WO2015068696A1 - Storage cell and method for notification of swelling in storage cell - Google Patents

Storage cell and method for notification of swelling in storage cell Download PDF

Info

Publication number
WO2015068696A1
WO2015068696A1 PCT/JP2014/079251 JP2014079251W WO2015068696A1 WO 2015068696 A1 WO2015068696 A1 WO 2015068696A1 JP 2014079251 W JP2014079251 W JP 2014079251W WO 2015068696 A1 WO2015068696 A1 WO 2015068696A1
Authority
WO
WIPO (PCT)
Prior art keywords
container
storage cell
expansion
control unit
detection
Prior art date
Application number
PCT/JP2014/079251
Other languages
French (fr)
Japanese (ja)
Inventor
勝部 恭行
Original Assignee
旭化成Fdkエナジーデバイス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 旭化成Fdkエナジーデバイス株式会社 filed Critical 旭化成Fdkエナジーデバイス株式会社
Publication of WO2015068696A1 publication Critical patent/WO2015068696A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/78Cases; Housings; Encapsulations; Mountings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/48Accumulators combined with arrangements for measuring, testing or indicating the condition of cells, e.g. the level or density of the electrolyte
    • H01M10/488Cells or batteries combined with indicating means for external visualization of the condition, e.g. by change of colour or of light density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/14Arrangements or processes for adjusting or protecting hybrid or EDL capacitors
    • H01G11/18Arrangements or processes for adjusting or protecting hybrid or EDL capacitors against thermal overloads, e.g. heating, cooling or ventilating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/50Current conducting connections for cells or batteries
    • H01M50/569Constructional details of current conducting connections for detecting conditions inside cells or batteries, e.g. details of voltage sensing terminals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to a storage battery and a storage battery expansion notification method.
  • a storage cell of a lithium ion capacitor is filled with, for example, an electrode laminate in which positive electrodes, negative electrodes, and separators are alternately laminated in a container of a laminate material such as an aluminum laminate film, and, for example, an organic electrolyte containing lithium ions. It is a sealed structure.
  • the electricity storage cell may deteriorate in electricity storage performance due to vaporization of the internal electrolyte due to aging or the like.
  • An object of one aspect of the present invention is to provide a storage battery that can notify detection of expansion of a container of a laminate material, and a method for notifying expansion of the storage battery.
  • a storage battery outputs a detection unit that detects expansion of a container of a laminate material in which an electrode stack is sealed, and a notification signal according to detection of expansion of the container by the detection unit. And a notification unit.
  • the detection unit includes a displacement sensor that measures a displacement amount of the restraining member in a restraining member that restrains the container, and detects expansion of the container based on the displacement amount obtained by the displacement sensor.
  • FIG. 1 is a perspective view illustrating an example of a storage cell according to the first embodiment.
  • FIG. 2A is a plan view illustrating an example of a storage cell.
  • FIG. 2B is a front view illustrating an example of the storage cell.
  • FIG. 2C is a side view showing an example of the storage cell.
  • FIG. 3 is an explanatory diagram illustrating an example of the operation of the first detection unit.
  • FIG. 4 is an explanatory diagram showing an example of the operation of the first opening portion.
  • FIG. 5 is a block diagram illustrating an example of a monitoring circuit.
  • FIG. 6 is a flowchart illustrating an example of the processing operation of the control unit related to the first detection process.
  • FIG. 6 is a flowchart illustrating an example of the processing operation of the control unit related to the first detection process.
  • FIG. 7 is an explanatory diagram illustrating an example of the operation of the second opening portion of the electricity storage cell according to the second embodiment.
  • FIG. 8 is an explanatory diagram illustrating an example of the operation of the second detection unit of the storage cell according to the third embodiment.
  • FIG. 9 is a block diagram illustrating an example of a monitoring circuit according to the third embodiment.
  • FIG. 10 is a flowchart illustrating an example of the processing operation of the control unit related to the second detection process.
  • FIG. 11 is an explanatory diagram illustrating an example of the operation of the third detection unit of the storage cell according to the fourth embodiment.
  • FIG. 12 is a block diagram illustrating an example of a monitoring circuit according to the fourth embodiment.
  • FIG. 13 is a flowchart illustrating an example of the processing operation of the control unit related to the third detection process.
  • FIG. 14 is an explanatory diagram illustrating an example of the operation of the third opening portion of the storage cell according to the fifth embodiment.
  • FIG. 15 is a perspective view illustrating an example of a power storage module according to the sixth embodiment.
  • FIG. 16 is a block diagram illustrating an example of a monitoring circuit according to the sixth embodiment.
  • FIG. 17 is an explanatory diagram illustrating an example of changes in gauge pieces.
  • FIG. 18 is a flowchart illustrating an example of the processing operation of the control unit related to the fourth detection process.
  • FIG. 1 (Configuration of power storage cell according to Embodiment 1) 1 is a perspective view illustrating an example of the storage cell 10 of Embodiment 1
  • FIG. 2A is a plan view illustrating an example of the storage cell 10
  • FIG. 2B is a front view illustrating an example of the storage cell 10
  • FIG. 2 is a side view showing an example of a storage cell 10.
  • FIG. The storage cell 10 shown in FIG. 1 is, for example, a lithium ion capacitor cell.
  • the storage cell 10 includes a container 11 made of a laminate material that houses an electrode laminate (not shown) and an electrode terminal 12.
  • the electrode laminate is configured by laminating a positive electrode, a negative electrode, and a separator (not shown).
  • the power generation element is one unit, and a plurality of units of power generation elements are stacked.
  • the positive electrode has, for example, a structure in which a positive electrode made of a material capable of reversibly supporting lithium ions is formed on a positive electrode current collector.
  • the positive electrode current collector is a member for collecting current while supporting the positive electrode, and is formed using, for example, a conductive metal plate such as aluminum.
  • the positive electrode current collector is formed in a rectangular shape in plan view, and has a structure in which the tab 13A protrudes from one of the four sides.
  • the tab 13A is connected to a positive electrode terminal 12A such as aluminum among the electrode terminals 12.
  • the negative electrode has, for example, a structure in which a negative electrode made of a material capable of reversibly supporting lithium ions is formed on a negative electrode current collector.
  • the negative electrode current collector is a member for collecting current while supporting the negative electrode, and is formed using a conductive metal plate such as copper, for example.
  • the negative electrode current collector is formed in a rectangular shape in plan view, and has a structure in which the tab 13B protrudes from one of the four sides.
  • the tab 13B is connected to the negative electrode terminal 12B such as copper, for example, among the electrode terminals 12.
  • the negative electrode current collector has a lithium sticking portion (not shown) to which a pre-doping lithium metal foil is stuck. The lithium metal foil dissolves and disappears when the pre-doping is completed.
  • the container 11 is, for example, a rectangular soft container made of an aluminum laminate film material obtained by laminating an aluminum foil with a resin film. Furthermore, the container 11 has a structure in which the electrode stack is sealed together with an organic electrolyte containing lithium ions, for example. Since the container 11 seals the electrode laminate and the organic electrolyte, the surface of the container 11 has a shape in which the shape of the electrode laminate is raised near the center. The raised surface portion of the container 11 is referred to as a cell main surface 14.
  • PP Polypropylene
  • PPa polyphthalamide
  • AL aluminum
  • nylon layer PET
  • PET from the inner layer to the outer layer of the storage cell 10 PolyEthyleneTerephthalate
  • a PPa (polyphthalamide) layer, an AL (aluminum) layer, a nylon layer, and a PET (PolyEthyleneTerephthalate) layer are formed from the inner layer to the outer layer of the storage cell 10. You may order.
  • the organic electrolyte in the container 11 is vaporized due to secular change or the like to generate gas, and the container 11 may expand.
  • gas flows from the cell main surface 14 to the sealing surface 15 side of the container 11, and the sealing surface 15 adjacent to the cell main surface 14 expands.
  • the storage cell 10 has a structure in which the positive electrode terminal 12 ⁇ / b> A and the negative electrode terminal 12 ⁇ / b> B protrude from one side of the four sides of the rectangular shape when the electrode stack is accommodated in the container 11.
  • the positive electrode terminal 12A is made of, for example, an aluminum material, and has a structure in which a tip portion thereof is bent at a right angle toward one cell main surface 14 as shown in FIGS. 1 and 2A.
  • the negative electrode terminal 12B is made of, for example, a copper material, and has a structure in which a tip portion thereof is bent at a right angle toward the other cell main surface 14 as shown in FIGS. 1 and 2A.
  • the tab 13B of the storage cell 10 has a structure that is not displaced by the expansion of the container 11.
  • the first detector 20 is attached to the tab 13B.
  • the first detection unit 20 is a part that detects the expansion of the container 11 of the storage cell 10.
  • FIG. 3 is an explanatory diagram illustrating an example of the operation of the first detection unit 20.
  • the first detection unit 20 shown in FIG. 3 has a structure having a base 21, a main body 22, and a contact 23. One end of the base portion 21 is fixed to the surface portion of the tab 13B.
  • the main body 22 extends from the base portion 21 at a right angle in the direction of the cell main surface 14, and extends so as to face the sealing surface 15 of the storage cell 10.
  • the contact 23 is provided on the surface of the main body 22 facing the sealing surface 15. In response to the expansion of the sealing surface 15 of the container 11, the first detection unit 20 comes into contact with the contact 23 and is turned on to detect the expansion of the container 11.
  • FIG. 4 is an explanatory diagram showing an example of the operation of the first opening part 30.
  • the first opening portion 30 shown in FIG. 4 has a structure including a base portion 31, a main body 32, a needle portion 33, and a cover 34.
  • One end of the base 31 is fixed to the surface of the tab 13B.
  • the main body 32 extends from the base 31 at a right angle in the direction of the cell main surface 14, and extends so as to face the sealing surface 15 of the storage cell 10. Further, the main body 32 is provided with a needle portion 33 at the tip portion thereof.
  • the needle portion 33 is opened by opening a hole in the container 11 when its tip portion is stuck in the surface of the container 11.
  • the cover 34 is configured to be movable in the axial direction of the main body 32 with respect to the main body 32, and has a structure that prevents the needle portion 33 from being exposed from the first opening portion 30.
  • the cover 34 includes a guide groove (not shown), and is movable in the axial direction with respect to the main body 32 by a guide pin (not shown) on the main body 32 side along the guide groove.
  • the first unsealing portion 30 is configured so that the surface of the container 11 comes into contact with the tip end portion of the cover 34 in accordance with the expansion of the sealing surface 15 of the container 11 and the cover 34 is in the X direction on the tab 13B side which is the axial direction of the main body 32 Move to. Further, in the first opening portion 30, the tip of the needle portion 33 is exposed from the cover 34 when the cover 34 moves in the X direction of the tab 13 ⁇ / b> B. And the 1st opening part 30 opens a hole in the container 11 by opening the front-end
  • FIG. 5 is a block diagram illustrating an example of the monitoring circuit 40.
  • the monitoring circuit 40 illustrated in FIG. 5 is a circuit that monitors the state of the storage cell 10.
  • the monitoring circuit 40 includes a first detection unit 20, a notification unit 41, a storage unit 42, and a control unit 43.
  • reporting part 41 outputs the alerting
  • the storage unit 42 stores various information.
  • the control unit 43 controls the entire monitoring circuit 40. When the control unit 43 detects that the contact 23 of the first detection unit 20 is ON, the control unit 43 determines that the expansion of the container 11 of the storage cell 10 is detected. When determining that the expansion of the container 11 is detected, the control unit 43 outputs an expansion detection notification signal from the notification unit 41.
  • the notification unit 41 outputs a notification signal such as a display or a sound that can identify expansion detection to an external device (not shown).
  • the contact 23 of the first detection unit 20 is in the container 11 although the container 11 of the storage cell 10 starts to expand and the sealing surface 15 is gradually expanded. It is in an OFF state without contacting the surface.
  • the contact 23 of the first detection unit 20 comes into an ON state when the surface of the container 11 comes into contact with the expansion of the container 11 of the storage cell 10.
  • the control unit 43 detects that the contact 23 of the first detection unit 20 is ON, the control unit 43 determines that the expansion of the container 11 of the storage cell 10 is detected.
  • FIG. 6 is a flowchart illustrating an example of a processing operation of the control unit 43 related to the first detection process.
  • the control unit 43 determines whether or not the contact 23 of the first detection unit 20 has been turned on (step S11).
  • the control unit 43 determines that the expansion of the container 11 of the storage cell 10 is detected (Step S12).
  • the control unit 43 outputs an expansion detection notification signal through the notification unit 41 (step S13), and ends the processing operation illustrated in FIG. If the controller 43 has not detected the contact 23 being turned on (No at Step S11), the controller 43 ends the processing operation shown in FIG.
  • the control unit 23 determines that the expansion of the container 11 is detected by the control unit 23
  • the surface of the container 11 is covered with the cover 34 as shown in FIG.
  • the cover 34 is moved in the X direction of the tab 13B.
  • the first unsealing part 30 comes into contact with the front end portion of the cover 34 as shown in FIG.
  • the tab 13B moves in the X direction, and the tip of the needle portion 33 is exposed from the cover 34.
  • the first opening part 30 is opened by making the tip of the needle part 33 pierce the surface of the container 11 and making a hole in the container 11.
  • the control unit 43 of the storage cell 10 of Embodiment 1 determines that the expansion of the container 11 has been detected by turning ON the contact 23 of the first detection unit 20 on the surface of the container 11, and notifies the external device of the expansion detection. .
  • the user can recognize the expansion of the container 11 of the storage cell 10 according to the notification output of the expansion detection.
  • the user can prepare for replacement of the storage cell 10 by recognizing the expansion of the container 11.
  • the storage cell 10 that requires high reliability such as an uninterruptible power supply device. It can be secured.
  • the storage cell 10 After detecting the expansion of the container 11, the surface of the container 11 moves the cover 34 of the first opening part 30 in the X direction of the tab 13 ⁇ / b> B in response to further expansion of the container 11, and the tip of the needle part 33. Is exposed from the cover 34, and the needle part 33 is stuck in the surface of the container 11 to open the container 11. As a result, the storage cell 10 can prevent the burst due to the expansion of the container 11 of the storage cell 10 in advance.
  • the first unsealing part 30 of the electricity storage cell 10 of the first embodiment moves the cover 34 in the X direction of the tab 13B on the surface of the container 11 according to the expansion of the container 11, and the The tip was exposed.
  • the present invention is not limited to such a structure, and another embodiment will be described below as a second embodiment.
  • FIG. 7 is an explanatory diagram illustrating an example of the operation of the second opening unit 30A of the storage cell 10A of the second embodiment.
  • the same components as those of the storage cell 10 of the first embodiment are denoted by the same reference numerals, and the description of the overlapping configuration and operation is omitted.
  • the difference between the electricity storage cell 10A of Embodiment 2 and the electricity storage cell 10 of Embodiment 1 is that the first opening portion 30 is substituted for the second opening portion 30A.
  • the second opening portion 30A shown in FIG. 7 has a structure having a base portion 31A, a main body 32A, a blade portion 33A, and a rotation cover 34A.
  • the main body 32A extends from the base portion 31A at a right angle in the direction of the cell main surface 14, and extends so as to face the sealing surface 15 of the storage cell 10. Furthermore, the main body 32A is provided with a blade portion 33A at the tip.
  • the blade portion 33A is for opening a hole in the container 11 by cutting the surface of the container 11.
  • the rotation cover 34A is configured to be rotatable about the main body 32A, for example, in a range of 0 to 180 degrees, and prevents the blade portion 33A from being exposed from the second opening portion 30A.
  • the rotation cover 34A has a structure having a convex action portion 35A extending to the cell main surface 14 side.
  • the action portion 35A of the rotary cover 34A has one side portion of the two sides as a guide portion 36A.
  • 36 A of guide parts rotate the rotation cover 34A to a Y direction, contacting and sliding on the surface of the container 11 according to expansion
  • the rotation cover 34A exposes the blade portion 33A from the rotation cover 34A as shown in FIG. 7C as the rotation in the Y direction proceeds.
  • the second opening portion 30A opens the container 11 by opening a hole in the blade portion 33A by cutting the surface of the container 11 of the storage cell 10A according to the exposure of the blade portion 33A from the rotating cover 34A.
  • the second detection unit 30A detects the expansion of the container 11 by the first detection unit 20
  • the expansion of the container 11 starts and the sealing surface 15 further expands as shown in FIG. 7B.
  • the guide portion 36A of the action portion 35A of the rotary cover 34A slides on the surface of the container 11.
  • the second unsealing portion 30A rotates the rotating cover 34A in the Y direction by the guide portion 36A of the action portion 35A of the rotating cover 34A sliding on the surface of the container 11.
  • the second unsealing part 30A makes contact with the action part 35A of the rotating cover 34A so that the rotating cover 34A moves in the Y direction. Rotate further.
  • the tip of the blade portion 33A provided on the main body 32A is exposed from the rotation cover 34A according to the rotation of the rotation cover 34A in the Y direction.
  • the second opening 30A is opened when the tip of the blade 33A cuts the surface of the container 11 to make a hole in the container 11.
  • the 1st detection part 20 of the electrical storage cell 10 of Embodiment 1 employ
  • FIG. 8 is an explanatory diagram illustrating an example of the operation of the second detection unit 20A of the storage cell 10B of the third embodiment.
  • the same components as those of the storage cell 10 of the first embodiment are denoted by the same reference numerals, and the description of the overlapping configuration and operation is omitted.
  • the difference between the storage cell 10B of Embodiment 3 and the storage cell 10 of Embodiment 1 is that the first detection unit 20 is replaced with the second detection unit 20A.
  • the second detection unit 20A is a part that detects the expansion of the container 11 of the storage cell 10B.
  • the 8 has a structure including a base 21A, a main body 22A, and a distance sensor 23A.
  • One end of the base portion 21A is fixed to the surface portion of the tab 13B.
  • the main body 22A extends from the base portion 21A at a right angle in the direction of the cell main surface 14, and extends so as to face the sealing surface 15 of the storage cell 10.
  • the distance sensor 23 ⁇ / b> A is provided on a surface portion of the main body 22 ⁇ / b> A facing the sealing surface 15 and measures the distance to the sealing surface 15.
  • the distance sensor 23A may be configured with, for example, a photo sensor or a magnetic sensor.
  • FIG. 9 is a block diagram illustrating an example of a monitoring circuit 40A according to the third embodiment.
  • the monitoring circuit 40A illustrated in FIG. 9 includes a second detection unit 20A and a control unit 43A in addition to the notification unit 41 and the storage unit 42.
  • 20 A of 2nd detection parts measure the distance to the sealing surface 15 of the container 11, and notify the measurement distance to 43 A of control parts.
  • the storage unit 42 stores, for example, a first predetermined distance and a second predetermined distance.
  • the first predetermined distance corresponds to a set distance from the distance sensor 23 ⁇ / b> A to the sealing surface 15 when detecting the expansion of the container 11.
  • the second predetermined distance is, for example, a state immediately before the cover 34 of the first opening part 30 moves and the needle part 33 is exposed from the cover 34, from the distance sensor 23A to the sealing surface 15 immediately before opening. Corresponds to the set distance.
  • the control unit 43A determines that the expansion of the container 11 has been detected when the distance to the sealing surface 15 measured by the distance sensor 23A is less than the first predetermined distance.
  • the control unit 43 ⁇ / b> A determines that the expansion of the container 11 is detected, the control unit 43 ⁇ / b> A outputs a notification signal for detecting the expansion of the container 11 through the notification unit 41.
  • the control unit 43A determines that the container 11 is just before opening.
  • the controller 43 ⁇ / b> A outputs a notification signal for detecting expansion of the container 11 through the notification unit 41.
  • FIG. 10 is a flowchart illustrating an example of the processing operation of the control unit 43A related to the second detection process.
  • the control unit 43A determines whether or not the measurement distance obtained from the measurement result of the distance sensor 23A is less than the first predetermined distance (step S21).
  • the control unit 43A determines that the container 11 has been detected for expansion as shown in FIG. 8B (Step S22), and the control unit 43A expands through the notification unit 41.
  • a detection notification signal is output to an external device (not shown) (step S23).
  • the control unit 43A determines whether or not the measurement distance obtained from the measurement result of the distance sensor 23A is less than the second predetermined distance after outputting the notification of the expansion detection (step S24). When the measurement distance is less than the second predetermined distance (Yes at Step S24), the control unit 43A determines that the opening is immediately before opening (Step S25) as shown in FIG. Is output to an external device (not shown) (step S26).
  • the first opening part 30 opens the hole in the container 11 by exposing the needle part 33 from the cover 34 according to further expansion of the container 11 and the tip of the needle part 33 is stuck in the surface of the container 11. Open. Further, when the measurement distance is not less than the first predetermined distance (No at Step S21), the control unit 43A ends the processing operation illustrated in FIG. If the measurement distance is not less than the second predetermined distance (No at Step S24), the control unit 43A proceeds to Step S24 in order to determine whether the measurement distance is less than the second predetermined distance.
  • the control unit 43A of the storage cell 10B determines that the expansion of the container 11 has been detected, and outputs an expansion detection notification signal through the notification unit 41.
  • the user can recognize the expansion of the container 11 of the storage cell 10B according to the notification output of the expansion detection.
  • the user can prepare for replacement
  • the control unit 43A of the storage cell 10B determines that the container 11 is just before opening and outputs a notification signal immediately before opening through the notification unit 41. As a result, the user can recognize in advance the opening of the container 11 of the storage cell 10B according to the notification output of the opening notice.
  • the 1st opening part 30 of the electrical storage cell 10B of Embodiment 3 pierced the surface of the container 11 with the needle part 33 according to expansion
  • a heater heating wire is attached to the sealing surface 15 in which the container 11 is sealed by adhesive bonding or the like, and a current is supplied to the heater heating wire in accordance with a control signal from the control unit 43A. Then, the sealing surface 15 to which the container 11 is fused is heated by supplying current to the heater heating wire to melt the adhesive on the sealing surface 15, and the container 11 is opened with the internal pressure due to the expansion of the container 11. good.
  • the control unit 43A supplies current to the heater heating wire when the measurement distance of the distance sensor 23A becomes less than the second predetermined distance.
  • the heater heating wire may be attached to the cell main surface 14 of the container 11 so as to make a hole in the surface of the container 11 in accordance with current supply.
  • the mechanical switch which has the contact 23 was employ
  • FIG. 11 is an explanatory diagram illustrating an example of the operation of the third detection unit 20B of the storage cell 10C according to the fourth embodiment.
  • the same components as those of the storage cell 10 of the first embodiment are denoted by the same reference numerals, and the description of the overlapping configuration and operation is omitted.
  • the difference between the storage cell 10C of the fourth embodiment and the storage cell 10 of the first embodiment is that the first detection unit 20 is substituted for the third detection unit 20B.
  • the 3rd detection part 20B is a site
  • the 11 has a structure having a base 21B, a main body 22B, and a conductive rubber 23B.
  • One end of the base portion 21B is fixed to the surface portion of the tab 13B.
  • the main body 22B extends from the base 21B at a right angle in the direction of the cell main surface 14, and extends so as to face the sealing surface 15 of the storage cell 10C.
  • the conductive rubber 23 ⁇ / b> B is, for example, a conductive resin that is provided on the surface portion of the main body 22 ⁇ / b> A that faces the sealing surface 15 and has an electric resistance value that varies according to stress.
  • FIG. 12 is a block diagram illustrating an example of a monitoring circuit 40B according to the fourth embodiment.
  • the monitoring circuit 40B illustrated in FIG. 12 includes a third detection unit 20B and a control unit 43B in addition to the notification unit 41 and the storage unit 42.
  • the third detection unit 20B presses the conductive rubber 23B by the stress caused by the expansion of the sealing surface 15 of the container 11 to change the electric resistance value of the conductive rubber 23B, and notifies the control unit 43B of the electric resistance value. To do.
  • the storage unit 42 stores, for example, a first threshold value and a second threshold value.
  • the first threshold corresponds to the electrical resistance value of the conductive rubber 23 ⁇ / b> B when detecting the expansion of the container 11.
  • the second threshold corresponds to, for example, the electrical resistance value of the conductive rubber 23 ⁇ / b> B in a state immediately before the cover 34 of the first opening portion 30 moves and the needle portion 33 is exposed from the cover 34.
  • the control unit 43B determines that the expansion of the container 11 has been detected when the electrical resistance value of the conductive rubber 23B exceeds the first threshold value.
  • the control unit 43B determines that the expansion of the container 11 is detected, the control unit 43B outputs a notification signal for detecting the expansion of the container 11 through the notification unit 41.
  • control part 43B determines with the container 11 just before opening, when the electrical resistance value of the conductive rubber 23B exceeds the second threshold value.
  • the control unit 43B determines that the container 11 has just been opened, the control unit 43B outputs a notification signal for opening the container 11 through the notification unit 41.
  • FIG. 13 is a flowchart illustrating an example of a processing operation of the control unit 43B related to the third detection process.
  • the control unit 43B determines whether or not the electrical resistance value of the conductive rubber 23B has exceeded the first threshold value (step S31).
  • the control unit 43B determines that the expansion of the container 11 is detected as shown in FIG. 11B (Step S32).
  • the expansion detection is output to an external device (not shown) through the notification unit 41 (step S33).
  • the control unit 43B determines whether or not the electrical resistance value of the conductive rubber 23B has exceeded the second threshold value after the notification output of the expansion detection (step S34). When the electrical resistance value of the conductive rubber 23B exceeds the second threshold value (Yes at Step S34), the control unit 43B determines that it is just before opening (Step S35), as shown in FIG. An opening notice is output to an external device (not shown) through 41 (step S36).
  • the control unit 43B ends the processing operation illustrated in FIG.
  • the control unit 43B performs a step to monitor whether or not the electrical resistance value exceeds the second threshold value. The process proceeds to S34.
  • the first opening part 30 opens the hole in the container 11 by exposing the needle part 33 from the cover 34 according to further expansion of the container 11 and the tip of the needle part 33 is stuck in the surface of the container 11. Open.
  • the control unit 43B of the storage cell 10C determines that the expansion of the container 11 has been detected, and sends an expansion detection notification signal through the notification unit 41. Output.
  • the user can recognize the expansion of the container 11 of the storage cell 10C according to the notification output of the expansion detection. Further, the user can prepare for replacement of the storage cell 10 ⁇ / b> C by recognizing the expansion of the container 11.
  • the control unit 43B of the storage cell 10C determines that the container 11 is just before opening and outputs a notification signal immediately before opening through the notification unit 41. As a result, the user can recognize in advance the opening of the container 11 of the storage cell 10C according to the notification output of the opening notice.
  • FIG. 14 is an explanatory diagram illustrating an example of the operation of the third unsealing unit 30B of the storage cell 10E according to the fifth embodiment.
  • the same components as those of the storage cell 10 of the first embodiment are denoted by the same reference numerals, and the description of the overlapping configuration and operation is omitted.
  • the difference between the electricity storage cell 10E of Embodiment 5 and the electricity storage cell 10 of Embodiment 1 is that the first opening portion 30 is substituted for the third opening portion 30B.
  • the 14 has a structure having a base portion 31B, a main body 32B, a blade portion 33B, and a rotation cover 34B.
  • One end of the base 31B is fixed to the surface of the tab 13B.
  • the main body 32B extends from the base 31B at a right angle in the direction of the cell main surface 14, and extends so as to face the sealing surface 15 of the storage cell 10E. Further, the main body 32B is provided with a blade portion 33B at the tip thereof.
  • the blade portion 33B is for opening a hole in the container 11 by cutting the surface of the container 11.
  • the rotating cover 34B is configured to be rotatable about the end portion 35B of the blade portion 33B and to prevent the blade portion 33B from being exposed from the third opening portion 30B.
  • the rotation cover 34B rotates counterclockwise about the end 35B of the blade 33B with the surface of the container 11 coming into contact with the expansion of the sealing surface 15 of the storage cell 10E.
  • the rotating cover 34B exposes the blade portion 33B from the rotating cover 34B as the counterclockwise rotation proceeds.
  • the third opening part 30B opens the container 11 by opening a hole in the blade part 33B by cutting the surface of the container 11 of the storage cell 10E according to the exposure of the blade part 33B from the rotary cover 34B.
  • the third detection unit 30B detects the expansion of the container 11 by the first detection unit 20
  • the expansion of the container 11 starts and the sealing surface 15 further expands as shown in FIG.
  • the surface of the container 11 comes into contact with the tip of the rotary cover 34B.
  • the 3rd opening part 30B rotates the rotation cover 34B counterclockwise in FIG. 14 centering
  • the third unsealing portion 30B is configured such that when the expansion of the container 11 proceeds, the surface of the container 11 presses the tip of the rotary cover 34B, and the end 35B of the blade 33B is moved.
  • the rotation cover 34B is rotated in the counterclockwise direction in FIG.
  • the third unsealing portion 30B causes the surface of the container 11 to further rotate the rotary cover 34B counterclockwise in FIG. 14 as shown in FIG. By doing so, the tip of the blade portion 33B is exposed from the rotary cover 34B. As a result, the third opening part 30B is opened when the tip of the blade part 33B cuts the surface of the container 11 to make a hole in the container 11.
  • the first detection unit 20 and the first unsealing unit 30 are provided for each power storage cell 10.
  • the container 11 of the power storage cell 10 is stored in units of power storage modules that accommodate a plurality of power storage cells 10. It is also possible to detect the expansion of and output a notification. Therefore, an embodiment in this case will be described below as a sixth embodiment.
  • FIG. 15 is a perspective view illustrating an example of the power storage module 1 of the sixth embodiment.
  • symbol is attached
  • the storage cell 10D illustrated in FIG. 15 is not provided with, for example, the first detection unit 20 and the first opening unit 30.
  • the power storage module 1 shown in FIG. 15 includes a plurality of power storage cells 10D, a first end plate 3A, a second end plate 3B, and a plurality of brackets 4.
  • the power storage module 1 is, for example, a lithium ion capacitor module.
  • the power storage module 1 has a plurality of power storage cells 10D in which an electrode laminate in which a positive electrode and a negative electrode are stacked is sealed in a container made of a laminate material.
  • the cell main surfaces 14 are overlapped with each other with the adhesive applied to the cell main surface 14 of each power storage cell 10 ⁇ / b> D, and each cell main surface 14 is pressed in the overlapping direction. They are bonded together.
  • the part is electrically connected by welding or the like.
  • the tip portion of the negative electrode terminal 12B of the power storage cell 10D is electrically connected to the tip portion of the positive electrode terminal 12A of the power storage cell 10D on the opposite side by welding or the like.
  • the power storage module 1 includes the tip portion of the positive electrode terminal 12A of the power storage cell 10D and the positive electrode terminal 12A of the opposite power storage cell 10D in surface contact with the power storage cell 10D.
  • the tip part is electrically connected by welding or the like.
  • the power storage module 1 electrically connects the tip portion of the negative electrode terminal 12B of the power storage cell 10D and the tip portion of the negative electrode terminal 12B of the opposite storage cell 10D by welding or the like.
  • the first end plate 3A shown in FIG. 15 is formed of a sheet metal member having a rectangular shape in plan view, and has a flat surface.
  • the flat surface is a surface portion that is in surface contact with the cell main surface 14 of the storage cell 10D.
  • the flat surface is in surface contact with the cell main surface 14 of the energy storage cell 10D arranged at the lowermost part in the stacking direction of the energy storage cell 10D. Since the second end plate 3B has the same configuration as the first end plate 3A shown in FIG. 15, the same reference numerals are given, and the description of the overlapping configuration and operation is omitted.
  • the flat surface of the second end plate 3B is in surface contact with the cell main surface 14 of the power storage cell 10D arranged at the uppermost part in the stacking direction of the power storage cells 10D.
  • the bracket 4 shown in FIG. 15 has two brackets having a substantially U-shaped cross section, a first bracket 4A that holds a cell assembly, which will be described later, from one side surface on the short side, and a short cell assembly. And a second bracket 4B held from the other side of the hand side.
  • the cell aggregate is an aggregate in which the first end plate 3A, the plurality of power storage cells 10D, and the second end plate 3B are overlapped.
  • the first bracket 4A is sandwiched and held between the flat surface of the first end plate 3A and the flat surface of the second end plate 3B in the cell assembly.
  • the second bracket 4B sandwiches and holds the surface of the flat surface of the first end plate 3A and the surface of the flat surface of the second end plate 3B in the cell assembly.
  • the flat surface of the second end plate 3B is provided with a screw hole (not shown) at a portion that contacts the end surface of the first bracket 4A.
  • the screw 51 is screwed into the screw hole, and the tip of the screw 51 is the first end portion.
  • the end face of one bracket 4A is pressed.
  • the first bracket 4A moves to the first end plate 3A side in response to the pressing of the tip portion of the screw 51, and pressurizes the cell assembly.
  • the flat surface of the second end plate 3B is provided with a screw hole (not shown) at a portion that abuts the end surface of the second bracket 4B, and the screw 51 is screwed into the screw hole so that the tip of the screw 51 is the first end portion.
  • the end face of the second bracket 4B is pressed. Accordingly, in the second end plate 3B, the second bracket 4B moves to the first end plate 3A side in accordance with the pressing of the tip portion of the screw 51, and pressurizes the cell aggregate.
  • the first bracket 4A and the second bracket 4B pressurize the cell assembly from both sides using the first end plate 3A and the second end plate 3B.
  • the first end plate 3A and the second end plate 3B are, for example, restraining members that pressurize the cell assembly from both sides.
  • FIG. 16 is a block diagram illustrating an example of a monitoring circuit 40C according to the fifth embodiment.
  • a monitoring circuit 40 ⁇ / b> C illustrated in FIG. 16 is a circuit that monitors the state of each power storage cell 10 ⁇ / b> D in the power storage module 1.
  • the monitoring circuit 40C includes a fourth detection unit 20C and a control unit 43C in addition to the notification unit 41 and the storage unit 42.
  • the control unit 43C controls the entire monitoring circuit 40C.
  • FIG. 17 is an explanatory diagram showing an example of a change in the gauge piece 61.
  • the storage module 1 When the container of the internal storage cell 10D is not expanded, the storage module 1 is in a state where the first end plate 3A is not bent as shown in FIG.
  • the power storage module 1 when the container 11 of the internal power storage cell 10D is expanded, the first end plate 3A is bent and the gauge piece 61 is also bent as shown in FIG.
  • the electrical resistance value of the gauge piece 61 increases as the gauge piece 61 bends.
  • the control unit 43C measures the electrical resistance value of the gauge piece 61 through the fourth detection unit 20C, and when the electrical resistance value exceeds the third threshold value, the expansion detection of the container 11 of the storage cell 10C in the storage module 1 is detected. Is determined. When determining that the expansion of the container 11 is detected, the control unit 43C outputs a notification signal indicating the detection of the expansion of the container 11 to the external device through the notification unit 41.
  • the control unit 43C measures the electrical resistance value of the gauge piece 61 through the fourth detection unit 20C, and determines that it is immediately before opening the container 11 of the storage cell 10D when the electrical resistance value exceeds the fourth threshold value. When it is determined that the control unit 43 ⁇ / b> C is immediately before opening, the control unit 43 ⁇ / b> C outputs a notification signal indicating opening notification to the external device through the notification unit 41.
  • FIG. 18 is a flowchart illustrating an example of a processing operation of the control unit 43C related to the fourth detection process.
  • the control unit 43C determines whether or not the electrical resistance value of the gauge piece 61 measured by the fourth detection unit 20C exceeds the third threshold value (step S41).
  • the control unit 43C determines that the expansion of the container 11 is detected (Step S42), and the expansion detection is illustrated through the notification unit 41.
  • an external device step S43.
  • the control unit 43C determines whether or not the electrical resistance value of the gauge piece 61 measured by the fourth detection unit 20C exceeds the fourth threshold value after the notification output of the expansion detection (Step S44). When the electrical resistance value of the gauge piece 61 exceeds the fourth threshold value (Yes at Step S44), the control unit 43C determines that it is just before opening (Step S45), and notifies the opening notification through the notification unit 41 to an external device (not shown). (Step S46).
  • the control unit 43C When the electrical resistance value of the gauge piece 61 does not exceed the third threshold value (No at Step S41), the control unit 43C ends the processing operation illustrated in FIG. In addition, when the electrical resistance value of the gauge piece 61 does not exceed the fourth threshold value (No at Step S44), the control unit 43C monitors whether the electrical resistance value exceeds the fourth threshold value at Step S44. Migrate to
  • the control unit 43C of the power storage module 1 of Embodiment 6 determines that the expansion of the container 11 of the power storage cell 10D in the power storage module 1 has been detected.
  • the control unit 43C determines that the expansion of the container 11 is detected, and outputs a notification signal indicating the expansion detection.
  • the user can recognize the expansion of the container 11 of the power storage cell 10D in the power storage module 1 according to the notification output of the expansion detection.
  • the electrical storage module 1 can be replaced
  • the control unit 43C determines that the container 11 of the power storage cell 10D in the power storage module 1 has just been opened, and outputs a notification signal for opening notification. As a result, the user can recognize in advance the opening of the container 11 of the storage cell 10D in the storage module 1 in accordance with the notification output of the opening notification.
  • the 1st detection part 20, 2nd detection part 20A, or 3rd detection part 20B of the said embodiment adhered to the surface part of the tab 13B of the electrical storage cell 10, you may adhere to the surface part of the tab 13A, for example.
  • the first detection unit 20, the second detection unit 20A, and the third detection unit 20B may be fixed to the surface portions of the positive electrode terminal 12A and the negative electrode terminal 12B, which are electrodes of the storage cell 10, for example.
  • the container 11 may be fixed at a position that does not displace due to the expansion of the container 11.
  • the 1st opening part 30, 2nd opening part 30A, or 3rd opening part 30B of the said embodiment was arrange
  • the first opening part 30, the second opening part 30A, or the third opening part 30B are provided with, for example, the tab 13A, the positive terminal 12A, the negative terminal 12B, and the like at positions that are not displaced by the expansion of the container 11. It may be fixed.
  • the control unit 43C of the power storage module 1 of the sixth embodiment determines the expansion detection of the container 11 using the electrical resistance value of the gauge piece 61 of the fourth detection unit 20C.
  • the control unit 43C stores power when the pressure value measured by the pressure sensor exceeds a predetermined pressure value. You may determine with the expansion
  • the predetermined pressurization value is set in advance as a pressurization value that can be determined as the expansion of the container 11. Further, when the pressure sensor is used, the control unit 43C compares the pressure value on the first end plate 3A side with the predetermined pressure value, but compares it with the pressure value on the second end plate 3B side. You may do it.
  • the control unit 43C causes the container 11 of the storage cell 10D when the bending amount measured by the bending sensor exceeds a predetermined bending amount. It may be determined that the expansion is detected.
  • the predetermined bending amount is set in advance to a bending amount that can be determined as the expansion of the container 11.
  • the control unit 43C compares the bending amount on the first end plate 3A side with the predetermined bending amount, but may compare it with the bending amount on the second end plate 3B side. .
  • the control unit 43 of the storage cell 10 of the above embodiment outputs a notification signal indicating the opening notice of the storage cell 10, but when the opening of the container 11 is completed, the notification signal indicating the completion of opening is externally transmitted through the notification unit 41. You may output to an apparatus.
  • the storage cell 10 (10A, 10B, 10C, 10D, 10E) of the above embodiment has a structure in which the positive electrode terminal 12A and the negative electrode terminal 12B are drawn in one direction from one side of the rectangular shape. It is good also as a structure pulled out from a side, or a structure pulled out from two sides which intersect at right angles.
  • the power storage cell 10 (10A, 10B, 10C, 10D, 10E) of the above embodiment is exemplified by a lithium pre-doped type lithium ion capacitor.
  • a lithium pre-doped type lithium ion capacitor for example, an alkaline metal ion capacitor of a type in which an alkali metal other than lithium is pre-doped. Is also applicable. Moreover, it is applicable also to the electrical storage cell of a non-aqueous secondary battery and an electrical double layer capacitor.
  • the container 11 of the electrical storage cell 10 (10A, 10B, 10C, 10D, 10E) was formed with aluminum foil, such as an aluminum laminate film material, it is a metal laminate film material of metal foil other than aluminum foil. It may be formed.
  • the cell main surface 14 is PET, but may be nylon, PP (Polypropylene), or the like.
  • the first end plate 3A and the second end plate 3B are formed of a metal member.
  • the first end plate 3A and the second end plate 3B may be formed of a flame-retardant resin material such as flame-retardant polypropylene or glass-filled nylon. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Mounting, Suspending (AREA)
  • Secondary Cells (AREA)

Abstract

 A storage cell module (1) holds in place a laminate-material container in which an electrode layered article is sealed, the laminate-material container being held by a first end plate (3A) and a second end plate (3B). A gauge piece (61) for measuring the amount of displacement of the first end plate (3A) is provided on a surface portion of the first end plate (3A). The storage cell module (1) has a detection unit (20C) for detecting swelling of the container on the basis of the amount of displacement obtained by the gauge piece (61). Furthermore, the storage cell module (1) has a notification unit (41) for outputting a notification signal in response to the swelling of the container as detected by the detection unit (20C).

Description

蓄電池及び蓄電池の膨張報知方法Storage battery and storage battery expansion notification method
 本発明は、蓄電池及び蓄電池の膨張報知方法に関する。 The present invention relates to a storage battery and a storage battery expansion notification method.
 近年では、蓄電システムに適用する蓄電デバイスがある。蓄電デバイスの一例として、リチウムイオンキャパシタが提案されている。リチウムイオンキャパシタの蓄電セルは、例えば、アルミラミネートフィルム等のラミネート材の容器内に、正極、負極及びセパレータを交互に積層した電極積層体と、例えば、リチウムイオンを含む有機電解液とを充填した密閉構造である。蓄電セルは、経年変化等で内部の電解液が気化して蓄電性能が低下する場合がある。 In recent years, there are power storage devices applied to power storage systems. As an example of the electricity storage device, a lithium ion capacitor has been proposed. A storage cell of a lithium ion capacitor is filled with, for example, an electrode laminate in which positive electrodes, negative electrodes, and separators are alternately laminated in a container of a laminate material such as an aluminum laminate film, and, for example, an organic electrolyte containing lithium ions. It is a sealed structure. The electricity storage cell may deteriorate in electricity storage performance due to vaporization of the internal electrolyte due to aging or the like.
特開2010-161044号公報JP 2010-161044 A
 しかしながら、ラミネート材等の容器内に電極積層体を封止した蓄電デバイスでは、容器内部で電解液が気化してガスが発生した場合、ガスの発生で容器が膨張することになるが、そのラミネート材の容器の膨張を検知できない。従って、ラミネート材の容器に電極積層体を封止した蓄電デバイスでは、容器の膨張を事前に利用者に報知する手段がないのが実情である。 However, in an electricity storage device in which an electrode laminate is sealed in a container such as a laminate material, when the electrolyte is vaporized and gas is generated inside the container, the container expands due to gas generation. Cannot detect expansion of material container. Therefore, in the electricity storage device in which the electrode laminate is sealed in the container of the laminate material, there is actually no means for informing the user of the expansion of the container in advance.
 一つの側面では、ラミネート材の容器の膨張の検知を報知できる蓄電池及び蓄電池の膨張報知方法を提供することを目的とする。 An object of one aspect of the present invention is to provide a storage battery that can notify detection of expansion of a container of a laminate material, and a method for notifying expansion of the storage battery.
 開示技術の実施形態の一例にかかる蓄電池は、電極積層体を封止したラミネート材の容器の膨張を検知する検知部と、前記検知部による前記容器の膨張の検知に応じて報知信号を出力する報知部とを有する。前記検知部は、前記容器を拘束する拘束部材に、当該拘束部材の変位量を測定する変位センサを備え、前記変位センサで得た変位量に基づき、前記容器の膨張を検知する。 A storage battery according to an example of an embodiment of the disclosed technology outputs a detection unit that detects expansion of a container of a laminate material in which an electrode stack is sealed, and a notification signal according to detection of expansion of the container by the detection unit. And a notification unit. The detection unit includes a displacement sensor that measures a displacement amount of the restraining member in a restraining member that restrains the container, and detects expansion of the container based on the displacement amount obtained by the displacement sensor.
 開示技術の実施形態の一例によれば、ラミネート材の容器の膨張の検知を報知できる。 According to an example of the embodiment of the disclosed technology, it is possible to notify the detection of the expansion of the container of the laminate material.
図1は、実施形態1の蓄電セルの一例を示す斜視図である。FIG. 1 is a perspective view illustrating an example of a storage cell according to the first embodiment. 図2Aは、蓄電セルの一例を示す平面図である。FIG. 2A is a plan view illustrating an example of a storage cell. 図2Bは、蓄電セルの一例を示す正面図である。FIG. 2B is a front view illustrating an example of the storage cell. 図2Cは、蓄電セルの一例を示す側面図である。FIG. 2C is a side view showing an example of the storage cell. 図3は、第1の検知部の動作の一例を示す説明図である。FIG. 3 is an explanatory diagram illustrating an example of the operation of the first detection unit. 図4は、第1の開封部の動作の一例を示す説明図である。FIG. 4 is an explanatory diagram showing an example of the operation of the first opening portion. 図5は、監視回路の一例を示すブロック図である。FIG. 5 is a block diagram illustrating an example of a monitoring circuit. 図6は、第1の検知処理に関わる制御部の処理動作の一例を示すフローチャートである。FIG. 6 is a flowchart illustrating an example of the processing operation of the control unit related to the first detection process. 図7は、実施形態2の蓄電セルの第2の開封部の動作の一例を示す説明図である。FIG. 7 is an explanatory diagram illustrating an example of the operation of the second opening portion of the electricity storage cell according to the second embodiment. 図8は、実施形態3の蓄電セルの第2の検知部の動作の一例を示す説明図である。FIG. 8 is an explanatory diagram illustrating an example of the operation of the second detection unit of the storage cell according to the third embodiment. 図9は、実施形態3に関わる監視回路の一例を示すブロック図である。FIG. 9 is a block diagram illustrating an example of a monitoring circuit according to the third embodiment. 図10は、第2の検知処理に関わる制御部の処理動作の一例を示すフローチャートである。FIG. 10 is a flowchart illustrating an example of the processing operation of the control unit related to the second detection process. 図11は、実施形態4の蓄電セルの第3の検知部の動作の一例を示す説明図である。FIG. 11 is an explanatory diagram illustrating an example of the operation of the third detection unit of the storage cell according to the fourth embodiment. 図12は、実施形態4に関わる監視回路の一例を示すブロック図である。FIG. 12 is a block diagram illustrating an example of a monitoring circuit according to the fourth embodiment. 図13は、第3の検知処理に関わる制御部の処理動作の一例を示すフローチャートである。FIG. 13 is a flowchart illustrating an example of the processing operation of the control unit related to the third detection process. 図14は、実施形態5の蓄電セルの第3の開封部の動作の一例を示す説明図である。FIG. 14 is an explanatory diagram illustrating an example of the operation of the third opening portion of the storage cell according to the fifth embodiment. 図15は、実施形態6の蓄電モジュールの一例を示す斜視図である。FIG. 15 is a perspective view illustrating an example of a power storage module according to the sixth embodiment. 図16は、実施形態6に関わる監視回路の一例を示すブロック図である。FIG. 16 is a block diagram illustrating an example of a monitoring circuit according to the sixth embodiment. 図17は、ゲージ片の変化の一例を示す説明図である。FIG. 17 is an explanatory diagram illustrating an example of changes in gauge pieces. 図18は、第4の検知処理に関わる制御部の処理動作の一例を示すフローチャートである。FIG. 18 is a flowchart illustrating an example of the processing operation of the control unit related to the fourth detection process.
 以下に、開示技術の実施形態の一例にかかる蓄電セル及び蓄電モジュールを図面に基づいて説明する。尚、以下の実施形態は、一例を示すに過ぎず、開示技術を限定するものではない。また、以下の実施形態は、矛盾しない範囲で適宜組合せることができる。また、実施形態において、同一の構成には同一の符号を付すことで、その重複する構成及び動作の説明については省略する。 Hereinafter, a power storage cell and a power storage module according to an example of an embodiment of the disclosed technology will be described with reference to the drawings. The following embodiments are merely examples and do not limit the disclosed technology. Further, the following embodiments can be appropriately combined within a consistent range. In the embodiments, the same components are denoted by the same reference numerals, and the description of the overlapping configuration and operation is omitted.
[実施形態1]
(実施形態1にかかる蓄電セルの構成)
 図1は、実施形態1の蓄電セル10の一例を示す斜視図、図2Aは、蓄電セル10の一例を示す平面図、図2Bは、蓄電セル10の一例を示す正面図、図2Cは、蓄電セル10の一例を示す側面図である。図1に示す蓄電セル10は、例えば、リチウムイオンキャパシタセルである。蓄電セル10は、図示せぬ電極積層体を収納するラミネート材の容器11と、電極端子12とを有する。電極積層体は、図示せぬ正極、負極及びセパレータを積層して構成し、発電要素を1単位とし、複数単位の発電要素を積層する。
[Embodiment 1]
(Configuration of power storage cell according to Embodiment 1)
1 is a perspective view illustrating an example of the storage cell 10 of Embodiment 1, FIG. 2A is a plan view illustrating an example of the storage cell 10, FIG. 2B is a front view illustrating an example of the storage cell 10, and FIG. 2 is a side view showing an example of a storage cell 10. FIG. The storage cell 10 shown in FIG. 1 is, for example, a lithium ion capacitor cell. The storage cell 10 includes a container 11 made of a laminate material that houses an electrode laminate (not shown) and an electrode terminal 12. The electrode laminate is configured by laminating a positive electrode, a negative electrode, and a separator (not shown). The power generation element is one unit, and a plurality of units of power generation elements are stacked.
 正極は、例えば、リチウムイオンを可逆的に担持可能な材料から成る正極電極を正極集電体上に形成した構造を有する。正極集電体は、正極電極を支持しながら、集電を行うための部材であって、例えば、アルミニウム等の導電性金属板を用いて形成される。正極集電体は、平面視矩形状に形成され、その四辺の内の一辺からタブ13Aが突出する構造である。タブ13Aは、電極端子12の内、例えば、アルミニウム等の正極端子12Aに接続される。 The positive electrode has, for example, a structure in which a positive electrode made of a material capable of reversibly supporting lithium ions is formed on a positive electrode current collector. The positive electrode current collector is a member for collecting current while supporting the positive electrode, and is formed using, for example, a conductive metal plate such as aluminum. The positive electrode current collector is formed in a rectangular shape in plan view, and has a structure in which the tab 13A protrudes from one of the four sides. The tab 13A is connected to a positive electrode terminal 12A such as aluminum among the electrode terminals 12.
 負極は、例えば、リチウムイオンを可逆的に担持可能な材料から成る負極電極を負極集電体上に形成した構造を有する。負極集電体は、負極電極を支持しながら、集電を行うための部材であって、例えば、銅等の導電性金属板を用いて形成される。負極集電体は、平面視矩形状に形成され、その四辺の内の一辺からタブ13Bが突出する構造である。タブ13Bは、電極端子12の内、例えば、銅等の負極端子12Bに接続される。また、負極集電体には、プレドープ用のリチウム金属箔が貼付された、図示せぬリチウム貼付部を有している。尚、リチウム金属箔は、プレドープが完了すると溶解して消失する。 The negative electrode has, for example, a structure in which a negative electrode made of a material capable of reversibly supporting lithium ions is formed on a negative electrode current collector. The negative electrode current collector is a member for collecting current while supporting the negative electrode, and is formed using a conductive metal plate such as copper, for example. The negative electrode current collector is formed in a rectangular shape in plan view, and has a structure in which the tab 13B protrudes from one of the four sides. The tab 13B is connected to the negative electrode terminal 12B such as copper, for example, among the electrode terminals 12. Moreover, the negative electrode current collector has a lithium sticking portion (not shown) to which a pre-doping lithium metal foil is stuck. The lithium metal foil dissolves and disappears when the pre-doping is completed.
 容器11は、例えば、アルミ箔を樹脂フィルムでラミネートしたアルミラミネートフィルム材の矩形形状のソフト容器である。更に、容器11は、例えば、リチウムイオンを含む有機電解液とともに電極積層体を密封した構造である。容器11は、電極積層体及び有機電解液を密封しているため、容器11の面部は中央付近に電極積層体の形状が隆起した形状となる。その容器11の隆起した面部をセル主面14と称する。尚、アルミラミネートフィルム材の層構成としては、蓄電セル10の内側の層から外側の層へ、PP(Polypropylene)層、PPa(ポリフタルアミド)層、AL(アルミニウム)層、ナイロン層、PET(PolyEthyleneTerephthalate)層の順である。また、アルミラミネートフィルム材の層構成としては、例えば、蓄電セル10の内側の層から外側の層へ、PPa(ポリフタルアミド)層、AL(アルミニウム)層、ナイロン層、PET(PolyEthyleneTerephthalate)層の順にしても良い。蓄電セル10では、例えば、経年変化等で容器11内部の有機電解液が気化してガスが発生し、その容器11が膨張する場合がある。この際、容器11の面部は、セル主面14から容器11の封止面15側にガスが流れ込んでセル主面14に隣接する封止面15が膨張する。 The container 11 is, for example, a rectangular soft container made of an aluminum laminate film material obtained by laminating an aluminum foil with a resin film. Furthermore, the container 11 has a structure in which the electrode stack is sealed together with an organic electrolyte containing lithium ions, for example. Since the container 11 seals the electrode laminate and the organic electrolyte, the surface of the container 11 has a shape in which the shape of the electrode laminate is raised near the center. The raised surface portion of the container 11 is referred to as a cell main surface 14. In addition, as a layer structure of the aluminum laminate film material, PP (Polypropylene) layer, PPa (polyphthalamide) layer, AL (aluminum) layer, nylon layer, PET (from the inner layer to the outer layer of the storage cell 10 PolyEthyleneTerephthalate) layer. Moreover, as a layer structure of the aluminum laminate film material, for example, a PPa (polyphthalamide) layer, an AL (aluminum) layer, a nylon layer, and a PET (PolyEthyleneTerephthalate) layer are formed from the inner layer to the outer layer of the storage cell 10. You may order. In the electricity storage cell 10, for example, the organic electrolyte in the container 11 is vaporized due to secular change or the like to generate gas, and the container 11 may expand. At this time, in the surface portion of the container 11, gas flows from the cell main surface 14 to the sealing surface 15 side of the container 11, and the sealing surface 15 adjacent to the cell main surface 14 expands.
 蓄電セル10は、電極積層体が容器11内に収容された場合、矩形形状の四辺の内、一辺から正極端子12A及び負極端子12Bが突出した構造となる。正極端子12Aは、例えば、アルミ材で構成され、図1及び図2Aに示すように、その先端部分が一方のセル主面14側に直角に屈曲した構造である。負極端子12Bは、例えば、銅材で構成され、図1及び図2Aに示すように、その先端部分が他方のセル主面14側に直角に屈曲した構造である。 The storage cell 10 has a structure in which the positive electrode terminal 12 </ b> A and the negative electrode terminal 12 </ b> B protrude from one side of the four sides of the rectangular shape when the electrode stack is accommodated in the container 11. The positive electrode terminal 12A is made of, for example, an aluminum material, and has a structure in which a tip portion thereof is bent at a right angle toward one cell main surface 14 as shown in FIGS. 1 and 2A. The negative electrode terminal 12B is made of, for example, a copper material, and has a structure in which a tip portion thereof is bent at a right angle toward the other cell main surface 14 as shown in FIGS. 1 and 2A.
 蓄電セル10のタブ13Bは、容器11の膨張で変位しない構造である。タブ13Bには、第1の検知部20が取り付けられている。第1の検知部20は、蓄電セル10の容器11の膨張を検知する部位である。図3は、第1の検知部20の動作の一例を示す説明図である。図3に示す第1の検知部20は、基部21と、本体22と、接点23とを有する構造である。基部21は、その一端がタブ13Bの面部に固着している。本体22は、基部21から直角にセル主面14の方向に延び、蓄電セル10の封止面15上を対向するように離間して延在している。接点23は、封止面15と対向する本体22の面部に設けている。第1の検知部20は、容器11の封止面15の膨張に応じて、その封止面15が接点23に当接してON作動し、容器11の膨張を検知するものである。 The tab 13B of the storage cell 10 has a structure that is not displaced by the expansion of the container 11. The first detector 20 is attached to the tab 13B. The first detection unit 20 is a part that detects the expansion of the container 11 of the storage cell 10. FIG. 3 is an explanatory diagram illustrating an example of the operation of the first detection unit 20. The first detection unit 20 shown in FIG. 3 has a structure having a base 21, a main body 22, and a contact 23. One end of the base portion 21 is fixed to the surface portion of the tab 13B. The main body 22 extends from the base portion 21 at a right angle in the direction of the cell main surface 14, and extends so as to face the sealing surface 15 of the storage cell 10. The contact 23 is provided on the surface of the main body 22 facing the sealing surface 15. In response to the expansion of the sealing surface 15 of the container 11, the first detection unit 20 comes into contact with the contact 23 and is turned on to detect the expansion of the container 11.
 更に、蓄電セル10のタブ13Bには、図1、図2A及び図2Cに示すように第1の開封部30が取り付けられている。第1の開封部30は、蓄電セル10の容器11を開封する部位である。図4は、第1の開封部30の動作の一例を示す説明図である。図4に示す第1の開封部30は、基部31と、本体32と、針部33と、カバー34とを有する構造である。基部31は、その一端をタブ13Bの面部に固着している。本体32は、基部31から直角にセル主面14の方向に延び、蓄電セル10の封止面15上を対向するように離間して延在している。更に、本体32は、その先端部分に針部33を設けている。針部33は、その先端部分が容器11の表面に刺さることで容器11に穴を開けて開封するものである。カバー34は、本体32に対して本体32の軸方向に移動可能に備え、第1の開封部30から針部33の露出を防止する構造である。尚、カバー34は、図示せぬガイド溝を備え、このガイド溝に沿って本体32側の図示せぬガイドピンで本体32に対して軸方向に移動可能としている。 Furthermore, a first opening 30 is attached to the tab 13B of the storage cell 10 as shown in FIGS. 1, 2A and 2C. The first opening part 30 is a part for opening the container 11 of the electricity storage cell 10. FIG. 4 is an explanatory diagram showing an example of the operation of the first opening part 30. The first opening portion 30 shown in FIG. 4 has a structure including a base portion 31, a main body 32, a needle portion 33, and a cover 34. One end of the base 31 is fixed to the surface of the tab 13B. The main body 32 extends from the base 31 at a right angle in the direction of the cell main surface 14, and extends so as to face the sealing surface 15 of the storage cell 10. Further, the main body 32 is provided with a needle portion 33 at the tip portion thereof. The needle portion 33 is opened by opening a hole in the container 11 when its tip portion is stuck in the surface of the container 11. The cover 34 is configured to be movable in the axial direction of the main body 32 with respect to the main body 32, and has a structure that prevents the needle portion 33 from being exposed from the first opening portion 30. The cover 34 includes a guide groove (not shown), and is movable in the axial direction with respect to the main body 32 by a guide pin (not shown) on the main body 32 side along the guide groove.
 第1の開封部30は、容器11の封止面15の膨張に応じて容器11の表面がカバー34の先端部分に当接してカバー34を本体32の軸方向であるタブ13B側のX方向に移動させる。更に、第1の開封部30は、カバー34がタブ13BのX方向に移動することで、針部33の先端がカバー34から露出する。そして、第1の開封部30は、さらなる容器11の封止面15の膨張に応じて針部33の先端が容器11の表面に刺さることで容器11に穴を開けて開封する。 The first unsealing portion 30 is configured so that the surface of the container 11 comes into contact with the tip end portion of the cover 34 in accordance with the expansion of the sealing surface 15 of the container 11 and the cover 34 is in the X direction on the tab 13B side which is the axial direction of the main body 32 Move to. Further, in the first opening portion 30, the tip of the needle portion 33 is exposed from the cover 34 when the cover 34 moves in the X direction of the tab 13 </ b> B. And the 1st opening part 30 opens a hole in the container 11 by opening the front-end | tip of the needle part 33 in the surface of the container 11 according to expansion | swelling of the sealing surface 15 of the container 11 further, and opens.
 図5は、監視回路40の一例を示すブロック図である。図5に示す監視回路40は、蓄電セル10の状態を監視する回路である。監視回路40は、第1の検知部20と、報知部41と、記憶部42と、制御部43とを有する。報知部41は、例えば、外部機器に各種情報を報知する報知信号を出力する。記憶部42は、各種情報を記憶するものである。制御部43は、監視回路40全体を制御する。制御部43は、第1の検知部20の接点23のONを検出すると、蓄電セル10の容器11の膨張検知と判定する。制御部43は、容器11の膨張検知と判定すると、膨張検知の報知信号を報知部41から出力する。尚、報知部41は、膨張検知を識別できる表示や音声等の報知信号を図示せぬ外部機器に出力する。 FIG. 5 is a block diagram illustrating an example of the monitoring circuit 40. The monitoring circuit 40 illustrated in FIG. 5 is a circuit that monitors the state of the storage cell 10. The monitoring circuit 40 includes a first detection unit 20, a notification unit 41, a storage unit 42, and a control unit 43. The alerting | reporting part 41 outputs the alerting | reporting signal which alert | reports various information to an external device, for example. The storage unit 42 stores various information. The control unit 43 controls the entire monitoring circuit 40. When the control unit 43 detects that the contact 23 of the first detection unit 20 is ON, the control unit 43 determines that the expansion of the container 11 of the storage cell 10 is detected. When determining that the expansion of the container 11 is detected, the control unit 43 outputs an expansion detection notification signal from the notification unit 41. Note that the notification unit 41 outputs a notification signal such as a display or a sound that can identify expansion detection to an external device (not shown).
(実施形態1の蓄電セル10の動作)
 次に実施形態1の蓄電セル10の動作について説明する。第1の検知部20の接点23は、図3の(A)に示すように蓄電セル10の容器11が膨張していないため、容器11の表面と接触せず、OFFの状態である。また、第1の開封部30のカバー34は、図4の(A)に示すように容器11が膨張していないため、容器11の表面と接触せず、その先端から露出しないように針部33を保護している。
(Operation of Power Storage Cell 10 of Embodiment 1)
Next, operation | movement of the electrical storage cell 10 of Embodiment 1 is demonstrated. As shown in FIG. 3A, the contact 23 of the first detection unit 20 is not in contact with the surface of the container 11 and is in an OFF state because the container 11 of the storage cell 10 is not expanded. Further, the cover 34 of the first opening portion 30 is not in contact with the surface of the container 11 and is not exposed from the tip of the container 11 because the container 11 is not expanded as shown in FIG. 33 is protected.
 更に、第1の検知部20の接点23は、図3の(B)に示すように蓄電セル10の容器11が膨張を開始して封止面15が徐々に膨張しているものの、容器11の表面と接触せず、OFFの状態である。 Further, as shown in FIG. 3B, the contact 23 of the first detection unit 20 is in the container 11 although the container 11 of the storage cell 10 starts to expand and the sealing surface 15 is gradually expanded. It is in an OFF state without contacting the surface.
 更に、第1の検知部20の接点23は、図3の(C)に示すように蓄電セル10の容器11の膨張が進行すると、容器11の表面が接触してON状態になる。その結果、制御部43は、第1の検知部20の接点23のONを検出すると、蓄電セル10の容器11の膨張検知と判定する。 Furthermore, as shown in FIG. 3C, the contact 23 of the first detection unit 20 comes into an ON state when the surface of the container 11 comes into contact with the expansion of the container 11 of the storage cell 10. As a result, when the control unit 43 detects that the contact 23 of the first detection unit 20 is ON, the control unit 43 determines that the expansion of the container 11 of the storage cell 10 is detected.
(実施形態1の制御部43の動作)
 図6は、第1の検知処理に関わる制御部43の処理動作の一例を示すフローチャートである。図6において制御部43は、第1の検知部20の接点23のONを検出したか否かを判定する(ステップS11)。制御部43は、接点23のONを検出した場合(ステップS11肯定)、蓄電セル10の容器11の膨張検知と判定する(ステップS12)。制御部43は、容器11の膨張検知と判定すると、報知部41を通じて、膨張検知の報知信号を出力し(ステップS13)、図6に示す処理動作を終了する。制御部43は、接点23のONを検出したのでない場合(ステップS11否定)、図6に示す処理動作を終了する。
(Operation of the control unit 43 of the first embodiment)
FIG. 6 is a flowchart illustrating an example of a processing operation of the control unit 43 related to the first detection process. In FIG. 6, the control unit 43 determines whether or not the contact 23 of the first detection unit 20 has been turned on (step S11). When the control unit 43 detects the ON of the contact 23 (Yes at Step S11), the control unit 43 determines that the expansion of the container 11 of the storage cell 10 is detected (Step S12). When the control unit 43 determines that the expansion of the container 11 is detected, the control unit 43 outputs an expansion detection notification signal through the notification unit 41 (step S13), and ends the processing operation illustrated in FIG. If the controller 43 has not detected the contact 23 being turned on (No at Step S11), the controller 43 ends the processing operation shown in FIG.
 図6に示す第1の検知処理は、容器11の膨張に応じて第1の検知部20の接点23のONを検出すると、容器11の膨張と判定して容器11の膨張検知を外部機器に報知出力するため、利用者は、その報知出力でラミネート材の容器11の膨張検知を認識できる。 In the first detection process shown in FIG. 6, when ON of the contact 23 of the first detection unit 20 is detected according to the expansion of the container 11, it is determined that the container 11 is expanded and the expansion detection of the container 11 is detected by an external device. Since the notification output is made, the user can recognize the expansion detection of the laminate material container 11 by the notification output.
 更に、第1の開封部30は、制御部23で容器11の膨張検知の判定後、さらに容器11の膨張が進行すると、図4の(B)に示すように、容器11の表面がカバー34の先端部分に当接してカバー34をタブ13BのX方向に移動させる。 Furthermore, when the expansion of the container 11 further proceeds after the control unit 23 determines that the expansion of the container 11 is detected by the control unit 23, the surface of the container 11 is covered with the cover 34 as shown in FIG. The cover 34 is moved in the X direction of the tab 13B.
 第1の開封部30は、さらに容器11の膨張が進行すると、図4の(C)に示すように、容器11の表面がカバー34の先端部分に当接し、さらに、カバー34の先端部分がタブ13BのX方向に移動し、針部33の先端がカバー34から露出する。その結果、第1の開封部30は、針部33の先端が容器11の表面に刺さって容器11に穴を開けることで開封する。 When the expansion of the container 11 further proceeds, the first unsealing part 30 comes into contact with the front end portion of the cover 34 as shown in FIG. The tab 13B moves in the X direction, and the tip of the needle portion 33 is exposed from the cover 34. As a result, the first opening part 30 is opened by making the tip of the needle part 33 pierce the surface of the container 11 and making a hole in the container 11.
(実施形態1による効果)
 実施形態1の蓄電セル10の制御部43は、第1の検知部20の接点23を容器11の表面でONすることで容器11の膨張検知と判定し、膨張検知を外部機器に報知出力する。その結果、利用者は、膨張検知の報知出力に応じて蓄電セル10の容器11の膨張を認識できる。更に、利用者は、容器11の膨張を認識することで蓄電セル10の交換の準備を整えることができる。しかも、利用者は、蓄電セル10が交換を要する程度に蓄電性能が低下する以前に容器11の膨張を認識できるため、例えば、無停電電源装置等の高い信頼性が要求される蓄電セル10を確保できる。
(Effect by Embodiment 1)
The control unit 43 of the storage cell 10 of Embodiment 1 determines that the expansion of the container 11 has been detected by turning ON the contact 23 of the first detection unit 20 on the surface of the container 11, and notifies the external device of the expansion detection. . As a result, the user can recognize the expansion of the container 11 of the storage cell 10 according to the notification output of the expansion detection. Further, the user can prepare for replacement of the storage cell 10 by recognizing the expansion of the container 11. In addition, since the user can recognize the expansion of the container 11 before the storage performance is reduced to such an extent that the storage cell 10 needs to be replaced, for example, the storage cell 10 that requires high reliability such as an uninterruptible power supply device. It can be secured.
 蓄電セル10は、容器11の膨張検知後、更なる容器11の膨張に応じて容器11の表面が第1の開封部30のカバー34をタブ13BのX方向に移動させ、針部33の先端がカバー34から露出し、針部33が容器11の表面に刺さって容器11を開封する。その結果、蓄電セル10は、蓄電セル10の容器11の膨張による破裂を未然に防止できる。 In the storage cell 10, after detecting the expansion of the container 11, the surface of the container 11 moves the cover 34 of the first opening part 30 in the X direction of the tab 13 </ b> B in response to further expansion of the container 11, and the tip of the needle part 33. Is exposed from the cover 34, and the needle part 33 is stuck in the surface of the container 11 to open the container 11. As a result, the storage cell 10 can prevent the burst due to the expansion of the container 11 of the storage cell 10 in advance.
 尚、上記実施形態1の蓄電セル10の第1の開封部30は、容器11の膨張に応じて容器11の表面でカバー34をタブ13BのX方向に移動させ、カバー34から針部33の先端部分を露出するようにした。しかしながら、このような構造に限定されるものではなく、他の実施の形態につき、実施形態2として以下に説明する。 The first unsealing part 30 of the electricity storage cell 10 of the first embodiment moves the cover 34 in the X direction of the tab 13B on the surface of the container 11 according to the expansion of the container 11, and the The tip was exposed. However, the present invention is not limited to such a structure, and another embodiment will be described below as a second embodiment.
[実施形態2]
(実施形態2にかかる蓄電セル10Aの構成)
 図7は、実施形態2の蓄電セル10Aの第2の開封部30Aの動作の一例を示す説明図である。実施形態1の蓄電セル10と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。実施形態2の蓄電セル10Aが実施形態1の蓄電セル10と異なるところは、第1の開封部30を第2の開封部30Aに代用した点である。図7に示す第2の開封部30Aは、基部31Aと、本体32Aと、刃部33Aと、回転カバー34Aとを有する構造である。基部31Aは、その一端をタブ13Bの面部に固着している。本体32Aは、基部31Aから直角にセル主面14の方向に延び、蓄電セル10の封止面15上に対向するように離間して延在している。更に、本体32Aは、その先端部分に刃部33Aが設けてある。
[Embodiment 2]
(Configuration of power storage cell 10A according to the second embodiment)
FIG. 7 is an explanatory diagram illustrating an example of the operation of the second opening unit 30A of the storage cell 10A of the second embodiment. The same components as those of the storage cell 10 of the first embodiment are denoted by the same reference numerals, and the description of the overlapping configuration and operation is omitted. The difference between the electricity storage cell 10A of Embodiment 2 and the electricity storage cell 10 of Embodiment 1 is that the first opening portion 30 is substituted for the second opening portion 30A. The second opening portion 30A shown in FIG. 7 has a structure having a base portion 31A, a main body 32A, a blade portion 33A, and a rotation cover 34A. One end of the base portion 31A is fixed to the surface portion of the tab 13B. The main body 32A extends from the base portion 31A at a right angle in the direction of the cell main surface 14, and extends so as to face the sealing surface 15 of the storage cell 10. Furthermore, the main body 32A is provided with a blade portion 33A at the tip.
 刃部33Aは、容器11の表面を切り込むことで容器11に穴を開けて開封するものである。回転カバー34Aは、本体32Aを軸に、例えば、0度~180度の範囲で回転可能に備え、第2の開封部30Aからの刃部33Aの露出を防止する構造である。回転カバー34Aは、セル主面14側に延在する凸状の作用部35Aを有する構造である。回転カバー34Aの作用部35Aは、二辺の内、一方の辺部をガイド部36Aと成している。ガイド部36Aは、蓄電セル10Aの封止面15の膨張に応じて容器11の表面に当接して摺動しながら回転カバー34AをY方向に回転させる。回転カバー34Aは、Y方向への回転が進行するに連れて、図7の(C)に示すように回転カバー34Aから刃部33Aを露出する。第2の開封部30Aは、回転カバー34Aからの刃部33Aの露出に応じて、刃部33Aが蓄電セル10Aの容器11の表面を切り込むことで容器11に穴を開けて開封する。 The blade portion 33A is for opening a hole in the container 11 by cutting the surface of the container 11. The rotation cover 34A is configured to be rotatable about the main body 32A, for example, in a range of 0 to 180 degrees, and prevents the blade portion 33A from being exposed from the second opening portion 30A. The rotation cover 34A has a structure having a convex action portion 35A extending to the cell main surface 14 side. The action portion 35A of the rotary cover 34A has one side portion of the two sides as a guide portion 36A. 36 A of guide parts rotate the rotation cover 34A to a Y direction, contacting and sliding on the surface of the container 11 according to expansion | swelling of the sealing surface 15 of 10 A of electrical storage cells. The rotation cover 34A exposes the blade portion 33A from the rotation cover 34A as shown in FIG. 7C as the rotation in the Y direction proceeds. The second opening portion 30A opens the container 11 by opening a hole in the blade portion 33A by cutting the surface of the container 11 of the storage cell 10A according to the exposure of the blade portion 33A from the rotating cover 34A.
(実施形態2の蓄電セル10Aの動作)
 次に実施形態2の蓄電セル10Aの動作について説明する。第2の開封部30Aの回転カバー34Aは、図7の(A)に示すように容器11が膨張していないため、容器11の表面と接触せず、その先端から露出しないように刃部33Aを保護している。
(Operation of Power Storage Cell 10A of Embodiment 2)
Next, operation | movement of 10 A of electrical storage cells of Embodiment 2 is demonstrated. As shown in FIG. 7A, the rotating cover 34A of the second opening portion 30A is not inflated, so that it does not come into contact with the surface of the container 11 and is not exposed from the tip thereof. Is protecting.
 更に、第2の開封部30Aは、第1の検知部20で容器11の膨張を検知後、図7の(B)に示すように容器11の膨張が開始して封止面15がさらに膨張し、回転カバー34Aの作用部35Aのガイド部36Aが容器11の表面上を摺動する。そして、第2の開封部30Aは、回転カバー34Aの作用部35Aのガイド部36Aが容器11の表面上を摺動することで、回転カバー34AをY方向に回転させる。 Further, after the second detection unit 30A detects the expansion of the container 11 by the first detection unit 20, the expansion of the container 11 starts and the sealing surface 15 further expands as shown in FIG. 7B. Then, the guide portion 36A of the action portion 35A of the rotary cover 34A slides on the surface of the container 11. The second unsealing portion 30A rotates the rotating cover 34A in the Y direction by the guide portion 36A of the action portion 35A of the rotating cover 34A sliding on the surface of the container 11.
 更に、第2の開封部30Aは、図7の(C)に示すように容器11の膨張が進行すると、容器11の表面が回転カバー34Aの作用部35Aを当接して回転カバー34AをY方向にさらに回転させる。第2の開封部30Aは、回転カバー34AのY方向への回転に応じて本体32Aに設けた刃部33Aの先端が回転カバー34Aから露出する。その結果、第2の開封部30Aは、刃部33Aの先端が容器11の表面を切り込んで容器11に穴を開けることで開封する。 Further, as shown in FIG. 7C, when the expansion of the container 11 progresses, the second unsealing part 30A makes contact with the action part 35A of the rotating cover 34A so that the rotating cover 34A moves in the Y direction. Rotate further. In the second opening portion 30A, the tip of the blade portion 33A provided on the main body 32A is exposed from the rotation cover 34A according to the rotation of the rotation cover 34A in the Y direction. As a result, the second opening 30A is opened when the tip of the blade 33A cuts the surface of the container 11 to make a hole in the container 11.
(実施形態2による効果)
 蓄電セル10Aは、容器11の膨張検知後、更なる容器11の膨張に応じて第2の開封部30Aの回転カバー34Aの作用部35Aのガイド部36Aが容器11の表面を摺動し、回転カバー34AをY方向に回転させて回転カバー34Aから刃部33Aを露出する。更に、蓄電セル10Aは、刃部33Aが露出し、刃部33Aが容器11の表面を切り込むことで容器11を開封する。その結果、蓄電セル10Aは、蓄電セル10Aの容器11の膨張による破裂を未然に防止できる。
(Effect by Embodiment 2)
In the storage cell 10 </ b> A, after detecting the expansion of the container 11, the guide part 36 </ b> A of the action part 35 </ b> A of the rotation cover 34 </ b> A of the second opening part 30 </ b> A slides on the surface of the container 11 according to the further expansion of the container 11 The cover 34A is rotated in the Y direction to expose the blade portion 33A from the rotary cover 34A. Further, in the storage cell 10 </ b> A, the blade portion 33 </ b> A is exposed, and the blade portion 33 </ b> A cuts the surface of the container 11 to open the container 11. As a result, the storage cell 10A can prevent the explosion due to the expansion of the container 11 of the storage cell 10A.
 尚、前述した実施形態1の蓄電セル10の第1の検知部20は、接点23を有するメカスイッチを採用したが、これに限定されるものではなく、例えば、蓄電セル10の表面までの距離を測定する距離センサを用いて容器11の膨張を検知するようにしても良い。そこで、その実施形態につき、実施形態3として以下に説明する。 In addition, although the 1st detection part 20 of the electrical storage cell 10 of Embodiment 1 employ | adopted the mechanical switch which has the contact 23, it is not limited to this, For example, the distance to the surface of the electrical storage cell 10 You may make it detect expansion | swelling of the container 11 using the distance sensor which measures this. Therefore, the embodiment will be described below as a third embodiment.
[実施形態3]
(実施形態3にかかる蓄電セル10Bの構成)
 図8は、実施形態3の蓄電セル10Bの第2の検知部20Aの動作の一例を示す説明図である。実施形態1の蓄電セル10と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。実施形態3の蓄電セル10Bが実施形態1の蓄電セル10と異なるところは、第1の検知部20を第2の検知部20Aに代用した点である。第2の検知部20Aは、蓄電セル10Bの容器11の膨張を検知する部位である。図8に示す第2の検知部20Aは、基部21Aと、本体22Aと、距離センサ23Aとを有する構造である。基部21Aは、その一端をタブ13Bの面部に固着している。本体22Aは、基部21Aから直角にセル主面14の方向に延び、蓄電セル10の封止面15上を対向するように離間して延在している。距離センサ23Aは、封止面15と対向する本体22Aの面部に設けられ、封止面15までの距離を測定するものである。尚、距離センサ23Aは、例えば、フォトセンサや磁気センサ等で構成するようにしても良い。
[Embodiment 3]
(Configuration of power storage cell 10B according to Embodiment 3)
FIG. 8 is an explanatory diagram illustrating an example of the operation of the second detection unit 20A of the storage cell 10B of the third embodiment. The same components as those of the storage cell 10 of the first embodiment are denoted by the same reference numerals, and the description of the overlapping configuration and operation is omitted. The difference between the storage cell 10B of Embodiment 3 and the storage cell 10 of Embodiment 1 is that the first detection unit 20 is replaced with the second detection unit 20A. The second detection unit 20A is a part that detects the expansion of the container 11 of the storage cell 10B. The second detection unit 20A illustrated in FIG. 8 has a structure including a base 21A, a main body 22A, and a distance sensor 23A. One end of the base portion 21A is fixed to the surface portion of the tab 13B. The main body 22A extends from the base portion 21A at a right angle in the direction of the cell main surface 14, and extends so as to face the sealing surface 15 of the storage cell 10. The distance sensor 23 </ b> A is provided on a surface portion of the main body 22 </ b> A facing the sealing surface 15 and measures the distance to the sealing surface 15. The distance sensor 23A may be configured with, for example, a photo sensor or a magnetic sensor.
 図9は、実施形態3に関わる監視回路40Aの一例を示すブロック図である。図9に示す監視回路40Aは、報知部41及び記憶部42の他に、第2の検知部20A及び制御部43Aを有する。第2の検知部20Aは、容器11の封止面15までの距離を測定し、その測定距離を制御部43Aに通知するものである。 FIG. 9 is a block diagram illustrating an example of a monitoring circuit 40A according to the third embodiment. The monitoring circuit 40A illustrated in FIG. 9 includes a second detection unit 20A and a control unit 43A in addition to the notification unit 41 and the storage unit 42. 20 A of 2nd detection parts measure the distance to the sealing surface 15 of the container 11, and notify the measurement distance to 43 A of control parts.
 記憶部42は、例えば、第1の所定距離及び第2の所定距離を記憶している。第1の所定距離は、容器11の膨張を検知する際の距離センサ23Aから封止面15までの設定距離に相当する。第2の所定距離は、例えば、第1の開封部30のカバー34が移動して針部33がカバー34から露出する直前の状態である、距離センサ23Aから開封直前の封止面15までの設定距離に相当する。 The storage unit 42 stores, for example, a first predetermined distance and a second predetermined distance. The first predetermined distance corresponds to a set distance from the distance sensor 23 </ b> A to the sealing surface 15 when detecting the expansion of the container 11. The second predetermined distance is, for example, a state immediately before the cover 34 of the first opening part 30 moves and the needle part 33 is exposed from the cover 34, from the distance sensor 23A to the sealing surface 15 immediately before opening. Corresponds to the set distance.
 制御部43Aは、距離センサ23Aで測定した封止面15までの距離が第1の所定距離未満になった場合、容器11の膨張の検知と判定する。制御部43Aは、容器11の膨張の検知と判定すると、報知部41を通じて容器11の膨張検知の報知信号を出力するものである。 The control unit 43A determines that the expansion of the container 11 has been detected when the distance to the sealing surface 15 measured by the distance sensor 23A is less than the first predetermined distance. When the control unit 43 </ b> A determines that the expansion of the container 11 is detected, the control unit 43 </ b> A outputs a notification signal for detecting the expansion of the container 11 through the notification unit 41.
 更に、制御部43Aは、距離センサ23Aで測定した封止面15までの距離が第2の所定距離未満になった場合、容器11の開封直前と判定する。制御部43Aは、容器11の開封直前と判定すると、報知部41を通じて容器11の膨張検知の報知信号を出力するものである。 Furthermore, when the distance to the sealing surface 15 measured by the distance sensor 23A is less than the second predetermined distance, the control unit 43A determines that the container 11 is just before opening. When determining that the container 11 is immediately before opening the container 11, the controller 43 </ b> A outputs a notification signal for detecting expansion of the container 11 through the notification unit 41.
(実施形態3の蓄電セル10Bの制御部43Aの動作)
 次に実施形態3の蓄電セル10Bの制御部43Aの動作について説明する。図10は、第2の検知処理に関わる制御部43Aの処理動作の一例を示すフローチャートである。図10において制御部43Aは、距離センサ23Aの測定結果で得た測定距離が第1の所定距離未満であるか否かを判定する(ステップS21)。制御部43Aは、測定距離が第1の所定距離未満の場合(ステップS21肯定)、図8の(B)に示すように容器11の膨張検知と判定し(ステップS22)、報知部41を通じて膨張検知の報知信号を図示せぬ外部機器に出力する(ステップS23)。
(Operation of Control Unit 43A of Power Storage Cell 10B of Embodiment 3)
Next, operation | movement of 43 A of control parts of the electrical storage cell 10B of Embodiment 3 is demonstrated. FIG. 10 is a flowchart illustrating an example of the processing operation of the control unit 43A related to the second detection process. In FIG. 10, the control unit 43A determines whether or not the measurement distance obtained from the measurement result of the distance sensor 23A is less than the first predetermined distance (step S21). When the measurement distance is less than the first predetermined distance (Yes at Step S21), the control unit 43A determines that the container 11 has been detected for expansion as shown in FIG. 8B (Step S22), and the control unit 43A expands through the notification unit 41. A detection notification signal is output to an external device (not shown) (step S23).
 制御部43Aは、膨張検知の報知出力後、距離センサ23Aの測定結果で得た測定距離が第2の所定距離未満であるか否かを判定する(ステップS24)。制御部43Aは、測定距離が第2の所定距離未満の場合(ステップS24肯定)、図8の(C)に示すように開封直前と判定し(ステップS25)、報知部41を通じて開封直前の予告の報知信号を図示せぬ外部機器に出力する(ステップS26)。 The control unit 43A determines whether or not the measurement distance obtained from the measurement result of the distance sensor 23A is less than the second predetermined distance after outputting the notification of the expansion detection (step S24). When the measurement distance is less than the second predetermined distance (Yes at Step S24), the control unit 43A determines that the opening is immediately before opening (Step S25) as shown in FIG. Is output to an external device (not shown) (step S26).
 その後、第1の開封部30は、さらなる容器11の膨張に応じてカバー34から針部33が露出し、その針部33の先端が容器11の表面に刺さることで容器11に穴を開けて開封する。また、制御部43Aは、測定距離が第1の所定距離未満でない場合(ステップS21否定)、図10に示す処理動作を終了する。また、制御部43Aは、測定距離が第2の所定距離未満でない場合(ステップS24否定)、測定距離が第2の所定距離未満であるか否かを判定すべく、ステップS24に移行する。 Thereafter, the first opening part 30 opens the hole in the container 11 by exposing the needle part 33 from the cover 34 according to further expansion of the container 11 and the tip of the needle part 33 is stuck in the surface of the container 11. Open. Further, when the measurement distance is not less than the first predetermined distance (No at Step S21), the control unit 43A ends the processing operation illustrated in FIG. If the measurement distance is not less than the second predetermined distance (No at Step S24), the control unit 43A proceeds to Step S24 in order to determine whether the measurement distance is less than the second predetermined distance.
(実施形態3による効果)
 実施形態3の蓄電セル10Bの制御部43Aは、測定距離が第1の所定距離未満の場合、容器11の膨張検知と判定し、報知部41を通じて膨張検知の報知信号を出力する。その結果、利用者は、膨張検知の報知出力に応じて蓄電セル10Bの容器11の膨張を認識できる。更に、利用者は、容器11の膨張を認識することで蓄電セル10Bの交換の準備を整えることができる。
(Effect by Embodiment 3)
When the measurement distance is less than the first predetermined distance, the control unit 43A of the storage cell 10B according to the third embodiment determines that the expansion of the container 11 has been detected, and outputs an expansion detection notification signal through the notification unit 41. As a result, the user can recognize the expansion of the container 11 of the storage cell 10B according to the notification output of the expansion detection. Furthermore, the user can prepare for replacement | exchange of the electrical storage cell 10B by recognizing expansion | swelling of the container 11. FIG.
 蓄電セル10Bの制御部43Aは、測定距離が第2の所定距離未満の場合、容器11の開封直前と判定し、報知部41を通じて開封直前の報知信号を出力する。その結果、利用者は、開封予告の報知出力に応じて蓄電セル10Bの容器11の開封を事前に認識できる。 When the measurement distance is less than the second predetermined distance, the control unit 43A of the storage cell 10B determines that the container 11 is just before opening and outputs a notification signal immediately before opening through the notification unit 41. As a result, the user can recognize in advance the opening of the container 11 of the storage cell 10B according to the notification output of the opening notice.
 尚、実施形態3の蓄電セル10Bの第1の開封部30は、容器11の膨張に応じて針部33で容器11の表面を刺して容器11を開封した。しかしながら、例えば、容器11を接着剤等の融着で封止した封止面15にヒータ電熱線を貼着し、制御部43Aからの制御信号に応じてヒータ電熱線に電流を流す。そして、ヒータ電熱線への電流供給で容器11を融着した封止面15を熱して封止面15の接着剤を溶かし、さらに容器11の膨張による内圧で容器11を開封するようにしても良い。この際、制御部43Aは、距離センサ23Aの測定距離が第2の所定距離未満となった場合に、ヒータ電熱線に電流を供給するものである。尚、ヒータ電熱線は、例えば、容器11のセル主面14に貼着して、電流供給に応じて容器11の表面に穴を開けるようにしても良い。 In addition, the 1st opening part 30 of the electrical storage cell 10B of Embodiment 3 pierced the surface of the container 11 with the needle part 33 according to expansion | swelling of the container 11, and opened the container 11. FIG. However, for example, a heater heating wire is attached to the sealing surface 15 in which the container 11 is sealed by adhesive bonding or the like, and a current is supplied to the heater heating wire in accordance with a control signal from the control unit 43A. Then, the sealing surface 15 to which the container 11 is fused is heated by supplying current to the heater heating wire to melt the adhesive on the sealing surface 15, and the container 11 is opened with the internal pressure due to the expansion of the container 11. good. At this time, the control unit 43A supplies current to the heater heating wire when the measurement distance of the distance sensor 23A becomes less than the second predetermined distance. For example, the heater heating wire may be attached to the cell main surface 14 of the container 11 so as to make a hole in the surface of the container 11 in accordance with current supply.
 また、上述した実施形態1の蓄電セル10の第1の検知部20として、接点23を有するメカスイッチを採用したが、これに限定されるものではなく、例えば、蓄電セル10の表面の膨張の圧力を検知する導電性ゴムを採用しても良い。そこで、その実施の形態につき、実施形態4として以下に説明する。 Moreover, although the mechanical switch which has the contact 23 was employ | adopted as the 1st detection part 20 of the electrical storage cell 10 of Embodiment 1 mentioned above, it is not limited to this, For example, the expansion | swelling of the surface of the electrical storage cell 10 is carried out. You may employ | adopt the conductive rubber which detects a pressure. Therefore, the embodiment will be described below as a fourth embodiment.
[実施形態4]
(実施形態4にかかる蓄電セル10Cの構成)
 図11は、実施形態4の蓄電セル10Cの第3の検知部20Bの動作の一例を示す説明図である。実施形態1の蓄電セル10と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。実施形態4の蓄電セル10Cが実施形態1の蓄電セル10と異なるところは、第1の検知部20を第3の検知部20Bに代用した点である。第3の検知部20Bは、蓄電セル10Cの容器11の膨張を検知する部位である。図11に示す第3の検知部20Bは、基部21Bと、本体22Bと、導電性ゴム23Bとを有する構造である。基部21Bは、その一端をタブ13Bの面部に固着している。本体22Bは、基部21Bから直角にセル主面14の方向に延び、蓄電セル10Cの封止面15上を対向するように離間して延在している。導電性ゴム23Bは、封止面15と対向する本体22Aの面部に設け、応力に応じて電気抵抗値が変動する、例えば導電性樹脂である。
[Embodiment 4]
(Configuration of Power Storage Cell 10C according to Embodiment 4)
FIG. 11 is an explanatory diagram illustrating an example of the operation of the third detection unit 20B of the storage cell 10C according to the fourth embodiment. The same components as those of the storage cell 10 of the first embodiment are denoted by the same reference numerals, and the description of the overlapping configuration and operation is omitted. The difference between the storage cell 10C of the fourth embodiment and the storage cell 10 of the first embodiment is that the first detection unit 20 is substituted for the third detection unit 20B. The 3rd detection part 20B is a site | part which detects expansion | swelling of the container 11 of 10 C of electrical storage cells. The third detection unit 20B shown in FIG. 11 has a structure having a base 21B, a main body 22B, and a conductive rubber 23B. One end of the base portion 21B is fixed to the surface portion of the tab 13B. The main body 22B extends from the base 21B at a right angle in the direction of the cell main surface 14, and extends so as to face the sealing surface 15 of the storage cell 10C. The conductive rubber 23 </ b> B is, for example, a conductive resin that is provided on the surface portion of the main body 22 </ b> A that faces the sealing surface 15 and has an electric resistance value that varies according to stress.
 図12は、実施形態4に関わる監視回路40Bの一例を示すブロック図である。図12に示す監視回路40Bは、報知部41及び記憶部42の他に、第3の検知部20B及び制御部43Bを有する。第3の検知部20Bは、容器11の封止面15の膨張による応力で導電性ゴム23Bを押圧して導電性ゴム23Bの電気抵抗値が変動し、その電気抵抗値を制御部43Bに通知するものである。 FIG. 12 is a block diagram illustrating an example of a monitoring circuit 40B according to the fourth embodiment. The monitoring circuit 40B illustrated in FIG. 12 includes a third detection unit 20B and a control unit 43B in addition to the notification unit 41 and the storage unit 42. The third detection unit 20B presses the conductive rubber 23B by the stress caused by the expansion of the sealing surface 15 of the container 11 to change the electric resistance value of the conductive rubber 23B, and notifies the control unit 43B of the electric resistance value. To do.
 記憶部42は、例えば、第1の閾値及び第2の閾値を記憶している。第1の閾値は、容器11の膨張を検知する際の導電性ゴム23Bの電気抵抗値に相当する。第2の閾値は、例えば、第1の開封部30のカバー34が移動して針部33がカバー34から露出する直前の状態での導電性ゴム23Bの電気抵抗値に相当する。 The storage unit 42 stores, for example, a first threshold value and a second threshold value. The first threshold corresponds to the electrical resistance value of the conductive rubber 23 </ b> B when detecting the expansion of the container 11. The second threshold corresponds to, for example, the electrical resistance value of the conductive rubber 23 </ b> B in a state immediately before the cover 34 of the first opening portion 30 moves and the needle portion 33 is exposed from the cover 34.
 制御部43Bは、導電性ゴム23Bの電気抵抗値が第1の閾値を超えた場合、容器11の膨張の検知と判定する。制御部43Bは、容器11の膨張の検知と判定すると、報知部41を通じて容器11の膨張検知の報知信号を出力するものである。 The control unit 43B determines that the expansion of the container 11 has been detected when the electrical resistance value of the conductive rubber 23B exceeds the first threshold value. When the control unit 43B determines that the expansion of the container 11 is detected, the control unit 43B outputs a notification signal for detecting the expansion of the container 11 through the notification unit 41.
 更に、制御部43Bは、導電性ゴム23Bの電気抵抗値が第2の閾値を超えた場合、容器11の開封直前と判定する。制御部43Bは、容器11の開封直前と判定すると、報知部41を通じて容器11の開封予告の報知信号を出力するものである。 Furthermore, the control part 43B determines with the container 11 just before opening, when the electrical resistance value of the conductive rubber 23B exceeds the second threshold value. When the control unit 43B determines that the container 11 has just been opened, the control unit 43B outputs a notification signal for opening the container 11 through the notification unit 41.
(実施形態4の蓄電セル10Cの制御部43Bの動作)
 次に実施形態4の蓄電セル10Cの制御部43Bの動作について説明する。図13は、第3の検知処理に関わる制御部43Bの処理動作の一例を示すフローチャートである。図13において制御部43Bは、導電性ゴム23Bの電気抵抗値が第1の閾値を超えたか否かを判定する(ステップS31)。制御部43Bは、導電性ゴム23Bの電気抵抗値が第1の閾値を超えた場合(ステップS31肯定)、図11の(B)に示すように容器11の膨張検知と判定し(ステップS32)、報知部41を通じて膨張検知を、図示せぬ外部機器に出力する(ステップS33)。
(Operation of Control Unit 43B of Storage Cell 10C of Embodiment 4)
Next, operation | movement of the control part 43B of the electrical storage cell 10C of Embodiment 4 is demonstrated. FIG. 13 is a flowchart illustrating an example of a processing operation of the control unit 43B related to the third detection process. In FIG. 13, the control unit 43B determines whether or not the electrical resistance value of the conductive rubber 23B has exceeded the first threshold value (step S31). When the electrical resistance value of the conductive rubber 23B exceeds the first threshold value (Yes at Step S31), the control unit 43B determines that the expansion of the container 11 is detected as shown in FIG. 11B (Step S32). The expansion detection is output to an external device (not shown) through the notification unit 41 (step S33).
 制御部43Bは、膨張検知の報知出力後、導電性ゴム23Bの電気抵抗値が第2の閾値を超えたか否かを判定する(ステップS34)。制御部43Bは、導電性ゴム23Bの電気抵抗値が第2の閾値を超えた場合(ステップS34肯定)、図11の(C)に示すように開封直前と判定し(ステップS35)、報知部41を通じて開封予告を、図示せぬ外部機器に出力する(ステップS36)。 The control unit 43B determines whether or not the electrical resistance value of the conductive rubber 23B has exceeded the second threshold value after the notification output of the expansion detection (step S34). When the electrical resistance value of the conductive rubber 23B exceeds the second threshold value (Yes at Step S34), the control unit 43B determines that it is just before opening (Step S35), as shown in FIG. An opening notice is output to an external device (not shown) through 41 (step S36).
 制御部43Bは、導電性ゴム23Bの電気抵抗値が第1の閾値を超えなかった場合(ステップS31否定)、図13に示す処理動作を終了する。また、制御部43Bは、導電性ゴム23Bの電気抵抗値が第2の閾値を超えなかった場合(ステップS34否定)、電気抵抗値が第2の閾値を超えたか否かを監視すべく、ステップS34に移行する。 When the electrical resistance value of the conductive rubber 23B does not exceed the first threshold value (No at Step S31), the control unit 43B ends the processing operation illustrated in FIG. In addition, when the electrical resistance value of the conductive rubber 23B does not exceed the second threshold value (No in step S34), the control unit 43B performs a step to monitor whether or not the electrical resistance value exceeds the second threshold value. The process proceeds to S34.
 その後、第1の開封部30は、さらなる容器11の膨張に応じてカバー34から針部33が露出し、その針部33の先端が容器11の表面に刺さることで容器11に穴を開けて開封する。 Thereafter, the first opening part 30 opens the hole in the container 11 by exposing the needle part 33 from the cover 34 according to further expansion of the container 11 and the tip of the needle part 33 is stuck in the surface of the container 11. Open.
(実施形態4による効果)
 実施形態4の蓄電セル10Cの制御部43Bは、導電性ゴム23Bの電気抵抗値が第1の閾値を超えた場合、容器11の膨張検知と判定し、報知部41を通じて膨張検知の報知信号を出力する。その結果、利用者は、膨張検知の報知出力に応じて蓄電セル10Cの容器11の膨張を認識できる。更に、利用者は、容器11の膨張を認識することで蓄電セル10Cの交換の準備を整えることができる。
(Effect by Embodiment 4)
When the electrical resistance value of the conductive rubber 23B exceeds the first threshold value, the control unit 43B of the storage cell 10C according to the fourth embodiment determines that the expansion of the container 11 has been detected, and sends an expansion detection notification signal through the notification unit 41. Output. As a result, the user can recognize the expansion of the container 11 of the storage cell 10C according to the notification output of the expansion detection. Further, the user can prepare for replacement of the storage cell 10 </ b> C by recognizing the expansion of the container 11.
 蓄電セル10Cの制御部43Bは、導電性ゴム23Bの電気抵抗値が第2の閾値を超えた場合、容器11の開封直前と判定し、報知部41を通じて開封直前の報知信号を出力する。その結果、利用者は、開封予告の報知出力に応じて蓄電セル10Cの容器11の開封を事前に認識できる。 When the electrical resistance value of the conductive rubber 23B exceeds the second threshold, the control unit 43B of the storage cell 10C determines that the container 11 is just before opening and outputs a notification signal immediately before opening through the notification unit 41. As a result, the user can recognize in advance the opening of the container 11 of the storage cell 10C according to the notification output of the opening notice.
[実施形態5]
(実施形態5にかかる蓄電セル10Eの構成)
 図14は、実施形態5の蓄電セル10Eの第3の開封部30Bの動作の一例を示す説明図である。実施形態1の蓄電セル10と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。実施形態5の蓄電セル10Eが実施形態1の蓄電セル10と異なるところは、第1の開封部30を第3の開封部30Bに代用した点である。図14に示す第3の開封部30Bは、基部31Bと、本体32Bと、刃部33Bと、回転カバー34Bとを有する構造である。基部31Bは、その一端をタブ13Bの面部に固着している。本体32Bは、基部31Bから直角にセル主面14の方向に延び、蓄電セル10Eの封止面15上に対向するように離間して延在している。更に、本体32Bは、その先端部分に刃部33Bが設けてある。
[Embodiment 5]
(Configuration of Power Storage Cell 10E according to Embodiment 5)
FIG. 14 is an explanatory diagram illustrating an example of the operation of the third unsealing unit 30B of the storage cell 10E according to the fifth embodiment. The same components as those of the storage cell 10 of the first embodiment are denoted by the same reference numerals, and the description of the overlapping configuration and operation is omitted. The difference between the electricity storage cell 10E of Embodiment 5 and the electricity storage cell 10 of Embodiment 1 is that the first opening portion 30 is substituted for the third opening portion 30B. The third opening portion 30B shown in FIG. 14 has a structure having a base portion 31B, a main body 32B, a blade portion 33B, and a rotation cover 34B. One end of the base 31B is fixed to the surface of the tab 13B. The main body 32B extends from the base 31B at a right angle in the direction of the cell main surface 14, and extends so as to face the sealing surface 15 of the storage cell 10E. Further, the main body 32B is provided with a blade portion 33B at the tip thereof.
 刃部33Bは、容器11の表面を切り込むことで容器11に穴を開けて開封するものである。回転カバー34Bは、刃部33Bの端部35Bを中心に回動可能に備え、第3の開封部30Bからの刃部33Bの露出を防止する構造である。回転カバー34Bは、蓄電セル10Eの封止面15の膨張に応じて容器11の表面が当接して刃部33Bの端部35Bを中心に反時計回り方向に回動する。回転カバー34Bは、反時計回り方向の回動が進行するに連れて、回転カバー34Bから刃部33Bを露出する。第3の開封部30Bは、回転カバー34Bからの刃部33Bの露出に応じて、刃部33Bが蓄電セル10Eの容器11の表面を切り込むことで容器11に穴を開けて開封する。 The blade portion 33B is for opening a hole in the container 11 by cutting the surface of the container 11. The rotating cover 34B is configured to be rotatable about the end portion 35B of the blade portion 33B and to prevent the blade portion 33B from being exposed from the third opening portion 30B. The rotation cover 34B rotates counterclockwise about the end 35B of the blade 33B with the surface of the container 11 coming into contact with the expansion of the sealing surface 15 of the storage cell 10E. The rotating cover 34B exposes the blade portion 33B from the rotating cover 34B as the counterclockwise rotation proceeds. The third opening part 30B opens the container 11 by opening a hole in the blade part 33B by cutting the surface of the container 11 of the storage cell 10E according to the exposure of the blade part 33B from the rotary cover 34B.
(実施形態5の蓄電セル10Eの動作)
 次に実施形態5の蓄電セル10Eの動作について説明する。第3の開封部30Bの回転カバー34Bは、図14の(A)に示すように容器11が膨張していないため、容器11の表面と接触せず、その先端から露出しないように刃部33Bを保護している。
(Operation of Power Storage Cell 10E of Embodiment 5)
Next, the operation of the electricity storage cell 10E of Embodiment 5 will be described. As shown in FIG. 14A, the rotation cover 34B of the third opening portion 30B is not inflated as shown in FIG. 14A, so that the blade portion 33B does not come into contact with the surface of the container 11 and is not exposed from the tip. Is protecting.
 更に、第3の開封部30Bは、第1の検知部20で容器11の膨張を検知後、図14の(B)に示すように容器11の膨張が開始して封止面15がさらに膨張し、容器11の表面が回転カバー34Bの先端と当接する。そして、第3の開封部30Bは、回転カバー34Bの先端との当接に応じて刃部33Bの端部35Bを中心に回転カバー34Bを図14における反時計回り方向に回動させる。 Further, after the third detection unit 30B detects the expansion of the container 11 by the first detection unit 20, the expansion of the container 11 starts and the sealing surface 15 further expands as shown in FIG. Then, the surface of the container 11 comes into contact with the tip of the rotary cover 34B. And the 3rd opening part 30B rotates the rotation cover 34B counterclockwise in FIG. 14 centering | focusing on the edge part 35B of the blade part 33B according to contact | abutting with the front-end | tip of the rotation cover 34B.
 更に、第3の開封部30Bは、図14の(C)に示すように容器11の膨張が進行すると、容器11の表面が回転カバー34Bの先端を押圧し、刃部33Bの端部35Bを中心に回転カバー34Bを図14における反時計回り方向に回動させる。 Furthermore, as shown in FIG. 14C, the third unsealing portion 30B is configured such that when the expansion of the container 11 proceeds, the surface of the container 11 presses the tip of the rotary cover 34B, and the end 35B of the blade 33B is moved. The rotation cover 34B is rotated in the counterclockwise direction in FIG.
 更に、第3の開封部30Bは、さらに容器11の膨張が進行すると、図14の(D)に示すように、容器11の表面が回転カバー34Bを図14における反時計回り方向にさらに回動させることで、刃部33Bの先端が回転カバー34Bから露出する。その結果、第3の開封部30Bは、刃部33Bの先端が容器11の表面を切り込んで容器11に穴を開けることで開封する。 Further, when the expansion of the container 11 further proceeds, the third unsealing portion 30B causes the surface of the container 11 to further rotate the rotary cover 34B counterclockwise in FIG. 14 as shown in FIG. By doing so, the tip of the blade portion 33B is exposed from the rotary cover 34B. As a result, the third opening part 30B is opened when the tip of the blade part 33B cuts the surface of the container 11 to make a hole in the container 11.
(実施形態5による効果)
 蓄電セル10Eは、容器11の膨張検知後、更なる容器11の膨張に応じて容器11の表面が第3の開封部30Bの回転カバー34Bを押圧し、回転カバー34Bを図14における反時計回り方向に回動させて刃部33Bが露出する。更に、蓄電セル10Eは、刃部33Bが回転カバー34Bから露出し、刃部33Bが容器11の表面を切り込むことで容器11を開封する。その結果、蓄電セル10Eは、蓄電セル10Eの容器11の膨張による破裂を未然に防止できる。
(Effect by Embodiment 5)
In the storage cell 10E, after detecting the expansion of the container 11, the surface of the container 11 presses the rotation cover 34B of the third unsealing portion 30B according to the further expansion of the container 11, and the rotation cover 34B is rotated counterclockwise in FIG. The blade portion 33B is exposed by rotating in the direction. Further, in the storage cell 10E, the blade portion 33B is exposed from the rotary cover 34B, and the blade portion 33B cuts the surface of the container 11 to open the container 11. As a result, the storage cell 10E can prevent the explosion due to the expansion of the container 11 of the storage cell 10E.
 また、前述した実施形態3及び4では、第1の開封部30を採用したが、これ以外の第2の開封部30Aや第3の開封部30B等を採用しても良い。 Moreover, in Embodiment 3 and 4 mentioned above, although the 1st opening part 30 was employ | adopted, you may employ | adopt 2nd opening part 30A, 3rd opening part 30B, etc. other than this.
 前述した実施形態1では、蓄電セル10毎に第1の検知部20及び第1の開封部30を設けるようにしたが、複数の蓄電セル10を収容する蓄電モジュール単位で蓄電セル10の容器11の膨張を検知して報知出力するようにしても良い。そこで、この場合の実施形態につき、実施形態6として以下に説明する。 In the first embodiment described above, the first detection unit 20 and the first unsealing unit 30 are provided for each power storage cell 10. However, the container 11 of the power storage cell 10 is stored in units of power storage modules that accommodate a plurality of power storage cells 10. It is also possible to detect the expansion of and output a notification. Therefore, an embodiment in this case will be described below as a sixth embodiment.
[実施形態6]
(実施形態6にかかる蓄電モジュール1の構成)
 図15は、実施形態6の蓄電モジュール1の一例を示す斜視図である。尚、実施形態1の蓄電セル10と同一の構成には同一符号を付すことで、その重複する構成及び動作の説明については省略する。図15に示す蓄電セル10Dは、例えば、第1の検知部20及び第1の開封部30を備えていないものとする。
[Embodiment 6]
(Configuration of power storage module 1 according to Embodiment 6)
FIG. 15 is a perspective view illustrating an example of the power storage module 1 of the sixth embodiment. In addition, the same code | symbol is attached | subjected to the structure same as the electrical storage cell 10 of Embodiment 1, and the description of the overlapping structure and operation | movement is abbreviate | omitted. The storage cell 10D illustrated in FIG. 15 is not provided with, for example, the first detection unit 20 and the first opening unit 30.
 図15に示す蓄電モジュール1は、複数の蓄電セル10Dと、第1のエンドプレート3Aと、第2のエンドプレート3Bと、複数のブラケット4とを有する。蓄電モジュール1は、例えば、リチウムイオンキャパシタモジュールである。 The power storage module 1 shown in FIG. 15 includes a plurality of power storage cells 10D, a first end plate 3A, a second end plate 3B, and a plurality of brackets 4. The power storage module 1 is, for example, a lithium ion capacitor module.
 蓄電モジュール1は、正極と負極とを積層した電極積層体をラミネート材の容器内に封止した複数の蓄電セル10Dを有する。蓄電モジュール1は、各蓄電セル10Dのセル主面14に接着剤が塗布された状態でセル主面14同士が重ね合わされ、各セル主面14が重ね方向に加圧された状態で蓄電セル10D同士が接着される。 The power storage module 1 has a plurality of power storage cells 10D in which an electrode laminate in which a positive electrode and a negative electrode are stacked is sealed in a container made of a laminate material. In the power storage module 1, the cell main surfaces 14 are overlapped with each other with the adhesive applied to the cell main surface 14 of each power storage cell 10 </ b> D, and each cell main surface 14 is pressed in the overlapping direction. They are bonded together.
 蓄電モジュール1では、例えば、複数の蓄電セル10Dを直列接続する場合、蓄電セル10Dの正極端子12Aの先端部分と、当該蓄電セル10Dと面接触する対向側の蓄電セル10Dの負極端子12Bの先端部分とを溶接等で電気的に接続する。更に、蓄電モジュール1では、蓄電セル10Dの負極端子12Bの先端部分と対向側の蓄電セル10Dの正極端子12Aの先端部分とを溶接等で電気的に接続する。 In the power storage module 1, for example, when a plurality of power storage cells 10D are connected in series, the front end portion of the positive electrode terminal 12A of the power storage cell 10D and the front end of the negative electrode terminal 12B of the opposite power storage cell 10D that is in surface contact with the power storage cell 10D. The part is electrically connected by welding or the like. Further, in the power storage module 1, the tip portion of the negative electrode terminal 12B of the power storage cell 10D is electrically connected to the tip portion of the positive electrode terminal 12A of the power storage cell 10D on the opposite side by welding or the like.
 また、蓄電モジュール1は、例えば、複数の蓄電セル10Dを並列接続する場合、蓄電セル10Dの正極端子12Aの先端部分と、蓄電セル10Dと面接触する対向側の蓄電セル10Dの正極端子12Aの先端部分とを溶接等で電気的に接続する。更に、蓄電モジュール1は、蓄電セル10Dの負極端子12Bの先端部分と対向側の蓄電セル10Dの負極端子12Bの先端部分とを溶接等で電気的に接続する。 In addition, for example, in the case where a plurality of power storage cells 10D are connected in parallel, the power storage module 1 includes the tip portion of the positive electrode terminal 12A of the power storage cell 10D and the positive electrode terminal 12A of the opposite power storage cell 10D in surface contact with the power storage cell 10D. The tip part is electrically connected by welding or the like. Furthermore, the power storage module 1 electrically connects the tip portion of the negative electrode terminal 12B of the power storage cell 10D and the tip portion of the negative electrode terminal 12B of the opposite storage cell 10D by welding or the like.
 図15に示す第1のエンドプレート3Aは、平面視矩形状の板金部材で形成され、平坦面を有する。平坦面は、蓄電セル10Dのセル主面14と面接触する面部である。平坦面は、蓄電セル10Dの重ね方向の最下部に配置した蓄電セル10Dのセル主面14と面接触する。尚、第2のエンドプレート3Bは、図15に示す第1のエンドプレート3Aの構成と同一であるため、同一符号を付すことで、その重複する構成および動作の説明については省略する。第2のエンドプレート3Bの平坦面は、蓄電セル10Dの重ね方向の最上部に配置した蓄電セル10Dのセル主面14と面接触する。 The first end plate 3A shown in FIG. 15 is formed of a sheet metal member having a rectangular shape in plan view, and has a flat surface. The flat surface is a surface portion that is in surface contact with the cell main surface 14 of the storage cell 10D. The flat surface is in surface contact with the cell main surface 14 of the energy storage cell 10D arranged at the lowermost part in the stacking direction of the energy storage cell 10D. Since the second end plate 3B has the same configuration as the first end plate 3A shown in FIG. 15, the same reference numerals are given, and the description of the overlapping configuration and operation is omitted. The flat surface of the second end plate 3B is in surface contact with the cell main surface 14 of the power storage cell 10D arranged at the uppermost part in the stacking direction of the power storage cells 10D.
 図15に示すブラケット4は、断面略コ字形状の2個のブラケットを有し、後述するセル集合体を短手側の一方の側面から保持する第1のブラケット4Aと、セル集合体を短手側の他方の側面から保持する第2のブラケット4Bとを有する。なお、セル集合体は、第1のエンドプレート3A、複数の蓄電セル10D及び第2のエンドプレート3Bを重ね合わせた集合体である。第1のブラケット4Aは、セル集合体の内、第1のエンドプレート3Aの平坦面の表面と、第2のエンドプレート3Bの平坦面の表面とで挟持されて保持する。第2のブラケット4Bは、セル集合体の内、第1のエンドプレート3Aの平坦面の表面と、第2のエンドプレート3Bの平坦面の表面とを挟持して保持する。 The bracket 4 shown in FIG. 15 has two brackets having a substantially U-shaped cross section, a first bracket 4A that holds a cell assembly, which will be described later, from one side surface on the short side, and a short cell assembly. And a second bracket 4B held from the other side of the hand side. The cell aggregate is an aggregate in which the first end plate 3A, the plurality of power storage cells 10D, and the second end plate 3B are overlapped. The first bracket 4A is sandwiched and held between the flat surface of the first end plate 3A and the flat surface of the second end plate 3B in the cell assembly. The second bracket 4B sandwiches and holds the surface of the flat surface of the first end plate 3A and the surface of the flat surface of the second end plate 3B in the cell assembly.
 第2のエンドプレート3Bの平坦面には、第1のブラケット4Aの端面に当接する部位に図示せぬネジ穴を備え、当該ネジ穴にネジ51が螺合してネジ51の先端部分が第1のブラケット4Aの端面を押圧する。これにより、第2のエンドプレート3Bは、ネジ51の先端部分の押圧に応じて第1のブラケット4Aが第1のエンドプレート3A側に移動してセル集合体を加圧する。 The flat surface of the second end plate 3B is provided with a screw hole (not shown) at a portion that contacts the end surface of the first bracket 4A. The screw 51 is screwed into the screw hole, and the tip of the screw 51 is the first end portion. The end face of one bracket 4A is pressed. Thus, in the second end plate 3B, the first bracket 4A moves to the first end plate 3A side in response to the pressing of the tip portion of the screw 51, and pressurizes the cell assembly.
 第2のエンドプレート3Bの平坦面には、第2のブラケット4Bの端面に当接する部位に図示せぬネジ穴を備え、当該ネジ穴にネジ51が螺合してネジ51の先端部分が第2のブラケット4Bの端面を押圧する。これにより、第2のエンドプレート3Bは、ネジ51の先端部分の押圧に応じて第2のブラケット4Bが第1のエンドプレート3A側に移動してセル集合体を加圧する。第1のブラケット4A及び第2のブラケット4Bは、第1のエンドプレート3A及び第2のエンドプレート3Bを用いてセル集合体を両側から加圧する。尚、第1のエンドプレート3A及び第2のエンドプレート3Bは、セル集合体を両側から加圧する、例えば拘束部材である。 The flat surface of the second end plate 3B is provided with a screw hole (not shown) at a portion that abuts the end surface of the second bracket 4B, and the screw 51 is screwed into the screw hole so that the tip of the screw 51 is the first end portion. The end face of the second bracket 4B is pressed. Accordingly, in the second end plate 3B, the second bracket 4B moves to the first end plate 3A side in accordance with the pressing of the tip portion of the screw 51, and pressurizes the cell aggregate. The first bracket 4A and the second bracket 4B pressurize the cell assembly from both sides using the first end plate 3A and the second end plate 3B. The first end plate 3A and the second end plate 3B are, for example, restraining members that pressurize the cell assembly from both sides.
 第1のエンドプレート3Aの面部には、第4の検知部20Cである歪みセンサのゲージ片61が設けてある。ゲージ片61は、例えば、導電性の金属で可撓性の薄板状の絶縁体を表面処理した構造である。図16は、実施形態5に関わる監視回路40Cの一例を示すブロック図である。図16に示す監視回路40Cは、蓄電モジュール1内の各蓄電セル10Dの状態を監視する回路である。監視回路40Cは、報知部41及び記憶部42の他に、第4の検知部20C及び制御部43Cを有する。制御部43Cは、監視回路40C全体を制御する。 On the surface portion of the first end plate 3A, a strain sensor gauge piece 61 which is the fourth detection unit 20C is provided. For example, the gauge piece 61 has a structure in which a flexible thin plate-like insulator made of a conductive metal is surface-treated. FIG. 16 is a block diagram illustrating an example of a monitoring circuit 40C according to the fifth embodiment. A monitoring circuit 40 </ b> C illustrated in FIG. 16 is a circuit that monitors the state of each power storage cell 10 </ b> D in the power storage module 1. The monitoring circuit 40C includes a fourth detection unit 20C and a control unit 43C in addition to the notification unit 41 and the storage unit 42. The control unit 43C controls the entire monitoring circuit 40C.
 図17は、ゲージ片61の変化の一例を示す説明図である。蓄電モジュール1は、内部の蓄電セル10Dの容器が膨張していない場合、図17の(A)に示すように第1のエンドプレート3Aが撓んでない状態である。蓄電モジュール1は、内部の蓄電セル10Dの容器11が膨張した場合、図17の(B)に示すように第1のエンドプレート3Aが撓んでゲージ片61も撓む。ゲージ片61の電気抵抗値は、ゲージ片61が撓むことで、その電気抵抗値が大きくなる。 FIG. 17 is an explanatory diagram showing an example of a change in the gauge piece 61. When the container of the internal storage cell 10D is not expanded, the storage module 1 is in a state where the first end plate 3A is not bent as shown in FIG. In the power storage module 1, when the container 11 of the internal power storage cell 10D is expanded, the first end plate 3A is bent and the gauge piece 61 is also bent as shown in FIG. The electrical resistance value of the gauge piece 61 increases as the gauge piece 61 bends.
 制御部43Cは、第4の検知部20Cを通じてゲージ片61の電気抵抗値を測定し、電気抵抗値が第3の閾値を超えた場合、蓄電モジュール1内の蓄電セル10Cの容器11の膨張検知と判定する。制御部43Cは、容器11の膨張検知と判定した場合、報知部41を通じて容器11の膨張検知を示す報知信号を外部機器に出力するものである。制御部43Cは、第4の検知部20Cを通じてゲージ片61の電気抵抗値を測定し、電気抵抗値が第4の閾値を超えた場合、蓄電セル10Dの容器11の開封直前と判定する。制御部43Cは、開封直前と判定した場合、報知部41を通じて開封予告を示す報知信号を外部機器に出力するものである。 The control unit 43C measures the electrical resistance value of the gauge piece 61 through the fourth detection unit 20C, and when the electrical resistance value exceeds the third threshold value, the expansion detection of the container 11 of the storage cell 10C in the storage module 1 is detected. Is determined. When determining that the expansion of the container 11 is detected, the control unit 43C outputs a notification signal indicating the detection of the expansion of the container 11 to the external device through the notification unit 41. The control unit 43C measures the electrical resistance value of the gauge piece 61 through the fourth detection unit 20C, and determines that it is immediately before opening the container 11 of the storage cell 10D when the electrical resistance value exceeds the fourth threshold value. When it is determined that the control unit 43 </ b> C is immediately before opening, the control unit 43 </ b> C outputs a notification signal indicating opening notification to the external device through the notification unit 41.
(実施形態6の蓄電モジュール1の制御部43Cの動作)
 次に実施形態6の蓄電モジュール1の制御部43Cの動作について説明する。図18は、第4の検知処理に関わる制御部43Cの処理動作の一例を示すフローチャートである。図18において制御部43Cは、第4の検知部20Cで測定したゲージ片61の電気抵抗値が第3の閾値を超えたか否かを判定する(ステップS41)。制御部43Cは、ゲージ片61の電気抵抗値が第3の閾値を超えた場合(ステップS41肯定)、容器11の膨張検知と判定し(ステップS42)、報知部41を通じて膨張検知を、図示せぬ外部機器に出力する(ステップS43)。
(Operation of Control Unit 43C of Power Storage Module 1 of Embodiment 6)
Next, operation | movement of 43 C of control parts of the electrical storage module 1 of Embodiment 6 is demonstrated. FIG. 18 is a flowchart illustrating an example of a processing operation of the control unit 43C related to the fourth detection process. In FIG. 18, the control unit 43C determines whether or not the electrical resistance value of the gauge piece 61 measured by the fourth detection unit 20C exceeds the third threshold value (step S41). When the electrical resistance value of the gauge piece 61 exceeds the third threshold value (Yes at Step S41), the control unit 43C determines that the expansion of the container 11 is detected (Step S42), and the expansion detection is illustrated through the notification unit 41. To an external device (step S43).
 制御部43Cは、膨張検知の報知出力後、第4の検知部20Cで測定したゲージ片61の電気抵抗値が第4の閾値を超えたか否かを判定する(ステップS44)。制御部43Cは、ゲージ片61の電気抵抗値が第4の閾値を超えた場合(ステップS44肯定)、開封直前と判定し(ステップS45)、報知部41を通じて開封予告を、図示せぬ外部機器に出力する(ステップS46)。 The control unit 43C determines whether or not the electrical resistance value of the gauge piece 61 measured by the fourth detection unit 20C exceeds the fourth threshold value after the notification output of the expansion detection (Step S44). When the electrical resistance value of the gauge piece 61 exceeds the fourth threshold value (Yes at Step S44), the control unit 43C determines that it is just before opening (Step S45), and notifies the opening notification through the notification unit 41 to an external device (not shown). (Step S46).
 制御部43Cは、ゲージ片61の電気抵抗値が第3の閾値を超えなかった場合(ステップS41否定)、図18に示す処理動作を終了する。また、制御部43Cは、ゲージ片61の電気抵抗値が第4の閾値を超えなかった場合(ステップS44否定)、電気抵抗値が第4の閾値を超えたか否かを監視すべく、ステップS44に移行する。 When the electrical resistance value of the gauge piece 61 does not exceed the third threshold value (No at Step S41), the control unit 43C ends the processing operation illustrated in FIG. In addition, when the electrical resistance value of the gauge piece 61 does not exceed the fourth threshold value (No at Step S44), the control unit 43C monitors whether the electrical resistance value exceeds the fourth threshold value at Step S44. Migrate to
(実施形態6による効果)
 実施形態6の蓄電モジュール1の制御部43Cは、ゲージ片61の電気抵抗値が第3の閾値を超えた場合、蓄電モジュール1内の蓄電セル10Dの容器11の膨張検知と判定する。制御部43Cは、容器11の膨張検知と判定し、膨張検知を示す報知信号を出力する。その結果、利用者は、膨張検知の報知出力に応じて蓄電モジュール1内の蓄電セル10Dの容器11の膨張を認識できる。しかも、利用者は、蓄電モジュール1内の蓄電セル2の容器11の膨張を認識できるため、蓄電モジュール1を故障前に交換できる。
(Effect by Embodiment 6)
When the electrical resistance value of the gauge piece 61 exceeds the third threshold value, the control unit 43C of the power storage module 1 of Embodiment 6 determines that the expansion of the container 11 of the power storage cell 10D in the power storage module 1 has been detected. The control unit 43C determines that the expansion of the container 11 is detected, and outputs a notification signal indicating the expansion detection. As a result, the user can recognize the expansion of the container 11 of the power storage cell 10D in the power storage module 1 according to the notification output of the expansion detection. And since the user can recognize expansion | swelling of the container 11 of the electrical storage cell 2 in the electrical storage module 1, the electrical storage module 1 can be replaced | exchanged before a failure.
 制御部43Cは、ゲージ片61の電気抵抗値が第4の閾値を超えた場合、蓄電モジュール1内の蓄電セル10Dの容器11の開封直前と判定し、開封予告の報知信号を出力する。その結果、利用者は、開封予告の報知出力に応じて蓄電モジュール1内の蓄電セル10Dの容器11の開封を事前に認識できる。 When the electrical resistance value of the gauge piece 61 exceeds the fourth threshold value, the control unit 43C determines that the container 11 of the power storage cell 10D in the power storage module 1 has just been opened, and outputs a notification signal for opening notification. As a result, the user can recognize in advance the opening of the container 11 of the storage cell 10D in the storage module 1 in accordance with the notification output of the opening notification.
(実施形態の他の変形例)
 上記実施形態の第1の検知部20、第2の検知部20A又は第3の検知部20Bは蓄電セル10のタブ13Bの面部に固着したが、例えば、タブ13Aの面部に固着しても良い。また、第1の検知部20、第2の検知部20A及び第3の検知部20Bは、蓄電セル10の電極である、例えば、正極端子12Aや負極端子12Bの面部に固着しても良く、容器11の膨張の影響で変位しない位置に固着しても良い。
(Other variations of the embodiment)
Although the 1st detection part 20, 2nd detection part 20A, or 3rd detection part 20B of the said embodiment adhered to the surface part of the tab 13B of the electrical storage cell 10, you may adhere to the surface part of the tab 13A, for example. . Further, the first detection unit 20, the second detection unit 20A, and the third detection unit 20B may be fixed to the surface portions of the positive electrode terminal 12A and the negative electrode terminal 12B, which are electrodes of the storage cell 10, for example. The container 11 may be fixed at a position that does not displace due to the expansion of the container 11.
 上記実施形態の第1の開封部30、第2の開封部30A又は第3の開封部30Bは、蓄電セル10のタブ13Bの面部に第1の検知部20と並列に配置したが、並列に配置する必要はなく、タブ13Bの面部の第1の検知部20の固着した面部と反対側の面部に配置するようにしても良い。また、第1の開封部30、第2の開封部30A又は第3の開封部30Bは、容器11の膨張の影響で変位しない位置に、例えば、タブ13A、正極端子12Aや負極端子12B等を固着しても良い。 Although the 1st opening part 30, 2nd opening part 30A, or 3rd opening part 30B of the said embodiment was arrange | positioned in parallel with the 1st detection part 20 in the surface part of the tab 13B of the electrical storage cell 10, in parallel It is not necessary to arrange, and you may make it arrange | position to the surface part on the opposite side to the surface part to which the 1st detection part 20 fixed of the surface part of the tab 13B. In addition, the first opening part 30, the second opening part 30A, or the third opening part 30B are provided with, for example, the tab 13A, the positive terminal 12A, the negative terminal 12B, and the like at positions that are not displaced by the expansion of the container 11. It may be fixed.
 上記実施形態6の蓄電モジュール1の制御部43Cは、第4の検知部20Cのゲージ片61の電気抵抗値を用いて容器11の膨張検知を判定した。しかしながら、例えば、第1のエンドプレート3Aにかかる加圧変化を測定する加圧センサを用いて、制御部43Cは、加圧センサで測定した加圧値が所定加圧値を超えた場合に蓄電セル10Dの容器11の膨張検知と判定しても良い。尚、所定加圧値は、容器11の膨張と判定できる加圧値を事前に設定しておくものとする。また、制御部43Cは、加圧センサを用いた場合、第1のエンドプレート3A側の加圧値と所定加圧値とを比較したが、第2のエンドプレート3B側の加圧値と比較しても良い。 The control unit 43C of the power storage module 1 of the sixth embodiment determines the expansion detection of the container 11 using the electrical resistance value of the gauge piece 61 of the fourth detection unit 20C. However, for example, using a pressure sensor that measures a change in pressure applied to the first end plate 3A, the control unit 43C stores power when the pressure value measured by the pressure sensor exceeds a predetermined pressure value. You may determine with the expansion | swelling detection of the container 11 of cell 10D. The predetermined pressurization value is set in advance as a pressurization value that can be determined as the expansion of the container 11. Further, when the pressure sensor is used, the control unit 43C compares the pressure value on the first end plate 3A side with the predetermined pressure value, but compares it with the pressure value on the second end plate 3B side. You may do it.
 また、例えば、第1のエンドプレート3Aにかかる曲げ変化を測定する曲げセンサを用いて、制御部43Cは、曲げセンサで測定した曲げ量が所定曲げ量を超えた場合に蓄電セル10Dの容器11の膨張検知と判定しても良い。尚、所定曲げ量は、容器11の膨張と判定できる曲げ量を事前に設定しておくものとする。また、制御部43Cは、曲げセンサを用いた場合、第1のエンドプレート3A側の曲げ量と所定曲げ量とを比較したが、第2のエンドプレート3B側の曲げ量と比較しても良い。 Further, for example, using a bending sensor that measures a bending change applied to the first end plate 3A, the control unit 43C causes the container 11 of the storage cell 10D when the bending amount measured by the bending sensor exceeds a predetermined bending amount. It may be determined that the expansion is detected. The predetermined bending amount is set in advance to a bending amount that can be determined as the expansion of the container 11. In addition, when the bending sensor is used, the control unit 43C compares the bending amount on the first end plate 3A side with the predetermined bending amount, but may compare it with the bending amount on the second end plate 3B side. .
 上記実施形態の蓄電セル10の制御部43は、蓄電セル10の開封予告を示す報知信号を出力したが、容器11の開封が完了した時点で、報知部41を通じて開封完了を示す報知信号を外部機器に出力しても良い。 The control unit 43 of the storage cell 10 of the above embodiment outputs a notification signal indicating the opening notice of the storage cell 10, but when the opening of the container 11 is completed, the notification signal indicating the completion of opening is externally transmitted through the notification unit 41. You may output to an apparatus.
 上記実施形態の蓄電セル10(10A,10B,10C,10D、10E)は、矩形形状の一辺から正極端子12Aおよび負極端子12Bを同一方向に引き出す構造としたが、例えば、矩形形状の対向する二辺から引き出す構造や、直角に交わる二辺から引き出す構造としても良い。 The storage cell 10 (10A, 10B, 10C, 10D, 10E) of the above embodiment has a structure in which the positive electrode terminal 12A and the negative electrode terminal 12B are drawn in one direction from one side of the rectangular shape. It is good also as a structure pulled out from a side, or a structure pulled out from two sides which intersect at right angles.
 上記実施形態の蓄電セル10(10A,10B,10C,10D、10E)は、リチウムプレドープ型のリチウムイオンキャパシタを例示したが、例えば、リチウム以外のアルカリ金属をプレドープさせるタイプのアルカリ金属イオンキャパシタにも適用可能である。また、非水系二次電池や電気二重層キャパシタの蓄電セルにも適用可能である。 The power storage cell 10 (10A, 10B, 10C, 10D, 10E) of the above embodiment is exemplified by a lithium pre-doped type lithium ion capacitor. For example, an alkaline metal ion capacitor of a type in which an alkali metal other than lithium is pre-doped. Is also applicable. Moreover, it is applicable also to the electrical storage cell of a non-aqueous secondary battery and an electrical double layer capacitor.
 上記実施形態では、蓄電セル10(10A,10B,10C,10D、10E)の容器11をアルミラミネートフィルム材等のアルミ箔で形成したが、アルミ箔以外の他の金属箔の金属ラミネートフィルム材で形成しても良い。 In the said embodiment, although the container 11 of the electrical storage cell 10 (10A, 10B, 10C, 10D, 10E) was formed with aluminum foil, such as an aluminum laminate film material, it is a metal laminate film material of metal foil other than aluminum foil. It may be formed.
 上記実施形態では、セル主面14は、PETとしたが、例えば、ナイロンやPP(Polypropylene)等にしても良い。 In the above embodiment, the cell main surface 14 is PET, but may be nylon, PP (Polypropylene), or the like.
 上記実施形態では、第1のエンドプレート3A及び第2のエンドプレート3Bを金属部材で形成したが、例えば、難燃性樹脂材料である難燃性ポリプロピレンやガラス入りナイロン等で形成しても良い。 In the above embodiment, the first end plate 3A and the second end plate 3B are formed of a metal member. However, for example, the first end plate 3A and the second end plate 3B may be formed of a flame-retardant resin material such as flame-retardant polypropylene or glass-filled nylon. .
 1 蓄電モジュール
 10,10A,10B,10C,10D,10E 蓄電セル
 11 容器
 20 第1の検知部
 20A 第2の検知部
 20B 第3の検知部
 20C 第4の検知部
 30 第1の開封部
 30A 第2の開封部
 30B 第3の開封部
 41 報知部
 43,43A,43B,43C 制御部
DESCRIPTION OF SYMBOLS 1 Power storage module 10, 10A, 10B, 10C, 10D, 10E Power storage cell 11 Container 20 1st detection part 20A 2nd detection part 20B 3rd detection part 20C 4th detection part 30 1st opening part 30A 1st 2 opening part 30B 3rd opening part 41 Informing part 43, 43A, 43B, 43C Control part

Claims (3)

  1.  電極積層体を封止したラミネート材の容器の膨張を検知する検知部と、
     前記検知部による前記容器の膨張の検知に応じて報知信号を出力する報知部と
    を有し、
     前記検知部は、
     前記容器を拘束する拘束部材に、当該拘束部材の変位量を測定する変位センサを備え、前記変位センサで得た変位量に基づき、前記容器の膨張を検知することを特徴とする蓄電池。
    A detection unit for detecting expansion of a container of a laminate material in which the electrode laminate is sealed;
    A notification unit that outputs a notification signal in response to detection of expansion of the container by the detection unit;
    The detector is
    A storage battery comprising: a restraining member that restrains the container; a displacement sensor that measures a displacement amount of the restraining member; and detecting expansion of the container based on the displacement amount obtained by the displacement sensor.
  2.  前記検知部は、
     前記容器の主面に隣接する、前記電極積層体を封止する封止面の膨張を前記容器の膨張として検知することを特徴とする請求項1に記載の蓄電池。
    The detector is
    The storage battery according to claim 1, wherein expansion of a sealing surface that seals the electrode stack adjacent to the main surface of the container is detected as expansion of the container.
  3.  電極積層体を封止したラミネート材の容器を拘束する拘束部材に、当該拘束部材の変位量を測定し、
     測定した変位量に基づき、前記容器の膨張を検知し、
     前記容器の膨張の検知に応じて報知信号を出力する
     処理を実行することを特徴とする蓄電池の膨張報知方法。
    Measure the amount of displacement of the restraining member to the restraining member that restrains the container of the laminate material sealing the electrode laminate,
    Based on the measured displacement, the expansion of the container is detected,
    A method for reporting expansion of a storage battery, comprising: performing a process of outputting a notification signal in response to detection of expansion of the container.
PCT/JP2014/079251 2013-11-07 2014-11-04 Storage cell and method for notification of swelling in storage cell WO2015068696A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-231534 2013-11-07
JP2013231534 2013-11-07

Publications (1)

Publication Number Publication Date
WO2015068696A1 true WO2015068696A1 (en) 2015-05-14

Family

ID=53041473

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079251 WO2015068696A1 (en) 2013-11-07 2014-11-04 Storage cell and method for notification of swelling in storage cell

Country Status (1)

Country Link
WO (1) WO2015068696A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230261273A1 (en) * 2014-06-30 2023-08-17 Black & Decker Inc. Battery pack for a cordless power tool

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529209A (en) * 2005-11-30 2009-08-13 エルジー・ケム・リミテッド Safety device for secondary battery and battery pack using safety device
JP2011142003A (en) * 2010-01-07 2011-07-21 Nec Corp Portable electronic equipment
JP2012015021A (en) * 2010-07-02 2012-01-19 Fdk Corp Power storage cell with explosion-proof function and power storage module with explosion-proof function
JP2012110168A (en) * 2010-11-19 2012-06-07 Konica Minolta Medical & Graphic Inc Charging system and electronic apparatus
JP2012114078A (en) * 2010-11-19 2012-06-14 General Electric Co <Ge> Device and method of determining safety in battery pack
JP2014192104A (en) * 2013-03-28 2014-10-06 Mitsubishi Electric Corp Battery

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009529209A (en) * 2005-11-30 2009-08-13 エルジー・ケム・リミテッド Safety device for secondary battery and battery pack using safety device
JP2011142003A (en) * 2010-01-07 2011-07-21 Nec Corp Portable electronic equipment
JP2012015021A (en) * 2010-07-02 2012-01-19 Fdk Corp Power storage cell with explosion-proof function and power storage module with explosion-proof function
JP2012110168A (en) * 2010-11-19 2012-06-07 Konica Minolta Medical & Graphic Inc Charging system and electronic apparatus
JP2012114078A (en) * 2010-11-19 2012-06-14 General Electric Co <Ge> Device and method of determining safety in battery pack
JP2014192104A (en) * 2013-03-28 2014-10-06 Mitsubishi Electric Corp Battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20230261273A1 (en) * 2014-06-30 2023-08-17 Black & Decker Inc. Battery pack for a cordless power tool

Similar Documents

Publication Publication Date Title
JP6049867B2 (en) Cover film for galvanic element, electrochemical power storage device, electrochemical power storage system, flexible film for galvanic element cover, and method for calculating state parameters of electrochemical power storage device
CN108886179B (en) Battery cell capable of measuring internal temperature of battery cell
JP5533317B2 (en) Laminate battery pressurizer
JP5499928B2 (en) Laminate battery pressurizer
US20170062841A1 (en) Battery including an on-cell indicator
JP2012243556A (en) Laminated battery, method of detecting expansion of the same, and battery module
JP2006269345A (en) Overvoltage detecting method, device, and battery pack
CN104733796A (en) Touch Sensor Element For Detecting Critical Situations In Battery Cell
JPWO2015022811A1 (en) Film exterior battery insertion guide device
JP5217214B2 (en) Power supply device and method for detecting expansion of electrochemical element
US20160260552A1 (en) Electric storage cell, covering film and electric storage module
JP2008192432A (en) Secondary battery and secondary battery device
JP2014192104A (en) Battery
WO2015068696A1 (en) Storage cell and method for notification of swelling in storage cell
JP5765062B2 (en) Battery, power supply device, battery driving system, and method for detecting expansion of battery
JP5561697B2 (en) Storage cell with explosion-proof function, storage module with explosion-proof function
TWM456590U (en) Lithium ion battery temperature sensor
JP2012156404A (en) Electricity storage device with explosion-proof function
KR100516774B1 (en) Pouch type Lithium secondary battery
JP5114018B2 (en) Film-clad electrical device and manufacturing method thereof
JP5786808B2 (en) Power storage device provided with current interrupt device and power storage device module provided with a plurality thereof
JP2015090970A (en) Expansion detection mechanism
WO2011132723A1 (en) Electrical storage device and electrical storage module having internal pressure releasing mechanism
JP7437609B2 (en) Laminated power storage device and its short circuit inspection method
JP5348685B2 (en) Lithium ion battery pack

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860230

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14860230

Country of ref document: EP

Kind code of ref document: A1