WO2015068813A1 - Chip, and method for measuring surface plasmon-enhanced fluorescence - Google Patents

Chip, and method for measuring surface plasmon-enhanced fluorescence Download PDF

Info

Publication number
WO2015068813A1
WO2015068813A1 PCT/JP2014/079604 JP2014079604W WO2015068813A1 WO 2015068813 A1 WO2015068813 A1 WO 2015068813A1 JP 2014079604 W JP2014079604 W JP 2014079604W WO 2015068813 A1 WO2015068813 A1 WO 2015068813A1
Authority
WO
WIPO (PCT)
Prior art keywords
liquid
fluorescence
excitation light
liquid reservoir
diffraction grating
Prior art date
Application number
PCT/JP2014/079604
Other languages
French (fr)
Japanese (ja)
Inventor
剛典 永江
高敏 彼谷
幸登 中村
平山 博士
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Priority to JP2015546701A priority Critical patent/JP6586884B2/en
Publication of WO2015068813A1 publication Critical patent/WO2015068813A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • G01N21/645Specially adapted constructive features of fluorimeters
    • G01N21/648Specially adapted constructive features of fluorimeters using evanescent coupling or surface plasmon coupling for the excitation of fluorescence

Definitions

  • the present invention relates to a chip used in a surface plasmon enhanced fluorescence measuring apparatus and a surface plasmon enhanced fluorescence measuring method.
  • SPFS surface plasmon excitation enhanced fluorescence spectroscopy
  • SPR surface plasmon resonance
  • a capture body for example, a primary antibody
  • a capture body that can specifically bind to the substance to be detected is immobilized on the metal film to form a reaction field for specifically capturing the substance to be detected.
  • the substance to be detected is bound to the reaction field.
  • a secondary antibody labeled with a fluorescent substance is provided to the reaction field, the target substance bound to the reaction field is labeled with the fluorescent substance.
  • the fluorescent substance that labels the substance to be detected is excited by the electric field enhanced by SPR and emits fluorescence. Therefore, the presence or amount of the substance to be detected can be detected by detecting fluorescence.
  • SPFS a fluorescent substance is excited by an electric field enhanced by SPR, so that a substance to be detected can be detected with high sensitivity.
  • SPFS is roughly classified into prism coupling (PC) -SPFS and lattice coupling (GC) -SPFS by means of coupling (coupling) excitation light and surface plasmons.
  • PC-SPFS a prism having a metal film formed on one surface is used (see Patent Document 1). In this method, the excitation light is totally reflected at the interface between the prism and the metal film, thereby coupling the excitation light and the surface plasmon.
  • GC-SPFS couples excitation light and surface plasmon using a diffraction grating (see Patent Document 2).
  • a metal film formed with a diffraction grating is used.
  • excitation light and surface plasmons are combined by irradiating the diffraction grating with excitation light.
  • PC-SPFS it is known that fluorescence is emitted in all directions, whereas in GC-SPFS, fluorescence is emitted in a specific direction with directivity.
  • a lid does not exist on the liquid. This is because the background is increased by the autofluorescence of the lid when the excitation light passes through the lid. In particular, when the substance to be detected is at a low concentration, an increase in background may lead to failure in detection of the substance to be detected.
  • the liquid surface is inclined by the meniscus.
  • the incident angle of the excitation light and the emission angle of the fluorescence are shifted, and the fluorescence cannot properly reach the light detection unit, and the detection of the target substance fails.
  • the use of the lens or the like is not preferable from the viewpoint of reducing the background.
  • An object of the present invention is a chip used in a measuring apparatus that uses GC-SPFS and a measuring method that uses GC-SPFS, which prevents an increase in background and reduces detection accuracy due to a deviation in the emission angle of fluorescence. It is providing the chip
  • a chip detects a fluorescence emitted from a fluorescent substance that labels a target substance by being excited by an electric field based on surface plasmon resonance.
  • a chip used in a surface plasmon enhanced fluorescence measuring apparatus for detecting the presence or amount of a substance including a liquid reservoir for holding a liquid and a diffraction grating disposed at the bottom of the liquid reservoir And the horizontal size of the liquid reservoir in the cross section in the depth direction of the liquid reservoir increases toward the top.
  • the surface plasmon enhanced fluorescence measurement method uses a fluorescent material that labels a target substance to emit fluorescence that is excited by an electric field based on surface plasmon resonance.
  • a surface plasmon enhanced fluorescence measurement method for detecting the presence or amount of the substance to be detected, a liquid reservoir for holding a liquid, and a diffraction grating disposed at the bottom of the liquid reservoir A step of preparing a chip having a metal film including a capture body fixed to the diffraction grating, a step of introducing a sample liquid into the liquid reservoir, and a step of separating the sample liquid in the liquid reservoir From the fluorescent substance that labels the substance to be detected by irradiating the diffraction grating with excitation light from the opening side of the liquid reservoir so that surface plasmon resonance occurs in the diffraction grating. Released Detecting the fluorescence, and the surface area of the liquid in the liquid reservoir in the step of detecting fluorescence is the sample liquid in the liquid reservoir in the step of introducing the sample liquid into the liquid reservoir. Greater than the surface area of
  • a substance to be detected can be detected with higher sensitivity and accuracy in a measuring apparatus and a measuring method using GC-SPFS.
  • FIG. 5A is a schematic cross-sectional view showing the chip after introducing the sample solution
  • FIG. 5B is a schematic cross-sectional view showing the chip during fluorescence detection.
  • FIG. 6A is a schematic diagram illustrating optical paths of excitation light and fluorescence when it is assumed that there is no meniscus
  • FIG. 6B is a schematic diagram illustrating optical paths of excitation light and fluorescence when there is a meniscus.
  • 7A and 7B are graphs showing the measurement results of meniscus.
  • 8A and 8B are schematic cross-sectional views showing modifications of the chip.
  • FIG. 1 is a schematic diagram showing a configuration of a surface plasmon enhanced fluorescence measurement apparatus (hereinafter referred to as “SPFS apparatus”) 100 and a chip 200 according to Embodiment 1 of the present invention.
  • the SPFS device 100 includes a light source 110, a collimating lens 120, an excitation light filter 130, a fluorescence filter 140, a light detection unit 150, and a control unit 160.
  • the SPFS device 100 is used in a state where the chip 200 is mounted on a chip holder (not shown). Therefore, the chip 200 will be described first, and then the SPFS device 100 will be described.
  • the chip 200 includes a substrate 210, a metal film 220 including a diffraction grating 230, and a sidewall 240 that forms a liquid reservoir 250 for holding a liquid.
  • a diffraction grating 230 is formed on the metal film 220.
  • a capture body (for example, a primary antibody) is immobilized on the diffraction grating 230, and the surface of the diffraction grating 230 also functions as a reaction field for binding the capture body and the substance to be detected. In FIG. 1, the capturing body and the substance to be detected are omitted.
  • the chip 200 is preferably a structure in which each piece has a length of several millimeters to several centimeters. However, the chip 200 is a smaller structure or a larger structure not included in the category of “chip”. May be.
  • the substrate 210 is a support member for the metal film 220 and the side wall 240.
  • the material of the substrate 210 is not particularly limited as long as it has mechanical strength capable of supporting the metal film 220 and the side wall 240.
  • Examples of the material of the substrate 210 include inorganic materials such as glass, quartz, and silicon, and resins such as polymethyl methacrylate, polycarbonate, polystyrene, and polyolefin.
  • the metal film 220 is disposed on the substrate 210 so as to be positioned at the bottom of the liquid reservoir 250. As described above, the diffraction grating 230 is formed on the metal film 220. When the metal film 220 is irradiated with light, surface plasmons generated in the metal film 220 and evanescent waves generated by the diffraction grating 230 are combined to generate surface plasmon resonance (SPR).
  • the material of the metal film 220 is not particularly limited as long as it is a metal that generates surface plasmons. Examples of the material of the metal film 220 include gold, silver, copper, aluminum, and alloys thereof.
  • a method for forming the metal film 220 is not particularly limited. Examples of the method for forming the metal film 220 include sputtering, vapor deposition, and plating.
  • the thickness of the metal film 220 is not particularly limited. For example, the thickness of the metal film 220 is about 30 to 70 nm.
  • the diffraction grating 230 generates an evanescent wave when the metal film 220 is irradiated with light.
  • the shape of the diffraction grating 230 is not particularly limited as long as an evanescent wave can be generated.
  • the diffraction grating 230 may be a one-dimensional diffraction grating as shown in FIG. 2A or a two-dimensional diffraction grating as shown in FIG. 2B.
  • a plurality of ridges parallel to each other are formed on the surface of the metal film 220 at a predetermined interval.
  • convex portions having a predetermined shape are periodically arranged on the surface of the metal film 220.
  • Examples of the arrangement of the convex portions include a square lattice, a triangular (hexagonal) lattice, and the like.
  • Examples of the cross-sectional shape of the diffraction grating 230 include a rectangular wave shape, a sine wave shape, a sawtooth shape, and the like.
  • the pitch of the diffraction grating is preferably in the range of 100 to 2000 nm from the viewpoint of generating SPR.
  • the “diffraction grating pitch” refers to the center-to-center distance ⁇ of the protrusions in the arrangement direction of the protrusions, as shown in FIGS.
  • the formation method of the diffraction grating 230 is not particularly limited.
  • the metal film 220 may be provided with an uneven shape.
  • the metal film 220 may be formed over the substrate 210 that has been previously provided with an uneven shape.
  • the metal film 220 including the diffraction grating 230 can be formed.
  • a capturing body for capturing a substance to be detected is immobilized.
  • the capturing body specifically binds to the substance to be detected.
  • the capturing body is fixed substantially uniformly on the surface of the diffraction grating 230.
  • the type of capturing body is not particularly limited as long as it can capture the substance to be detected.
  • the capturing body is an antibody (primary antibody) or a fragment thereof specific to the substance to be detected, an enzyme that can specifically bind to the substance to be detected, or the like.
  • the method for immobilizing the capturing body is not particularly limited.
  • a self-assembled monomolecular film hereinafter referred to as “SAM film”
  • a polymer film to which a capturing body is bonded may be formed on the diffraction grating 230.
  • SAM films include films formed with substituted aliphatic thiols such as HOOC— (CH 2 ) 11 —SH.
  • the material constituting the polymer film include polyethylene glycol and MPC polymer.
  • a polymer having a reactive group that can be bound to the capturing body may be fixed to the diffraction grating 230, and the capturing body may be bound to the polymer.
  • the excitation light ⁇ is irradiated onto the metal film 220 (diffraction grating 230) at a predetermined incident angle ⁇ .
  • the surface plasmon generated in the metal film 220 and the evanescent wave generated by the diffraction grating 230 are combined to generate SPR.
  • the fluorescent substance is excited by the enhanced electric field formed by SPR, and fluorescent ⁇ is emitted.
  • the fluorescence ⁇ is emitted with directivity in a specific direction.
  • the side wall 240 is disposed on the substrate 210 so as to surround the metal film 220.
  • the side wall 240 forms a liquid reservoir 250 for holding a liquid on the metal film 220. Since the opening of the liquid reservoir 250 is not closed with a lid, the surface of the liquid in the liquid reservoir 250 is exposed to the outside. Accordingly, the surface of the liquid in the liquid reservoir 250 forms a meniscus depending on the size of the liquid surface, the hydrophobicity of the inner surface of the side wall 240, the surface tension of the liquid, and the like.
  • the horizontal size of the liquid reservoir 250 in the cross section in the depth direction of the liquid reservoir 250 in order to reduce the influence of the meniscus at the time of fluorescence detection, the horizontal size of the liquid reservoir 250 in the cross section in the depth direction of the liquid reservoir 250.
  • the distance (the distance between the side walls 240 facing each other) increases as it goes upward (away from the metal film 220). More specifically, the interval between the side walls 240 in the upper part of the liquid reservoir 250 is larger than the interval between the side walls 240 in the lower part of the liquid reservoir 250, and the inner surface of the side wall 240 in the upper part of the liquid reservoir 250 and the liquid reservoir The inner surface of the side wall 240 at the bottom of the portion 250 is connected in a horizontal plane (see FIG. 1).
  • the material of the side wall 240 is not particularly limited as long as it can hold a liquid on the metal film 220, and may be appropriately selected according to required properties (for example, hydrophobicity of the surface).
  • Examples of the material of the sidewall 240 include inorganic materials such as glass, quartz, and silicon, and resins such as polymethyl methacrylate, polycarbonate, polystyrene, and polyolefin. Further, the side wall 240 may be integrally formed with the substrate 210.
  • the SPFS device 100 includes the light source 110, the collimating lens 120, the excitation light filter 130, the fluorescence filter 140, the light detection unit 150, and the control unit 160.
  • the light source 110, the collimating lens 120, and the excitation light filter 130 constitute an excitation light irradiation unit.
  • the excitation light irradiation unit emits the collimated excitation light ⁇ having a constant wavelength and light amount so that the shape of the irradiation spot on the surface of the metal film 220 of the chip 200 is substantially circular.
  • the excitation light irradiation unit emits only the P wave for the metal film 220 toward the metal film 220 so that diffracted light that can be combined with surface plasmons in the metal film 220 is generated in the diffraction grating 230.
  • the excitation light irradiation unit irradiates the metal film 220 with the excitation light ⁇ so that the optical axis of the excitation light ⁇ is along the arrangement direction of the periodic structure in the diffraction grating 230 (the x-axis direction in FIGS. 2A and 2B). Therefore, when an axis perpendicular to the x-axis and perpendicular to the surface of the metal film 220 (axis in the height direction of the liquid reservoir 250) is the y-axis, the optical axis of the excitation light ⁇ is parallel to the xy plane (FIG. 1).
  • the light source 110 emits excitation light ⁇ (single mode laser light) toward the metal film 220 of the chip 200.
  • the type of the light source 110 is not particularly limited as long as it can emit light having a wavelength capable of exciting the fluorescent material (for example, 400 to 1000 nm).
  • Examples of the light source 110 include laser diodes, light emitting diodes, mercury lamps, and other laser light sources.
  • the collimating lens 120 collimates the excitation light ⁇ emitted from the light source 110. Even if the excitation light ⁇ emitted from the light source 110 is collimated, the contour shape may be flat. Therefore, the light source 110 is held in a predetermined posture so that the shape of the irradiation spot on the surface of the metal film 220 is substantially circular.
  • the excitation light filter 130 includes, for example, a band pass filter and a linear polarization filter, and tunes the excitation light ⁇ emitted from the light source 110. Since the excitation light ⁇ from the light source 110 has a slight wavelength distribution width, the bandpass filter turns the excitation light ⁇ from the light source 110 into narrowband light having only the center wavelength. In addition, since the excitation light ⁇ from the light source 110 is not completely linearly polarized light, the linear polarization filter converts the excitation light ⁇ from the light source 110 into completely linearly polarized light.
  • the excitation light filter 130 may include a half-wave plate that adjusts the polarization direction of the excitation light ⁇ so that the P-wave component is incident on the metal film 220.
  • the incident angle ⁇ (see FIG. 3) of the excitation light ⁇ with respect to the metal film 220 (diffraction grating 230) has the highest intensity of the enhanced electric field formed by SPR, and as a result, the intensity of the fluorescence ⁇ from the fluorescent material is the highest. A stronger angle is preferred.
  • the incident angle ⁇ of the excitation light ⁇ is appropriately selected according to the pitch ⁇ of the diffraction grating 230, the wavelength of the excitation light ⁇ , the type of metal constituting the metal film 220, and the like. For example, the incident angle ⁇ of the excitation light ⁇ is set so as to satisfy the following formula (11).
  • k sp is the wave number of plasmon excited at the interface between the two types of media (the interface between the metal film 220 and the liquid in the liquid reservoir 250), and is defined as the following equation (12).
  • angular frequency of excitation light
  • ⁇ c speed of light
  • the SPFS device 100 first adjusts the incident angle ⁇ by rotating the optical axis of the excitation light ⁇ and the chip 200 relatively. It is preferable to have an angle adjustment unit (not shown).
  • the first angle adjustment unit may rotate the excitation light irradiation unit or the chip 200 around the intersection between the optical axis of the excitation light ⁇ and the metal film 220.
  • the fluorescence filter 140 and the light detection unit 150 constitute a fluorescence detection unit.
  • the fluorescence detection unit is disposed with respect to the excitation light irradiation unit so as to sandwich a straight line passing through the intersection of the optical axis of the excitation light ⁇ and the metal film 220 and perpendicular to the metal film 220.
  • the fluorescence detection unit detects the fluorescence ⁇ emitted from the fluorescent material on the diffraction grating 230 (reaction field).
  • the fluorescence detection unit may further include a condensing lens in order to expand the detection range of the light detection unit 150, but it is preferable not to include the condensing lens from the viewpoint of reducing the background.
  • the fluorescence filter 140 includes, for example, a cut filter and a neutral density (ND) filter, and removes noise components other than the fluorescence ⁇ (for example, excitation light ⁇ and external light) from the light reaching the light detection unit 150, The amount of light reaching the light detection unit 150 is adjusted.
  • ND neutral density
  • the light detection unit 150 detects a fluorescent image on the metal film 220.
  • the light detection unit 150 is a photomultiplier tube with high sensitivity and high SN ratio.
  • the light detection unit 150 may be an avalanche photodiode (APD), a photodiode (PD), a CCD image sensor, or the like.
  • the angle of the optical axis of the fluorescence detection unit with respect to the perpendicular of the metal film 220 is preferably an angle (fluorescence peak angle) at which the intensity of the fluorescence ⁇ emitted from the diffraction grating 230 (reaction field) is maximized. Therefore, the SPFS device 100 preferably has a second angle adjustment unit (not shown) that adjusts the angle of the optical axis of the fluorescence detection unit by relatively rotating the optical axis of the fluorescence detection unit and the chip 200. .
  • the second angle adjustment unit may rotate the fluorescence detection unit or the chip 200 around the intersection between the optical axis of the fluorescence detection unit and the metal film 220.
  • the control unit 160 includes an excitation light irradiation unit (light source 110), a fluorescence detection unit (light detection unit 150), an excitation light irradiation unit, and angle adjustment units (first angle adjustment unit and second angle adjustment unit) of the fluorescence detection unit. Control the behavior. Further, the control unit 160 analyzes the output signal (fluorescence signal) from the light detection unit 150 to analyze the presence or amount of the detection target substance.
  • the control unit 160 is, for example, a computer that executes software.
  • FIG. 4 is a flowchart illustrating an example of an operation procedure of the SPFS apparatus 100.
  • the primary antibody is immobilized on the metal film 220 (diffraction grating 230) as a capturing body.
  • step S10 preparation for measurement is performed (step S10). Specifically, the chip 200 is installed at a predetermined position of the SPFS device 100. Further, when a humectant is present on the metal film 220 of the chip 200, the humectant is removed by washing the metal film 220 so that the primary antibody can appropriately capture the substance to be detected.
  • the sample solution is introduced into the liquid reservoir 250 of the chip 200, and the detection target substance in the sample solution reacts with the primary antibody (primary reaction, step S20).
  • primary reaction step S20
  • a substance to be detected is present in the sample solution, at least a part of the substance to be detected binds to the primary antibody.
  • the sample liquid is an aqueous liquid containing the specimen.
  • the sample solution is a liquid sample or a diluted solution obtained by diluting a liquid sample with a liquid such as a buffer solution.
  • the sample solution may contain a surfactant or the like.
  • specimens include body fluids such as blood, serum, plasma, urine, nasal fluid, saliva and semen.
  • substances to be detected include nucleic acids (such as DNA and RNA), proteins (such as polypeptides and oligopeptides), amino acids, carbohydrates, lipids, and modified molecules thereof.
  • the detection target substance bound to the primary antibody is labeled with a fluorescent substance (secondary reaction, step S30).
  • a fluorescent labeling solution containing a secondary antibody labeled with a fluorescent substance is introduced into the liquid reservoir 250, and the substance to be detected bound to the primary antibody is brought into contact with the fluorescent labeling liquid.
  • the fluorescent labeling solution is, for example, a buffer solution containing a secondary antibody labeled with a fluorescent substance.
  • the substance to be detected is bound to the primary antibody, at least a part of the substance to be detected is labeled with a fluorescent substance. Also at this time, as shown in FIG. 5A, it is preferable to introduce the fluorescent labeling liquid only into the lower part of the liquid reservoir 250.
  • the inside of the liquid reservoir 250 is washed with a buffer solution or the like to remove free secondary antibodies and the like.
  • a buffer solution or the like to remove free secondary antibodies and the like.
  • the order of the primary reaction and the secondary reaction is not limited to this.
  • a liquid containing these complexes may be introduced into the liquid reservoir 250 after the substance to be detected is bound to the secondary antibody.
  • the sample and the fluorescent labeling solution may be introduced into the liquid reservoir 250 at the same time.
  • the sample liquid introduced into the liquid reservoir 250 is replaced with another liquid such as a buffer solution.
  • the excitation light ⁇ is irradiated onto the metal film 220, and the intensity of the fluorescence ⁇ emitted from the fluorescent material is measured (step S40).
  • the control unit 160 causes the light source 110 to emit the excitation light ⁇ .
  • the control unit 160 causes the light detection unit 150 to detect the intensity of the fluorescence ⁇ from the metal film 220.
  • the light detection unit 150 outputs the measurement result to the control unit 160.
  • the liquid 320 is introduced to the upper part of the liquid reservoir 250.
  • the liquid 320 is introduced to the upper part of the liquid reservoir 250, thereby It is possible to reduce the degree of bending of the liquid surface due to the above. That is, it is possible to reduce the deviation of the emission angle of the fluorescence ⁇ by bringing the liquid surface shape above the metal film 220 close to a flat surface.
  • control unit 160 analyzes the output signal (fluorescence signal) from the light detection unit 150, and analyzes the presence of the detection target substance or the amount of the detection target substance (step S50).
  • the presence of the substance to be detected or the amount of the substance to be detected in the sample can be detected.
  • the chip 200 according to the present embodiment is larger as the horizontal size of the liquid reservoir 250 in the cross section in the depth direction of the liquid reservoir 250 is higher (away from the metal film 220). .
  • the detection target substance can be detected with high sensitivity and high accuracy by using the chip 200 according to the present embodiment.
  • the chip 200 according to the present embodiment is smaller as the horizontal size of the liquid reservoir 250 in the cross section in the depth direction of the liquid reservoir 250 becomes lower (closer to the metal film 220). For this reason, the usage-amount of the sample liquid when performing a primary reaction and the usage-amount of a reagent when performing a secondary reaction can be reduced. Therefore, the measurement cost can be reduced by using the chip 200 according to the present embodiment.
  • the horizontal size R of the liquid reservoir 250 and the contact angle ⁇ c of the inner surface of the side wall 240 are set corresponding to the numerical aperture of the light detection unit 150 of the SPFS device 100. This is different from the chip 200 according to the first embodiment. Therefore, only this point will be described in the present embodiment.
  • the fluorescence ⁇ can reach the opening (aperture) of the light detection unit 150 even if the emission angle of the fluorescence ⁇ is shifted due to the meniscus. . That is, it is preferable that the deviation width of the emission angle of the fluorescence ⁇ is smaller than a predetermined value associated with the numerical aperture of the light detection unit 150.
  • FIG. 6A is a schematic diagram showing optical paths of excitation light ⁇ and fluorescence ⁇ when it is assumed that there is no meniscus.
  • Excitation light ⁇ on the right side in the figure is reflected light of excitation light ⁇ .
  • ⁇ 1 is an incident angle of the excitation light ⁇ when the excitation light ⁇ is incident on the liquid 320 (for example, a buffer solution) from a medium (for example, air) on the liquid 320.
  • ⁇ 1 ′ is a refraction angle of the excitation light ⁇ when the excitation light ⁇ is incident on the liquid 320 from the medium on the liquid 320.
  • ⁇ 2 is a refraction angle of the fluorescence ⁇ when the fluorescence ⁇ enters the medium on the liquid 320 from the liquid 320.
  • h is the depth of the liquid 320 in the liquid reservoir 250.
  • the incident angle of the fluorescence ⁇ when the fluorescence ⁇ enters the medium on the liquid 320 from the liquid 320 can be approximated by 2 ⁇ 1 ′.
  • ⁇ 2 is used as a reference for the emission angle of the fluorescence ⁇ .
  • the rate n 2, the dielectric constant, and the like are dependently determined according to the type of liquid 320 used at the time of fluorescence detection, the type of fluorescent material, the atmosphere at the time of fluorescence detection, and the like.
  • FIG. 6B is a schematic diagram showing optical paths of excitation light ⁇ and fluorescence ⁇ when there is a meniscus.
  • the surface direction of the metal film 220 is the x-axis
  • the height direction of the liquid reservoir 250 is the y-axis
  • the intersection of the optical axis of the excitation light ⁇ and the diffraction grating 230 is the origin
  • the liquid reservoir A function representing the shape of the meniscus of the liquid 320 in 250 is represented by the following equation (13).
  • the shape of the meniscus of the liquid 320 is the size of the liquid reservoir 250 at the position of the surface of the liquid 320 in the horizontal direction. And the contact angle ⁇ c of the inner surface of the side wall 240.
  • ⁇ 1 ′′ represents the excitation light ⁇ in the liquid 320 with respect to a straight line passing through the incident point and perpendicular to the surface of the metal film 220 when the excitation light ⁇ is incident on the liquid 320 from the medium on the liquid 320.
  • ⁇ 1 represents the inclination of the surface of the liquid 320 at the incident point when the excitation light ⁇ is incident on the liquid 320 from the medium on the liquid 320.
  • n 1 is the refractive index of the medium on the liquid 320.
  • n 2 is the refractive index of the liquid 320.
  • the emission angle deviation width ⁇ 2 of the fluorescence ⁇ caused by the meniscus of the liquid 320 can be calculated.
  • the emission angle deviation width ⁇ 2 of the fluorescence ⁇ is larger than a predetermined value associated with the numerical aperture NA of the light detection unit 150. Small is preferable. That is, it is preferable that the following formula (22) is satisfied.
  • the meniscus shape of the liquid 320 is determined by the horizontal size R of the liquid reservoir 250 at the surface of the liquid 320 and the contact angle ⁇ c of the inner surface of the side wall 240. Accordingly, the chip 200 according to the present embodiment, as the above equation (22) is satisfied, R and theta c is set. From the viewpoint of accurately detecting the fluorescence ⁇ , R and ⁇ c are more preferably set so that the fluorescence ⁇ is not totally reflected on the surface of the liquid 320. R and ⁇ c are more preferably set so that the fluorescence ⁇ can reach the light detection unit 150 even when the depth of the liquid 320 varies. Further, it is more preferable that R and ⁇ c are set so that the fluorescence ⁇ can reach the light detection unit 150 even if the chip 200 is displaced.
  • FIG. 7 is a graph showing the measurement results of meniscus of TBST (Tris Buffered Saline with Tween 20) when the side wall 240 is formed of polytetrafluoroethylene.
  • FIG. 7A is a graph showing measurement results when the shape of the horizontal cross section of the liquid reservoir 250 at the liquid level is a circle having a diameter of 18 mm
  • FIG. 7B is a graph showing the liquid reservoir 250 at the liquid level. It is a graph which shows a measurement result in case the shape of a horizontal cross section of this is a circle with a diameter of 10 mm.
  • the horizontal axis indicates the distance in the horizontal direction from the center of the liquid level
  • the vertical axis indicates the height from the center of the liquid level. From such measurement results, the function of equation (13) can be determined.
  • the horizontal size R of the liquid reservoir 250 and the contact angle of the inner surface of the sidewall 240 correspond to the numerical aperture of the light detection unit 150 of the SPFS device 100.
  • ⁇ c is set. For this reason, the deviation of the emission angle of the fluorescence ⁇ can be made smaller than the numerical aperture of the light detection unit 150. Therefore, the detection target substance can be detected with high sensitivity and high accuracy by using the chip 200 according to the present embodiment.
  • the shape of the liquid reservoir 250 of the chip according to the present invention is not limited to this.
  • the effect of the present invention can be obtained when the horizontal size of the liquid reservoir 250 in the cross section in the depth direction of the liquid reservoir 250 increases as it moves upward (away from the metal film 220). It is done. Therefore, as shown in FIG. 8A, an R surface may be formed on the inner surface of the side wall 240, or a tapered surface (inclined surface) may be formed on the inner surface of the side wall 240 as shown in FIG. 8B. .
  • the present invention is useful for, for example, clinical examination because the substance to be detected can be measured with high reliability.
  • SPFS device Surface plasmon enhanced fluorescence measuring device
  • SYMBOLS DESCRIPTION OF SYMBOLS
  • Light source 120 Collimating lens
  • Excitation light filter 140
  • Fluorescence filter 150
  • Control part 200
  • Chip 210
  • Metal film 230
  • Diffraction grating 240
  • Side wall 250
  • Reservoir part 310
  • Sample liquid 320 Liquid ⁇ Excitation light ⁇ Fluorescence

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By The Use Of Chemical Reactions (AREA)

Abstract

 In the present invention, a chip is prepared having a liquid storing part for retaining a liquid, a metal film including a diffraction grating arranged in the bottom part of the liquid storing part, and a capturing body immobilized on the diffraction grating. A sample liquid is introduced to the liquid storing part, and the sample liquid in the liquid storing part is then substituted with another liquid. Excitation light is radiated to the diffraction grating from the direction of an opening in the liquid storing part so as to generate surface plasmon resonance in the diffraction grating, and fluorescence, emitted from a fluorescent substance for labeling the substance to be detected, is detected. The surface area of the liquid in the liquid storing part when fluorescence is detected is greater than the surface area of the sample liquid in the liquid storing part when the sample liquid is introduced.

Description

チップおよび表面プラズモン増強蛍光測定方法Chip and surface plasmon enhanced fluorescence measurement method
 本発明は、表面プラズモン増強蛍光測定装置で使用されるチップ、および表面プラズモン増強蛍光測定方法に関する。 The present invention relates to a chip used in a surface plasmon enhanced fluorescence measuring apparatus and a surface plasmon enhanced fluorescence measuring method.
 臨床検査などにおいて、タンパク質やDNAなどの微量の被検出物質を高感度かつ定量的に検出することができれば、患者の状態を迅速に把握して治療を行うことが可能となる。このため、微量の被検出物質を高感度かつ定量的に検出できる方法が求められている。 In clinical examinations and the like, if a very small amount of a substance to be detected such as protein or DNA can be detected with high sensitivity and quantity, it is possible to quickly grasp the patient's condition and perform treatment. For this reason, a method capable of detecting a minute amount of a substance to be detected with high sensitivity and quantity is demanded.
 被検出物質を高感度に検出できる方法として、表面プラズモン励起増強蛍光分光法(Surface Plasmon-field enhanced Fluorescence Spectroscopy:以下「SPFS」と略記する)が知られている。SPFSでは、所定の条件で光を金属膜に照射すると、表面プラズモン共鳴(Surface Plasmon Resonance:以下「SPR」と略記する)が生じることを利用する。被検出物質に特異的に結合できる捕捉体(例えば1次抗体)を金属膜上に固定化して、被検出物質を特異的に捕捉するための反応場を形成する。この反応場に被検出物質を含む試料液を提供すると、被検出物質は反応場に結合する。次いで、蛍光物質で標識された2次抗体を反応場に提供すると、反応場に結合した被検出物質は蛍光物質で標識される。この状態で金属膜に励起光を照射すると、被検出物質を標識する蛍光物質は、SPRにより増強された電場により励起され、蛍光を放出する。したがって、蛍光を検出することで、被検出物質の存在またはその量を検出することができる。SPFSでは、SPRにより増強された電場により蛍光物質を励起するため、高感度で被検出物質を検出することができる。 As a method for detecting a substance to be detected with high sensitivity, surface plasmon excitation enhanced fluorescence spectroscopy (Surface-Plasmon-field-enhanced-Fluorescence-Spectroscopy: hereinafter abbreviated as "SPFS") is known. SPFS utilizes the fact that surface plasmon resonance (hereinafter abbreviated as “SPR”) occurs when a metal film is irradiated with light under a predetermined condition. A capture body (for example, a primary antibody) that can specifically bind to the substance to be detected is immobilized on the metal film to form a reaction field for specifically capturing the substance to be detected. When a sample solution containing a substance to be detected is provided in this reaction field, the substance to be detected is bound to the reaction field. Next, when a secondary antibody labeled with a fluorescent substance is provided to the reaction field, the target substance bound to the reaction field is labeled with the fluorescent substance. When the metal film is irradiated with excitation light in this state, the fluorescent substance that labels the substance to be detected is excited by the electric field enhanced by SPR and emits fluorescence. Therefore, the presence or amount of the substance to be detected can be detected by detecting fluorescence. In SPFS, a fluorescent substance is excited by an electric field enhanced by SPR, so that a substance to be detected can be detected with high sensitivity.
 SPFSは、励起光と表面プラズモンとを結合(カップリング)させる手段により、プリズムカップリング(PC)-SPFSと、格子カップリング(GC)-SPFSとに大別される。PC-SPFSでは、1つの面に金属膜を形成されたプリズムを使用する(特許文献1参照)。この方法では、プリズムと金属膜の界面において励起光を全反射させることで、励起光と表面プラズモンとを結合させる。 SPFS is roughly classified into prism coupling (PC) -SPFS and lattice coupling (GC) -SPFS by means of coupling (coupling) excitation light and surface plasmons. In PC-SPFS, a prism having a metal film formed on one surface is used (see Patent Document 1). In this method, the excitation light is totally reflected at the interface between the prism and the metal film, thereby coupling the excitation light and the surface plasmon.
 これに対し、GC-SPFSは、回折格子を利用して励起光と表面プラズモンとを結合させる(特許文献2参照)。GC-SPFSでは、回折格子を形成された金属膜を使用する。この方法では、回折格子に励起光を照射することで、励起光と表面プラズモンとを結合させる。PC-SPFSでは、蛍光は全方向に出射されるのに対し、GC-SPFSでは、蛍光は特定の方向に指向性を持って出射されることが知られている。 On the other hand, GC-SPFS couples excitation light and surface plasmon using a diffraction grating (see Patent Document 2). In GC-SPFS, a metal film formed with a diffraction grating is used. In this method, excitation light and surface plasmons are combined by irradiating the diffraction grating with excitation light. In PC-SPFS, it is known that fluorescence is emitted in all directions, whereas in GC-SPFS, fluorescence is emitted in a specific direction with directivity.
特開平10-307141号公報JP-A-10-307141 特開2011-158369号公報JP 2011-158369 A
 GC-SPFSにおいて、回折格子の上に液体を提供して蛍光を検出する場合、液体の上に蓋が存在しないことが好ましい。励起光が蓋を透過する時に蓋の自家蛍光によりバックグラウンドが増大してしまうからである。特に、被検出物質が低濃度の場合、バックグラウンドの増大は被検出物質の検出の失敗に繋がるおそれもある。 In GC-SPFS, when a liquid is provided on a diffraction grating to detect fluorescence, it is preferable that a lid does not exist on the liquid. This is because the background is increased by the autofluorescence of the lid when the excitation light passes through the lid. In particular, when the substance to be detected is at a low concentration, an increase in background may lead to failure in detection of the substance to be detected.
 一方、蓋を設けずに液体の上部を外部に開放すると、メニスカスにより液体の表面に傾きが生じる。このように液体の表面に傾きが生じると、励起光の入射角および蛍光の出射角にずれが生じてしまい、光検出部に適切に蛍光が到達できず、被検出物質の検出に失敗してしまうおそれがある。蛍光の出射角のずれに対応するためにレンズなどを用いて光検出部の検出範囲を拡げることも考えられるが、バックグラウンドの低減の観点からはレンズなどの使用は好ましくない。 On the other hand, when the upper part of the liquid is opened to the outside without providing a lid, the liquid surface is inclined by the meniscus. When the liquid surface is tilted in this way, the incident angle of the excitation light and the emission angle of the fluorescence are shifted, and the fluorescence cannot properly reach the light detection unit, and the detection of the target substance fails. There is a risk that. Although it is conceivable to expand the detection range of the light detection unit using a lens or the like in order to cope with the deviation of the emission angle of the fluorescence, the use of the lens or the like is not preferable from the viewpoint of reducing the background.
 本発明の目的は、GC-SPFSを利用する測定装置に用いられるチップおよびGC-SPFSを利用する測定方法であって、バックグラウンドの増大を防ぎつつ、蛍光の出射角のずれによる検出精度の低下を抑制することができるチップおよび測定方法を提供することである。 An object of the present invention is a chip used in a measuring apparatus that uses GC-SPFS and a measuring method that uses GC-SPFS, which prevents an increase in background and reduces detection accuracy due to a deviation in the emission angle of fluorescence. It is providing the chip | tip and the measuring method which can suppress this.
 上記課題を解決するため、本発明の一実施の形態に係るチップは、被検出物質を標識する蛍光物質が、表面プラズモン共鳴に基づく電場により励起されて発した蛍光を検出して、前記被検出物質の存在またはその量を検出する表面プラズモン増強蛍光測定装置で使用されるチップであって、液体を保持するための液溜部と、前記液溜部の底部に配置された、回折格子を含む金属膜と、を有し、前記液溜部の深さ方向の断面における前記液溜部の水平方向の大きさは、上に行くほど大きい。 In order to solve the above-described problem, a chip according to an embodiment of the present invention detects a fluorescence emitted from a fluorescent substance that labels a target substance by being excited by an electric field based on surface plasmon resonance. A chip used in a surface plasmon enhanced fluorescence measuring apparatus for detecting the presence or amount of a substance, including a liquid reservoir for holding a liquid and a diffraction grating disposed at the bottom of the liquid reservoir And the horizontal size of the liquid reservoir in the cross section in the depth direction of the liquid reservoir increases toward the top.
 また、上記課題を解決するため、本発明の一実施の形態に係る表面プラズモン増強蛍光測定方法は、被検出物質を標識する蛍光物質が、表面プラズモン共鳴に基づく電場により励起されて発した蛍光を検出して、前記被検出物質の存在またはその量を検出する表面プラズモン増強蛍光測定方法であって、液体を保持するための液溜部と、前記液溜部の底部に配置された、回折格子を含む金属膜と、前記回折格子に固定化された捕捉体と、を有するチップを準備する工程と、前記液溜部に試料液を導入する工程と、前記液溜部内の前記試料液を別の液体に置換する工程と、前記回折格子において表面プラズモン共鳴が発生するように、前記液溜部の開口部側から前記回折格子に励起光を照射し、前記被検出物質を標識する蛍光物質から放出された蛍光を検出する工程と、を含み、前記蛍光を検出する工程における前記液溜部内の前記液体の表面積は、前記液溜部に前記試料液を導入する工程における前記液溜部内の前記試料液の表面積よりも大きい。 In addition, in order to solve the above-described problem, the surface plasmon enhanced fluorescence measurement method according to an embodiment of the present invention uses a fluorescent material that labels a target substance to emit fluorescence that is excited by an electric field based on surface plasmon resonance. A surface plasmon enhanced fluorescence measurement method for detecting the presence or amount of the substance to be detected, a liquid reservoir for holding a liquid, and a diffraction grating disposed at the bottom of the liquid reservoir A step of preparing a chip having a metal film including a capture body fixed to the diffraction grating, a step of introducing a sample liquid into the liquid reservoir, and a step of separating the sample liquid in the liquid reservoir From the fluorescent substance that labels the substance to be detected by irradiating the diffraction grating with excitation light from the opening side of the liquid reservoir so that surface plasmon resonance occurs in the diffraction grating. Released Detecting the fluorescence, and the surface area of the liquid in the liquid reservoir in the step of detecting fluorescence is the sample liquid in the liquid reservoir in the step of introducing the sample liquid into the liquid reservoir. Greater than the surface area of
 本発明によれば、GC-SPFSを利用する測定装置および測定方法において、被検出物質をより高感度かつ高精度に検出することができる。 According to the present invention, a substance to be detected can be detected with higher sensitivity and accuracy in a measuring apparatus and a measuring method using GC-SPFS.
表面プラズモン増強蛍光測定装置と、実施の形態1に係るチップの構成を示す模式図である。It is a schematic diagram showing the structure of the surface plasmon enhanced fluorescence measurement device and the chip according to the first embodiment. 図2A,Bは、回折格子の斜視図である。2A and 2B are perspective views of the diffraction grating. 金属膜に対する励起光の入射角を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the incident angle of the excitation light with respect to a metal film. 実施の形態1に係る表面プラズモン増強蛍光測定装置の動作を示すフローチャートである。3 is a flowchart showing the operation of the surface plasmon enhanced fluorescence measurement device according to the first embodiment. 図5Aは、試料液を導入した後のチップを示す断面模式図であり、図5Bは、蛍光検出時のチップを示す断面模式図である。FIG. 5A is a schematic cross-sectional view showing the chip after introducing the sample solution, and FIG. 5B is a schematic cross-sectional view showing the chip during fluorescence detection. 図6Aは、メニスカスが無いと仮定した場合の励起光および蛍光の光路を示す模式図であり、図6Bは、メニスカスがある場合の励起光および蛍光の光路を示す模式図である。FIG. 6A is a schematic diagram illustrating optical paths of excitation light and fluorescence when it is assumed that there is no meniscus, and FIG. 6B is a schematic diagram illustrating optical paths of excitation light and fluorescence when there is a meniscus. 図7A,Bは、メニスカスの測定結果を示すグラフである。7A and 7B are graphs showing the measurement results of meniscus. 図8A,Bは、チップの変形例を示す断面模式図である。8A and 8B are schematic cross-sectional views showing modifications of the chip.
 以下、本発明の実施の形態について、図面を参照して詳細に説明する。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
 [実施の形態1]
 図1は、表面プラズモン増強蛍光測定装置(以下「SPFS装置」という)100と、本発明の実施の形態1に係るチップ200の構成を示す模式図である。図1に示されるように、SPFS装置100は、光源110、コリメートレンズ120、励起光フィルター130、蛍光フィルター140、光検出部150および制御部160を有する。SPFS装置100は、チップホルダー(不図示)にチップ200を装着した状態で使用される。そこで、チップ200について先に説明し、その後にSPFS装置100について説明する。
[Embodiment 1]
FIG. 1 is a schematic diagram showing a configuration of a surface plasmon enhanced fluorescence measurement apparatus (hereinafter referred to as “SPFS apparatus”) 100 and a chip 200 according to Embodiment 1 of the present invention. As shown in FIG. 1, the SPFS device 100 includes a light source 110, a collimating lens 120, an excitation light filter 130, a fluorescence filter 140, a light detection unit 150, and a control unit 160. The SPFS device 100 is used in a state where the chip 200 is mounted on a chip holder (not shown). Therefore, the chip 200 will be described first, and then the SPFS device 100 will be described.
 チップ200は、基板210と、回折格子230を含む金属膜220と、液体を保持するための液溜部250を形成する側壁240とを有する。金属膜220には、回折格子230が形成されている。回折格子230には捕捉体(例えば1次抗体)が固定化されており、回折格子230の表面は、捕捉体と被検出物質とが結合するための反応場としても機能する。なお、図1では、捕捉体および被検出物質を省略している。なお、チップ200は、好ましくは、各片の長さが数mm~数cmである構造物であるが、「チップ」の範疇に含まれないより小型の構造物またはより大型の構造物であってもよい。 The chip 200 includes a substrate 210, a metal film 220 including a diffraction grating 230, and a sidewall 240 that forms a liquid reservoir 250 for holding a liquid. A diffraction grating 230 is formed on the metal film 220. A capture body (for example, a primary antibody) is immobilized on the diffraction grating 230, and the surface of the diffraction grating 230 also functions as a reaction field for binding the capture body and the substance to be detected. In FIG. 1, the capturing body and the substance to be detected are omitted. The chip 200 is preferably a structure in which each piece has a length of several millimeters to several centimeters. However, the chip 200 is a smaller structure or a larger structure not included in the category of “chip”. May be.
 基板210は、金属膜220および側壁240の支持部材である。基板210の材料は、金属膜220および側壁240を支持できる機械的強度を有するものであれば特に限定されない。基板210の材料の例には、ガラスや石英、シリコンなどの無機材料、ポリメタクリル酸メチルやポリカーボネート、ポリスチレン、ポリオレフィンなどの樹脂が含まれる。 The substrate 210 is a support member for the metal film 220 and the side wall 240. The material of the substrate 210 is not particularly limited as long as it has mechanical strength capable of supporting the metal film 220 and the side wall 240. Examples of the material of the substrate 210 include inorganic materials such as glass, quartz, and silicon, and resins such as polymethyl methacrylate, polycarbonate, polystyrene, and polyolefin.
 金属膜220は、液溜部250の底部に位置するように基板210上に配置されている。前述のとおり、金属膜220には、回折格子230が形成されている。金属膜220に光を照射すると、金属膜220中に生じる表面プラズモンと、回折格子230により生じるエバネッセント波とが結合して、表面プラズモン共鳴(SPR)が生じる。金属膜220の材料は、表面プラズモンを生じさせる金属であれば特に限定されない。金属膜220の材料の例には、金、銀、銅、アルミ、これらの合金が含まれる。金属膜220の形成方法は、特に限定されない。金属膜220の形成方法の例には、スパッタリング、蒸着、メッキが含まれる。金属膜220の厚みは、特に限定されない。たとえば、金属膜220の厚みは、30~70nm程度である。 The metal film 220 is disposed on the substrate 210 so as to be positioned at the bottom of the liquid reservoir 250. As described above, the diffraction grating 230 is formed on the metal film 220. When the metal film 220 is irradiated with light, surface plasmons generated in the metal film 220 and evanescent waves generated by the diffraction grating 230 are combined to generate surface plasmon resonance (SPR). The material of the metal film 220 is not particularly limited as long as it is a metal that generates surface plasmons. Examples of the material of the metal film 220 include gold, silver, copper, aluminum, and alloys thereof. A method for forming the metal film 220 is not particularly limited. Examples of the method for forming the metal film 220 include sputtering, vapor deposition, and plating. The thickness of the metal film 220 is not particularly limited. For example, the thickness of the metal film 220 is about 30 to 70 nm.
 回折格子230は、金属膜220に光を照射された時に、エバネッセント波を生じさせる。回折格子230の形状は、エバネッセント波を生じさせることができれば特に限定されない。たとえば、回折格子230は、図2Aに示されるように1次元回折格子であってもよいし、図2Bに示されるように2次元回折格子であってもよい。図2Aに示される1次元回折格子では、金属膜220の表面に、互いに平行な複数の凸条が所定の間隔で形成されている。図2Bに示される2次元回折格子では、金属膜220の表面に、所定形状の凸部が周期的に配置されている。凸部の配列の例には、正方格子、三角(六方)格子などが含まれる。回折格子230の断面形状の例には、矩形波形状、正弦波形状、鋸歯形状などが含まれる。回折格子のピッチは、SPRを発生させる観点から、100~2000nmの範囲が好ましい。なお、本明細書において、「回折格子のピッチ」とは、図2A,Bに示されるように、凸部の配列方向における凸部の中心間距離Λをいう。 The diffraction grating 230 generates an evanescent wave when the metal film 220 is irradiated with light. The shape of the diffraction grating 230 is not particularly limited as long as an evanescent wave can be generated. For example, the diffraction grating 230 may be a one-dimensional diffraction grating as shown in FIG. 2A or a two-dimensional diffraction grating as shown in FIG. 2B. In the one-dimensional diffraction grating shown in FIG. 2A, a plurality of ridges parallel to each other are formed on the surface of the metal film 220 at a predetermined interval. In the two-dimensional diffraction grating shown in FIG. 2B, convex portions having a predetermined shape are periodically arranged on the surface of the metal film 220. Examples of the arrangement of the convex portions include a square lattice, a triangular (hexagonal) lattice, and the like. Examples of the cross-sectional shape of the diffraction grating 230 include a rectangular wave shape, a sine wave shape, a sawtooth shape, and the like. The pitch of the diffraction grating is preferably in the range of 100 to 2000 nm from the viewpoint of generating SPR. In the present specification, the “diffraction grating pitch” refers to the center-to-center distance Λ of the protrusions in the arrangement direction of the protrusions, as shown in FIGS.
 回折格子230の形成方法は、特に限定されない。たとえば、平板状の基板210の上に金属膜220を形成した後、金属膜220に凹凸形状を付与してもよい。また、予め凹凸形状を付与された基板210の上に、金属膜220を形成してもよい。いずれの方法であっても、回折格子230を含む金属膜220を形成することができる。 The formation method of the diffraction grating 230 is not particularly limited. For example, after the metal film 220 is formed on the flat substrate 210, the metal film 220 may be provided with an uneven shape. Alternatively, the metal film 220 may be formed over the substrate 210 that has been previously provided with an uneven shape. In any method, the metal film 220 including the diffraction grating 230 can be formed.
 回折格子230(反応場)には、被検出物質を捕捉するための捕捉体が固定化されている。捕捉体は、被検出物質に特異的に結合する。たとえば、回折格子230の表面に、捕捉体が略均一に固定化されている。捕捉体の種類は、被検出物質を捕捉することができれば特に限定されない。たとえば、捕捉体は、被検出物質に特異的な抗体(1次抗体)またはその断片、被検出物質に特異的に結合可能な酵素などである。 In the diffraction grating 230 (reaction field), a capturing body for capturing a substance to be detected is immobilized. The capturing body specifically binds to the substance to be detected. For example, the capturing body is fixed substantially uniformly on the surface of the diffraction grating 230. The type of capturing body is not particularly limited as long as it can capture the substance to be detected. For example, the capturing body is an antibody (primary antibody) or a fragment thereof specific to the substance to be detected, an enzyme that can specifically bind to the substance to be detected, or the like.
 捕捉体の固定化方法は、特に限定されない。たとえば、回折格子230の上に、捕捉体を結合させた自己組織化単分子膜(以下「SAM膜」という)または高分子膜を形成すればよい。SAM膜の例には、HOOC-(CH11-SHなどの置換脂肪族チオールで形成された膜が含まれる。高分子膜を構成する材料の例には、ポリエチレングリコールおよびMPCポリマーが含まれる。また、捕捉体に結合可能な反応性基(または反応性基に変換可能な官能基)を有する高分子を回折格子230に固定化し、この高分子に捕捉体を結合させてもよい。 The method for immobilizing the capturing body is not particularly limited. For example, a self-assembled monomolecular film (hereinafter referred to as “SAM film”) or a polymer film to which a capturing body is bonded may be formed on the diffraction grating 230. Examples of SAM films include films formed with substituted aliphatic thiols such as HOOC— (CH 2 ) 11 —SH. Examples of the material constituting the polymer film include polyethylene glycol and MPC polymer. Alternatively, a polymer having a reactive group that can be bound to the capturing body (or a functional group that can be converted into a reactive group) may be fixed to the diffraction grating 230, and the capturing body may be bound to the polymer.
 図3に示されるように、励起光αは、所定の入射角θで金属膜220(回折格子230)に照射される。照射領域では、金属膜220で生じた表面プラズモンと、回折格子230により生じたエバネッセント波が結合し、SPRが生じる。照射領域に蛍光物質が存在する場合は、SPRにより形成された増強電場により、蛍光物質が励起され、蛍光βが放出される。前述のとおり、GC-SPFSでは、蛍光βは特定の方向に指向性を持って出射される。 As shown in FIG. 3, the excitation light α is irradiated onto the metal film 220 (diffraction grating 230) at a predetermined incident angle θ. In the irradiation region, the surface plasmon generated in the metal film 220 and the evanescent wave generated by the diffraction grating 230 are combined to generate SPR. When a fluorescent substance is present in the irradiation region, the fluorescent substance is excited by the enhanced electric field formed by SPR, and fluorescent β is emitted. As described above, in the GC-SPFS, the fluorescence β is emitted with directivity in a specific direction.
 側壁240は、金属膜220を取り囲むように基板210上に配置されている。側壁240は、金属膜220上に液体を保持するための液溜部250を形成する。液溜部250の開口部は蓋で閉塞されていないため、液溜部250内の液体の表面は外部に露出される。したがって、液溜部250内の液体の表面は、液体表面の大きさや側壁240内面の疎水度、液体の表面張力などに依存してメニスカスを形成する。この後説明するように、本実施の形態に係るチップ200では、蛍光検出時におけるメニスカスの影響を低減するために、液溜部250の深さ方向の断面における液溜部250の水平方向の大きさ(互いに対向する側壁240間の間隔)は、上に行くほど(金属膜220から離れるほど)大きい。より具体的には、液溜部250上部における側壁240間の間隔は、液溜部250下部における側壁240間の間隔よりも大きくなっており、液溜部250上部の側壁240内面と、液溜部250下部の側壁240内面とは、水平面で接続されている(図1参照)。 The side wall 240 is disposed on the substrate 210 so as to surround the metal film 220. The side wall 240 forms a liquid reservoir 250 for holding a liquid on the metal film 220. Since the opening of the liquid reservoir 250 is not closed with a lid, the surface of the liquid in the liquid reservoir 250 is exposed to the outside. Accordingly, the surface of the liquid in the liquid reservoir 250 forms a meniscus depending on the size of the liquid surface, the hydrophobicity of the inner surface of the side wall 240, the surface tension of the liquid, and the like. As will be described later, in the chip 200 according to the present embodiment, in order to reduce the influence of the meniscus at the time of fluorescence detection, the horizontal size of the liquid reservoir 250 in the cross section in the depth direction of the liquid reservoir 250. The distance (the distance between the side walls 240 facing each other) increases as it goes upward (away from the metal film 220). More specifically, the interval between the side walls 240 in the upper part of the liquid reservoir 250 is larger than the interval between the side walls 240 in the lower part of the liquid reservoir 250, and the inner surface of the side wall 240 in the upper part of the liquid reservoir 250 and the liquid reservoir The inner surface of the side wall 240 at the bottom of the portion 250 is connected in a horizontal plane (see FIG. 1).
 側壁240の材料は、金属膜220上に液体を保持できるものであれば特に限定されず、必要とされる性質(例えば表面の疎水度)などに応じて適宜選択されうる。側壁240の材料の例には、ガラスや石英、シリコンなどの無機材料、ポリメタクリル酸メチルやポリカーボネート、ポリスチレン、ポリオレフィンなどの樹脂が含まれる。また、側壁240は、基板210と一体成形されていてもよい。 The material of the side wall 240 is not particularly limited as long as it can hold a liquid on the metal film 220, and may be appropriately selected according to required properties (for example, hydrophobicity of the surface). Examples of the material of the sidewall 240 include inorganic materials such as glass, quartz, and silicon, and resins such as polymethyl methacrylate, polycarbonate, polystyrene, and polyolefin. Further, the side wall 240 may be integrally formed with the substrate 210.
 次に、SPFS装置100の各構成要素について説明する。前述のとおり、SPFS装置100は、光源110、コリメートレンズ120、励起光フィルター130、蛍光フィルター140、光検出部150および制御部160を有する。 Next, each component of the SPFS device 100 will be described. As described above, the SPFS device 100 includes the light source 110, the collimating lens 120, the excitation light filter 130, the fluorescence filter 140, the light detection unit 150, and the control unit 160.
 光源110、コリメートレンズ120および励起光フィルター130は、励起光照射ユニットを構成する。励起光照射ユニットは、コリメートされ、かつ波長および光量が一定の励起光αを、チップ200の金属膜220表面における照射スポットの形状が略円形となるように出射する。また、励起光照射ユニットは、金属膜220中の表面プラズモンと結合できる回折光が回折格子230で生じるように、金属膜220に対するP波のみを金属膜220に向けて出射する。励起光照射ユニットは、励起光αの光軸が、回折格子230における周期的構造の配列方向(図2A,Bにおけるx軸方向)に沿うように、励起光αを金属膜220に照射する。したがって、x軸に垂直かつ金属膜220の表面に垂直な軸(液溜部250の高さ方向の軸)をy軸とした場合、励起光αの光軸はxy平面に平行である(図1参照)。 The light source 110, the collimating lens 120, and the excitation light filter 130 constitute an excitation light irradiation unit. The excitation light irradiation unit emits the collimated excitation light α having a constant wavelength and light amount so that the shape of the irradiation spot on the surface of the metal film 220 of the chip 200 is substantially circular. The excitation light irradiation unit emits only the P wave for the metal film 220 toward the metal film 220 so that diffracted light that can be combined with surface plasmons in the metal film 220 is generated in the diffraction grating 230. The excitation light irradiation unit irradiates the metal film 220 with the excitation light α so that the optical axis of the excitation light α is along the arrangement direction of the periodic structure in the diffraction grating 230 (the x-axis direction in FIGS. 2A and 2B). Therefore, when an axis perpendicular to the x-axis and perpendicular to the surface of the metal film 220 (axis in the height direction of the liquid reservoir 250) is the y-axis, the optical axis of the excitation light α is parallel to the xy plane (FIG. 1).
 光源110は、チップ200の金属膜220に向けて励起光α(シングルモードレーザー光)を出射する。光源110の種類は、蛍光物質を励起できる波長(例えば400~1000nm)の光を出射できれば特に限定されない。光源110の例には、レーザーダイオード、発光ダイオード、水銀灯、その他のレーザー光源が含まれる。 The light source 110 emits excitation light α (single mode laser light) toward the metal film 220 of the chip 200. The type of the light source 110 is not particularly limited as long as it can emit light having a wavelength capable of exciting the fluorescent material (for example, 400 to 1000 nm). Examples of the light source 110 include laser diodes, light emitting diodes, mercury lamps, and other laser light sources.
 コリメートレンズ120は、光源110から出射された励起光αをコリメートする。光源110から出射される励起光αは、コリメートされてもその輪郭形状が扁平である場合がある。このため、金属膜220表面における照射スポットの形状が略円形となるように、光源110は所定の姿勢で保持される。 The collimating lens 120 collimates the excitation light α emitted from the light source 110. Even if the excitation light α emitted from the light source 110 is collimated, the contour shape may be flat. Therefore, the light source 110 is held in a predetermined posture so that the shape of the irradiation spot on the surface of the metal film 220 is substantially circular.
 励起光フィルター130は、例えば、バンドパスフィルターおよび直線偏光フィルターを含み、光源110から出射された励起光αを整波する。光源110からの励起光αは、若干の波長分布幅を有しているため、バンドパスフィルターは、光源110からの励起光αを中心波長のみの狭帯域光にする。また、光源110からの励起光αは、完全な直線偏光ではないため、直線偏光フィルターは、光源110からの励起光αを完全な直線偏光の光にする。励起光フィルター130は、金属膜220にP波成分が入射するように励起光αの偏光方向を調整する半波長板を含んでいてもよい。 The excitation light filter 130 includes, for example, a band pass filter and a linear polarization filter, and tunes the excitation light α emitted from the light source 110. Since the excitation light α from the light source 110 has a slight wavelength distribution width, the bandpass filter turns the excitation light α from the light source 110 into narrowband light having only the center wavelength. In addition, since the excitation light α from the light source 110 is not completely linearly polarized light, the linear polarization filter converts the excitation light α from the light source 110 into completely linearly polarized light. The excitation light filter 130 may include a half-wave plate that adjusts the polarization direction of the excitation light α so that the P-wave component is incident on the metal film 220.
 金属膜220(回折格子230)に対する励起光αの入射角θ(図3参照)は、SPRにより形成される増強電場の強度が最も強くなり、その結果として蛍光物質からの蛍光βの強度が最も強くなる角度が好ましい。励起光αの入射角θは、回折格子230のピッチΛや励起光αの波長、金属膜220を構成する金属の種類などに応じて適切に選択される。たとえば、励起光αの入射角θは、以下の式(11)を満たすように設定される。
Figure JPOXMLDOC01-appb-M000011
 k:励起光αの波数=2π/(λ/n)
 λ:真空中の励起光αの波長
 n:回折格子230上の媒質(液溜部250内の液体)の屈折率
 θ:励起光αの回折格子230に対する入射角
 m:整数
 Λ:回折格子230のピッチ
The incident angle θ (see FIG. 3) of the excitation light α with respect to the metal film 220 (diffraction grating 230) has the highest intensity of the enhanced electric field formed by SPR, and as a result, the intensity of the fluorescence β from the fluorescent material is the highest. A stronger angle is preferred. The incident angle θ of the excitation light α is appropriately selected according to the pitch Λ of the diffraction grating 230, the wavelength of the excitation light α, the type of metal constituting the metal film 220, and the like. For example, the incident angle θ of the excitation light α is set so as to satisfy the following formula (11).
Figure JPOXMLDOC01-appb-M000011
k 0 : Wave number of excitation light α = 2π / (λ 0 / n)
λ 0 : wavelength of excitation light α in vacuum n: refractive index of medium (liquid in liquid reservoir 250) on diffraction grating 230 θ: incident angle of excitation light α with respect to diffraction grating 230 m: integer Λ: diffraction grating 230 pitches
 ここで、kspは、2種類の媒質の界面(金属膜220と液溜部250内の液体との界面)において励起されるプラズモンの波数であり、以下の式(12)のように定義される。
Figure JPOXMLDOC01-appb-M000012
 ω:励起光αの角周波数
 c:光速度
 ε:回折格子230上の媒質(液溜部250内の液体)の誘電率=n
 ε:回折格子230を構成する媒質(金属)の誘電率
Here, k sp is the wave number of plasmon excited at the interface between the two types of media (the interface between the metal film 220 and the liquid in the liquid reservoir 250), and is defined as the following equation (12). The
Figure JPOXMLDOC01-appb-M000012
ω: angular frequency of excitation light α c: speed of light ε 1 : dielectric constant of medium (liquid in liquid reservoir 250) on diffraction grating 230 = n 2
ε 2 : dielectric constant of medium (metal) constituting diffraction grating 230
 励起光αの最適な入射角θは、各種条件の変更により変わるため、SPFS装置100は、励起光αの光軸とチップ200とを相対的に回転させることで入射角θを調整する第1角度調整部(図示省略)を有することが好ましい。たとえば、第1角度調整部は、励起光αの光軸と金属膜220との交点を中心として、励起光照射ユニットまたはチップ200を回転させればよい。 Since the optimum incident angle θ of the excitation light α varies depending on various conditions, the SPFS device 100 first adjusts the incident angle θ by rotating the optical axis of the excitation light α and the chip 200 relatively. It is preferable to have an angle adjustment unit (not shown). For example, the first angle adjustment unit may rotate the excitation light irradiation unit or the chip 200 around the intersection between the optical axis of the excitation light α and the metal film 220.
 蛍光フィルター140および光検出部150は、蛍光検出ユニットを構成する。蛍光検出ユニットは、励起光照射ユニットに対して、励起光αの光軸と金属膜220との交点を通り、かつ金属膜220に対して垂直な直線を挟むように配置されている。蛍光検出ユニットは、回折格子230(反応場)上の蛍光物質から放出される蛍光βを検出する。蛍光検出ユニットは、光検出部150の検出範囲を拡げるために集光レンズをさらに有していてもよいが、バックグラウンドの低減の観点からは集光レンズを含まない方が好ましい。 The fluorescence filter 140 and the light detection unit 150 constitute a fluorescence detection unit. The fluorescence detection unit is disposed with respect to the excitation light irradiation unit so as to sandwich a straight line passing through the intersection of the optical axis of the excitation light α and the metal film 220 and perpendicular to the metal film 220. The fluorescence detection unit detects the fluorescence β emitted from the fluorescent material on the diffraction grating 230 (reaction field). The fluorescence detection unit may further include a condensing lens in order to expand the detection range of the light detection unit 150, but it is preferable not to include the condensing lens from the viewpoint of reducing the background.
 蛍光フィルター140は、例えば、カットフィルターおよび減光(ND)フィルターを含み、光検出部150に到達する光から蛍光β以外のノイズ成分(例えば、励起光αや外光など)を除去したり、光検出部150に到達する光の光量を調整したりする。 The fluorescence filter 140 includes, for example, a cut filter and a neutral density (ND) filter, and removes noise components other than the fluorescence β (for example, excitation light α and external light) from the light reaching the light detection unit 150, The amount of light reaching the light detection unit 150 is adjusted.
 光検出部150は、金属膜220上の蛍光像を検出する。たとえば、光検出部150は、感度およびSN比が高い光電子増倍管である。光検出部150は、アバランシェ・フォトダイオード(APD)やフォトダイオード(PD)、CCDイメージセンサなどであってもよい。 The light detection unit 150 detects a fluorescent image on the metal film 220. For example, the light detection unit 150 is a photomultiplier tube with high sensitivity and high SN ratio. The light detection unit 150 may be an avalanche photodiode (APD), a photodiode (PD), a CCD image sensor, or the like.
 金属膜220の垂線に対する蛍光検出ユニットの光軸の角度は、回折格子230(反応場)から放出される蛍光βの強度が最大となる角度(蛍光ピーク角)であることが好ましい。したがって、SPFS装置100は、蛍光検出ユニットの光軸とチップ200とを相対的に回転させることで蛍光検出ユニットの光軸の角度を調整する第2角度調整部(図示省略)を有することが好ましい。たとえば、第2角度調整部は、蛍光検出ユニットの光軸と金属膜220との交点を中心として、蛍光検出ユニットまたはチップ200を回転させればよい。 The angle of the optical axis of the fluorescence detection unit with respect to the perpendicular of the metal film 220 is preferably an angle (fluorescence peak angle) at which the intensity of the fluorescence β emitted from the diffraction grating 230 (reaction field) is maximized. Therefore, the SPFS device 100 preferably has a second angle adjustment unit (not shown) that adjusts the angle of the optical axis of the fluorescence detection unit by relatively rotating the optical axis of the fluorescence detection unit and the chip 200. . For example, the second angle adjustment unit may rotate the fluorescence detection unit or the chip 200 around the intersection between the optical axis of the fluorescence detection unit and the metal film 220.
 制御部160は、励起光照射ユニット(光源110)、蛍光検出ユニット(光検出部150)、励起光照射ユニットおよび蛍光検出ユニットの角度調整部(第1角度調整部および第2角度調整部)の動作を制御する。また、制御部160は、光検出部150からの出力信号(蛍光シグナル)を解析することにより、被検出物質の存在またはその量を分析する。制御部160は、例えば、ソフトウェアを実行するコンピュータである。 The control unit 160 includes an excitation light irradiation unit (light source 110), a fluorescence detection unit (light detection unit 150), an excitation light irradiation unit, and angle adjustment units (first angle adjustment unit and second angle adjustment unit) of the fluorescence detection unit. Control the behavior. Further, the control unit 160 analyzes the output signal (fluorescence signal) from the light detection unit 150 to analyze the presence or amount of the detection target substance. The control unit 160 is, for example, a computer that executes software.
 次に、SPFS装置100の検出動作について説明する。図4は、SPFS装置100の動作手順の一例を示すフローチャートである。この例では、捕捉体として1次抗体が金属膜220(回折格子230)上に固定化されている。 Next, the detection operation of the SPFS device 100 will be described. FIG. 4 is a flowchart illustrating an example of an operation procedure of the SPFS apparatus 100. In this example, the primary antibody is immobilized on the metal film 220 (diffraction grating 230) as a capturing body.
 まず、測定の準備をする(工程S10)。具体的には、SPFS装置100の所定の位置にチップ200を設置する。また、チップ200の金属膜220上に保湿剤が存在する場合は、1次抗体が適切に被検出物質を捕捉できるように、金属膜220上を洗浄して保湿剤を除去する。 First, preparation for measurement is performed (step S10). Specifically, the chip 200 is installed at a predetermined position of the SPFS device 100. Further, when a humectant is present on the metal film 220 of the chip 200, the humectant is removed by washing the metal film 220 so that the primary antibody can appropriately capture the substance to be detected.
 次いで、チップ200の液溜部250に試料液を導入して、試料液中の被検出物質と1次抗体とを反応させる(1次反応、工程S20)。試料液中に被検出物質が存在する場合は、被検出物質の少なくとも一部は1次抗体に結合する。このとき、図5Aに示されるように、液溜部250の下部にのみ試料液310を導入することが好ましい。液溜部250の下部の容量は、液溜部250の上部の容量よりも小さいため、液溜部250の下部にのみ試料液310を導入することで、試料液の使用量を低減することができる。この後、液溜部250内を緩衝液などで洗浄して、1次抗体に結合しなかった物質を除去する。 Next, the sample solution is introduced into the liquid reservoir 250 of the chip 200, and the detection target substance in the sample solution reacts with the primary antibody (primary reaction, step S20). When a substance to be detected is present in the sample solution, at least a part of the substance to be detected binds to the primary antibody. At this time, as shown in FIG. 5A, it is preferable to introduce the sample liquid 310 only into the lower part of the liquid reservoir 250. Since the capacity of the lower part of the liquid reservoir 250 is smaller than the capacity of the upper part of the liquid reservoir 250, the amount of the sample liquid used can be reduced by introducing the sample liquid 310 only into the lower part of the liquid reservoir 250. it can. Thereafter, the inside of the liquid reservoir 250 is washed with a buffer solution or the like to remove substances that have not bound to the primary antibody.
 試料液は、検体を含む水系の液体である。たとえば、試料液は、液状の検体や、液状の検体を緩衝液などの液体で希釈した希釈液である。試料液は、界面活性剤などを含んでいてもよい。検体および被検出物質の種類は、特に限定されない。検体の例には、血液や血清、血漿、尿、鼻孔液、唾液、精液などの体液が含まれる。また、被検出物質の例には、核酸(DNAやRNAなど)、タンパク質(ポリペプチドやオリゴペプチドなど)、アミノ酸、糖質、脂質およびこれらの修飾分子が含まれる。 The sample liquid is an aqueous liquid containing the specimen. For example, the sample solution is a liquid sample or a diluted solution obtained by diluting a liquid sample with a liquid such as a buffer solution. The sample solution may contain a surfactant or the like. There are no particular limitations on the types of the specimen and the substance to be detected. Examples of specimens include body fluids such as blood, serum, plasma, urine, nasal fluid, saliva and semen. Examples of substances to be detected include nucleic acids (such as DNA and RNA), proteins (such as polypeptides and oligopeptides), amino acids, carbohydrates, lipids, and modified molecules thereof.
 次いで、1次抗体に結合した被検出物質を蛍光物質で標識する(2次反応、工程S30)。具体的には、蛍光物質で標識された2次抗体を含む蛍光標識液を液溜部250に導入して、1次抗体に結合した被検出物質と蛍光標識液とを接触させる。蛍光標識液は、例えば、蛍光物質で標識された2次抗体を含む緩衝液である。被検出物質が1次抗体に結合している場合は、被検出物質の少なくとも一部は、蛍光物質で標識される。このときも、図5Aに示されるように、液溜部250の下部にのみ蛍光標識液を導入することが好ましい。この後、液溜部250内を緩衝液などで洗浄し、遊離の2次抗体などを除去する。なお、1次反応と2次反応の順番は、これに限定されない。たとえば、被検出物質を2次抗体に結合させた後に、これらの複合体を含む液体を液溜部250に導入してもよい。また、液溜部250に検体と蛍光標識液を同時に導入してもよい。いずれの場合であっても、液溜部250に導入された試料液は、緩衝液などの別の液体に置換される。 Next, the detection target substance bound to the primary antibody is labeled with a fluorescent substance (secondary reaction, step S30). Specifically, a fluorescent labeling solution containing a secondary antibody labeled with a fluorescent substance is introduced into the liquid reservoir 250, and the substance to be detected bound to the primary antibody is brought into contact with the fluorescent labeling liquid. The fluorescent labeling solution is, for example, a buffer solution containing a secondary antibody labeled with a fluorescent substance. When the substance to be detected is bound to the primary antibody, at least a part of the substance to be detected is labeled with a fluorescent substance. Also at this time, as shown in FIG. 5A, it is preferable to introduce the fluorescent labeling liquid only into the lower part of the liquid reservoir 250. Thereafter, the inside of the liquid reservoir 250 is washed with a buffer solution or the like to remove free secondary antibodies and the like. The order of the primary reaction and the secondary reaction is not limited to this. For example, a liquid containing these complexes may be introduced into the liquid reservoir 250 after the substance to be detected is bound to the secondary antibody. Further, the sample and the fluorescent labeling solution may be introduced into the liquid reservoir 250 at the same time. In any case, the sample liquid introduced into the liquid reservoir 250 is replaced with another liquid such as a buffer solution.
 次いで、励起光αを金属膜220に照射して、蛍光物質から放出される蛍光βの強度を測定する(工程S40)。具体的には、制御部160は、光源110に励起光αを出射させる。同時に、制御部160は、光検出部150に金属膜220からの蛍光βの強度を検出させる。光検出部150は、測定結果を制御部160に出力する。このとき、図5Bに示されるように、液溜部250の上部まで液体320が導入されていることが好ましい。液溜部250上部の側壁240間の間隔は、液溜部250下部の側壁240間の間隔よりも大きいため、液溜部250の上部まで液体320を導入することで、金属膜220上部におけるメニスカスに起因する液面の屈曲度を低減することができる。すなわち、金属膜220上部の液面形状を平面に近づけて、蛍光βの出射角のずれを低減することができる。 Next, the excitation light α is irradiated onto the metal film 220, and the intensity of the fluorescence β emitted from the fluorescent material is measured (step S40). Specifically, the control unit 160 causes the light source 110 to emit the excitation light α. At the same time, the control unit 160 causes the light detection unit 150 to detect the intensity of the fluorescence β from the metal film 220. The light detection unit 150 outputs the measurement result to the control unit 160. At this time, as shown in FIG. 5B, it is preferable that the liquid 320 is introduced to the upper part of the liquid reservoir 250. Since the interval between the side walls 240 at the upper part of the liquid reservoir 250 is larger than the interval between the side walls 240 at the lower part of the liquid reservoir 250, the liquid 320 is introduced to the upper part of the liquid reservoir 250, thereby It is possible to reduce the degree of bending of the liquid surface due to the above. That is, it is possible to reduce the deviation of the emission angle of the fluorescence β by bringing the liquid surface shape above the metal film 220 close to a flat surface.
 最後に、制御部160は、光検出部150からの出力信号(蛍光シグナル)を解析して、被検出物質の存在または被検出物質の量を分析する(工程S50)。 Finally, the control unit 160 analyzes the output signal (fluorescence signal) from the light detection unit 150, and analyzes the presence of the detection target substance or the amount of the detection target substance (step S50).
 以上の手順により、検体中の被検出物質の存在または被検出物質の量を検出することができる。 By the above procedure, the presence of the substance to be detected or the amount of the substance to be detected in the sample can be detected.
 以上のように、本実施の形態に係るチップ200は、液溜部250の深さ方向の断面における液溜部250の水平方向の大きさが上に行くほど(金属膜220から離れるほど)大きい。このため、液溜部250内の液体の量を多くすることで、液溜部250の上にバックグラウンド増大の原因となりうる蓋などを配置することなく、メニスカスに起因する蛍光の出射角のずれを低減することができる。したがって、本実施の形態に係るチップ200を使用することで、高感度かつ高精度に被検出物質を検出することができる。 As described above, the chip 200 according to the present embodiment is larger as the horizontal size of the liquid reservoir 250 in the cross section in the depth direction of the liquid reservoir 250 is higher (away from the metal film 220). . For this reason, by increasing the amount of the liquid in the liquid reservoir 250, the deviation of the emission angle of the fluorescence due to the meniscus can be achieved without placing a lid or the like on the liquid reservoir 250 that may cause an increase in background. Can be reduced. Therefore, the detection target substance can be detected with high sensitivity and high accuracy by using the chip 200 according to the present embodiment.
 また、本実施の形態に係るチップ200は、液溜部250の深さ方向の断面における液溜部250の水平方向の大きさが下に行くほど(金属膜220に近いほど)小さい。このため、1次反応を行うときの試料液の使用量、および2次反応を行うときの試薬の使用量を減らすことができる。したがって、本実施の形態に係るチップ200を使用することで、測定コストを低減することができる。 Further, the chip 200 according to the present embodiment is smaller as the horizontal size of the liquid reservoir 250 in the cross section in the depth direction of the liquid reservoir 250 becomes lower (closer to the metal film 220). For this reason, the usage-amount of the sample liquid when performing a primary reaction and the usage-amount of a reagent when performing a secondary reaction can be reduced. Therefore, the measurement cost can be reduced by using the chip 200 according to the present embodiment.
 [実施の形態2]
 実施の形態2に係るチップ200は、SPFS装置100の光検出部150の開口数に対応して、液溜部250の水平方向の大きさRと、側壁240内面の接触角θが設定されている点で実施の形態1に係るチップ200と異なる。したがって、本実施の形態では、この点についてのみ説明する。
[Embodiment 2]
In the chip 200 according to the second embodiment, the horizontal size R of the liquid reservoir 250 and the contact angle θ c of the inner surface of the side wall 240 are set corresponding to the numerical aperture of the light detection unit 150 of the SPFS device 100. This is different from the chip 200 according to the first embodiment. Therefore, only this point will be described in the present embodiment.
 光検出部150において蛍光βを正確に検出するためには、蛍光βの出射角がメニスカスに起因してずれても、蛍光βが光検出部150の開口部(アパーチャ)内に到達できることが好ましい。すなわち、蛍光βの出射角のずれ幅が、光検出部150の開口数と関連付けられる所定の値よりも小さいことが好ましい。 In order to accurately detect the fluorescence β in the light detection unit 150, it is preferable that the fluorescence β can reach the opening (aperture) of the light detection unit 150 even if the emission angle of the fluorescence β is shifted due to the meniscus. . That is, it is preferable that the deviation width of the emission angle of the fluorescence β is smaller than a predetermined value associated with the numerical aperture of the light detection unit 150.
 図6Aは、メニスカスが無いと仮定した場合の励起光αおよび蛍光βの光路を示す模式図である。図中右側の励起光αは、励起光αの反射光である。ここで、θは、励起光αが液体320上の媒質(例えば空気)から液体320(例えば緩衝液)に入射したときの励起光αの入射角である。θ’は、励起光αが液体320上の媒質から液体320に入射したときの励起光αの屈折角である。θは、蛍光βが液体320から液体320上の媒質に入射したときの蛍光βの屈折角である。hは、液溜部250内の液体320の深さである。この図に示されるように、蛍光βが液体320から液体320上の媒質に入射したときの蛍光βの入射角は、2θ’で近似されうる。以下の説明では、θを蛍光βの出射角の基準とする。 FIG. 6A is a schematic diagram showing optical paths of excitation light α and fluorescence β when it is assumed that there is no meniscus. Excitation light α on the right side in the figure is reflected light of excitation light α. Here, θ 1 is an incident angle of the excitation light α when the excitation light α is incident on the liquid 320 (for example, a buffer solution) from a medium (for example, air) on the liquid 320. θ 1 ′ is a refraction angle of the excitation light α when the excitation light α is incident on the liquid 320 from the medium on the liquid 320. θ 2 is a refraction angle of the fluorescence β when the fluorescence β enters the medium on the liquid 320 from the liquid 320. h is the depth of the liquid 320 in the liquid reservoir 250. As shown in this figure, the incident angle of the fluorescence β when the fluorescence β enters the medium on the liquid 320 from the liquid 320 can be approximated by 2θ 1 ′. In the following description, θ 2 is used as a reference for the emission angle of the fluorescence β.
 なお、励起光αの波長や、回折格子230のピッチΛ、液体320の深さh、励起光αの入射角θ、液体320上の媒質の屈折率nおよび誘電率、液体320の屈折率nおよび誘電率などは、蛍光検出時に使用する液体320の種類や、蛍光物質の種類、蛍光検出時の雰囲気などに応じて従属的に決まる。 Note that the wavelength of the excitation light α, the pitch Λ of the diffraction grating 230, the depth h of the liquid 320, the incident angle θ 1 of the excitation light α, the refractive index n 1 and the dielectric constant of the medium on the liquid 320, and the refraction of the liquid 320 The rate n 2, the dielectric constant, and the like are dependently determined according to the type of liquid 320 used at the time of fluorescence detection, the type of fluorescent material, the atmosphere at the time of fluorescence detection, and the like.
 図6Bは、メニスカスがある場合の励起光αおよび蛍光βの光路を示す模式図である。ここで、金属膜220の面方向をx軸とし、液溜部250の高さ方向をy軸とし、励起光αの光軸と回折格子230との交点を原点としたときの、液溜部250内の液体320のメニスカスの形状を表す関数を以下の式(13)のように表す。液体320の屈折率および誘電率は、水の屈折率および誘電率とほぼ同じであると考えられるため、液体320のメニスカスの形状は、液体320表面の位置の液溜部250の水平方向の大きさRおよび側壁240内面の接触角θにより決まる。
Figure JPOXMLDOC01-appb-M000013
FIG. 6B is a schematic diagram showing optical paths of excitation light α and fluorescence β when there is a meniscus. Here, when the surface direction of the metal film 220 is the x-axis, the height direction of the liquid reservoir 250 is the y-axis, and the intersection of the optical axis of the excitation light α and the diffraction grating 230 is the origin, the liquid reservoir A function representing the shape of the meniscus of the liquid 320 in 250 is represented by the following equation (13). Since the refractive index and dielectric constant of the liquid 320 are considered to be substantially the same as the refractive index and dielectric constant of water, the shape of the meniscus of the liquid 320 is the size of the liquid reservoir 250 at the position of the surface of the liquid 320 in the horizontal direction. And the contact angle θ c of the inner surface of the side wall 240.
Figure JPOXMLDOC01-appb-M000013
 図6Bにおいて、θ”は、励起光αが液体320上の媒質から液体320に入射したときの、入射点を通りかつ金属膜220の表面に垂直な直線に対する液体320内の励起光αの角度である。Δθは、励起光αが液体320上の媒質から液体320に入射したときの入射点における液体320表面の傾きを表し、上記式(13)を利用して以下の式(14)のように表される。xは、入射点のx座標の値である。また、Δθ’は、蛍光βが液体320から液体320上の媒質に入射したときの入射点における液体320表面の傾きを表し、上記式(13)を利用して以下の式(15)のように表される。xは、入射点のx座標の値である。
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
In FIG. 6B, θ 1 ″ represents the excitation light α in the liquid 320 with respect to a straight line passing through the incident point and perpendicular to the surface of the metal film 220 when the excitation light α is incident on the liquid 320 from the medium on the liquid 320. Δθ 1 represents the inclination of the surface of the liquid 320 at the incident point when the excitation light α is incident on the liquid 320 from the medium on the liquid 320. By using the above equation (13), the following equation (14) is obtained. X 1 is the value of the x coordinate of the incident point, and Δθ 2 ′ is the liquid 320 at the incident point when the fluorescence β is incident on the medium on the liquid 320 from the liquid 320. represents the inclination of the surface, .x 2 represented as the equation (13) using the following equation (15) is the value of x-coordinate of the point of incidence.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000015
 この場合、xおよびxは、それぞれ以下の式(16)および式(17)のように近似される。
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
In this case, x 1 and x 2 are respectively approximated by the following equation (16) and (17).
Figure JPOXMLDOC01-appb-M000016
Figure JPOXMLDOC01-appb-M000017
 スネルの法則より、以下の式(18)および式(19)が成立する(図6A参照)。同様に、スネルの法則より、以下の式(20)および式(21)が成立する(図6B参照)。ここで、nは、液体320上の媒質の屈折率である。nは、液体320の屈折率である。
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
From Snell's law, the following equations (18) and (19) hold (see FIG. 6A). Similarly, the following formulas (20) and (21) are established from Snell's law (see FIG. 6B). Here, n 1 is the refractive index of the medium on the liquid 320. n 2 is the refractive index of the liquid 320.
Figure JPOXMLDOC01-appb-M000018
Figure JPOXMLDOC01-appb-M000019
Figure JPOXMLDOC01-appb-M000020
Figure JPOXMLDOC01-appb-M000021
 上記の式(18)~式(21)に各数値を代入し、これらの式を解くことで、液体320のメニスカスに起因する蛍光βの出射角のずれ幅Δθを算出することができる。そして、前述のとおり、光検出部150において蛍光βを正確に検出するためには、蛍光βの出射角のずれ幅Δθが、光検出部150の開口数NAと関連付けられる所定の値よりも小さいことが好ましい。すなわち、以下の式(22)が成立することが好ましい。
Figure JPOXMLDOC01-appb-M000022
By substituting each numerical value into the above equations (18) to (21) and solving these equations, the emission angle deviation width Δθ 2 of the fluorescence β caused by the meniscus of the liquid 320 can be calculated. As described above, in order to accurately detect the fluorescence β in the light detection unit 150, the emission angle deviation width Δθ 2 of the fluorescence β is larger than a predetermined value associated with the numerical aperture NA of the light detection unit 150. Small is preferable. That is, it is preferable that the following formula (22) is satisfied.
Figure JPOXMLDOC01-appb-M000022
 前述のとおり、液体320のメニスカスの形状は、液体320表面の位置の液溜部250の水平方向の大きさRおよび側壁240内面の接触角θにより決まる。したがって、本実施の形態に係るチップ200では、上記の式(22)が成立するように、Rおよびθが設定される。蛍光βを正確に検出する観点からは、Rおよびθは、蛍光βが液体320の表面で全反射しないように設定されることがより好ましい。また、Rおよびθは、液体320の深さが変動しても蛍光βが光検出部150に到達できるように設定されることがより好ましい。また、Rおよびθは、チップ200の位置ずれが生じても蛍光βが光検出部150に到達できるように設定されることがより好ましい。 As described above, the meniscus shape of the liquid 320 is determined by the horizontal size R of the liquid reservoir 250 at the surface of the liquid 320 and the contact angle θ c of the inner surface of the side wall 240. Accordingly, the chip 200 according to the present embodiment, as the above equation (22) is satisfied, R and theta c is set. From the viewpoint of accurately detecting the fluorescence β, R and θ c are more preferably set so that the fluorescence β is not totally reflected on the surface of the liquid 320. R and θ c are more preferably set so that the fluorescence β can reach the light detection unit 150 even when the depth of the liquid 320 varies. Further, it is more preferable that R and θ c are set so that the fluorescence β can reach the light detection unit 150 even if the chip 200 is displaced.
 なお、液溜部250内の液体320のメニスカスの形状(上記式(13)の関数)は、例えばレーザー変位計で測定されうる。図7は、ポリテトラフルオロエチレンで側壁240を形成した場合のTBST(Tris Buffered Saline with Tween 20)のメニスカスの測定結果を示すグラフである。図7Aは、液面の高さの液溜部250の水平断面の形状が直径18mmの円形である場合の測定結果を示すグラフであり、図7Bは、液面の高さの液溜部250の水平断面の形状が直径10mmの円形である場合の測定結果を示すグラフである。横軸は、液面の中心からの水平方向の距離を示し、縦軸は、液面の中心からの高さを示す。このような測定結果から、上記式(13)の関数が決定されうる。 Note that the shape of the meniscus of the liquid 320 in the liquid reservoir 250 (the function of the above equation (13)) can be measured by, for example, a laser displacement meter. FIG. 7 is a graph showing the measurement results of meniscus of TBST (Tris Buffered Saline with Tween 20) when the side wall 240 is formed of polytetrafluoroethylene. FIG. 7A is a graph showing measurement results when the shape of the horizontal cross section of the liquid reservoir 250 at the liquid level is a circle having a diameter of 18 mm, and FIG. 7B is a graph showing the liquid reservoir 250 at the liquid level. It is a graph which shows a measurement result in case the shape of a horizontal cross section of this is a circle with a diameter of 10 mm. The horizontal axis indicates the distance in the horizontal direction from the center of the liquid level, and the vertical axis indicates the height from the center of the liquid level. From such measurement results, the function of equation (13) can be determined.
 以上のように、本実施の形態に係るチップ200は、SPFS装置100の光検出部150の開口数に対応して、液溜部250の水平方向の大きさRと、側壁240内面の接触角θが設定される。このため、蛍光βの出射角のずれを、光検出部150の開口数よりも小さくすることができる。したがって、本実施の形態に係るチップ200を使用することで、高感度かつ高精度に被検出物質を検出することができる。 As described above, in the chip 200 according to the present embodiment, the horizontal size R of the liquid reservoir 250 and the contact angle of the inner surface of the sidewall 240 correspond to the numerical aperture of the light detection unit 150 of the SPFS device 100. θ c is set. For this reason, the deviation of the emission angle of the fluorescence β can be made smaller than the numerical aperture of the light detection unit 150. Therefore, the detection target substance can be detected with high sensitivity and high accuracy by using the chip 200 according to the present embodiment.
 なお、上記各実施の形態では、図5に示されるチップ200を使用する例について説明したが、本発明に係るチップの液溜部250の形状は、これに限定されない。これまで説明したように、液溜部250の深さ方向の断面における液溜部250の水平方向の大きさが上に行くほど(金属膜220から離れるほど)大きければ、本発明の効果を得られる。したがって、図8Aに示されるように、側壁240の内面にR面を形成してもよいし、図8Bに示されるように、側壁240の内面にテーパー面(傾斜面)を形成してもよい。 In each of the above embodiments, the example using the chip 200 shown in FIG. 5 has been described, but the shape of the liquid reservoir 250 of the chip according to the present invention is not limited to this. As described above, the effect of the present invention can be obtained when the horizontal size of the liquid reservoir 250 in the cross section in the depth direction of the liquid reservoir 250 increases as it moves upward (away from the metal film 220). It is done. Therefore, as shown in FIG. 8A, an R surface may be formed on the inner surface of the side wall 240, or a tapered surface (inclined surface) may be formed on the inner surface of the side wall 240 as shown in FIG. 8B. .
 本出願は、2013年11月7日出願の特願2013-230969に基づく優先権を主張する。当該出願明細書および図面に記載された内容は、すべて本願明細書に援用される。 This application claims priority based on Japanese Patent Application No. 2013-230969 filed on November 7, 2013. The contents described in the application specification and the drawings are all incorporated herein.
 本発明は、被検出物質を高い信頼性で測定することができるため、例えば臨床検査などに有用である。 The present invention is useful for, for example, clinical examination because the substance to be detected can be measured with high reliability.
 100 表面プラズモン増強蛍光測定装置(SPFS装置)
 110 光源
 120 コリメートレンズ
 130 励起光フィルター
 140 蛍光フィルター
 150 光検出部
 160 制御部
 200 チップ
 210 基板
 220 金属膜
 230 回折格子
 240 側壁
 250 液溜部
 310 試料液
 320 液体
 α 励起光
 β 蛍光
100 Surface plasmon enhanced fluorescence measuring device (SPFS device)
DESCRIPTION OF SYMBOLS 110 Light source 120 Collimating lens 130 Excitation light filter 140 Fluorescence filter 150 Light detection part 160 Control part 200 Chip 210 Substrate 220 Metal film 230 Diffraction grating 240 Side wall 250 Reservoir part 310 Sample liquid 320 Liquid α Excitation light β Fluorescence

Claims (3)

  1.  被検出物質を標識する蛍光物質が、表面プラズモン共鳴に基づく電場により励起されて発した蛍光を検出して、前記被検出物質の存在またはその量を検出する表面プラズモン増強蛍光測定装置で使用されるチップであって、
     液体を保持するための液溜部と、
     前記液溜部の底部に配置された、回折格子を含む金属膜と、を有し、
     前記液溜部の深さ方向の断面における前記液溜部の水平方向の大きさは、上に行くほど大きい、
     チップ。
    A fluorescent substance that labels a substance to be detected is used in a surface plasmon-enhanced fluorescence measuring device that detects fluorescence emitted by excitation by an electric field based on surface plasmon resonance and detects the presence or amount of the substance to be detected. A chip,
    A liquid reservoir for holding liquid;
    A metal film including a diffraction grating disposed at the bottom of the liquid reservoir,
    The horizontal size of the liquid reservoir in the cross section in the depth direction of the liquid reservoir is larger as it goes up.
    Chip.
  2.  前記表面プラズモン増強蛍光測定装置は、励起光を前記回折格子に照射する光照射部と、蛍光を検出する光検出部と、を有し、
     前記光照射部および前記光検出部を含む前記液溜部の深さ方向の断面における、蛍光検出時の液面位置の前記液溜部の水平方向の大きさRと、前記液溜部の側壁内面の接触角θは、以下の式(1)が成立するように設定されている、
     請求項1に記載のチップ。
    Figure JPOXMLDOC01-appb-M000001
     [上記式(1)において、Δθは、以下の式(2)~式(5)により算出される、蛍光が液体から前記液体上の媒質に入射したときの蛍光の屈折角の前記液体のメニスカスに起因する変動幅である。NAは、前記光検出部の開口数である。]
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
     [上記式(2)~式(5)において、nは、前記液体上の媒質の屈折率である。nは、前記液体の屈折率である。θは、メニスカスが無いと仮定した場合に励起光が前記液体上の媒質から前記液体に入射したときの励起光の入射角である。θ’は、メニスカスが無いと仮定した場合に励起光が前記液体上の媒質から前記液体に入射したときの励起光の屈折角である。θは、メニスカスが無いと仮定した場合に蛍光が前記液体から前記液体上の媒質に入射したときの蛍光の屈折角である。θ”は、メニスカスがある場合の励起光が前記液体上の媒質から前記液体に入射したときの、入射点を通りかつ前記金属膜の表面に垂直な直線に対する前記液体内の励起光の角度である。Δθは、以下の式(6)および式(10)により表される、メニスカスがある場合の励起光が前記液体上の媒質から前記液体に入射したときの入射点における液面の傾きである。Δθ’は、以下の式(8)および式(10)により表される、メニスカスがある場合の蛍光が前記液体から前記液体上の媒質に入射したときの入射点における液面の傾きである。]
    Figure JPOXMLDOC01-appb-M000006
     [上記式(6)において、xは、メニスカスがある場合の励起光が前記液体上の媒質から前記液体に入射したときの入射点のx座標であり、以下の式(7)で近似される。]
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
     [上記式(8)において、xは、メニスカスがある場合の蛍光が前記液体から前記液体上の媒質に入射したときの入射点のx座標であり、以下の式(9)で近似される。]
    Figure JPOXMLDOC01-appb-M000009
    Figure JPOXMLDOC01-appb-M000010
     [上記式(10)は、前記断面において、前記金属膜の面方向をx軸とし、前記液溜部の高さ方向をy軸とし、励起光の光軸と前記回折格子との交点を原点としたときの、Rおよびθの影響を受けて形成される前記液体のメニスカスの形状を表す関数である。]
    The surface plasmon enhanced fluorescence measurement device has a light irradiation unit that irradiates the diffraction grating with excitation light, and a light detection unit that detects fluorescence.
    In the cross section in the depth direction of the liquid reservoir including the light irradiator and the light detector, the horizontal size R of the liquid reservoir at the liquid level at the time of fluorescence detection and the side wall of the liquid reservoir The contact angle θ c of the inner surface is set so that the following expression (1) is established,
    The chip according to claim 1.
    Figure JPOXMLDOC01-appb-M000001
    [In the above formula (1), Δθ 2 is calculated by the following formulas (2) to (5), and the refraction angle of the fluorescence when the fluorescence enters the medium on the liquid from the liquid is calculated. This is the fluctuation range due to the meniscus. NA is the numerical aperture of the light detection unit. ]
    Figure JPOXMLDOC01-appb-M000002
    Figure JPOXMLDOC01-appb-M000003
    Figure JPOXMLDOC01-appb-M000004
    Figure JPOXMLDOC01-appb-M000005
    [In the above formulas (2) to (5), n 1 is the refractive index of the medium on the liquid. n 2 is the refractive index of the liquid. θ 1 is an incident angle of the excitation light when the excitation light is incident on the liquid from the medium on the liquid when it is assumed that there is no meniscus. θ 1 ′ is a refraction angle of the excitation light when the excitation light is incident on the liquid from the medium on the liquid when it is assumed that there is no meniscus. θ 2 is a refraction angle of the fluorescence when the fluorescence is incident on the medium on the liquid from the liquid when it is assumed that there is no meniscus. θ 1 ″ is the angle of the excitation light in the liquid with respect to a straight line passing through the incident point and perpendicular to the surface of the metal film when the excitation light in the presence of the meniscus enters the liquid from the medium on the liquid Δθ 1 is expressed by the following equations (6) and (10), and the liquid surface at the incident point when the excitation light in the presence of the meniscus enters the liquid from the medium on the liquid. Δθ 2 ′ is the liquid level at the incident point when the fluorescence when there is a meniscus is incident from the liquid to the medium on the liquid, expressed by the following equations (8) and (10). The slope of
    Figure JPOXMLDOC01-appb-M000006
    In [the formula (6), x 1 is the x-coordinate of the point of incidence of when excitation light in the case where there is a meniscus is incident to the liquid from a medium on the liquid, is approximated by the following equation (7) The ]
    Figure JPOXMLDOC01-appb-M000007
    Figure JPOXMLDOC01-appb-M000008
    In [the formula (8), x 2 is the x-coordinate of the point of incidence when the fluorescence when there is menisci incident on a medium on the liquid from the liquid, is approximated by the following equation (9) . ]
    Figure JPOXMLDOC01-appb-M000009
    Figure JPOXMLDOC01-appb-M000010
    [Equation (10) in the cross section is that the plane direction of the metal film is the x axis, the height direction of the liquid reservoir is the y axis, and the intersection of the optical axis of the excitation light and the diffraction grating is the origin. Is a function representing the shape of the meniscus of the liquid formed under the influence of R and θ c . ]
  3.  被検出物質を標識する蛍光物質が、表面プラズモン共鳴に基づく電場により励起されて発した蛍光を検出して、前記被検出物質の存在またはその量を検出する表面プラズモン増強蛍光測定方法であって、
     液体を保持するための液溜部と、前記液溜部の底部に配置された、回折格子を含む金属膜と、前記回折格子に固定化された捕捉体と、を有するチップを準備する工程と、
     前記液溜部に試料液を導入する工程と、
     前記液溜部内の前記試料液を別の液体に置換する工程と、
     前記回折格子において表面プラズモン共鳴が発生するように、前記液溜部の開口部側から前記回折格子に励起光を照射し、前記被検出物質を標識する蛍光物質から放出された蛍光を検出する工程と、
     を含み、
     前記蛍光を検出する工程における前記液溜部内の前記液体の表面積は、前記液溜部に前記試料液を導入する工程における前記液溜部内の前記試料液の表面積よりも大きい、
     表面プラズモン増強蛍光測定方法。
    A fluorescent substance for labeling a substance to be detected is a surface plasmon-enhanced fluorescence measuring method for detecting fluorescence emitted by being excited by an electric field based on surface plasmon resonance, and detecting the presence or amount of the substance to be detected,
    Preparing a chip having a liquid reservoir for holding a liquid, a metal film including a diffraction grating disposed at the bottom of the liquid reservoir, and a capturing body fixed to the diffraction grating; ,
    Introducing a sample liquid into the liquid reservoir;
    Replacing the sample liquid in the liquid reservoir with another liquid;
    Irradiating the diffraction grating with excitation light from the opening side of the liquid reservoir so as to cause surface plasmon resonance in the diffraction grating, and detecting fluorescence emitted from a fluorescent substance that labels the substance to be detected When,
    Including
    The surface area of the liquid in the liquid reservoir in the step of detecting fluorescence is larger than the surface area of the sample liquid in the liquid reservoir in the step of introducing the sample liquid into the liquid reservoir.
    Surface plasmon enhanced fluorescence measurement method.
PCT/JP2014/079604 2013-11-07 2014-11-07 Chip, and method for measuring surface plasmon-enhanced fluorescence WO2015068813A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015546701A JP6586884B2 (en) 2013-11-07 2014-11-07 Chip and surface plasmon enhanced fluorescence measurement method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013230969 2013-11-07
JP2013-230969 2013-11-07

Publications (1)

Publication Number Publication Date
WO2015068813A1 true WO2015068813A1 (en) 2015-05-14

Family

ID=53041588

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079604 WO2015068813A1 (en) 2013-11-07 2014-11-07 Chip, and method for measuring surface plasmon-enhanced fluorescence

Country Status (2)

Country Link
JP (1) JP6586884B2 (en)
WO (1) WO2015068813A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021238A1 (en) * 2016-07-28 2018-02-01 コニカミノルタ株式会社 Detection chip, detection system, and detection method

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202285A (en) * 2001-10-26 2003-07-18 Fuji Photo Film Co Ltd Measuring plate of measuring device utilizing total reflection
JP2010112748A (en) * 2008-11-04 2010-05-20 Fujifilm Corp Detection method, detecting sample cell and detecting kit
JP2012211799A (en) * 2011-03-31 2012-11-01 Fujifilm Corp Local plasmon enhanced fluorescence particle, carrier for detecting local plasmon enhanced fluorescence, local plasmon enhanced fluorescence detector, and fluorescence detection method
JP2013113655A (en) * 2011-11-28 2013-06-10 Fujifilm Corp Sensing device and sensing method using the same
JP2013178224A (en) * 2012-01-31 2013-09-09 National Institute Of Advanced Industrial & Technology Biochip, kit for bioassay and bioassay method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999054711A1 (en) * 1998-04-17 1999-10-28 Ljl Biosystems, Inc. Sample-holding devices and systems
WO2000042209A1 (en) * 1999-01-15 2000-07-20 Ljl Biosystems, Inc. Methods and apparatus for detecting polynucleotide hybridization
FR2781886B1 (en) * 1998-07-31 2001-02-16 Commissariat Energie Atomique MULTIPLE POINT CHEMICAL OR BIOLOGICAL ANALYSIS MICROSYSTEM
JP2013170861A (en) * 2012-02-20 2013-09-02 Dainippon Screen Mfg Co Ltd Imaging apparatus, sample holding plate and imaging method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003202285A (en) * 2001-10-26 2003-07-18 Fuji Photo Film Co Ltd Measuring plate of measuring device utilizing total reflection
JP2010112748A (en) * 2008-11-04 2010-05-20 Fujifilm Corp Detection method, detecting sample cell and detecting kit
JP2012211799A (en) * 2011-03-31 2012-11-01 Fujifilm Corp Local plasmon enhanced fluorescence particle, carrier for detecting local plasmon enhanced fluorescence, local plasmon enhanced fluorescence detector, and fluorescence detection method
JP2013113655A (en) * 2011-11-28 2013-06-10 Fujifilm Corp Sensing device and sensing method using the same
JP2013178224A (en) * 2012-01-31 2013-09-09 National Institute Of Advanced Industrial & Technology Biochip, kit for bioassay and bioassay method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018021238A1 (en) * 2016-07-28 2018-02-01 コニカミノルタ株式会社 Detection chip, detection system, and detection method
JPWO2018021238A1 (en) * 2016-07-28 2019-05-16 コニカミノルタ株式会社 Detection chip, detection system and detection method
JP6991972B2 (en) 2016-07-28 2022-01-13 大塚製薬株式会社 Detection chip, detection system and detection method
US11408817B2 (en) 2016-07-28 2022-08-09 Otsuka Pharmaceutical Co., Ltd. Detection chip, detection system, and detection method

Also Published As

Publication number Publication date
JPWO2015068813A1 (en) 2017-03-09
JP6586884B2 (en) 2019-10-09

Similar Documents

Publication Publication Date Title
JP6565934B2 (en) Surface plasmon enhanced fluorescence measuring apparatus and surface plasmon enhanced fluorescence measuring method
JP6991972B2 (en) Detection chip, detection system and detection method
JP6263887B2 (en) Surface plasmon enhanced fluorescence measurement method and surface plasmon enhanced fluorescence measurement apparatus
EP3321688B1 (en) Detection device and detection method
US10677732B2 (en) Detection chip, detection kit, detection system, and method for detecting detection target substance
WO2017057136A1 (en) Surface plasmon-field enhanced fluorescence spectroscopy and measurement kit
JPWO2016170967A1 (en) Detection chip manufacturing method and detection chip
JP6631538B2 (en) Detection chip and detection method
JP2015111063A (en) Surface plasmon-field enhanced fluorescence measurement method and surface plasmon enhanced fluorescence measurement apparatus
JP6263884B2 (en) Surface plasmon enhanced fluorescence measuring apparatus and surface plasmon enhanced fluorescence measuring method
JP6586884B2 (en) Chip and surface plasmon enhanced fluorescence measurement method
JP6627778B2 (en) Detection device and detection method
JP6414205B2 (en) Surface plasmon enhanced fluorescence measuring apparatus and surface plasmon enhanced fluorescence measuring method
JP6711285B2 (en) Detection method, detection device and chip
JP6717201B2 (en) Detection method and detection device
JP6687040B2 (en) Shape measuring method, shape measuring apparatus, detecting method and detecting apparatus
WO2016203832A1 (en) Sensing chip, sensing method, sensing apparatus, and sensing system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859791

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015546701

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859791

Country of ref document: EP

Kind code of ref document: A1