WO2015068828A1 - Tube-shaped aluminum silicate - Google Patents

Tube-shaped aluminum silicate Download PDF

Info

Publication number
WO2015068828A1
WO2015068828A1 PCT/JP2014/079669 JP2014079669W WO2015068828A1 WO 2015068828 A1 WO2015068828 A1 WO 2015068828A1 JP 2014079669 W JP2014079669 W JP 2014079669W WO 2015068828 A1 WO2015068828 A1 WO 2015068828A1
Authority
WO
WIPO (PCT)
Prior art keywords
aluminum silicate
tubular aluminum
solution
functional group
surface treatment
Prior art date
Application number
PCT/JP2014/079669
Other languages
French (fr)
Japanese (ja)
Inventor
貴志 鷲巣
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015546709A priority Critical patent/JPWO2015068828A1/en
Publication of WO2015068828A1 publication Critical patent/WO2015068828A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B33/00Silicon; Compounds thereof
    • C01B33/20Silicates
    • C01B33/26Aluminium-containing silicates, i.e. silico-aluminates
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/12Particle morphology extending in one dimension, e.g. needle-like with a cylindrical shape

Definitions

  • the present invention relates to a tubular aluminum silicate.
  • imogolite is known as a tubular aluminum silicate.
  • Imogolite is a kind of natural clay component that appears in soils based on descending volcanic ejecta such as volcanic ash and pumice, and is a nano-sized tubular amorphous aluminum silicate.
  • This tubular aluminum silicate has silicon (Si), aluminum (Al), oxygen (O) and hydrogen (H) as main constituent elements, and is composed of a number of ⁇ Si—O—Al ⁇ bonds.
  • the shape is a nanotube-like structure having an outer diameter of 2.0 to 3.0 nm, an inner diameter of 0.5 to 1.5 nm, and a length of several tens of nm to several ⁇ m.
  • This tubular aluminum silicate has a unique nano tube shape and high specific surface area, water affinity, ion exchange capacity and material adsorption capacity.
  • Various industrial uses such as a catalyst carrier, a humidity control material, and a heat pump system heat exchange agent that produces a refrigerant using a low-temperature heat source are expected.
  • tubular aluminum silicate has a high affinity for water as described above and can maintain a good dispersion state in water, but aggregates in an organic dispersion medium such as alcohol. The distributed state cannot be maintained. For this reason, there existed a problem that the use of tubular aluminum silicate will be limited.
  • Patent Document 1 the liquid phase of the wet gel of tubular aluminum silicate is replaced with an organic solvent, and the surface of the tubular aluminum silicate is coated by supercritical treatment.
  • a technique has been proposed in which the surface is modified with an organic functional group to increase the affinity with an organic solvent.
  • an object of the present invention is to provide a tubular aluminum silicate having both an affinity for water and an affinity for an organic dispersion medium.
  • a tubular aluminum silicate surface-modified with an organic functional group by a surface treatment agent A tubular aluminum silicate characterized in that the amount of introduced organic functional group is 1 to 10% by mass is provided.
  • tubular aluminum silicate having both an affinity for water and an affinity for an organic dispersion medium.
  • tubular aluminum silicate It is an X-ray diffraction pattern of tubular aluminum silicate. It is a scanning electron micrograph of tubular aluminum silicate.
  • representing a numerical range is used in a sense including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
  • the tubular aluminum silicate of the present invention is characterized by being surface-modified with an organic functional group by a surface treating agent, and the amount of the introduced organic functional group is 1 to 10% by mass.
  • the amount of the introduced organic functional group refers to the amount of the organic functional group bonded to the surface functional group of the tubular aluminum silicate by the surface treatment agent with respect to the tubular aluminum silicate, for example,
  • the amount of the introduced organic functional group can be determined by heating the tubular aluminum silicate surface-modified with the organic functional group to remove the organic functional group and measuring the mass before and after that.
  • the tubular aluminum silicate before being surface-modified is not particularly limited, and conventionally known ones can be used.
  • the elemental molar ratio of Si to Al contained in the tubular aluminum silicate is 0.25 to 0.70, the water absorption of the tubular aluminum silicate can be improved, and the affinity for water It is preferable because the property can be improved.
  • the element molar ratio of Si to Al contained in the tubular aluminum silicate can be measured using, for example, an inductively coupled plasma optical emission spectrometer (SPS3520UV manufactured by SII Nanotechnology).
  • the method for producing tube-shaped aluminum silicate before surface modification is not particularly limited.
  • the method described in JP 2011-42520 A the method described in JP 2011-42520 A
  • the tubular aluminum silicate can be efficiently produced by using the following method.
  • an orthosilicate solution having an electric conductivity of 5 to 500 ⁇ S / cm and a pH of 3.5 to 7.5 is prepared (first step).
  • the prepared orthosilicic acid solution, inorganic aluminum compound solution and urea or ammonia are mixed, and the mixed solution is adjusted to pH 2.8 to 7.5 and then heated (second step).
  • the obtained reaction product is subjected to solid separation and desalting (third step), and the desired tubular aluminum silicate can be obtained.
  • Each material, conditions, and the like used in such a manufacturing method will be specifically described below.
  • the silicon source constituting the inorganic silicon compound solution is not particularly limited as long as silicate ions are generated when solvated.
  • Examples of such a silicon source include sodium orthosilicate, sodium metasilicate, potassium metasilicate, and water glass.
  • a solvent that can easily be solvated with the raw material silicic acid source can be appropriately selected and used.
  • water, alcohols, etc. can be used, for example. From the viewpoint of salt solubility and ease of handling during heating, water is preferably used.
  • the silicon concentration of the inorganic silicon compound solution during ion exchange is preferably 20 mM or less.
  • Ion exchanger As the ion exchanger used for the ion exchange treatment of the inorganic silicon compound solution, an anion exchanger or a cation exchanger is used.
  • the anion exchanger include an anion exchange membrane and the like
  • examples of the cation exchanger include a cation exchange resin and a cation exchange membrane. It is preferable to use a cation exchange resin because it is high and silicon concentration control is easy.
  • any conventionally known ion exchanger can be used as long as the orthosilicate solution obtained after the treatment has an electric conductivity of 5 to 500 ⁇ S / cm and a pH of 3.5 to 7.5. May be used.
  • a strong acid cation exchange resin or a weak acid cation exchange resin may be used, or a plurality of cation exchange resins may be used in combination.
  • Examples of the strongly acidic cation exchange resin include Amberlite IR120B (manufactured by Organo), Amberlite IR124 (manufactured by Organo), Amberlite 200CT (manufactured by Organo), Amberlite 252 (manufactured by Organo), Diaion SK104.
  • Examples of the weak acid cation exchange resin include Amberlite FPC3500 (manufactured by Organo), Amberlite IRC76 (manufactured by Organo), Diaion WK10 (manufactured by Mitsubishi Chemical), Diaion WK11 (manufactured by Mitsubishi Chemical), Dia Examples include, but are not limited to, ion WK100 (manufactured by Mitsubishi Chemical Corporation) and diamond ion WK40L (manufactured by Mitsubishi Chemical Corporation).
  • an ion exchange resin for example, a batch method, a column method, or the like is used as an ion exchange treatment method for the inorganic silicon compound solution.
  • a conditioned ion exchange resin is put into a container, an inorganic silicon compound solution whose concentration is adjusted is added thereto, and the reaction is performed for about 2 hours while stirring or shaking at a strength that allows the ion exchange resin to float. Thereafter, the ion exchange resin is filtered off, and the filtrate is recovered to obtain an orthosilicate solution. If a magnetic stirrer is used, depending on the type of ion exchange resin, the ion exchange resin may be destroyed. Therefore, it is desirable to perform shaking during mixing.
  • conditioning means returning the ion exchange resin to a state where the ion exchange ability can be exhibited.
  • an ion-exchange resin that has been conditioned is packed into a column, an inorganic silicon compound solution whose concentration is adjusted is flowed into the column at a constant flow rate, and the solution that flows out of the column is recovered to obtain an orthosilicate solution. obtain.
  • the electric conductivity of the resulting orthosilicate solution can be adjusted by the degree of stirring or shaking, the reaction time, etc.
  • the flow rate of the sample flowing in the column the volume of the column ( Radius, length, etc.), the amount of ion-exchange resin filling, and the like. That is, the electrical conductivity of the orthosilicate solution can be adjusted by appropriately changing the contact time and the contact area between the inorganic silicon compound solution and the ion exchanger.
  • the pH of the resulting orthosilicate solution can be adjusted by the type of ion exchange resin used, the contact time between the ion exchange resin and the inorganic silicon compound solution, and the like.
  • the pH of the orthosilicate solution obtained becomes lower as the ion exchange proceeds. Therefore, when a strongly acidic cation exchange resin having a high ion exchange rate is used, the pH of the orthosilicate solution is increased. The pH of the orthosilicic acid solution remains high when a weakly acidic cation exchange resin with a lower ion exchange rate is used.
  • an ion exchange membrane may be used as the ion exchanger.
  • the ion exchange membrane is an ion filtration membrane formed by molding an ion exchange resin into a film shape, and has a property of blocking the passage of ions having different signs and allowing only ions having the same sign to pass.
  • an ion exchange membrane it is preferable to use an anion exchange membrane and a cation exchange membrane together, but each may be used alone by combining with other methods.
  • the anion exchange membrane is positively charged because the cation group is fixed to the membrane, and only the anion is allowed to pass through without repelling the cation.
  • anion exchange membranes are used, for example, for seawater concentration salt production, concentration / removal of metal ions, removal of radioactive ions / substances, and the like.
  • anion exchange membrane By using such an anion exchange membrane, only the anion in the inorganic silicon compound solution can be permeated to prepare a target orthosilicate solution.
  • the cation exchange membrane is negatively charged because the anion group is fixed to the membrane, and only the cation is allowed to pass without repelling the anion.
  • (1.3) pH of orthosilicate solution The treatment conditions with the ion exchanger are set so that the pH of the orthosilicic acid solution prepared by the treatment with the ion exchanger is 3.5 to 7.5.
  • the pH is 7.5 or less, it is possible to suppress the formation of polysilicic acid by polymerization of orthosilicic acid in the solution, and when the pH is 3.5 or more, the pH adjustment in the second step The amount of alkali added in can be reduced.
  • PH measurement can be performed with a pH meter using a general glass electrode.
  • MODEL F-71S
  • the pH of the orthosilicate solution is as follows: phthalate pH standard solution (pH: 4.01), neutral phosphate pH standard solution (pH: 6.86), and borate pH standard solution (pH: 9.01). 18) is used as a pH standard solution, the pH meter is calibrated at three points, the electrode of the pH meter is placed in an orthosilicic acid solution, and the value after 5 minutes has elapsed and is read. At this time, the liquid temperature of the pH standard solution and the orthosilicate solution can be set to 25 ° C., for example.
  • the treatment conditions with the ion exchanger are set so that the electrical conductivity of the orthosilicic acid solution prepared by the treatment with the ion exchanger is 5 to 500 ⁇ S / cm.
  • the electrical conductivity of the orthosilicate solution is preferably 5 to 100 ⁇ S / cm, more preferably 5 to 15 ⁇ S / cm.
  • the electrical conductivity of the orthosilicate solution is 500 ⁇ S / cm or less
  • the mixing of the salt into the mixed solution prepared in the second step is suppressed, and a tubular aluminum silicate can be produced with a high yield.
  • the treatment time by an ion exchanger can be shortened and productivity can be improved as the electrical conductivity of an orthosilicic acid solution is 5 microsiemens / cm or more.
  • the electrical conductivity of theoretical pure water is an insulator of about 0.055 ⁇ S / cm, it can be said that the electrical conductivity is an index indicating the total amount of ions in the solution, particularly when the solvent of the orthosilicate solution is water.
  • the electrical conductivity of the orthosilicic acid solution can be measured with a general electrical conductivity meter. Specifically, for example, it is measured at room temperature (25 ° C.) using ES-51 (Horiba, Ltd.).
  • the aluminum source constituting the inorganic aluminum compound solution is not particularly limited as long as aluminum ions are generated when solvated.
  • Examples of such an aluminum source include aluminum chloride, aluminum perchlorate, aluminum nitrate, aluminum sec-butoxide and the like.
  • a material that can easily be solvated with the aluminum source that is a raw material can be appropriately selected and used.
  • water, alcohols, etc. can be used, for example. From the viewpoint of salt solubility and ease of handling during heating, water is preferably used.
  • the composition ratio of the tubular aluminum silicate to be produced can be changed by adjusting the amount of the inorganic aluminum compound solution to the orthosilicate aqueous solution.
  • Urea or ammonia Either urea or ammonia may be used, and it is preferable to add as a solution adjusted to a predetermined concentration from the viewpoint of handleability.
  • the mixed solution obtained by mixing the orthosilicic acid solution, the inorganic aluminum compound solution, and urea or ammonia is adjusted to pH 2.8 to 7.5.
  • a method of adding a basic solution such as an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide
  • a method of adding an acidic solution such as hydrochloric acid, acetic acid, or nitric acid, etc.
  • the heating temperature at this time is not particularly limited, but is preferably 80 to 120 ° C. from the viewpoint of obtaining a higher purity tubular aluminum silicate.
  • the heating temperature is not particularly limited, but is preferably 80 to 120 ° C. from the viewpoint of obtaining a higher purity tubular aluminum silicate.
  • the heating temperature is too high, rapid thermal decomposition may occur at the beginning of heating, and the ammonia concentration in the mixed solution may rise rapidly, causing the pH to approximate the alkaline side. It is considered unsuitable for the production of tubular aluminum silicates that are formed from acidic to weakly acidic.
  • the heating temperature is 80 ° C. or higher, the thermal decomposition of urea and the subsequent synthesis rate of the tubular aluminum silicate are improved, and the productivity can be improved.
  • the heating time is not particularly limited, but is preferably 12 hours or more and 100 hours or less from the viewpoint of efficiently obtaining the tubular aluminum silicate.
  • tubular aluminum silicate produced by the method as described above can be identified by measurement by X-ray diffraction and measurement by a scanning electron microscope (SEM).
  • FIG. 2 shows a scanning electron micrograph (SEM image) of the tubular aluminum silicate.
  • SEM image scanning electron micrograph
  • the tubular aluminum silicate of the present invention is constituted by subjecting the tubular aluminum silicate produced as described above to a surface treatment with the following surface treatment agent.
  • the surface treatment agent used for the surface treatment of tubular aluminum silicate include silane coupling agents, titanate coupling agents, aluminate coupling agents, zirconate coupling agents, and silicone oils. Etc.
  • silane coupling agents titanate coupling agents
  • aluminate coupling agents aluminate coupling agents
  • zirconate coupling agents silicone oils.
  • Etc silicone oils.
  • the surface treatment agent when a silane compound is used as the surface treatment agent, the decrease in the affinity of the tubular aluminum silicate for water is suppressed compared to the case of using other surface treatment agents, and the affinity for the organic dispersion medium is improved. Can be improved.
  • a silane coupling agent is preferable, and in particular, a material having excellent heat resistance and high hydrophobicity is preferable.
  • the silane coupling agent used as the surface treatment agent include hexamethyldisilazane, trimethylethoxysilane, trimethylmethoxysilane, tetraethoxysilane, trimethylsilyl chloride, methyltriethoxysilane, dimethyldiethoxysilane, decyltrimethoxysilane, Vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3- Examples include mercaptopropylmethyldimethoxysilane, 2- (3,4-epoxycyclo
  • silane coupling agent having a small molecular weight and high hydrophobicity, and hexamethyldisilazane, tetraethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, and trimethylsilyl chloride are preferably used.
  • titanate coupling agent used as the surface treatment agent examples include tetrabutyl titanate, tetraoctyl titanate, isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, and bis (dioctyl pyrophosphate) oxyacetate titanate.
  • examples of commercially available products include Preneact TTS (manufactured by Ajinomoto Fine Techno Co., Ltd.), Preneact TTS44 (manufactured by Ajinomoto Fine Techno Co., Ltd.), and the like.
  • silicone oil used as the surface treatment agent examples include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methyl hydrogen silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, and carboxyl-modified silicone oil. , Carrubinol modified silicone oil, methacrylic modified silicone oil, mercapto modified silicone oil, different functional group modified silicone oil, polyether modified silicone oil, methylstyryl modified silicone oil, hydrophilic special modified silicone oil, higher alkoxy modified silicone oil, higher fatty acid Examples thereof include modified silicone oils such as containing modified silicone oils and fluorine-modified silicones.
  • the surface treatment agent may be appropriately diluted with, for example, hexane, toluene, methanol, ethanol, acetone, water or the like.
  • the surface treatment agent may contain a hydrophobic treatment agent.
  • the amount of the hydrophobizing agent added is preferably 1 to 15% by mass with respect to the surface treating agent in consideration of the hydrophobizing treatment that remains unreacted.
  • the number of carbon atoms in the organic functional group introduced into the tubular aluminum silicate by the surface treatment agent is preferably 1-6. Thereby, the heat resistance and light resistance of the surface-modified tubular aluminum silicate can be improved.
  • the surface treatment method using the surface treatment agent examples include a wet heating method, a wet filtration method, a dry stirring method, an integral blend method, and a granulation method.
  • the method is preferred. If the wet heating method is used, the treatment can be performed from an aqueous dispersion state without gelation after synthesis. In this case, the water-dispersed state of the tubular aluminum silicate is adjusted so as to be 2 to 100 parts by weight of water and 100 parts by weight or more of the organic dispersion medium per 1 part by weight of the tubular aluminum silicate.
  • the surface treatment can be performed on the tubular aluminum silicate by adding a surface treatment agent and heating at a predetermined temperature for a predetermined time.
  • the organic dispersion medium to be used is not particularly limited.
  • a dispersion medium such as methanol, ethanol, isopropyl alcohol, ethoxyethanol, dimethylformamide, acetone, ethyl acetate, tetrahydrofuran, benzene, toluene, hexane, xylene, cyclohexane, If necessary, it can be used alone or in combination of two or more.
  • isopropyl alcohol is preferably used as the dispersion medium.
  • the surface treatment method is not limited to the above method, and may be performed by polymer graft treatment.
  • a reactive polymer having a reactive group capable of reacting with a surface functional group present on the surface of the tubular aluminum silicate before the surface treatment is used as the surface treatment agent.
  • a reactive polymer can be grafted (added) on the surface of the tubular aluminum silicate.
  • the tubular aluminum silicate of the present invention is subjected to a surface treatment so that the amount of the introduced organic functional group is 1 to 10% by mass.
  • the amount of the introduced organic functional group can be adjusted within a range of 1 to 10% by mass by adjusting the amount of the surface treatment agent to be added.
  • the affinity for the organic dispersion medium can be increased while maintaining the affinity for water.
  • the amount of the introduced organic functional group is more preferably 2 to 7% by mass from the viewpoint of obtaining the effect.
  • the surface-modified agent is surface-modified with an organic functional group, and the amount of the introduced organic functional group is 1 to 10% by mass. While maintaining the above, the affinity for the organic dispersion medium can be improved. For this reason, the affinity for water and the affinity for the organic dispersion medium can be compatible, and the tubular aluminum silicate can be uniformly dispersed in water or in the organic dispersion medium without agglomeration.
  • the affinity for the organic dispersion medium can be further improved while maintaining the affinity for water at a high value.
  • the surface treatment agent is a silane compound
  • a decrease in the affinity for water can be suppressed as compared with the case of using another surface treatment agent, and the affinity for the organic dispersion medium can be improved.
  • the heat resistance and light resistance of the surface-modified tubular aluminum silicate can be improved.
  • the obtained aqueous dispersion of tubular aluminum silicate was adjusted so as to be 50 parts by weight of water and 150 parts by weight of isopropyl alcohol with respect to 1 part by weight of the tubular aluminum silicate. 15% by mass of hexamethyldisilazane as a surface treatment agent was added dropwise to the aluminum silicate over 4 hours. Then, after surface-treating tubular aluminum silicate by stirring at 80 ° C. for 12 hours, it was freeze-dried to obtain powder.
  • the addition amount of a surface treatment agent and the amount of introduced organic functional groups differ.
  • Samples 2 to 13 were prepared in the same manner as in the preparation of Sample 1, except that the type and addition amount of the surface treatment agent and the addition amount of the orthosilicate aqueous solution at the time of preparing the mixed solution were changed as shown in Table 1.
  • Sample 1 according to the comparative example has a low water absorption due to a large amount of the introduced organic functional group
  • sample 2 according to the comparative example has a low dispersibility in the organic dispersion medium due to a small amount of the introduced organic functional group.
  • all of Samples 3 to 8 according to the present invention have high water absorption and dispersibility since the amount of the introduced organic functional group is in the range of 1 to 10% by mass.
  • Samples 5 to 7 have excellent water absorption and dispersibility because the amount of the introduced organic functional group is in the range of 2 to 7% by mass.
  • Samples 9 to 11 according to the present invention have an Si molar ratio of Si to Al of 0.25 to 0.70, and can obtain better water absorption than Sample 6 according to the present invention. is made of.
  • the elemental molar ratio of Si to Al was 0.8, and the tubular aluminum silicate could not be synthesized.
  • the surface treatment agent is changed from a silane compound to an aluminate compound, and in this case as well, water absorption and dispersibility can be maintained.
  • the sample using the silane compound can obtain superior performance, and it is understood that the silane compound is preferable as the surface treatment agent.
  • the compatibility with water and the affinity with the organic dispersion medium are compatible.
  • the relative value of water absorption was able to be in the range of 82 to 96% with respect to the affinity for water.
  • the relative value of the dispersed particle diameter could be in the range of 1.7 to 5.3 with respect to the affinity for the organic dispersion medium.
  • the present invention is suitable for providing a tubular aluminum silicate having both an affinity for water and an affinity for an organic dispersion medium.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

The problem addressed by the present invention is to provide a tube-shaped aluminum silicate having both an affinity to water and an affinity to an organic dispersion medium. The tube-shaped aluminum silicate is surface modified with an organic functional group by means of a surface treatment agent, and is characterized by the amount of organic functional group introduced being 1-10 mass%.

Description

チューブ状アルミニウムケイ酸塩Tubular aluminum silicate
 本発明は、チューブ状アルミニウムケイ酸塩に関する。 The present invention relates to a tubular aluminum silicate.
 従来、チューブ状アルミニウムケイ酸塩として、イモゴライトが知られている。イモゴライトとは、火山灰及び軽石等の降下火山噴出物を母材とする土壌に現れる天然の粘土成分の一種で、ナノサイズのチューブ状非晶質アルミニウムケイ酸塩である。このチューブ状アルミニウムケイ酸塩は、主な構成元素をケイ素(Si)、アルミニウム(Al)、酸素(O)及び水素(H)とし、多数の≡Si-O-Al≡結合で構成され、その形状は、外径2.0~3.0nm、内径0.5~1.5nm、長さ数十nm~数μmのナノチューブ状構造である。このチューブ状アルミニウムケイ酸塩は、ナノサイズにおけるチューブ状という特異な形状とそれによる高い比表面積、水との親和性、イオン交換能や物質吸着能力に優れることから、天然ガスの燃料貯蔵媒体、触媒担体、調湿材料、低温熱源を用いて冷媒を作るヒートポンプシステム熱交換剤等、様々な工業的用途が期待されている。 Conventionally, imogolite is known as a tubular aluminum silicate. Imogolite is a kind of natural clay component that appears in soils based on descending volcanic ejecta such as volcanic ash and pumice, and is a nano-sized tubular amorphous aluminum silicate. This tubular aluminum silicate has silicon (Si), aluminum (Al), oxygen (O) and hydrogen (H) as main constituent elements, and is composed of a number of ≡Si—O—Al≡ bonds. The shape is a nanotube-like structure having an outer diameter of 2.0 to 3.0 nm, an inner diameter of 0.5 to 1.5 nm, and a length of several tens of nm to several μm. This tubular aluminum silicate has a unique nano tube shape and high specific surface area, water affinity, ion exchange capacity and material adsorption capacity. Various industrial uses such as a catalyst carrier, a humidity control material, and a heat pump system heat exchange agent that produces a refrigerant using a low-temperature heat source are expected.
 このようなチューブ状アルミニウムケイ酸塩は、上記のとおり水に対して親和性が高く、水中で良好な分散状態を保つことが可能であるが、アルコール等の有機分散媒中では凝集してしまい分散状態を維持することができない。このためチューブ状アルミニウムケイ酸塩の用途が限定されてしまうといった問題があった。 Such a tubular aluminum silicate has a high affinity for water as described above and can maintain a good dispersion state in water, but aggregates in an organic dispersion medium such as alcohol. The distributed state cannot be maintained. For this reason, there existed a problem that the use of tubular aluminum silicate will be limited.
 このような問題に対し、特許文献1では、チューブ状アルミニウムケイ酸塩の湿潤ゲルの液相を有機溶媒で置換し、これに超臨界処理を施すことで、チューブ状アルミニウムケイ酸塩の表面を有機官能基で表面修飾し、有機溶媒との親和性を高める技術が提案されている。 With respect to such a problem, in Patent Document 1, the liquid phase of the wet gel of tubular aluminum silicate is replaced with an organic solvent, and the surface of the tubular aluminum silicate is coated by supercritical treatment. A technique has been proposed in which the surface is modified with an organic functional group to increase the affinity with an organic solvent.
特許第4161049号公報Japanese Patent No. 4161509
 しかしながら、上記特許文献1に記載の技術によれば、チューブ状アルミニウムケイ酸塩の有機分散媒に対する親和性を向上させることができるが、チューブ状アルミニウムケイ酸塩が本来有する水に対する親和性が著しく低下しており、両者を両立することができていない。 However, according to the technique described in Patent Document 1, the affinity of the tubular aluminum silicate for the organic dispersion medium can be improved, but the affinity of the tubular aluminum silicate for water inherently is remarkable. It has fallen and both cannot be made compatible.
 そこで、本発明の課題は、水に対する親和性と有機分散媒に対する親和性を両立させたチューブ状アルミニウムケイ酸塩を提供することである。 Therefore, an object of the present invention is to provide a tubular aluminum silicate having both an affinity for water and an affinity for an organic dispersion medium.
 上記課題を解決するため、本発明によれば、
 表面処理剤により有機官能基で表面修飾されたチューブ状アルミニウムケイ酸塩であって、
 導入有機官能基量が1~10質量%であることを特徴とするチューブ状アルミニウムケイ酸塩が提供される。
In order to solve the above problems, according to the present invention,
A tubular aluminum silicate surface-modified with an organic functional group by a surface treatment agent,
A tubular aluminum silicate characterized in that the amount of introduced organic functional group is 1 to 10% by mass is provided.
 本発明によれば、水に対する親和性と有機分散媒に対する親和性を両立させたチューブ状アルミニウムケイ酸塩を提供することができる。 According to the present invention, it is possible to provide a tubular aluminum silicate having both an affinity for water and an affinity for an organic dispersion medium.
チューブ状アルミニウムケイ酸塩のX線回折図である。It is an X-ray diffraction pattern of tubular aluminum silicate. チューブ状アルミニウムケイ酸塩の走査型電子顕微鏡写真である。It is a scanning electron micrograph of tubular aluminum silicate.
 以下、本発明とその構成要素、及び本発明を実施するための形態・態様について詳細な説明をする。なお、本願において、数値範囲を表す「~」は、その前後に記載される数値を下限値及び上限値として含む意味で使用する。 Hereinafter, the present invention, its components, and modes and modes for carrying out the present invention will be described in detail. In the present application, “˜” representing a numerical range is used in a sense including numerical values described before and after the numerical value as a lower limit value and an upper limit value.
 本発明のチューブ状アルミニウムケイ酸塩は、表面処理剤により有機官能基で表面修飾され、その導入有機官能基量が1~10質量%であることを特徴としている。
 ここで、本発明において導入有機官能基量とは、表面処理剤によってチューブ状アルミニウムケイ酸塩の表面官能基に結合された有機官能基の当該チューブ状アルミニウムケイ酸塩に対する分量をいい、例えば、有機官能基で表面修飾されたチューブ状アルミニウムケイ酸塩を加熱して有機官能基を除去し、その前後の質量を測定することで導入有機官能基量を求めることができる。
The tubular aluminum silicate of the present invention is characterized by being surface-modified with an organic functional group by a surface treating agent, and the amount of the introduced organic functional group is 1 to 10% by mass.
Here, in the present invention, the amount of the introduced organic functional group refers to the amount of the organic functional group bonded to the surface functional group of the tubular aluminum silicate by the surface treatment agent with respect to the tubular aluminum silicate, for example, The amount of the introduced organic functional group can be determined by heating the tubular aluminum silicate surface-modified with the organic functional group to remove the organic functional group and measuring the mass before and after that.
《チューブ状アルミニウムケイ酸塩》
 本発明において、表面修飾される前のチューブ状アルミニウムケイ酸塩としては、特に制限はなく、従来公知のものを用いることができる。なお、チューブ状アルミニウムケイ酸塩に含有されるAlに対するSiの元素モル比が0.25~0.70であると、チューブ状アルミニウムケイ酸塩の吸水性を向上させることができ、水に対する親和性を向上させることができるため好ましい。ここで、チューブ状アルミニウムケイ酸塩に含有されるAlに対するSiの元素モル比は、例えば、誘導結合プラズマ発光分析分光装置(SIIナノテクノロジー社製 SPS3520UV)を用いて測定することができる。
《Tubular aluminum silicate》
In the present invention, the tubular aluminum silicate before being surface-modified is not particularly limited, and conventionally known ones can be used. When the elemental molar ratio of Si to Al contained in the tubular aluminum silicate is 0.25 to 0.70, the water absorption of the tubular aluminum silicate can be improved, and the affinity for water It is preferable because the property can be improved. Here, the element molar ratio of Si to Al contained in the tubular aluminum silicate can be measured using, for example, an inductively coupled plasma optical emission spectrometer (SPS3520UV manufactured by SII Nanotechnology).
(1)チューブ状アルミニウムケイ酸塩の製造方法
 表面修飾される前のチューブ状アルミニウムケイ酸塩を製造する方法としては、特に制限はなく、例えば、特開2011-42520号公報に記載される方法等によって製造することができるが、下記の方法を用いることでチューブ状アルミニウムケイ酸塩を効率良く製造することができる。
(1) Method for producing tube-shaped aluminum silicate The method for producing tube-shaped aluminum silicate before surface modification is not particularly limited. For example, the method described in JP 2011-42520 A However, the tubular aluminum silicate can be efficiently produced by using the following method.
 まず、無機ケイ素化合物溶液をイオン交換体で処理することで、電気伝導率5~500μS/cm、pH3.5~7.5のオルトケイ酸溶液を調製する(第1工程)。次に、調製したオルトケイ酸溶液、無機アルミニウム化合物溶液及び尿素又はアンモニアを混合し、混合液をpH2.8~7.5に調整した後に加熱する(第2工程)。そして、得られた反応生成物を固体分離及び脱塩し(第3工程)、目的のチューブ状アルミニウムケイ酸塩を得ることができる。
 このような製造方法で用いられる各材料や条件等について、以下、具体的に説明する。
First, by treating an inorganic silicon compound solution with an ion exchanger, an orthosilicate solution having an electric conductivity of 5 to 500 μS / cm and a pH of 3.5 to 7.5 is prepared (first step). Next, the prepared orthosilicic acid solution, inorganic aluminum compound solution and urea or ammonia are mixed, and the mixed solution is adjusted to pH 2.8 to 7.5 and then heated (second step). Then, the obtained reaction product is subjected to solid separation and desalting (third step), and the desired tubular aluminum silicate can be obtained.
Each material, conditions, and the like used in such a manufacturing method will be specifically described below.
(1.1)無機ケイ素化合物溶液
 無機ケイ素化合物溶液を構成するケイ素源としては、溶媒和した際にケイ酸イオンが生じるものであれば特に制限されない。そのようなケイ素源としては、例えば、オルトケイ酸ナトリウム、メタケイ酸ナトリウム、メタケイ酸カリウム、水ガラス等が挙げられる。
(1.1) Inorganic silicon compound solution The silicon source constituting the inorganic silicon compound solution is not particularly limited as long as silicate ions are generated when solvated. Examples of such a silicon source include sodium orthosilicate, sodium metasilicate, potassium metasilicate, and water glass.
 溶媒としては、原料であるケイ酸源と溶媒和しやすいものを適宜選択して使用することができる。具体的には、例えば、水、アルコール類等を使用することができる。塩の溶解性及び加熱時の取扱い易さの観点から、水を用いることが好ましい。 As the solvent, a solvent that can easily be solvated with the raw material silicic acid source can be appropriately selected and used. Specifically, water, alcohols, etc. can be used, for example. From the viewpoint of salt solubility and ease of handling during heating, water is preferably used.
 また、イオン交換時にケイ酸からポリケイ酸が生成することを抑制する観点から、イオン交換時の無機ケイ素化合物溶液のケイ素濃度は20mM以下であることが好ましい。 Also, from the viewpoint of suppressing the production of polysilicic acid from silicic acid during ion exchange, the silicon concentration of the inorganic silicon compound solution during ion exchange is preferably 20 mM or less.
(1.2)イオン交換体
 無機ケイ素化合物溶液のイオン交換処理に用いられるイオン交換体は、陰イオン交換体や陽イオン交換体が用いられる。陰イオン交換体としては、陰イオン交換膜等が挙げられ、陽イオン交換体としては、陽イオン交換樹脂、陽イオン交換膜等が挙げられ、特に限定されるものではないが、イオン交換能が高いことやケイ素の濃度管理が容易なことから陽イオン交換樹脂を用いることが好ましい。具体的には、処理後に得られるオルトケイ酸溶液の電気伝導率を5~500μS/cm、pHを3.5~7.5とすることができるものであれば、従来公知のいずれのイオン交換体を用いても良い。
(1.2) Ion exchanger As the ion exchanger used for the ion exchange treatment of the inorganic silicon compound solution, an anion exchanger or a cation exchanger is used. Examples of the anion exchanger include an anion exchange membrane and the like, and examples of the cation exchanger include a cation exchange resin and a cation exchange membrane. It is preferable to use a cation exchange resin because it is high and silicon concentration control is easy. Specifically, any conventionally known ion exchanger can be used as long as the orthosilicate solution obtained after the treatment has an electric conductivity of 5 to 500 μS / cm and a pH of 3.5 to 7.5. May be used.
 陽イオン交換樹脂としては、強酸性陽イオン交換樹脂及び弱酸性陽イオン交換樹脂のいずれを用いても良く、複数組み合わせて用いるものとしても良い。 As the cation exchange resin, either a strong acid cation exchange resin or a weak acid cation exchange resin may be used, or a plurality of cation exchange resins may be used in combination.
 強酸性陽イオン交換樹脂としては、例えば、アンバーライトIR120B(オルガノ社製)、アンバーライトIR124(オルガノ社製)、アンバーライト200CT(オルガノ社製)、アンバーライト252(オルガノ社製)、ダイヤイオンSK104(三菱化学社製)、ダイヤイオンSK110(三菱化学社製)、ダイヤイオンSK112(三菱化学社製)、ダイヤイオンPK212(三菱化学社製)、ダイヤイオンPK216(三菱化学社製)、ダイヤイオンPK228(三菱化学社製)、ダイヤイオンUBK08(三菱化学社製)、ダイヤイオンUBK10(三菱化学社製)、ダイヤイオンUBK12(三菱化学社製)、ダイヤイオンUBK510L(三菱化学社製)、ダイヤイオンUBK530(三菱化学社製)、ダイヤイオンUBK550(三菱化学社製)等が挙げられるが、これらに限定されるものではない。 Examples of the strongly acidic cation exchange resin include Amberlite IR120B (manufactured by Organo), Amberlite IR124 (manufactured by Organo), Amberlite 200CT (manufactured by Organo), Amberlite 252 (manufactured by Organo), Diaion SK104. (Mitsubishi Chemical Corporation), Diaion SK110 (Mitsubishi Chemical Corporation), Diaion SK112 (Mitsubishi Chemical Corporation), Diaion PK212 (Mitsubishi Chemical Corporation), Diaion PK216 (Mitsubishi Chemical Corporation), Diaion PK228 (Mitsubishi Chemical), Diaion UBK08 (Mitsubishi Chemical), Diaion UBK10 (Mitsubishi Chemical), Diaion UBK12 (Mitsubishi Chemical), Diaion UBK510L (Mitsubishi Chemical), Diaion UBK530 (Mitsubishi Chemical Corporation), Diaion BK550 (Mitsubishi Chemical Co., Ltd.), but not limited thereto.
 弱酸性陽イオン交換樹脂としては、例えば、アンバーライトFPC3500(オルガノ社製)、アンバーライトIRC76(オルガノ社製)、ダイヤイオンWK10(三菱化学社製)、ダイヤイオンWK11(三菱化学社製)、ダイヤイオンWK100(三菱化学社製)、ダイヤイオンWK40L(三菱化学社製)等が挙げられるが、これらに限定されるものではない。 Examples of the weak acid cation exchange resin include Amberlite FPC3500 (manufactured by Organo), Amberlite IRC76 (manufactured by Organo), Diaion WK10 (manufactured by Mitsubishi Chemical), Diaion WK11 (manufactured by Mitsubishi Chemical), Dia Examples include, but are not limited to, ion WK100 (manufactured by Mitsubishi Chemical Corporation) and diamond ion WK40L (manufactured by Mitsubishi Chemical Corporation).
 イオン交換樹脂を用いた場合、無機ケイ素化合物溶液のイオン交換処理の方法としては、例えば、バッチ法やカラム法等が用いられる。 In the case of using an ion exchange resin, for example, a batch method, a column method, or the like is used as an ion exchange treatment method for the inorganic silicon compound solution.
 バッチ法の場合、コンディショニング済みのイオン交換樹脂を容器に投入し、これに濃度調整した無機ケイ素化合物溶液を加え、イオン交換樹脂が浮遊する程度の強さで撹拌又は振盪しながら2時間程度反応させた後、イオン交換樹脂を濾別し、濾過液を回収することでオルトケイ酸溶液を得る。なお、マグネチックスターラーを使用すると、イオン交換樹脂の種類によってはイオン交換樹脂が破壊される場合があるので、混合の際には振盪を行うことが望ましい。ここで、コンディショニングとは、イオン交換樹脂をイオン交換能が発揮できる状態に復帰させることをいう。 In the case of the batch method, a conditioned ion exchange resin is put into a container, an inorganic silicon compound solution whose concentration is adjusted is added thereto, and the reaction is performed for about 2 hours while stirring or shaking at a strength that allows the ion exchange resin to float. Thereafter, the ion exchange resin is filtered off, and the filtrate is recovered to obtain an orthosilicate solution. If a magnetic stirrer is used, depending on the type of ion exchange resin, the ion exchange resin may be destroyed. Therefore, it is desirable to perform shaking during mixing. Here, conditioning means returning the ion exchange resin to a state where the ion exchange ability can be exhibited.
 カラム法の場合、コンディショニング済みのイオン交換樹脂をカラムに充填し、濃度調整した無機ケイ素化合物溶液をカラム内に一定の流速で流入し、カラムから流出される溶液を回収することでオルトケイ酸溶液を得る。 In the case of the column method, an ion-exchange resin that has been conditioned is packed into a column, an inorganic silicon compound solution whose concentration is adjusted is flowed into the column at a constant flow rate, and the solution that flows out of the column is recovered to obtain an orthosilicate solution. obtain.
 得られるオルトケイ酸溶液の電気伝導率は、バッチ法の場合には、撹拌又は振盪の程度、反応時間等により調整でき、カラム法の場合には、カラム内を流れる試料の流速、カラムの体積(半径や長さ等)、イオン交換樹脂の充填量等により調整できる。つまり、オルトケイ酸溶液の電気伝導率は、無機ケイ素化合物溶液とイオン交換体との接触時間及び接触面積を適宜変更することで、調整することができる。
 また、得られるオルトケイ酸溶液のpHは、使用するイオン交換樹脂の種類、イオン交換樹脂と無機ケイ素化合物溶液の接触時間等により調整することができる。具体的には、陽イオン交換樹脂を用いる場合、イオン交換が進む程、得られるオルトケイ酸溶液のpHは低くなるため、イオン交換率の高い強酸性陽イオン交換樹脂を使用するとオルトケイ酸溶液のpHはより低くなり、イオン交換率の低い弱酸性陽イオン交換樹脂を使用するとオルトケイ酸溶液のpHは高いままとなる。
In the case of the batch method, the electric conductivity of the resulting orthosilicate solution can be adjusted by the degree of stirring or shaking, the reaction time, etc. In the case of the column method, the flow rate of the sample flowing in the column, the volume of the column ( Radius, length, etc.), the amount of ion-exchange resin filling, and the like. That is, the electrical conductivity of the orthosilicate solution can be adjusted by appropriately changing the contact time and the contact area between the inorganic silicon compound solution and the ion exchanger.
The pH of the resulting orthosilicate solution can be adjusted by the type of ion exchange resin used, the contact time between the ion exchange resin and the inorganic silicon compound solution, and the like. Specifically, when a cation exchange resin is used, the pH of the orthosilicate solution obtained becomes lower as the ion exchange proceeds. Therefore, when a strongly acidic cation exchange resin having a high ion exchange rate is used, the pH of the orthosilicate solution is increased. The pH of the orthosilicic acid solution remains high when a weakly acidic cation exchange resin with a lower ion exchange rate is used.
 また、本発明においては、上記したように、イオン交換体としてイオン交換膜を用いても良い。イオン交換膜は、イオン交換樹脂を膜状に成形したもので、異符号のイオンの通過を阻止し、同符号のイオンのみを通過させる性質を有するイオン濾過膜である。
 イオン交換膜を用いる場合には、陰イオン交換膜と陽イオン交換膜とを併用することが好ましいが、他の方法と組み合わせることでそれぞれを単独で用いるものとしても良い。
 陰イオン交換膜は、膜に陽イオン基が固定されているため正に帯電しており、陽イオンを反発して通過させず、陰イオンのみを通過させる。このような陰イオン交換膜は、例えば、海水濃縮製塩、金属イオンの濃縮・除去、放射性イオン/物質の除去等に利用されている。このような陰イオン交換膜を用いることにより、無機ケイ素化合物溶液中の陰イオンのみを透過させて、目的のオルトケイ酸溶液を調製することができる。
 また、陽イオン交換膜は、膜に陰イオン基が固定されているため負に帯電しており、陰イオンを反発して通過させず、陽イオンのみを通過させる。
In the present invention, as described above, an ion exchange membrane may be used as the ion exchanger. The ion exchange membrane is an ion filtration membrane formed by molding an ion exchange resin into a film shape, and has a property of blocking the passage of ions having different signs and allowing only ions having the same sign to pass.
When an ion exchange membrane is used, it is preferable to use an anion exchange membrane and a cation exchange membrane together, but each may be used alone by combining with other methods.
The anion exchange membrane is positively charged because the cation group is fixed to the membrane, and only the anion is allowed to pass through without repelling the cation. Such anion exchange membranes are used, for example, for seawater concentration salt production, concentration / removal of metal ions, removal of radioactive ions / substances, and the like. By using such an anion exchange membrane, only the anion in the inorganic silicon compound solution can be permeated to prepare a target orthosilicate solution.
The cation exchange membrane is negatively charged because the anion group is fixed to the membrane, and only the cation is allowed to pass without repelling the anion.
(1.3)オルトケイ酸溶液のpH
 イオン交換体による処理条件は、イオン交換体による処理で調製されたオルトケイ酸溶液のpHが3.5~7.5となるように設定されている。pHが7.5以下であると、溶液中のオルトケイ酸が重合してポリケイ酸が生成してしまうことを抑制することができ、pHが3.5以上であると、第2工程のpH調整におけるアルカリ添加量を低減することができる。
(1.3) pH of orthosilicate solution
The treatment conditions with the ion exchanger are set so that the pH of the orthosilicic acid solution prepared by the treatment with the ion exchanger is 3.5 to 7.5. When the pH is 7.5 or less, it is possible to suppress the formation of polysilicic acid by polymerization of orthosilicic acid in the solution, and when the pH is 3.5 or more, the pH adjustment in the second step The amount of alkali added in can be reduced.
 pH測定は、一般的なガラス電極を用いたpHメーターによって測定できる。具体的には、例えば、MODEL(F-71S)(株式会社堀場製作所)を使用することができる。オルトケイ酸溶液のpHは、フタル酸塩pH標準液(pH:4.01)と、中性リン酸塩pH標準液(pH:6.86)と、ホウ酸塩pH標準液(pH:9.18)とをpH標準液として用い、pHメーターを3点校正した後、pHメーターの電極をオルトケイ酸溶液に入れて、5分以上経過して安定した後の値を読み取ることで得られる。このとき、pH標準液とオルトケイ酸溶液の液温は、例えば25℃とすることができる。 PH measurement can be performed with a pH meter using a general glass electrode. Specifically, for example, MODEL (F-71S) (Horiba, Ltd.) can be used. The pH of the orthosilicate solution is as follows: phthalate pH standard solution (pH: 4.01), neutral phosphate pH standard solution (pH: 6.86), and borate pH standard solution (pH: 9.01). 18) is used as a pH standard solution, the pH meter is calibrated at three points, the electrode of the pH meter is placed in an orthosilicic acid solution, and the value after 5 minutes has elapsed and is read. At this time, the liquid temperature of the pH standard solution and the orthosilicate solution can be set to 25 ° C., for example.
(1.4)オルトケイ酸溶液の電気伝導率σ
 イオン交換体による処理条件は、イオン交換体による処理で調製されたオルトケイ酸溶液の電気伝導率が5~500μS/cmとなるように設定されている。特に、陽イオン交換樹脂を用いてカラム法によりイオン交換処理する場合には、カラムの流速を調整することで、電気伝導率を調整することが可能である。オルトケイ酸溶液の電気伝導率としては、好ましくは5~100μS/cmであり、更に好ましくは5~15μS/cmである。
 オルトケイ酸溶液の電気伝導率が500μS/cm以下であると、第2工程で調製される混合液への塩の混入が抑えられ、高収率でチューブ状アルミニウムケイ酸塩を製造することができる。また、オルトケイ酸溶液の電気伝導率が5μS/cm以上であると、イオン交換体による処理時間を短縮でき、生産性を向上させることができる。
(1.4) Electrical conductivity σ of orthosilicate solution
The treatment conditions with the ion exchanger are set so that the electrical conductivity of the orthosilicic acid solution prepared by the treatment with the ion exchanger is 5 to 500 μS / cm. In particular, when ion exchange treatment is performed by a column method using a cation exchange resin, it is possible to adjust the electrical conductivity by adjusting the flow rate of the column. The electrical conductivity of the orthosilicate solution is preferably 5 to 100 μS / cm, more preferably 5 to 15 μS / cm.
When the electrical conductivity of the orthosilicate solution is 500 μS / cm or less, the mixing of the salt into the mixed solution prepared in the second step is suppressed, and a tubular aluminum silicate can be produced with a high yield. . Moreover, the treatment time by an ion exchanger can be shortened and productivity can be improved as the electrical conductivity of an orthosilicic acid solution is 5 microsiemens / cm or more.
 理論純水の電気伝導率は、約0.055μS/cmの絶縁体であるため、特にオルトケイ酸溶液の溶媒が水の場合、電気伝導率は溶液中の全イオン量を示す指標といえる。 Since the electrical conductivity of theoretical pure water is an insulator of about 0.055 μS / cm, it can be said that the electrical conductivity is an index indicating the total amount of ions in the solution, particularly when the solvent of the orthosilicate solution is water.
 オルトケイ酸溶液の電気伝導率は、一般的な電気伝導率計によって測定でき、具体的には、例えば、ES-51(株式会社堀場製作所)を用いて、常温(25℃)で測定される。 The electrical conductivity of the orthosilicic acid solution can be measured with a general electrical conductivity meter. Specifically, for example, it is measured at room temperature (25 ° C.) using ES-51 (Horiba, Ltd.).
(1.5)無機アルミニウム化合物溶液
 無機アルミニウム化合物溶液を構成するアルミニウム源としては、溶媒和した際にアルミニウムイオンが生じるものであれば特に制限されない。そのようなアルミニウム源としては、例えば、塩化アルミニウム、過塩素酸アルミニウム、硝酸アルミニウム、アルミニウムsec-ブトキシド等が挙げられる。
(1.5) Inorganic aluminum compound solution The aluminum source constituting the inorganic aluminum compound solution is not particularly limited as long as aluminum ions are generated when solvated. Examples of such an aluminum source include aluminum chloride, aluminum perchlorate, aluminum nitrate, aluminum sec-butoxide and the like.
 溶媒としては、原料であるアルミニウム源と溶媒和しやすいものを適宜選択して使用することができる。具体的には、例えば、水、アルコール類等を使用することができる。塩の溶解性及び加熱時の取扱い易さの観点から、水を用いることが好ましい。 As the solvent, a material that can easily be solvated with the aluminum source that is a raw material can be appropriately selected and used. Specifically, water, alcohols, etc. can be used, for example. From the viewpoint of salt solubility and ease of handling during heating, water is preferably used.
 また、第2工程において、オルトケイ酸水溶液に対する無機アルミニウム化合物溶液の仕込み量を調整することにより、製造されるチューブ状アルミニウムケイ酸塩の組成比を変更することができる。本発明では、製造されるチューブ状アルミニウムケイ酸塩に含有されるAlに対するSiの元素モル比が0.25~0.70となるように、材料の仕込み量を調整することが好ましい。 In the second step, the composition ratio of the tubular aluminum silicate to be produced can be changed by adjusting the amount of the inorganic aluminum compound solution to the orthosilicate aqueous solution. In the present invention, it is preferable to adjust the amount of materials charged so that the elemental molar ratio of Si to Al contained in the produced tubular aluminum silicate is 0.25 to 0.70.
(1.6)尿素又はアンモニア
 尿素又はアンモニアとしては、いずれか一方を用いれば良く、所定の濃度に調整された溶液として添加することが取扱い性の観点から好ましい。
(1.6) Urea or ammonia Either urea or ammonia may be used, and it is preferable to add as a solution adjusted to a predetermined concentration from the viewpoint of handleability.
(1.7)混合液のpH調整
 第2工程においては、オルトケイ酸溶液、無機アルミニウム化合物溶液及び尿素又はアンモニアを混合した混合液は、pH2.8~7.5に調整する。pHを当該範囲に調整するためには、例えば、水酸化ナトリウム水溶液、水酸化カリウム水溶液等の塩基性溶液を添加する方法や、例えば、塩酸、酢酸、硝酸等の酸性溶液を添加する方法等が挙げられる。
(1.7) Adjusting the pH of the mixed solution In the second step, the mixed solution obtained by mixing the orthosilicic acid solution, the inorganic aluminum compound solution, and urea or ammonia is adjusted to pH 2.8 to 7.5. In order to adjust the pH to the range, for example, a method of adding a basic solution such as an aqueous solution of sodium hydroxide or an aqueous solution of potassium hydroxide, a method of adding an acidic solution such as hydrochloric acid, acetic acid, or nitric acid, etc. Can be mentioned.
(1.8)加熱処理
 第2工程においては、pH調整後の混合液を加熱する処理を行う。このときの加熱温度は特に限定されないが、より高純度なチューブ状アルミニウムケイ酸塩を得る観点から80~120℃であることが好ましい。
 加熱温度が120℃以下であると、副生成物であるベーマイト(一水和アルミニウム酸化物)の析出を抑制することができる傾向がある。なお、尿素を用いる場合には、加熱温度が高すぎると加熱開始初期で急速な熱分解が起き、混合液中のアンモニア濃度が急上昇してpHがアルカリ性側に近似する可能性があるため、中性~弱酸性で形成されるチューブ状アルミニウムケイ酸塩の製造には不向きだと考えられる。
 また、加熱温度が80℃以上であると、尿素の熱分解とそれに続くチューブ状アルミニウムケイ酸塩の合成速度が向上し、生産性を向上させることができる。
(1.8) Heat treatment In the second step, a treatment for heating the mixed solution after pH adjustment is performed. The heating temperature at this time is not particularly limited, but is preferably 80 to 120 ° C. from the viewpoint of obtaining a higher purity tubular aluminum silicate.
There exists a tendency which can suppress precipitation of the boehmite (monohydric aluminum oxide) which is a by-product as heating temperature is 120 degrees C or less. When urea is used, if the heating temperature is too high, rapid thermal decomposition may occur at the beginning of heating, and the ammonia concentration in the mixed solution may rise rapidly, causing the pH to approximate the alkaline side. It is considered unsuitable for the production of tubular aluminum silicates that are formed from acidic to weakly acidic.
Further, when the heating temperature is 80 ° C. or higher, the thermal decomposition of urea and the subsequent synthesis rate of the tubular aluminum silicate are improved, and the productivity can be improved.
 加熱時間は特に制限されないが、チューブ状アルミニウムケイ酸塩を効率良く得る観点から12時間以上、100時間以内であることが好ましい。 The heating time is not particularly limited, but is preferably 12 hours or more and 100 hours or less from the viewpoint of efficiently obtaining the tubular aluminum silicate.
(2)チューブ状アルミニウムケイ酸塩の同定
 上記のような方法で製造されたチューブ状アルミニウムケイ酸塩は、X線回折による測定及び走査型電子顕微鏡(SEM)による測定によって同定することができる。
(2) Identification of tubular aluminum silicate The tubular aluminum silicate produced by the method as described above can be identified by measurement by X-ray diffraction and measurement by a scanning electron microscope (SEM).
(2.1)X線回折による測定
 図1に、チューブ状アルミニウムケイ酸塩のX線回折図を示す。図1に示すように、チューブ状アルミニウムケイ酸塩が形成されている場合には、チューブ状アルミニウムケイ酸塩に特有のピーク値が2θ=4,10,14付近に得られ、これによりチューブ状アルミニウムケイ酸塩の生成を確認することができる。
(2.1) Measurement by X-ray diffraction FIG. 1 shows an X-ray diffraction diagram of a tubular aluminum silicate. As shown in FIG. 1, when the tubular aluminum silicate is formed, a peak value peculiar to the tubular aluminum silicate is obtained in the vicinity of 2θ = 4, 10, and 14, thereby The formation of aluminum silicate can be confirmed.
(2.2)走査型電子顕微鏡による測定
 図2に、チューブ状アルミニウムケイ酸塩の走査型電子顕微鏡写真(SEM画像)を示す。図2に示すように、チューブ状アルミニウムケイ酸塩が形成されている場合には、SEM画像上に糸状の構造体を確認することができ、これによりチューブ状アルミニウムケイ酸塩の生成を確認することができる。
(2.2) Measurement by Scanning Electron Microscope FIG. 2 shows a scanning electron micrograph (SEM image) of the tubular aluminum silicate. As shown in FIG. 2, when a tubular aluminum silicate is formed, a thread-like structure can be confirmed on the SEM image, thereby confirming the formation of the tubular aluminum silicate. be able to.
《表面修飾》
 本発明のチューブ状アルミニウムケイ酸塩は、上記のようにして製造されるチューブ状アルミニウムケイ酸塩に対して下記表面処理剤により表面処理されていることで構成されている。
<Surface modification>
The tubular aluminum silicate of the present invention is constituted by subjecting the tubular aluminum silicate produced as described above to a surface treatment with the following surface treatment agent.
(1)表面処理剤
 チューブ状アルミニウムケイ酸塩の表面処理に用いられる表面処理剤としては、例えば、シランカップリング剤、チタネートカップリング剤、アルミネートカップリング剤、ジルコネートカップリング剤及びシリコーンオイル等が挙げられる。特に、表面処理剤として、シラン化合物を用いると、他の表面処理剤を用いた場合と比較してチューブ状アルミニウムケイ酸塩の水に対する親和性の低下が抑えられ、有機分散媒に対する親和性を向上させることができる。
(1) Surface treatment agent Examples of the surface treatment agent used for the surface treatment of tubular aluminum silicate include silane coupling agents, titanate coupling agents, aluminate coupling agents, zirconate coupling agents, and silicone oils. Etc. In particular, when a silane compound is used as the surface treatment agent, the decrease in the affinity of the tubular aluminum silicate for water is suppressed compared to the case of using other surface treatment agents, and the affinity for the organic dispersion medium is improved. Can be improved.
 本発明に係る表面処理剤としては、シランカップリング剤が好ましく、特に、耐熱性に優れ、高い疎水性を示すものが好ましい。
 表面処理剤として用いられるシランカップリング剤としては、例えば、ヘキサメチルジシラザン、トリメチルエトキシシラン、トリメチルメトキシシラン、テトラエトキシシラン、トリメチルシリルクロライド、メチルトリエトキシシラン、ジメチルジエトキシシラン、デシルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリエトキシシラン、3-フェニルアミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン等が挙げられる。また、市販のものとしては、例えば、SZ6187(東レ・ダウシリコーン社製)等を好適に用いることができる。
As the surface treatment agent according to the present invention, a silane coupling agent is preferable, and in particular, a material having excellent heat resistance and high hydrophobicity is preferable.
Examples of the silane coupling agent used as the surface treatment agent include hexamethyldisilazane, trimethylethoxysilane, trimethylmethoxysilane, tetraethoxysilane, trimethylsilyl chloride, methyltriethoxysilane, dimethyldiethoxysilane, decyltrimethoxysilane, Vinyltrichlorosilane, vinyltrimethoxysilane, vinyltriethoxysilane, N- (2-aminoethyl) -3-aminopropyltriethoxysilane, 3-aminopropyltriethoxysilane, 3-phenylaminopropyltrimethoxysilane, 3- Examples include mercaptopropylmethyldimethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, and 3-glycidoxypropylmethyldimethoxysilane. Moreover, as a commercially available thing, SZ6187 (made by Toray Dow Silicone) etc. can be used suitably, for example.
 この中でも分子量が小さく、高い疎水性を示すシランカップリング剤を用いることが望ましく、ヘキサメチルジシラザン、テトラエトキシシラン、トリメチルエトキシシラン、トリメチルメトキシシラン、トリメチルシリルクロライドを用いることが好ましい。 Among these, it is desirable to use a silane coupling agent having a small molecular weight and high hydrophobicity, and hexamethyldisilazane, tetraethoxysilane, trimethylethoxysilane, trimethylmethoxysilane, and trimethylsilyl chloride are preferably used.
 また、表面処理剤として用いられるチタネートカップリング剤としては、例えば、テトラブチルチタネート、テトラオクチルチタネート、イソプロピルトリイソステアロイルチタネート、イソプロピルトリデシルベンゼンスルフォニルチタネート及びビス(ジオクチルパイロフォスフェート)オキシアセテートチタネート等が挙げられる。また、市販のものとしては、例えば、プレンアクトTTS(味の素ファインテクノ社製)、プレンアクトTTS44(味の素ファインテクノ社製)等が挙げられる。 Examples of the titanate coupling agent used as the surface treatment agent include tetrabutyl titanate, tetraoctyl titanate, isopropyl triisostearoyl titanate, isopropyl tridecylbenzenesulfonyl titanate, and bis (dioctyl pyrophosphate) oxyacetate titanate. Can be mentioned. Examples of commercially available products include Preneact TTS (manufactured by Ajinomoto Fine Techno Co., Ltd.), Preneact TTS44 (manufactured by Ajinomoto Fine Techno Co., Ltd.), and the like.
 また、表面処理剤として用いられるシリコーンオイルとしては、例えば、ジメチルシリコーンオイル、メチルフェニルシリコーンオイル、メチルハイドロジェンシリコーンオイル等のストレートシリコーンオイルや、アミノ変性シリコーンオイル、エポキシ変性シリコーンオイル、カルボキシル変性シリコーンオイル、カルルビノール変性シリコーンオイル、メタクリル変性シリコーンオイル、メルカプト変性シリコーンオイル、異種官能基変性シリコーンオイル、ポリエーテル変性シリコーンオイル、メチルスチリル変性シリコーンオイル、親水性特殊変性シリコーンオイル、高級アルコキシ変性シリコーンオイル、高級脂肪酸含有変性シリコーンオイル及びフッ素変性シリコーン等の変性シリコーンオイルが挙げられる。 Examples of the silicone oil used as the surface treatment agent include straight silicone oils such as dimethyl silicone oil, methylphenyl silicone oil, and methyl hydrogen silicone oil, amino-modified silicone oil, epoxy-modified silicone oil, and carboxyl-modified silicone oil. , Carrubinol modified silicone oil, methacrylic modified silicone oil, mercapto modified silicone oil, different functional group modified silicone oil, polyether modified silicone oil, methylstyryl modified silicone oil, hydrophilic special modified silicone oil, higher alkoxy modified silicone oil, higher fatty acid Examples thereof include modified silicone oils such as containing modified silicone oils and fluorine-modified silicones.
 上記表面処理剤は、例えば、ヘキサン、トルエン、メタノール、エタノール、アセトン、水等で適宜希釈して用いられても良い。 The surface treatment agent may be appropriately diluted with, for example, hexane, toluene, methanol, ethanol, acetone, water or the like.
 また、上記表面処理剤には、疎水化処理剤が含有されていても良い。疎水化処理剤の添加量は、未反応で残存してしまう疎水化処理を考慮して、表面処理剤に対し、1~15質量%であることが望ましい。 Further, the surface treatment agent may contain a hydrophobic treatment agent. The amount of the hydrophobizing agent added is preferably 1 to 15% by mass with respect to the surface treating agent in consideration of the hydrophobizing treatment that remains unreacted.
 また、上記表面処理剤によってチューブ状アルミニウムケイ酸塩に導入される有機官能基中の炭素原子数は、1~6であることが好ましい。これにより、表面修飾されたチューブ状アルミニウムケイ酸塩の耐熱性や耐光性を向上させることができる。 The number of carbon atoms in the organic functional group introduced into the tubular aluminum silicate by the surface treatment agent is preferably 1-6. Thereby, the heat resistance and light resistance of the surface-modified tubular aluminum silicate can be improved.
(2)表面処理方法
 上記表面処理剤を用いた表面処理の方法としては、例えば、湿式加熱法、湿式濾過法、乾式撹拌法、インテグラルブレンド法、造粒法等が挙げられるが、湿式加熱法が好ましい。湿式加熱法を用いれば、合成後にゲル化させずに、水分散状態から処理を行うことができる。
 この場合、チューブ状アルミニウムケイ酸塩の水分散状態から、チューブ状アルミニウムケイ酸塩1重量部に対して2~100重量部の水と、100重量部以上の有機分散媒となるように調整し、更に表面処理剤を添加し、所定温度で所定時間加熱することでチューブ状アルミニウムケイ酸塩に表面処理を行うことができる。
 この時、水の量が過剰であれば有機分散媒添加前にエバポレーター等を用いて水を除去しても良い。
 また、用いる有機分散媒は特に限定されないが、例えば、メタノール、エタノール、イソプロピルアルコール、エトキシエタノール、ジメチルフォルムアミド、アセトン、酢酸エチル、テトラヒドロフラン、ベンゼン、トルエン、ヘキサン、キシレン、シクロヘキサン等の分散媒を、必要に応じて、単独で又は2種類以上混合して、使い分けて用いることが可能である。当該分散媒としては、イソプロピルアルコールを用いるのが好ましい。
(2) Surface treatment method Examples of the surface treatment method using the surface treatment agent include a wet heating method, a wet filtration method, a dry stirring method, an integral blend method, and a granulation method. The method is preferred. If the wet heating method is used, the treatment can be performed from an aqueous dispersion state without gelation after synthesis.
In this case, the water-dispersed state of the tubular aluminum silicate is adjusted so as to be 2 to 100 parts by weight of water and 100 parts by weight or more of the organic dispersion medium per 1 part by weight of the tubular aluminum silicate. Furthermore, the surface treatment can be performed on the tubular aluminum silicate by adding a surface treatment agent and heating at a predetermined temperature for a predetermined time.
At this time, if the amount of water is excessive, the water may be removed using an evaporator or the like before the addition of the organic dispersion medium.
The organic dispersion medium to be used is not particularly limited. For example, a dispersion medium such as methanol, ethanol, isopropyl alcohol, ethoxyethanol, dimethylformamide, acetone, ethyl acetate, tetrahydrofuran, benzene, toluene, hexane, xylene, cyclohexane, If necessary, it can be used alone or in combination of two or more. As the dispersion medium, isopropyl alcohol is preferably used.
 なお、表面処理の方法としては、上記の方法に限られるものではなく、ポリマーグラフト処理により行うものであっても良い。
 ポリマーグラフト処理により表面処理を行う場合、表面処理剤としては、表面処理前のチューブ状アルミニウムケイ酸塩の表面に存在する表面官能基と反応し得る反応性基を有する反応性ポリマーが用いられる。これにより、チューブ状アルミニウムケイ酸塩の表面に反応性ポリマーをグラフト(付加)させることができる。
The surface treatment method is not limited to the above method, and may be performed by polymer graft treatment.
When surface treatment is performed by polymer graft treatment, a reactive polymer having a reactive group capable of reacting with a surface functional group present on the surface of the tubular aluminum silicate before the surface treatment is used as the surface treatment agent. Thereby, a reactive polymer can be grafted (added) on the surface of the tubular aluminum silicate.
(3)表面処理量
 本発明のチューブ状アルミニウムケイ酸塩には、導入有機官能基量が1~10質量%となるように、表面処理が施されている。
 チューブ状アルミニウムケイ酸塩に表面処理を行う際に、添加する表面処理剤の量を調整することにより、導入有機官能基量を1~10質量%の範囲内に調整することができる。
 導入有機官能基量が1~10質量%の範囲内であることにより、水に対する親和性を維持しつつ、有機分散媒に対する親和性を高めることができる。また、導入有機官能基量としては、当該効果を得る観点から2~7質量%であることがより好ましい。
(3) Surface treatment amount The tubular aluminum silicate of the present invention is subjected to a surface treatment so that the amount of the introduced organic functional group is 1 to 10% by mass.
When the surface treatment is performed on the tubular aluminum silicate, the amount of the introduced organic functional group can be adjusted within a range of 1 to 10% by mass by adjusting the amount of the surface treatment agent to be added.
When the amount of the introduced organic functional group is in the range of 1 to 10% by mass, the affinity for the organic dispersion medium can be increased while maintaining the affinity for water. The amount of the introduced organic functional group is more preferably 2 to 7% by mass from the viewpoint of obtaining the effect.
《本発明のチューブ状アルミニウムケイ酸塩の効果》
 本発明に係るチューブ状アルミニウムケイ酸塩によれば、表面処理剤により有機官能基で表面修飾されたものであって、導入有機官能基量が1~10質量%であるため、水に対する親和性を維持しつつ、有機分散媒に対する親和性を向上させることができる。このため、水に対する親和性と有機分散媒に対する親和性を両立することができ、水中又は有機分散媒中のいずれにおいてもチューブ状アルミニウムケイ酸塩を凝集させることなく均一に分散させることができる。
<< Effect of tubular aluminum silicate of the present invention >>
According to the tubular aluminum silicate of the present invention, the surface-modified agent is surface-modified with an organic functional group, and the amount of the introduced organic functional group is 1 to 10% by mass. While maintaining the above, the affinity for the organic dispersion medium can be improved. For this reason, the affinity for water and the affinity for the organic dispersion medium can be compatible, and the tubular aluminum silicate can be uniformly dispersed in water or in the organic dispersion medium without agglomeration.
 また、導入有機官能基量が2~7質量%である場合には、水に対する親和性を高い値で維持しつつ、有機分散媒に対する親和性をより向上させることができる。 Further, when the amount of the introduced organic functional group is 2 to 7% by mass, the affinity for the organic dispersion medium can be further improved while maintaining the affinity for water at a high value.
 また、含有されるAlに対するSiの元素モル比が0.25~0.70である場合には、欠損の少ないチューブ構造を有するチューブ状アルミニウムケイ酸塩が形成されているため、チューブ構造の表面や内部に水分をより多く吸着することができる。これにより、チューブ状アルミニウムケイ酸塩の水に対する親和性を更に向上させることができる。 In addition, when the elemental molar ratio of Si to Al contained is 0.25 to 0.70, since a tubular aluminum silicate having a tube structure with few defects is formed, the surface of the tube structure More moisture can be adsorbed inside. Thereby, the affinity with respect to the water of tubular aluminum silicate can further be improved.
 また、表面処理剤がシラン化合物であると、他の表面処理剤を用いた場合と比較して水に対する親和性の低下が抑えられ、有機分散媒に対する親和性を向上させることができる。 Further, when the surface treatment agent is a silane compound, a decrease in the affinity for water can be suppressed as compared with the case of using another surface treatment agent, and the affinity for the organic dispersion medium can be improved.
 また、導入される有機官能基中の炭素原子数が1~6であると、表面修飾されたチューブ状アルミニウムケイ酸塩の耐熱性や耐光性を向上させることができる。 Further, when the number of carbon atoms in the introduced organic functional group is 1 to 6, the heat resistance and light resistance of the surface-modified tubular aluminum silicate can be improved.
 以下、実施例により本発明を具体的に説明するが、本発明はこれらに限定されるものではない。 Hereinafter, the present invention will be specifically described by way of examples, but the present invention is not limited thereto.
《サンプル1の調製》
 まず、オルトケイ酸ナトリウムをイオン交換水に溶解し、3.0mMオルトケイ酸ナトリウム水溶液を10L調整した。調製したオルトケイ酸ナトリウム水溶液を、カラムに充填した陽イオン交換樹脂に流入してイオン交換処理し、3.0mMのオルトケイ酸水溶液を得た。カラムの流速は、得られるオルトケイ酸水溶液の電気伝導率が500μS/cm以下になるように設定した。なお、オルトケイ酸水溶液の電気伝導率は、電気伝導率計ES-51(堀場製作所社製)を用いて、25℃で測定した。また、陽イオン交換樹脂としては、オルトケイ酸水溶液のpHが3.5になるように、強酸性陽イオン交換樹脂であるアンバーライトIR120B(オルガノ社製)を使用した。オルトケイ酸水溶液のpHは、MODEL(F-71S)(株式会社堀場製作所)を用いて上記方法により測定した。
<< Preparation of Sample 1 >>
First, sodium orthosilicate was dissolved in ion-exchanged water, and 10 L of a 3.0 mM sodium orthosilicate aqueous solution was prepared. The prepared sodium orthosilicate aqueous solution was introduced into a cation exchange resin packed in a column and subjected to ion exchange treatment to obtain a 3.0 mM orthosilicate aqueous solution. The flow rate of the column was set so that the electrical conductivity of the resulting orthosilicate aqueous solution was 500 μS / cm or less. The electrical conductivity of the orthosilicate aqueous solution was measured at 25 ° C. using an electrical conductivity meter ES-51 (manufactured by Horiba, Ltd.). Further, as the cation exchange resin, Amberlite IR120B (manufactured by Organo), which is a strong acid cation exchange resin, was used so that the pH of the orthosilicate aqueous solution was 3.5. The pH of the aqueous orthosilicate solution was measured by the above method using MODEL (F-71S) (Horiba, Ltd.).
 次に、得られた3.0mMのオルトケイ酸水溶液を2L、30mMの硝酸アルミニウム水溶液を1L、28mMの尿素水溶液を1L、3.8mMのNaOH水溶液を1L、イオン交換水2Lを混合して、SiとAlのモル比として、Si/Alの値が表1に記載の値となるように混合液を調製した。更に、混合液のpHが2.8になるように4MのNaOH水溶液を滴下した。調製した混合液のpHは上記と同様の方法により測定した。調製した混合液を充分に撹拌した後、この混合液をオートクレーブにて100℃で80時間加熱した。 Next, 2 L of the obtained 3.0 mM orthosilicate aqueous solution, 1 L of 30 mM aluminum nitrate aqueous solution, 1 L of 28 mM urea aqueous solution, 1 L of 3.8 mM NaOH aqueous solution, and 2 L of ion-exchanged water were mixed together. As a molar ratio of Al to Al, a mixed solution was prepared so that the value of Si / Al was the value shown in Table 1. Further, 4M NaOH aqueous solution was added dropwise so that the pH of the mixed solution was 2.8. The pH of the prepared mixed solution was measured by the same method as described above. After sufficiently stirring the prepared mixed solution, the mixed solution was heated at 100 ° C. for 80 hours in an autoclave.
 混合液が室温に戻った後、5MのNaCl水溶液を混合液に対して1/10体積量加えてゲル化させ、遠心分離することで透明なチューブ状アルミニウムケイ酸塩のゲルを得た。得られたゲルに含まれる塩であるNaClを透析膜を用いて除去し、チューブ状アルミニウムケイ酸塩の水分散液を得た。 After the mixed solution returned to room temperature, 1/10 volume of 5M NaCl aqueous solution was added to the mixed solution for gelation, and centrifuged to obtain a transparent tubular aluminum silicate gel. NaCl, which is a salt contained in the obtained gel, was removed using a dialysis membrane to obtain an aqueous dispersion of tubular aluminum silicate.
 得られたチューブ状アルミニウムケイ酸塩の水分散液を、チューブ状アルミニウムケイ酸塩1重量部に対して、水50重量部、イソプロピルアルコール150重量部となるように調整し、撹拌した後、チューブ状アルミニウムケイ酸塩に対して表面処理剤として15質量%のヘキサメチルジシラザンを4時間かけて滴下した。その後、80℃で12時間撹拌を行うことで、チューブ状アルミニウムケイ酸塩の表面処理を行った後、凍結乾燥させて粉末状とした。なお、表面処理剤の添加量は未反応部と脱離基の重量を考慮する必要があるため、表面処理剤の添加量と導入有機官能基量は異なる。 The obtained aqueous dispersion of tubular aluminum silicate was adjusted so as to be 50 parts by weight of water and 150 parts by weight of isopropyl alcohol with respect to 1 part by weight of the tubular aluminum silicate. 15% by mass of hexamethyldisilazane as a surface treatment agent was added dropwise to the aluminum silicate over 4 hours. Then, after surface-treating tubular aluminum silicate by stirring at 80 ° C. for 12 hours, it was freeze-dried to obtain powder. In addition, since it is necessary to consider the weight of an unreacted part and a leaving group for the addition amount of a surface treatment agent, the addition amount of a surface treatment agent and the amount of introduced organic functional groups differ.
《サンプル2~13の調製》
 サンプル1の調製において、表面処理剤の種類及び添加量並びに混合液調製時におけるオルトケイ酸水溶液の添加量を表1に記載のとおりに変更した以外は同様にして、サンプル2~13を調製した。
<< Preparation of Samples 2 to 13 >>
Samples 2 to 13 were prepared in the same manner as in the preparation of Sample 1, except that the type and addition amount of the surface treatment agent and the addition amount of the orthosilicate aqueous solution at the time of preparing the mixed solution were changed as shown in Table 1.
《サンプル1~13の評価》
 サンプル1~13において、チューブ状アルミニウムケイ酸塩に含有されるAlに対するSiの元素モル比(表1中、Si/Al)は、誘導結合プラズマ発光分析分光装置(SIIナノテクノロジー社製 SPS3520UV)を用いて測定した。
(1)導入有機官能基量の測定
 調製したチューブ状アルミニウムケイ酸塩の導入有機官能基量は、熱重量分析装置(TG)(SII社製 EXSTAR 6000)を用いて測定した。
 すなわち、チューブ状アルミニウムケイ酸塩の加熱処理による重量減少を表面処理剤の熱分解によるものとして、加熱前後の重量変化量を導入有機官能基量として算出した。
<< Evaluation of Samples 1 to 13 >>
In Samples 1 to 13, the elemental molar ratio of Si to Al contained in the tubular aluminum silicate (Si / Al in Table 1) was measured using an inductively coupled plasma optical emission spectrometer (SPS3520UV manufactured by SII Nanotechnology). And measured.
(1) Measurement of introduced organic functional group amount The introduced organic functional group amount of the prepared tubular aluminum silicate was measured using a thermogravimetric analyzer (TG) (EXSTAR 6000 manufactured by SII).
That is, the weight loss due to heat treatment of the tubular aluminum silicate was calculated as the thermal decomposition of the surface treatment agent, and the amount of weight change before and after heating was calculated as the amount of introduced organic functional group.
(2)吸水率の測定
 温度60℃、湿度90%雰囲気下に粉末状のチューブ状アルミニウムケイ酸塩を放置し、飽和吸水量を測定した。
 各サンプルのそれぞれについて、上記表面処理前のチューブ状アルミニウムケイ酸塩の吸水量を100%としたときの相対値を算出し、下記の基準に従ってチューブ状アルミニウムケイ酸塩の水に対する親和性を評価した。評価結果を表1に示す。なお、下記基準において吸水率の相対値が70%以上であると、水に対する親和性が維持されているものと判断することができる。
(2) Measurement of water absorption rate The powdered tubular aluminum silicate was left in an atmosphere of 60 ° C. and 90% humidity, and the saturated water absorption was measured.
For each sample, calculate the relative value when the water absorption of the tubular aluminum silicate before the surface treatment is 100%, and evaluate the affinity of the tubular aluminum silicate for water according to the following criteria. did. The evaluation results are shown in Table 1. In addition, it can be judged that the affinity with respect to water is maintained as the relative value of a water absorption is 70% or more in the following reference | standard.
  90%以上・・・◎
  80%以上・・・○
  70%以上・・・△
  70%未満・・・×
90% or more ... ◎
80% or more ... ○
70% or more ... △
Less than 70% ... ×
(3)有機分散媒中の分散粒径の測定
 作製したサンプル1~13に対し、レーザー回折式粒度分布測定装置(島津製作所製)を用いて体積平均径D50の値を測定した。
 すなわち、各サンプルのそれぞれについて、上記表面処理前の水分散状態のチューブ状アルミニウムケイ酸塩の粒径と、上記表面処理後、凍結乾燥前におけるイソプロピルアルコール中のチューブ状アルミニウムケイ酸塩の粒径とを測定した。そして、(イソプロピルアルコール中のチューブ状アルミニウムケイ酸塩の粒径)/(水中のチューブ状アルミニウムケイ酸塩の粒径)を算出し、下記の基準に従ってチューブ状アルミニウムケイ酸塩の有機分散媒に対する親和性を評価した。評価結果を表1に示す。なお、下記基準において分散粒径の相対値が10未満であると、有機分散媒に対する親和性が向上できているものと判断することができる。
(3) Measurement of dispersed particle size in organic dispersion medium The values of volume average diameter D 50 were measured for the produced samples 1 to 13 using a laser diffraction particle size distribution measuring device (manufactured by Shimadzu Corporation).
That is, for each of the samples, the particle diameter of the water-dispersed tubular aluminum silicate before the surface treatment and the particle diameter of the tubular aluminum silicate in isopropyl alcohol after the surface treatment and before lyophilization And measured. And (particle diameter of tubular aluminum silicate in isopropyl alcohol) / (particle diameter of tubular aluminum silicate in water) is calculated, and the organic dispersion medium of tubular aluminum silicate according to the following criteria Affinity was evaluated. The evaluation results are shown in Table 1. In addition, when the relative value of the dispersed particle diameter is less than 10 in the following criteria, it can be determined that the affinity for the organic dispersion medium is improved.
  1.5未満・・・◎
  1.5以上3未満・・・○
  3以上10未満・・・△
  10以上・・・×
Less than 1.5 ... ◎
1.5 or more and less than 3
3 to less than 10 ... △
10 or more ×
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
(4)まとめ
 比較例に係るサンプル1は、導入有機官能基量が多いため吸水率が低く、比較例に係るサンプル2は、導入有機官能基量が少ないため有機分散媒中における分散性が悪い。
 一方、本発明に係るサンプル3~8は、いずれも導入有機官能基量が1~10質量%の範囲内であるため、高い吸水率と分散性を得ることができている。特に、サンプル5~7は、導入有機官能基量が2~7質量%の範囲内であることで、吸水性及び分散性に優れた結果となっている。このように、本発明によれば、水に対する親和性と有機分散媒に対する親和性を両立できることが分かる。
 また、本発明に係るサンプル9~11は、Alに対するSiの元素モル比を0.25~0.70にしており、本発明に係るサンプル6に比べて、より優れた吸水性を得ることができている。ただし、比較例に係るサンプル12は、Alに対するSiの元素モル比が0.8となっており、チューブ状アルミニウムケイ酸塩を合成することができなかった。
 また、本発明に係るサンプル13は、表面処理剤をシラン化合物からアルミネート化合物に変更しており、この場合にも吸水性と分散性を維持することができている。しかしながら、シラン化合物を用いたサンプルの方が優れた性能を得ることができており、表面処理剤としては、シラン化合物が好ましいことが分かる。
 以上のように、本発明によれば、水に対する親和性と有機分散媒に対する親和性の両立を可能にしている。具体的には、本発明に係るサンプル3~11及びサンプル13では、水に対する親和性に関して、吸水率の相対値を82~96%の範囲にすることができた。また、サンプル3~11及びサンプル13では、有機分散媒に対する親和性に関して、分散粒径の相対値を1.7~5.3の範囲にすることができた。
(4) Summary Sample 1 according to the comparative example has a low water absorption due to a large amount of the introduced organic functional group, and sample 2 according to the comparative example has a low dispersibility in the organic dispersion medium due to a small amount of the introduced organic functional group. .
On the other hand, all of Samples 3 to 8 according to the present invention have high water absorption and dispersibility since the amount of the introduced organic functional group is in the range of 1 to 10% by mass. In particular, Samples 5 to 7 have excellent water absorption and dispersibility because the amount of the introduced organic functional group is in the range of 2 to 7% by mass. Thus, according to this invention, it turns out that the affinity with respect to water and the affinity with respect to an organic dispersion medium can be made compatible.
Samples 9 to 11 according to the present invention have an Si molar ratio of Si to Al of 0.25 to 0.70, and can obtain better water absorption than Sample 6 according to the present invention. is made of. However, in the sample 12 according to the comparative example, the elemental molar ratio of Si to Al was 0.8, and the tubular aluminum silicate could not be synthesized.
In the sample 13 according to the present invention, the surface treatment agent is changed from a silane compound to an aluminate compound, and in this case as well, water absorption and dispersibility can be maintained. However, the sample using the silane compound can obtain superior performance, and it is understood that the silane compound is preferable as the surface treatment agent.
As described above, according to the present invention, the compatibility with water and the affinity with the organic dispersion medium are compatible. Specifically, in Samples 3 to 11 and Sample 13 according to the present invention, the relative value of water absorption was able to be in the range of 82 to 96% with respect to the affinity for water. In Samples 3 to 11 and Sample 13, the relative value of the dispersed particle diameter could be in the range of 1.7 to 5.3 with respect to the affinity for the organic dispersion medium.
 以上のように、本発明は、水に対する親和性と有機分散媒に対する親和性を両立させたチューブ状アルミニウムケイ酸塩を提供することに適している。 As described above, the present invention is suitable for providing a tubular aluminum silicate having both an affinity for water and an affinity for an organic dispersion medium.

Claims (5)

  1.  表面処理剤により有機官能基で表面修飾されたチューブ状アルミニウムケイ酸塩であって、
     導入有機官能基量が1~10質量%であることを特徴とするチューブ状アルミニウムケイ酸塩。
    A tubular aluminum silicate surface-modified with an organic functional group by a surface treatment agent,
    A tubular aluminum silicate characterized in that the amount of introduced organic functional group is 1 to 10% by mass.
  2.  前記導入有機官能基量が2~7質量%であることを特徴とする請求項1に記載のチューブ状アルミニウムケイ酸塩。 The tubular aluminum silicate according to claim 1, wherein the amount of the introduced organic functional group is 2 to 7% by mass.
  3.  含有されるAlに対するSiの元素モル比が0.25~0.70であることを特徴とする請求項1又は2に記載のチューブ状アルミニウムケイ酸塩。 The tubular aluminum silicate according to claim 1 or 2, wherein the elemental molar ratio of Si to Al contained is 0.25 to 0.70.
  4.  前記表面処理剤がシラン化合物であることを特徴とする請求項1から3のいずれか一項に記載のチューブ状アルミニウムケイ酸塩。 The tubular aluminum silicate according to any one of claims 1 to 3, wherein the surface treatment agent is a silane compound.
  5.  前記有機官能基中の炭素原子数が1~6であることを特徴とする請求項1から4のいずれか一項に記載のチューブ状アルミニウムケイ酸塩。 The tubular aluminum silicate according to any one of claims 1 to 4, wherein the organic functional group has 1 to 6 carbon atoms.
PCT/JP2014/079669 2013-11-11 2014-11-10 Tube-shaped aluminum silicate WO2015068828A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015546709A JPWO2015068828A1 (en) 2013-11-11 2014-11-10 Tubular aluminum silicate

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013232703 2013-11-11
JP2013-232703 2013-11-11

Publications (1)

Publication Number Publication Date
WO2015068828A1 true WO2015068828A1 (en) 2015-05-14

Family

ID=53041601

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079669 WO2015068828A1 (en) 2013-11-11 2014-11-10 Tube-shaped aluminum silicate

Country Status (2)

Country Link
JP (1) JPWO2015068828A1 (en)
WO (1) WO2015068828A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021065832A (en) * 2019-10-23 2021-04-30 国立研究開発法人産業技術総合研究所 Harmful substance adsorbent containing aluminum silicate or aluminum hydrate, aluminum hydrate, method for producing aluminum silicate or aluminum hydrate, and method for removing harmful substance

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159850A (en) * 2000-11-28 2002-06-04 Japan Petroleum Exploration Co Ltd Storage medium of non-polar gas molecule and storage method for the same
JP2004224584A (en) * 2003-01-20 2004-08-12 National Institute Of Advanced Industrial & Technology Method of manufacturing silicate tube surface-modified with organic functional group
JP2007204565A (en) * 2006-01-31 2007-08-16 Fuji Xerox Co Ltd Flame-retardant resin composition and flame-retardant resin molded product using the same
JP2013525238A (en) * 2010-03-19 2013-06-20 ジョージア テック リサーチ コーポレーション Single wall metal oxide nanotubes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002159850A (en) * 2000-11-28 2002-06-04 Japan Petroleum Exploration Co Ltd Storage medium of non-polar gas molecule and storage method for the same
JP2004224584A (en) * 2003-01-20 2004-08-12 National Institute Of Advanced Industrial & Technology Method of manufacturing silicate tube surface-modified with organic functional group
JP2007204565A (en) * 2006-01-31 2007-08-16 Fuji Xerox Co Ltd Flame-retardant resin composition and flame-retardant resin molded product using the same
JP2013525238A (en) * 2010-03-19 2013-06-20 ジョージア テック リサーチ コーポレーション Single wall metal oxide nanotubes

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
L.M.JOHNSON ET AL.: "Hydrolysis of (gamma- Aminopropyl)triethoxysilane-Silylated Imogolite and Formation of a Silylated Tubular Silicate- Layered Silicate Nanocomposite", LANGMUIR, vol. 7, no. 11, pages 2636 - 2641 *
W.C.ACKERMAN ET AL.: "Adsorption Studies Of Pure And Modified Imogolite As A Potential Pore Size Standard.", STUDIES IN SURFACE SCIENCE AND CATALYSIS, vol. 87, 1994, pages 735 - 744 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021065832A (en) * 2019-10-23 2021-04-30 国立研究開発法人産業技術総合研究所 Harmful substance adsorbent containing aluminum silicate or aluminum hydrate, aluminum hydrate, method for producing aluminum silicate or aluminum hydrate, and method for removing harmful substance
JP7010274B2 (en) 2019-10-23 2022-01-26 国立研究開発法人産業技術総合研究所 Hazardous substance adsorbent containing aluminum silicate or aluminum hydrate, method for producing aluminum hydrate, aluminum silicate or aluminum hydrate, and method for removing harmful substances.

Also Published As

Publication number Publication date
JPWO2015068828A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
CN107922203B (en) Method for preparing spherical silica aerogel particles and spherical silica aerogel particles prepared thereby
Arkhireeva et al. Synthesis of sub-200 nm silsesquioxane particles using a modified Stöber sol–gel route
JP4478766B2 (en) Spherical silica porous particles and method for producing the same
KR102172825B1 (en) Silica-containing resin composition and method for producing same, and molded article produced from silica-containing resin composition
JP5132193B2 (en) Porous silica particles and method for producing the same
JP4296307B2 (en) Method for producing spherical silica-based mesoporous material
JP5148971B2 (en) Spherical silica particles and method for producing the same
Lazareva et al. Synthesis of high-purity silica nanoparticles by sol-gel method
JP5253124B2 (en) Porous silica particles and method for producing the same
JP6284443B2 (en) Method for producing colloidal silica containing core-shell type silica particles
JP7137156B2 (en) Method for producing silica sol having elongated particle shape
WO2013073475A1 (en) Hollow nanoparticles and method for producing same
JP7137157B2 (en) Method for producing silica sol having elongated particle shape
KR100744976B1 (en) Inorganic oxide
CN108137345B (en) Iron oxyhydroxide nanodispersion
WO2015068828A1 (en) Tube-shaped aluminum silicate
WO2015065185A1 (en) Silica particles and method of preparation thereof
US11964253B2 (en) Production method for core-shell porous silica particles
JP2009013035A (en) Spherical silica-based mesoporous body having bimodal pore structure and method for producing the same
JP2004224583A (en) Method of manufacturing hollow spherical silicate cluster having its surface modified with organic functional group
JP5687832B2 (en) Composite silica particles
WO2015068830A1 (en) Method for producing tube-shaped aluminum silicate
JP2016169776A (en) Vacuum heat insulation material and method for producing the same
JP4479071B2 (en) Method for producing spherical porous body
JP2015117148A (en) Tubular aluminum silicate and method of producing aluminum silicate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859767

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546709

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859767

Country of ref document: EP

Kind code of ref document: A1