesis of 15- (bromomethyl) hentriacontane
잘 건조시킨 500 mL 삼구 둥근 바닥 플라스크에 트라이페닐포스핀(Triphenylphosphine) (17.9 g, 0.06544 mol)을 MC에 넣고 녹여 준 후 온도를 0oC로 낮추고 브로민(Bromine) (10.5 g, 0.06544 mol)을 드랍핑(dropping)해주고 10분동안 교반하였다. 그리고, MC에 녹인 2-테트라데실옥타데칸-1-올(tetradecyloctadecan-1-ol) (25.5 g, 0.05462 mol)을 드랍핑(dropping)해주고 16시간동안 교반하였다. MC로 추출하고 유기층을 물로 씻어준 다음 MgSO4로 건조시킨 후 회전식 증발기를 사용하여 용매를 제거하였다. 헥산으로 용매를 녹여서 유리거르게로 불순물인 고체(트리페닐포스핀 부반응물)를 거르고, 헥산에 녹아나온 물질을 회전식 증발기를 사용하여 용매를 제거하였다. n-헥산을 사용하여 컬럼 크로마토그래피로 분리하여 목적화합물인 15-(브로모메틸)헨트리아콘탄을 수득하였다(22.56 g, 78%). Triphenylphosphine (17.9 g, 0.06544 mol) was added to MC in a well-dried 500 mL three-neck round bottom flask, and the temperature was lowered to 0 o C and bromine (10.5 g, 0.06544 mol). Was dropped and stirred for 10 minutes. Then, 2-tetradecyloctadecan-1-ol (25.5 g, 0.05462 mol) dissolved in MC was dropped and stirred for 16 hours. Extraction with MC, the organic layer was washed with water, dried over MgSO 4 and the solvent was removed using a rotary evaporator. The solvent was dissolved in hexane to filter free solids (triphenylphosphine side reactions) as impurities, and the solvent dissolved in hexane was removed using a rotary evaporator. Separation by column chromatography using n -hexane afforded 15- (bromomethyl) hentracontane as a target compound (22.56 g, 78%).
1H-NMR (300 MHz, CDCl3): δ 3.67-3.53 (m, 2 H), 1.58-155 (d, 1 H), 1.28-1.21 (m, 56 H), 0.91-0.87 (t, 6H) 1 H-NMR (300 MHz, CDCl 3 ): δ 3.67-3.53 (m, 2H), 1.58-155 (d, 1H), 1.28-1.21 (m, 56H), 0.91-0.87 (t, 6H )
15-(6-브로모헥실)헨트리아콘탄 (15-(6-bromohexyl)hentriacontane)의 합성Synthesis of 15- (6-bromohexyl) hentriacontane
잘 건조시킨 삼구 플라스크에 마그네슘 Mg (0.78 g, 32.24 mmol, 1.4 당량)을 넣고 15-(브로모메틸)헨트리아콘탄 (12.2 g, 23.02 mmol, 1 당량)과 THF (30 mL)를 천천히 적가하면서 1시간동안 80oC로 환류시켜 1-(2-테트라데실옥타데실)마그네슘 브로마이드 (1-(2-tetradecyloctadecyl)magnesium bromide) (THF (30 mL) 용액하)를 만들었다(유기금속시약의 제조).Magnesium Mg (0.78 g, 32.24 mmol, 1.4 equiv) was added to a well-dried three-necked flask, and 15- (bromomethyl) hentricontane (12.2 g, 23.02 mmol, 1 equiv) and THF (30 mL) were slowly added dropwise. Refluxing at 80 ° C. for 1 hour while producing 1- (2-tetradecyloctadecyl) magnesium bromide (1- (2-tetradecyloctadecyl) magnesium bromide) (under THF (30 mL) solution) (preparation of organic metal reagent) ).
잘 건조시킨 다른 삼구 플라스크에 1,5-다이브로모펜탄 (12.18 g, 52.96 mmol, 3 당량), CuBr (33 mg, 0.23 mmol, 0.01 당량) 및 LiCl (20 mg, 0.46 mmol, 0.02 당량)를 THF (50 mL)에 녹이고 -10°C를 유지하면서, 앞에 만든 유기금속시약을 천천히 적가하였다. 그 뒤 온도를 상온으로 올려서 16시간동안 교반하였다. 그 후 NH4Cl 수용액 (50 mL)을 넣고 10분간 교반한 후 에테르와 2M 염산, 10% Na2CO3 수용액으로 추출하고, MgSO4 로 건조하여 회전식 증발기를 사용하여 용매를 제거하였다. 그 후 진공 디스틸레이션을 이용해서 출발물질을 제거한 후 헥산을 사용하여 컬럼 크로마토그래피로 목적화합물인 15-(6-브로모헥실)헨트리아콘탄을 수득하였다(9.27 g, 67.11%).In another well-dried three-necked flask, 1,5-dibromopentane (12.18 g, 52.96 mmol, 3 equiv), CuBr (33 mg, 0.23 mmol, 0.01 equiv) and LiCl (20 mg, 0.46 mmol, 0.02 equiv) were THF Dissolve in (50 mL) and slowly add dropwise the organometallic reagent prepared above while maintaining -10 ° C. The temperature was then raised to room temperature and stirred for 16 hours. Then, NH 4 Cl aqueous solution (50 mL) was added thereto, stirred for 10 minutes, extracted with ether, 2M hydrochloric acid, and 10% Na 2 CO 3 aqueous solution, dried over MgSO 4 , and the solvent was removed using a rotary evaporator. Thereafter, the starting material was removed by vacuum distillation, followed by column chromatography using hexane, thereby obtaining 15- (6-bromohexyl) hentracontane (9.27 g, 67.11%).
1H-NMR (300 MHz, CDCl3): δ 3.44-3.40 (m, 2H), 1.90-1.86 (m, 2H), 1.46-1.13 (m, 65H), 0.91-0.87 (t, 6H) 1 H-NMR (300 MHz, CDCl 3 ): δ 3.44-3.40 (m, 2H), 1.90-1.86 (m, 2H), 1.46-1.13 (m, 65H), 0.91-0.87 (t, 6H)
[실시예 2] 11-(6-브로모헥실) 트리코산 (11-(6-bromohexyl)tricosane)의 합성Example 2 Synthesis of 11- (6-bromohexyl) trichoic acid (11- (6-bromohexyl) tricosane)
Figure PCTKR2014009717-appb-I000013
Figure PCTKR2014009717-appb-I000013
11-(브로모메틸)트리코산 (11-(bromomethyl)tricosane)의 합성Synthesis of 11- (bromomethyl) trichoic acid (11- (bromomethyl) tricosane)
잘 건조시킨 500 mL 삼구 둥근 바닥 플라스크에 트라이페닐포스핀(Triphenylphosphine) (23.72 g, 0.0862 mol)을 MC에 넣고 녹여 준 후 온도를 0oC로 낮추고 브로민(Bromine) (13.84 g, 0.06544 mol)을 드랍핑(dropping)해주고 10분동안 교반하였다. 그리고, MC에 녹인 2-데실테트라데칸-1-올 (2-decyltetradecan-1-ol) (25.5 g, 0.0719 mol)을 드랍핑(dropping)해주고 16시간동안 교반하였다. MC로 추출하고 유기층을 물로 씻어준 다음 MgSO4로 건조시킨 후 회전식 증발기를 사용하여 용매를 제거하였다. 헥산으로 용매를 녹여서 유리거르게로 불순물인 고체(트리페닐포스핀 부반응물)를 거르고, 헥산에 녹아나온 물질을 회전식 증발기를 사용하여 용매를 제거하였다. n-헥산을 사용하여 컬럼 크로마토그래피로 분리하여 목적화합물인 11-(브로모메틸)트리코산을 수득하였다(27.2 g, 75.5 %).Triphenylphosphine (23.72 g, 0.0862 mol) was dissolved in MC in a well-dried 500 mL three neck round bottom flask, and the temperature was lowered to 0 o C and bromine (13.84 g, 0.06544 mol). Was dropped and stirred for 10 minutes. Then, 2-decyltetradecan-1-ol (25.5 g, 0.0719 mol) dissolved in MC was dropped and stirred for 16 hours. Extraction with MC, the organic layer was washed with water, dried over MgSO 4 and the solvent was removed using a rotary evaporator. The solvent was dissolved in hexane to filter free solids (triphenylphosphine side reactions) as impurities, and the solvent dissolved in hexane was removed using a rotary evaporator. Column chromatography using n -hexane afforded the title compound 11- (bromomethyl) trichoic acid (27.2 g, 75.5%).
1H-NMR (300 MHz, CDCl3): δ 3.47-3.33 (m, 2 H), 1.57-153 (d, 1 H), 1.29-1.21 (m, 40 H), 0.91-0.86 (t, 6H) 1 H-NMR (300 MHz, CDCl 3 ): δ 3.47-3.33 (m, 2H), 1.57-153 (d, 1H), 1.29-1.21 (m, 40H), 0.91-0.86 (t, 6H )
11-(6-브로모헥실) 트리코산 (11-(6-bromohexyl)tricosane)의 합성Synthesis of 11- (6-bromohexyl) trichoic acid (11- (6-bromohexyl) tricosane)
잘 건조시킨 삼구 플라스크에 마그네슘 Mg (6.50 g, 0.268 mol, 1.4 당량)을 넣고 11-(브로모메틸)트리코산 (80.0 g, 0.191 mol, 1 당량)과 THF (270 mL)를 천천히 적가하면서 1시간동안 80oC로 환류시켜 1-(2-데실테트라데실)마그네슘 브로마이드 (1-(2-decyltetradecyl)magnesium bromide) (THF (270 mL) 용액하)를 만들었다(유기금속시약의 제조).Magnesium Mg (6.50 g, 0.268 mol, 1.4 equiv) was added to a well-dried three neck flask and 11- (bromomethyl) trichoic acid (80.0 g, 0.191 mol, 1 equiv) and THF (270 mL) were slowly added dropwise. It was refluxed at 80 ° C. for 1 hour to give 1- (2-decyltetradecyl) magnesium bromide (under THF (270 mL) solution) (preparation of organic metal reagent).
잘 건조시킨 다른 삼구 플라스크에 1,5-다이브로모펜탄 (110.13 g, 0.478 mol, 2.5 당량), CuBr (0.27 g, 1.915 mmol, 0.01 당량) 및 LiCl (0.162 g, 3.383 mmol, 0.02 당량)를 THF (320 mL)에 녹이고 -10°C를 유지하면서, 앞에 만든 유기금속시약을 천천히 적가하였다. 그 뒤 온도를 상온으로 올려서 16시간동안 교반하였다. 그 후 NH4Cl 수용액 (50 mL)을 넣고 10분간 교반한 후 에테르와 2M 염산, 10% Na2CO3 수용액으로 추출하고, MgSO4 로 건조하여 회전식 증발기를 사용하여 용매를 제거하였다. 그 후 진공 디스틸레이션을 이용해서 출발물질을 제거한 후 헥산을 사용하여 컬럼 크로마토그래피로 목적화합물인 11-(6-브로모헥실)트리코산을 수득하였다(76.25 g, 81.85 %).In another well-dried three-necked flask, 1,5-dibromopentane (110.13 g, 0.478 mol, 2.5 equiv), CuBr (0.27 g, 1.915 mmol, 0.01 equiv) and LiCl (0.162 g, 3.383 mmol, 0.02 equiv) were THF (320 mL) was slowly added dropwise to the previous organometallic reagent prepared while maintaining -10 ° C. The temperature was then raised to room temperature and stirred for 16 hours. Then, NH 4 Cl aqueous solution (50 mL) was added thereto, stirred for 10 minutes, extracted with ether, 2M hydrochloric acid, and 10% Na 2 CO 3 aqueous solution, dried over MgSO 4 , and the solvent was removed using a rotary evaporator. Thereafter, the starting material was removed by vacuum distillation, and then column chromatography using hexane gave 11- (6-bromohexyl) trichoic acid as a target compound (76.25 g, 81.85%).
1H-NMR (300 MHz, CDCl3): δ 3.44-3.40 (m, 2H), 1.90-1.86 (m, 2H), 1.46-1.13 (m, 65H), 0.91-0.87 (t, 6H) 1 H-NMR (300 MHz, CDCl 3 ): δ 3.44-3.40 (m, 2H), 1.90-1.86 (m, 2H), 1.46-1.13 (m, 65H), 0.91-0.87 (t, 6H)
[실시예 3] 11-((6-브로모헥실옥시)메틸)트리코산 (11-((6-bromohexyloxy)methyl)tricosane)의 합성Example 3 Synthesis of 11-((6-bromohexyloxy) methyl) trichoic acid (11-((6-bromohexyloxy) methyl) tricosane)
Figure PCTKR2014009717-appb-I000014
Figure PCTKR2014009717-appb-I000014
잘 건조시킨 500 mL 삼구 둥근 바닥 플라스크에 2-데실테트라데칸-1-올 (2-decyltetradecan-1-ol) (30 g, 0.085 mol)을 THF (270 mL)에 녹이고 금속 Na (2.1 g 0.0913 mol)를 넣고 2시간동안 70 oC로 환류시켰다. 그리고 1,6-다이브로모헥산(1,6-dibromohexane) (41 g, 0.168 mol)을 천천히 적가하고, 온도를 80oC로 올려서 8시간동안 환류시켰다. 반응이 완료되면, 에테르와 Na2CO3 수용액으로 추출하고, 무수MgSO4로 건조시킨 다음, 회전식 증발기를 사용하여 용매를 제거하였다. 컬럼 크로마토그래피로 목적화합물인 11-((6-브로모헥실옥시)메틸)트리코산을 수득하였다(31 g, 70.44 %). In a well-dried 500 mL three neck round bottom flask, 2-decyltetradecan-1-ol (30 g, 0.085 mol) was dissolved in THF (270 mL) and the metal Na (2.1 g 0.0913 mol) ) Was refluxed at 70 ° C. for 2 hours. Then, 1,6-dibromohexane (1,6-dibromohexane) (41 g, 0.168 mol) was slowly added dropwise, and the temperature was raised to 80 ° C. and refluxed for 8 hours. After the reaction was completed, the mixture was extracted with an ether and Na 2 CO 3 aqueous solution, dried over anhydrous MgSO 4, and then the solvent was removed using a rotary evaporator. Column chromatography gave the target compound 11-((6-bromohexyloxy) methyl) trichoic acid (31 g, 70.44%).
1H-NMR (300 MHz, CDCl3): δ 3.45-3.39 (m, 6 H), 1.92-186 (m, 4 H), 1.51-1.47 (m, 5H), 1.32-1.27 (m, 40 H), 0.92-0.87 (t, 6H) 1 H-NMR (300 MHz, CDCl 3 ): δ 3.45-3.39 (m, 6 H), 1.92-186 (m, 4 H), 1.51-1.47 (m, 5H), 1.32-1.27 (m, 40 H ), 0.92-0.87 (t, 6H)
본 발명은 신규한 알킬 할라이드 화합물 및 이의 제조방법에 관한 것으로, 본 발명에 따른 알킬 할라이드 화합물은 5개의 탄소로 이루어진 길이가 긴 탄소 사슬의 양 말단 중 한 말단에 할로겐 원자가 치환되고 다른 말단에는 R1과 R2가 치환되어 있어 유기반도체 재료에 화학식 1의 알킬 할라이드 화합물의 알킬기를 도입시키는 경우 용해도를 증가시키고 소자 특성을 높일 수 있는 모폴리지와 결정성을 얻을 수 있다. 특히 길이가 긴 탄소사슬 및 말단에 치환된 R1과 R2로 인하여 용해도가 매우 향상되기 때문에 스핀코팅, 다이 캐스팅, 프린팅 등의 용액공정을 통하여 유기박막트랜지스터를 제작시 저비용으로 대량생산을 가능케 하여 원가절감의 효과를 가질 뿐만 아니라, 필름의 형태 및 결정성을 조절하여 소자 특성을 향상시킬 수 있다.The present invention relates to a novel alkyl halide compound and a method for preparing the same, wherein the alkyl halide compound according to the present invention has a halogen atom substituted at one of both ends of a long carbon chain consisting of 5 carbons and R 1 at the other end thereof. And R 2 is substituted so that when the alkyl group of the alkyl halide compound of Formula 1 is introduced into the organic semiconductor material, morphology and crystallinity can be obtained to increase solubility and improve device characteristics. In particular, since the solubility is greatly improved due to the long carbon chain and the substituted R 1 and R 2 at the terminal, mass production at low cost is possible when manufacturing organic thin film transistor through solution process such as spin coating, die casting, printing, etc. In addition to the cost reduction effect, it is possible to improve the device characteristics by adjusting the shape and crystallinity of the film.

Claims (10)

  1. 하기 화학식 1로 표시되는 알킬 할라이드 화합물:Alkyl halide compounds represented by the following formula (1):
    [화학식 1][Formula 1]
    Figure PCTKR2014009717-appb-I000015
    Figure PCTKR2014009717-appb-I000015
    상기 화학식 1에서, In Chemical Formula 1,
    R1 및 R2는 서로 독립적으로 (C5-C50)알킬, (C5-C50)알콕시, (C5-C50)알콕시카보닐, (C6-C50)아릴 또는 (C6-C50)아릴(C5-C50)알킬이고;R 1 and R 2 independently of one another are (C5-C50) alkyl, (C5-C50) alkoxy, (C5-C50) alkoxycarbonyl, (C6-C50) aryl or (C6-C50) aryl (C5-C50) Alkyl;
    L은 단일결합 또는 O이고;L is a single bond or O;
    X는 I, Br 또는 Cl이고; 및X is I, Br or Cl; And
    n은 2 내지 50의 정수이다. n is an integer from 2 to 50.
  2. 제 1항에 있어서,The method of claim 1,
    하기 화합물로부터 선택되는 알킬 할라이드 화합물.Alkyl halide compound selected from the following compounds.
    Figure PCTKR2014009717-appb-I000016
    Figure PCTKR2014009717-appb-I000016
    Figure PCTKR2014009717-appb-I000017
    Figure PCTKR2014009717-appb-I000017
    Figure PCTKR2014009717-appb-I000018
    Figure PCTKR2014009717-appb-I000018
    상기 X는 I, Br 또는 Cl이다.X is I, Br or Cl.
  3. a) 금속 마그네슘과 하기 화학식 2의 모노할라이드 화합물을 반응시켜 하기 화학식 3의 알킬마그네슘할라이드 화합물을 제조한 다음, a) reacting a metal magnesium compound with a monohalide compound represented by the following Chemical Formula 2 to prepare an alkylmagnesium halide compound represented by the following Chemical Formula 3,
    b) 상기 제조된 화학식 3의 알킬마그네슘할라이드 화합물을 하기 화학식 4의 다이할라이드 화합물과 금속치환반응(transmetalation reaction)시켜 하기 화학식 1-1의 알킬 할라이드 화합물을 제조하는 방법. b) a method of preparing an alkyl halide compound of Formula 1-1 by performing a metal substitution reaction of the prepared alkylmagnesium halide compound of Formula 3 with a dihalide compound of Formula 4.
    [화학식 1-1] [Formula 1-1]
    Figure PCTKR2014009717-appb-I000019
    Figure PCTKR2014009717-appb-I000019
    [화학식 2][Formula 2]
    Figure PCTKR2014009717-appb-I000020
    Figure PCTKR2014009717-appb-I000020
    [화학식 3][Formula 3]
    Figure PCTKR2014009717-appb-I000021
    Figure PCTKR2014009717-appb-I000021
    [화학식 4][Formula 4]
    Figure PCTKR2014009717-appb-I000022
    Figure PCTKR2014009717-appb-I000022
    상기 화학식 1-1, 2, 3 및 4에서, R1, R2, X 및 n은 청구항 제1항에서의 정의와 동일하다.In Formulas 1-1, 2, 3, and 4, R 1 , R 2 , X, and n are the same as defined in claim 1.
  4. 제 3항에 있어서,The method of claim 3, wherein
    상기 a)단계의 마그네슘의 사용량은 상기 화학식 2의 모노할라이드 화합물에 대하여 0.5 내지 5 당량인 것을 특징으로 하는 제조방법.The use amount of magnesium in step a) is 0.5 to 5 equivalents based on the monohalide compound of Formula 2.
  5. 제 3항에 있어서,The method of claim 3, wherein
    상기 a)단계의 반응은 25 내지 100℃의 온도에서 실시되는 것을 특징으로 하는 제조방법.The reaction of step a) is characterized in that the production method is carried out at a temperature of 25 to 100 ℃.
  6. 제 3항에 있어서,The method of claim 3, wherein
    상기 b)단계의 화학식 4의 다이할라이드 화합물의 사용량은 화학식 2의 모노할라이드 화합물에 대하여 1 내지 5 당량인 것을 특징으로 하는 제조방법.The amount of the dihalide compound of Formula 4 of step b) is 1 to 5 equivalents based on the monohalide compound of Formula 2.
  7. 제 3항에 있어서,The method of claim 3, wherein
    상기 b)단계의 반응은 -10 내지 30 ℃의 온도에서 실시되는 것을 특징으로 하는 제조방법.The reaction of step b) is characterized in that carried out at a temperature of -10 to 30 ℃.
  8. 제 3항에 있어서,The method of claim 3, wherein
    상기 a)단계 및 b)단계의 각 반응은 불활성 반응 매질 중에서 수행되는 것을 특징으로 하는 제조방법.Each reaction of steps a) and b) is carried out in an inert reaction medium.
  9. 제 3항에 있어서,The method of claim 3, wherein
    b)단계의 금속치환반응은 촉매량의 구리염, 리튬염 또는 이들의 혼합물을 더 포함하여 수행되는 것을 특징으로 하는 제조방법.The metal substitution reaction of step b) is characterized in that the production method further comprises a catalytic amount of copper salt, lithium salt or a mixture thereof.
  10. 금속 나트륨과 하기 화학식 5의 모노올 화합물을 반응시킨 다음, 하기 화학식 4의 다이할라이드 화합물과 반응시켜 하기 화학식 1-2의 알킬 할라이드 화합물을 제조하는 방법.A method of preparing an alkyl halide compound of formula 1-2 by reacting a metal sodium with a monool compound of formula 5 and then reacting with a dihalide compound of formula 4 below.
    [화학식 1-2][Formula 1-2]
    Figure PCTKR2014009717-appb-I000023
    Figure PCTKR2014009717-appb-I000023
    [화학식 5][Formula 5]
    Figure PCTKR2014009717-appb-I000024
    Figure PCTKR2014009717-appb-I000024
    [화학식 4][Formula 4]
    Figure PCTKR2014009717-appb-I000025
    Figure PCTKR2014009717-appb-I000025
    상기 화학식 1-2, 4 및 5에서, R1, R2, X 및 n은 청구항 제1항에서의 정의와 동일하다.In Formulas 1-2, 4, and 5, R 1 , R 2 , X, and n are the same as defined in claim 1.
PCT/KR2014/009717 2013-11-11 2014-10-16 Novel alkyl halide compound and method for preparing same WO2015068958A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130136164A KR101547843B1 (en) 2013-11-11 2013-11-11 Novel alkylhalide compounds and method for preparing the same
KR10-2013-0136164 2013-11-11

Publications (1)

Publication Number Publication Date
WO2015068958A1 true WO2015068958A1 (en) 2015-05-14

Family

ID=53041684

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009717 WO2015068958A1 (en) 2013-11-11 2014-10-16 Novel alkyl halide compound and method for preparing same

Country Status (2)

Country Link
KR (1) KR101547843B1 (en)
WO (1) WO2015068958A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245065A (en) * 1991-11-19 1993-09-14 Shell Research Limited Process for the preparation of di-alkyl compounds of group 2b metals
US5473090A (en) * 1992-07-02 1995-12-05 Air Products And Chemicals, Inc. Process for the preparation of trialkyl compounds of group 3a metals
CN101948368A (en) * 2010-08-20 2011-01-19 中国科学院上海有机化学研究所 Diphenylalkyl halide or diphenyl carboxylic acid and synthesis method thereof
KR20110098242A (en) * 2010-02-26 2011-09-01 경상대학교산학협력단 Organic semiconductor compounds substituted alkylthiophen group in side-chain of polymer and organic thin film transistor utilizing same
KR20130069446A (en) * 2011-12-15 2013-06-26 경상대학교산학협력단 Novel diketopyrrolopyrrole polymers and organic electronic device using the same

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4347735B2 (en) 2004-03-26 2009-10-21 信越化学工業株式会社 Novel aliphatic halogen compound and method for producing the same
CN102775273B (en) * 2012-07-05 2014-09-10 北京大学 Bifurcate alkyl chain and preparation and application thereof in organic conjugated molecules

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5245065A (en) * 1991-11-19 1993-09-14 Shell Research Limited Process for the preparation of di-alkyl compounds of group 2b metals
US5473090A (en) * 1992-07-02 1995-12-05 Air Products And Chemicals, Inc. Process for the preparation of trialkyl compounds of group 3a metals
KR20110098242A (en) * 2010-02-26 2011-09-01 경상대학교산학협력단 Organic semiconductor compounds substituted alkylthiophen group in side-chain of polymer and organic thin film transistor utilizing same
CN101948368A (en) * 2010-08-20 2011-01-19 中国科学院上海有机化学研究所 Diphenylalkyl halide or diphenyl carboxylic acid and synthesis method thereof
KR20130069446A (en) * 2011-12-15 2013-06-26 경상대학교산학협력단 Novel diketopyrrolopyrrole polymers and organic electronic device using the same

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
IAIN MEAGER ET AL.: "Photocurrent enhancement from diketopyrrolepyrrole polymer solar cellsthrough alkyl-chain branching point manipulation", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 135, 22 July 2013 (2013-07-22), pages 11537 - 11540 *
IL KANG ET AL.: "Record high hole mobility in polymer semiconductors via side-chain engineering", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 135, 23 September 2013 (2013-09-23), pages 14869 - 14899 *

Also Published As

Publication number Publication date
KR101547843B1 (en) 2015-08-27
KR20150054136A (en) 2015-05-20

Similar Documents

Publication Publication Date Title
JP4912364B2 (en) Compositions comprising soluble sexual thiophene derivatives
JP2011079827A (en) Method for producing benzodithiophene, and method for producing semiconductive polymer
TW201229001A (en) Novel spirobifluorene compounds
JP7159586B2 (en) Aromatic compounds, organic semiconductor layers, and organic thin film transistors
TW201420581A (en) Method for producing aromatic compound
WO2009139579A2 (en) Preparation of asymmetric anthracene derivatives and organic electroluminescent device using same
EP3228622A2 (en) Synthetic method of fused heteroaromatic compound and fused heteroaromatic compound, and intermediate thereof
CN102675340B (en) Compound, polymer, polymer semiconductor material and organic thin film transistor
CN108864140B (en) Preparation method of pentachiophene, pentachiophene and application of pentachiophene
JP4139902B2 (en) Heteroacene compound and method for producing the same
WO2014181910A1 (en) Diketopyrrolopyrrole polymer and organic electronic device containing same
WO2018181462A1 (en) Aromatic compound, organic semiconductor layer, and organic thin film transistor
WO2013176325A1 (en) Novel method for preparing fused heterocyclic compound using gilman reagent
JP2004149514A (en) Organic compound having core-shell structure, method for producing the same, its use, and electronic part containing the compound
WO2015068958A1 (en) Novel alkyl halide compound and method for preparing same
WO2015012456A1 (en) Novel electron-acceptor-donor-acceptor type naphthalene diimide small molecules and an organic electronic device using same
JP4248926B2 (en) Polysubstituted acene derivative and method for producing the same
KR20180128026A (en) Novel organic polymers and methods for their preparation
CN114195698B (en) Imide fluoranthene molecular building block, preparation and application thereof
KR101595058B1 (en) Novel alkylhalide compounds and method for preparing the same
KR101000784B1 (en) Novel polyacene compounds substituted with dendron and organic thin film transistor using the same
CA2487210A1 (en) Asymmetrical linear organic oligomers
CN116120526A (en) BN compound and preparation method thereof
KR20220019636A (en) Regioregular polymer through different reactivity and method for preparing thereof
CN118027065A (en) Selenium atom-containing conjugated fused macrocyclic material, and preparation method and application thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860650

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860650

Country of ref document: EP

Kind code of ref document: A1