WO2015068652A1 - Laminated article and method for manufacturing light-emitting device using same - Google Patents

Laminated article and method for manufacturing light-emitting device using same Download PDF

Info

Publication number
WO2015068652A1
WO2015068652A1 PCT/JP2014/079062 JP2014079062W WO2015068652A1 WO 2015068652 A1 WO2015068652 A1 WO 2015068652A1 JP 2014079062 W JP2014079062 W JP 2014079062W WO 2015068652 A1 WO2015068652 A1 WO 2015068652A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor sheet
led chip
phosphor
light emitting
emitting device
Prior art date
Application number
PCT/JP2014/079062
Other languages
French (fr)
Japanese (ja)
Inventor
川本一成
山本哲也
大関岳成
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2014558341A priority Critical patent/JP6497072B2/en
Priority to CN201480056890.6A priority patent/CN105637660B/en
Publication of WO2015068652A1 publication Critical patent/WO2015068652A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/40Layered products comprising a layer of synthetic resin comprising polyurethanes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2307/00Properties of the layers or laminate
    • B32B2307/50Properties of the layers or laminate having particular mechanical properties
    • B32B2307/54Yield strength; Tensile strength
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2457/00Electrical equipment
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices with at least one potential-jump barrier or surface barrier specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/0004Devices characterised by their operation
    • H01L33/0041Devices characterised by their operation characterised by field-effect operation

Definitions

  • the present invention relates to a laminate including a phosphor and a phosphor sheet containing a resin. More specifically, the present invention relates to a laminate including a phosphor sheet for converting the emission wavelength from the upper surface and side surfaces of an LED chip.
  • LEDs Light-emitting diodes
  • LCDs liquid crystal displays
  • car headlights etc.
  • the market is rapidly expanding not only in the automotive field but also for general lighting.
  • LEDs are classified into a lateral type, a vertical type, and a flip chip type depending on the mounting type, but the flip chip type LED is attracting attention because of its high luminance and excellent heat dissipation.
  • flip-chip type LED sealing it is impossible to equalize the thickness of the phosphor layer between the top surface and the side surface of the chip, resulting in the problem of uneven azimuth of the emitted color. It was.
  • Patent Document 1 is a method in which a phosphor sheet is attached to the side surface of an LED chip using a pressure member in which a recess that is slightly larger than the LED chip is formed.
  • Patent Document 2 carries out a first-stage pasting process in which a laminated body including a supporting base material and a phosphor sheet is placed on an LED chip, and this is pressurized with a diaphragm film in a vacuum state, and thereafter the supporting base material is removed.
  • the phosphor sheet is attached to the side surface of the LED chip through a second-stage attaching step by non-contact pressure.
  • Patent Document 1 is not economical because it is necessary to remake a mold as a pressure member every time the type of LED changes.
  • the pressure member is brought into contact with the phosphor sheet and pressed, there is a problem that the sheet is damaged or the pressure member is contaminated, resulting in poor productivity.
  • Patent Document 2 since the phosphor sheet cannot follow the chip side surface due to insufficient flexibility of the support base material only in the first stage diaphragm pressurization process, the method of Patent Document 2 is once after returning to atmospheric pressure and removing the support base material. The non-contact pressurizing process in the second stage is performed, and there is a problem in terms of productivity.
  • An object of the present invention is to provide a laminate in which a phosphor sheet is formed with a uniform film thickness with good followability on the upper and side surfaces of an LED chip. Moreover, the manufacturing method of the light-emitting device which coat
  • the present invention is as follows.
  • a laminate including a supporting substrate and a phosphor sheet containing a phosphor and a resin, and the elongation at break at 23 ° C. of the supporting substrate determined by a tensile test is 200% or more, and The laminated body whose Young's modulus in 23 degreeC of the said support base material is 600 Mpa or less.
  • [4] The laminate according to any one of [1] to [3], wherein the support base material is polyvinyl chloride or polyurethane.
  • a method for manufacturing a light-emitting device including a step (covering step) of covering the light-emitting surface of an LED chip bonded on a substrate with the phosphor sheet of the laminate according to any one of [1] to [4].
  • a method for manufacturing a light-emitting device including a step (covering step) of covering the upper surface and side surfaces of an LED chip bonded on a substrate with the phosphor sheet of the laminate according to any one of [1] to [4].
  • [7] A method for manufacturing a light emitting device according to [5] or [6], The distance a [ ⁇ m] from the upper surface of the LED chip to the outer surface of the phosphor sheet at the portion where the LED chip and the phosphor sheet are in contact with each other on the upper surface of the LED chip, and the LED chip and the phosphor sheet on the side surface of the LED chip.
  • the distance b [ ⁇ m] from the side surface of the LED chip to the outer surface of the phosphor sheet in the contacting portion is 1.00 ⁇ a / b ⁇ 1.20
  • a method for manufacturing a light-emitting device that satisfies the above relationship.
  • [8] A method for manufacturing a light-emitting device according to [5] or [6], wherein the laminate is coated with the phosphor sheet according to any one of [1] to [4] (the coating step).
  • the distance a [ ⁇ m] from the upper surface of the LED chip to the outer surface of the phosphor sheet at the portion where the LED chip and the phosphor sheet are in contact with each other on the upper surface of the LED chip, and the LED chip and the phosphor sheet are
  • the distance b [ ⁇ m] from the LED chip side surface to the outer surface of the phosphor sheet in the portion in contact with the side surface is 1.00 ⁇ a / b ⁇ 1.20
  • the phosphor sheet can be attached to the LED chip upper light emitting surface and the side light emitting surface with good followability. This also provides a light-emitting device that is free from uneven azimuth of emitted color.
  • Schematic diagram of the laminate of the present invention Schematic diagram of a laminate having a pressure-sensitive adhesive according to the present invention
  • An example of a method for manufacturing a light emitting device using the laminate of the present invention Schematic cross section and top view of light emitting device covered with phosphor sheet
  • FIG. 1 shows the laminate of the present invention.
  • the laminate 1 of the present invention includes a support substrate 2 and a phosphor sheet 3 containing a phosphor and a resin, and at 23 ° C., the elongation at break in the tensile test of the support substrate is 200% or more, And Young's modulus is 600 Mpa or less.
  • the laminate of the present invention is a laminate comprising a support substrate and a phosphor sheet containing a phosphor and a resin, and the elongation at break at 23 ° C. of the support substrate determined by a tensile test is as follows.
  • the laminate is 200% or more and has a Young's modulus at 23 ° C. of 600 MPa or less.
  • phosphor sheet mainly contains a resin and a phosphor
  • various sheets can be used without any particular limitation. Other components may be included as necessary.
  • the phosphor sheet preferably has high elasticity around room temperature from the viewpoint of storage, transportability and processability. On the other hand, from the viewpoint of deforming and adhering so as to follow the LED chip, it is preferable that the elasticity becomes low under certain conditions and the flexibility and adhesiveness (adhesiveness) are expressed. From these viewpoints, it is preferable that the phosphor sheet is softened by heating at 60 ° C. or higher and exhibits adhesiveness.
  • the storage elastic modulus of such a phosphor sheet is preferably 0.1 MPa or more at 25 ° C., less than 0.1 MPa at 100 ° C., 0.5 MPa or more at 25 ° C., and less than 0.05 MPa at 100 ° C. It is more preferable.
  • the storage elastic modulus mentioned here is a storage elastic modulus when dynamic viscoelasticity measurement is performed.
  • Dynamic viscoelasticity is the shear stress that appears when a steady state is reached when shear strain is applied to a material at a sinusoidal frequency.
  • G ′ what is obtained by dividing the stress component whose phase matches the shear strain by the shear strain is the storage elastic modulus G ′, which represents the deformation and tracking of the material against the dynamic strain at each temperature. It is closely related to processability and adhesion.
  • the sheet has a storage elastic modulus of 0.1 MPa or more at 25 ° C., so that the sheet can be surrounded by high shear stress such as cutting with a blade at room temperature (25 ° C.). Since it is cut without deformation, workability with high dimensional accuracy can be obtained.
  • the upper limit of the storage elastic modulus at room temperature is not particularly limited for the purpose of the present invention, but is preferably 1 GPa or less in view of the necessity of reducing the stress strain after being bonded to the LED element.
  • the storage elastic modulus at 100 ° C. is less than 0.1 MPa, when heat pasting at 60 ° C. to 150 ° C.
  • the phosphor sheet is capable of obtaining a storage modulus of less than 0.1 MPa at 100 ° C., the storage modulus decreases as the temperature is increased from room temperature. However, in order to obtain practical adhesiveness, 60 ° C. or higher is preferable.
  • the storage elastic modulus when such a phosphor sheet is heated at a temperature exceeding 100 ° C., the storage elastic modulus further decreases and the sticking property is improved.
  • the resin is not sufficiently relaxed. Curing of the resin proceeds rapidly, and cracks and peeling easily occur. Therefore, a suitable heat bonding temperature is 60 ° C.
  • the lower limit of the storage elastic modulus at 100 ° C. is not particularly limited for the purpose of the present invention, but if the fluidity is too high at the time of heating and pasting on the LED element, the shape processed by cutting or punching before pasting Therefore, it is desirable that the pressure be 0.001 MPa or more.
  • the resin contained therein may be in an uncured or semi-cured state. Then, it is preferable that resin contained is a thing after hardening. If the resin is in an uncured or semi-cured state, the curing reaction proceeds at room temperature during storage of the phosphor sheet, and the storage elastic modulus may be out of the proper range. In order to prevent this, it is desirable that the resin is completely cured, or has been cured to such an extent that the storage elastic modulus does not change for a long period of about one month when stored at room temperature.
  • the resin contained in the phosphor sheet of the present invention can be any resin as long as the phosphor can be uniformly dispersed therein and can form a sheet.
  • silicone resin examples include copolymer resins.
  • PET is polyethylene terephthalate.
  • a silicone resin or an epoxy resin is preferably used from the viewpoint of transparency.
  • a silicone resin is particularly preferably used from the viewpoint of heat resistance.
  • curable silicone rubber is preferable. Either one liquid type or two liquid type (three liquid type) liquid structure may be used.
  • the curable silicone rubber include a dealcohol-free type, a deoxime type, a deacetic acid type, and a dehydroxylamine type that cause a condensation reaction with moisture in the air or a catalyst.
  • the addition reaction type silicone rubber is more preferable in that it has no by-product accompanying the curing reaction, has a small curing shrinkage, and can easily be cured by heating.
  • the addition reaction type silicone rubber is formed by a hydrosilylation reaction between a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom.
  • Such materials contain alkenyl groups bonded to silicon atoms such as vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, octenyltrimethoxysilane, etc.
  • methylhydrogenpolysiloxane dimethylpolysiloxane-CO-methylhydrogenpolysiloxane, ethylhydrogenpolysiloxane, methylhydrogenpolysiloxane-CO-methylphenylpolysiloxane, etc.
  • examples thereof include those formed by hydrosilylation reaction of the compounds having them.
  • other publicly known ones such as those described in JP 2010-159411 A can be used.
  • the storage elastic modulus at room temperature (25 ° C.) and the storage elastic modulus at high temperature (100 ° C.) can be controlled, and a resin useful in the practice of the present invention can be obtained.
  • silicone sealing material having an appropriate storage modulus from a general silicone sealing material.
  • Specific examples include OE-6630A / B and OE-6520A / B manufactured by Toray Dow Corning.
  • the phosphor absorbs blue light, violet light, and ultraviolet light emitted from the LED chip, converts the wavelength, and emits red, orange, yellow, green, and blue light with wavelengths different from those of the LED chip. To be released. Thereby, a part of the light emitted from the LED chip and a part of the light emitted from the phosphor are mixed to obtain a multicolor LED including white. Specifically, a white LED can be emitted using a single LED chip by optically combining a blue LED with a phosphor that emits a yellow emission color by light from the LED.
  • the phosphors as described above include various phosphors such as a phosphor emitting green, a phosphor emitting blue, a phosphor emitting yellow, and a phosphor emitting red.
  • Specific phosphors used in the present invention include known phosphors such as organic phosphors, inorganic phosphors, fluorescent pigments, and fluorescent dyes.
  • organic phosphors include allylsulfoamide / melamine formaldehyde co-condensed dyes and perylene phosphors.
  • Perylene phosphors are preferably used because they can be used for a long period of time.
  • Examples of the fluorescent material that is particularly preferably used in the present invention include inorganic phosphors. The inorganic phosphor used in the present invention is described below.
  • Examples of phosphors that emit green light include SrAl 2 O 4 : Eu, Y 2 SiO 5 : Ce, Tb, MgAl 11 O 19 : Ce, Tb, Sr 7 Al 12 O 25 : Eu, (Mg, Ca, Sr , At least one of Ba) and Ga 2 S 4 : Eu.
  • Examples of phosphors that emit blue light include Sr 5 (PO 4 ) 3 Cl: Eu, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, (BaCa) 5 (PO 4 ) 3 Cl: Eu, (Mg, 2 B 5 O 9 Cl: Eu, Mn, (Mg, Ca, Sr, Ba, at least one) (PO 4 ) 6 Cl 2 : Eu, Mn, etc. .
  • yttrium / aluminum oxide phosphors As phosphors emitting green to yellow, at least cerium-activated yttrium / aluminum oxide phosphors, at least cerium-enriched yttrium / gadolinium / aluminum oxide phosphors, at least cerium-activated yttrium / aluminum There are garnet oxide phosphors and at least cerium activated yttrium gallium aluminum oxide phosphors (so-called YAG phosphors). Specifically, Ln 3 M 5 O 12 : R (Ln is at least one selected from Y, Gd, and La. M includes at least one of Al and Ca. R is a lanthanoid series.
  • R is at least one selected from Ce, Tb, Pr, Sm, Eu, Dy, Ho
  • Ce, Tb, Pr, Sm, Eu, Dy, Ho 0 ⁇ Rx ⁇ 0.5, 0 ⁇ y ⁇ 0.5
  • Examples of phosphors that emit red light include Y 2 O 2 S: Eu, La 2 O 2 S: Eu, Y 2 O 3 : Eu, and Gd 2 O 2 S: Eu.
  • YAG-based phosphors YAG-based phosphors, TAG-based phosphors, and silicate-based phosphors are preferably used in terms of luminous efficiency and luminance.
  • known phosphors can be used according to the intended use and the intended emission color.
  • the particle size of the phosphor is not particularly limited, but preferably has a D50 of 0.05 ⁇ m or more, more preferably 3 ⁇ m or more. Moreover, it is preferable that D50 is 30 ⁇ m or less.
  • D50 refers to the particle size when the accumulated amount from the small particle size side is 50% in the volume-based particle size distribution obtained by measurement by the laser diffraction / scattering particle size distribution measurement method. When D50 is in the above range, the dispersibility of the phosphor in the phosphor sheet is good, and stable light emission is obtained.
  • the phosphor content is not particularly limited, but from the viewpoint of increasing the wavelength conversion efficiency of light emission from the LED chip, it is preferably 30% by weight or more of the entire phosphor sheet, and 40% by weight or more. More preferably.
  • the upper limit of the phosphor content is not particularly defined, it is preferably 95% by weight or less of the entire phosphor sheet and 90% by weight or less from the viewpoint that a phosphor sheet excellent in workability can be easily produced. Is more preferably 85% by weight or less, and particularly preferably 80% by weight or less.
  • the phosphor sheet of the present invention is particularly preferably used for surface coating of LED chips.
  • the LED light-emitting device which shows the outstanding performance can be obtained because content of the fluorescent substance in a fluorescent substance sheet is the said range.
  • the phosphor sheet in the present invention may contain silicone fine particles in order to improve the fluidity of the resin composition for producing a phosphor sheet and improve the coating property.
  • the silicone fine particles contained are preferably fine particles comprising a silicone resin and / or silicone rubber.
  • silicone fine particles obtained by a method in which organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, and organodioxime silane are hydrolyzed and then condensed are obtained. preferable.
  • organotrialkoxysilane examples include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-proxysilane, methyltri-i-proxysilane, methyltri-n-butoxysilane, methyltri-i-butoxysilane, methyltri-s-butoxy Silane, methyltri-t-butoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, i-propyltrimethoxysilane, n-butyltributoxysilane, i-butyltributoxysilane, s-butyltrimethoxysilane, t -Butyltributoxysilane, N- ⁇ (aminoethyl) ⁇ -aminopropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane,
  • Organodialkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminoisobutylmethyldimethoxysilane, N-ethylaminoisobutylmethyldiethoxysilane, (phenylaminomethyl) methyldimethoxysilane, vinylmethyl Examples include diethoxysilane.
  • organotriacetoxysilane examples include methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, and the like.
  • organodiacetoxysilane examples include dimethyldiacetoxysilane, methylethyldiacetoxysilane, vinylmethyldiacetoxysilane, and vinylethyldiacetoxysilane.
  • organotrioxime silane examples include methyl trismethyl ethyl ketoxime silane, vinyl trismethyl ethyl ketoxime silane, and examples of the organodioxime silane include methyl ethyl bismethyl ethyl ketoxime silane.
  • organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane and / or a partial hydrolyzate thereof are added to an alkaline aqueous solution, Hydrolysis / condensation to obtain particles, or addition of organosilane and / or partial hydrolyzate thereof to water or acidic solution to obtain hydrolyzed partial condensate of organosilane and / or partial hydrolyzate thereof Thereafter, a method in which an alkali is added to proceed with a condensation reaction to obtain particles, an organosilane and / or a hydrolyzate thereof is used as an upper layer, an alkali or a mixed solution of an alkali and an organic solvent is used as a lower layer, and the organosilane at these interfaces. And / or hydrolyzate thereof ⁇ Polycondensation engaged with is also
  • polymer dispersants such as water-soluble polymers and surfactants are added to the reaction solution. It is preferable to obtain the silicone fine particles by the method.
  • the water-soluble polymer can be either a synthetic polymer or a natural polymer as long as it acts as a protective colloid in a solvent. Specific examples include water-soluble polymers such as polyvinyl alcohol and polyvinyl pyrrolidone. Any surfactant may be used as long as it has a hydrophilic site and a hydrophobic site in the molecule, thereby acting as a protective colloid.
  • anionic surfactants such as sodium dodecylbenzenesulfonate, ammonium dodecylbenzenesulfonate, sodium lauryl sulfate, ammonium lauryl sulfate, sodium polyoxyethylene alkyl ether sulfate, lauryl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, etc.
  • Cationic surfactants polyoxyethylene alkyl ethers, polyoxyethylene distyrenated phenyl ethers, polyoxyalkylene alkenyl ethers, ether-based or ester-based nonionic surfactants such as sorbitan monoalkylates, polyether-modified poly Silicone surface activity such as dimethylsiloxane, polyester-modified polydimethylsiloxane, aralkyl-modified polyalkylsiloxane , And fluorine-based surfactants such as perfluoroalkyl group-containing oligomers, and acrylic surfactants.
  • the dispersant may be added in advance to the reaction initial solution, in addition to the organotrialkoxysilane and / or its partial hydrolysate, or in the organotrialkoxysilane and / or its partial hydrolyzate.
  • a method of adding after partial condensation can be exemplified, and any of these methods can be selected.
  • the addition amount of the dispersant is preferably in the range of 5 ⁇ 10 ⁇ 7 to 0.1 part by weight with respect to 1 part by weight of the reaction solution. When the lower limit is exceeded, the particles tend to aggregate and form a lump. On the other hand, if the upper limit is exceeded, the amount of dispersant residue in the particles increases, causing coloring.
  • These silicone particles may be modified on the particle surface with a surface modifier for the purpose of controlling the dispersibility in the matrix components and the wettability.
  • the surface modifier may be modified by physical adsorption or may be modified by a chemical reaction.
  • a fluorine-type coating agent etc. are mentioned, since it is strong in heat resistance and there is no hardening inhibition, the modification by a silane coupling agent is especially preferable.
  • the organic substituent contained in the silicone fine particles is preferably a methyl group or a phenyl group, and the refractive index of the silicone fine particles can be adjusted by the content of these substituents.
  • the refractive index d1 of the silicone fine particles and the refractive index due to components other than the silicone fine particles and the phosphor A smaller refractive index difference of d2 is preferable.
  • the difference in refractive index between the refractive index d1 of the silicone fine particles and the refractive index d2 due to components other than the silicone fine particles and the phosphor is preferably less than 0.10, and more preferably 0.03 or less.
  • Abbe refractometer For the measurement of the refractive index, Abbe refractometer, Pulfrich refractometer, immersion type refractometer, immersion method, minimum declination method, etc. are used as the total reflection method, but for the refractive index measurement of the silicone composition,
  • the immersion method is useful for measuring the refractive index of Abbe refractometer and silicone fine particles.
  • the refractive index difference can be adjusted by changing the amount ratio of the raw materials constituting the silicone fine particles. That is, for example, by adjusting the mixing ratio of methyltrialkoxysilane and phenyltrialkoxysilane, which are raw materials, and increasing the composition ratio of methyl groups, it is possible to achieve a refractive index close to 1.4. On the contrary, a relatively high refractive index can be achieved by increasing the constituent ratio of the phenyl group.
  • the average particle diameter of the silicone fine particles is represented by a median diameter (D50), and the average particle diameter is preferably 0.01 ⁇ m or more and more preferably 0.05 ⁇ m or more as a lower limit.
  • the upper limit is preferably 2.0 ⁇ m or less, and more preferably 1.0 ⁇ m or less.
  • the average particle diameter, that is, the median diameter (D50) and the particle size distribution of the silicone fine particles contained in the phosphor sheet can be measured by SEM (scanning electron microscope) observation of the sheet cross section.
  • a particle size distribution is obtained by performing image processing on a measurement image obtained by SEM, and in the particle size distribution obtained therefrom, the particle diameter of 50% of the accumulated portion from the small particle diameter side is obtained as the median diameter D50.
  • the average particle size of the silicone fine particles obtained from the cross-sectional SEM image of the phosphor sheet is theoretically 78.5% compared to the true average particle size, and is actually approximately Although the value is 70% to 85%, the average particle size of the silicone fine particles in the present invention is defined as a value obtained by the above-described measuring method.
  • the content of the silicone fine particles is preferably 1 part by weight or more, more preferably 2 parts by weight or more as a lower limit with respect to 100 parts by weight of the silicone resin. Further, the upper limit is preferably 20 parts by weight or less, and more preferably 10 parts by weight or less. By containing 1 part by weight or more of silicone fine particles, a particularly good phosphor dispersion stabilizing effect can be obtained. On the other hand, the content of 20 parts by weight or less does not excessively increase the viscosity of the silicone composition.
  • the phosphor sheet of the present invention may further contain an inorganic fine particle filler in order to impart effects such as viscosity adjustment, light diffusion, and coating property improvement.
  • orientation fillers include silica, alumina, titania, zirconia, barium titanate, and zinc oxide.
  • the silicone resin composition used in the preparation of the phosphor sheet has, as other components, a hydrosilylation reaction retarder such as acetylene alcohol in order to suppress curing at room temperature and lengthen the pot life. It is preferable to mix.
  • a leveling agent for stabilizing the coating film may be added as another additive, and an adhesion aid such as a silane coupling agent may be added as a sheet surface modifier.
  • the film thickness of the phosphor sheet of the present invention is determined from the phosphor content and desired optical properties. Since the phosphor content is limited from the viewpoint of workability as described above, the film thickness is preferably 10 ⁇ m or more. On the other hand, from the viewpoint of improving the optical properties and heat dissipation of the phosphor sheet, the thickness of the phosphor sheet is preferably 1000 ⁇ m or less, more preferably 200 ⁇ m or less, and even more preferably 100 ⁇ m or less. By setting the phosphor sheet to a film thickness of 1000 ⁇ m or less, light absorption and light scattering by the binder resin and the phosphor can be reduced, so that the phosphor sheet is optically excellent.
  • the variation in sheet thickness is preferably within ⁇ 5%, more preferably within ⁇ 3%.
  • the film thickness of the phosphor sheet in the present invention is a film thickness (average film thickness) measured based on the method A of measuring thickness by mechanical scanning in JIS K7130 (1999) plastic-film and sheet-thickness measurement method. ).
  • the film thickness variation of a fluorescent substance sheet is computed based on the following numerical formula using the said average film thickness. More specifically, it is obtained by measuring the film thickness using a micrometer such as a commercially available contact-type thickness meter using the measurement conditions of the method A of measuring the thickness by mechanical scanning. The difference between the maximum value or the minimum value of the film thickness and the average film thickness is calculated, and this value is divided by the average film thickness, and the value expressed in 100 minutes is the film thickness variation B (%).
  • Film thickness variation B (%) ⁇ (maximum film thickness deviation value ⁇ average film thickness) / average film thickness ⁇ ⁇ 100
  • the maximum film thickness deviation value the one having the larger difference from the average film thickness among the maximum value or the minimum value of the film thickness is selected.
  • the support substrate protects the phosphor sheet whose shape is easily deformed, facilitates storage, transportation and processing, and facilitates the operation in the process of attaching to the LED chip, and prevents adhesion and contamination to the pressure substrate. To prevent.
  • the supporting substrate has a breaking elongation of 200% or more and a Young's modulus of 600 MPa or less at 23 ° C.
  • a breaking elongation of 200% or more When the elongation at break of the supporting substrate is less than 200% or the Young's modulus is greater than 600 MPa, a gap is generated between the side surface and the phosphor sheet in the LED attaching step, and the followability is deteriorated.
  • the elongation at break is desirably 300% or more, and more desirably 500% or more.
  • the Young's modulus is desirably 400 MPa or less, more desirably 100 MPa or less, and further desirably 10 MPa or less.
  • the lower limit of Young's modulus is not particularly limited, but is preferably 0.1 MPa or more, more preferably 1 MPa or more, and still more preferably from the viewpoint of protecting the phosphor sheet without deformation of the support base material. Is 1.6 MPa or more.
  • the Young's modulus can be obtained from the maximum elasticity immediately before the specimen is deformed, that is, the maximum slope of the SS curve in which the elongation of the specimen and the load applied thereto are plotted.
  • the number of measurements of the elongation at break and Young's modulus is 3 times to increase the accuracy, and the average value is obtained.
  • the attaching temperature of the phosphor sheet is preferably 60 ° C. to 150 ° C., more preferably 60 ° C. to 120 ° C. Therefore, it is preferable that the thermal characteristics of the supporting substrate do not melt in this temperature range. From this viewpoint, the melting point of the supporting substrate is preferably 120 ° C. or higher, and more preferably 150 ° C. or higher.
  • the supporting substrate has a peeling force of 0.5. It is preferably in the range of ⁇ 2.5N / 20mm.
  • the peeling force referred to here is a value obtained by an adhesive test method by peeling 90 degrees in the adhesive tape / adhesive sheet method defined in JIS Z 0237 (2009).
  • the support substrate preferably has a surface average roughness Ra of 1 ⁇ m or less from the viewpoint of the uniformity of light emission, but may be subjected to surface processing such as embossing to improve light extraction. .
  • the material for the supporting substrate include polyvinyl chloride, polyurethane, silicone, low density polyethylene (LDPE), and polyvinyl acetal.
  • Polyvinyl chloride is hard and soft depending on the amount of plasticizer added, but is preferably soft. Silicone includes resin and rubber, and silicone rubber having excellent stretchability is preferable. Of these, polyvinyl chloride, polyurethane or silicone is preferred from the viewpoints of high elongation, low Young's modulus, thermal properties, adhesion and peelability. More preferred is polyvinyl chloride or polyurethane, particularly preferred is soft polyvinyl chloride or polyurethane, and most preferred is polyurethane (polyurethane film).
  • the elongation at break and Young's modulus can be controlled within the above preferred ranges by, for example, reducing the density, making no stretching, increasing the amount of monomer of the soft component, and increasing the amount of plasticizer.
  • the film thickness of the supporting substrate is preferably 5 ⁇ m to 500 ⁇ m, more preferably 20 ⁇ m to 200 ⁇ m, and more preferably 40 ⁇ m to 100 ⁇ m. Moreover, it is preferable that the film thickness of a support base material satisfy
  • the supporting substrate can obtain sufficient mechanical strength for protecting the phosphor sheet.
  • the lower limit of (the thickness of the supporting substrate / the thickness of the phosphor sheet) is more preferably 1 ⁇ 2 or more.
  • the upper limit is more preferably 2 or less, and still more preferably 1 or less.
  • the laminate of the present invention may have an adhesive on the support substrate.
  • FIG. 2 is an example of a laminate having an adhesive.
  • the laminate 1 is formed so that the surface to which the adhesive 4 is applied is in contact with the phosphor sheet 3, and the phosphor sheet 3 is fixed on the support base 2 by the adhesive 4.
  • the adhesive strength of the adhesive is preferably 0.1 N / 20 mm or more from the viewpoint of holding the phosphor sheet on the support substrate.
  • 1.0 N / 20mm or less is preferable from a viewpoint which peels a support base material after coat
  • the laminate of the present invention may be provided with a protective substrate on the phosphor sheet for the purpose of protecting the surface of the phosphor sheet.
  • a protective substrate a known metal, film, glass, ceramic, paper or the like can be used.
  • aluminum metal plates and foils including aluminum alloys, cellulose acetate, polyethylene terephthalate (PET), polyethylene, polyester, polyamide, polyimide, polyphenylene sulfide, polystyrene, polypropylene, polycarbonate, aramid, fluorine resin, etc.
  • Examples thereof include processed paper such as film, resin-laminated paper, resin-coated paper, etc.
  • these protective substrates is previously peeled off so that the phosphor sheet does not adhere during storage.
  • a substrate having a high strength is preferable so that the phosphor sheet does not bend during storage or transportation, or the surface is not damaged.
  • handling Release-treated PET film or release paper from the surface is more preferable.
  • the manufacturing method of the laminated body of this invention may be any method which can form this, the direct coating method, the transfer method by an adhesive, and the thermal transfer method are illustrated.
  • the direct coating method is a method in which the composition for preparing a phosphor sheet is coated on a supporting substrate and then heat-cured.
  • the details of the “phosphor sheet preparation composition” will be described later.
  • the “phosphor sheet preparation composition” is used as a coating liquid for forming a phosphor sheet, and the phosphor is dispersed in a resin. Composition.
  • the adhesive surface of the supporting substrate having the adhesive is bonded to the phosphor sheet produced on the second substrate, and the phosphor sheet is formed on the supporting substrate from the second substrate. This is a method of transferring.
  • the thermal transfer method is a method in which a phosphor sheet produced on a second substrate is heat-pressed with a support substrate and transferred from the second substrate onto the support substrate.
  • a transfer method using an adhesive and a thermal transfer method are preferable from the viewpoint of producing a phosphor sheet with high film thickness accuracy, and a thermal transfer method from the viewpoint of peelability of the support substrate after the LED chip is attached. Is preferred.
  • a composition in which a phosphor is dispersed in a resin (hereinafter referred to as “phosphor sheet preparation composition”) is prepared as a coating solution for forming a phosphor sheet.
  • Silicone fine particles may be added for the purpose of suppressing sedimentation of the phosphor, and other additives such as inorganic fine particles, leveling agents and adhesion aids may be added.
  • a pot life can be extended by adding a hydrosilylation reaction retarder. If necessary to make fluidity appropriate, a solvent can be added to form a solution.
  • a solvent will not be specifically limited if the viscosity of resin of a fluid state can be adjusted.
  • toluene, methyl ethyl ketone, methyl isobutyl ketone, hexane, acetone, terpineol and the like can be mentioned.
  • a phosphor sheet is obtained by uniformly mixing and dispersing with a homogenizer, a revolving stirrer, a three-roller, a ball mill, a planetary ball mill, a bead mill or the like.
  • a composition for preparation is obtained. Defoaming is preferably carried out under vacuum or reduced pressure conditions after mixing or dispersing.
  • the phosphor sheet preparation composition is applied onto a substrate and dried.
  • Application is reverse roll coater, blade coater, slit die coater, direct gravure coater, offset gravure coater, reverse roll coater, blade coater, kiss coater, natural roll coater, air knife coater, roll blade coater, varibar roll blade coater, toe.
  • a stream coater, rod coater, wire bar coater, applicator, dip coater, curtain coater, spin coater, knife coater or the like can be used.
  • a slit die coater In order to obtain the uniformity of the phosphor sheet thickness, it is preferable to apply with a slit die coater.
  • the phosphor sheet of the present invention can also be produced by using a printing method such as screen printing, gravure printing, or lithographic printing. When using a printing method, screen printing is particularly preferably used.
  • a general heating device such as a hot air dryer or an infrared dryer is used for drying and curing the phosphor sheet.
  • the heat-curing conditions are usually 80 ° C. to 200 ° C. for 2 minutes to 3 hours, but in order to obtain a so-called B-stage state that can be softened by heating and exhibit adhesiveness, it is 30 minutes to 2 ° C. Heating for hours is preferred.
  • the elongation at break of the second base material is preferably less than 200% or Young's modulus is greater than 600 MPa at 23 ° C., and Young's modulus is particularly 4000 MPa or more. It is more preferable.
  • a resin that is less deformed at a temperature of 150 ° C. or higher at which the resin curing reaction proceeds rapidly is preferable.
  • metal plates and foils such as aluminum (including aluminum alloys), zinc, copper, iron, cellulose acetate, polyethylene terephthalate (PET), polyethylene, polyester, polyamide, polyimide, polyphenylene sulfide, polystyrene, polypropylene, polycarbonate
  • a film of plastic such as polyvinyl acetal or aramid, a paper laminated with the plastic, or a paper coated with the plastic, a paper laminated or vapor-deposited with the metal, or a plastic film laminated or vapor-deposited with the metal.
  • a resin film is preferable in view of the above required characteristics and economy, and a PET film or a polyphenylene sulfide film is particularly preferable.
  • a polyimide film is preferable in terms of heat resistance.
  • the surface of the second base material is previously peeled off.
  • the thickness of the second substrate is not particularly limited, but the lower limit is preferably 30 ⁇ m or more, and more preferably 50 ⁇ m or more. Moreover, as an upper limit, 5000 micrometers or less are preferable and 3000 micrometers or less are more preferable.
  • thermal transfer from the second base material to the support base material is performed by a thermal laminator having a heating mechanism and a pressure mechanism.
  • thermal transfer is preferably performed at 60 ° C. or higher from the viewpoint of softening the phosphor sheet and developing adhesiveness.
  • the pressure is preferably 0.3 MPa or less
  • the pressure time is preferably 30 seconds or less, more preferably 10 seconds or less.
  • a light emitting device is manufactured by a manufacturing method including a step (covering step) of covering a light emitting surface of an LED chip bonded (mounted) on a substrate with the phosphor sheet of the laminate of the present invention. It is preferable.
  • the step of covering the upper surface and side surface of the LED chip bonded (mounted) on the substrate with the phosphor sheet of the laminate of the present invention It is preferable that the light emitting device is manufactured by a manufacturing method having a (coating step).
  • the upper light emitting surface and the side light emitting surface of the LED chip are fluorescent using the laminate of the present invention. It is preferable to manufacture by covering with a body sheet.
  • the substrate fixes an LED chip and connects with wiring.
  • the substrate may be a base substrate or a submount substrate, for example.
  • the material of the substrate is not particularly limited, but resin such as polyphthalamide (PPA), liquid crystal polymer, silicone, ceramic such as aluminum nitride (AlN), alumina (Al 2 O 3 ), boron nitride (BN), aluminum Etc. can be exemplified.
  • a substrate on which an electrode pattern is formed for example, with silver. Further, a heat dissipation mechanism may be provided.
  • the LED chip preferably emits blue light or ultraviolet light.
  • a gallium nitride LED chip is particularly preferable.
  • the type of the LED chip may be any of a lateral type, a vertical type, and a flip chip type, but the flip chip type is particularly preferable from the viewpoint of high luminance and high heat dissipation.
  • the LED chip is bonded (mounted) on the substrate is preferably in a state where the LED chip is electrically bonded to the substrate.
  • Examples of flip chip bonding (mounting) include solder bonding, eutectic bonding, and conductive paste bonding.
  • the LED chips may be bonded (mounted) independently on the substrate, or a plurality of LED chips may be bonded (mounted).
  • Each package may be covered with a phosphor sheet, or a plurality of packages arranged together may be covered with a phosphor sheet and then separated by dicing or the like.
  • the film thickness of the LED chip is not particularly limited, but is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less from the viewpoint of reducing the pressure applied to the phosphor sheet on the upper surface and corners of the LED chip and maintaining the film thickness uniformity. More preferably, it is 200 ⁇ m or less.
  • the total film thickness of the connection portion between the LED chip and the substrate and the film thickness of the phosphor sheet satisfy the following relational expression.
  • the lower limit is preferably 2 or more.
  • the upper limit is preferably 5 or less, and more preferably 4 or less.
  • the affixing of the laminate of the present invention to the LED chip is preferably performed under heating conditions because it softens the phosphor sheet and develops adhesiveness.
  • the heating temperature is preferably 60 ° C. to 150 ° C., more preferably 60 ° C. to 120 ° C., since the phosphor sheet is sufficiently softened and rapid curing does not proceed.
  • the laminate is attached to the LED chip under a pressurized condition from the viewpoint of improving the followability to the side surface of the chip.
  • the pressure is preferably 0.1 MPa to 0.3 MPa because the phosphor sheet can be pressed against the side surface of the LED chip and the film thickness can be maintained.
  • a pressing method specifically, a method of inflating and pressing a flexible sheet, a method of injecting a gas such as air and pressing without contact, a method of pressing and pressing a mold along the shape of the LED chip, or The method of pressing with a roll is illustrated. A plurality of these methods may be combined.
  • the laminate is attached to the LED chip under a vacuum atmosphere condition in order to prevent air from being caught between the phosphor sheet and the LED chip and the substrate.
  • the apparatus for applying the laminate to the LED chip using the laminate of the present invention is not particularly limited as long as the above conditions are satisfied. However, since it is versatile and excellent in productivity, it is flexible on the platen.
  • a vacuum laminating apparatus having a vacuum chamber provided with a pressure-clamping mechanism provided with is preferable. An example of such a vacuum laminating apparatus is described in Japanese Patent No. 3660442.
  • This vacuum laminating apparatus includes an upper platen 6, a flexible sheet 8, a sealed space 9 surrounded by them, a pressing mechanism 11 having an air inlet / outlet port 10, a lower platen 7 having a heater, and another air.
  • the vacuum chamber 5 is provided with an injection / discharge port 12.
  • a substrate 13 to which an LED chip 14 is bonded (mounted) is placed, and a laminate 1 including a support base 2 and a phosphor sheet 3 is further disposed on the surface of the LED chip. They are superimposed one after another in the direction of contact (FIG. 3a).
  • air is discharged (vacuum) from the air injection / discharge port 10 and the air injection / discharge port 12 in the direction indicated by the dotted line in FIG.
  • the inside of 9 is made into a vacuum atmosphere (FIG. 3b).
  • air is injected into the sealed space 9 of the pressure-clamping mechanism 11 by injecting air from the air injection / discharge port 10 in the direction of the arrow in FIG. 3C while heating the lower platen 7 with a heater (not shown).
  • the flexible sheet 8 is expanded to attach the laminate 1 to the LED chip 14 (FIG. 3c).
  • air is injected from the air injection / discharge port 12 in the direction of the arrow in FIG. 3d, thereby injecting air into the vacuum chamber 5 and returning to normal pressure (FIG.
  • the light emitting device according to the present invention has a configuration that does not include a support base material as shown in FIG. This is because the light emitting device is often used or distributed in a configuration in which the support base material is removed from the laminate of the light emitting device.
  • the phosphor sheet can be coated on the LED chip with a single step of pressing, and a method for manufacturing a light-emitting device with high productivity can be provided.
  • the laminate of the present invention is also used. It can be used suitably.
  • FIG. 4 is a schematic view of a cross-section and an upper surface of a light-emitting device (one example) in which the LED chip 14 bonded to the substrate 13 via the bumps 18 (for example, gold bumps) is covered with the phosphor sheet 3.
  • FIG. 4 is a schematic diagram of the top surface of the light emitting device.
  • 16 indicates a covering portion on the upper surface and side surface of the LED chip
  • 17 indicates a covering portion on the base material.
  • a cross section of the light emitting device is shown in the upper part of FIG.
  • the cross-sectional view shown in the upper part of FIG. 4 shows, for example, that at the position of the broken line II in the top view.
  • the cross section of the chip coated with such a phosphor sheet is prepared by exposing the cross section by a mechanical polishing method or an ion polishing method (including a cross section polishing method), and then using a digital microscope or SEM ( It can be confirmed by a method of observing with a scanning electron microscope) or a method of observing by non-destructive X-ray CT scanning without passing through a cross-sectional preparation step such as polishing.
  • the light emitting device includes at least a substrate, an LED chip bonded (mounted) on the substrate, and a phosphor sheet that covers the light emitting surface of the LED chip.
  • the light emitting surface refers to the surface from which the LED light is extracted.
  • Examples of the classification by light emitting surface include a type in which light is extracted from the upper surface and side surfaces such as a flip chip type and a lateral type chip, and a type in which light is extracted only from the upper surface such as a vertical type.
  • a type in which a flip-chip side reflecting layer is provided so that light can be extracted only from the upper surface can be given as an example.
  • a transparent resin may be present between the phosphor sheet and the light emitting surface of the LED for the purpose of imparting adhesiveness.
  • the transparent resin examples include thermosetting resins such as acrylic, epoxy, and silicone.
  • silicone resins are most preferable from the viewpoints of heat resistance and light resistance.
  • the phosphor sheet preferably covers the upper surface and the side surface of the LED chip from the viewpoint of widening the emission angle and reducing azimuth unevenness. More preferably, the phosphor sheet covers and directly adheres the upper surface and side surfaces of the LED chip.
  • the laminate of the present invention the phosphor sheet attached from the laminate is coated in direct contact with 80% or more of the upper light emitting surface area and 50% or more of the side light emitting area of the LED chip. Can be produced.
  • direct contact refers to a state in which the phosphor sheet and the upper light emitting surface or the side light emitting surface of the LED chip are bonded without any voids.
  • the direct contact portion is substantially 80% or more of the LED chip upper light emitting surface area, the phosphor sheet is hardly peeled off, and the defect of the light emitting device can be suppressed. From this viewpoint, it is more preferable that the directly adhered portion is 90% or more of the upper light emitting surface area, and it is most preferable that it is substantially 100%.
  • the direct adhesion portion is substantially 100% with respect to the area of the light emitting surface of the LED chip.
  • the state of the phosphor sheet that is in direct contact with the LED chip (light emitting surface) is 100%.
  • the direct contact portion is substantially less than 50% of the side light emitting area of the LED chip, the light emission efficiency from the side surface of the LED chip is lowered and the luminance is lowered. There is. That is, in covering the side light emitting surface of the LED chip, when the direct contact portion is 50% or more of the side light emitting area of the LED chip, it is possible to suppress a decrease in light extraction efficiency from the side surface of the LED chip. From this point of view, the direct contact portion is preferably 70% or more of the LED chip side light emitting area, and more preferably 90% or more.
  • the film thickness of the phosphor sheet covering the LED chip is small in any part from the viewpoint of suppressing the uneven orientation of light emission. Since the light emission intensity from the side surface is weaker than the light emission from the top surface of the chip, the film thickness of the side surface portion of the LED chip is preferably thinner than the film thickness of the top surface portion of the chip.
  • the uneven azimuth of light emission means that the light appearance of the light emitting device varies depending on the angle.
  • Such orientation unevenness is caused by a color temperature at a distance 10 cm vertically away from the upper surface of the LED chip of the light emitting device (hereinafter referred to as a vertical color temperature) and a color temperature at a distance 10 cm above obliquely 45 ° (hereinafter referred to as 45 °). It can be determined by the absolute value of the difference in color temperature. In the present invention, the smaller the absolute value of the difference, the smaller the uneven azimuth of light emission, which is preferable.
  • the distance from the upper surface of the LED chip 14 to the outer surface of the phosphor sheet 3 in the portion (region) where the LED chip 14 and the phosphor sheet 3 are in contact with each other on the upper surface of the LED chip 14 is defined as a distance a.
  • the relationship [a / b] satisfies the above-described range. Further, when manufacturing such a light emitting device, it is preferable to adopt a manufacturing method in which the relationship [a / b] satisfies the above-described range in the obtained light emitting device.
  • a preferable manufacturing method for obtaining the light emitting device according to the present invention is an LED chip (particularly, light emission of the LED chip) bonded on the substrate with the phosphor sheet of the laminated body of the present invention so as to satisfy the above relationship.
  • the manufacturing method for obtaining the light emitting device according to the present invention is a method for manufacturing a light emitting device in which the above relationship is satisfied in the step of covering with the phosphor sheet of the laminate of the present invention (covering step). Preferably there is.
  • Silicone resin 1 Resin main component (MeViSiO 2/2 ) 0.25 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.45 (HO 1/2 ) 0.03 75 parts by weight Hardness modifier ViMe 2 SiO (MePhSiO) 17.5 SiMe 2 Vi 10 Part by weight Crosslinker (HMe 2 SiO) 2 SiPh 2 25 parts by weight * However, Me: methyl group, Vi: vinyl group, Ph: phenyl group reaction inhibitor 1-ethynylhexanol 0.025 parts by weight Platinum catalyst Platinum (1,3 -Divinyl-1,1,3,3-tetramethyldisiloxane) complex 1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution [platinum content 5% by weight] 0.01 parts by weight Silicone resin 2: KER6075 (manufactured by Shin-Etsu Chemical Co., Ltd.). P
  • Measuring device Viscoelasticity measuring device ARES-G2 (TA Instruments) Geometry: Parallel disk type (15mm) Strain: 1% Angular frequency: 1 Hz Temperature range: 25 ° C to 140 ° C Temperature increase rate: 5 ° C./min Measurement atmosphere: In air. Sixteen phosphor sheets having a film thickness of 50 ⁇ m were stacked and heat-pressed on a hot plate at 100 ° C. to produce an integrated film (sheet) having a thickness of 800 ⁇ m, and cut into a diameter of 15 mm to obtain a measurement sample. This sample was measured using the above conditions, and the storage elastic modulus at 25 ° C. and 100 ° C. was measured.
  • a phosphor dispersion for sheet preparation is applied as a base material to a peeled surface of “Therapy” WDS (manufactured by Toray Film Processing Co., Ltd .; film thickness 50 ⁇ m, elongation at break 115%, Young's modulus 4500 MPa). And it heated and dried at 120 degreeC for 1 hour, and obtained the fluorescent substance sheet 1 with a film thickness of 50 micrometers and a 100 mm square.
  • the storage elastic modulus of this phosphor sheet was 1.0 MPa at 25 ° C. and 0.025 MPa at 100 ° C.
  • ⁇ Laminate> (Supporting substrate) The elongation at break and the Young's modulus at 23 ° C. of the support substrate were measured three times using Tensilon RTF-1310 (manufactured by A & D) according to ASTM-D882-12, and the average value was obtained. . Sample size: width 10mm, initial length 30mm Measurement conditions: Temperature 23 ° C., pulling speed 300 mm / min.
  • Support substrate 1 Polyurethane film MG90 (manufactured by Takeda Sangyo) Film thickness 50 ⁇ m, elongation at break 500%
  • Young's modulus 8MPa Support substrate 2 polyurethane film MG90 (manufactured by Takeda Sangyo) Film thickness 100 ⁇ m, elongation at break 750%
  • Young's modulus 8MPa -Support base material 3 Polyvinyl chloride film (soft) Type C + (Achilles) Film thickness 50 ⁇ m, elongation at break 350%
  • Young's modulus 250MPa Support substrate 4 Polyvinyl chloride film with adhesive T-80MW (manufactured by Denki Kagaku Kogyo) Film thickness 50 ⁇ m, elongation at break 300%
  • Supporting substrate 5 Silicone film Silica (Mitsubishi Resin) Film thickness 50 ⁇ m, elongation at break 450%
  • the support substrate 1 was placed on the phosphor sheet 1 formed on “Therapy” WDS, and was pressed at a temperature of 80 ° C., a pressure of 0.3 MPa, and a feed rate of 0.5 m / min using a roll-type thermal laminator. . After allowing to cool to room temperature, “Therapy” WDS was peeled off to obtain a laminate 1.
  • the support substrate 5 was placed on the phosphor sheet 1 formed on “Therapy” WDS, and was pressed at a temperature of 80 ° C., a pressurizing pressure of 0.3 MPa, and a feed rate of 0.5 m / min using a roll-type thermal laminator. . After allowing to cool to room temperature, “Therapy” WDS was peeled off to obtain a laminate 6.
  • the laminated body of the "therapeutic" WDS and the fluorescent substance sheet 1 which were produced in the manufacture example 1 of the fluorescent substance sheet was used as the laminated body 8.
  • a vacuum laminator V130 manufactured by Nichigo Morton as shown in FIG. 3 having a vacuum chamber, a lower platen connected to a heater, and a pressing mechanism comprising an upper platen and a flexible fluorosilicone rubber sheet. Used.
  • the ratio of the portion where the phosphor sheet is in contact with the side light emitting surface of the LED chip was calculated.
  • the average value of the measurement results at three locations for each was regarded as the followability to the upper light emitting surface and the followability to the side light emitting surface, and the followability was evaluated according to the following criteria.
  • the followability of the side light emitting surface is 40% or more and less than 50%
  • Example 1 An LED chip having a size of 1 mm square and a thickness of 150 ⁇ m was bonded to an alumina ceramic substrate provided with electrodes via a gold bump of 10 ⁇ m thickness. Subsequently, the laminated body 1 was cut into 3 mm squares, and was superposed so that the phosphor sheet surface thereof was in contact with the upper surface of the bonded LED chip. This was placed on the lower platen in the vacuum chamber of the vacuum laminator. Subsequently, the lower platen was heated to 80 ° C., and then the vacuum chamber was sealed. The inside of the vacuum chamber was reduced to 0.001 MPa by a vacuum pump, and then maintained for 30 seconds.
  • the phosphor sheet was sufficiently cured by heating in a constant temperature oven heated to 150 ° C. for 2 hours to obtain a final light emitting device.
  • the light emitting device is caused to emit light, and the vertical color temperature at a position 10 cm away from the LED chip light emitting surface in the vertical direction (perpendicular direction) and the vertical line from the LED chip light emitting surface.
  • the appearance of light was evaluated by measuring the 45 ° color temperature at a position 10 cm away in a direction where the angle between the angle and the angle was 45 ° (an oblique 45 ° direction).
  • the light-emitting element for which light appearance was evaluated was cut in a cross-section so as to be perpendicular to the substrate, and a cross-sectional view was taken with an SEM. The followability and film thickness uniformity were evaluated from this cross-sectional view.
  • Examples 2 to 6 A light emitting device was obtained in the same manner as in Example 1 except that the laminate described in Table 1 was used. The obtained light-emitting device was evaluated in the same manner as in Example 1 for the appearance of light, the followability, and the film thickness uniformity.
  • Example 1 A light emitting device was obtained in the same manner as in Example 1 except that the laminate described in Table 1 was used. The obtained light-emitting device was evaluated in the same manner as in Example 1 for the appearance of light, the followability, and the film thickness uniformity.
  • the light emitting elements of the examples emitted light uniformly from any direction, but the light emitting elements of the comparative example looked slightly dark when observed from an oblique direction. As a result, it was found that azimuth unevenness occurred.
  • SYMBOLS 1 Laminated body 2 Support base material 3 Phosphor sheet 4 Adhesive material (adhesive layer) 5 Vacuum chamber 6 Upper platen 7 Lower platen 8 Flexible sheet 9 Sealed space (for pressure clamping mechanism) 10 Air inlet / outlet (for clamping mechanism) 11 Clamping mechanism 12 Air inlet / outlet (for vacuum chamber) DESCRIPTION OF SYMBOLS 13 Substrate 14 LED chip 15 Light-emitting device 16 Cover part 17 in LED chip upper surface and side face Cover part 18 in base material Bump (for example, gold bump)
  • Bump for example, gold bump

Abstract

 [Problem] The purpose of the present invention is to provide a laminated article obtained by forming a phosphor sheet at a uniform thickness along the upper surface and side surfaces of an LED chip. Another purpose is to provide a method for manufacturing a light-emitting device by covering the upper surface and side surfaces of the LED chip with the phosphor sheet by a highly productive method using this laminated article. [Solution] The laminated article includes a support substrate and a phosphor sheet containing a phosphor and a resin, wherein the support substrate has a rupture elongation, determined by a tensile test, of 200% or greater at 23°C, the Young's modulus of the support substrate at 23°C being 600MPa or less.

Description

積層体およびそれを用いた発光装置の製造方法Laminated body and method of manufacturing light emitting device using the same
 本発明は、蛍光体および樹脂を含有する蛍光体シートを含む積層体に関する。より詳しくは、LEDチップの上面および側面からの発光波長を変換するための蛍光体シートを含む積層体に関する。 The present invention relates to a laminate including a phosphor and a phosphor sheet containing a resin. More specifically, the present invention relates to a laminate including a phosphor sheet for converting the emission wavelength from the upper surface and side surfaces of an LED chip.
 発光ダイオード(LED、Light Emitting Diode)は、その発光効率の目覚ましい向上を背景とし、低い消費電力、高寿命、意匠性などを特長として液晶ディスプレイ(LCD)のバックライト向けや、車のヘッドライト等の車載分野ばかりではなく一般照明向けでも急激に市場を拡大しつつある。 Light-emitting diodes (LEDs, Light Emitting Diodes) are used for backlights of liquid crystal displays (LCDs), car headlights, etc. with low power consumption, long life, and design, etc. The market is rapidly expanding not only in the automotive field but also for general lighting.
 LEDはその実装型式によって、ラテラル型、バーティカル型およびフリップチップ型に分類されるが、輝度を高くできることと放熱性に優れることからフリップチップ型LEDが注目されている。しかしながら、フリップチップ型LEDにおいて従来のディスペンス方式による封止では、チップの上面と側面との間で蛍光体層の厚みを揃えることが不可能であり、発光色の方位ムラが生じるという課題があった。 LEDs are classified into a lateral type, a vertical type, and a flip chip type depending on the mounting type, but the flip chip type LED is attracting attention because of its high luminance and excellent heat dissipation. However, in conventional flip-chip type LED sealing, it is impossible to equalize the thickness of the phosphor layer between the top surface and the side surface of the chip, resulting in the problem of uneven azimuth of the emitted color. It was.
 この課題に対し、蛍光体を含有するシートである蛍光体シートをチップ周囲に追従性よく均一に貼り付ける技術が提案されている(例えば、特許文献1~2参照)。特許文献1はLEDチップより一回り大きい凹部が形成された加圧部材を用いてLEDチップの側面に蛍光体シートを貼り付ける方法である。また特許文献2は、支持基材と蛍光体シートを含む積層体をLEDチップに載せ、これを真空状態でダイアフラム膜により加圧する1段階目の貼り付け工程を行い、その後に支持基材を除き、さらに非接触加圧による2段階目の貼り付け工程を経てLEDチップ側面に蛍光体シートを貼り付ける方法である。 In response to this problem, a technique has been proposed in which a phosphor sheet, which is a sheet containing a phosphor, is uniformly attached around the chip with good followability (see, for example, Patent Documents 1 and 2). Patent Document 1 is a method in which a phosphor sheet is attached to the side surface of an LED chip using a pressure member in which a recess that is slightly larger than the LED chip is formed. Further, Patent Document 2 carries out a first-stage pasting process in which a laminated body including a supporting base material and a phosphor sheet is placed on an LED chip, and this is pressurized with a diaphragm film in a vacuum state, and thereafter the supporting base material is removed. In addition, the phosphor sheet is attached to the side surface of the LED chip through a second-stage attaching step by non-contact pressure.
特開2011-138831号公報JP 2011-138831 A 国際公開第2012/023119号International Publication No. 2012/023119
 しかしながら、特許文献1の方法はLEDの種類が変わる度に加圧部材である金型を作り変える必要があるため経済性が悪い。また加圧部材を蛍光体シートに接触させて押圧するので、シートの損傷や加圧部材の汚染が発生し生産性に劣る、などの課題がある。 However, the method of Patent Document 1 is not economical because it is necessary to remake a mold as a pressure member every time the type of LED changes. In addition, since the pressure member is brought into contact with the phosphor sheet and pressed, there is a problem that the sheet is damaged or the pressure member is contaminated, resulting in poor productivity.
 また特許文献2の方法は、一段階目のダイアフラム加圧工程のみでは支持基材の柔軟性不足により蛍光体シートがチップ側面に追従できないため、一度大気圧に戻して支持基材を除いた後に二段階目の非接触加圧工程を行っており、生産性の観点で課題がある。 Moreover, since the phosphor sheet cannot follow the chip side surface due to insufficient flexibility of the support base material only in the first stage diaphragm pressurization process, the method of Patent Document 2 is once after returning to atmospheric pressure and removing the support base material. The non-contact pressurizing process in the second stage is performed, and there is a problem in terms of productivity.
 本発明はLEDチップの上面および側面に追従性よく均一な膜厚で蛍光体シートを形成する積層体を提供することを目的とする。またこの積層体を用いて生産性の高い方法によりLEDチップの上面および側面を蛍光体シートで被覆する発光装置の製造方法を提供する。 An object of the present invention is to provide a laminate in which a phosphor sheet is formed with a uniform film thickness with good followability on the upper and side surfaces of an LED chip. Moreover, the manufacturing method of the light-emitting device which coat | covers the upper surface and side surface of a LED chip with a phosphor sheet | seat by a method with high productivity using this laminated body is provided.
 本発明は、以下のとおりである。
[1] 支持基材と、蛍光体および樹脂を含有する蛍光体シートを含む積層体であって、引っ張り試験により求められる前記支持基材の23℃における破断伸度が200%以上であり、かつ前記支持基材の23℃におけるヤング率が600MPa以下である、積層体。
[2] 前記支持基材の23℃におけるヤング率が400MPa以下である[1]に記載の積層体。
[3] 前記支持基材の23℃におけるヤング率が100MPa以下である[1]に記載の積層体。
[4] 前記支持基材がポリ塩化ビニルまたはポリウレタンである[1]から[3]のいずれかに記載の積層体。
[5] 基板上に接合したLEDチップの発光面を[1]から[4]のいずれかに記載の積層体の蛍光体シートで被覆する工程(被覆工程)を有する発光装置の製造方法。
[6] 基板上に接合したLEDチップの上面および側面を[1]から[4]のいずれかに記載の積層体の蛍光体シートで被覆する工程(被覆工程)を有する発光装置の製造方法。
[7] [5]または[6]に記載の発光装置の製造方法であって、
前記LEDチップと前記蛍光体シートがLEDチップの上面で接している部分におけるLEDチップ上面から蛍光体シート外面までの距離a[μm]と、前記LEDチップと前記蛍光体シートがLEDチップの側面で接している部分におけるLEDチップ側面から蛍光体シート外面までの距離b[μm]が、
 1.00<a/b<1.20
の関係を満たす、発光装置の製造方法。
[8] [5]または[6]に記載の発光装置の製造方法であって、[1]から[4]のいずれかに記載の積層体の蛍光体シートで被覆する工程(前記被覆工程)において、前記LEDチップと前記蛍光体シートがLEDチップの上面で接している部分におけるLEDチップ上面から蛍光体シート外面までの距離a[μm]と、前記LEDチップと前記蛍光体シートがLEDチップの側面で接している部分におけるLEDチップ側面から蛍光体シート外面までの距離b[μm]が、
 1.00<a/b<1.20
の関係を満たす、発光装置の製造方法。
The present invention is as follows.
[1] A laminate including a supporting substrate and a phosphor sheet containing a phosphor and a resin, and the elongation at break at 23 ° C. of the supporting substrate determined by a tensile test is 200% or more, and The laminated body whose Young's modulus in 23 degreeC of the said support base material is 600 Mpa or less.
[2] The laminate according to [1], wherein the Young's modulus at 23 ° C. of the support substrate is 400 MPa or less.
[3] The laminate according to [1], wherein the Young's modulus at 23 ° C. of the support base material is 100 MPa or less.
[4] The laminate according to any one of [1] to [3], wherein the support base material is polyvinyl chloride or polyurethane.
[5] A method for manufacturing a light-emitting device including a step (covering step) of covering the light-emitting surface of an LED chip bonded on a substrate with the phosphor sheet of the laminate according to any one of [1] to [4].
[6] A method for manufacturing a light-emitting device including a step (covering step) of covering the upper surface and side surfaces of an LED chip bonded on a substrate with the phosphor sheet of the laminate according to any one of [1] to [4].
[7] A method for manufacturing a light emitting device according to [5] or [6],
The distance a [μm] from the upper surface of the LED chip to the outer surface of the phosphor sheet at the portion where the LED chip and the phosphor sheet are in contact with each other on the upper surface of the LED chip, and the LED chip and the phosphor sheet on the side surface of the LED chip The distance b [μm] from the side surface of the LED chip to the outer surface of the phosphor sheet in the contacting portion is
1.00 <a / b <1.20
A method for manufacturing a light-emitting device that satisfies the above relationship.
[8] A method for manufacturing a light-emitting device according to [5] or [6], wherein the laminate is coated with the phosphor sheet according to any one of [1] to [4] (the coating step). The distance a [μm] from the upper surface of the LED chip to the outer surface of the phosphor sheet at the portion where the LED chip and the phosphor sheet are in contact with each other on the upper surface of the LED chip, and the LED chip and the phosphor sheet are The distance b [μm] from the LED chip side surface to the outer surface of the phosphor sheet in the portion in contact with the side surface is
1.00 <a / b <1.20
A method for manufacturing a light-emitting device that satisfies the above relationship.
 本発明によれば、追従性よくLEDチップ上部発光面および側部発光面に蛍光体シートを貼り付けることができる。またこれにより、発光色の方位ムラがない発光装置を提供できる。 According to the present invention, the phosphor sheet can be attached to the LED chip upper light emitting surface and the side light emitting surface with good followability. This also provides a light-emitting device that is free from uneven azimuth of emitted color.
本発明の積層体の模式図Schematic diagram of the laminate of the present invention 本発明の積層体であって、粘着剤を有する積層体の模式図Schematic diagram of a laminate having a pressure-sensitive adhesive according to the present invention 本発明の積層体を用いた発光装置の製造方法の一例An example of a method for manufacturing a light emitting device using the laminate of the present invention 蛍光体シートで被覆した発光装置の断面模式図および上面図Schematic cross section and top view of light emitting device covered with phosphor sheet
 図1に本発明の積層体について示す。本発明の積層体1は、支持基材2と、蛍光体および樹脂を含有する蛍光体シート3を含み、23℃において、前記支持基材の引っ張り試験における破断伸度が200%以上であり、かつヤング率が600MPa以下である。 FIG. 1 shows the laminate of the present invention. The laminate 1 of the present invention includes a support substrate 2 and a phosphor sheet 3 containing a phosphor and a resin, and at 23 ° C., the elongation at break in the tensile test of the support substrate is 200% or more, And Young's modulus is 600 Mpa or less.
 つまり、本発明の積層体とは、支持基材と、蛍光体および樹脂を含有する蛍光体シートを含む積層体であって、引っ張り試験により求められる前記支持基材の23℃における破断伸度が200%以上であり、かつ前記支持基材の23℃におけるヤング率が600MPa以下である、積層体である。 That is, the laminate of the present invention is a laminate comprising a support substrate and a phosphor sheet containing a phosphor and a resin, and the elongation at break at 23 ° C. of the support substrate determined by a tensile test is as follows. The laminate is 200% or more and has a Young's modulus at 23 ° C. of 600 MPa or less.
 <蛍光体シート>
 蛍光体シートは、主として樹脂と蛍光体を含むものであれば、特に限定されることなく様々なものを使用することが可能である。必要に応じその他の成分を含んでいてもよい。
<Phosphor sheet>
As long as the phosphor sheet mainly contains a resin and a phosphor, various sheets can be used without any particular limitation. Other components may be included as necessary.
 (蛍光体シートの物性)
 蛍光体シートは保管性、運搬性および加工性の観点から、室温付近で弾性が高いことが好ましい。一方で、LEDチップに追従するように変形しかつ接着させる観点から、一定の条件下で弾性が低くなり、柔軟性および接着性(粘着性)を発現することが好ましい。これらの観点より本蛍光体シートは60℃以上の加熱により柔軟化し接着性を発現することが好ましい。
(Physical properties of phosphor sheet)
The phosphor sheet preferably has high elasticity around room temperature from the viewpoint of storage, transportability and processability. On the other hand, from the viewpoint of deforming and adhering so as to follow the LED chip, it is preferable that the elasticity becomes low under certain conditions and the flexibility and adhesiveness (adhesiveness) are expressed. From these viewpoints, it is preferable that the phosphor sheet is softened by heating at 60 ° C. or higher and exhibits adhesiveness.
 このような蛍光体シートの貯蔵弾性率は、25℃で0.1MPa以上、100℃で0.1MPa未満であることが好ましく、25℃で0.5MPa以上、100℃で0.05MPa未満であることがより好ましい。 The storage elastic modulus of such a phosphor sheet is preferably 0.1 MPa or more at 25 ° C., less than 0.1 MPa at 100 ° C., 0.5 MPa or more at 25 ° C., and less than 0.05 MPa at 100 ° C. It is more preferable.
 ここで言う貯蔵弾性率とは、動的粘弾性測定を行った場合の貯蔵弾性率である。動的粘弾性とは、材料にある正弦周波数で剪断歪みを加えたときに、定常状態に達した場合に現れる剪断応力を、歪みと位相の一致する成分(弾性的成分)と、歪みと位相が90°遅れた成分(粘性的成分)とに分解して、材料の動的な力学特性を解析する手法である。ここで剪断歪みに位相が一致する応力成分を剪断歪みで除したものが、貯蔵弾性率G’であり、各温度における動的な歪みに対する材料の変形、追随を表すものであるので、材料の加工性や接着性に密接に関連している。 The storage elastic modulus mentioned here is a storage elastic modulus when dynamic viscoelasticity measurement is performed. Dynamic viscoelasticity is the shear stress that appears when a steady state is reached when shear strain is applied to a material at a sinusoidal frequency. Is a method for analyzing dynamic mechanical characteristics of a material by decomposing it into components (viscous components) delayed by 90 °. Here, what is obtained by dividing the stress component whose phase matches the shear strain by the shear strain is the storage elastic modulus G ′, which represents the deformation and tracking of the material against the dynamic strain at each temperature. It is closely related to processability and adhesion.
 本発明における蛍光体シートの場合は、25℃で0.1MPa以上の貯蔵弾性率を有することにより、室温(25℃)での刃体による切断加工など早い剪断応力に対してもシートが周囲の変形無しに切断されるので高い寸法精度での加工性が得られる。室温における貯蔵弾性率の上限は本発明の目的のためには特に制限されないが、LED素子と貼り合わせた後の応力歪みを低減する必要性を考慮すると1GPa以下であることが望ましい。また、100℃において貯蔵弾性率が0.1MPa未満であることによって、60℃~150℃での加熱貼り付けを行えばLEDチップ表面の形状に対して素早く変形して追従し、高い接着力が得られるものである。100℃において0.1MPa未満の貯蔵弾性率が得られる蛍光体シートであれば、室温から温度を上げて行くに従い貯蔵弾性率が低下し、100℃未満でも貼り付け性は温度上昇と共に良好となるが、実用的な接着性を得るためには60℃以上が好適である。またこのような蛍光体シートは100℃を超えて加熱することでさらに貯蔵弾性率の低下が進み、貼り付け性が良好になるが、150℃を超える温度では応力緩和が不十分なうちに樹脂の硬化が急速に進み、クラックや剥離が生じやすくなる。従って好適な加熱貼り付け温度は60℃~150℃であり、さらに好ましくは60℃~120℃である。100℃における貯蔵弾性率の下限は本発明の目的のためには特に制限されないが、LED素子上への加熱貼り付け時に流動性が高すぎると、貼り付け前に切断や孔開けで加工した形状が保持できなくなるので、0.001MPa以上であることが望ましい。 In the case of the phosphor sheet according to the present invention, the sheet has a storage elastic modulus of 0.1 MPa or more at 25 ° C., so that the sheet can be surrounded by high shear stress such as cutting with a blade at room temperature (25 ° C.). Since it is cut without deformation, workability with high dimensional accuracy can be obtained. The upper limit of the storage elastic modulus at room temperature is not particularly limited for the purpose of the present invention, but is preferably 1 GPa or less in view of the necessity of reducing the stress strain after being bonded to the LED element. In addition, since the storage elastic modulus at 100 ° C. is less than 0.1 MPa, when heat pasting at 60 ° C. to 150 ° C. is performed, it quickly deforms and follows the shape of the LED chip surface, and has high adhesive strength. It is obtained. If the phosphor sheet is capable of obtaining a storage modulus of less than 0.1 MPa at 100 ° C., the storage modulus decreases as the temperature is increased from room temperature. However, in order to obtain practical adhesiveness, 60 ° C. or higher is preferable. In addition, when such a phosphor sheet is heated at a temperature exceeding 100 ° C., the storage elastic modulus further decreases and the sticking property is improved. However, at a temperature exceeding 150 ° C., the resin is not sufficiently relaxed. Curing of the resin proceeds rapidly, and cracks and peeling easily occur. Therefore, a suitable heat bonding temperature is 60 ° C. to 150 ° C., more preferably 60 ° C. to 120 ° C. The lower limit of the storage elastic modulus at 100 ° C. is not particularly limited for the purpose of the present invention, but if the fluidity is too high at the time of heating and pasting on the LED element, the shape processed by cutting or punching before pasting Therefore, it is desirable that the pressure be 0.001 MPa or more.
 蛍光体シートとして上記の貯蔵弾性率が得られるのであれば、そこに含まれる樹脂は未硬化または半硬化状態のものであってもよいが、以下の通りシートの取扱性・保存性等を考慮すると、含まれる樹脂は硬化後のものであることが好ましい。樹脂が未硬化、もしくは半硬化状態であると、蛍光体シートの保存中に室温で硬化反応が進み、貯蔵弾性率が適正な範囲から外れる恐れがある。これを防ぐためには樹脂は硬化完了しているかもしくは室温保存で1ヶ月程度の長期間、貯蔵弾性率が変化しない程度に硬化が進行していることが望ましい。 As long as the above storage elastic modulus can be obtained as a phosphor sheet, the resin contained therein may be in an uncured or semi-cured state. Then, it is preferable that resin contained is a thing after hardening. If the resin is in an uncured or semi-cured state, the curing reaction proceeds at room temperature during storage of the phosphor sheet, and the storage elastic modulus may be out of the proper range. In order to prevent this, it is desirable that the resin is completely cured, or has been cured to such an extent that the storage elastic modulus does not change for a long period of about one month when stored at room temperature.
 (樹脂)
 本発明の蛍光体シートに含まれる樹脂は、内部に蛍光体を均質に分散させられるものであり、シート形成できるものであれば、いかなる樹脂でも構わない。
(resin)
The resin contained in the phosphor sheet of the present invention can be any resin as long as the phosphor can be uniformly dispersed therein and can form a sheet.
 具体的には、シリコーン樹脂、エポキシ樹脂、ポリアリレート樹脂、PET変性ポリアリレート樹脂、ポリカーボネート樹脂、環状オレフィン、ポリエチレンテレフタレート樹脂、ポリメチルメタアクリレート樹脂、ポリプロピレン樹脂、変性アクリル、ポリスチレン樹脂及びアクリルニトリル・スチレン共重合体樹脂等が挙げられる。ここで、PETとはポリエチレンテレフタレートである。本発明においては、透明性の面からシリコーン樹脂やエポキシ樹脂が好ましく用いられる。更に耐熱性の面から、シリコーン樹脂が特に好ましく用いられる。 Specifically, silicone resin, epoxy resin, polyarylate resin, PET modified polyarylate resin, polycarbonate resin, cyclic olefin, polyethylene terephthalate resin, polymethyl methacrylate resin, polypropylene resin, modified acrylic, polystyrene resin, and acrylonitrile / styrene Examples include copolymer resins. Here, PET is polyethylene terephthalate. In the present invention, a silicone resin or an epoxy resin is preferably used from the viewpoint of transparency. Furthermore, a silicone resin is particularly preferably used from the viewpoint of heat resistance.
 本発明で用いられるシリコーン樹脂としては、硬化型シリコーンゴムが好ましい。一液型、二液型(三液型)のいずれの液構成を使用してもよい。硬化型シリコーンゴムには、空気中の水分あるいは触媒によって縮合反応を起こすタイプとして脱アルコール型、脱オキシム型、脱酢酸型、脱ヒドロキシルアミン型などがある。また、触媒によってヒドロシリル化反応を起こすタイプとして付加反応型がある。これらのいずれのタイプの硬化型シリコーンゴムを使用してもよい。特に、付加反応型のシリコーンゴムは硬化反応に伴う副成物がなく、硬化収縮が小さい点、加熱により硬化を早めることが容易な点でより好ましい。 As the silicone resin used in the present invention, curable silicone rubber is preferable. Either one liquid type or two liquid type (three liquid type) liquid structure may be used. Examples of the curable silicone rubber include a dealcohol-free type, a deoxime type, a deacetic acid type, and a dehydroxylamine type that cause a condensation reaction with moisture in the air or a catalyst. Moreover, there is an addition reaction type as a type that causes a hydrosilylation reaction with a catalyst. Any of these types of curable silicone rubber may be used. In particular, the addition reaction type silicone rubber is more preferable in that it has no by-product accompanying the curing reaction, has a small curing shrinkage, and can easily be cured by heating.
 付加反応型のシリコーンゴムは、一例として、ケイ素原子に結合したアルケニル基を含有する化合物と、ケイ素原子に結合した水素原子を有する化合物のヒドロシリル化反応により形成される。このような材料としては、ビニルトリメトキシシラン、ビニルトリエトキシシラン、アリルトリメトキシシラン、プロペニルトリメトキシシラン、ノルボルネニルトリメトキシシラン、オクテニルトリメトキシシラン等のケイ素原子に結合したアルケニル基を含有する化合物と、メチルハイドロジェンポリシロキサン、ジメチルポリシロキサン-CO-メチルハイドロジェンポリシロキサン、エチルハイドロジェンポリシロキサン、メチルハイドロジェンポリシロキサン-CO-メチルフェニルポリシロキサン等のケイ素原子に結合した水素原子を有する化合物のヒドロシリル化反応により形成されるものが挙げられる。また、他にも、例えば特開2010-159411号公報に記載されているような公知のものを利用することができる。 For example, the addition reaction type silicone rubber is formed by a hydrosilylation reaction between a compound containing an alkenyl group bonded to a silicon atom and a compound having a hydrogen atom bonded to a silicon atom. Such materials contain alkenyl groups bonded to silicon atoms such as vinyltrimethoxysilane, vinyltriethoxysilane, allyltrimethoxysilane, propenyltrimethoxysilane, norbornenyltrimethoxysilane, octenyltrimethoxysilane, etc. And hydrogen atoms bonded to silicon atoms such as methylhydrogenpolysiloxane, dimethylpolysiloxane-CO-methylhydrogenpolysiloxane, ethylhydrogenpolysiloxane, methylhydrogenpolysiloxane-CO-methylphenylpolysiloxane, etc. Examples thereof include those formed by hydrosilylation reaction of the compounds having them. In addition, other publicly known ones such as those described in JP 2010-159411 A can be used.
 これらの樹脂を適宜設計することで、室温(25℃)での貯蔵弾性率と高温(100℃)での貯蔵弾性率を制御し、本発明の実施に有用な樹脂が得られる。 By appropriately designing these resins, the storage elastic modulus at room temperature (25 ° C.) and the storage elastic modulus at high temperature (100 ° C.) can be controlled, and a resin useful in the practice of the present invention can be obtained.
 また、市販されているものとして、一般的なLED用途のシリコーン封止材から適切な貯蔵弾性率を持つものを選択して使用することも可能である。具体例としては、東レ・ダウコーニング社製のOE-6630A/B、OE-6520A/Bなどがある。 Moreover, it is also possible to select and use a commercially available silicone sealing material having an appropriate storage modulus from a general silicone sealing material. Specific examples include OE-6630A / B and OE-6520A / B manufactured by Toray Dow Corning.
 (蛍光体)
 蛍光体は、LEDチップから放出される青色光、紫色光、紫外光を吸収して波長を変換し、LEDチップの光と異なる波長の赤、橙色、黄色、緑色、青色領域の波長の光を放出するものである。これにより、LEDチップから放出される光の一部と、蛍光体から放出される光の一部とが混合して、白色を含む多色系のLEDが得られる。具体的には、青色系LEDにLEDからの光によって黄色系の発光色を発光する蛍光体を光学的に組み合わせることによって、単一のLEDチップを用いて白色系を発光させることができる。
(Phosphor)
The phosphor absorbs blue light, violet light, and ultraviolet light emitted from the LED chip, converts the wavelength, and emits red, orange, yellow, green, and blue light with wavelengths different from those of the LED chip. To be released. Thereby, a part of the light emitted from the LED chip and a part of the light emitted from the phosphor are mixed to obtain a multicolor LED including white. Specifically, a white LED can be emitted using a single LED chip by optically combining a blue LED with a phosphor that emits a yellow emission color by light from the LED.
 上述のような蛍光体には、緑色に発光する蛍光体、青色に発光する蛍光体、黄色に発光する蛍光体、赤色に発光する蛍光体等の種々の蛍光体がある。本発明に用いられる具体的な蛍光体としては、有機蛍光体、無機蛍光体、蛍光顔料、蛍光染料等公知の蛍光体が挙げられる。有機蛍光体としては、アリルスルホアミド・メラミンホルムアルデヒド共縮合染色物やペリレン系蛍光体等を挙げることができ、長期間使用可能な点からペリレン系蛍光体が好ましく用いられる。本発明に特に好ましく用いられる蛍光物質としては、無機蛍光体が挙げられる。以下に本発明に用いられる無機蛍光体について記載する。 The phosphors as described above include various phosphors such as a phosphor emitting green, a phosphor emitting blue, a phosphor emitting yellow, and a phosphor emitting red. Specific phosphors used in the present invention include known phosphors such as organic phosphors, inorganic phosphors, fluorescent pigments, and fluorescent dyes. Examples of organic phosphors include allylsulfoamide / melamine formaldehyde co-condensed dyes and perylene phosphors. Perylene phosphors are preferably used because they can be used for a long period of time. Examples of the fluorescent material that is particularly preferably used in the present invention include inorganic phosphors. The inorganic phosphor used in the present invention is described below.
 緑色に発光する蛍光体として、例えば、SrAl:Eu、YSiO:Ce,Tb、MgAl1119:Ce,Tb、SrAl1225:Eu、(Mg、Ca、Sr、Baのうち少なくとも1以上)Ga:Euなどがある。 Examples of phosphors that emit green light include SrAl 2 O 4 : Eu, Y 2 SiO 5 : Ce, Tb, MgAl 11 O 19 : Ce, Tb, Sr 7 Al 12 O 25 : Eu, (Mg, Ca, Sr , At least one of Ba) and Ga 2 S 4 : Eu.
 青色に発光する蛍光体として、例えば、Sr(POCl:Eu、(SrCaBa)(POCl:Eu、(BaCa)(POCl:Eu、(Mg、Ca、Sr、Baのうち少なくとも1以上)Cl:Eu,Mn、(Mg、Ca、Sr、Baのうち少なくとも1以上)(POCl:Eu,Mnなどがある。 Examples of phosphors that emit blue light include Sr 5 (PO 4 ) 3 Cl: Eu, (SrCaBa) 5 (PO 4 ) 3 Cl: Eu, (BaCa) 5 (PO 4 ) 3 Cl: Eu, (Mg, 2 B 5 O 9 Cl: Eu, Mn, (Mg, Ca, Sr, Ba, at least one) (PO 4 ) 6 Cl 2 : Eu, Mn, etc. .
 緑色から黄色に発光する蛍光体として、少なくともセリウムで賦活されたイットリウム・アルミニウム酸化物蛍光体、少なくともセリウムで賦括されたイットリウム・ガドリニウム・アルミニウム酸化物蛍光体、少なくともセリウムで賦活されたイットリウム・アルミニウム・ガーネット酸化物蛍光体、及び、少なくともセリウムで賦活されたイットリウム・ガリウム・アルミニウム酸化物蛍光体などがある(いわゆるYAG系蛍光体)。具体的には、Ln12:R(Lnは、Y、Gd、Laから選ばれる少なくとも1以上である。Mは、Al、Caの少なくともいずれか一方を含む。Rは、ランタノイド系である。)、(Y1-xGa(Al1-yGa12:R(Rは、Ce、Tb、Pr、Sm、Eu、Dy、Hoから選ばれる少なくとも1以上である。0<Rx<0.5、0<y<0.5である。)を使用することができる。 As phosphors emitting green to yellow, at least cerium-activated yttrium / aluminum oxide phosphors, at least cerium-enriched yttrium / gadolinium / aluminum oxide phosphors, at least cerium-activated yttrium / aluminum There are garnet oxide phosphors and at least cerium activated yttrium gallium aluminum oxide phosphors (so-called YAG phosphors). Specifically, Ln 3 M 5 O 12 : R (Ln is at least one selected from Y, Gd, and La. M includes at least one of Al and Ca. R is a lanthanoid series. ), (Y 1-x Ga x ) 3 (Al 1-y Ga y ) 5 O 12 : R (R is at least one selected from Ce, Tb, Pr, Sm, Eu, Dy, Ho) 0 <Rx <0.5, 0 <y <0.5) can be used.
 赤色に発光する蛍光体として、例えば、YS:Eu、LaS:Eu、Y:Eu、GdS:Euなどがある。 Examples of phosphors that emit red light include Y 2 O 2 S: Eu, La 2 O 2 S: Eu, Y 2 O 3 : Eu, and Gd 2 O 2 S: Eu.
 また、現在主流の青色LEDに対応し発光する蛍光体としては、Y(Al,Ga)12:Ce,(Y,Gd)Al12:Ce,LuAl12:Ce,YAl12:CeなどのYAG系蛍光体、TbAl12:CeなどのTAG系蛍光体、(Ba,Sr)SiO:Eu系蛍光体やCaScSi12:Ce系蛍光体、(Sr,Ba,Mg)SiO:Euなどのシリケート系蛍光体、(Ca,Sr)Si:Eu、(Ca,Sr)AlSiN:Eu、CaSiAlN:Eu等のナイトライド系蛍光体、Cax(Si,Al)12(O,N)16:Euなどのオキシナイトライド系蛍光体、さらには(Ba,Sr,Ca)Si:Eu系蛍光体、CaMgSi16Cl:Eu系蛍光体、SrAl:Eu,SrAl1425:Eu等の蛍光体が挙げられる。 As the phosphor corresponding to the current mainstream of the blue LED emission, Y 3 (Al, Ga) 5 O 12: Ce, (Y, Gd) 3 Al 5 O 12: Ce, Lu 3 Al 5 O 12: Ce, Y 3 Al 5 O 12 : YAG phosphor such as Ce, TAG phosphor such as Tb 3 Al 5 O 12 : Ce, (Ba, Sr) 2 SiO 4 : Eu phosphor and Ca 3 Sc 2 Si 3 O 12 : Ce phosphor, silicate phosphor such as (Sr, Ba, Mg) 2 SiO 4 : Eu, (Ca, Sr) 2 Si 5 N 8 : Eu, (Ca, Sr) AlSiN 3 : Eu, CaSiAlN 3 : Nitride phosphor such as Eu, Cax (Si, Al) 12 (O, N) 16 : Oxynitride phosphor such as Eu, and (Ba, Sr, Ca) Si 2 O 2 N 2 : E Examples include phosphors such as u-based phosphors, Ca 8 MgSi 4 O 16 Cl 2 : Eu-based phosphors, SrAl 2 O 4 : Eu, and Sr 4 Al 14 O 25 : Eu.
 これらの中では、YAG系蛍光体、TAG系蛍光体、シリケート系蛍光体が、発光効率や輝度などの点で好ましく用いられる。 Of these, YAG-based phosphors, TAG-based phosphors, and silicate-based phosphors are preferably used in terms of luminous efficiency and luminance.
 上記以外にも、用途や目的とする発光色に応じて公知の蛍光体を用いることができる。 In addition to the above, known phosphors can be used according to the intended use and the intended emission color.
 蛍光体の粒子サイズは、特に制限はないが、D50が0.05μm以上のものが好ましく、3μm以上のものがより好ましい。また、D50が30μm以下のもの好ましい。ここでD50とは、レーザー回折散乱式粒度分布測定法により測定して得られる体積基準粒度分布において、小粒径側からの通過分積算が50%となるときの粒子径のことをいう。D50が前記範囲であると、蛍光体シート中の蛍光体の分散性が良好で、安定な発光が得られる。 The particle size of the phosphor is not particularly limited, but preferably has a D50 of 0.05 μm or more, more preferably 3 μm or more. Moreover, it is preferable that D50 is 30 μm or less. Here, D50 refers to the particle size when the accumulated amount from the small particle size side is 50% in the volume-based particle size distribution obtained by measurement by the laser diffraction / scattering particle size distribution measurement method. When D50 is in the above range, the dispersibility of the phosphor in the phosphor sheet is good, and stable light emission is obtained.
 本発明では、蛍光体の含有量について特に制限はないが、LEDチップからの発光の波長変換効率を高める観点から、蛍光体シート全体の30重量%以上であることが好ましく、40重量%以上であることがより好ましい。蛍光体含有量の上限は特に規定されないが、作業性に優れた蛍光体シートが作成しやすいという観点から、蛍光体シート全体の95重量%以下であることが好ましく、90重量%以下であることがより好ましく、85重量%以下であることがさらに好ましく、80重量%以下であることが特に好ましい。 In the present invention, the phosphor content is not particularly limited, but from the viewpoint of increasing the wavelength conversion efficiency of light emission from the LED chip, it is preferably 30% by weight or more of the entire phosphor sheet, and 40% by weight or more. More preferably. Although the upper limit of the phosphor content is not particularly defined, it is preferably 95% by weight or less of the entire phosphor sheet and 90% by weight or less from the viewpoint that a phosphor sheet excellent in workability can be easily produced. Is more preferably 85% by weight or less, and particularly preferably 80% by weight or less.
 本発明の蛍光体シートは、LEDチップの表面被覆用途に特に好ましく用いられる。その際、蛍光体シート中の蛍光体の含有量が上記範囲であることで、優れた性能を示すLED発光装置を得ることができる。 The phosphor sheet of the present invention is particularly preferably used for surface coating of LED chips. In that case, the LED light-emitting device which shows the outstanding performance can be obtained because content of the fluorescent substance in a fluorescent substance sheet is the said range.
 (シリコーン微粒子)
 本発明における蛍光体シートは、蛍光体シート作製用樹脂組成物の流動性を向上させて塗布性を良好にするため、シリコーン微粒子を含有していても良い。含有されるシリコーン微粒子は、シリコーン樹脂およびまたはシリコーンゴムからなる微粒子が好ましい。特に、オルガノトリアルコキシシランやオルガノジアルコキシシラン、オルガノトリアセトキシシラン、オルガノジアセトキシシラン、オルガノトリオキシムシラン、オルガノジオキシムシランなどのオルガノシランを加水分解し、次いで縮合させる方法により得られるシリコーン微粒子が好ましい。
(Silicone fine particles)
The phosphor sheet in the present invention may contain silicone fine particles in order to improve the fluidity of the resin composition for producing a phosphor sheet and improve the coating property. The silicone fine particles contained are preferably fine particles comprising a silicone resin and / or silicone rubber. In particular, silicone fine particles obtained by a method in which organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, and organodioxime silane are hydrolyzed and then condensed are obtained. preferable.
 オルガノトリアルコキシシランとしては、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-プロキシシラン、メチルトリ-i-プロキシシラン、メチルトリ-n-ブトキシシラン、メチルトリ-i-ブトキシシラン、メチルトリ-s-ブトキシシラン、メチルトリ-t-ブトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、i-プロピルトリメトキシシラン、n-ブチルトリブトキシシラン、i-ブチルトリブトキシシラン、s-ブチルトリメトキシシラン、t-ブチルトリブトキシシラン、N-β(アミノエチル)γ-アミノプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、ビニルトリメトキシシラン、フェニルトリメトキシシランなどが例示される。 Examples of the organotrialkoxysilane include methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-proxysilane, methyltri-i-proxysilane, methyltri-n-butoxysilane, methyltri-i-butoxysilane, methyltri-s-butoxy Silane, methyltri-t-butoxysilane, ethyltrimethoxysilane, n-propyltrimethoxysilane, i-propyltrimethoxysilane, n-butyltributoxysilane, i-butyltributoxysilane, s-butyltrimethoxysilane, t -Butyltributoxysilane, N-β (aminoethyl) γ-aminopropyltrimethoxysilane, γ-glycidoxypropyltrimethoxysilane, vinyltrimethoxysilane, phenyltrimethoxysilane and the like are exemplified.
 オルガノジアルコキシシランとしては、ジメチルジメトキシシラン、ジメチルジエトキシシラン、メチルエチルジメトキシシラン、メチルエチルジエトキシシラン、ジエチルジエトキシシラン、ジエチルジメトキシシラン、3-アミノプロピルメチルジエトキシシラン、N-(2-アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-(2-アミノエチル)-3-アミノイソブチルメチルジメトキシシラン、N-エチルアミノイソブチルメチルジエトキシシラン、(フェニルアミノメチル)メチルジメトキシシラン、ビニルメチルジエトキシシランなどが例示される。 Organodialkoxysilanes include dimethyldimethoxysilane, dimethyldiethoxysilane, methylethyldimethoxysilane, methylethyldiethoxysilane, diethyldiethoxysilane, diethyldimethoxysilane, 3-aminopropylmethyldiethoxysilane, N- (2- Aminoethyl) -3-aminopropylmethyldimethoxysilane, N- (2-aminoethyl) -3-aminoisobutylmethyldimethoxysilane, N-ethylaminoisobutylmethyldiethoxysilane, (phenylaminomethyl) methyldimethoxysilane, vinylmethyl Examples include diethoxysilane.
 オルガノトリアセトキシシランとしては、メチルトリアセトキシシラン、エチルトリアセトキシシラン、ビニルトリアセトキシシランなどが例示される。 Examples of organotriacetoxysilane include methyltriacetoxysilane, ethyltriacetoxysilane, vinyltriacetoxysilane, and the like.
 オルガノジアセトキシシランとしては、ジメチルジアセトキシシラン、メチルエチルジアセトキシシラン、ビニルメチルジアセトキシシラン、ビニルエチルジアセトキシシランなどが例示される。 Examples of organodiacetoxysilane include dimethyldiacetoxysilane, methylethyldiacetoxysilane, vinylmethyldiacetoxysilane, and vinylethyldiacetoxysilane.
 オルガノトリオキシムシランとしては、メチルトリスメチルエチルケトオキシムシラン、ビニルトリスメチルエチルケトオキシムシラン、オルガノジオキシムシランとしては、メチルエチルビスメチルエチルケトオキシムシランなどが例示される。 Examples of the organotrioxime silane include methyl trismethyl ethyl ketoxime silane, vinyl trismethyl ethyl ketoxime silane, and examples of the organodioxime silane include methyl ethyl bismethyl ethyl ketoxime silane.
 このような粒子は、具体的には、特開昭63-77940号公報で報告されている方法、特開平6-248081号公報で報告されている方法、特開2003-342370号公報で報告されている方法、特開平4-88022号公報で報告されている方法などにより得ることができる。また、オルガノトリアルコキシシランやオルガノジアルコキシシラン、オルガノトリアセトキシシラン、オルガノジアセトキシシラン、オルガノトリオキシムシラン、オルガノジオキシムシランなどのオルガノシランおよび/またはその部分加水分解物をアルカリ水溶液に添加し、加水分解・縮合させ粒子を得る方法や、水あるいは酸性溶液にオルガノシランおよび/またはその部分加水分解物を添加し、該オルガノシランおよび/またはその部分加水分解物の加水分解部分縮合物を得た後、アルカリを添加し縮合反応を進行させ粒子を得る方法、オルガノシランおよび/またはその加水分解物を上層にし、アルカリまたはアルカリと有機溶媒の混合液を下層にして、これらの界面で該オルガノシランおよび/またはその加水分解物を加水分解・重縮合させて粒子を得る方法なども知られており、これらいずれの方法においても、本発明で用いられる粒子を得ることができる。 Specifically, such particles are reported in Japanese Unexamined Patent Publication No. 63-77940, Japanese Unexamined Patent Publication No. 6-248081, Japanese Unexamined Patent Publication No. 2003-342370. Or a method reported in JP-A-4-88022. In addition, organosilane such as organotrialkoxysilane, organodialkoxysilane, organotriacetoxysilane, organodiacetoxysilane, organotrioxime silane, organodioxime silane and / or a partial hydrolyzate thereof are added to an alkaline aqueous solution, Hydrolysis / condensation to obtain particles, or addition of organosilane and / or partial hydrolyzate thereof to water or acidic solution to obtain hydrolyzed partial condensate of organosilane and / or partial hydrolyzate thereof Thereafter, a method in which an alkali is added to proceed with a condensation reaction to obtain particles, an organosilane and / or a hydrolyzate thereof is used as an upper layer, an alkali or a mixed solution of an alkali and an organic solvent is used as a lower layer, and the organosilane at these interfaces. And / or hydrolyzate thereof · Polycondensation engaged with is also known a method of obtaining a particle, In any of these methods, it is possible to obtain the particles used in the present invention.
 これらの中で、オルガノシランおよび/またはその部分加水分解物を加水分解・縮合させ、球状シリコーン微粒子を製造するにあたり、反応溶液内に水溶性高分子や界面活性剤などの高分子分散剤を添加する方法によりシリコーン微粒子を得ることが好ましい。水溶性高分子は、溶媒中で保護コロイドとして作用するものであれば合成高分子、天然高分子のいずれでも使用できる。具体的にはポリビニルアルコール、ポリビニルピロリドンなどの水溶性高分子が挙げられる。界面活性剤は分子中に親水性部位と疎水性部位を有することにより保護コロイドとして作用するものであればよい。具体的には、ドデシルベンゼンスルホン酸ナトリウム、ドデシルベンゼンスルホン酸アンモニウム、ラウリル硫酸ナトリウム、ラウリル硫酸アンモニウム、ポリオキシエチレンアルキルエーテル硫酸ナトリウムなどの陰イオン性界面活性剤、ラウリルトリメチルアンモニウムクロリド、ステアリルトリメチルアンモニウムクロリドなどの陽イオン活性剤、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンジスチレン化フェニルエーテル、ポリオキシアルキレンアルケニルエーテル、ソルビタンモノアルキレートなどのエーテル系またはエステル系の非イオン性界面活性剤、ポリエーテル変性ポリジメチルシロキサン、ポリエステル変性ポリジメチルシロキサン、アラルキル変性ポリアルキルシロキサンなどのシリコーン系界面活性剤、およびパーフルオロアルキル基含有オリゴマーなどのフッ素系界面活性剤、アクリル系界面活性剤が挙げられる。分散剤の添加方法としては、反応初液に予め添加する方法、オルガノトリアルコキシシランおよび/またはその部分加水分解物と同時に添加する方法、オルガノトリアルコキシシランおよび/またはその部分加水分解物を加水分解部分縮合させた後に添加する方法が例示でき、これらの何れの方法を選ぶこともできる。分散剤の添加量は、反応液量1重量部に対して5×10-7~0.1重量部の範囲が好ましい。下限を超えると粒子どうしが凝集して塊状物になりやすい。また上限を超えると粒子中の分散剤残留物が多くなり、着色の原因となる。 Among these, in order to hydrolyze and condense organosilane and / or its partial hydrolyzate to produce spherical silicone fine particles, polymer dispersants such as water-soluble polymers and surfactants are added to the reaction solution. It is preferable to obtain the silicone fine particles by the method. The water-soluble polymer can be either a synthetic polymer or a natural polymer as long as it acts as a protective colloid in a solvent. Specific examples include water-soluble polymers such as polyvinyl alcohol and polyvinyl pyrrolidone. Any surfactant may be used as long as it has a hydrophilic site and a hydrophobic site in the molecule, thereby acting as a protective colloid. Specifically, anionic surfactants such as sodium dodecylbenzenesulfonate, ammonium dodecylbenzenesulfonate, sodium lauryl sulfate, ammonium lauryl sulfate, sodium polyoxyethylene alkyl ether sulfate, lauryl trimethyl ammonium chloride, stearyl trimethyl ammonium chloride, etc. Cationic surfactants, polyoxyethylene alkyl ethers, polyoxyethylene distyrenated phenyl ethers, polyoxyalkylene alkenyl ethers, ether-based or ester-based nonionic surfactants such as sorbitan monoalkylates, polyether-modified poly Silicone surface activity such as dimethylsiloxane, polyester-modified polydimethylsiloxane, aralkyl-modified polyalkylsiloxane , And fluorine-based surfactants such as perfluoroalkyl group-containing oligomers, and acrylic surfactants. The dispersant may be added in advance to the reaction initial solution, in addition to the organotrialkoxysilane and / or its partial hydrolysate, or in the organotrialkoxysilane and / or its partial hydrolyzate. A method of adding after partial condensation can be exemplified, and any of these methods can be selected. The addition amount of the dispersant is preferably in the range of 5 × 10 −7 to 0.1 part by weight with respect to 1 part by weight of the reaction solution. When the lower limit is exceeded, the particles tend to aggregate and form a lump. On the other hand, if the upper limit is exceeded, the amount of dispersant residue in the particles increases, causing coloring.
 これらのシリコーン粒子は、マトリクス成分への分散性や濡れ性などを制御する目的で表面改質剤により粒子表面を修飾していてもよい。表面改質剤としては、物理的吸着により修飾するものでも、化学反応により修飾するものでもよく、具体的にはシランカップリング剤、チオールカップリング剤、チタネートカップリング剤、アルミネートカップリング剤、フッ素系コート剤などが挙げられるが、耐熱性に強く、硬化阻害がないことから、シランカップリング剤による修飾が特に好ましい。 These silicone particles may be modified on the particle surface with a surface modifier for the purpose of controlling the dispersibility in the matrix components and the wettability. The surface modifier may be modified by physical adsorption or may be modified by a chemical reaction. Specifically, a silane coupling agent, a thiol coupling agent, a titanate coupling agent, an aluminate coupling agent, Although a fluorine-type coating agent etc. are mentioned, since it is strong in heat resistance and there is no hardening inhibition, the modification by a silane coupling agent is especially preferable.
 シリコーン微粒子に含まれる有機置換基としては、好ましくはメチル基、フェニル基であり、これら置換基の含有量によりシリコーン微粒子の屈折率を調整することができる。LED発光装置の輝度を低下させないためにバインダー樹脂であるシリコーン樹脂を通る光を散乱させずに使用したい場合には、シリコーン微粒子の屈折率d1と、当該シリコーン微粒子および蛍光体以外の成分による屈折率d2の屈折率差が小さい方が好ましい。シリコーン微粒子の屈折率d1と、シリコーン微粒子および蛍光体以外の成分による屈折率d2の屈折率の差は、0.10未満であることが好ましく、0.03以下であることがさらに好ましい。このような範囲に屈折率を制御することにより、シリコーン微粒子とシリコーン組成物の界面での反射・散乱が低減され、高い透明性、光透過率が得られ、LED発光装置の輝度を低下させることがない。 The organic substituent contained in the silicone fine particles is preferably a methyl group or a phenyl group, and the refractive index of the silicone fine particles can be adjusted by the content of these substituents. In order not to reduce the luminance of the LED light-emitting device, when it is desired to use the light passing through the silicone resin as the binder resin without scattering, the refractive index d1 of the silicone fine particles and the refractive index due to components other than the silicone fine particles and the phosphor A smaller refractive index difference of d2 is preferable. The difference in refractive index between the refractive index d1 of the silicone fine particles and the refractive index d2 due to components other than the silicone fine particles and the phosphor is preferably less than 0.10, and more preferably 0.03 or less. By controlling the refractive index within such a range, reflection / scattering at the interface between the silicone fine particles and the silicone composition can be reduced, high transparency and light transmittance can be obtained, and the brightness of the LED light emitting device can be reduced. There is no.
 屈折率の測定は、全反射法としては、Abbe屈折計、Pulfrich屈折計、液浸型屈折計、液浸法、最小偏角法などが用いられるが、シリコーン組成物の屈折率測定には、Abbe屈折計、シリコーン微粒子の屈折率測定には、液浸法が有用である。 For the measurement of the refractive index, Abbe refractometer, Pulfrich refractometer, immersion type refractometer, immersion method, minimum declination method, etc. are used as the total reflection method, but for the refractive index measurement of the silicone composition, The immersion method is useful for measuring the refractive index of Abbe refractometer and silicone fine particles.
 また、上記屈折率差を制御するための手段としては、シリコーン微粒子を構成する原料の量比を変えることにより調整可能である。すわなち、例えば、原料であるメチルトリアルコキシシランとフェニルトリアルコキシシランの混合比を調整し、メチル基の構成比を多くすることで、1.4に近い低屈折率化することが可能であり、逆に、フェニル基の構成比を多くすることで、比較的高屈折率化することが可能である。 Further, as a means for controlling the refractive index difference, it can be adjusted by changing the amount ratio of the raw materials constituting the silicone fine particles. That is, for example, by adjusting the mixing ratio of methyltrialkoxysilane and phenyltrialkoxysilane, which are raw materials, and increasing the composition ratio of methyl groups, it is possible to achieve a refractive index close to 1.4. On the contrary, a relatively high refractive index can be achieved by increasing the constituent ratio of the phenyl group.
 本発明において、シリコーン微粒子の平均粒子径は、メジアン径(D50)で表し、この平均粒子径は下限としては0.01μm以上であることが好ましく、0.05μm以上であることがさらに好ましい。また、上限としては2.0μm以下であることが好ましく、1.0μm以下であることがさらに好ましい。平均粒子径が0.01μm以上であれば粒子径を制御した粒子を製造することが容易であり、また2.0μm以下であることで蛍光体シートの光学特性が良好となる。また、平均粒子径が0.01μm以上2.0μm以下であることで、蛍光体シート製造用樹脂液の流動性向上効果が十分に得られる。また、単分散で真球状の粒子を用いることが好ましい。本発明において、蛍光体シートに含まれるシリコーン微粒子の平均粒子径すなわちメジアン径(D50)および粒度分布は、シート断面のSEM(走査型電子顕微鏡)観察によって測定することができる。SEMによる測定画像を画像処理して粒径分布を求め、そこから得られる粒度分布において、小粒径側からの通過分積算50%の粒子径をメジアン径D50として求める。この場合も蛍光体粒子の場合と同様に、蛍光体シートの断面SEM画像から求めたシリコーン微粒子の平均粒径は真の平均粒子径に比較して理論上は78.5%、実際にはおおよそ70%~85%の値となるが、本発明におけるシリコーン微粒子の平均粒子径は上記の測定方法で求められる値と定義される。 In the present invention, the average particle diameter of the silicone fine particles is represented by a median diameter (D50), and the average particle diameter is preferably 0.01 μm or more and more preferably 0.05 μm or more as a lower limit. The upper limit is preferably 2.0 μm or less, and more preferably 1.0 μm or less. When the average particle size is 0.01 μm or more, it is easy to produce particles with a controlled particle size, and when the average particle size is 2.0 μm or less, the optical properties of the phosphor sheet are improved. Moreover, the fluidity improvement effect of the resin liquid for fluorescent substance sheet manufacture is fully acquired because an average particle diameter is 0.01 micrometer or more and 2.0 micrometers or less. Moreover, it is preferable to use monodispersed true spherical particles. In the present invention, the average particle diameter, that is, the median diameter (D50) and the particle size distribution of the silicone fine particles contained in the phosphor sheet can be measured by SEM (scanning electron microscope) observation of the sheet cross section. A particle size distribution is obtained by performing image processing on a measurement image obtained by SEM, and in the particle size distribution obtained therefrom, the particle diameter of 50% of the accumulated portion from the small particle diameter side is obtained as the median diameter D50. In this case as well, as in the case of the phosphor particles, the average particle size of the silicone fine particles obtained from the cross-sectional SEM image of the phosphor sheet is theoretically 78.5% compared to the true average particle size, and is actually approximately Although the value is 70% to 85%, the average particle size of the silicone fine particles in the present invention is defined as a value obtained by the above-described measuring method.
 シリコーン微粒子の含有量としては、シリコーン樹脂100重量部に対して、下限としては1重量部以上であることが好ましく、2重量部以上であることがさらに好ましい。また、上限としては20重量部以下であることが好ましく、10重量部以下であることがさらに好ましい。シリコーン微粒子を1重量部以上含有することで、特に良好な蛍光体分散安定化効果が得られ、一方、20重量部以下の含有により、シリコーン組成物の粘度を過度に上昇させることがない。 The content of the silicone fine particles is preferably 1 part by weight or more, more preferably 2 parts by weight or more as a lower limit with respect to 100 parts by weight of the silicone resin. Further, the upper limit is preferably 20 parts by weight or less, and more preferably 10 parts by weight or less. By containing 1 part by weight or more of silicone fine particles, a particularly good phosphor dispersion stabilizing effect can be obtained. On the other hand, the content of 20 parts by weight or less does not excessively increase the viscosity of the silicone composition.
 (その他の成分)
 本発明の蛍光体シートは、粘度調製、光拡散、塗布性向上などの効果を付与するために更に無機微粒子充填剤を含んでいてもよい。これらの向き充填剤としては、シリカ、アルミナ、チタニア、ジルコニア、チタン酸バリウム、酸化亜鉛等が挙げられる。
(Other ingredients)
The phosphor sheet of the present invention may further contain an inorganic fine particle filler in order to impart effects such as viscosity adjustment, light diffusion, and coating property improvement. Examples of these orientation fillers include silica, alumina, titania, zirconia, barium titanate, and zinc oxide.
 また本発明において、蛍光体シートの作製に際して用いられるシリコーン樹脂組成物には、その他の成分として、常温での硬化を抑制してポットライフを長くするためにアセチレンアルコールなどのヒドロシリル化反応遅延剤が配合されることが好ましい。またその他の添加剤として塗布膜安定化のためのレベリング剤、シート表面の改質剤としてシランカップリング剤等の接着補助剤等を添加してもよい。 Further, in the present invention, the silicone resin composition used in the preparation of the phosphor sheet has, as other components, a hydrosilylation reaction retarder such as acetylene alcohol in order to suppress curing at room temperature and lengthen the pot life. It is preferable to mix. In addition, a leveling agent for stabilizing the coating film may be added as another additive, and an adhesion aid such as a silane coupling agent may be added as a sheet surface modifier.
 (膜厚)
 本発明の蛍光体シートの膜厚は、蛍光体含有量と、所望の光学特性から決められる。蛍光体含有量は上述のように作業性の観点から限界があるので、膜厚は10μm以上あることが好ましい。一方、蛍光体シートの光学特性・放熱性を高める観点からは、蛍光体シートの膜厚は1000μm以下であることが好ましく、200μm以下であることがより好ましく、100μm以下であることがさらに好ましい。蛍光体シートを1000μm以下の膜厚にすることによって、バインダー樹脂や蛍光体による光吸収や光散乱を低減することができるので、光学的に優れた蛍光体シートとなる。
(Film thickness)
The film thickness of the phosphor sheet of the present invention is determined from the phosphor content and desired optical properties. Since the phosphor content is limited from the viewpoint of workability as described above, the film thickness is preferably 10 μm or more. On the other hand, from the viewpoint of improving the optical properties and heat dissipation of the phosphor sheet, the thickness of the phosphor sheet is preferably 1000 μm or less, more preferably 200 μm or less, and even more preferably 100 μm or less. By setting the phosphor sheet to a film thickness of 1000 μm or less, light absorption and light scattering by the binder resin and the phosphor can be reduced, so that the phosphor sheet is optically excellent.
 また、シート膜厚にバラツキがあると、LEDチップごとに蛍光体量に違いが生じ、結果として、発光スペクトル(色温度、輝度、色度)にバラツキが生じる。従って、シート膜厚のバラツキは、好ましくは±5%以内、さらに好ましくは±3%以内である。 Also, if the sheet film thickness varies, the amount of phosphor varies depending on the LED chip, and as a result, the emission spectrum (color temperature, luminance, chromaticity) varies. Therefore, the variation in sheet thickness is preferably within ± 5%, more preferably within ± 3%.
 本発明における蛍光体シートの膜厚は、JIS K7130(1999)プラスチック-フィルム及びシート-厚さ測定方法における機械的走査による厚さの測定方法A法に基づいて測定される膜厚(平均膜厚)のことをいう。また蛍光体シートの膜厚バラツキは前記の平均膜厚を用いて、下記の数式に基づいて算出される。より具体的には、機械的走査による厚さの測定方法A法の測定条件を用いて、市販されている接触式の厚み計などのマイクロメーターを使用して膜厚を測定して、得られた膜厚の最大値あるいは最小値と平均膜厚との差を計算し、この値を平均膜厚で除して100分率であらわした値が膜厚バラツキB(%)となる。 The film thickness of the phosphor sheet in the present invention is a film thickness (average film thickness) measured based on the method A of measuring thickness by mechanical scanning in JIS K7130 (1999) plastic-film and sheet-thickness measurement method. ). Moreover, the film thickness variation of a fluorescent substance sheet is computed based on the following numerical formula using the said average film thickness. More specifically, it is obtained by measuring the film thickness using a micrometer such as a commercially available contact-type thickness meter using the measurement conditions of the method A of measuring the thickness by mechanical scanning. The difference between the maximum value or the minimum value of the film thickness and the average film thickness is calculated, and this value is divided by the average film thickness, and the value expressed in 100 minutes is the film thickness variation B (%).
 膜厚バラツキB(%)={(最大膜厚ズレ値-平均膜厚)/平均膜厚}×100
 ここで、最大膜厚ズレ値は膜厚の最大値または最小値のうち平均膜厚との差が大きい方を選択する。
Film thickness variation B (%) = {(maximum film thickness deviation value−average film thickness) / average film thickness} × 100
Here, as the maximum film thickness deviation value, the one having the larger difference from the average film thickness among the maximum value or the minimum value of the film thickness is selected.
 <支持基材>
 支持基材は形状が変形しやすい蛍光体シートを保護し、保管や運搬、加工を容易にするとともに、LEDチップへの貼り付け工程において操作を容易にし、加圧基材への付着や汚染を防止する。
<Support base material>
The support substrate protects the phosphor sheet whose shape is easily deformed, facilitates storage, transportation and processing, and facilitates the operation in the process of attaching to the LED chip, and prevents adhesion and contamination to the pressure substrate. To prevent.
 (支持基材の物性)
 支持基材は、23℃において、破断伸度が200%以上であり、かつヤング率が600MPa以下である。支持基材の破断伸度が200%未満である、またはヤング率が600MPaより大きいと、LED貼り付け工程において側面と蛍光体シートの間に隙間が生じ、追従性が悪化する。LEDチップへの追従性の観点から破断伸度は望ましくは300%以上であり、更に望ましくは500%以上である。またヤング率は望ましくは400MPa以下であり、より望ましくは100MPa以下であり、更に望ましくは10MPa以下である。破断伸度の上限については特に制限はないが、裁断が容易になる観点から1500%以下であることが好ましく、1000%以下であることがより好ましく、800%以下であることがさらに好ましく、750%以下であることが特に好ましい。またヤング率の下限については特に制限はないが、支持基材が変形せずに蛍光体シートを保護する観点から0.1MPa以上であることが好ましく、1MPa以上であることがより好ましく、さらに好ましくは1.6MPa以上である。
(Physical properties of support substrate)
The supporting substrate has a breaking elongation of 200% or more and a Young's modulus of 600 MPa or less at 23 ° C. When the elongation at break of the supporting substrate is less than 200% or the Young's modulus is greater than 600 MPa, a gap is generated between the side surface and the phosphor sheet in the LED attaching step, and the followability is deteriorated. From the viewpoint of followability to the LED chip, the elongation at break is desirably 300% or more, and more desirably 500% or more. The Young's modulus is desirably 400 MPa or less, more desirably 100 MPa or less, and further desirably 10 MPa or less. Although there is no restriction | limiting in particular about the upper limit of breaking elongation, From a viewpoint with which cutting | disconnection becomes easy, it is preferable that it is 1500% or less, It is more preferable that it is 1000% or less, It is further more preferable that it is 800% or less, 750 % Or less is particularly preferable. The lower limit of Young's modulus is not particularly limited, but is preferably 0.1 MPa or more, more preferably 1 MPa or more, and still more preferably from the viewpoint of protecting the phosphor sheet without deformation of the support base material. Is 1.6 MPa or more.
 破断伸度およびヤング率の測定はASTM-D882-12に準じた方法により測定できる。具体的な測定法としては、一定温度に保たれた環境下において、引張試験機を用いて、試験片を速度300mm/分で引っ張る。試験前の試験片長さをL、切断(破断)したときの試験片の長さをLとしたとき、破断伸度は次の式によって算出される。
破断伸度(%)=100x(L-L)/L
The elongation at break and Young's modulus can be measured by a method according to ASTM-D882-12. As a specific measurement method, a test piece is pulled at a speed of 300 mm / min using a tensile tester in an environment maintained at a constant temperature. When the length of the test piece before the test is L 0 and the length of the test piece when cut (broken) is L, the elongation at break is calculated by the following equation.
Elongation at break (%) = 100 × (L−L 0 ) / L 0 .
 またヤング率は試験片が変形する直前での最大弾性、すなわち試験片の伸びとそれにかかる荷重をプロットしたS-Sカーブの最大傾斜、から求めることができる。破断伸度およびヤング率の測定回数は、精度を上げるために測定回数を3回とし、その平均値を求める。 Also, the Young's modulus can be obtained from the maximum elasticity immediately before the specimen is deformed, that is, the maximum slope of the SS curve in which the elongation of the specimen and the load applied thereto are plotted. The number of measurements of the elongation at break and Young's modulus is 3 times to increase the accuracy, and the average value is obtained.
 蛍光体シートの貼り付け温度は前記の通り、60℃~150℃が好ましく、60℃~120℃がさらに好ましい。そのため、支持基材の熱特性としてはこの温度範囲で融解しないことが好ましい。この観点から支持基材の融点は120℃以上が好ましく、150℃以上がさらに好ましい。 As described above, the attaching temperature of the phosphor sheet is preferably 60 ° C. to 150 ° C., more preferably 60 ° C. to 120 ° C. Therefore, it is preferable that the thermal characteristics of the supporting substrate do not melt in this temperature range. From this viewpoint, the melting point of the supporting substrate is preferably 120 ° C. or higher, and more preferably 150 ° C. or higher.
 また支持基材は蛍光体シートを保持するための接着性と、LEDチップに貼り付けたのちに支持基材を剥がすための剥離性を両立する観点から、支持基材の剥離力は0.5~2.5N/20mmの範囲であることが好ましい。ここでいう剥離力はJIS Z 0237(2009)に規定される粘着テープ・粘着シート方法の中の、90度引きはがしによる粘着性試験方法によって得られる値である。 In addition, from the viewpoint of achieving both the adhesiveness for holding the phosphor sheet and the releasability for peeling off the supporting substrate after being attached to the LED chip, the supporting substrate has a peeling force of 0.5. It is preferably in the range of ~ 2.5N / 20mm. The peeling force referred to here is a value obtained by an adhesive test method by peeling 90 degrees in the adhesive tape / adhesive sheet method defined in JIS Z 0237 (2009).
 支持基材は、一般的には発光の均一性の観点から、表面平均粗さRaが1μm以下であることが好ましいが、光取り出し向上のためにエンボス加工などの表面加工がされていてもよい。 In general, the support substrate preferably has a surface average roughness Ra of 1 μm or less from the viewpoint of the uniformity of light emission, but may be subjected to surface processing such as embossing to improve light extraction. .
 (支持基材の材質)
 支持基材の材質としては、具体的には、ポリ塩化ビニル、ポリウレタン、シリコーン、低密度ポリエチレン(LDPE)、ポリビニルアセタールなどが挙げられる。ポリ塩化ビニルは可塑剤の添加量によって硬質と軟質があるが、軟質のものが好ましい。またシリコーンにはレジンとゴムがあるが、伸縮性に優れるシリコーンゴムが好ましい。中でも高伸度、低ヤング率、熱特性、接着性および剥離性の観点からポリ塩化ビニル、ポリウレタンまたはシリコーンが好ましい。より好ましくは、ポリ塩化ビニルまたはポリウレタンであり、特に好ましくは軟質ポリ塩化ビニルまたはポリウレタンであり、最も好ましくはポリウレタン(ポリウレタンフィルム)である。
(Support base material)
Specific examples of the material for the supporting substrate include polyvinyl chloride, polyurethane, silicone, low density polyethylene (LDPE), and polyvinyl acetal. Polyvinyl chloride is hard and soft depending on the amount of plasticizer added, but is preferably soft. Silicone includes resin and rubber, and silicone rubber having excellent stretchability is preferable. Of these, polyvinyl chloride, polyurethane or silicone is preferred from the viewpoints of high elongation, low Young's modulus, thermal properties, adhesion and peelability. More preferred is polyvinyl chloride or polyurethane, particularly preferred is soft polyvinyl chloride or polyurethane, and most preferred is polyurethane (polyurethane film).
 これらの材質のフィルムは、たとえば低密度化、無延伸化、柔軟成分のモノマー量の増量、可塑剤の増量などにより、破断伸度およびヤング率を上記の好ましい範囲に制御することができる。 For these films, the elongation at break and Young's modulus can be controlled within the above preferred ranges by, for example, reducing the density, making no stretching, increasing the amount of monomer of the soft component, and increasing the amount of plasticizer.
 (支持基材の膜厚)
 支持基材の膜厚は5μm~500μmであることが好ましく、20μm~200μmであることがより好ましく、40μm~100μmであることがより好ましい。また支持基材の膜厚は蛍光体シート膜厚に対して、以下の数式を満たすことが好ましい。
(Thickness of support substrate)
The film thickness of the supporting substrate is preferably 5 μm to 500 μm, more preferably 20 μm to 200 μm, and more preferably 40 μm to 100 μm. Moreover, it is preferable that the film thickness of a support base material satisfy | fills the following numerical formula with respect to a fluorescent substance sheet film thickness.
  1/5≦(支持基材の膜厚/蛍光体シートの膜厚)≦3
 下限以上であれば支持基材は蛍光体シートの保護のために十分な機械的強度を得ることができる。また上限以下であれば蛍光体シートの貼り付けにおいて、LEDチップに対し十分な追従性を得ることができる。この観点から(支持基材の膜厚/蛍光体シートの膜厚)の下限は1/2以上であることがより好ましい。また上限は2以下であることがより好ましく、1以下であることが更に好ましい。
1/5 ≦ (film thickness of supporting substrate / film thickness of phosphor sheet) ≦ 3
If it is more than the lower limit, the supporting substrate can obtain sufficient mechanical strength for protecting the phosphor sheet. Moreover, if it is below an upper limit, in the sticking of a fluorescent substance sheet, sufficient followable | trackability with respect to an LED chip can be obtained. From this viewpoint, the lower limit of (the thickness of the supporting substrate / the thickness of the phosphor sheet) is more preferably ½ or more. The upper limit is more preferably 2 or less, and still more preferably 1 or less.
 <積層体における他の構成>
 本発明の積層体は支持基材上に粘着剤を有していてもよい。図2は粘着剤を有する積層体の例である。この場合は粘着剤4を塗布した面が蛍光体シート3と接するようにして積層体1を形成し、粘着剤4により蛍光体シート3を支持基材2上に固定する。粘着剤の粘着力は蛍光体シートを支持基材に保持する観点から0.1N/20mm以上であることが好ましい。またLEDチップを蛍光体シートで被覆した後に支持基材を剥離する観点から1.0N/20mm以下が好ましい。
<Other structures in the laminate>
The laminate of the present invention may have an adhesive on the support substrate. FIG. 2 is an example of a laminate having an adhesive. In this case, the laminate 1 is formed so that the surface to which the adhesive 4 is applied is in contact with the phosphor sheet 3, and the phosphor sheet 3 is fixed on the support base 2 by the adhesive 4. The adhesive strength of the adhesive is preferably 0.1 N / 20 mm or more from the viewpoint of holding the phosphor sheet on the support substrate. Moreover, 1.0 N / 20mm or less is preferable from a viewpoint which peels a support base material after coat | covering a LED chip with a fluorescent substance sheet.
 また本発明の積層体は蛍光体シートの表面を保護する目的で、蛍光体シート上に保護基材を設けてもよい。保護基材としては、公知の金属、フィルム、ガラス、セラミック、紙等を使用することができる。具体的には、アルミニウム(アルミニウム合金も含むなどの金属板や箔、セルロースアセテート、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリエステル、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリスチレン、ポリプロピレン、ポリカーボネート、アラミド、フッ素樹脂などのフィルム、樹脂ラミネート紙、樹脂コーティング紙などの加工紙が挙げられる。これらの保護基材は蛍光体シートが保管中に付着することがないように、表面があらかじめ剥離処理されていることが望ましい。また保管中または運搬中に蛍光体シートが折れ曲がる、または表面に傷がつくことがないように強度が高い基材が好ましい。これらの要求特性を満たす点においてフィルムまたは紙が好ましく、その中でも経済性と取り扱い性の面から剥離処理PETフィルムまたは剥離紙がより好ましい。 The laminate of the present invention may be provided with a protective substrate on the phosphor sheet for the purpose of protecting the surface of the phosphor sheet. As the protective substrate, a known metal, film, glass, ceramic, paper or the like can be used. Specifically, aluminum (metal plates and foils including aluminum alloys, cellulose acetate, polyethylene terephthalate (PET), polyethylene, polyester, polyamide, polyimide, polyphenylene sulfide, polystyrene, polypropylene, polycarbonate, aramid, fluorine resin, etc. Examples thereof include processed paper such as film, resin-laminated paper, resin-coated paper, etc. It is desirable that the surface of these protective substrates is previously peeled off so that the phosphor sheet does not adhere during storage. In addition, a substrate having a high strength is preferable so that the phosphor sheet does not bend during storage or transportation, or the surface is not damaged. And handling Release-treated PET film or release paper from the surface is more preferable.
 <積層体の製造方法>
 本発明の積層体の製造方法はこれを形成できるいかなる方法であってもよいが、直接塗布法、粘着剤による転写法および熱転写法が例示される。
<Method for producing laminate>
Although the manufacturing method of the laminated body of this invention may be any method which can form this, the direct coating method, the transfer method by an adhesive, and the thermal transfer method are illustrated.
 直接塗布法は支持基材上に蛍光体シート作製用組成物を塗布したのち、加熱硬化を行う方法である。なお、「蛍光体シート作製用組成物」の詳細は後述するが、「蛍光体シート作製用組成物」とは蛍光体シート形成用の塗布液として用いられるものであり、蛍光体を樹脂に分散した組成物である。 The direct coating method is a method in which the composition for preparing a phosphor sheet is coated on a supporting substrate and then heat-cured. The details of the “phosphor sheet preparation composition” will be described later. The “phosphor sheet preparation composition” is used as a coating liquid for forming a phosphor sheet, and the phosphor is dispersed in a resin. Composition.
 粘着剤による転写法は、粘着剤を有する支持基材の粘着面を、第2の基材上に作製した蛍光体シートに貼り合わせ、第2の基材上から支持基材上に蛍光体シートを転写する方法である。 In the transfer method using the adhesive, the adhesive surface of the supporting substrate having the adhesive is bonded to the phosphor sheet produced on the second substrate, and the phosphor sheet is formed on the supporting substrate from the second substrate. This is a method of transferring.
 熱転写法は第2の基材上に作製した蛍光体シートを支持基材と加熱圧着し第2の基材上から支持基材上に転写する方法である。 The thermal transfer method is a method in which a phosphor sheet produced on a second substrate is heat-pressed with a support substrate and transferred from the second substrate onto the support substrate.
 積層体の製造方法としては、膜厚精度の高い蛍光体シートを作製する観点から粘着剤による転写法と熱転写法が好ましく、さらにLEDチップ貼り付け後の支持基材の剥離性の観点から熱転写法が好ましい。 As a method for producing a laminate, a transfer method using an adhesive and a thermal transfer method are preferable from the viewpoint of producing a phosphor sheet with high film thickness accuracy, and a thermal transfer method from the viewpoint of peelability of the support substrate after the LED chip is attached. Is preferred.
 ここで蛍光体シートの作製について説明する。なお、以下は一例であり蛍光体シートの作製方法はこれに限定されない。まず、蛍光体シート形成用の塗布液として蛍光体を樹脂に分散した組成物(以下「蛍光体シート作製用組成物」という)を作製する。蛍光体の沈降抑制を目的としてシリコーン微粒子を添加してもよく、無機微粒子、レベリング剤および接着助剤などその他の添加物を添加してもよい。また樹脂として付加反応型シリコーン樹脂を用いる場合は、ヒドロシリル化反応遅延剤を配合して、ポットライフを延長することも可能である。流動性を適切にするために必要であれば、溶媒を加えて溶液とすることもできる。溶媒は流動状態の樹脂の粘度を調整できるものであれば、特に限定されない。例えば、トルエン、メチルエチルケトン、メチルイソブチルケトン、ヘキサン、アセトン、テルピネオール等が挙げられる。 Here, the production of the phosphor sheet will be described. In addition, the following is an example and the preparation method of a fluorescent substance sheet is not limited to this. First, a composition in which a phosphor is dispersed in a resin (hereinafter referred to as “phosphor sheet preparation composition”) is prepared as a coating solution for forming a phosphor sheet. Silicone fine particles may be added for the purpose of suppressing sedimentation of the phosphor, and other additives such as inorganic fine particles, leveling agents and adhesion aids may be added. In addition, when an addition reaction type silicone resin is used as the resin, a pot life can be extended by adding a hydrosilylation reaction retarder. If necessary to make fluidity appropriate, a solvent can be added to form a solution. A solvent will not be specifically limited if the viscosity of resin of a fluid state can be adjusted. For example, toluene, methyl ethyl ketone, methyl isobutyl ketone, hexane, acetone, terpineol and the like can be mentioned.
 これらの成分を所定の組成になるよう調合した後、ホモジナイザー、自公転型攪拌機、3本ローラー、ボールミル、遊星式ボールミル、ビーズミル等の撹拌・混練機で均質に混合分散することで、蛍光体シート作製用組成物が得られる。混合分散後、もしくは混合分散の過程で、真空もしくは減圧条件下で脱泡することも好ましく行われる。 After preparing these components so as to have a predetermined composition, a phosphor sheet is obtained by uniformly mixing and dispersing with a homogenizer, a revolving stirrer, a three-roller, a ball mill, a planetary ball mill, a bead mill or the like. A composition for preparation is obtained. Defoaming is preferably carried out under vacuum or reduced pressure conditions after mixing or dispersing.
 次に、蛍光体シート作製用組成物を基材上に塗布し、乾燥させる。塗布は、リバースロールコーター、ブレードコーター、スリットダイコーター、ダイレクトグラビアコーター、オフセットグラビアコーター、リバースロールコーター、ブレードコーター、キスコーター、ナチュラルロールコーター、エアーナイフコーター、ロールブレードコーター、バリバーロールブレードコーター、トゥーストリームコーター、ロッドコーター、ワイヤーバーコーター、アプリケーター、ディップコーター、カーテンコーター、スピンコーター、ナイフコーター等により行うことができる。蛍光体シート膜厚の均一性を得るためにはスリットダイコーターで塗布することが好ましい。また、本発明の蛍光体シートはスクリーン印刷やグラビア印刷、平版印刷などの印刷法を用いても作製することもできる。印刷法を用いる場合には、特にスクリーン印刷が好ましく用いられる。 Next, the phosphor sheet preparation composition is applied onto a substrate and dried. Application is reverse roll coater, blade coater, slit die coater, direct gravure coater, offset gravure coater, reverse roll coater, blade coater, kiss coater, natural roll coater, air knife coater, roll blade coater, varibar roll blade coater, toe. A stream coater, rod coater, wire bar coater, applicator, dip coater, curtain coater, spin coater, knife coater or the like can be used. In order to obtain the uniformity of the phosphor sheet thickness, it is preferable to apply with a slit die coater. The phosphor sheet of the present invention can also be produced by using a printing method such as screen printing, gravure printing, or lithographic printing. When using a printing method, screen printing is particularly preferably used.
 蛍光体シートの乾燥・硬化には、熱風乾燥機や赤外線乾燥機等の一般的な加熱装置が用いられる。加熱硬化条件は、通常、80℃~200℃で2分~3時間であるが、加熱により軟化し粘着性を発現できる、いわゆるBステージ状態とするために80℃~120℃で30分~2時間の加熱が好ましい。 A general heating device such as a hot air dryer or an infrared dryer is used for drying and curing the phosphor sheet. The heat-curing conditions are usually 80 ° C. to 200 ° C. for 2 minutes to 3 hours, but in order to obtain a so-called B-stage state that can be softened by heating and exhibit adhesiveness, it is 30 minutes to 2 ° C. Heating for hours is preferred.
 粘着剤による転写法と熱転写法に利用される第2の基材を用いる場合には、特に制限無く公知の金属、フィルム、ガラス、セラミック、紙等を使用することができる。膜厚精度の高い蛍光体シートを作製するためには23℃において第2の基材の破断伸度が200%未満、またはヤング率が600MPaより大きいことが好ましく、特にヤング率が4000MPa以上であることがより好ましい。また樹脂の硬化反応が速やかに進む150℃以上の温度において変形が少ないものが好ましい。 When using the 2nd base material utilized for the transfer method by an adhesive and a thermal transfer method, a well-known metal, a film, glass, ceramic, paper, etc. can be used without a restriction | limiting in particular. In order to produce a phosphor sheet with high film thickness accuracy, the elongation at break of the second base material is preferably less than 200% or Young's modulus is greater than 600 MPa at 23 ° C., and Young's modulus is particularly 4000 MPa or more. It is more preferable. In addition, a resin that is less deformed at a temperature of 150 ° C. or higher at which the resin curing reaction proceeds rapidly is preferable.
 具体的には、アルミニウム(アルミニウム合金も含む)、亜鉛、銅、鉄などの金属板や箔、セルロースアセテート、ポリエチレンテレフタレート(PET)、ポリエチレン、ポリエステル、ポリアミド、ポリイミド、ポリフェニレンスルフィド、ポリスチレン、ポリプロピレン、ポリカーボネート、ポリビニルアセタール、アラミドなどのプラスチックのフィルム、前記プラスチックがラミネートされた紙、または前記プラスチックによりコーティングされた紙、前記金属がラミネートまたは蒸着された紙、前記金属がラミネートまたは蒸着されたプラスチックフイルムなどが挙げられる。 Specifically, metal plates and foils such as aluminum (including aluminum alloys), zinc, copper, iron, cellulose acetate, polyethylene terephthalate (PET), polyethylene, polyester, polyamide, polyimide, polyphenylene sulfide, polystyrene, polypropylene, polycarbonate A film of plastic such as polyvinyl acetal or aramid, a paper laminated with the plastic, or a paper coated with the plastic, a paper laminated or vapor-deposited with the metal, or a plastic film laminated or vapor-deposited with the metal. Can be mentioned.
 これらの中でも、前記の要求特性や経済性の面で樹脂フィルムが好ましく、特にPETフィルムまたはポリフェニレンスルフィドフィルムが好ましい。また、樹脂の硬化や蛍光体シートをLEDに貼り付ける際に200℃以上の高温を必要とする場合は、耐熱性の面でポリイミドフィルムが好ましい。 Among these, a resin film is preferable in view of the above required characteristics and economy, and a PET film or a polyphenylene sulfide film is particularly preferable. Moreover, when a high temperature of 200 ° C. or higher is required when the resin is cured or the phosphor sheet is attached to the LED, a polyimide film is preferable in terms of heat resistance.
 また蛍光体シートの転写を容易にするために、第2の基材はあらかじめ表面が剥離処理されていることが好ましい。 Also, in order to facilitate the transfer of the phosphor sheet, it is preferable that the surface of the second base material is previously peeled off.
 第2の基材の厚さは特に制限はないが、下限としては30μm以上が好ましく、50μm以上がより好ましい。また、上限としては5000μm以下が好ましく、3000μm以下がより好ましい。 The thickness of the second substrate is not particularly limited, but the lower limit is preferably 30 μm or more, and more preferably 50 μm or more. Moreover, as an upper limit, 5000 micrometers or less are preferable and 3000 micrometers or less are more preferable.
 第2の基材から支持基材上への粘着剤による転写は空気の噛み込みが起きないようにローラーのついたラミネーターで行うことが望ましい。 It is desirable that the transfer from the second base material to the support base material with an adhesive is performed by a laminator with a roller so that air is not caught.
 また、第2の基材から支持基材上への熱転写は、加熱機構と加圧機構を備える熱ラミネーターで行うことが望ましい。ここで蛍光体シートを軟化させ粘着性を発現させる観点から熱転写は60℃以上で行うことが好ましい。また蛍光体シートのBステージ状態(すなわち半硬化の状態)を保つ観点から120℃以下で行うことが好ましい。また膜厚均一性を維持する観点から、加圧圧力は0.3MPa以下であることが好ましく、加圧時間は30秒以下が好ましく10秒以下がより好ましい。 Further, it is desirable that the thermal transfer from the second base material to the support base material is performed by a thermal laminator having a heating mechanism and a pressure mechanism. Here, thermal transfer is preferably performed at 60 ° C. or higher from the viewpoint of softening the phosphor sheet and developing adhesiveness. Moreover, it is preferable to carry out at 120 degrees C or less from a viewpoint of maintaining the B-stage state (namely, semi-hardened state) of a fluorescent substance sheet. Further, from the viewpoint of maintaining film thickness uniformity, the pressure is preferably 0.3 MPa or less, and the pressure time is preferably 30 seconds or less, more preferably 10 seconds or less.
 <発光装置の製造方法>
 本発明の積層体を用いた発光装置の製造方法について説明する。
<Method for manufacturing light emitting device>
A method for manufacturing a light emitting device using the laminate of the present invention will be described.
 本発明においては、基板上に接合した(実装した)LEDチップの発光面を、本発明の積層体の蛍光体シートで被覆する工程(被覆工程)を有する製造方法によって、発光装置が製造されることが好ましい。 In the present invention, a light emitting device is manufactured by a manufacturing method including a step (covering step) of covering a light emitting surface of an LED chip bonded (mounted) on a substrate with the phosphor sheet of the laminate of the present invention. It is preferable.
 また、LEDチップの発光面がLEDチップの上面および側面である場合などにおいては、基板上に接合した(実装した)LEDチップの上面および側面を本発明の積層体の蛍光体シートで被覆する工程(被覆工程)を有する製造方法によって、発光装置が製造されることが好ましい。 Further, in the case where the light emitting surface of the LED chip is the upper surface and side surface of the LED chip, etc., the step of covering the upper surface and side surface of the LED chip bonded (mounted) on the substrate with the phosphor sheet of the laminate of the present invention It is preferable that the light emitting device is manufactured by a manufacturing method having a (coating step).
 このように、本発明の積層体を用いた発光装置は、基板上にLEDチップを接合(実装)したのち、本発明の積層体を用いてLEDチップの上部発光面および側部発光面を蛍光体シートで被覆することにより製造されることが好ましい。 As described above, in the light emitting device using the laminate of the present invention, after the LED chip is bonded (mounted) on the substrate, the upper light emitting surface and the side light emitting surface of the LED chip are fluorescent using the laminate of the present invention. It is preferable to manufacture by covering with a body sheet.
 基板とはLEDチップを固定しかつ配線と接続するものである。基板は、例えばベース基板でも、サブマウント基板でもよい。基板の材料としては、特に限定されないが、ポリフタルアミド(PPA)、液晶ポリマー、シリコーン等の樹脂、窒化アルミニウム(AlN)、アルミナ(Al)、窒化ホウ素(BN)等のセラミック、アルミニウム等の金属を例示できる。 A board | substrate fixes an LED chip and connects with wiring. The substrate may be a base substrate or a submount substrate, for example. The material of the substrate is not particularly limited, but resin such as polyphthalamide (PPA), liquid crystal polymer, silicone, ceramic such as aluminum nitride (AlN), alumina (Al 2 O 3 ), boron nitride (BN), aluminum Etc. can be exemplified.
 基板上には例えば銀などにより電極パターンを形成されているものを使用する。また放熱機構を備えていてもよい。 Use a substrate on which an electrode pattern is formed, for example, with silver. Further, a heat dissipation mechanism may be provided.
 LEDチップは青色光または紫外光を発するものが好ましい。このようなLEDチップとして窒化ガリウム系のLEDチップが特に好ましい。 The LED chip preferably emits blue light or ultraviolet light. As such an LED chip, a gallium nitride LED chip is particularly preferable.
 LEDチップの型式は、ラテラル型、バーティカル型、フリップチップ型のいずれを用いてもよいが、高輝度、高放熱性の観点からフリップチップ型が特に好ましい。本発明において、LEDチップが基板上に接合されている(実装されている)、とは、LEDチップが基板に電気的に接合されている状態が好ましい。フリップチップの接合(実装)についてはハンダ接合、共晶接合、導電性ペースト接合が挙げられる。 The type of the LED chip may be any of a lateral type, a vertical type, and a flip chip type, but the flip chip type is particularly preferable from the viewpoint of high luminance and high heat dissipation. In the present invention, the LED chip is bonded (mounted) on the substrate is preferably in a state where the LED chip is electrically bonded to the substrate. Examples of flip chip bonding (mounting) include solder bonding, eutectic bonding, and conductive paste bonding.
 LEDチップは基板上に単独で接合(実装)されていてもよいし、複数個が接合(実装)されていても良い。また個々のパッケージ毎に蛍光体シートで被覆してもよいし、複数のパッケージを並べたものを一括して蛍光体シートで被覆したのち、ダイシングなどにより個片化してもよい。 The LED chips may be bonded (mounted) independently on the substrate, or a plurality of LED chips may be bonded (mounted). Each package may be covered with a phosphor sheet, or a plurality of packages arranged together may be covered with a phosphor sheet and then separated by dicing or the like.
 LEDチップの膜厚は特に限定されないが、LEDチップ上面や角部において蛍光体シートにかかる圧力を低くし、膜厚均一性を維持する観点から好ましくは500μm以下であり、より好ましくは300μm以下であり、さらに好ましくは200μm以下である。 The film thickness of the LED chip is not particularly limited, but is preferably 500 μm or less, more preferably 300 μm or less from the viewpoint of reducing the pressure applied to the phosphor sheet on the upper surface and corners of the LED chip and maintaining the film thickness uniformity. More preferably, it is 200 μm or less.
 またLEDチップおよび基板との接続部の合計膜厚と蛍光体シートの膜厚は以下の関係式を満たすことが好ましい。 Moreover, it is preferable that the total film thickness of the connection portion between the LED chip and the substrate and the film thickness of the phosphor sheet satisfy the following relational expression.
 1≦(LEDチップおよび基板との接続部の合計膜厚/蛍光体シートの膜厚)≦10。 1 ≦ (total film thickness of connection part with LED chip and substrate / film thickness of phosphor sheet) ≦ 10.
 下限以上であると発光色の方位ムラを抑制しやすい。また上限以下であると蛍光体シート膜厚均一性を維持しやすい。この観点から下限は2以上であることが好ましい。また上限は5以下が好ましく、4以下であることがより好ましい。 If it is above the lower limit, it is easy to suppress the uneven orientation of the emission color. Moreover, it is easy to maintain a phosphor sheet thickness uniformity as it is below an upper limit. From this viewpoint, the lower limit is preferably 2 or more. The upper limit is preferably 5 or less, and more preferably 4 or less.
 本発明の積層体のLEDチップへの貼り付けは、蛍光体シートを軟化させ、粘着性を発現させることから加熱条件下で行われることが好ましい。加熱温度は蛍光体シートが十分に軟化し、かつ急激な硬化が進行しないことから、60℃~150℃であることが好ましく、60℃~120℃であることがより好ましい。 The affixing of the laminate of the present invention to the LED chip is preferably performed under heating conditions because it softens the phosphor sheet and develops adhesiveness. The heating temperature is preferably 60 ° C. to 150 ° C., more preferably 60 ° C. to 120 ° C., since the phosphor sheet is sufficiently softened and rapid curing does not proceed.
 また、積層体のLEDチップへの貼り付けは、チップ側面への追従性を向上させる観点から加圧条件下で行われることが好ましい。圧力は蛍光体シートをLEDチップ側面に押さえつけることができ、かつ膜厚の維持が可能なことから、0.1MPa~0.3MPaであることが好ましい。 Moreover, it is preferable that the laminate is attached to the LED chip under a pressurized condition from the viewpoint of improving the followability to the side surface of the chip. The pressure is preferably 0.1 MPa to 0.3 MPa because the phosphor sheet can be pressed against the side surface of the LED chip and the film thickness can be maintained.
 加圧方法として具体的には可撓性シート膨らませて押圧する方法、空気等の気体を注入して非接触で押圧する方法、LEDチップの形状に沿った型をプレスして押圧する方法、またはロールで押圧する方法が例示される。またこれらの方法を複数組み合わせてもよい。 As a pressing method, specifically, a method of inflating and pressing a flexible sheet, a method of injecting a gas such as air and pressing without contact, a method of pressing and pressing a mold along the shape of the LED chip, or The method of pressing with a roll is illustrated. A plurality of these methods may be combined.
 さらに、積層体のLEDチップへの貼り付けは、蛍光体シートとLEDチップおよび基板との間の空気の噛み込みを防ぐために、真空雰囲気条件下で行われることが好ましい。 Furthermore, it is preferable that the laminate is attached to the LED chip under a vacuum atmosphere condition in order to prevent air from being caught between the phosphor sheet and the LED chip and the substrate.
 本発明の積層体を用いてLEDチップへの貼り付けを行う装置としては、前記条件を満たすものであれば特に限定されないが、汎用性が高く生産性に優れる点から、プラテンに可撓性シートを付設した圧締機構を設置した真空チャンバーを有する真空積層装置が好ましい。このような真空積層装置としては例えば特許3646042号公報に記載のものが例示される。 The apparatus for applying the laminate to the LED chip using the laminate of the present invention is not particularly limited as long as the above conditions are satisfied. However, since it is versatile and excellent in productivity, it is flexible on the platen. A vacuum laminating apparatus having a vacuum chamber provided with a pressure-clamping mechanism provided with is preferable. An example of such a vacuum laminating apparatus is described in Japanese Patent No. 3660442.
 このような真空積層装置を用いた発光装置の製造方法の一例を図3で説明する。この真空積層装置は上部プラテン6、可撓性シート8およびこれらに囲まれた密閉空間9とエア注入・排出口10を備えた圧締機構11と、ヒーターを有する下部プラテン7と、別のエア注入・排出口12を備えた真空チャンバー5から構成される。この下部プラテン7上に、LEDチップ14が接合(実装)された基板13を設置し、さらに支持基材2と蛍光体シート3を含んでなる積層体1を蛍光体シート3がLEDチップ表面に接する向きに順に重ね合わせる(図3a)。次に、エア注入・排出口10およびエア注入・排出口12から、図3bにおいて点線で示される矢印の方向にエアを排出(バキューム)することによって、真空チャンバー5および圧締機構11の密閉空間9内を真空雰囲気にする(図3b)。次に、下部プラテン7を図示しないヒーターで加熱しながら、エア注入・排出口10から、図3cの矢印の方向にエアを注入することによって、圧締機構11の密閉空間9にエアを注入し、可撓性シート8を膨張させて積層体1をLEDチップ14に貼り付ける(図3c)。次に、エア注入・排出口12から、図3dの矢印の方向にエアを注入することによって、真空チャンバー5内にエアを注入し常圧に戻し(図3d)、発光装置15を取り出す(図3e)。最後に発光装置15に貼り付けた積層体1から支持基材2を除く(図3f)。このように、本発明にかかる発光装置は、最終的には、図3fに示されるような、支持基材を含まない構成であることが好ましい。発光装置は、発光装置の積層体から支持基材が取り除かれた構成で用いられたり、流通することが多いためである。 An example of a method for manufacturing a light emitting device using such a vacuum laminating apparatus will be described with reference to FIG. This vacuum laminating apparatus includes an upper platen 6, a flexible sheet 8, a sealed space 9 surrounded by them, a pressing mechanism 11 having an air inlet / outlet port 10, a lower platen 7 having a heater, and another air. The vacuum chamber 5 is provided with an injection / discharge port 12. On this lower platen 7, a substrate 13 to which an LED chip 14 is bonded (mounted) is placed, and a laminate 1 including a support base 2 and a phosphor sheet 3 is further disposed on the surface of the LED chip. They are superimposed one after another in the direction of contact (FIG. 3a). Next, air is discharged (vacuum) from the air injection / discharge port 10 and the air injection / discharge port 12 in the direction indicated by the dotted line in FIG. The inside of 9 is made into a vacuum atmosphere (FIG. 3b). Next, air is injected into the sealed space 9 of the pressure-clamping mechanism 11 by injecting air from the air injection / discharge port 10 in the direction of the arrow in FIG. 3C while heating the lower platen 7 with a heater (not shown). Then, the flexible sheet 8 is expanded to attach the laminate 1 to the LED chip 14 (FIG. 3c). Next, air is injected from the air injection / discharge port 12 in the direction of the arrow in FIG. 3d, thereby injecting air into the vacuum chamber 5 and returning to normal pressure (FIG. 3d), and taking out the light emitting device 15 (FIG. 3). 3e). Finally, the support base 2 is removed from the laminate 1 attached to the light emitting device 15 (FIG. 3f). Thus, it is preferable that the light emitting device according to the present invention has a configuration that does not include a support base material as shown in FIG. This is because the light emitting device is often used or distributed in a configuration in which the support base material is removed from the laminate of the light emitting device.
 このように本発明の積層体を用いることにより、一段階の押圧で、蛍光体シートをLEDチップに被覆することが可能であり、生産性の高い発光装置の製造方法を提供できる。 Thus, by using the laminate of the present invention, the phosphor sheet can be coated on the LED chip with a single step of pressing, and a method for manufacturing a light-emitting device with high productivity can be provided.
 また、例えば、特許文献2に記載されているような従来の二段階押圧法、すなわち可撓性シートによる接触押圧とエア注入による非接触押圧を続けて行う方法においても、本発明の積層体を好適に用いることができる。 Further, for example, in the conventional two-stage pressing method as described in Patent Document 2, that is, the method of continuously performing contact pressing by a flexible sheet and non-contact pressing by air injection, the laminate of the present invention is also used. It can be used suitably.
 特に、基板上に1000μm以下の間隔で並べられた複数のLEDチップを、蛍光体シートで被覆する場合、二段階押圧法を単に用いても、十分な貼り付け精度(被覆制度)が得られない傾向にある。しかし、このような場合であっても、二段階押圧法を用い、加えて、ヤング率の小さい支持基材が用いられた本発明の積層体を用いることにより、高い精度で被覆を行うことができる。 In particular, when a plurality of LED chips arranged at intervals of 1000 μm or less on a substrate are covered with a phosphor sheet, sufficient application accuracy (covering system) cannot be obtained even if the two-stage pressing method is simply used. There is a tendency. However, even in such a case, it is possible to perform coating with high accuracy by using the two-stage pressing method and additionally using the laminate of the present invention in which a supporting base material having a low Young's modulus is used. it can.
 <発光装置>
 本発明の積層体を用いて得られる発光装置の説明をする。図4はバンプ18(例えば金製のバンプ)を介して基板13に接合したLEDチップ14を蛍光体シート3で被覆した発光装置(一例)の断面および上面の模式図である。
<Light emitting device>
A light emitting device obtained using the laminate of the present invention will be described. FIG. 4 is a schematic view of a cross-section and an upper surface of a light-emitting device (one example) in which the LED chip 14 bonded to the substrate 13 via the bumps 18 (for example, gold bumps) is covered with the phosphor sheet 3.
 図4の下部には発光装置の上面の模式図が示されている。ここで16はLEDチップ上面および側面における被覆部、17は基材における被覆部を示している。 4 is a schematic diagram of the top surface of the light emitting device. Here, 16 indicates a covering portion on the upper surface and side surface of the LED chip, and 17 indicates a covering portion on the base material.
 一方、図4の上部には発光装置の断面が示されている。図4の上部に示されている断面図は、例として上面図における破線IIの位置におけるものが示されている。このような蛍光体シートを被覆したチップの断面は、機械研磨法やイオン研磨法(クロスセクションポリッシング法を含む)などにより断面を作製し(断面を露出せしめ)、それをデジタルマイクロスコープやSEM(走査型電子顕微鏡)で観察する方法や、または研磨等の断面作製工程を経ずに、非破壊でX線CTスキャニングにより観察する方法により確認することができる。 On the other hand, a cross section of the light emitting device is shown in the upper part of FIG. The cross-sectional view shown in the upper part of FIG. 4 shows, for example, that at the position of the broken line II in the top view. The cross section of the chip coated with such a phosphor sheet is prepared by exposing the cross section by a mechanical polishing method or an ion polishing method (including a cross section polishing method), and then using a digital microscope or SEM ( It can be confirmed by a method of observing with a scanning electron microscope) or a method of observing by non-destructive X-ray CT scanning without passing through a cross-sectional preparation step such as polishing.
 発光装置は、少なくとも、基板と、基板上に接合(実装)されたLEDチップと、LEDチップの発光面を被覆する蛍光体シートとを備える。ここで発光面とはLEDの光が取り出される面を指す。発光面別の分類としては、フリップチップ型やラテラル型チップのように上面および側面から光が取り出されるタイプや、バーティカル型のように上面からのみ光が取り出されるタイプが例示される。さらにフリップチップの側面反射層を設け、上面からのみ光が取り出されるようにしたタイプも例として挙げることができる。また蛍光体シートとLEDの発光面との間に接着性付与等の目的により透明樹脂が存在してもよい。ここで透明樹脂としてはアクリル、エポキシ、シリコーンなどの熱硬化性樹脂が例示されるが、中でも耐熱性、耐光性の観点からシリコーン樹脂が最も好ましい。
上記の中でも、発光角を広くすることができ、かつ方位ムラを少なくできる観点から蛍光体シートはLEDチップの上面および側面を被覆することが好ましい。より好ましくは、蛍光体シートがLEDチップの上面および側面を直接密着して被覆することである。本発明の積層体を用いることにより、積層体から貼り付けられる蛍光体シートがLEDチップの上部発光面面積の80%以上および側部発光面積の50%以上と直接密着して被覆された発光装置を作製することが可能である。究極的には、積層体から貼り付けられる蛍光体シートがLEDチップの上部発光面面積の100%以上および側部発光面積の50%以上と直接密着して被覆された発光装置を作製することも可能である。
The light emitting device includes at least a substrate, an LED chip bonded (mounted) on the substrate, and a phosphor sheet that covers the light emitting surface of the LED chip. Here, the light emitting surface refers to the surface from which the LED light is extracted. Examples of the classification by light emitting surface include a type in which light is extracted from the upper surface and side surfaces such as a flip chip type and a lateral type chip, and a type in which light is extracted only from the upper surface such as a vertical type. Further, a type in which a flip-chip side reflecting layer is provided so that light can be extracted only from the upper surface can be given as an example. Further, a transparent resin may be present between the phosphor sheet and the light emitting surface of the LED for the purpose of imparting adhesiveness. Here, examples of the transparent resin include thermosetting resins such as acrylic, epoxy, and silicone. Among these, silicone resins are most preferable from the viewpoints of heat resistance and light resistance.
Among the above, the phosphor sheet preferably covers the upper surface and the side surface of the LED chip from the viewpoint of widening the emission angle and reducing azimuth unevenness. More preferably, the phosphor sheet covers and directly adheres the upper surface and side surfaces of the LED chip. By using the laminate of the present invention, the phosphor sheet attached from the laminate is coated in direct contact with 80% or more of the upper light emitting surface area and 50% or more of the side light emitting area of the LED chip. Can be produced. Ultimately, it is also possible to produce a light emitting device in which the phosphor sheet attached from the laminate is coated in direct contact with 100% or more of the upper light emitting surface area of the LED chip and 50% or more of the side light emitting area. Is possible.
 ここで、「直接密着」とは蛍光体シートとLEDチップの上部発光面または側部発光面との間に、空隙などが存在することなく接着している状態を指す。LEDチップ上部発光面への被覆において、直接密着部が少なければ、蛍光体シートが剥離しやすくなり、発光装置の不良の原因となることがある。本発明においては、直接密着部が実質的にLEDチップ上部発光面面積の80%以上であれば蛍光体シートの剥離が起こりにくくなり、発光装置の不良を抑制できる。この観点から、直接密着部が上部発光面面積の90%以上であることがより好ましく、実質的に100%であることが最も好ましい。直接密着部が実質的に100%であるとは、蛍光体シートで被覆されたLEDチップの断面を、顕微鏡を用いて500倍の倍率で観察したとき、LEDチップの発光面の領域に対して、当該LEDチップ(発光面)に直接密着している蛍光体シートの領域が100%である状態をさす。 Here, “direct contact” refers to a state in which the phosphor sheet and the upper light emitting surface or the side light emitting surface of the LED chip are bonded without any voids. In covering the LED chip upper light emitting surface, if there are few direct contact portions, the phosphor sheet is easily peeled off, which may cause a failure of the light emitting device. In the present invention, if the direct contact portion is substantially 80% or more of the LED chip upper light emitting surface area, the phosphor sheet is hardly peeled off, and the defect of the light emitting device can be suppressed. From this viewpoint, it is more preferable that the directly adhered portion is 90% or more of the upper light emitting surface area, and it is most preferable that it is substantially 100%. When the cross section of the LED chip covered with the phosphor sheet is observed at a magnification of 500 times using a microscope, the direct adhesion portion is substantially 100% with respect to the area of the light emitting surface of the LED chip. The state of the phosphor sheet that is in direct contact with the LED chip (light emitting surface) is 100%.
 また、LEDチップの発光面と蛍光体シートの間に屈折率の小さい空気層が存在すると光取り出し効率が低下する。そのため、LEDチップの側部発光面への被覆において、直接密着部が実質的にLEDチップの側部発光面積の50%未満であるとLEDチップ側面からの発光効率が低くなり輝度が低下することがある。つまり、LEDチップの側部発光面への被覆において、直接密着部がLEDチップの側部発光面積の50%以上であると、LEDチップ側面からの光取り出し効率の低下を抑制することができる。この観点から直接密着部がLEDチップ側部発光面積の70%以上であることが好ましく、90%以上であることがより好ましい。 Also, if an air layer with a small refractive index exists between the light emitting surface of the LED chip and the phosphor sheet, the light extraction efficiency is lowered. Therefore, in the covering to the side light emitting surface of the LED chip, if the direct contact portion is substantially less than 50% of the side light emitting area of the LED chip, the light emission efficiency from the side surface of the LED chip is lowered and the luminance is lowered. There is. That is, in covering the side light emitting surface of the LED chip, when the direct contact portion is 50% or more of the side light emitting area of the LED chip, it is possible to suppress a decrease in light extraction efficiency from the side surface of the LED chip. From this point of view, the direct contact portion is preferably 70% or more of the LED chip side light emitting area, and more preferably 90% or more.
 本発明の積層体を用いて得られる発光装置において、発光の方位ムラを抑制する観点からはLEDチップを被覆している蛍光体シートの膜厚がいずれの部位でも変化が小さいことが好ましく、さらにチップ上面からの発光に比べ側面からの発光強度が弱いため、LEDチップ側面部の膜厚はチップ上面部の膜厚に比べ薄いことが好ましい。ここで発光の方位ムラとは発光装置の光の見え方が角度によって異なることを示す。このような方位ムラは、発光装置のLEDチップ上面に対し垂直上に10cm離れた距離における色温度(以下、垂直色温度)と、斜め45°上方に10cm離れた距離における色温度(以下、45°色温度)の差の絶対値の大きさで判定することができる。本発明においては、当該差の絶対値が小さいほど、発光の方位ムラが小さいので、好ましい。 In the light emitting device obtained by using the laminate of the present invention, it is preferable that the film thickness of the phosphor sheet covering the LED chip is small in any part from the viewpoint of suppressing the uneven orientation of light emission. Since the light emission intensity from the side surface is weaker than the light emission from the top surface of the chip, the film thickness of the side surface portion of the LED chip is preferably thinner than the film thickness of the top surface portion of the chip. Here, the uneven azimuth of light emission means that the light appearance of the light emitting device varies depending on the angle. Such orientation unevenness is caused by a color temperature at a distance 10 cm vertically away from the upper surface of the LED chip of the light emitting device (hereinafter referred to as a vertical color temperature) and a color temperature at a distance 10 cm above obliquely 45 ° (hereinafter referred to as 45 °). It can be determined by the absolute value of the difference in color temperature. In the present invention, the smaller the absolute value of the difference, the smaller the uneven azimuth of light emission, which is preferable.
 この観点から、本発明においては、LEDチップ14と蛍光体シート3がLEDチップ14の上面で接している部分(領域)においてLEDチップ14の上面から蛍光体シート3の外面までの距離を距離a[μm]、LEDチップ14と蛍光体シート3がLEDチップ14の側面で接している部分(領域)においてLEDチップ14の側面から蛍光体シート3の外面までの距離を距離b[μm]とすると、発光ムラを抑制する観点から、0.80<a/b<1.50の関係が満たされることが好ましく、1.00<a/b<1.20がより好ましく、1.00<a/b<1.05が更に好ましい。 From this point of view, in the present invention, the distance from the upper surface of the LED chip 14 to the outer surface of the phosphor sheet 3 in the portion (region) where the LED chip 14 and the phosphor sheet 3 are in contact with each other on the upper surface of the LED chip 14 is defined as a distance a. [Μm] When the distance from the side surface of the LED chip 14 to the outer surface of the phosphor sheet 3 is a distance b [μm] in a portion (region) where the LED chip 14 and the phosphor sheet 3 are in contact with each other on the side surface of the LED chip 14 From the viewpoint of suppressing light emission unevenness, the relationship of 0.80 <a / b <1.50 is preferably satisfied, 1.00 <a / b <1.20 is more preferable, and 1.00 <a / More preferably, b <1.05.
 つまり、本発明の発光装置は、[a/b]の関係が上記した範囲を満足することが好ましい。また、そのような発光装置の製造に際しては、得られる発光装置において、[a/b]の関係が上記した範囲を満足せしめる製造方法が採られることが好ましい。 That is, in the light emitting device of the present invention, it is preferable that the relationship [a / b] satisfies the above-described range. Further, when manufacturing such a light emitting device, it is preferable to adopt a manufacturing method in which the relationship [a / b] satisfies the above-described range in the obtained light emitting device.
 したがって、本発明にかかる発光装置を得るための好ましい製造方法は、上記の関係を満たすように、本発明の積層体の蛍光体シートで、基板上に接合したLEDチップ(特に、LEDチップの発光面、または、上面および側面)を被覆する工程(被覆工程)を含むことである。 Therefore, a preferable manufacturing method for obtaining the light emitting device according to the present invention is an LED chip (particularly, light emission of the LED chip) bonded on the substrate with the phosphor sheet of the laminated body of the present invention so as to satisfy the above relationship. A step (covering step) for covering the surface or the upper surface and the side surface.
 このように、本発明にかかる発光装置を得るための製造方法は、本発明の積層体の蛍光体シートで被覆する工程(被覆工程)において、上記の関係が満たされる、発光装置の製造方法であることが好ましい。 Thus, the manufacturing method for obtaining the light emitting device according to the present invention is a method for manufacturing a light emitting device in which the above relationship is satisfied in the step of covering with the phosphor sheet of the laminate of the present invention (covering step). Preferably there is.
 以下に本発明を実施例により具体的に説明する。 Hereinafter, the present invention will be described in detail by way of examples.
 <蛍光体シート>
・シリコーン樹脂1:
樹脂主成分 (MeViSiO2/2)0.25(Ph2SiO2/2)0.3(PhSiO3/2)0.45(HO1/2)0.03 75重量部
硬度調整剤 ViMe2SiO(MePhSiO)17.5SiMe2Vi  10重量部
架橋剤 (HMe2SiO)2SiPh225重量部
 ※ただしMe:メチル基、Vi:ビニル基、Ph:フェニル基
反応抑制剤 1-エチニルヘキサノール 0.025重量部
白金触媒 白金(1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン)錯体1,3-ジビニル-1,1,3,3-テトラメチルジシロキサン溶液[白金含有量5重量%]0.01重量部
・シリコーン樹脂2:KER6075(信越化学工業製)。
・蛍光体1:NYAG-02(Intematix社製:CeドープのYAG系蛍光体、比重:4.8g/cm、D50:7μm)。
<Phosphor sheet>
・ Silicone resin 1:
Resin main component (MeViSiO 2/2 ) 0.25 (Ph 2 SiO 2/2 ) 0.3 (PhSiO 3/2 ) 0.45 (HO 1/2 ) 0.03 75 parts by weight Hardness modifier ViMe 2 SiO (MePhSiO) 17.5 SiMe 2 Vi 10 Part by weight Crosslinker (HMe 2 SiO) 2 SiPh 2 25 parts by weight * However, Me: methyl group, Vi: vinyl group, Ph: phenyl group reaction inhibitor 1-ethynylhexanol 0.025 parts by weight Platinum catalyst Platinum (1,3 -Divinyl-1,1,3,3-tetramethyldisiloxane) complex 1,3-divinyl-1,1,3,3-tetramethyldisiloxane solution [platinum content 5% by weight] 0.01 parts by weight Silicone resin 2: KER6075 (manufactured by Shin-Etsu Chemical Co., Ltd.).
Phosphor 1: NYAG-02 (manufactured by Intematix: Ce-doped YAG phosphor, specific gravity: 4.8 g / cm 3 , D50: 7 μm).
 (蛍光体シートの貯蔵弾性率測定方法)
測定装置 :粘弾性測定装置ARES-G2(TAインスツルメンツ製)
ジオメトリー:平行円板型(15mm)
ひずみ :1%
角周波数 :1Hz
温度範囲 :25℃~140℃
昇温速度 :5℃/分
測定雰囲気 :大気中。
膜厚50μmの蛍光体シートを16枚積層し、100℃のホットプレート上で加熱圧着して800μmの一体化した膜(シート)を作製し、直径15mmに切り抜いて測定サンプルとした。このサンプルを上記条件を用いて測定し、25℃および100℃における貯蔵弾性率を測定した。
(Method for measuring storage elastic modulus of phosphor sheet)
Measuring device: Viscoelasticity measuring device ARES-G2 (TA Instruments)
Geometry: Parallel disk type (15mm)
Strain: 1%
Angular frequency: 1 Hz
Temperature range: 25 ° C to 140 ° C
Temperature increase rate: 5 ° C./min Measurement atmosphere: In air.
Sixteen phosphor sheets having a film thickness of 50 μm were stacked and heat-pressed on a hot plate at 100 ° C. to produce an integrated film (sheet) having a thickness of 800 μm, and cut into a diameter of 15 mm to obtain a measurement sample. This sample was measured using the above conditions, and the storage elastic modulus at 25 ° C. and 100 ° C. was measured.
 (蛍光体シートの製造方法)
 [蛍光体シートの製造例1]
 容積300mlのポリエチレン製容器を用いて、シリコーン樹脂1を30重量%、蛍光体1を70重量%の比率で混合した。その後、遊星式撹拌・脱泡装置“マゼルスターKK-400”(クラボウ製)を用い、1000rpmで20分間撹拌・脱泡してシート作成用蛍光体分散液を得た。スリットダイコーターを用いてシート作成用蛍光体分散液を、基材として“セラピール”WDS(東レフィルム加工株式会社製; 膜厚50μm、破断伸度 115%、ヤング率 4500MPa)の剥離面上に塗布し、120℃で1時間加熱、乾燥して膜厚50μm、100mm角の蛍光体シート1を得た。この蛍光体シートの貯蔵弾性率は、25℃で1.0MPa、100℃で0.025MPaであった。
(Method for producing phosphor sheet)
[Production Example 1 of phosphor sheet]
Using a polyethylene container having a volume of 300 ml, the silicone resin 1 was mixed at a ratio of 30% by weight and the phosphor 1 was mixed at a ratio of 70% by weight. Thereafter, using a planetary stirring and defoaming apparatus “Mazerustar KK-400” (manufactured by Kurabo Industries), stirring and defoaming were carried out at 1000 rpm for 20 minutes to obtain a phosphor dispersion for sheet preparation. Using a slit die coater, a phosphor dispersion for sheet preparation is applied as a base material to a peeled surface of “Therapy” WDS (manufactured by Toray Film Processing Co., Ltd .; film thickness 50 μm, elongation at break 115%, Young's modulus 4500 MPa). And it heated and dried at 120 degreeC for 1 hour, and obtained the fluorescent substance sheet 1 with a film thickness of 50 micrometers and a 100 mm square. The storage elastic modulus of this phosphor sheet was 1.0 MPa at 25 ° C. and 0.025 MPa at 100 ° C.
 [蛍光体シートの製造例2]
 シリコーン樹脂1の代わりにシリコーン樹脂2を用いた以外は製造例1と同様にして、膜厚50μm、100mm角の蛍光体シート2を得た。この蛍光体シートの貯蔵弾性率は25℃で1.1MPa、100℃で0.35MPaであった。
[Production Example 2 of phosphor sheet]
A phosphor sheet 2 having a film thickness of 50 μm and a 100 mm square was obtained in the same manner as in Production Example 1 except that the silicone resin 2 was used instead of the silicone resin 1. The storage elastic modulus of this phosphor sheet was 1.1 MPa at 25 ° C. and 0.35 MPa at 100 ° C.
 <積層体>
 (支持基材)
 支持基材の23℃における破断伸度、ヤング率はテンシロンRTF-1310(エー・アンド・デイ製)を用いてASTM-D882-12に準じた方法により3回測定し、その平均値を求めた。
試料サイズ:幅10mm、初期長さ30mm
測定条件: 温度 23℃、引っ張り速度 300mm/min。
・支持基材1:ポリウレタンフィルム MG90(武田産業製)
 膜厚 50μm、破断伸度 500%、ヤング率 8MPa
・支持基材2:ポリウレタンフィルム MG90(武田産業製)
 膜厚 100μm、破断伸度 750%、ヤング率 8MPa
・支持基材3:ポリ塩化ビニルフィルム(軟質) タイプC+(アキレス製)
 膜厚 50μm、破断伸度 350%、ヤング率 250MPa
・支持基材4:粘着剤付ポリ塩化ビニルフィルム T-80MW(電気化学工業製)
 膜厚 50μm、破断伸度 300%、ヤング率 300MPa
・支持基材5:シリコーンフィルム 珪樹(三菱樹脂製)
 膜厚50μm、破断伸度 450%、 ヤング率 1.6MPa
・支持基材6:エチレン-テトラフルオロエチレン共重合体(ETFE)フィルム ネオフロン EF-0050(ダイキン製)
 膜厚 50μm、破断伸度 450%、ヤング率 640MPa。
<Laminate>
(Supporting substrate)
The elongation at break and the Young's modulus at 23 ° C. of the support substrate were measured three times using Tensilon RTF-1310 (manufactured by A & D) according to ASTM-D882-12, and the average value was obtained. .
Sample size: width 10mm, initial length 30mm
Measurement conditions: Temperature 23 ° C., pulling speed 300 mm / min.
Support substrate 1: Polyurethane film MG90 (manufactured by Takeda Sangyo)
Film thickness 50μm, elongation at break 500%, Young's modulus 8MPa
Support substrate 2: polyurethane film MG90 (manufactured by Takeda Sangyo)
Film thickness 100μm, elongation at break 750%, Young's modulus 8MPa
-Support base material 3: Polyvinyl chloride film (soft) Type C + (Achilles)
Film thickness 50μm, elongation at break 350%, Young's modulus 250MPa
Support substrate 4: Polyvinyl chloride film with adhesive T-80MW (manufactured by Denki Kagaku Kogyo)
Film thickness 50μm, elongation at break 300%, Young's modulus 300MPa
・ Supporting substrate 5: Silicone film Silica (Mitsubishi Resin)
Film thickness 50μm, elongation at break 450%, Young's modulus 1.6 MPa
Support substrate 6: ethylene-tetrafluoroethylene copolymer (ETFE) film NEOFLON EF-0050 (manufactured by Daikin)
Film thickness 50 μm, elongation at break 450%, Young's modulus 640 MPa.
 [製造例1]
 “セラピール”WDS上に形成した蛍光体シート1上に、支持基材1を載せ、ロール型熱ラミネーターを用いて温度80℃、加圧圧力0.3MPa、送り速度0.5m/minで押圧した。放冷して室温にしたのち、“セラピール”WDSを剥がし積層体1を得た。
[Production Example 1]
The support substrate 1 was placed on the phosphor sheet 1 formed on “Therapy” WDS, and was pressed at a temperature of 80 ° C., a pressure of 0.3 MPa, and a feed rate of 0.5 m / min using a roll-type thermal laminator. . After allowing to cool to room temperature, “Therapy” WDS was peeled off to obtain a laminate 1.
 [製造例2]
 蛍光体シート1の代わり蛍光体シート2を用いた以外は製造例1と同様にして積層体2を得た。
[Production Example 2]
A laminate 2 was obtained in the same manner as in Production Example 1 except that the phosphor sheet 2 was used instead of the phosphor sheet 1.
 [製造例3]
 支持基材1の代わりに支持基材2を用いた以外は製造例1と同様にして積層体3を得た。
[Production Example 3]
A laminate 3 was obtained in the same manner as in Production Example 1 except that the support substrate 2 was used instead of the support substrate 1.
 [製造例4]
 支持基材1の代わりに支持基材3を用いた以外は製造例1と同様にして積層体4を得た。
[Production Example 4]
A laminate 4 was obtained in the same manner as in Production Example 1 except that the support substrate 3 was used instead of the support substrate 1.
 [製造例5]
 “セラピール”WDS上に形成した蛍光体シート1上に、粘着剤層が蛍光体層と接するように支持基材4を載せ、ロール型ラミネーターを用いて温度25℃、加圧圧力0.3MPa、送り速度1.0m/minで押圧した。放冷して室温にしたのち、“セラピール”WDSを剥がし積層体5を得た。
[Production Example 5]
On the phosphor sheet 1 formed on “Therapy” WDS, the support base material 4 is placed so that the pressure-sensitive adhesive layer is in contact with the phosphor layer, and a temperature of 25 ° C., a pressure of 0.3 MPa is applied using a roll laminator, Pressing at a feed rate of 1.0 m / min. After allowing to cool to room temperature, “Therapy” WDS was peeled off to obtain a laminate 5.
 [製造例6]
 “セラピール”WDS上に形成した蛍光体シート1上に、支持基材5を載せ、ロール型熱ラミネーターを用いて温度80℃、加圧圧力0.3MPa、送り速度0.5m/minで押圧した。放冷して室温にしたのち、“セラピール”WDSを剥がし積層体6を得た。
[Production Example 6]
The support substrate 5 was placed on the phosphor sheet 1 formed on “Therapy” WDS, and was pressed at a temperature of 80 ° C., a pressurizing pressure of 0.3 MPa, and a feed rate of 0.5 m / min using a roll-type thermal laminator. . After allowing to cool to room temperature, “Therapy” WDS was peeled off to obtain a laminate 6.
 [製造例7]
 支持基材1の代わりに、支持基材6を用いた以外は製造例1と同様にして積層体67を得た。
[Production Example 7]
A laminated body 67 was obtained in the same manner as in Production Example 1 except that the supporting substrate 6 was used instead of the supporting substrate 1.
 なお、蛍光体シートの製造例1で作製した“セラピール”WDSと蛍光体シート1との積層体を積層体8とした。 In addition, the laminated body of the "therapeutic" WDS and the fluorescent substance sheet 1 which were produced in the manufacture example 1 of the fluorescent substance sheet was used as the laminated body 8.
 <発光素子>
 (貼り付け装置)
 真空チャンバーと、ヒーターに接続した下部プラテンと、上部プラテンと可撓性のフッ素シリコーンゴムシートとからなる圧締機構を有する、図3に記載したような、真空ラミネーターV130(ニチゴー・モートン製)を用いて行った。
<Light emitting element>
(Paste device)
A vacuum laminator V130 (manufactured by Nichigo Morton) as shown in FIG. 3 having a vacuum chamber, a lower platen connected to a heater, and a pressing mechanism comprising an upper platen and a flexible fluorosilicone rubber sheet. Used.
 (発光装置の光の見え方評価)
 発光装置のLEDチップ上面に対し垂直上に10cm離れた距離における色温度(以下、垂直色温度)と、斜め45°上方に10cm離れた距離における色温度(以下、45°色温度)の差の絶対値をもとめ、下記のように判定した。
(Evaluation of light appearance of light emitting device)
The difference between the color temperature at a distance 10 cm vertically away from the upper surface of the LED chip of the light emitting device (hereinafter referred to as “vertical color temperature”) and the color temperature at a distance 10 cm away obliquely above 45 ° (hereinafter referred to as “45 ° color temperature”). The absolute value was obtained and judged as follows.
 A: |(垂直色温度)-(45°色温度)|<500K
 B: 500K≦|(垂直色温度)-(45°色温度)|<1000K
 C: 1000K≦|(垂直色温度)-(45°色温度)|。
A: | (Vertical color temperature)-(45 ° color temperature) | <500K
B: 500K ≦ | (vertical color temperature) − (45 ° color temperature) | <1000K
C: 1000K ≦ | (vertical color temperature) − (45 ° color temperature) |.
 (追従性評価方法)
 LEDチップが基板に接合され、かつ蛍光体シートによって被覆された発光装置について、図4に示すI、II、IIIの位置でそれぞれ基板に垂直になるように断面を切断したのち、SEMにより断面図を撮影した。次にそれぞれの断面図よりLEDチップの上部発光面に対し蛍光体シートが接触している部分の割合を計算した。なお、図4において、A/D=1/10、B/D=5/10、C/D=9/10である。
(Followability evaluation method)
For the light emitting device in which the LED chip is bonded to the substrate and covered with the phosphor sheet, the cross section is cut by the SEM after cutting the cross section so as to be perpendicular to the substrate at the positions I, II and III shown in FIG. Was taken. Next, the ratio of the part which the fluorescent substance sheet is contacting with respect to the upper light emission surface of LED chip was calculated from each sectional drawing. In FIG. 4, A / D = 1/10, B / D = 5/10, and C / D = 9/10.
 また同様にLEDチップの側部発光面に対し蛍光体シートが接触している部分の割合を計算した。それぞれについて3箇所における測定結果の平均値を、上部発光面に対する追従性および側部発光面に対する追従性とし、以下の基準により追従性を評価した。 Similarly, the ratio of the portion where the phosphor sheet is in contact with the side light emitting surface of the LED chip was calculated. The average value of the measurement results at three locations for each was regarded as the followability to the upper light emitting surface and the followability to the side light emitting surface, and the followability was evaluated according to the following criteria.
 A:LED上部発光面の追従性が100%でありかつ側部発光面の追従性が90%以上
 B:LED上部発光面の追従性が100%でありかつ側部発光面の追従性が70%以上90%未満
 C:LED上部発光面の追従性が100%でありかつ側部発光面の追従性が50%以上70%未満
 D:LED上部発光面の追従性が90%以上100%未満、または側部発光面の追従性が40%以上50%未満
 E:LED上部発光面の追従性が90%未満、または側部発光面の追従性が40%未満。
A: The followability of the LED upper light emitting surface is 100% and the followability of the side light emitting surface is 90% or more. B: The followability of the LED upper light emitting surface is 100% and the followability of the side light emitting surface is 70. %: Less than 90% C: The followability of the LED upper light emitting surface is 100% and the followability of the side light emitting surface is 50% or more but less than 70% D: The followability of the LED upper light emitting surface is 90% or more and less than 100% Or, the followability of the side light emitting surface is 40% or more and less than 50% E: The followability of the LED upper light emitting surface is less than 90%, or the followability of the side light emitting surface is less than 40%.
 (膜厚均一性評価)
 前述の追従性評価方法で得られたSEMによる断面図より、LEDチップ14と蛍光体シート3がLEDチップ14の上面で接している部分における、LEDチップ14の上面から蛍光体シート3の外面までの距離aを計測した(図4を参照)。また、同様に、LEDチップ14と蛍光体シート3がLEDチップ14の側面で接している部分におけるLEDチップ14の側面から蛍光体シート3の外面までの距離bを計測した(図4を参照)。距離aおよび距離bの計測に際しては、有効数字3桁として計測した。a/bの値を、小数点第三位を四捨五入して求め、以下の基準により膜厚均一性を評価した。
(Thickness uniformity evaluation)
From the cross-sectional view obtained by the SEM obtained by the follow-up evaluation method described above, from the upper surface of the LED chip 14 to the outer surface of the phosphor sheet 3 in the portion where the LED chip 14 and the phosphor sheet 3 are in contact with each other on the upper surface of the LED chip 14. Distance a was measured (see FIG. 4). Similarly, the distance b from the side surface of the LED chip 14 to the outer surface of the phosphor sheet 3 at the portion where the LED chip 14 and the phosphor sheet 3 are in contact with each other on the side surface of the LED chip 14 was measured (see FIG. 4). . When measuring the distance a and the distance b, it was measured as three significant figures. The value of a / b was obtained by rounding off the third decimal place, and the film thickness uniformity was evaluated according to the following criteria.
 A:1.00<a/b<1.05
 B:1.05≦a/b<1.20
 C:0.80<a/b≦1.00または1.20≦a/b<1.50
 D:a/b≦0.80または1.50≦a/b、または評価不能な場合。
A: 1.00 <a / b <1.05
B: 1.05 ≦ a / b <1.20
C: 0.80 <a / b ≦ 1.00 or 1.20 ≦ a / b <1.50
D: When a / b ≦ 0.80 or 1.50 ≦ a / b, or when evaluation is impossible.
 [実施例1]
 電極が設けられたアルミナ製セラミック基板に厚み10μmの金バンプを介してサイズ1mm角、厚み150μmのLEDチップを接合した。続いて積層体1を3mm角に切断し、これの蛍光体シート面が接合したLEDチップの上面に接するように重ね合わせた。これを真空ラミネーターの真空チャンバー内にある下部プラテン上に設置した。続いて下部プラテンを80℃に熱したのち、真空チャンバーを密閉した。真空ポンプにより真空チャンバー内を0.001MPaまで減圧した後、30秒間維持した。その後、圧締機構に0.1MPaの空気を送り込んでフッ素シリコーンゴムシートを膨張させ積層体1をLEDチップの形状に沿うように10秒間押圧した。続いて真空チャンバーをブレークし(すなわち、真空チャンバーエアーを注入して大気圧(0.1MPa)にし)、蛍光体シートが被覆された発光装置を取りだした。ただし、この段階においては、被覆された蛍光体シートは未だBステージ(半硬化の状態)である。
[Example 1]
An LED chip having a size of 1 mm square and a thickness of 150 μm was bonded to an alumina ceramic substrate provided with electrodes via a gold bump of 10 μm thickness. Subsequently, the laminated body 1 was cut into 3 mm squares, and was superposed so that the phosphor sheet surface thereof was in contact with the upper surface of the bonded LED chip. This was placed on the lower platen in the vacuum chamber of the vacuum laminator. Subsequently, the lower platen was heated to 80 ° C., and then the vacuum chamber was sealed. The inside of the vacuum chamber was reduced to 0.001 MPa by a vacuum pump, and then maintained for 30 seconds. Thereafter, 0.1 MPa of air was fed into the pressure-clamping mechanism to expand the fluorosilicone rubber sheet, and the laminate 1 was pressed for 10 seconds so as to follow the shape of the LED chip. Subsequently, the vacuum chamber was broken (that is, vacuum chamber air was injected to make the atmospheric pressure (0.1 MPa)), and the light emitting device coated with the phosphor sheet was taken out. However, at this stage, the coated phosphor sheet is still in the B stage (semi-cured state).
 この発光装置から支持基材を取り除いたのち、150℃に加熱した恒温オーブン内で2時間加熱して蛍光体シートを充分に硬化せしめ、最終的な発光装置を得た。得られた発光装置に30mAの電流を通電することにより、発光装置を発光させ、LEDチップ発光面から垂直方向(垂線方向)に10cm離れた位置の垂直色温度と、LEDチップ発光面から当該垂線とのなす角が45°である方向(斜め45°方向)に10cm離れた位置の45°色温度を測定することにより、光の見え方評価を行った。続いて光の見え方評価を行った発光素子を、基板に垂直になるように断面を切断したのち、SEMにより断面図を撮影した。この断面図より追従性と膜厚均一性の評価を行った。 After removing the supporting substrate from the light emitting device, the phosphor sheet was sufficiently cured by heating in a constant temperature oven heated to 150 ° C. for 2 hours to obtain a final light emitting device. By supplying a current of 30 mA to the obtained light emitting device, the light emitting device is caused to emit light, and the vertical color temperature at a position 10 cm away from the LED chip light emitting surface in the vertical direction (perpendicular direction) and the vertical line from the LED chip light emitting surface. The appearance of light was evaluated by measuring the 45 ° color temperature at a position 10 cm away in a direction where the angle between the angle and the angle was 45 ° (an oblique 45 ° direction). Subsequently, the light-emitting element for which light appearance was evaluated was cut in a cross-section so as to be perpendicular to the substrate, and a cross-sectional view was taken with an SEM. The followability and film thickness uniformity were evaluated from this cross-sectional view.
 [実施例2~6]
 表1に記載の積層体を用いた以外は実施例1と同様にして発光装置を得た。得られた発光装置は実施例1と同様にして光の見え方、追従性および膜厚均一性の評価を行った。
[Examples 2 to 6]
A light emitting device was obtained in the same manner as in Example 1 except that the laminate described in Table 1 was used. The obtained light-emitting device was evaluated in the same manner as in Example 1 for the appearance of light, the followability, and the film thickness uniformity.
 [比較例1~2]
 表1に記載の積層体を用いた以外は実施例1と同様にして発光装置を得た。得られた発光装置は実施例1と同様にして光の見え方、追従性および膜厚均一性の評価を行った。
[Comparative Examples 1 and 2]
A light emitting device was obtained in the same manner as in Example 1 except that the laminate described in Table 1 was used. The obtained light-emitting device was evaluated in the same manner as in Example 1 for the appearance of light, the followability, and the film thickness uniformity.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 実施例の結果から、23℃において、破断伸度200%以上、ヤング率600MPa以下の支持基材と蛍光体シートを有する積層体を用いることにより、LEDチップ上に追従性と膜厚均一性を保ちながら蛍光体シートにより被覆することができることが分かった。 From the results of the examples, at 23 ° C., by using a laminate having a supporting base material having a breaking elongation of 200% or more and a Young's modulus of 600 MPa or less and a phosphor sheet, followability and film thickness uniformity are provided on the LED chip. It was found that it can be covered with the phosphor sheet while keeping.
 またこれらの発光装置を発光させたところ、実施例の発光素子はいずれの方向からも均一に光が発していたが、比較例の発光素子は斜め方向から観察するとやや暗くみえた。これにより方位ムラが発生していることが分かった。 Further, when these light emitting devices were caused to emit light, the light emitting elements of the examples emitted light uniformly from any direction, but the light emitting elements of the comparative example looked slightly dark when observed from an oblique direction. As a result, it was found that azimuth unevenness occurred.
 このように、本発明の積層体を用いて追従性と膜厚均一性に優れた貼付ができた発光素子では、LEDチップの垂直上の色温度と斜め45°方向での色温度の差が小さく、よって方位ムラを抑制できることが分かった。 As described above, in the light emitting device that can be pasted with excellent followability and film thickness uniformity using the laminate of the present invention, there is a difference between the color temperature in the vertical direction of the LED chip and the color temperature in the oblique 45 ° direction. It has been found that the azimuth unevenness can be suppressed.
1 積層体
2 支持基材
3 蛍光体シート
4 粘着材(粘着剤層)
5 真空チャンバー
6 上部プラテン
7 下部プラテン
8 可撓性シート
9 密閉空間(圧締機構用)
10 エア注入・排出口(圧締機構用)
11 圧締機構
12 エア注入・排出口(真空チャンバー用)
13 基板
14 LEDチップ
15 発光装置
16 LEDチップ上面および側面における被覆部
17 基材における被覆部
18 バンプ(例えば、金製のバンプ)
DESCRIPTION OF SYMBOLS 1 Laminated body 2 Support base material 3 Phosphor sheet 4 Adhesive material (adhesive layer)
5 Vacuum chamber 6 Upper platen 7 Lower platen 8 Flexible sheet 9 Sealed space (for pressure clamping mechanism)
10 Air inlet / outlet (for clamping mechanism)
11 Clamping mechanism 12 Air inlet / outlet (for vacuum chamber)
DESCRIPTION OF SYMBOLS 13 Substrate 14 LED chip 15 Light-emitting device 16 Cover part 17 in LED chip upper surface and side face Cover part 18 in base material Bump (for example, gold bump)

Claims (7)

  1. 支持基材と、蛍光体および樹脂を含有する蛍光体シートを含む積層体であって、引っ張り試験により求められる前記支持基材の23℃における破断伸度が200%以上であり、かつ前記支持基材の23℃におけるヤング率が600MPa以下である、積層体。 A laminate including a supporting substrate and a phosphor sheet containing a phosphor and a resin, the elongation at break at 23 ° C. of the supporting substrate determined by a tensile test is 200% or more, and the supporting group The laminated body whose Young's modulus in 23 degreeC of a material is 600 Mpa or less.
  2. 前記支持基材の23℃におけるヤング率が400MPa以下である請求項1に記載の積層体。 The layered product according to claim 1 whose Young's modulus in 23 ° C of said support substrate is 400 Mpa or less.
  3. 前記支持基材の23℃におけるヤング率が100MPa以下である請求項1に記載の積層体。 The layered product according to claim 1 whose Young's modulus in 23 ° C of said support substrate is 100 Mpa or less.
  4. 前記支持基材がポリ塩化ビニルまたはポリウレタンである請求項1から3のいずれかに記載の積層体。 The laminate according to any one of claims 1 to 3, wherein the supporting substrate is polyvinyl chloride or polyurethane.
  5. 基板上に接合したLEDチップの発光面を請求項1から4のいずれかに記載の積層体の蛍光体シートで被覆する工程(被覆工程)を有する発光装置の製造方法。 The manufacturing method of the light-emitting device which has a process (coating process) which coat | covers the light emission surface of the LED chip joined on the board | substrate with the fluorescent substance sheet of the laminated body in any one of Claim 1 to 4.
  6. 基板上に接合したLEDチップの上面および側面を請求項1から4のいずれかに記載の積層体の蛍光体シートで被覆する工程(被覆工程)を有する発光装置の製造方法。 The manufacturing method of the light-emitting device which has the process (coating process) which coat | covers the upper surface and side surface of the LED chip joined on the board | substrate with the fluorescent substance sheet of the laminated body in any one of Claim 1 to 4.
  7. 請求項5または6に記載の発光装置の製造方法であって、
    前記LEDチップと前記蛍光体シートがLEDチップの上面で接している部分におけるLEDチップ上面から蛍光体シート外面までの距離a[μm]と、前記LEDチップと前記蛍光体シートがLEDチップの側面で接している部分におけるLEDチップ側面から蛍光体シート外面までの距離b[μm]が、
     1.00<a/b<1.20
    の関係を満たす、発光装置の製造方法。
    A method of manufacturing a light emitting device according to claim 5 or 6,
    The distance a [μm] from the upper surface of the LED chip to the outer surface of the phosphor sheet at the portion where the LED chip and the phosphor sheet are in contact with each other on the upper surface of the LED chip, and the LED chip and the phosphor sheet on the side surface of the LED chip The distance b [μm] from the side surface of the LED chip to the outer surface of the phosphor sheet in the contacting portion is
    1.00 <a / b <1.20
    A method for manufacturing a light-emitting device that satisfies the above relationship.
PCT/JP2014/079062 2013-11-07 2014-10-31 Laminated article and method for manufacturing light-emitting device using same WO2015068652A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2014558341A JP6497072B2 (en) 2013-11-07 2014-10-31 Laminated body and method of manufacturing light emitting device using the same
CN201480056890.6A CN105637660B (en) 2013-11-07 2014-10-31 The manufacturing method of the light-emitting device of laminated body and the use laminated body

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-230878 2013-11-07
JP2013230878 2013-11-07

Publications (1)

Publication Number Publication Date
WO2015068652A1 true WO2015068652A1 (en) 2015-05-14

Family

ID=53041429

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/079062 WO2015068652A1 (en) 2013-11-07 2014-10-31 Laminated article and method for manufacturing light-emitting device using same

Country Status (4)

Country Link
JP (1) JP6497072B2 (en)
CN (1) CN105637660B (en)
TW (1) TWI659834B (en)
WO (1) WO2015068652A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200031135A (en) * 2017-09-08 2020-03-23 다우 코닝 도레이 캄파니 리미티드 Method for manufacturing encapsulated optical semiconductor device
CN111033770A (en) * 2017-09-08 2020-04-17 道康宁东丽株式会社 Method for producing sealed optical semiconductor device

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107859891A (en) * 2017-10-13 2018-03-30 深圳市乐的美光电股份有限公司 One kind is without filament LED bulb
KR20210084541A (en) * 2018-10-26 2021-07-07 도판 인사츠 가부시키가이샤 Manufacturing method of wavelength conversion sheet, phosphor protective film, wavelength conversion sheet with release film and wavelength conversion sheet
RU198465U1 (en) * 2019-11-25 2020-07-13 Федеральное государственное бюджетное образовательное учреждение высшего образования Иркутский государственный университет путей сообщения (ФГБОУ ВО ИрГУПС) A device for drying the damp or impregnated insulation of armature windings of traction electric machines with infrared radiation of a chamber type
CN113054082B (en) * 2019-12-27 2022-10-18 鑫虹光电有限公司 Fluorescent glass composite material, fluorescent glass substrate comprising same, and light conversion device

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181550A (en) * 2010-02-26 2011-09-15 Konica Minolta Opto Inc Light emitting device, and method of manufacturing the same
JP2012119673A (en) * 2010-12-03 2012-06-21 Samsung Led Co Ltd Method of coating a semiconductor light-emitting element with phosphor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4676735B2 (en) * 2004-09-22 2011-04-27 東レ・ダウコーニング株式会社 Optical semiconductor device manufacturing method and optical semiconductor device
JP3955065B2 (en) * 2005-01-18 2007-08-08 シャープ株式会社 Optical coupler
JP2007333949A (en) * 2006-06-14 2007-12-27 Dow Corning Toray Co Ltd Display device, its manufacturing method, and its visibility improving method
JP5340191B2 (en) * 2010-02-02 2013-11-13 日東電工株式会社 Optical semiconductor device
JP5827864B2 (en) * 2011-06-14 2015-12-02 日東電工株式会社 Sealing sheet and optical semiconductor device
WO2013101674A1 (en) * 2011-12-30 2013-07-04 Dow Corning Corporation Solid state light and method of forming
JP5953797B2 (en) * 2012-02-17 2016-07-20 東レ株式会社 Manufacturing method of semiconductor light emitting device
CN102850804B (en) * 2012-08-22 2015-03-11 深圳天鼎精细化工制造有限公司 Transparent two-component organic silicon pouring sealant for LED and preparation method thereof

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011181550A (en) * 2010-02-26 2011-09-15 Konica Minolta Opto Inc Light emitting device, and method of manufacturing the same
JP2012119673A (en) * 2010-12-03 2012-06-21 Samsung Led Co Ltd Method of coating a semiconductor light-emitting element with phosphor

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200031135A (en) * 2017-09-08 2020-03-23 다우 코닝 도레이 캄파니 리미티드 Method for manufacturing encapsulated optical semiconductor device
CN111033769A (en) * 2017-09-08 2020-04-17 道康宁东丽株式会社 Method for producing sealed optical semiconductor device
CN111033770A (en) * 2017-09-08 2020-04-17 道康宁东丽株式会社 Method for producing sealed optical semiconductor device
EP3680943A4 (en) * 2017-09-08 2021-05-26 DuPont Toray Specialty Materials Kabushiki Kaisha Method for producing sealed optical semiconductor device
EP3680944A4 (en) * 2017-09-08 2021-06-02 DuPont Toray Specialty Materials Kabushiki Kaisha Method for producing sealed optical semiconductor device
US11139419B2 (en) 2017-09-08 2021-10-05 Dupont Toray Specialty Materials Kabushiki Kaisha Method for producing sealed optical semiconductor device
KR102344560B1 (en) 2017-09-08 2021-12-30 듀폰 도레이 스페셜티 머티리얼즈 가부시키가이샤 Manufacturing method of encapsulated optical semiconductor device
US11257992B2 (en) 2017-09-08 2022-02-22 Dupont Toray Specialty Materials Kabushiki Kaisha Method for producing sealed optical semiconductor device
TWI779077B (en) * 2017-09-08 2022-10-01 日商杜邦東麗特殊材料股份有限公司 Manufacturing method of encapsulated photo-semiconductor element
CN111033770B (en) * 2017-09-08 2023-03-14 杜邦东丽特殊材料株式会社 Method for producing sealed optical semiconductor device

Also Published As

Publication number Publication date
JPWO2015068652A1 (en) 2017-03-09
TW201518088A (en) 2015-05-16
TWI659834B (en) 2019-05-21
CN105637660A (en) 2016-06-01
CN105637660B (en) 2018-11-09
JP6497072B2 (en) 2019-04-10

Similar Documents

Publication Publication Date Title
JP6641997B2 (en) Laminated body and method for manufacturing light emitting device using the same
JP6497072B2 (en) Laminated body and method of manufacturing light emitting device using the same
JP5287935B2 (en) Phosphor-containing sheet, LED light-emitting device using the same, and manufacturing method thereof
KR102035511B1 (en) Phosphor composition, phosphor sheet, phosphor sheet laminate, led chip and led package each using said phosphor composition, phosphor sheet or phosphor sheet laminate, and method for manufacturing led package
TWI693730B (en) Manufacturing method of light-emitting device
KR101713087B1 (en) Phosphor-containing cured silicone, process for production of same, phosphor-containing silicone composition, precursor of the composition, sheet-shaped moldings, led package, light-emitting device, and process for production of led-mounted substrate
JP6287212B2 (en) Phosphor-containing resin sheet and light emitting device
JP5862066B2 (en) Phosphor-containing sheet, LED light-emitting device using the same, and manufacturing method thereof
JP5488761B2 (en) Laminated body and method for manufacturing light emitting diode with wavelength conversion layer
JP5680210B2 (en) Sealing layer-covered semiconductor element and semiconductor device manufacturing method
JP2014022704A (en) Phosphor containing resin sheet and light-emitting device and manufacturing method thereof
JP2014116587A (en) Phosphor containing resin sheet, led element employing the same and manufacturing method thereof
JP2014114446A (en) Polyorganosiloxane composition, hardened product of the composition, phosphor sheet, method of producing the phosphor sheet, light-emitting device and method of producing the light-emitting device
JP5953797B2 (en) Manufacturing method of semiconductor light emitting device
WO2017094618A1 (en) Resin composition, sheet-shaped molded article of same, light-emitting device using same, and method for manufacturing same
JP2016146375A (en) Phosphor containing resin sheet, and light-emitting device including the same, and manufacturing method thereof
WO2015029664A1 (en) Method for producing sealed semiconductor element and method for manufacturing semiconductor device

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2014558341

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860992

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860992

Country of ref document: EP

Kind code of ref document: A1