WO2015068495A1 - Organ image capturing device - Google Patents

Organ image capturing device Download PDF

Info

Publication number
WO2015068495A1
WO2015068495A1 PCT/JP2014/075886 JP2014075886W WO2015068495A1 WO 2015068495 A1 WO2015068495 A1 WO 2015068495A1 JP 2014075886 W JP2014075886 W JP 2014075886W WO 2015068495 A1 WO2015068495 A1 WO 2015068495A1
Authority
WO
WIPO (PCT)
Prior art keywords
tongue
distribution
organ
unit
data distribution
Prior art date
Application number
PCT/JP2014/075886
Other languages
French (fr)
Japanese (ja)
Inventor
松田 伸也
Original Assignee
コニカミノルタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by コニカミノルタ株式会社 filed Critical コニカミノルタ株式会社
Publication of WO2015068495A1 publication Critical patent/WO2015068495A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/45For evaluating or diagnosing the musculoskeletal system or teeth
    • A61B5/4538Evaluating a particular part of the muscoloskeletal system or a particular medical condition
    • A61B5/4542Evaluating the mouth, e.g. the jaw
    • A61B5/4552Evaluating soft tissue within the mouth, e.g. gums or tongue
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0077Devices for viewing the surface of the body, e.g. camera, magnifying lens
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0059Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence
    • A61B5/0082Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes
    • A61B5/0088Measuring for diagnostic purposes; Identification of persons using light, e.g. diagnosis by transillumination, diascopy, fluorescence adapted for particular medical purposes for oral or dental tissue
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/10Segmentation; Edge detection
    • G06T7/12Edge-based segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/60Analysis of geometric attributes
    • G06T7/62Analysis of geometric attributes of area, perimeter, diameter or volume
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/1032Determining colour for diagnostic purposes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/103Detecting, measuring or recording devices for testing the shape, pattern, colour, size or movement of the body or parts thereof, for diagnostic purposes
    • A61B5/107Measuring physical dimensions, e.g. size of the entire body or parts thereof
    • A61B5/1077Measuring of profiles
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing

Definitions

  • the present invention relates to an organ image photographing apparatus for photographing an organ of a living body and detecting the thickness (degree of thickness) of the organ.
  • a diagnostic method for diagnosing a health condition or medical condition by observing the state of the tongue is known.
  • the physical condition and health level are judged based on the color and shape of the tongue (more precisely, tongue and moss).
  • One of the diagnostic items in tongue examination is the size (thickness) of the tongue. Poor water metabolism leads to a so-called swollen state, bulging and thickening of the tongue (referred to as enormous). Conversely, when the blood flow is insufficient or the water is insufficient, the tongue becomes thin and thin (this is called thinning). These states are called water stagnation or tuna in Oriental medicine, and when it becomes severe, it becomes edema or dehydration.
  • Patent Document 1 a tongue is photographed with a camera to extract a region of interest such as a tongue apex, a tongue, a tongue base, or a tongue base, and an individual's health condition can be easily diagnosed based on a state change of the region of interest. I have to.
  • Patent Document 2 an index for diagnosing the state of blood or blood vessels is obtained by photographing the tongue with a camera and detecting the color and gloss of the tongue separately.
  • Patent Document 3 polar coordinates with the center of gravity of the tongue as the origin are set, the variance of the radius for each angle (the distance between the center of gravity of the tongue and the point on the contour line) is calculated, and the tongue is based on the value of this variance.
  • the outer shape (circularity) is determined. Specifically, when the variance value is small, it is judged that the tongue is enlarged (in plan view) and close to a circle, and when the variance value is large, the tongue is thinned (in plan view). Judged to be close to a triangle.
  • JP 2011-239926 A (refer to claim 1, paragraph [0028] etc.)
  • Japanese Patent Laying-Open No. 2005-137756 (refer to claim 3, paragraphs [0071] to [0074], FIG. 5, FIG. 6, etc.)
  • Patent Documents 1 and 2 do not mention detection of the thickness of the tongue at all.
  • the outer shape of the tongue there are individual differences in the outer shape of the tongue, and the outer shape and thickness of the tongue do not necessarily correspond.
  • there is a muscular tissue inside the tongue and the outer shape differs depending on the developmental state and how to apply force.
  • the state where the tongue is thick is a so-called “swelling state” in which the muscle tissue contains a large amount of water.
  • the external shape of the tongue varies depending on individual differences and how the force is applied. Therefore, in the diagnosis of health based on the tongue thickness, the thickness of the tongue is accurately detected regardless of the external shape of the individual tongue. It is necessary.
  • the present invention has been made to solve the above-described problems, and an object thereof is to provide an organ imaging apparatus capable of accurately detecting the thickness of an organ regardless of the outer shape of each organ. There is to do.
  • An organ image capturing apparatus includes a data distribution acquisition unit that captures an organ of a living body and acquires a horizontal data distribution indicating a degree of unevenness on the surface of the organ, and the data distribution acquisition unit And a detecting unit for detecting the thickness of the organ based on the unevenness of the data distribution acquired in (1).
  • the thickness of the organ can be accurately detected regardless of the external shape of the individual organ.
  • It is explanatory drawing which shows the positional relationship of the illumination part of the said organ imaging
  • It is explanatory drawing which shows the picked-up image of the tongue by the said imaging part, the edge extraction filter, and the outline of the tongue extracted from the said picked-up image using the said edge extraction filter.
  • Photographing the tongues of multiple people, acquiring the horizontal height distribution of the tongue surface, and approximating a partial area with a polynomial, the second-order coefficient of the above polynomial, and the Chinese medicine for each tongue It is explanatory drawing which shows the relationship with the finding of tongue thickness when actually performing a tongue examination. It is a flowchart which shows the flow of operation
  • the numerical value range includes the values of the lower limit A and the upper limit B.
  • FIG. 1 is a perspective view showing an external appearance of an organ image photographing apparatus 1 of the present embodiment
  • FIG. 2 is a block diagram showing a schematic configuration of the organ image photographing apparatus 1.
  • the organ image capturing apparatus 1 captures an organ of a living body and extracts information necessary for diagnosis of health.
  • the subject to be imaged is a tongue as an organ of a living body is shown.
  • the organ image photographing apparatus 1 includes an illumination unit 2, a light projecting unit 3, an imaging unit 4, a display unit 5, an operation unit 6, and a communication unit 7.
  • the illumination unit 2 and the light projecting unit 3 are provided in the casing 21, and the other components (the imaging unit 4, the display unit 5, the operation unit 6, and the communication unit 7) are provided in the casing 22.
  • casing 22 are connected so that relative rotation is possible, rotation is not necessarily required and one side may be completely fixed to the other.
  • etc., May be provided in the single housing
  • the organ image photographing device 1 may be composed of a multifunctional portable information terminal.
  • the illumination unit 2 is composed of an illuminator that illuminates a subject to be photographed from above.
  • a light source that emits a daylight color such as a xenon lamp is used.
  • the brightness of the light source varies depending on the sensitivity of the imaging unit 4 and the distance to the shooting target. As an example, it is possible to consider the brightness at which the illuminance of the shooting target is 1000 to 10000 lx.
  • the illumination unit 2 has a lighting circuit and a dimming circuit in addition to the light source.
  • the light projecting unit 3 is composed of a light projector that projects (irradiates) linear light in a horizontal direction onto the surface of the tongue, which is an organ to be imaged.
  • the horizontal direction refers to a direction perpendicular to a line connecting the tip of the tongue (the tip of the tongue) and the root (the base of the tongue) (the same applies hereinafter). Details of the light projecting unit 3 will be described later.
  • the imaging unit 4 captures an image of a living organ and acquires an image, and includes an imaging lens and an area sensor (imaging device).
  • the aperture (brightness of the lens), shutter speed, and focal length of the imaging lens are set so that the entire range to be photographed is in focus.
  • F number 16, shutter speed: 1/120 seconds, focal length: 20 mm.
  • the area sensor is composed of image sensors such as CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor), and the sensitivity and resolution are set so that the color and shape of the subject can be detected sufficiently.
  • image sensors such as CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor)
  • sensitivity and resolution are set so that the color and shape of the subject can be detected sufficiently.
  • sensitivity 60 db
  • resolution 10 million pixels.
  • the imaging unit 4 includes a focus mechanism (not shown), a diaphragm mechanism, a drive circuit, an A / D conversion circuit, and the like.
  • a focus mechanism not shown
  • a diaphragm mechanism for example, data of 0 to 255 in 8 bits is acquired for each of red (R), green (G), and blue (B) as captured image data.
  • FIG. 3 is an explanatory diagram showing the positional relationship among the illumination unit 2, the light projecting unit 3, and the imaging unit 4 with respect to the subject to be photographed (tongue and face).
  • the imaging unit 4 is arranged to face the subject to be photographed.
  • the illuminating unit 2 is disposed so as to illuminate the imaging target at an angle A of, for example, 0 ° to 45 ° with respect to the imaging optical axis X of the imaging unit 4 passing through the imaging target.
  • the light projecting unit 3 projects linear light onto the imaging target at an angle B that is, for example, in the range of 0 ° to 45 ° with respect to the imaging optical axis X and is larger than the angle A.
  • the imaging optical axis X refers to the optical axis of the imaging lens that the imaging unit 4 has.
  • the angle A during illumination is large, the range in which the tongue can be photographed becomes small due to the shadow of the upper lip. Conversely, when the angle A is small, the color jump due to regular reflection increases. Also, if the angle B at the time of projection is large, the amount of deformation when linear light deforms along the irregularities on the tongue surface increases, so the irregularities on the tongue surface can be accurately determined based on the shape of the projected light. Although it can be detected well, conversely, if the angle B is small, the detection accuracy of the unevenness decreases.
  • the preferable range of the angle A is 15 ° to 30 °
  • the preferable range of the angle B is 30 ° to 45 °.
  • a ⁇ B is 15 ° to 30 °.
  • the display unit 5 has a liquid crystal panel (not shown), a backlight, a lighting circuit, and a control circuit, and displays an image acquired by photographing with the imaging unit 4.
  • the display unit 5 can also display information acquired from the outside via the communication unit 7 (for example, a result of diagnosis by transmitting information to an external medical institution).
  • the operation unit 6 is an input unit for instructing imaging by the imaging unit 4, and includes an OK button (imaging execution button) 6a and a CANCEL button 6b.
  • the display unit 5 and the operation unit 6 are configured by a common touch panel display device 31, and the display area of the display unit 5 and the display area of the operation unit 6 in the touch panel display device 31 are separated.
  • the operation unit 6 may be configured by an input unit other than the touch panel display device 31 (the operation unit 6 may be provided at a position outside the display area of the touch panel display device 31).
  • the communication unit 7 transmits the image data acquired by the imaging unit 4 and the data processed by the image processing unit 16 and the detection unit 18 described later to the outside via a communication line (including wired and wireless). And an interface for receiving information from the outside.
  • the organ imaging apparatus 1 further includes an illumination control unit 11, a light projection control unit 12, an imaging control unit 13, a display control unit 14, an operation control unit 15, an image processing unit 16, a storage unit 17, a detection unit 18, and communication control.
  • a unit 19 and an overall control unit 20 for controlling these units are provided.
  • the illumination control unit 11, the light projection control unit 12, the imaging control unit 13, the display control unit 14, the operation control unit 15, and the communication control unit 19 are the illumination unit 2, the light projection unit 3, the imaging unit 4, and the display unit 5.
  • the operation unit 6 and the communication unit 7 are controlled.
  • the overall control unit 20 is composed of, for example, a CPU (Central Processing Unit).
  • the illumination control unit 11, the light projection control unit 12, the imaging control unit 13, the display control unit 14, the operation control unit 15, the communication control unit 19, and the overall control unit 20 are integrated (for example, with one CPU). ) May be configured.
  • the image processing unit 16 obtains a horizontal data distribution indicating the degree of unevenness on the surface of the organ from the image taken by the imaging unit 4, and the data distribution together with the illumination unit 2, the light projecting unit 3, and the imaging unit 4.
  • the acquisition unit is configured.
  • the horizontal data distribution may be (1) distribution of the height of the surface of the tongue, (2) distribution of image data of any of RGB colors included in the captured image of the tongue surface, or It may be a data distribution indicating the component ratio of any of the RGB colors.
  • the image processing unit 16 projects the height of the tongue surface from the curved shape of the linear light projected on the tongue surface by the light projecting unit 3 and photographed by the imaging unit 4. It functions as a height distribution acquisition unit that acquires.
  • the image processing unit 16 extracts image data of at least one of RGB colors from the photographed image of the tongue acquired by the imaging unit 4 under illumination by the illumination unit 2.
  • it functions as a distribution creating unit that creates a distribution of image data of any of RGB colors or a distribution of data indicating a component ratio of any of RGB colors. Details of the data distribution will be described later.
  • the image processing unit 16 also has a function of extracting an organ outline from the image acquired by the imaging unit 4. Extraction of the outline of the organ can be performed by extracting the luminance edge of the captured image (the portion in which the brightness changes abruptly in the image). The luminance edge is extracted, for example, as shown in FIG. Such an edge extraction filter can be used.
  • the edge extraction filter is a filter that weights pixels in the vicinity of the target pixel when performing first-order differentiation (when obtaining a difference in image data between adjacent pixels).
  • the edge extraction filter for example, for the G image data of each pixel of the captured image, the difference between the image data is calculated between the target pixel and the neighboring pixel, and the pixel whose difference value exceeds a predetermined threshold is extracted. Thus, a pixel that becomes a luminance edge can be extracted. Since there is a luminance difference due to the shadow around the tongue, the contour line of the tongue can be extracted by extracting pixels that become luminance edges as described above.
  • G image data having the greatest influence on the luminance is used for the calculation, R or B image data may be used.
  • the speckled white portion found in the center of the tongue is called moss, and its color is called moss.
  • the color of the red part other than the above in the tongue is called the tongue color.
  • the storage unit 17 stores image data acquired by the imaging unit 4, data processed by the image processing unit 16 and the detection unit 18, information received from the outside, and operates the various control units described above.
  • This is a memory for storing a program for this purpose.
  • the detecting unit 18 detects the organ thickness (thickness degree) based on the unevenness of the data distribution acquired by the image processing unit 16. In particular, the detection unit 18 quantifies the thickness of the detected organ and determines the tongue thickness in the tongue examination. Details of the detection of the thickness of the organ (tongue) and the determination of the tongue thickness will be described later.
  • FIG. 5 is a perspective view illustrating a schematic configuration of the light projecting unit 3.
  • the light projecting unit 3 includes a point light source 41 and a columnar lens 42, and a drive circuit (not shown) that drives the point light source 41.
  • the point light source 41 is configured by an LD (Laser Diode) or an LED (Light Emitting Diode).
  • the columnar lens 42 is a columnar condensing lens in the horizontal direction that condenses the light emitted from the point light source 41 only in one direction (for example, the vertical direction). As the light emitted from the point light source 41 is condensed in one direction by the columnar lens 42, linear light that is long in the horizontal direction is projected onto the surface of the tongue as shown in FIG.
  • FIG. 7 shows a photographed image obtained by photographing linear light (shown by a thick solid line) projected on the tongue surface by the light projecting unit 3 with the imaging unit 4 when the tongue is thin and thick.
  • the cross-sectional shape is shown.
  • the portion of the photographed image that is not the tongue surface is represented by a straight line indicating a height reference 0 (see FIGS. 8 and 9) described later.
  • the projected linear light is slightly curved upward at the tongue portion.
  • the projected linear light is greatly curved upward at the tongue portion.
  • the thickness of the tongue (whether the tongue is thick or thin) can be detected by detecting the curved shape of the projected linear light.
  • the method of detecting the shape of the subject by irradiating the subject with linear light is also called a light cutting method.
  • the organ to be imaged is the tongue
  • a point light source that emits G or B light which is a complementary color of the tongue color (R)
  • the point light source 41 the point light source 41 that emits G or B light, which is a complementary color of the tongue color (R)
  • the curved shape of the projected light can be detected by photographing with the imaging unit 4 by adjusting the amount of emitted light.
  • the light projection part 3 is comprised using the point light source 41 and the columnar lens 42
  • the structure of the light projection part 3 is not necessarily limited to this.
  • a slit having an elongated opening in the horizontal direction may be arranged, and linear light may be projected onto the tongue surface in the horizontal direction through the opening.
  • a polygon mirror may be disposed in place of the columnar lens 42, and light may be projected in the horizontal direction by scanning the light from the light source at high speed in the horizontal direction with the polygon mirror.
  • the internal tongue muscle includes an upper longitudinal tongue muscle that winds up the side of the tongue upward, a lateral tongue muscle that stretches the tongue thinly, and a vertical tongue muscle that spreads the tongue flatly. When photographing the tongue, it is instructed to spread the tongue sideways, but depending on the person, there may be unconscious power.
  • FIG. 8 shows the relationship between the thickness of the tongue and the movement of the tongue by the muscles.
  • the image processing unit 16 displays the curved shape from the curved shape.
  • a data distribution as shown in FIG. This data distribution indicates the degree of unevenness on the tongue surface, and is a height distribution in which the height changes according to the unevenness on the tongue surface. Note that (a1) to (a3) show the height distribution in the horizontal direction when the tongue is thin, and (b1) to (b3) show the height distribution in the horizontal direction when the tongue is thick.
  • the linear light projected from the light projecting unit 3 is projected so as to pass through the substantially vertical center of the tongue surface as shown in FIG. Therefore, the height distribution shown in FIG. 8 is obtained as a horizontal height distribution that passes through a substantially vertical center of the tongue surface.
  • the vertical direction on the surface of the tongue refers to the direction connecting the tip of the tongue (the tongue tip) and the root (the tongue base) (the same applies hereinafter).
  • the detection unit 18 sets a region A that is closer to the end than the center in the horizontal direction in the height distribution of the tongue surface acquired by the image processing unit 16.
  • the region A is a region determined by the dimensional relationship shown in FIG. 9 (with a width W / 4 at a distance of W / 8 from the end of the tongue, where W is the width of the tongue determined from the contour line of the tongue. Area).
  • the said edge part may be an edge part on either side with respect to the center part of a tongue.
  • the height distributions of (a1) to (a3) and (b1) to (b3) in FIG. 9 correspond to those shown in FIG.
  • the detection unit 18 approximates the shape of the region A in the height distribution with a polynomial, detects irregularities on the surface of the tongue (the degree of curvature of the shape) based on the coefficients of the approximated polynomial, and determines from the irregular shapes Detect the thickness of the tongue.
  • the second-order coefficient of the approximate polynomial is 0 or a positive value.
  • the quadratic coefficient of the approximate polynomial is a negative value. Note that the thicker the tongue, the greater the negative value of the coefficient.
  • the degree of unevenness of the shape (height distribution) of the region A can be obtained to determine whether the tongue is thin or thick.
  • FIG. 10 shows a quadratic coefficient of the approximate polynomial of region A when a plurality of people's tongues are photographed and the horizontal height distribution of the tongue surface is acquired, and the Chinese doctor actually Shows the relationship with the findings of tongue thickness when the tongue was examined. From the figure, it can be seen that there is a high correlation between the quadratic coefficient of the approximate polynomial and the findings of Chinese medicine. That is, it can be said that the tongue is thicker as the secondary coefficient is larger (the value is larger on the plus side), the tongue is thinner, and the secondary coefficient is smaller (the value is larger on the minus side).
  • the correlation coefficient indicating the degree of correlation between the second-order coefficient and the findings of the Chinese medicine doctor was a high value of 0.88.
  • the detection unit 18 can detect and determine the thickness of the tongue based on the second-order coefficient of the approximate polynomial. For example, when the secondary coefficient is 0.003 or more, it can be determined that the tongue is thin, and when the secondary coefficient is 0 or less, it can be determined that the tongue is thick, When the second-order coefficient is greater than 0 and less than 0.003, the tongue thickness can be determined to be medium.
  • the correlation shown in FIG. 10 may be stored in the storage unit 17 as a table, and the detection unit 18 may determine the thickness of the tongue from the secondary coefficient with reference to the above table.
  • the degree of the thickness of the tongue is quantified in three stages, “1” to “3”, corresponding to “tongue is thin”, “medium”, and “tongue is thick”. However, if the level of the thickness of the tongue is digitized in this way, the health level of the subject can be easily diagnosed based on the numeric value.
  • FIG. 11 is a flowchart showing an operation flow in the organ image capturing apparatus 1 of the present embodiment.
  • the illumination control unit 11 turns on the illumination unit 2 (S1), and sets photographing conditions such as illuminance (S2). ).
  • the imaging control unit 13 controls the imaging unit 4 to shoot the tongue that is the shooting target (S3).
  • the image processing unit 16 extracts the contour line of the tongue from the photographed image of the tongue (S4). Then, the image processing unit 16 detects the upper and lower ends and left and right ends of the tongue from the extracted contour line Q, and detects the length and width of the tongue (length and width in the vertical direction of the tongue) (S5). Next, the light projecting control unit 12 controls the light projecting unit 3 to project linear light in the horizontal direction substantially at the center of the tongue surface in the vertical direction (S6).
  • the linear light projected on the tongue surface bends along the shape of the tongue surface.
  • the imaging unit 4 captures the curved shape of the linear light (S7)
  • the image processing unit 16 determines the horizontal direction of the tongue surface from the curved shape of the captured light, as shown in FIGS.
  • a height distribution is acquired (S8).
  • the detection unit 18 approximates the shape of a part of the region A of the height distribution with a second-order polynomial (S9), and refers to the table shown in FIG.
  • the degree of the thickness of the tongue is digitized (S10). Thereby, the detection unit 18 can diagnose the health level of the subject based on the numerical value of the tongue thickness.
  • the detection result of the tongue thickness and the diagnosis result of the health level of the subject are displayed on the display unit 5, but are output (recorded) to an output device (not shown) or transferred to the outside via the communication unit 7 as necessary. (S11).
  • the detection result of the tongue thickness may be digitized and transmitted to the outside, and the health level of the subject may be diagnosed outside.
  • the image processing unit 16 acquires a horizontal data distribution (height distribution) indicating the degree of unevenness on the tongue surface from the captured image obtained by the imaging unit 4. Even when the outer shape of the tongue varies depending on individual differences and how the force is applied, the horizontal data distribution is obtained regardless of the individual outer shape of the tongue as indicating the degree of unevenness of the tongue surface. Therefore, the detection unit 18 can accurately detect the thickness of the tongue (thick or thin) regardless of the outer shape based on the unevenness of the data distribution.
  • the detection unit 18 detects the tongue thickness of the tongue diagnosis based on the unevenness of the data distribution, so that it is possible to determine the health level of the subject based on the tongue thickness. Become.
  • the data distribution is a distribution of the height of the tongue surface, it is possible to realize a data distribution that reliably reflects the degree of unevenness of the tongue surface.
  • the imaging unit 4 captures a shape of the linear light projected by the light projecting unit 3 and deformed according to the unevenness of the tongue surface, and the height distribution of the tongue surface is taken from the shape to the image processing unit 16. Have acquired.
  • the height distribution of the tongue surface can be easily obtained by using the light cutting method.
  • the detection unit 18 performs approximation by a polynomial only for a partial region A of the height distribution. By doing in this way, processing time can be shortened compared with the case where the whole shape of height distribution is approximated with a polynomial (over the whole width W).
  • the region A is a region corresponding to the end portion side of the horizontal portion of the tongue in the height distribution. Regardless of whether the tongue is thin or thick, the region corresponding to the central portion of the tongue in the height distribution is nearly flat, making it difficult to detect the tongue thickness based on the coefficients of the approximate polynomial. Therefore, as in this embodiment, by approximating the shape of the region A shifted from the center of the tongue toward the end in the height distribution with a polynomial, the concave or convex shape of the tongue surface can be reliably detected. The degree of tongue thickness can be reliably detected.
  • a quadratic expression is used as the approximate polynomial. Based on the sign of the second-order coefficient, it can be easily determined whether the shape of the tongue surface is concave or convex, and therefore the degree of tongue thickness can be easily detected from the uneven shape.
  • the above-mentioned height distribution is a horizontal data distribution that passes through almost the center in the vertical direction on the surface of the tongue.
  • the horizontal uneven shape of the tongue surface is almost the same at any position in the vertical direction, so the thickness of the tongue is calculated from the uneven shape of the data distribution passing through the approximate center in the vertical direction.
  • FIG. 12 is an explanatory diagram schematically showing another setting method of the region A in the horizontal data distribution (height distribution).
  • the region A (a part of the height distribution) in which the detection unit 18 approximates the shape of the height distribution may include a data distribution of the end portion of the tongue.
  • the detection unit 18 approximates the shape of the height distribution in the region A (curvature) with a circle and detects its radius
  • the following relationship is obtained. That is, when the radius of the approximate circle when the tongue is thin is R1 (mm) and the radius of the approximate circle when the tongue is thick is R2 (mm), the radius R1 is significantly smaller than the radius R2. It was. Therefore, it is easy to determine whether the tongue is thick or thin based on the radius of the circle approximating the region A, and the detection accuracy of the tongue thickness can be further improved.
  • FIG. 13 is a distribution of image data obtained when the surface of the tongue is imaged by the imaging unit 4 under illumination by the illuminating unit 2, and the captured image in the horizontal direction passing through the substantially vertical center of the tongue surface.
  • the distribution of RGB image data is shown. However, the upper distribution is for the case where the tongue is thin, and the lower distribution is for the case where the tongue is thick.
  • the solid line indicates the distribution of R image data, the alternate long and short dash line indicates the distribution of G image data, and the broken line indicates the distribution of B image data.
  • the tongue When the tongue is thick, the tongue includes a portion that protrudes upward from the end to the center (see (b1) to (b3) of FIG. 8). Since such a convex portion on the tongue surface is brightly illuminated as it approaches the illumination unit 2, the value of the image data increases in the portion corresponding to the convex portion in the photographed image of the tongue.
  • the surface of the tongue when the tongue is thin, the surface of the tongue includes a portion that is substantially flat from the end to the center, or includes a concave portion (see (a1) to (a3) in FIG. 8). Since the flat part and recessed part of the tongue surface move away from the illumination part 2 compared with said convex part, even if illuminated, it is darker than a convex part.
  • the value of the image data decreases in the portion corresponding to the flat portion or the concave portion on the surface compared to the portion corresponding to the convex portion. This tendency is the same for all RGB image data.
  • the shape of the distribution of the image data shown in FIG. 13 corresponds to the shape of (a2) and (b2) in FIG.
  • the tongue thickness is detected by using the horizontal distribution of image data of one of RGB colors included in the photographed image of the tongue as a data distribution indicating the degree of unevenness of the tongue surface. Regardless of the outer shape). Also, with this method, the above-described light projecting unit 3 is not necessary, and thus it is possible to detect and diagnose the thickness of the tongue with a small and inexpensive configuration.
  • the tongue thickness can be accurately detected by using the data distribution indicating the R component ratio in the photographed image of the tongue obtained under illumination of the illumination unit 2 as the data distribution indicating the degree of unevenness of the tongue surface. I can say that.
  • the tongue thickness can be accurately determined in the same manner as described above using the distribution of data indicating the G component ratio (G / (R + G + B)) and the B component ratio (B / (R + G + B)) in the photographed image of the tongue. Can be detected.
  • the tongue thickness can also be obtained by the following simple calculation.
  • FIG. 14 is an explanatory view schematically showing the relationship between the planar shape and the cross-sectional shape of the tongue.
  • the surface area S (cm 2 ) of the tongue in the standard state of the tongue muscle is obtained by integrating the portion surrounded by the contour line (see FIG. 4) extracted from the photographed image of the tongue. Desired.
  • the surface area S is approximated as follows using an index W S (cm) corresponding to the lateral width of the tongue in the standard state of the tongue muscle and an index W L (cm) corresponding to the vertical width of the tongue. be able to. S ⁇ W S ⁇ W L
  • the tongue thickness Hs in the standard state of the tongue muscle can be easily obtained from the above equation regardless of the state of the tongue muscle at the time of photographing. And it becomes possible to diagnose a health degree based on the calculated
  • the subject to be photographed is a human tongue
  • it may not be a human but may be an animal other than a human.
  • the tongue thickness can be detected by applying the method of the present embodiment, and a diagnosis can be performed based on the detection result. In this case, it is possible to quickly and accurately determine the poor physical condition of an animal that cannot communicate its intention.
  • the organ of the living body to be imaged is not limited to the tongue.
  • the organ of the living body to be imaged is not limited to the tongue.
  • it is a site where swelling occurs due to the quality of water metabolism such as eyelids, it is possible to detect the thickness of the organ and make a diagnosis based on the thickness as in this embodiment.
  • the organ image capturing apparatus described above can be expressed as follows, and has the following effects.
  • the organ image capturing apparatus described above captures an organ of a living body and acquires a horizontal data distribution indicating the degree of unevenness on the surface of the organ, and the data distribution acquisition unit acquires the data distribution in the horizontal direction. And a detector for detecting the thickness of the organ based on the unevenness of the data distribution.
  • the horizontal data distribution indicating the degree of unevenness on the organ surface is acquired by the data distribution acquisition unit. Since this data distribution indicates the degree of unevenness on the organ surface and is acquired regardless of the external shape of each organ, the detection unit determines the thickness (thickness of the organ) based on the unevenness of the data distribution. By detecting the degree of thickness, the thickness of the organ can be accurately detected regardless of the outer shape of each organ, even if the outer shape of the organ varies depending on individual differences and how to apply force.
  • the organ may be a tongue
  • the detection unit may detect a tongue thickness for tongue examination based on the unevenness of the data distribution. In this case, it is possible to determine the health level of the subject based on the tongue thickness.
  • the data distribution may be a distribution of the height of the tongue surface.
  • the height distribution on the surface of the tongue is a distribution representing the degree of unevenness on the surface of the tongue itself. Therefore, by using the height distribution, the thickness of the tongue can be reliably detected with high accuracy.
  • the data distribution acquisition unit is configured to project a linear light in a horizontal direction on the surface of the tongue, and the unevenness of the surface of the tongue of the light projected by the light projecting unit.
  • An imaging unit that captures a curved shape and a height distribution acquisition unit that acquires a height distribution of the surface of the tongue from the curved shape of the light captured by the imaging unit.
  • the data distribution may be a distribution of image data of any of red, green, and blue in a photographed image of the tongue surface, or a distribution of data indicating a component ratio of any of the colors.
  • the illumination condition is constant, the brightness changes between the concave and convex portions on the tongue surface, so the red (R), green (G), and blue (B) image data included in the captured image of the tongue is Both change according to the unevenness of the tongue surface. Therefore, by using the distribution of image data of any color of RGB of the photographed image or the distribution of data indicating the component ratio of any color as the data distribution indicating the degree of unevenness on the tongue surface, The thickness can be detected with high accuracy.
  • the data distribution acquisition unit includes an illumination unit that illuminates the surface of the tongue, an imaging unit that captures the tongue under illumination by the illumination unit, and a captured image of the tongue acquired by the imaging unit.
  • a distribution creation unit that extracts image data of at least one of the colors of blue and creates a distribution of the image data of any of the colors or a distribution of data indicating a component ratio of any of the colors May be. In this case, a horizontal data distribution indicating the degree of unevenness on the tongue surface can be reliably acquired from the RGB image data included in the photographed image of the tongue.
  • the detecting unit may approximate the shape of the distribution with a polynomial and detect the thickness of the tongue based on a coefficient of the polynomial. Since the coefficient of the approximate polynomial indicates the degree of unevenness on the tongue surface, the thickness of the tongue (degree of thickness) can be reliably detected based on this coefficient.
  • the detection unit may perform approximation by the polynomial only for a part of the distribution. In this case, the processing time can be shortened compared to the case where the entire shape of the data distribution is approximated by a polynomial.
  • the part of the distribution may be a data distribution on the end side with respect to the central portion in the horizontal direction of the tongue.
  • the part of the distribution may include a data distribution of the end of the tongue.
  • the degree of curvature (radius, radius) of the approximate curve differs significantly depending on the degree of unevenness on the tongue surface (degree of tongue thickness).
  • the curve of the approximate curve increases, and the curve of the approximate curve decreases when the tongue is thin. Therefore, the detection accuracy of the degree of tongue thickness is further improved.
  • the polynomial may be a quadratic expression, and the coefficient may be a quadratic coefficient of the polynomial.
  • the detection unit can easily determine whether the shape of the tongue surface is a concave shape or a convex shape based on the sign of the quadratic coefficient of the approximate polynomial. The degree of thickness can be easily detected.
  • the data distribution is a horizontal data distribution passing through substantially the center of the direction connecting the tongue tip and the tongue base on the tongue surface. Since the uneven shape in the horizontal direction of the tongue surface is almost the same in any cross section as long as the cross section is perpendicular to the direction connecting the tongue tip and the base of the tongue, from the uneven shape of the above data distribution passing through the approximate center in the vertical direction, The thickness of the tongue can be detected sufficiently.
  • the present invention can be used for an apparatus for photographing a living organ and detecting the thickness of the organ.

Landscapes

  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Medical Informatics (AREA)
  • General Health & Medical Sciences (AREA)
  • Heart & Thoracic Surgery (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Dentistry (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Surgery (AREA)
  • Molecular Biology (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Biomedical Technology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Geometry (AREA)
  • Rheumatology (AREA)
  • Orthopedic Medicine & Surgery (AREA)
  • Physical Education & Sports Medicine (AREA)
  • Quality & Reliability (AREA)
  • Radiology & Medical Imaging (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Audiology, Speech & Language Pathology (AREA)
  • Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
  • Measuring And Recording Apparatus For Diagnosis (AREA)

Abstract

This organ image capturing device (1) comprises a data distribution acquisition unit and a detection unit (18). The data distribution acquisition unit captures an image of an organ of a living body, and acquires a horizontal-direction data distribution indicating the degree of unevenness on the surface of the organ. The detection unit (18) detects the thickness of the organ on the basis of the unevenness of the data distribution as acquired by the data distribution acquisition unit.

Description

器官画像撮影装置Organ imaging device
 本発明は、生体の器官を撮影して、器官の厚さ(厚さの度合い)を検出する器官画像撮影装置に関するものである。 The present invention relates to an organ image photographing apparatus for photographing an organ of a living body and detecting the thickness (degree of thickness) of the organ.
 東洋医学においては、舌の状態を観察することにより、健康状態や病状を診断する診断手法(舌診)が知られている。舌診では、舌(正確には舌と苔)の色と形をもとに体調や健康度を判断している。 In oriental medicine, a diagnostic method (tongue diagnosis) for diagnosing a health condition or medical condition by observing the state of the tongue is known. In the tongue examination, the physical condition and health level are judged based on the color and shape of the tongue (more precisely, tongue and moss).
 舌診における診断項目の一つに、舌の大きさ(厚み)がある。水分の代謝が悪いと、いわゆるむくんだ状態となり、舌が膨らみ分厚くなる(これを胖大と呼ぶ)。反対に、血流の不足や水分不足になると、舌が痩せて薄くなる(これを痩薄と呼ぶ)。これらの状態を、東洋医学では水滞または津虚と言い、ひどくなると浮腫や脱水状態となる。 One of the diagnostic items in tongue examination is the size (thickness) of the tongue. Poor water metabolism leads to a so-called swollen state, bulging and thickening of the tongue (referred to as enormous). Conversely, when the blood flow is insufficient or the water is insufficient, the tongue becomes thin and thin (this is called thinning). These states are called water stagnation or tuna in Oriental medicine, and when it becomes severe, it becomes edema or dehydration.
 現在、これらの診断は、専門の医師が実施しているが、経験や勘に頼っているため、個人差があり、客観性に乏しい。 Currently, these diagnoses are carried out by specialized doctors, but because they rely on experience and intuition, there are individual differences and poor objectivity.
 そこで、デジタルカメラを用いて被写体を撮影し、撮影画像からその特徴を数値化して記録、診断するシステムが提案されている。例えば特許文献1では、舌をカメラで撮影して、舌尖、舌中、舌辺、舌根のような関心領域を抽出し、関心領域の状態変化に基づいて簡便に個人の健康状態を診断できるようにしている。また、特許文献2では、舌をカメラで撮影して舌の色や光沢を分離して検出することで、血液や血管の状態を診断する指標を得るようにしている。さらに、特許文献3では、舌の重心を原点とする極座標を設定し、角度ごとの半径(舌の重心と輪郭線上の点との距離)の分散を算出し、この分散の値に基づいて舌の外形形状(円形度)を判断するようにしている。具体的には、分散の値が小さい場合には、舌が肥大して(平面視で)円形に近いと判断し、分散の値が大きい場合には舌が痩薄して(平面視で)三角形に近いと判断している。 Therefore, a system has been proposed in which a subject is photographed using a digital camera, and the features of the photographed image are digitized and recorded and diagnosed. For example, in Patent Document 1, a tongue is photographed with a camera to extract a region of interest such as a tongue apex, a tongue, a tongue base, or a tongue base, and an individual's health condition can be easily diagnosed based on a state change of the region of interest. I have to. In Patent Document 2, an index for diagnosing the state of blood or blood vessels is obtained by photographing the tongue with a camera and detecting the color and gloss of the tongue separately. Further, in Patent Document 3, polar coordinates with the center of gravity of the tongue as the origin are set, the variance of the radius for each angle (the distance between the center of gravity of the tongue and the point on the contour line) is calculated, and the tongue is based on the value of this variance. The outer shape (circularity) is determined. Specifically, when the variance value is small, it is judged that the tongue is enlarged (in plan view) and close to a circle, and when the variance value is large, the tongue is thinned (in plan view). Judged to be close to a triangle.
特許第3854966号公報(請求項1、段落〔0004〕、〔0009〕等参照)Japanese Patent No. 3854966 (see claim 1, paragraphs [0004], [0009], etc.) 特開2011-239926号公報(請求項1、段落〔0028〕等参照)JP 2011-239926 A (refer to claim 1, paragraph [0028] etc.) 特開2005-137756号公報(請求項3、段落〔0071〕~〔0074〕、図5、図6等参照)Japanese Patent Laying-Open No. 2005-137756 (refer to claim 3, paragraphs [0071] to [0074], FIG. 5, FIG. 6, etc.)
 ところが、特許文献1および2では、舌の厚さの検出については全く触れられていない。 However, Patent Documents 1 and 2 do not mention detection of the thickness of the tongue at all.
 また、特許文献3の方法では、舌の厚さを精度よく検出(判断)することができない。つまり、個人差や力の入れ方(力の入れ具合い)により、円形でも薄い舌や、三角形でも厚い舌が存在するが、半径(距離)の分散値に基づいて舌厚を判断する特許文献3の方法では、円形=肥大、三角形=痩薄と判断するため、円形でも薄い舌や、三角形でも厚い舌の場合は、舌の厚さを誤って判断することになる。 Also, the method of Patent Document 3 cannot accurately detect (determine) the thickness of the tongue. That is, there are round and thin tongues and thick and thick tongues depending on individual differences and how force is applied (force input condition), but Patent Document 3 determines the tongue thickness based on the dispersion value of the radius (distance). In this method, it is determined that the circle = hypertrophy and the triangle = thinness. Therefore, in the case of a tongue that is circular or thin, or a tongue that is both thick and triangular, the thickness of the tongue is erroneously determined.
 舌の外形形状には個人差があり、舌の外形形状と厚みとは必ずしも対応しない。また、舌の内部には筋肉組織があり、その発達状態や力の入れ方により外形形状に差異が生じる。舌が厚い状態は、この筋肉組織内に水分を多く含んだいわゆる「むくみのある状態」である。このように、個人差や力の入れ方によって舌の外形形状は異なるため、舌厚に基づく健康度の診断においては、個々の舌の外形形状に関係なく、舌の厚さを精度よく検出することが必要である。 There are individual differences in the outer shape of the tongue, and the outer shape and thickness of the tongue do not necessarily correspond. In addition, there is a muscular tissue inside the tongue, and the outer shape differs depending on the developmental state and how to apply force. The state where the tongue is thick is a so-called “swelling state” in which the muscle tissue contains a large amount of water. In this way, the external shape of the tongue varies depending on individual differences and how the force is applied. Therefore, in the diagnosis of health based on the tongue thickness, the thickness of the tongue is accurately detected regardless of the external shape of the individual tongue. It is necessary.
 本発明は、上記の問題点を解決するためになされたもので、その目的は、個々の器官の外形形状に関係なく、器官の厚さを精度よく検出することができる器官画像撮影装置を提供することにある。 The present invention has been made to solve the above-described problems, and an object thereof is to provide an organ imaging apparatus capable of accurately detecting the thickness of an organ regardless of the outer shape of each organ. There is to do.
 本発明の一側面に係る器官画像撮影装置は、生体の器官を撮影して、前記器官の表面の凹凸の度合いを示す水平方向のデータ分布を取得するデータ分布取得部と、前記データ分布取得部にて取得された前記データ分布の凹凸に基づいて、前記器官の厚さを検出する検出部とを備えている。 An organ image capturing apparatus according to an aspect of the present invention includes a data distribution acquisition unit that captures an organ of a living body and acquires a horizontal data distribution indicating a degree of unevenness on the surface of the organ, and the data distribution acquisition unit And a detecting unit for detecting the thickness of the organ based on the unevenness of the data distribution acquired in (1).
 上記構成によれば、個人差や力の入れ方によって器官の外形形状が異なる場合でも、個々の器官の外形形状に関係なく、器官の厚さを精度よく検出することができる。 According to the above configuration, even when the external shape of an organ varies depending on individual differences and how to apply force, the thickness of the organ can be accurately detected regardless of the external shape of the individual organ.
本発明の実施の一形態に係る器官画像撮影装置の外観を示す斜視図である。It is a perspective view which shows the external appearance of the organ imaging device which concerns on one Embodiment of this invention. 上記器官画像撮影装置の概略の構成を示すブロック図である。It is a block diagram which shows the schematic structure of the said organ image imaging device. 撮影対象に対する、上記器官画像撮影装置の照明部と投光部と撮像部との位置関係を示す説明図である。It is explanatory drawing which shows the positional relationship of the illumination part of the said organ imaging | photography apparatus with respect to imaging | photography object, a light projection part, and an imaging part. 上記撮像部による舌の撮影画像と、エッジ抽出フィルタと、上記撮影画像から上記エッジ抽出フィルタを用いて抽出される舌の輪郭線とを示す説明図である。It is explanatory drawing which shows the picked-up image of the tongue by the said imaging part, the edge extraction filter, and the outline of the tongue extracted from the said picked-up image using the said edge extraction filter. 上記投光部の概略の構成を示す斜視図である。It is a perspective view which shows the schematic structure of the said light projection part. 上記投光部によって舌の表面に線状の光を投光している状態を示す説明図である。It is explanatory drawing which shows the state which is projecting linear light on the surface of a tongue by the said light projection part. 舌が薄い場合と厚い場合とにおいて、上記投光部により舌表面に投光された線状の光を上記撮像部で撮影したときの撮影画像と、舌の断面形状とを示す説明図である。It is explanatory drawing which shows the picked-up image when the said light projection part image | photographs the linear light projected on the tongue surface by the said light projection part, and the cross-sectional shape of a tongue, when a tongue is thin and when it is thick . 舌の厚さと舌の筋肉による動きとの関係、および舌表面の水平方向の高さ分布を示す説明図である。It is explanatory drawing which shows the relationship between the thickness of a tongue, and the movement by the muscle of a tongue, and the height distribution of the horizontal direction of a tongue surface. 上記高さ分布とともに、多項式で近似される一部の領域を示す説明図である。It is explanatory drawing which shows the one part area | region approximated with a polynomial with the said height distribution. 複数人の舌を撮影して、舌表面の水平方向の高さ分布を取得し、その一部の領域を多項式で近似したときの、上記多項式の2次の係数と、各々の舌について漢方医が実際に舌診を行ったときの舌厚の所見との関係を示す説明図である。Photographing the tongues of multiple people, acquiring the horizontal height distribution of the tongue surface, and approximating a partial area with a polynomial, the second-order coefficient of the above polynomial, and the Chinese medicine for each tongue It is explanatory drawing which shows the relationship with the finding of tongue thickness when actually performing a tongue examination. 上記器官画像撮影装置における動作の流れを示すフローチャートである。It is a flowchart which shows the flow of operation | movement in the said organ imaging device. 上記高さ分布において、多項式で近似される上記領域の他の設定方法を模式的に示す説明図である。It is explanatory drawing which shows typically the other setting method of the said area | region approximated with a polynomial in the said height distribution. 舌が薄い場合と厚い場合とにおいて、舌表面の上下方向のほぼ中心を通る水平方向における撮影画像のRGBの画像データの分布を示す説明図である。It is explanatory drawing which shows distribution of the RGB image data of the picked-up image in the horizontal direction which passes along the approximate center of the up-down direction of the surface of a tongue, when a tongue is thin and is thick. 舌の平面形状と断面形状との関係を模式的に示す説明図である。It is explanatory drawing which shows typically the relationship between the planar shape and cross-sectional shape of a tongue.
 本発明の実施の一形態について、図面に基づいて説明すれば、以下の通りである。なお、本明細書において、数値範囲をA~Bと表記した場合、その数値範囲に下限Aおよび上限Bの値は含まれるものとする。 An embodiment of the present invention will be described below with reference to the drawings. In this specification, when the numerical range is expressed as A to B, the numerical value range includes the values of the lower limit A and the upper limit B.
 〔器官画像撮影装置の全体構成〕
 図1は、本実施形態の器官画像撮影装置1の外観を示す斜視図であり、図2は、器官画像撮影装置1の概略の構成を示すブロック図である。器官画像撮影装置1は、生体の器官を撮影して、健康度の診断に必要な情報を抽出するものである。以下では、例として、撮影対象が生体の器官としての舌である場合を示す。
[Overall configuration of organ imaging system]
FIG. 1 is a perspective view showing an external appearance of an organ image photographing apparatus 1 of the present embodiment, and FIG. 2 is a block diagram showing a schematic configuration of the organ image photographing apparatus 1. The organ image capturing apparatus 1 captures an organ of a living body and extracts information necessary for diagnosis of health. Hereinafter, as an example, a case where the subject to be imaged is a tongue as an organ of a living body is shown.
 器官画像撮影装置1は、照明部2、投光部3、撮像部4、表示部5、操作部6および通信部7を備えている。照明部2および投光部3は筐体21に設けられており、それら以外の構成(撮像部4、表示部5、操作部6、通信部7)は、筐体22に設けられている。筐体21と筐体22とは相対的に回転可能に連結されているが、必ずしも回転は必要ではなく、一方が他方に完全に固定されていてもよい。なお、上記の照明部2等は、単一の筐体に設けられていてもよい。また、器官画像撮影装置1は、多機能携帯情報端末で構成されてもよい。 The organ image photographing apparatus 1 includes an illumination unit 2, a light projecting unit 3, an imaging unit 4, a display unit 5, an operation unit 6, and a communication unit 7. The illumination unit 2 and the light projecting unit 3 are provided in the casing 21, and the other components (the imaging unit 4, the display unit 5, the operation unit 6, and the communication unit 7) are provided in the casing 22. Although the housing | casing 21 and the housing | casing 22 are connected so that relative rotation is possible, rotation is not necessarily required and one side may be completely fixed to the other. In addition, said illumination part 2 grade | etc., May be provided in the single housing | casing. Moreover, the organ image photographing device 1 may be composed of a multifunctional portable information terminal.
 照明部2は、撮影対象を上方より照明する照明器で構成されている。照明部2の光源としては、色再現性を向上するため、例えばキセノンランプなどの昼光色を発光するものを用いている。光源の明るさは、撮像部4の感度や撮影対象までの距離により異なるが、一例としては、撮影対象の照度が1000~10000lxとなるような明るさを考えることができる。照明部2は、上記の光源の他に、点灯回路や調光回路も有している。 The illumination unit 2 is composed of an illuminator that illuminates a subject to be photographed from above. As the light source of the illuminating unit 2, in order to improve color reproducibility, a light source that emits a daylight color such as a xenon lamp is used. The brightness of the light source varies depending on the sensitivity of the imaging unit 4 and the distance to the shooting target. As an example, it is possible to consider the brightness at which the illuminance of the shooting target is 1000 to 10000 lx. The illumination unit 2 has a lighting circuit and a dimming circuit in addition to the light source.
 投光部3は、撮影対象の器官である舌の表面に対して、水平方向に線状の光を投光(照射)する投光器で構成されている。水平方向とは、ここでは、舌の先端(舌尖)と付け根(舌根)とを結ぶ線と垂直な方向を指すものとする(以下でも同じ)。なお、投光部3の詳細については後述する。 The light projecting unit 3 is composed of a light projector that projects (irradiates) linear light in a horizontal direction onto the surface of the tongue, which is an organ to be imaged. Here, the horizontal direction refers to a direction perpendicular to a line connecting the tip of the tongue (the tip of the tongue) and the root (the base of the tongue) (the same applies hereinafter). Details of the light projecting unit 3 will be described later.
 撮像部4は、生体の器官を撮影して画像を取得するものであり、撮像レンズとエリアセンサ(撮像素子)とを有している。撮像レンズの絞り(レンズの明るさ)、シャッター速度、焦点距離は、撮影対象の全ての範囲に焦点が合うように設定されている。一例としては、Fナンバー:16、シャッター速度:1/120秒、焦点距離:20mmである。 The imaging unit 4 captures an image of a living organ and acquires an image, and includes an imaging lens and an area sensor (imaging device). The aperture (brightness of the lens), shutter speed, and focal length of the imaging lens are set so that the entire range to be photographed is in focus. As an example, F number: 16, shutter speed: 1/120 seconds, focal length: 20 mm.
 エリアセンサは、例えばCCD(Charge Coupled Device)やCMOS(Complementary Metal Oxide Semiconductor)のような撮像素子で構成されており、撮影対象の色および形状を十分に検出できるように、感度や解像度などが設定されている。一例としては、感度:60db、解像度:1000万画素である。 The area sensor is composed of image sensors such as CCD (Charge Coupled Device) and CMOS (Complementary Metal Oxide Semiconductor), and the sensitivity and resolution are set so that the color and shape of the subject can be detected sufficiently. Has been. As an example, sensitivity: 60 db, resolution: 10 million pixels.
 また、撮像部4は、撮像レンズやエリアセンサの他にも、不図示のフォーカス機構、絞り機構、駆動回路およびA/D変換回路などを有している。撮像部4では、撮影画像のデータとして、赤(R)、緑(G)、青(B)のそれぞれについて、例えば8ビットで0~255のデータが取得される。 In addition to the imaging lens and the area sensor, the imaging unit 4 includes a focus mechanism (not shown), a diaphragm mechanism, a drive circuit, an A / D conversion circuit, and the like. In the imaging unit 4, for example, data of 0 to 255 in 8 bits is acquired for each of red (R), green (G), and blue (B) as captured image data.
 図3は、撮影対象(舌や顔)に対する、照明部2と投光部3と撮像部4との位置関係を示す説明図である。同図に示すように、撮像部4は、撮影対象に正対して配置されている。照明部2は、撮影対象を通る撮像部4の撮影光軸Xに対して、例えば0°~45°の角度Aで撮影対象を照明するように配置されている。また、投光部3は、撮影光軸Xに対して例えば0°~45°の範囲の角度であって、角度Aよりも大きい角度Bで撮影対象に線状の光を投光するように配置されている。なお、撮影光軸Xとは、撮像部4が有する撮像レンズの光軸を指す。 FIG. 3 is an explanatory diagram showing the positional relationship among the illumination unit 2, the light projecting unit 3, and the imaging unit 4 with respect to the subject to be photographed (tongue and face). As shown in the figure, the imaging unit 4 is arranged to face the subject to be photographed. The illuminating unit 2 is disposed so as to illuminate the imaging target at an angle A of, for example, 0 ° to 45 ° with respect to the imaging optical axis X of the imaging unit 4 passing through the imaging target. In addition, the light projecting unit 3 projects linear light onto the imaging target at an angle B that is, for example, in the range of 0 ° to 45 ° with respect to the imaging optical axis X and is larger than the angle A. Is arranged. The imaging optical axis X refers to the optical axis of the imaging lens that the imaging unit 4 has.
 照明時の角度Aが大きいと、上唇の影により、舌を撮影できる範囲が小さくなる。逆に、角度Aが小さいと、正反射による色とびが大きくなる。また、投光時の角度Bが大きいと、線状の光が舌表面の凹凸に沿って変形するときの変形量が大きくなるため、投光した光の形状に基づいて舌表面の凹凸を精度よく検出することができるが、逆に角度Bが小さいと、凹凸の検出精度が低下する。以上のことを考慮すると、角度Aの好ましい範囲は、15°~30°であり、角度Bの好ましい範囲は30°~45°である。ただし、A<Bである。 When the angle A during illumination is large, the range in which the tongue can be photographed becomes small due to the shadow of the upper lip. Conversely, when the angle A is small, the color jump due to regular reflection increases. Also, if the angle B at the time of projection is large, the amount of deformation when linear light deforms along the irregularities on the tongue surface increases, so the irregularities on the tongue surface can be accurately determined based on the shape of the projected light. Although it can be detected well, conversely, if the angle B is small, the detection accuracy of the unevenness decreases. Considering the above, the preferable range of the angle A is 15 ° to 30 °, and the preferable range of the angle B is 30 ° to 45 °. However, A <B.
 表示部5は、不図示の液晶パネル、バックライト、点灯回路および制御回路を有しており、撮像部4での撮影によって取得される画像を表示する。また、表示部5は、通信部7を介して外部から取得した情報(例えば外部の医療機関に情報を送信して診断された結果)を表示することもできる。 The display unit 5 has a liquid crystal panel (not shown), a backlight, a lighting circuit, and a control circuit, and displays an image acquired by photographing with the imaging unit 4. The display unit 5 can also display information acquired from the outside via the communication unit 7 (for example, a result of diagnosis by transmitting information to an external medical institution).
 操作部6は、撮像部4による撮影を指示するための入力部であり、OKボタン(撮影実行ボタン)6aおよびCANCELボタン6bで構成されている。本実施形態では、表示部5および操作部6を、共通のタッチパネル表示装置31で構成し、タッチパネル表示装置31における表示部5の表示領域と操作部6の表示領域とを別々にしている。なお、操作部6は、タッチパネル表示装置31以外の入力部で構成されてもよい(タッチパネル表示装置31の表示領域外の位置に操作部6を設けてもよい)。 The operation unit 6 is an input unit for instructing imaging by the imaging unit 4, and includes an OK button (imaging execution button) 6a and a CANCEL button 6b. In the present embodiment, the display unit 5 and the operation unit 6 are configured by a common touch panel display device 31, and the display area of the display unit 5 and the display area of the operation unit 6 in the touch panel display device 31 are separated. The operation unit 6 may be configured by an input unit other than the touch panel display device 31 (the operation unit 6 may be provided at a position outside the display area of the touch panel display device 31).
 通信部7は、撮像部4にて取得された画像のデータや、後述する画像処理部16および検出部18で処理されたデータを、通信回線(有線や無線を含む)を介して外部に送信したり、外部からの情報を受信するためのインターフェースである。 The communication unit 7 transmits the image data acquired by the imaging unit 4 and the data processed by the image processing unit 16 and the detection unit 18 described later to the outside via a communication line (including wired and wireless). And an interface for receiving information from the outside.
 器官画像撮影装置1は、さらに、照明制御部11、投光制御部12、撮像制御部13、表示制御部14、操作制御部15、画像処理部16、記憶部17、検出部18、通信制御部19、およびこれらの各部を制御する全体制御部20を備えている。照明制御部11、投光制御部12、撮像制御部13、表示制御部14、操作制御部15および通信制御部19は、上記した照明部2、投光部3、撮像部4、表示部5、操作部6および通信部7をそれぞれ制御する。全体制御部20は、例えばCPU(Central Processing Unit)で構成されている。なお、照明制御部11、投光制御部12、撮像制御部13、表示制御部14、操作制御部15および通信制御部19と、全体制御部20とは、一体的に(例えば1つのCPUで)構成されてもよい。 The organ imaging apparatus 1 further includes an illumination control unit 11, a light projection control unit 12, an imaging control unit 13, a display control unit 14, an operation control unit 15, an image processing unit 16, a storage unit 17, a detection unit 18, and communication control. A unit 19 and an overall control unit 20 for controlling these units are provided. The illumination control unit 11, the light projection control unit 12, the imaging control unit 13, the display control unit 14, the operation control unit 15, and the communication control unit 19 are the illumination unit 2, the light projection unit 3, the imaging unit 4, and the display unit 5. The operation unit 6 and the communication unit 7 are controlled. The overall control unit 20 is composed of, for example, a CPU (Central Processing Unit). The illumination control unit 11, the light projection control unit 12, the imaging control unit 13, the display control unit 14, the operation control unit 15, the communication control unit 19, and the overall control unit 20 are integrated (for example, with one CPU). ) May be configured.
 画像処理部16は、撮像部4による撮影画像から、器官の表面の凹凸の度合いを示す水平方向のデータ分布を取得するものであり、照明部2、投光部3、撮像部4とともにデータ分布取得部を構成している。上記水平方向のデータ分布は、(1)舌の表面の高さの分布であってもよいし、(2)舌表面の撮影画像に含まれるRGBのいずれかの色の画像データの分布、またはRGBのいずれかの色の成分比を示すデータの分布であってもよい。上記(1)の場合、画像処理部16は、投光部3によって舌表面に投光され、撮像部4にて撮影された線状の光の湾曲形状から、舌の表面の高さの分布を取得する高さ分布取得部として機能する。また、上記(2)の場合、画像処理部16は、照明部2での照明下で撮像部4にて取得された舌の撮影画像から、RGBの少なくともいずれかの色の画像データを抽出して、RGBのいずれかの色の画像データの分布、またはRGBのいずれかの色の成分比を示すデータの分布を作成する分布作成部として機能する。なお、データ分布の詳細については後述する。 The image processing unit 16 obtains a horizontal data distribution indicating the degree of unevenness on the surface of the organ from the image taken by the imaging unit 4, and the data distribution together with the illumination unit 2, the light projecting unit 3, and the imaging unit 4. The acquisition unit is configured. The horizontal data distribution may be (1) distribution of the height of the surface of the tongue, (2) distribution of image data of any of RGB colors included in the captured image of the tongue surface, or It may be a data distribution indicating the component ratio of any of the RGB colors. In the case of (1) above, the image processing unit 16 projects the height of the tongue surface from the curved shape of the linear light projected on the tongue surface by the light projecting unit 3 and photographed by the imaging unit 4. It functions as a height distribution acquisition unit that acquires. In the case of (2) above, the image processing unit 16 extracts image data of at least one of RGB colors from the photographed image of the tongue acquired by the imaging unit 4 under illumination by the illumination unit 2. Thus, it functions as a distribution creating unit that creates a distribution of image data of any of RGB colors or a distribution of data indicating a component ratio of any of RGB colors. Details of the data distribution will be described later.
 また、画像処理部16は、撮像部4にて取得された画像から器官の輪郭線を抽出する機能も有する。器官の輪郭線の抽出は、撮影画像の輝度エッジ(画像の中で急激に明るさが変化している部分)を抽出することによって行うことができ、輝度エッジの抽出は、例えば図4に示すようなエッジ抽出フィルタを用いて行うことができる。エッジ抽出フィルタは、1次微分をするときに(隣接画素間で画像データの差分をとるときに)、注目画素の近傍の画素に重みを付けるフィルタである。 The image processing unit 16 also has a function of extracting an organ outline from the image acquired by the imaging unit 4. Extraction of the outline of the organ can be performed by extracting the luminance edge of the captured image (the portion in which the brightness changes abruptly in the image). The luminance edge is extracted, for example, as shown in FIG. Such an edge extraction filter can be used. The edge extraction filter is a filter that weights pixels in the vicinity of the target pixel when performing first-order differentiation (when obtaining a difference in image data between adjacent pixels).
 このようなエッジ抽出フィルタを用い、例えば、撮影画像の各画素のGの画像データについて、注目画素と近傍画素とで画像データの差分を取り、その差分値が所定の閾値を超える画素を抽出することで、輝度エッジとなる画素を抽出できる。舌の周囲には、その影に起因する輝度差が存在するため、上記のように輝度エッジとなる画素を抽出することにより、舌の輪郭線を抽出することができる。なお、ここでは、輝度への影響が最も大きいGの画像データを演算に用いているが、RやBの画像データを用いてもよい。 Using such an edge extraction filter, for example, for the G image data of each pixel of the captured image, the difference between the image data is calculated between the target pixel and the neighboring pixel, and the pixel whose difference value exceeds a predetermined threshold is extracted. Thus, a pixel that becomes a luminance edge can be extracted. Since there is a luminance difference due to the shadow around the tongue, the contour line of the tongue can be extracted by extracting pixels that become luminance edges as described above. Here, although G image data having the greatest influence on the luminance is used for the calculation, R or B image data may be used.
 なお、東洋医学では、舌の中央部に見られる斑点状の白い部分を苔と言い、その色を苔色と呼んでいる。また、舌における上記以外の赤い部分の色を舌色と呼んでいる。 In Oriental medicine, the speckled white portion found in the center of the tongue is called moss, and its color is called moss. Moreover, the color of the red part other than the above in the tongue is called the tongue color.
 記憶部17は、撮像部4にて取得した画像のデータ、画像処理部16および検出部18で処理されたデータ、外部から受信した情報などを記憶したり、上述した各種の制御部を動作させるためのプログラムを記憶するメモリである。 The storage unit 17 stores image data acquired by the imaging unit 4, data processed by the image processing unit 16 and the detection unit 18, information received from the outside, and operates the various control units described above. This is a memory for storing a program for this purpose.
 検出部18は、画像処理部16にて取得された上記データ分布の凹凸に基づいて、器官の厚さ(厚さの度合い)を検出する。特に、検出部18は、検出した器官の厚さを数値化して、舌診における舌厚を判定する。なお、器官(舌)の厚さの検出および舌厚の判定の詳細については後述する。 The detecting unit 18 detects the organ thickness (thickness degree) based on the unevenness of the data distribution acquired by the image processing unit 16. In particular, the detection unit 18 quantifies the thickness of the detected organ and determines the tongue thickness in the tongue examination. Details of the detection of the thickness of the organ (tongue) and the determination of the tongue thickness will be described later.
 〔投光部の構成および舌厚の検出原理〕
 図5は、投光部3の概略の構成を示す斜視図である。同図に示すように、投光部3は、点光源41および柱状レンズ42と、点光源41を駆動する駆動回路(図示せず)とを有している。点光源41は、LD(Laser Diode )やLED(Light Emitting Diode)で構成されている。柱状レンズ42は、点光源41から出射された光を一方向(例えば上下方向)にのみ集光する、水平方向に柱状の集光レンズである。点光源41から出射された光が柱状レンズ42で一方向に集光されることで、図6に示すように、水平方向に長い線状の光が舌の表面に投光される。
[Structure of projector and detection principle of tongue thickness]
FIG. 5 is a perspective view illustrating a schematic configuration of the light projecting unit 3. As shown in the figure, the light projecting unit 3 includes a point light source 41 and a columnar lens 42, and a drive circuit (not shown) that drives the point light source 41. The point light source 41 is configured by an LD (Laser Diode) or an LED (Light Emitting Diode). The columnar lens 42 is a columnar condensing lens in the horizontal direction that condenses the light emitted from the point light source 41 only in one direction (for example, the vertical direction). As the light emitted from the point light source 41 is condensed in one direction by the columnar lens 42, linear light that is long in the horizontal direction is projected onto the surface of the tongue as shown in FIG.
 図7は、舌が薄い場合と厚い場合とにおいて、投光部3により舌表面に投光された線状の光(太い実線で示す)を撮像部4で撮影したときの撮影画像と、舌の断面形状とを示している。なお、同図では、撮影画像のうち、舌表面でない部分は、後述する高さの基準0(図8、図9参照)を示す直線で表現している。同図に示すように、舌が薄く、その表面がほぼ平らな場合、投光された線状の光は、舌の部分で上方に小さく湾曲する。一方、舌が厚く、その表面が凸形状の場合、投光された線状の光は、舌の部分で上方に大きく湾曲する。したがって、投光された線状の光の湾曲形状を検出することにより、舌の厚さ(舌が厚いか薄いか)を検出することができる。なお、被写体に対して線状の光を照射して被写体の形状を検出する手法は、光切断法とも呼ばれる。 FIG. 7 shows a photographed image obtained by photographing linear light (shown by a thick solid line) projected on the tongue surface by the light projecting unit 3 with the imaging unit 4 when the tongue is thin and thick. The cross-sectional shape is shown. In the figure, the portion of the photographed image that is not the tongue surface is represented by a straight line indicating a height reference 0 (see FIGS. 8 and 9) described later. As shown in the figure, when the tongue is thin and its surface is almost flat, the projected linear light is slightly curved upward at the tongue portion. On the other hand, when the tongue is thick and the surface thereof is convex, the projected linear light is greatly curved upward at the tongue portion. Therefore, the thickness of the tongue (whether the tongue is thick or thin) can be detected by detecting the curved shape of the projected linear light. Note that the method of detecting the shape of the subject by irradiating the subject with linear light is also called a light cutting method.
 撮影対象としての器官が舌の場合、点光源41として、舌の色(R)の補色であるGやBの光を出射する点光源を用いると、投光された光の色と舌の色とを明確に区別できるため、投光された光の湾曲形状を撮像部4での撮影によって検出することが容易となる。なお、Rの光を出射する点光源41を用いても、その出射光量を調節することにより、投光された光の湾曲形状を撮像部4での撮影によって検出することは可能である。 When the organ to be imaged is the tongue, if a point light source that emits G or B light, which is a complementary color of the tongue color (R), is used as the point light source 41, the color of the projected light and the color of the tongue Therefore, it is easy to detect the curved shape of the projected light by photographing with the imaging unit 4. Even when the point light source 41 that emits the R light is used, the curved shape of the projected light can be detected by photographing with the imaging unit 4 by adjusting the amount of emitted light.
 なお、本実施形態では、点光源41と柱状レンズ42とを用いて投光部3を構成しているが、投光部3の構成はこれに限定されるわけではない。例えば、柱状レンズ42の代わりに、水平方向に長尺状の開口を有するスリットを配置し、上記開口を介して水平方向に線状の光を舌表面に投光する構成であってもよいし、柱状レンズ42の代わりにポリゴンミラーを配置し、光源からの光をポリゴンミラーで水平方向に高速走査することで、水平方向に光を投光してもよい。 In addition, in this embodiment, although the light projection part 3 is comprised using the point light source 41 and the columnar lens 42, the structure of the light projection part 3 is not necessarily limited to this. For example, instead of the columnar lens 42, a slit having an elongated opening in the horizontal direction may be arranged, and linear light may be projected onto the tongue surface in the horizontal direction through the opening. Alternatively, a polygon mirror may be disposed in place of the columnar lens 42, and light may be projected in the horizontal direction by scanning the light from the light source at high speed in the horizontal direction with the polygon mirror.
 〔舌の厚さと筋肉による動きとの関係、および水平方向のデータ分布について〕
 舌の筋肉には、外舌筋と内舌筋との2種類があり、前者が舌全体の大きな動きを制御し、後者が舌の細かな動きを制御する。舌表面の凹凸に影響する動きは、内舌筋によって制御される。この内舌筋には、舌の側部を上方に巻き上げる上縦舌筋、舌を細く伸ばす横舌筋、舌を平らに広げる垂直舌筋が含まれる。舌の撮影時には、舌を横に広げるように指示されるが、人によっては無意識に力が入る場合がある。
[Relationship between tongue thickness and muscle movement, and horizontal data distribution]
There are two types of muscles of the tongue, the external tongue muscle and the internal tongue muscle. The former controls the large movement of the whole tongue, and the latter controls the fine movement of the tongue. Movements affecting the surface irregularities of the tongue are controlled by the internal tongue muscle. The internal tongue muscle includes an upper longitudinal tongue muscle that winds up the side of the tongue upward, a lateral tongue muscle that stretches the tongue thinly, and a vertical tongue muscle that spreads the tongue flatly. When photographing the tongue, it is instructed to spread the tongue sideways, but depending on the person, there may be unconscious power.
 図8は、舌の厚さと、舌の筋肉による動きとの関係を示している。垂直舌筋の作用により、舌を横に広げたとき(通常の撮影状態)、舌の表面は、舌が薄い場合は平坦になり、舌が厚い場合は凸状になる。上縦舌筋の作用により舌の側部を上げたとき、舌の表面は、舌が薄い場合は凹状になり、舌が厚い場合は緩やかな凸状になる。横舌筋の作用により舌を細く伸ばしたとき、舌の表面は、舌が薄い場合は中央が厚くなる凸状になり、舌が厚い場合は全体に盛り上がった凸状になる。 FIG. 8 shows the relationship between the thickness of the tongue and the movement of the tongue by the muscles. When the tongue is spread laterally by the action of the vertical tongue muscle (normal photographing state), the surface of the tongue becomes flat when the tongue is thin, and becomes convex when the tongue is thick. When the side of the tongue is raised by the action of the upper longitudinal tongue muscle, the surface of the tongue is concave when the tongue is thin, and is gently convex when the tongue is thick. When the tongue is stretched thinly by the action of the lateral tongue muscle, the surface of the tongue becomes convex when the center is thick, and when the tongue is thick, the surface of the tongue is raised as a whole.
 このような舌の表面に対して、投光部3によって水平方向に線状の光を投光し、その湾曲形状を撮像部4にて撮影すると、画像処理部16では、上記湾曲形状から図8に示すようなデータ分布が取得される。このデータ分布は、舌表面の凹凸の度合いを示すものであって、舌表面の凹凸に応じて高さが変化する高さ分布である。なお、(a1)~(a3)は、舌が薄い場合の水平方向の高さ分布を示し、(b1)~(b3)は、舌が厚い場合の水平方向の高さ分布を示す。 When linear light is projected in the horizontal direction onto the surface of such a tongue by the light projecting unit 3 and the curved shape is photographed by the image capturing unit 4, the image processing unit 16 displays the curved shape from the curved shape. A data distribution as shown in FIG. This data distribution indicates the degree of unevenness on the tongue surface, and is a height distribution in which the height changes according to the unevenness on the tongue surface. Note that (a1) to (a3) show the height distribution in the horizontal direction when the tongue is thin, and (b1) to (b3) show the height distribution in the horizontal direction when the tongue is thick.
 本実施形態では、投光部3から投光される線状の光は、図7に示すように、舌表面における上下方向のほぼ中心を通るように投光される。したがって、図8に示す高さ分布は、舌表面における上下方向のほぼ中心を通る水平方向の高さ分布として得られる。なお、舌表面における上下方向とは、ここでは、舌の先端(舌尖)と付け根(舌根)とを結ぶ方向を指すものする(以下でも同じ)。 In the present embodiment, the linear light projected from the light projecting unit 3 is projected so as to pass through the substantially vertical center of the tongue surface as shown in FIG. Therefore, the height distribution shown in FIG. 8 is obtained as a horizontal height distribution that passes through a substantially vertical center of the tongue surface. Here, the vertical direction on the surface of the tongue refers to the direction connecting the tip of the tongue (the tongue tip) and the root (the tongue base) (the same applies hereinafter).
 〔舌厚の判定方法〕
 次に、上記の高さ分布から、舌厚を判定する手法について説明する。まず、図9に示すように、検出部18は、画像処理部16にて取得された舌表面の高さ分布において、水平方向の中央部よりも端部側の領域Aを設定する。ここでは、領域Aは、舌の輪郭線から求まる舌の幅をWとしたときに、図9に示す寸法関係で定まる領域(舌の端部からW/8の距離にある幅W/4の領域を含む領域)とする。なお、上記端部は、舌の中央部に対して左右どちらの端部であってもよい。また、図9の(a1)~(a3)、(b1)~(b3)の高さ分布は、図8で示したものと対応している。
[Method for judging tongue thickness]
Next, a method for determining the tongue thickness from the above height distribution will be described. First, as illustrated in FIG. 9, the detection unit 18 sets a region A that is closer to the end than the center in the horizontal direction in the height distribution of the tongue surface acquired by the image processing unit 16. Here, the region A is a region determined by the dimensional relationship shown in FIG. 9 (with a width W / 4 at a distance of W / 8 from the end of the tongue, where W is the width of the tongue determined from the contour line of the tongue. Area). In addition, the said edge part may be an edge part on either side with respect to the center part of a tongue. Further, the height distributions of (a1) to (a3) and (b1) to (b3) in FIG. 9 correspond to those shown in FIG.
 次に、検出部18は、高さ分布における領域Aの形状を多項式で近似し、近似した多項式の係数に基づいて、舌の表面の凹凸(形状の湾曲度)を検出し、その凹凸形状から舌の厚さを検出する。なお、多項式の算出は、一般的な方法(例えば最小二乗法)を用いて行うことができる。多項式の次数は特に限定されないが、ここでは例として2次の多項式(y=ax+bx+c)を用いる。aが後述する2次の係数である。 Next, the detection unit 18 approximates the shape of the region A in the height distribution with a polynomial, detects irregularities on the surface of the tongue (the degree of curvature of the shape) based on the coefficients of the approximated polynomial, and determines from the irregular shapes Detect the thickness of the tongue. The polynomial can be calculated using a general method (for example, the least square method). Although the order of the polynomial is not particularly limited, a quadratic polynomial (y = ax 2 + bx + c) is used here as an example. a is a secondary coefficient described later.
 舌が薄い(a1)~(a3)では、領域Aの形状は水平であるか、水平から凹形状に変化しているので、近似多項式の2次の係数は、0またはプラスの値となる。一方、舌が厚い(b1)~(b3)では、領域Aの形状は凸形状であるので、近似多項式の2次の係数は、マイナスの値となる。なお、舌が厚くなればなるほど、上記係数のマイナスの値が大きくなる。 When the tongue is thin (a1) to (a3), the shape of the region A is horizontal or has changed from horizontal to concave, so the second-order coefficient of the approximate polynomial is 0 or a positive value. On the other hand, when the tongue is thick (b1) to (b3), since the shape of the region A is a convex shape, the quadratic coefficient of the approximate polynomial is a negative value. Note that the thicker the tongue, the greater the negative value of the coefficient.
 このように、近似多項式の係数を見ることにより、領域Aの形状(高さ分布)の凹凸の度合いを求めて、舌の厚さが薄いか厚いかを判断することができる。 Thus, by looking at the coefficients of the approximate polynomial, the degree of unevenness of the shape (height distribution) of the region A can be obtained to determine whether the tongue is thin or thick.
 図10は、複数人の舌をサンプルとして撮影して、舌表面の水平方向の高さ分布を取得したときの、領域Aの近似多項式の2次の係数と、各々の舌について漢方医が実際に舌診を行ったときの舌厚の所見との関係を示している。同図より、近似多項式の2次の係数と漢方医の所見との間には高い相関関係があることがわかる。つまり、2次の係数が大きいほど(プラス側に値が大きいほど)、舌が薄く、2次の係数が小さいほど(マイナス側に値が大きいほど)、舌が厚いと言える。なお、2次の係数と漢方医の所見との相関度を示す相関係数は、0.88と高い値であった。 FIG. 10 shows a quadratic coefficient of the approximate polynomial of region A when a plurality of people's tongues are photographed and the horizontal height distribution of the tongue surface is acquired, and the Chinese doctor actually Shows the relationship with the findings of tongue thickness when the tongue was examined. From the figure, it can be seen that there is a high correlation between the quadratic coefficient of the approximate polynomial and the findings of Chinese medicine. That is, it can be said that the tongue is thicker as the secondary coefficient is larger (the value is larger on the plus side), the tongue is thinner, and the secondary coefficient is smaller (the value is larger on the minus side). The correlation coefficient indicating the degree of correlation between the second-order coefficient and the findings of the Chinese medicine doctor was a high value of 0.88.
 したがって、検出部18は、近似多項式の2次の係数に基づいて、舌の厚さを検出、判定することができる。例えば、2次の係数が0.003以上である場合には、舌が薄いと判定することができ、2次の係数が0以下である場合には、舌が厚いと判定することができ、2次の係数が0よりも大きく0.003未満である場合には、舌の厚さが中位と判定することができる。なお、図10の相関関係をテーブルとして記憶部17に記憶させておき、検出部18は、上記のテーブルを参照して、2次の係数から舌の厚さを判定するようにしてもよい。 Therefore, the detection unit 18 can detect and determine the thickness of the tongue based on the second-order coefficient of the approximate polynomial. For example, when the secondary coefficient is 0.003 or more, it can be determined that the tongue is thin, and when the secondary coefficient is 0 or less, it can be determined that the tongue is thick, When the second-order coefficient is greater than 0 and less than 0.003, the tongue thickness can be determined to be medium. The correlation shown in FIG. 10 may be stored in the storage unit 17 as a table, and the detection unit 18 may determine the thickness of the tongue from the secondary coefficient with reference to the above table.
 また、図10の例では、舌の厚さの程度を、『舌が薄い』、『中位』、『舌が厚い』に対応して“1”~“3”の3段階に数値化しているが、このように舌の厚さの程度を数値化しておけば、その数値に基づいて対象者の健康度を簡便に診断することも可能となる。  In the example of FIG. 10, the degree of the thickness of the tongue is quantified in three stages, “1” to “3”, corresponding to “tongue is thin”, “medium”, and “tongue is thick”. However, if the level of the thickness of the tongue is digitized in this way, the health level of the subject can be easily diagnosed based on the numeric value. *
 〔制御フロー〕
 図11は、本実施形態の器官画像撮影装置1における動作の流れを示すフローチャートである。器官画像撮影装置1は、操作部6または不図示の入力部により、撮影指示を受け付けると、照明制御部11は照明部2を点灯させ(S1)、照度等の撮影条件の設定を行う(S2)。撮影条件の設定が終了すると、撮像制御部13は撮像部4を制御して撮影対象である舌を撮影する(S3)。
[Control flow]
FIG. 11 is a flowchart showing an operation flow in the organ image capturing apparatus 1 of the present embodiment. When the organ image photographing apparatus 1 accepts a photographing instruction through the operation unit 6 or an input unit (not shown), the illumination control unit 11 turns on the illumination unit 2 (S1), and sets photographing conditions such as illuminance (S2). ). When the setting of the shooting conditions is completed, the imaging control unit 13 controls the imaging unit 4 to shoot the tongue that is the shooting target (S3).
 撮影が終了すると、画像処理部16は、舌の撮影画像から舌の輪郭線を抽出する(S4)。そして、画像処理部16は、抽出された輪郭線Qから、舌の上下端および左右端を検出し、舌の縦横の長さ(舌の上下方向の長さと幅)を検出する(S5)。次に、投光制御部12は投光部3を制御して、舌表面の上下方向のほぼ中央部に、水平方向に線状の光を投光させる(S6)。 When the photographing is completed, the image processing unit 16 extracts the contour line of the tongue from the photographed image of the tongue (S4). Then, the image processing unit 16 detects the upper and lower ends and left and right ends of the tongue from the extracted contour line Q, and detects the length and width of the tongue (length and width in the vertical direction of the tongue) (S5). Next, the light projecting control unit 12 controls the light projecting unit 3 to project linear light in the horizontal direction substantially at the center of the tongue surface in the vertical direction (S6).
 舌表面に投光された線状の光は、舌表面の形状に沿って湾曲する。この線状の光の湾曲形状を撮像部4が撮影すると(S7)、画像処理部16は、撮影した光の湾曲形状から、図8および図9で示したように、舌表面の水平方向の高さ分布を取得する(S8)。すると、検出部18は、上記高さ分布の一部の領域Aの形状を2次の多項式で近似し(S9)、図10で示したテーブルを参照して、2次の係数から舌の厚さを検出するとともに、舌の厚さの程度を数値化する(S10)。これにより、検出部18は、舌厚の数値に基づいて対象者の健康度を診断することが可能となる。舌厚の検出結果や対象者の健康度の診断結果は、表示部5に表示されるが、必要に応じて図示しない出力装置に出力(記録)されたり、通信部7を介して外部に転送される(S11)。なお、舌厚の検出結果を数値化して外部に送信し、外部にて対象者の健康度を診断するようにしてもよい。 The linear light projected on the tongue surface bends along the shape of the tongue surface. When the imaging unit 4 captures the curved shape of the linear light (S7), the image processing unit 16 determines the horizontal direction of the tongue surface from the curved shape of the captured light, as shown in FIGS. A height distribution is acquired (S8). Then, the detection unit 18 approximates the shape of a part of the region A of the height distribution with a second-order polynomial (S9), and refers to the table shown in FIG. In addition to detecting the thickness, the degree of the thickness of the tongue is digitized (S10). Thereby, the detection unit 18 can diagnose the health level of the subject based on the numerical value of the tongue thickness. The detection result of the tongue thickness and the diagnosis result of the health level of the subject are displayed on the display unit 5, but are output (recorded) to an output device (not shown) or transferred to the outside via the communication unit 7 as necessary. (S11). In addition, the detection result of the tongue thickness may be digitized and transmitted to the outside, and the health level of the subject may be diagnosed outside.
 以上のように、画像処理部16は、撮像部4によって得た撮影画像から、舌表面の凹凸の度合いを示す水平方向のデータ分布(高さ分布)を取得する。個人差や力の入れ方によって舌の外形形状が異なる場合でも、上記水平方向のデータ分布は、舌表面の凹凸の度合いを示すものとして、個々の舌の外形形状とは無関係に取得される。したがって、検出部18は、上記データ分布の凹凸に基づいて、舌の厚さ(厚いか薄いか)をその外形形状に関係なく精度よく検出することができる。 As described above, the image processing unit 16 acquires a horizontal data distribution (height distribution) indicating the degree of unevenness on the tongue surface from the captured image obtained by the imaging unit 4. Even when the outer shape of the tongue varies depending on individual differences and how the force is applied, the horizontal data distribution is obtained regardless of the individual outer shape of the tongue as indicating the degree of unevenness of the tongue surface. Therefore, the detection unit 18 can accurately detect the thickness of the tongue (thick or thin) regardless of the outer shape based on the unevenness of the data distribution.
 特に、器官が舌である場合において、検出部18は、上記データ分布の凹凸に基づいて舌診の舌厚を検出するので、舌厚に基づいて対象者の健康度を判断することが可能となる。 In particular, when the organ is a tongue, the detection unit 18 detects the tongue thickness of the tongue diagnosis based on the unevenness of the data distribution, so that it is possible to determine the health level of the subject based on the tongue thickness. Become.
 また、上記データ分布は、舌の表面の高さの分布であるので、舌表面の凹凸の度合いを確実に反映したデータ分布を実現できる。 Also, since the data distribution is a distribution of the height of the tongue surface, it is possible to realize a data distribution that reliably reflects the degree of unevenness of the tongue surface.
 また、投光部3によって投光された線状の光の、舌表面の凹凸に応じて変形した形状を撮像部4で撮影し、その形状から舌表面の高さ分布を画像処理部16にて取得している。このように、光切断法を利用することにより、舌表面の高さ分布を容易に取得できる。 In addition, the imaging unit 4 captures a shape of the linear light projected by the light projecting unit 3 and deformed according to the unevenness of the tongue surface, and the height distribution of the tongue surface is taken from the shape to the image processing unit 16. Have acquired. Thus, the height distribution of the tongue surface can be easily obtained by using the light cutting method.
 また、検出部18は、上記高さ分布の形状を多項式で近似し、その係数に基づいて舌の厚さを検出している。上述したように、近似多項式の係数(例えば正負)より、舌表面の形状が凹であるか凸であるかを検出でき、凹形状である場合は舌が薄く、凸形状である場合は舌が厚いと考えられる。したがって、近似多項式の係数(=舌表面の凹凸)から、舌の厚さの度合いを確実に検出できる。 Further, the detecting unit 18 approximates the shape of the height distribution with a polynomial, and detects the thickness of the tongue based on the coefficient. As described above, whether the shape of the tongue surface is concave or convex can be detected from the coefficient of the approximate polynomial (for example, positive or negative). If the tongue is concave, the tongue is thin, and if the tongue is convex, the tongue is It is considered thick. Therefore, the degree of the thickness of the tongue can be reliably detected from the coefficient of the approximate polynomial (= unevenness on the tongue surface).
 また、検出部18は、多項式による近似を、高さ分布の一部の領域Aに対してのみ行っている。このようにすることで、高さ分布の全体の形状を(幅Wの全体にわたって)多項式で近似する場合に比べて、処理時間を短縮することができる。 Also, the detection unit 18 performs approximation by a polynomial only for a partial region A of the height distribution. By doing in this way, processing time can be shortened compared with the case where the whole shape of height distribution is approximated with a polynomial (over the whole width W).
 また、領域Aは、上記高さ分布において、舌の水平方向における中央部よりも端部側に対応する領域である。舌が薄い場合でも厚い場合でも、高さ分布において舌の中央部に相当する領域はフラットに近くなるため、近似多項式の係数に基づく舌厚の検出が困難となる。したがって、本実施形態のように、高さ分布において舌の中央部から端部側にずれた領域Aの形状を多項式で近似することにより、舌表面の凹形状または凸形状を確実に検出して、舌の厚さの度合いを確実に検出することができる。 In addition, the region A is a region corresponding to the end portion side of the horizontal portion of the tongue in the height distribution. Regardless of whether the tongue is thin or thick, the region corresponding to the central portion of the tongue in the height distribution is nearly flat, making it difficult to detect the tongue thickness based on the coefficients of the approximate polynomial. Therefore, as in this embodiment, by approximating the shape of the region A shifted from the center of the tongue toward the end in the height distribution with a polynomial, the concave or convex shape of the tongue surface can be reliably detected. The degree of tongue thickness can be reliably detected.
 また、本実施形態では、近似多項式として2次式を用いている。2次の係数の正負に基づき、舌表面の形状が凹であるか凸であるかを容易に判断できるので、その凹凸形状から、舌の厚さの度合いを容易に検出することができる。 In this embodiment, a quadratic expression is used as the approximate polynomial. Based on the sign of the second-order coefficient, it can be easily determined whether the shape of the tongue surface is concave or convex, and therefore the degree of tongue thickness can be easily detected from the uneven shape.
 また、上記の高さ分布は、舌の表面における上下方向のほぼ中心を通る水平方向のデータ分布である。舌の上下方向に垂直な断面内では、舌表面の水平方向の凹凸形状は上下方向のどの位置でもほとんど同じであるので、上下方向のほぼ中心を通るデータ分布の凹凸形状から、舌の厚さを十分に検出することができる。つまり、舌表面を上下方向全体にわたってスキャンしなくても(水平方向のデータ分布を上下方向全体にわたって取得しなくても)、舌の厚さを検出することができる。 Also, the above-mentioned height distribution is a horizontal data distribution that passes through almost the center in the vertical direction on the surface of the tongue. In the cross-section perpendicular to the vertical direction of the tongue, the horizontal uneven shape of the tongue surface is almost the same at any position in the vertical direction, so the thickness of the tongue is calculated from the uneven shape of the data distribution passing through the approximate center in the vertical direction. Can be sufficiently detected. That is, the thickness of the tongue can be detected without scanning the entire tongue surface in the vertical direction (without acquiring the horizontal data distribution over the entire vertical direction).
 〔領域Aの他の設定方法〕
 図12は、水平方向のデータ分布(高さ分布)における領域Aの他の設定方法を模式的に示す説明図である。同図に示すように、検出部18が高さ分布の形状を近似する領域A(高さ分布の一部)は、舌の端部のデータ分布を含んでいてもよい。
[Other setting methods for area A]
FIG. 12 is an explanatory diagram schematically showing another setting method of the region A in the horizontal data distribution (height distribution). As shown in the figure, the region A (a part of the height distribution) in which the detection unit 18 approximates the shape of the height distribution may include a data distribution of the end portion of the tongue.
 この場合、近似多項式として円を用い、検出部18が、上記領域Aにおける高さ分布の形状(湾曲度)を円で近似し、その半径を検出すると、以下の関係が得られることがわかった。すなわち、舌が薄い場合における近似円の半径をR1(mm)とし、舌が厚い場合における近似円の半径をR2(mm)とすると、半径R1は、半径R2よりも顕著に小さくなることがわかった。したがって、領域Aを近似した円の半径に基づいて、舌が厚いか、薄いかの判断が容易となり、舌厚の検出精度をさらに向上させることができる。 In this case, when the circle is used as the approximate polynomial, and the detection unit 18 approximates the shape of the height distribution in the region A (curvature) with a circle and detects its radius, the following relationship is obtained. . That is, when the radius of the approximate circle when the tongue is thin is R1 (mm) and the radius of the approximate circle when the tongue is thick is R2 (mm), the radius R1 is significantly smaller than the radius R2. It was. Therefore, it is easy to determine whether the tongue is thick or thin based on the radius of the circle approximating the region A, and the detection accuracy of the tongue thickness can be further improved.
 〔データ分布の他の例〕
 図13は、照明部2による照明下で、撮像部4にて舌の表面を撮影したときに得られる画像データの分布であって、舌表面の上下方向のほぼ中心を通る水平方向における撮影画像のRGBの画像データの分布を示している。ただし、上段の分布は、舌が薄い場合のものであり、下段の分布は、舌が厚い場合のものである。なお、実線はRの画像データの分布を示し、1点鎖線はGの画像データの分布を示し、破線はBの画像データの分布を示している。
[Other examples of data distribution]
FIG. 13 is a distribution of image data obtained when the surface of the tongue is imaged by the imaging unit 4 under illumination by the illuminating unit 2, and the captured image in the horizontal direction passing through the substantially vertical center of the tongue surface. The distribution of RGB image data is shown. However, the upper distribution is for the case where the tongue is thin, and the lower distribution is for the case where the tongue is thick. The solid line indicates the distribution of R image data, the alternate long and short dash line indicates the distribution of G image data, and the broken line indicates the distribution of B image data.
 舌が厚い場合、舌はその端部から中央部にかけて上に凸となる部分を含む(図8の(b1)~(b3)参照)。このような舌表面の凸部は、照明部2に近づいて明るく照明されるため、舌の撮影画像において凸部に対応する部分では、画像データの値が増大する。逆に、舌が薄い場合、舌の表面は、端部から中央部にかけてほぼ平坦か、下に凹となる部分を含む(図8の(a1)~(a3)参照)。舌表面の平坦部や凹部は、上記の凸部に比べて照明部2から遠ざかるため、照明されても凸部よりも暗い。このため、舌の撮影画像において、表面の平坦部や凹部に対応する部分では、画像データの値が凸部に対応する部分に比べて減少する。このような傾向は、RGBのいずれの画像データについても同様である。なお、図13で示した画像データの分布の形状は、ちょうど、図8の(a2)および(b2)の形状にそれぞれ対応している。 When the tongue is thick, the tongue includes a portion that protrudes upward from the end to the center (see (b1) to (b3) of FIG. 8). Since such a convex portion on the tongue surface is brightly illuminated as it approaches the illumination unit 2, the value of the image data increases in the portion corresponding to the convex portion in the photographed image of the tongue. On the contrary, when the tongue is thin, the surface of the tongue includes a portion that is substantially flat from the end to the center, or includes a concave portion (see (a1) to (a3) in FIG. 8). Since the flat part and recessed part of the tongue surface move away from the illumination part 2 compared with said convex part, even if illuminated, it is darker than a convex part. For this reason, in the photographed image of the tongue, the value of the image data decreases in the portion corresponding to the flat portion or the concave portion on the surface compared to the portion corresponding to the convex portion. This tendency is the same for all RGB image data. The shape of the distribution of the image data shown in FIG. 13 corresponds to the shape of (a2) and (b2) in FIG.
 そこで、照明部2の照明下で得られる舌の撮影画像におけるRGBのいずれかの色の画像データの分布(単色の分布)からでも、その分布の凹凸に基づいて、舌が厚いか、薄いかの検出を行うことができる。つまり、舌の撮影画像に含まれるRGBのいずれかの色の画像データの水平方向の分布を、舌表面の凹凸の度合いを示すデータ分布として用いることでも、舌厚の検出を精度よく(舌の外形形状に関係なく)行うことができる。また、この方法では、上述した投光部3が不要となるため、小型、安価な構成で、舌の厚さを検出、診断することが可能となる。 Therefore, whether or not the tongue is thick or thin based on the unevenness of the distribution, even from the distribution of the image data of one of RGB colors (monochromatic distribution) in the photographed image of the tongue obtained under illumination of the illumination unit 2 Can be detected. In other words, it is possible to detect the tongue thickness with high accuracy (the tongue is detected by using the horizontal distribution of image data of one of RGB colors included in the photographed image of the tongue as a data distribution indicating the degree of unevenness of the tongue surface. Regardless of the outer shape). Also, with this method, the above-described light projecting unit 3 is not necessary, and thus it is possible to detect and diagnose the thickness of the tongue with a small and inexpensive configuration.
 種々の実験の結果、データの分布として、Rの成分比、すなわち、R/(R+G+B)の分布を用いると、上述した高さ分布とほぼ一致する分布が得られることがわかった。したがって、照明部2の照明下で得られる舌の撮影画像におけるRの成分比を示すデータの分布を、舌表面の凹凸の度合いを示すデータ分布として用いることでも、舌厚を精度よく検出できると言える。なお、舌の撮影画像におけるGの成分比(G/(R+G+B))やBの成分比(B/(R+G+B))を示すデータの分布を用いても、上記と同様に、舌厚を精度よく検出することができる。 As a result of various experiments, it was found that when the component ratio of R, that is, the distribution of R / (R + G + B) was used as the data distribution, a distribution almost identical to the above-described height distribution was obtained. Therefore, the tongue thickness can be accurately detected by using the data distribution indicating the R component ratio in the photographed image of the tongue obtained under illumination of the illumination unit 2 as the data distribution indicating the degree of unevenness of the tongue surface. I can say that. Note that the tongue thickness can be accurately determined in the same manner as described above using the distribution of data indicating the G component ratio (G / (R + G + B)) and the B component ratio (B / (R + G + B)) in the photographed image of the tongue. Can be detected.
 〔その他〕
 以上では、舌表面の凹凸の度合いを示す水平方向のデータ分布から、舌の厚さを検出する例について説明したが、以下の簡易的な演算によって舌厚を求めることも可能である。
[Others]
In the above, the example in which the thickness of the tongue is detected from the horizontal data distribution indicating the degree of unevenness of the tongue surface has been described, but the tongue thickness can also be obtained by the following simple calculation.
 図14は、舌の平面形状と断面形状との関係を模式的に示す説明図である。舌筋の標準状態(舌を広げたり狭めたりしない状態)における舌の表面積S(cm)は、舌の撮影画像から抽出される輪郭線(図4参照)で囲まれる部分を積分することによって求められる。 FIG. 14 is an explanatory view schematically showing the relationship between the planar shape and the cross-sectional shape of the tongue. The surface area S (cm 2 ) of the tongue in the standard state of the tongue muscle (the state where the tongue is not expanded or narrowed) is obtained by integrating the portion surrounded by the contour line (see FIG. 4) extracted from the photographed image of the tongue. Desired.
 また、上記の表面積Sは、舌筋の標準状態における舌の横幅に対応する指標W(cm)および舌の縦幅に対応する指標W(cm)を用いて、以下のように近似することができる。
   S≒W×W
The surface area S is approximated as follows using an index W S (cm) corresponding to the lateral width of the tongue in the standard state of the tongue muscle and an index W L (cm) corresponding to the vertical width of the tongue. be able to.
S ≒ W S × W L
 ここで、舌筋の標準状態における舌の縦横比は、縦/横≒1.0~1.3であるが、縦/横=1.2とすると、
   W=1.2W
と考えることができる。したがって、上記の表面積Sは、
   S=W×(1.2W
    =1.2W
となる。この式より、
   W=√(S/1.2)
が得られる。
Here, the aspect ratio of the tongue in the standard state of the tongue muscle is length / width≈1.0 to 1.3, but if length / width = 1.2,
W L = 1.2W S
Can be considered. Therefore, the surface area S is
S = W S × (1.2W S )
= 1.2W S 2
It becomes. From this formula:
W S = √ (S / 1.2)
Is obtained.
 一方、舌筋の標準状態における舌の断面積は、図8の(a1)で示した高さ分布の面積(横軸と分布曲線とで囲まれた部分の面積)の2倍により、簡易的に求めることができる。すなわち、舌の断面積をSc(cm)とすると、
   Sc=2×∫h×dw
で表される。ただし、hは、高さ分布の曲線の横軸からの高さとし、dwは、上記曲線の微小幅とする。
On the other hand, the sectional area of the tongue in the standard state of the tongue muscle is simplified by twice the area of the height distribution shown in (a1) of FIG. 8 (the area of the portion surrounded by the horizontal axis and the distribution curve). Can be requested. That is, when the sectional area of the tongue is Sc (cm 2 ),
Sc = 2 × ∫h × dw
It is represented by Here, h is the height from the horizontal axis of the height distribution curve, and dw is the minute width of the curve.
 舌筋の標準状態のときの舌の厚さをHs(cm)とすると、厚さHsは、
   Hs=Sc/W
     =Sc/(√(S/1.2))
で表される。
When the thickness of the tongue in the standard state of the tongue muscle is Hs (cm), the thickness Hs is
Hs = Sc / W S
= Sc / (√ (S / 1.2))
It is represented by
 舌筋を動かすと、舌の縦横の長さは変化するが、表面積Sおよび断面積Scはほとんど変化しない。したがって、舌の表面積Sおよび断面積Scを求めることにより、撮影時の舌筋の状態に関係なく、舌筋の標準状態における舌の厚さHsを上式より簡易的に求めることができる。そして、求めた舌厚に基づいて健康度を診断することが可能となる。 When the tongue muscle is moved, the length and width of the tongue change, but the surface area S and the cross-sectional area Sc hardly change. Therefore, by determining the surface area S and the cross-sectional area Sc of the tongue, the tongue thickness Hs in the standard state of the tongue muscle can be easily obtained from the above equation regardless of the state of the tongue muscle at the time of photographing. And it becomes possible to diagnose a health degree based on the calculated | required tongue thickness.
 以上では、撮影対象が人間の舌である場合について説明したが、生体(生きているもの)であれば人間でなくてもよく、人間以外の動物であってもよい。例えば、ペットや家畜などの動物の舌であっても、本実施形態の手法を適用して舌厚を検出したり、その検出結果に基づいて診断を行うことができる。この場合、意思の伝達ができない動物の体調不良を速やかに、かつ的確に判断することができる。 In the above, the case where the subject to be photographed is a human tongue has been described. However, as long as it is a living body (living thing), it may not be a human but may be an animal other than a human. For example, even for the tongue of an animal such as a pet or a domestic animal, the tongue thickness can be detected by applying the method of the present embodiment, and a diagnosis can be performed based on the detection result. In this case, it is possible to quickly and accurately determine the poor physical condition of an animal that cannot communicate its intention.
 また、撮影対象となる生体の器官は、舌には限定されない。例えばまぶたなど、水分代謝の良否により、むくみが現れる部位であれば、本実施形態のように器官の厚さを検出してそれに基づく診断を行うことが可能である。 Also, the organ of the living body to be imaged is not limited to the tongue. For example, if it is a site where swelling occurs due to the quality of water metabolism such as eyelids, it is possible to detect the thickness of the organ and make a diagnosis based on the thickness as in this embodiment.
 以上で説明した器官画像撮影装置は、以下のように表現することができ、これによって以下の作用効果を奏する。 The organ image capturing apparatus described above can be expressed as follows, and has the following effects.
 以上で説明した器官画像撮影装置は、生体の器官を撮影して、前記器官の表面の凹凸の度合いを示す水平方向のデータ分布を取得するデータ分布取得部と、前記データ分布取得部にて取得された前記データ分布の凹凸に基づいて、前記器官の厚さを検出する検出部とを備えている。 The organ image capturing apparatus described above captures an organ of a living body and acquires a horizontal data distribution indicating the degree of unevenness on the surface of the organ, and the data distribution acquisition unit acquires the data distribution in the horizontal direction. And a detector for detecting the thickness of the organ based on the unevenness of the data distribution.
 データ分布取得部により、器官表面の凹凸の度合いを示す水平方向のデータ分布が取得される。このデータ分布は、器官表面の凹凸の度合いを示すものとして、個々の器官の外形形状とは無関係に取得されるため、検出部が、上記データ分布の凹凸に基づいて、器官の厚さ(厚さの度合い)を検出することにより、個人差や力の入れ方によって器官の外形形状が異なる場合でも、個々の器官の外形形状に関係なく、器官の厚さを精度よく検出することができる。 The horizontal data distribution indicating the degree of unevenness on the organ surface is acquired by the data distribution acquisition unit. Since this data distribution indicates the degree of unevenness on the organ surface and is acquired regardless of the external shape of each organ, the detection unit determines the thickness (thickness of the organ) based on the unevenness of the data distribution. By detecting the degree of thickness, the thickness of the organ can be accurately detected regardless of the outer shape of each organ, even if the outer shape of the organ varies depending on individual differences and how to apply force.
 前記器官は、舌であり、前記検出部は、前記データ分布の凹凸に基づいて、舌診の舌厚を検出してもよい。この場合、舌厚に基づいて対象者の健康度を判断することが可能となる。 The organ may be a tongue, and the detection unit may detect a tongue thickness for tongue examination based on the unevenness of the data distribution. In this case, it is possible to determine the health level of the subject based on the tongue thickness.
 前記データ分布は、舌の表面の高さの分布であってもよい。舌の表面の高さの分布は、舌表面の凹凸の度合いそのものを表す分布である。したがって、上記高さの分布を用いることにより、舌の厚さを確実に精度よく検出することができる。 The data distribution may be a distribution of the height of the tongue surface. The height distribution on the surface of the tongue is a distribution representing the degree of unevenness on the surface of the tongue itself. Therefore, by using the height distribution, the thickness of the tongue can be reliably detected with high accuracy.
 前記データ分布取得部は、舌の表面に対して、水平方向に線状の光を投光する投光部と、前記投光部によって投光された前記光の、舌の表面の凹凸に応じて湾曲した形状を撮影する撮像部と、前記撮像部にて撮影された前記光の湾曲形状から、舌の表面の高さの分布を取得する高さ分布取得部とを備えていてもよい。このように、舌表面に投光された線状の光の湾曲形状を撮影することにより、その湾曲形状から舌表面の高さ分布を容易に取得することができる。 The data distribution acquisition unit is configured to project a linear light in a horizontal direction on the surface of the tongue, and the unevenness of the surface of the tongue of the light projected by the light projecting unit. An imaging unit that captures a curved shape and a height distribution acquisition unit that acquires a height distribution of the surface of the tongue from the curved shape of the light captured by the imaging unit. Thus, by photographing the curved shape of the linear light projected on the tongue surface, the height distribution of the tongue surface can be easily obtained from the curved shape.
 前記データ分布は、舌表面の撮影画像における赤、緑、青のいずれかの色の画像データの分布、または前記いずれかの色の成分比を示すデータの分布であってもよい。照明条件を一定とした場合、舌表面の凹部と凸部とでは明るさが変化するため、舌の撮影画像に含まれる赤(R)、緑(G)、青(B)の画像データは、いずれも、舌表面の凹凸に応じて変化する。したがって、撮影画像のRGBのいずれかの色の画像データの分布、またはいずれかの色の成分比を示すデータの分布を、舌表面の凹凸の度合いを示すデータ分布として用いることによっても、舌の厚さを精度よく検出することができる。 The data distribution may be a distribution of image data of any of red, green, and blue in a photographed image of the tongue surface, or a distribution of data indicating a component ratio of any of the colors. When the illumination condition is constant, the brightness changes between the concave and convex portions on the tongue surface, so the red (R), green (G), and blue (B) image data included in the captured image of the tongue is Both change according to the unevenness of the tongue surface. Therefore, by using the distribution of image data of any color of RGB of the photographed image or the distribution of data indicating the component ratio of any color as the data distribution indicating the degree of unevenness on the tongue surface, The thickness can be detected with high accuracy.
 前記データ分布取得部は、舌の表面を照明する照明部と、前記照明部による照明下で舌を撮影する撮像部と、前記撮像部にて取得される舌の撮影画像から、赤、緑、青の少なくともいずれかの色の画像データを抽出して、前記いずれかの色の画像データの分布、または前記いずれかの色の成分比を示すデータの分布を作成する分布作成部とを備えていてもよい。この場合、舌の撮影画像に含まれるRGBの画像データから、舌表面の凹凸の度合いを示す水平方向のデータ分布を確実に取得することができる。 The data distribution acquisition unit includes an illumination unit that illuminates the surface of the tongue, an imaging unit that captures the tongue under illumination by the illumination unit, and a captured image of the tongue acquired by the imaging unit. A distribution creation unit that extracts image data of at least one of the colors of blue and creates a distribution of the image data of any of the colors or a distribution of data indicating a component ratio of any of the colors May be. In this case, a horizontal data distribution indicating the degree of unevenness on the tongue surface can be reliably acquired from the RGB image data included in the photographed image of the tongue.
 前記検出部は、前記分布の形状を多項式で近似し、前記多項式の係数に基づいて舌の厚さを検出してもよい。近似多項式の係数は、舌表面の凹凸の度合いを示すので、この係数に基づいて舌の厚さ(厚さの度合い)を確実に検出することができる。 The detecting unit may approximate the shape of the distribution with a polynomial and detect the thickness of the tongue based on a coefficient of the polynomial. Since the coefficient of the approximate polynomial indicates the degree of unevenness on the tongue surface, the thickness of the tongue (degree of thickness) can be reliably detected based on this coefficient.
 前記検出部は、前記多項式による近似を、前記分布の一部に対してのみ行うようにしてもよい。この場合、データ分布の全体の形状を多項式で近似する場合に比べて、処理時間を短縮することができる。 The detection unit may perform approximation by the polynomial only for a part of the distribution. In this case, the processing time can be shortened compared to the case where the entire shape of the data distribution is approximated by a polynomial.
 前記分布の一部は、舌の水平方向における中央部よりも端部側のデータ分布であってもよい。データ分布において舌の中央部からずれた部分の形状を多項式で近似することにより、舌表面の凹形状または凸形状を確実に検出して、舌の厚さの度合いを確実に検出することができる。 The part of the distribution may be a data distribution on the end side with respect to the central portion in the horizontal direction of the tongue. By approximating the shape of the portion of the data distribution that deviates from the center of the tongue with a polynomial, the concave or convex shape of the tongue surface can be reliably detected, and the degree of tongue thickness can be reliably detected. .
 前記分布の一部は、舌の端部のデータ分布を含んでいてもよい。舌の端部のデータ分布を多項式(曲線)で近似すると、舌表面の凹凸の度合い(舌の厚さの度合い)によって近似曲線の曲がり度合い(半径、アール)が顕著に異なり、舌が厚いと近似曲線のアールが大きくなり、舌が薄いと近似曲線のアールが小さくなる。したがって、舌の厚さの度合いの検出精度がさらに向上する。 The part of the distribution may include a data distribution of the end of the tongue. When the data distribution at the end of the tongue is approximated by a polynomial (curve), the degree of curvature (radius, radius) of the approximate curve differs significantly depending on the degree of unevenness on the tongue surface (degree of tongue thickness). The curve of the approximate curve increases, and the curve of the approximate curve decreases when the tongue is thin. Therefore, the detection accuracy of the degree of tongue thickness is further improved.
 前記多項式は、2次式であり、前記係数は、前記多項式の2次の係数であってもよい。この場合、検出部は、近似多項式の2次の係数の正負に基づいて、舌表面の形状が凹形状であるか凸形状であるかを容易に判断でき、その凹凸形状の判断結果から、舌の厚さの度合いを容易に検出できる。 The polynomial may be a quadratic expression, and the coefficient may be a quadratic coefficient of the polynomial. In this case, the detection unit can easily determine whether the shape of the tongue surface is a concave shape or a convex shape based on the sign of the quadratic coefficient of the approximate polynomial. The degree of thickness can be easily detected.
 前記データ分布は、舌表面における舌尖と舌根とを結ぶ方向のほぼ中心を通る水平方向のデータ分布であることが望ましい。舌表面の水平方向の凹凸形状は、舌尖と舌根とを結ぶ方向に垂直な断面であればどの断面内でもほとんど同じであるので、上下方向のほぼ中心を通る上記データ分布の凹凸の形状から、舌の厚さを十分に検出することができる。 It is desirable that the data distribution is a horizontal data distribution passing through substantially the center of the direction connecting the tongue tip and the tongue base on the tongue surface. Since the uneven shape in the horizontal direction of the tongue surface is almost the same in any cross section as long as the cross section is perpendicular to the direction connecting the tongue tip and the base of the tongue, from the uneven shape of the above data distribution passing through the approximate center in the vertical direction, The thickness of the tongue can be detected sufficiently.
 本発明は、生体の器官を撮影して、器官の厚さを検出する装置に利用可能である。 The present invention can be used for an apparatus for photographing a living organ and detecting the thickness of the organ.
   1   器官画像撮影装置
   2   照明部(データ分布取得部)
   3   投光部(データ分布取得部)
   4   撮像部(データ分布取得部)
  16   画像処理部(データ分布取得部、高さ分布取得部、分布作成部)
  18   検出部
DESCRIPTION OF SYMBOLS 1 Organ imaging device 2 Illumination part (data distribution acquisition part)
3. Projection unit (data distribution acquisition unit)
4 Imaging unit (data distribution acquisition unit)
16 Image processing unit (data distribution acquisition unit, height distribution acquisition unit, distribution creation unit)
18 Detector

Claims (12)

  1.  生体の器官を撮影して、前記器官の表面の凹凸の度合いを示す水平方向のデータ分布を取得するデータ分布取得部と、
     前記データ分布取得部にて取得された前記データ分布の凹凸に基づいて、前記器官の厚さを検出する検出部とを備えている、器官画像撮影装置。
    A data distribution acquisition unit that images a living organ and acquires a horizontal data distribution indicating the degree of unevenness on the surface of the organ;
    An organ imaging apparatus comprising: a detection unit that detects the thickness of the organ based on the unevenness of the data distribution acquired by the data distribution acquisition unit.
  2.  前記器官は、舌であり、
     前記検出部は、前記データ分布の凹凸に基づいて、舌診の舌厚を検出する、請求項1に記載の器官画像撮影装置。
    The organ is the tongue;
    The organ image capturing apparatus according to claim 1, wherein the detection unit detects a tongue thickness of tongue examination based on the unevenness of the data distribution.
  3.  前記データ分布は、舌の表面の高さの分布である、請求項2に記載の器官画像撮影装置。 The organ image photographing apparatus according to claim 2, wherein the data distribution is a distribution of a height of a surface of the tongue.
  4.  前記データ分布取得部は、
     舌の表面に対して、水平方向に線状の光を投光する投光部と、
     前記投光部によって投光された前記光の、舌の表面の凹凸に応じて湾曲した形状を撮影する撮像部と、
     前記撮像部にて撮影された前記光の湾曲形状から、舌の表面の高さの分布を取得する高さ分布取得部とを備えている、請求項3に記載の器官画像撮影装置。
    The data distribution acquisition unit
    A light projecting unit that projects linear light in a horizontal direction on the surface of the tongue;
    An imaging unit that captures a curved shape of the light projected by the light projecting unit according to the unevenness of the surface of the tongue;
    The organ image capturing device according to claim 3, further comprising: a height distribution acquisition unit that acquires a height distribution of the surface of the tongue from the curved shape of the light imaged by the imaging unit.
  5.  前記データ分布は、舌表面の撮影画像における赤、緑、青のいずれかの色の画像データの分布、または前記いずれかの色の成分比を示すデータの分布である、請求項2に記載の器官画像撮影装置。 3. The data distribution according to claim 2, wherein the data distribution is a distribution of image data of any one of red, green, and blue in a photographed image of the tongue surface, or a distribution of data indicating a component ratio of any one of the colors. Organ imaging device.
  6.  前記データ分布取得部は、
     舌の表面を照明する照明部と、
     前記照明部による照明下で舌を撮影する撮像部と、
     前記撮像部にて取得される舌の撮影画像から、赤、緑、青の少なくともいずれかの色の画像データを抽出して、前記いずれかの色の画像データの分布、または前記いずれかの色の成分比を示すデータの分布を作成する分布作成部とを備えている、請求項5に記載の器官画像撮影装置。
    The data distribution acquisition unit
    An illumination unit that illuminates the surface of the tongue;
    An imaging unit for photographing the tongue under illumination by the illumination unit;
    The image data of at least one of red, green, and blue is extracted from the captured image of the tongue acquired by the imaging unit, and the distribution of the image data of any one of the colors, or any one of the colors The organ image photographing device according to claim 5, further comprising: a distribution creating unit that creates a distribution of data indicating the component ratio of the organ.
  7.  前記検出部は、前記分布の形状を多項式で近似し、前記多項式の係数に基づいて舌の厚さを検出する、請求項3から6のいずれかに記載の器官画像撮影装置。 The organ imaging apparatus according to any one of claims 3 to 6, wherein the detection unit approximates the shape of the distribution with a polynomial and detects the thickness of the tongue based on a coefficient of the polynomial.
  8.  前記検出部は、前記多項式による近似を、前記分布の一部に対してのみ行う、請求項7に記載の器官画像撮影装置。 The organ imaging apparatus according to claim 7, wherein the detection unit performs approximation by the polynomial only for a part of the distribution.
  9.  前記分布の一部は、舌の水平方向における中央部よりも端部側のデータ分布である、請求項8に記載の器官画像撮影装置。 The organ image capturing apparatus according to claim 8, wherein a part of the distribution is a data distribution closer to an end side than a central part in a horizontal direction of the tongue.
  10.  前記分布の一部は、舌の端部のデータ分布を含む、請求項9に記載の器官画像撮影装置。 The organ imaging apparatus according to claim 9, wherein a part of the distribution includes a data distribution of an end portion of a tongue.
  11.  前記多項式は、2次式であり、
     前記係数は、前記多項式の2次の係数である、請求項7から9のいずれかに記載の器官画像撮影装置。
    The polynomial is a quadratic equation,
    The organ image photographing apparatus according to claim 7, wherein the coefficient is a second-order coefficient of the polynomial.
  12.  前記データ分布は、舌表面における舌尖と舌根とを結ぶ方向のほぼ中心を通る水平方向のデータ分布である、請求項2から11のいずれかに記載の器官画像撮影装置。 The organ image capturing apparatus according to any one of claims 2 to 11, wherein the data distribution is a horizontal data distribution passing through a substantially center of a direction connecting a tongue apex and a tongue base on a tongue surface.
PCT/JP2014/075886 2013-11-05 2014-09-29 Organ image capturing device WO2015068495A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013229225 2013-11-05
JP2013-229225 2013-11-05

Publications (1)

Publication Number Publication Date
WO2015068495A1 true WO2015068495A1 (en) 2015-05-14

Family

ID=53041278

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/075886 WO2015068495A1 (en) 2013-11-05 2014-09-29 Organ image capturing device

Country Status (1)

Country Link
WO (1) WO2015068495A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7465399B1 (en) 2023-08-02 2024-04-10 株式会社エクサウィザーズ Tongue evaluation method, tongue evaluation system, and tongue evaluation program

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113581A (en) * 2002-09-27 2004-04-15 Asahi:Kk Health management apparatus
JP2004209245A (en) * 2002-12-28 2004-07-29 Samsung Electronics Co Ltd Method for extracting region of interest from image of tongue and method and apparatus for monitoring health using image of tongue

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004113581A (en) * 2002-09-27 2004-04-15 Asahi:Kk Health management apparatus
JP2004209245A (en) * 2002-12-28 2004-07-29 Samsung Electronics Co Ltd Method for extracting region of interest from image of tongue and method and apparatus for monitoring health using image of tongue

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7465399B1 (en) 2023-08-02 2024-04-10 株式会社エクサウィザーズ Tongue evaluation method, tongue evaluation system, and tongue evaluation program

Similar Documents

Publication Publication Date Title
WO2015029537A1 (en) Organ imaging apparatus
US10264965B2 (en) Eye imaging device and method of use
WO2015114950A1 (en) Organ image capturing device
US10945637B2 (en) Image based jaundice diagnosing method and apparatus and image based jaundice diagnosis assisting apparatus
WO2016076059A1 (en) Organ image capture device and program
KR101998595B1 (en) Method and Apparatus for jaundice diagnosis based on an image
WO2016067892A1 (en) Degree-of-health outputting device, degree-of-health outputting system, and program
KR101992016B1 (en) fundus fluorescence image acquisition apparatus with optical source and focus automatic control function, and method thereof
WO2015037316A1 (en) Organ-imaging device and organ-imaging method
WO2015049936A1 (en) Organ imaging apparatus
WO2015068495A1 (en) Organ image capturing device
JP2016151584A (en) Organ image capturing device
JP2016150024A (en) Organ imaging device
WO2015068494A1 (en) Organ image capturing device
WO2015060070A1 (en) Organ image capture device
EP3695775B1 (en) Smartphone-based handheld optical device and method for capturing non-mydriatic retinal images
JP2015226599A (en) Apparatus for measuring chromaticity of living body
JP2016168303A (en) Organ photographing apparatus
WO2015156039A1 (en) Organ imaging apparatus
KR102473744B1 (en) A method of diagnosing strabismus through the analysis of eyeball image from cover and uncovered test
JP2016198140A (en) Organ image capturing device
KR20200128981A (en) Diagnostic Imaging System for Scalp Using Multi-Angle and wavelength Light Sources
JP2004223197A (en) Ophthalmic apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860044

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP