WO2015068443A1 - Method for producing weld joint - Google Patents

Method for producing weld joint Download PDF

Info

Publication number
WO2015068443A1
WO2015068443A1 PCT/JP2014/070878 JP2014070878W WO2015068443A1 WO 2015068443 A1 WO2015068443 A1 WO 2015068443A1 JP 2014070878 W JP2014070878 W JP 2014070878W WO 2015068443 A1 WO2015068443 A1 WO 2015068443A1
Authority
WO
WIPO (PCT)
Prior art keywords
mass
flux
content
less
cored wire
Prior art date
Application number
PCT/JP2014/070878
Other languages
French (fr)
Japanese (ja)
Inventor
熊谷 達也
修一 中村
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to JP2014553365A priority Critical patent/JP5696824B1/en
Priority to KR1020157033517A priority patent/KR101655057B1/en
Priority to CA2915026A priority patent/CA2915026C/en
Priority to AU2014345139A priority patent/AU2014345139B2/en
Priority to BR112015029349-2A priority patent/BR112015029349B1/en
Priority to CN201480030521.XA priority patent/CN105339132B/en
Priority to MX2015017087A priority patent/MX352525B/en
Publication of WO2015068443A1 publication Critical patent/WO2015068443A1/en
Priority to PH12015502625A priority patent/PH12015502625A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0222Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in soldering, brazing
    • B23K35/0244Powders, particles or spheres; Preforms made therefrom
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/02Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape
    • B23K35/0255Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by mechanical features, e.g. shape for use in welding
    • B23K35/0261Rods, electrodes, wires
    • B23K35/0266Rods, electrodes, wires flux-cored
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/306Fe as the principal constituent with C as next major constituent, e.g. cast iron
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3066Fe as the principal constituent with Ni as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3073Fe as the principal constituent with Mn as next major constituent
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/308Fe as the principal constituent with Cr as next major constituent
    • B23K35/3086Fe as the principal constituent with Cr as next major constituent containing Ni or Mn
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/24Selection of soldering or welding materials proper
    • B23K35/30Selection of soldering or welding materials proper with the principal constituent melting at less than 1550 degrees C
    • B23K35/3053Fe as the principal constituent
    • B23K35/3093Fe as the principal constituent with other elements as next major constituents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3602Carbonates, basic oxides or hydroxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/3601Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest with inorganic compounds as principal constituents
    • B23K35/3603Halide salts
    • B23K35/3605Fluorides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K35/00Rods, electrodes, materials, or media, for use in soldering, welding, or cutting
    • B23K35/22Rods, electrodes, materials, or media, for use in soldering, welding, or cutting characterised by the composition or nature of the material
    • B23K35/36Selection of non-metallic compositions, e.g. coatings, fluxes; Selection of soldering or welding materials, conjoint with selection of non-metallic compositions, both selections being of interest
    • B23K35/368Selection of non-metallic compositions of core materials either alone or conjoint with selection of soldering or welding materials

Definitions

  • the present invention has a weld metal that has high hardness, excellent wear resistance, and is resistant to low-temperature cracking when welding high-hardness steel plates with excellent wear resistance used in the construction machinery and industrial machinery fields.
  • the present invention relates to a method for manufacturing a welded joint.
  • the hardness of the steel sheet varies depending on the environment and purpose of use, but in general, it is HB400 grade (Brinell hardness standard value HB360 to HB440, Vickers hardness standard value HV380 to HV469), HB450 grade (Brinell hardness) Standard values of HB410 to HB490, Vickers hardness standard value of HV435 to HV533), HB500 class (Brinell hardness standard value of HB450 to HB550, Vickers hardness standard value of HV478 to HV585) or HB600 class ( Abrasion-resistant steel sheets having a standard value of Brinell hardness of HB550 to HB650 and a standard value of Vickers hardness of HV585 to HV693) are often used.
  • the weld metal may require wear resistance close to that of the base material (wear-resistant steel).
  • the base material wear-resistant steel
  • the hardness of the weld metal is increased, low temperature cracks caused by hydrogen that enters during welding are very likely to occur.
  • the wear-resistant steel having high hardness is used as the base material, the strengthening of the restraining force is also a cause of low temperature cracking.
  • the hardness of the weld metal is preferably about the same as that of the base material.
  • the hardness of the weld metal is at least HV337 (HB320) or higher, preferably HV380 (HB360) or higher.
  • the weld metal part what is important from the viewpoint of wear resistance is the hardness near the surface.
  • the weld metal in the lower layer is reheated by subsequent passes, so that the hardness is slightly reduced.
  • the weld metal in the uppermost layer is used. It is sufficient that the vicinity of each surface of the metal has sufficient hardness.
  • the surface hardness is HV337 or more and HV533 or less and having sufficient wear resistance
  • a welding method that forms a weld metal that does not occur is considered extremely useful.
  • Patent Documents 1 to 5 have been proposed as techniques for suppressing the low-temperature cracking caused by hydrogen generated in a high-strength weld metal.
  • patent document 1 prevents generation
  • Patent Document 2 prevents the occurrence of cold cracking by causing an oxide to function as a hydrogen trap site for a steel sheet that is also used for applications such as a high-strength line pipe.
  • Patent Document 3 discloses a technique for preventing the occurrence of cold cracking by causing Mo carbide to function as a trap site for a steel material having a tensile strength of 800 to 1150 MPa.
  • Patent Document 4 discloses that the amount of diffusible hydrogen in the weld metal immediately after welding is reduced to about 3.0 to 4.0 ml / 100 g by adding an appropriate amount of Mg to the coating material of the coated arc welding material, thereby increasing the tensile strength.
  • a technique for improving cold cracking resistance of a steel material of 880 to 1180 MPa is disclosed.
  • Patent document 5 is disclosing the technique which suppresses a low temperature crack by restrict
  • an austenitic stainless steel welding material when used, the penetration of hydrogen into the weld metal is greatly reduced, so that the low temperature cracking susceptibility can be lowered. Moreover, since it is an austenite structure, a ductile fall cracking is hard to produce. However, a weld metal using an austenitic stainless steel welding material is not easy to increase strength, that is, hardness, and cannot be expected to have wear resistance.
  • the surface hardness is HV 337 or higher and HV 533 or lower. It is demanded to form a weld metal that is difficult to be welded or a weld metal that has a surface hardness of HV380 or more and HV533 or less and that is excellent in wear resistance and that does not easily cause cold cracking by gas shield arc welding.
  • An object of the present invention is a welded joint using a high-hardness steel plate having a high C content and a surface hardness of HV380 or more and HV693 or less as a base material, and having a surface hardness of HV337 or more and HV533 or less.
  • a method for producing a welded metal having excellent wear resistance and low-temperature cracking, or a welded joint having a surface hardness of HV380 to HV533 and having excellent wear resistance and low-temperature cracking. Is to provide.
  • the preheating temperature at the time of welding was important to prevent low temperature cracking, so it was common to weld with the preheating temperature as the top priority with a welding material for mild steel. Therefore, the problem was that the hardness of the weld metal part was low and wear was very likely to occur.
  • the present invention has newly found that when the hardness of the weld metal part is increased, the weld metal itself is very susceptible to cracking, not the heat-affected part of the base material. Therefore, after investigating the relationship between weld metal CEN and cracks, we found the appropriate range of weld metal CEN.
  • FIG. 1 shows that the y-type weld cracking test specified in JIS Z3158 was carried out under various conditions with various steel sheets and welding materials with different flux compositions, etc. It is the result of having produced the weld metal which has the amount of diffusible hydrogen, and calculated
  • FIG. 1 shows the relationship between the amount of diffusible hydrogen in the weld metal and the limit preheating temperature at which cracking is suppressed, organized according to the hardness level of the weld metal.
  • the low-temperature cracking test was conducted at room temperature (25 ° C.) in accordance with JIS Z3158 (y-type weld cracking test method: 1993), and was accepted as having passed on the surface and the cross section.
  • the measurement test of the amount of diffusible hydrogen was carried out by a gas chromatograph method based on JIS Z3118 (method for measuring the amount of hydrogen in steel welds; 2007).
  • the limit preheating temperature for the occurrence of cold cracking does not depend much on the hardness of the weld metal. Therefore, by setting the amount of diffusible hydrogen to less than 1.0 ml / 100 g, the low-temperature cracking susceptibility between a weld metal having a hardness of HV337 to HV533 and a weld metal having a hardness of HV380 to HV533 is greatly reduced. Can do.
  • the weld metal contains a certain amount of fluoride such as CaF 2 in the flux component, the amount of oxide is adjusted, and the compounding ratio of fluoride and oxide is within a certain range. It was found that the amount of diffusible hydrogen therein can be stably suppressed to less than 1.0 ml / 100 g.
  • Low-temperature cracking susceptibility of weld metal depends greatly on the hardness of the weld metal, but is also affected by alloying elements.
  • the inventors investigated the relationship between various alloy compositions and low-temperature cracking susceptibility (cracking suppression preheating temperature) of a weld metal of HV337 to HV533 and a weld metal of HV380 to HV533.
  • the low temperature cracking test is conducted in accordance with JIS Z3158 (y-type weld cracking test method: 1993), and the minimum preheating temperature that does not cause low temperature cracking by changing the preheating temperature is determined as the crack initiation limit preheating temperature. did.
  • the flux-cored welding wire of the present invention described below is used, and the amount of diffusible hydrogen in the weld metal is less than 1.0 ml / 100 g.
  • CEN calculated by Equation 1 (see Welding Form 10. “Welding of Steel Materials”, Industrial Publication (1999), p. 163) is 0.58% by mass or less. It has been found that the cracking limit preheating temperature can be set to room temperature (25 ° C.) or less, and the occurrence of low temperature cracking can be suppressed without preheating.
  • the present invention has been made on the basis of the above findings, and the gist thereof is as follows.
  • the method for manufacturing a welded joint according to the first aspect of the present invention has a Vickers hardness HV of 380 to 514, a plate thickness of 20 to 100 mm, and a C content of 0.120 to 0. .300 mass%, CEN calculated by the following formula 1 is 0.20 to 0.75 mass%, Vickers hardness HV is more than 514 and less than 565, and the thickness is 12 to 100 mm.
  • the preheating operation is performed so that the temperature of the steel plate is 10 ° C or higher, and (b) the flux-cored wire is CaF 2 , When one or more of BaF 2 , SrF 2 , and MgF 2 are contained and the total content thereof is ⁇ , the ⁇ is 3.3 to 8.0 in terms of mass% with respect to the total mass of the flux-cored wire. %, And containing at least one of Ti oxide, Si oxide, Mg oxide, and Al oxide, where ⁇ is the total content, ⁇ is the total mass of the flux-cored wire Vs.
  • the total content of MgCO 3 is less than 0.60% by mass% relative to the total weight of the flux-cored wire Yes, the content of iron powder in the flux is less than 10.0% by mass% with respect to the total mass of the flux-cored wire, and the ratio of the CaF 2 content to ⁇ is 0.90 or more.
  • the ratio of ⁇ to ⁇ is 3.0 or more and 80.0 or less, and the content of CaO is less than 0.20% by mass% with respect to the total mass of the flux-cored wire.
  • the chemical components in the flux-cored wire excluding oxides and metal carbonates, in mass% with respect to the total mass of the flux-cored wire: C: 0.010 to less than 0.060%; Si: 0.0. 5 to 1.80%; Mn: 0.50 to 4.00%; P: 0.050% or less; S: 0.020% or less; Al: 0.005 to 0.150%; Cu: 0 to 0 Ni: 0 to less than 1.00%; Cr: 0 to 3.50%; Mo: 0 to 1.50%; Ti: 0 to 0.150%; Nb: 0 to 0.15%; V: 0 to 0.45%; B: 0 to 0.0500%; Mg: 0 to 2.0%; Ca: 0 to 2.0%; REM: 0 to 0.0150%; balance: Fe and impurities (C) the chemical composition of the weld metal of the weld joint is in mass%: C: 0.100 to 0.170%; Si: 0.05 to 0.80%; Mn: 0.20 to 2.50%; Al: 0.00
  • CEN [C] + (0.75 + 0.25 ⁇ tanh (20 ⁇ ([C] ⁇ 0.12))) ⁇ ([Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 ⁇ [B]) (Formula 1)
  • the element with [] represents the content (% by mass) of each element.
  • the Vickers hardness HV is 380 to 514
  • the plate thickness is 20 to 100 mm
  • the C content is 0.120 to 0. .300 mass%
  • CEN calculated by the following formula 1 is 0.20 to 0.75 mass%
  • Vickers hardness HV is more than 514 and less than 565
  • the thickness is 12 to 100 mm.
  • the preheating operation is performed so that the temperature of the steel plate is 10 ° C or higher, and (b) the flux-cored wire is CaF 2 , When one or more of BaF 2 , SrF 2 , and MgF 2 are contained and the total content thereof is ⁇ , the ⁇ is 3.3 to 8.0 in terms of mass% with respect to the total mass of the flux-cored wire. %, And containing at least one of Ti oxide, Si oxide, Mg oxide, and Al oxide, where ⁇ is the total content, ⁇ is the total mass of the flux-cored wire Vs.
  • the total content of MgCO 3 is less than 0.60% by mass% relative to the total weight of the flux-cored wire Yes, the content of iron powder in the flux is less than 10.0% by mass% with respect to the total mass of the flux-cored wire, and the ratio of the CaF 2 content to ⁇ is 0.90 or more.
  • the ratio of ⁇ to ⁇ is 3.0 or more and 80.0 or less, and the content of CaO is less than 0.20% by mass% with respect to the total mass of the flux-cored wire.
  • the chemical components in the flux-cored wire excluding oxides and metal carbonates, in mass% with respect to the total mass of the flux-cored wire: C: 0.060 to 0.350%; Si: 0.05 1.80%; Mn: 0.50 to 4.00%; P: 0.050% or less; S: 0.020% or less; Al: 0.005 to 0.150%; Cu: 0 to 0.75 Ni: 0 to less than 1.00%; Cr: 0 to 3.50%; Mo: 0 to 1.50%; Ti: 0 to 0.150%; Nb: 0 to 0.15%; V: B: 0 to 0.0500%; Mg: 0 to 2.0%; Ca: 0 to 2.0%; REM: 0 to 0.0150%; balance: Fe and impurities; (C) the chemical composition of the weld metal of the weld joint is in mass%: C: 0.120-0.250%; Si: 0.05-0.80%; Mn: 0.20-2.
  • the method for manufacturing a welded joint according to the third aspect of the present invention has a Vickers hardness HV of more than 565 and not more than 693, a plate thickness of 12 to 20 mm, and a C content of 0.350 to 0.
  • a steel sheet having a C content of 0.350 to 0.450 mass% and a CEN calculated by the following formula 2 of 0.20 to 0.85 mass% a method of manufacturing a welded joint by performing gas shielded arc welding using a flux-cored wire in which a steel outer sheath is filled with flux, (a) during the gas shielded arc welding, The plate thickness is 20m
  • the preheating operation is performed so that the temperature of the steel plate is 100 ° C. or more.
  • the flux-cored wire contains one or more of CaF 2 , BaF 2 , SrF 2 , and MgF 2 , and when the total content is ⁇ , the ⁇ is the flux-cored wire.
  • It is 3.3 to 8.0% by mass with respect to the total mass, and contains at least one of Ti oxide, Si oxide, Mg oxide, and Al oxide, and the total content is ⁇ and The ⁇ is 0.10 to 1.50% by mass% with respect to the total mass of the flux-cored wire, and the total content of CaCO 3 , BaCO 3 , SrCO 3 , and MgCO 3 is the flux-cored wire.
  • the whole quality of Less than 0.60% by mass% with respect to the content of iron powder in said flux is less than 10.0% in percentage by weight relative to the total weight of the flux-cored wire, inclusion of the CaF 2 with respect to the ⁇
  • the ratio of the amount is 0.90 or more, the ratio of ⁇ to ⁇ is 3.0 or more and 80.0 or less, and the content of CaO is 0.20 by mass% with respect to the total mass of the flux-cored wire.
  • the chemical composition of the weld metal of the weld joint is in mass%: C: 0.120 to 0.250%; Si: 0.05 to 0.80%; Mn: 0.20 to 2.50% Al: 0.0050 to 0.1000%; P: 0.050% or less; S: 0.020% or less; N: 0.015% or less; Cu: 0 to 0.50%; Ni: 0 to 0 Less than 70%; Cr
  • CEN [C] + (0.75 + 0.25 ⁇ tanh (20 ⁇ ([C] ⁇ 0.12))) ⁇ ([Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 ⁇ [B]) (Formula 2)
  • the element with [] represents the content (% by mass) of each element.
  • the content of the CaO in the flux-cored wire is 0.15% or less by mass% with respect to the total mass of the flux-cored wire. It may be.
  • the chemical composition may be Ni: 0 to 0.1% by mass% with respect to the total mass of the flux-cored wire.
  • perfluoropolyether oil may be applied to the surface of the flux-cored wire.
  • the inventors In a welded joint using a high-hardness steel plate as a base material, the inventors, as described above, have a cold crack initiation limit preheating temperature if the amount of diffusible hydrogen in the weld metal immediately after welding is less than 1.0 ml / 100 g. Has found that it does not depend much on the hardness of the weld metal and can greatly reduce the low-temperature cracking susceptibility between a weld metal of HV 337 and HV 533 and a weld metal of HV 380 and HV 533.
  • the inventors have repeatedly studied various combinations and combinations of flux components of the flux-cored wire in order to reduce the amount of diffusible hydrogen in the weld metal immediately after welding to less than 1.0 ml / 100 g. It was. As a result, fluorides such as CaF 2 are particularly effective in reducing hydrogen. By containing a certain amount of the flux component, the amount of diffusible hydrogen in the weld metal can be greatly reduced. The inventors have found that the amount of diffusible hydrogen can be stably suppressed to less than 1.0 ml / 100 g by adjusting the amount and keeping the blending ratio of fluoride and oxide within a certain range.
  • the present invention has been made based on such studies. Hereinafter, an aspect of the method for manufacturing the welded joint according to the present embodiment will be described.
  • the present invention uses, as a base material, a high-hardness thick steel plate having a C content of 0.12 to 0.45% by mass, HV380 or more and HV693 or less, which is widely used as a wear-resistant steel plate.
  • the target is a welded joint formed by gas shielded arc welding.
  • the weld metal has the chemical composition described in (1) or (2) above.
  • the reason for limiting the chemical composition of the weld metal will be described. In the following description, “%” means “% by mass” unless otherwise specified.
  • C is an element that most affects the hardness of the weld metal.
  • the base metal hardness is HV380 or higher, it is desirable that the surface hardness of the weld metal is at least HV337 in order to ensure a certain degree of wear resistance in the weld metal.
  • the C content of the weld metal needs to be 0.100% or more.
  • the base metal hardness is HV380 or more, it is desirable that the surface hardness of the weld metal is HV380 or more in order to ensure wear resistance close to that of the base material.
  • the C content of the weld metal needs to be 0.120% or more.
  • the upper limit of the C content is set to 0.250%.
  • the C content of the weld metal of a welded joint made using a flux-cored wire having a C content of 0.010 to less than 0.060%, which will be described later may be 0.100 to 0.170%. It is normal.
  • the lower limit of the C content may be 0.130% or 0.140%.
  • the upper limit of C content it is good also considering the upper limit of C content as 0.230% or 0.210%.
  • Si 0.05-0.80%
  • Si is a deoxidizing element, and a certain amount is added to the flux in order to reduce the O content of the weld metal and increase the cleanliness. Therefore, the Si content in the weld metal is also 0.05% or more. If necessary, the lower limit of the Si content may be 0.10%, 0.15%, or 0.20%. If Si is contained in an amount exceeding 0.80%, the toughness of the weld metal may be deteriorated, so this is the upper limit. In order to improve the toughness of the weld metal, the upper limit of the Si content may be 0.70%, 0.65%, 0.60%, or 0.50%.
  • Mn 0.20-2.50% Since Mn has the effect of forming MnS and suppressing grain boundary embrittlement due to S, it is contained in the weld metal at least 0.20% or more. Further, since Mn is an element that has the effect of ensuring the hardenability of the weld metal and increasing the strength, it is desirable to contain 0.50% or more in order to stably obtain the hardness. In order to improve the hardness of the weld metal, the lower limit of the Mn content may be 0.60%, 0.70%, 0.80%, or 0.90%. On the other hand, if Mn exceeds 2.50%, the grain boundary embrittlement susceptibility increases and the toughness of the weld metal deteriorates, so this is the upper limit. In order to improve the toughness of the weld metal, the upper limit of the Mn content may be limited to 2.30%, 2.10%, 1.90%, 1.70%, or 1.50%.
  • Al is a deoxidizing element and, like Si, has the effect of improving the cleanliness of the weld metal by reducing the O content in the weld metal, so a certain amount needs to be added to the flux. .
  • the weld metal of the welded joint obtained using the flux cored wire according to the present embodiment usually contains 0.0050% or more of Al.
  • the amount of Al is less than 0.0050%, the low temperature toughness of the weld metal may be reduced.
  • the content exceeds 0.1000%, nitrides and oxides are formed and the toughness of the weld metal is deteriorated, so this is the upper limit.
  • the upper limit of the Al content may be limited to 0.0900%, 0.0800%, 0.0700%, or 0.0600%.
  • P 0.050% or less
  • the P content of the weld metal is limited to 0.050% or less as a range in which an adverse effect on toughness can be tolerated.
  • the upper limit of the P content may be limited to 0.030%, 0.0250%, 0.0200%, or 0.0150%. There is no need to limit the lower limit of the P content.
  • the lower limit of the P content is 0%.
  • S is also an impurity element, and if it is excessively present in the weld metal, it deteriorates both toughness and ductility, so it is preferable to reduce it as much as possible.
  • the S content of weld metal is limited to 0.020% or less. If necessary, the upper limit of the S content may be limited to 0.015%, 0.010%, 0.008%, or 0.006%. There is no need to limit the lower limit of the S content. The lower limit of the S content is 0%.
  • N 0.015% or less
  • the N content is limited to 0.015% or less as an upper limit that can allow an influence on the weld metal. If necessary, the upper limit of the N content may be limited to 0.010%, 0.008%, or 0.006%. There is no need to limit the lower limit of the N content.
  • the lower limit of the N content is 0%.
  • O is inevitably contained in the weld metal, but the O content of the weld metal is limited to 0.100% or less as a range in which an adverse effect on toughness and ductility can be tolerated.
  • the upper limit of the O content may be 0.080%, 0.060%, 0.050%, or 0.040%.
  • the lower limit of the O content is 0%.
  • Cu can improve the strength and toughness of the weld metal, it can be contained as a selective element. However, if the Cu content exceeds 0.50%, the toughness may decrease, so the Cu content of the weld metal is set to 0.50% or less. If necessary, the upper limit of Cu content may be 0.40% or 0.30%. There is no need to limit the lower limit of the Cu content. For this reason, the minimum of Cu content is 0%. On the other hand, in order to obtain a sufficient strengthening effect, the weld metal may be contained by 0.10% or more. As a method for incorporating Cu into the weld metal, there are a method of plating the outer surface of the wire, or a method of adding it as a simple substance or an alloy element to the flux.
  • Ni 0 to less than 0.70%
  • Ni can be contained as a selective element that is effective for improving toughness.
  • the C content is high, the effect is limited and it is also an expensive element, so the Ni content in the weld metal is less than 0.70%.
  • the upper limit of the Ni content may be 0.60%, 0.40%, or 0.20%.
  • the lower limit of the Ni content is 0%.
  • 0.05% or more may be contained in the weld metal.
  • Cr is an element effective for improving the hardness of the weld metal by increasing the hardenability, and can be contained as a selective element. However, if the content exceeds 2.50% excessively, the toughness may be reduced, so the upper limit of the Cr content is 2.50%. If necessary, the upper limit of the Cr content may be 1.50%, 1.00%, 0.70%, or 0.40%. There is no need to limit the lower limit of the Cr content. For this reason, the lower limit of the Cr content is 0%. On the other hand, when it is added for the purpose of improving the hardness of the weld metal, it may be contained by 0.10% or more in order to obtain the effect.
  • Mo is an element effective for improving the hardness of the weld metal by increasing the hardenability, and can be contained as a selective element. However, if the content exceeds 1.00% excessively, the toughness may be lowered, so the Mo content is limited to 1.00%. If necessary, the upper limit of the Mo content may be 0.70%, 0.60%, 0.40%, or 0.20%. There is no need to limit the lower limit of the Mo content. For this reason, the lower limit of the Mo content is 0%. On the other hand, when added for the purpose of improving the hardness, 0.05% or more may be contained in order to obtain the effect.
  • Ti is effective as a deoxidizing element, has an effect of reducing the O content in the weld metal, and can be contained as a selective element. It is also effective for fixing the solid solution N and mitigating the adverse effect on toughness.
  • the upper limit of the Ti content is set to 0.100%. If necessary, the upper limit of the Ti content may be 0.080%, 0.050%, 0.030%, or 0.020%. There is no need to limit the lower limit of the Ti content. For this reason, the lower limit of the Ti content is 0%. You may make it contain 0.010% or more for the purpose of toughness improvement.
  • Nb has the effect of improving the hardness of the weld metal by solid solution, and can be contained as a selective element. However, if the content exceeds 0.100%, it is not preferable because it is excessively contained in the weld metal and coarse precipitates are formed to deteriorate toughness. Therefore, the upper limit of the Nb content is 0.100%. To do. If necessary, the upper limit of the Nb content may be 0.080%, 0.050%, 0.030%, or 0.020%. There is no need to limit the lower limit of the Nb content. For this reason, the lower limit of the Nb content is 0%. You may make it contain 0.010% or more for the purpose of the hardness improvement of a weld metal.
  • V is an element effective for improving the hardness of the weld metal by increasing the hardenability, and can be contained as a selective element. However, if the content exceeds 0.30%, the toughness may be lowered, so the V content is 0.30% as the upper limit. As needed, it is good also considering the upper limit of V content as 0.25%, 0.20%, or 0.15. There is no need to limit the lower limit of the V content. For this reason, the lower limit of the V content is 0%. You may make it contain 0.01% or more for the hardness improvement of a weld metal.
  • B (B: 0 to 0.0100%)
  • B has an effect of forming a BN in combination with the solid solution N and reducing the adverse effect on the toughness of the solid solution N.
  • B also has the effect of enhancing the hardenability and contributing to the strength improvement, and can be contained as a selective element. In order to obtain these effects, 0.0003% or more may be contained.
  • the upper limit of the B content when B is contained is 0.0100%. If necessary, the upper limit of the B content may be 0.0080%, 0.0060%, 0.0040%, or 0.0020%. There is no need to limit the lower limit of the B content, and the lower limit of the B content is 0%.
  • Mg 0 to 0.100%
  • Mg is a strong deoxidizing element, and may be contained by 0.001% or more in order to reduce the O content in the weld metal and improve the ductility and toughness of the weld metal.
  • Mg content in the weld metal exceeds 0.100%, a decrease in toughness due to the formation of coarse oxides in the weld metal cannot be ignored. For this reason, also when it contains Mg, Mg content shall be 0.100% or less.
  • the upper limit of the Mg content may be 0.0080%, 0.0060%, 0.0040%, or 0.0020%.
  • Ca and REM are effective in improving the ductility and toughness by changing the structure of the sulfide in the weld metal and reducing the size of the sulfide and oxide. You may contain REM 0.0002% or more. On the other hand, if it is contained excessively, it causes coarsening of sulfides and oxides, leading to deterioration of ductility and toughness. Therefore, the upper limit of each inclusion is 0.100% for Ca and 0.0100% for REM. To do.
  • the weld metal containing the above chemical composition may contain impurities that are mixed in during the manufacturing process, etc., as long as the balance containing iron (Fe) as a main component does not hinder the characteristics of the welded joint according to the present embodiment. .
  • CEN 0.20 to 0.58 mass%
  • CEN calculated by Formula 1 is 0.58% by mass or less.
  • the crack initiation limit preheating temperature is 25 ° C. or less, and welding without substantially preheating becomes possible.
  • the upper limit of CEN may be set to 0.55% by mass, 0.53% by mass, 0.50% by mass, 0.47% by mass, or 0.45% by mass.
  • the lower limit of CEN is 0.20% by mass.
  • the base material has a Vickers hardness HV of 380 to 514 (corresponding to HB 360 to 475), the base material has a thickness of 20 to 100 mm, and the base material has a C content of 0.120 to A base material having 0.300% and CEN calculated by Formula 1 of 0.20 to 0.75% by mass.
  • the Vickers hardness HV of the base material is 514 to 565 or less (corresponding to HB475 to 530 or less), the thickness of the base material is 12 to 100 mm, and the C content of the base material is 0.120 to A base material having 0.300% and CEN calculated by Formula 1 of 0.20 to 0.75% by mass.
  • the base material has a Vickers hardness HV of over 565 to 693 (corresponding to HB 530 of over 650), the base material has a thickness of 6 to 12 mm, and the base material has a C content of 0.350 to A base material having 0.450% and CEN calculated by Formula 1 of 0.20 to 0.85 mass%.
  • the base metal temperature satisfying any one of the above (a) to (c) is 10 ° C or higher during gas shielded arc welding, there is no need to perform preheating work during welding.
  • the temperature of the material is less than 10 ° C.
  • the upper limit of the base material temperature (preheating temperature) is not particularly required, but may be less than 75 ° C or less than 50 ° C.
  • the base material has a Vickers hardness HV of more than 565 and less than 693 (corresponding to more than HB 530 and less than 650), the thickness of the base material is 12 to 20 mm, and the C content of the base material is 0.350 to A base material having 0.450% and CEN calculated by Formula 1 of 0.20 to 0.85 mass%.
  • the Vickers hardness HV of the base material is more than 565 to 693 or less (corresponding to HB 530 or more and 650 or less), the thickness of the base material is more than 20 mm and 50 mm or less, and the C content of the base material is 0.350.
  • the base material when the thickness of the base material is 20 mm or less during gas shielded arc welding, the base material is preheated to 100 ° C. or more, and the thickness of the base material is In the case of over 20 mm, the base material is preheated to 150 ° C. or higher.
  • the upper limit of the base material temperature (preheating temperature) is not particularly required, but may be less than 175 ° C or less than 150 ° C.
  • CEN shall be 0.20 mass% or more.
  • the average Vickers hardness of 1 mm below the surface of the weld metal is further set to HV337 or higher and HV533 or lower, or HV380 or higher and HV533 or lower.
  • the amount of diffusible hydrogen immediately after welding is set to be less than 1.0 ml / 100 g for the weld metal. If the hardness at a position 1 mm below the surface is HV337 or higher and HV533 or lower, the wear resistance requirement necessary for the weld metal is satisfied. If it is less than HV337, the wear resistance is insufficient. If it exceeds HV533, cold cracking is likely to occur.
  • the hardness is measured by cutting a cross section perpendicular to the welding direction in a weld metal, collecting a polished sample, measuring 10 points of Vickers hardness at a position 1 mm below the surface of the weld metal, and calculating an average value. Shall be determined by
  • the amount of diffusible hydrogen in the weld metal immediately after welding is less than 1.0 ml / 100 g. It does not depend much on the hardness, and the cold cracking susceptibility of the weld metal having a hardness of HV337 to HV533 and the weld metal of HV380 to HV533 can be greatly reduced.
  • the amount of diffusible hydrogen is measured by a gas chromatographic method based on JIS Z 3118 (Method for measuring the amount of hydrogen in steel welds; 2007). Since the diffusion rate of hydrogen is relatively high at room temperature, the amount of diffusible hydrogen in the weld metal must be measured immediately after welding. For this reason, unless it measures immediately after welding, the amount of diffusible hydrogen cannot be measured correctly.
  • a welded joint having a weld metal As described above, a high-hardness thick steel plate to be welded is used as a base material, and, for example, the two base materials are set at a welding position so as to form a groove therebetween. Then, by performing gas shielded arc welding using a flux-cored welding wire and generating a weld metal between the base materials, a weld joint composed of the weld metal and base metal plates on both sides thereof is formed.
  • steel plates, flux-cored welding wires, welding conditions and the like used for forming the weld metal will be described.
  • a high-hardness thick steel plate having a C content of 0.120% or more and 0.450% or less and HV380 or more and HV693 or less in mass% is an object.
  • the plate thickness of the steel plate to be used the thickness of 6 mm or more and 100 mm or less, which is generally referred to as a thick plate, is targeted.
  • Steel sheets satisfying such conditions are widely used in places where wear resistance is required, such as machinery for civil engineering and construction work, and there is no particular limitation on the chemical composition other than the C content.
  • C 0.120 to 3.000%, Si: 0.10 to 0.55%, Mn: 0.20 to 2.00%, Al: 0.01 to 0.10%, P: 0.020%
  • S 0.015% or less
  • Cu 0.50% or less
  • Ni 1.00% or less
  • Cr 1.20% or less
  • Mo 0.60% or less
  • Nb 0.05% or less
  • the CEN calculated by the equation 1 is 0.20 to 0.85% by mass.
  • the upper limit of CEN is set to 0.85% by mass.
  • the upper limit of CEN is 0.80 mass%, 0.75 mass%, 0.73 mass%, 0.70 mass%, 0.68 mass%, 0 It is good also as .65 mass%, 0.63 mass%, or 0.60 mass%.
  • the lower limit of CEN is 0.20% by mass.
  • the lower limit of CEN may be 0.24 mass%, 0.28 mass%, 0.30 mass%, 0.32 mass%, 0.35 mass% or 0.38 mass%. Good.
  • a steel sheet having a base metal hardness of HV565 or less generally has a CEN of less than 0.75% by mass.
  • the upper limit of the CEN of a steel sheet having a base metal hardness of HV565 or less is set to 0.75% by mass.
  • the method for measuring the hardness of the base material is a method in which five or more Vickers hardnesses at a position 1 mm below the surface of the cross section in the thickness direction of the base material are measured to obtain an average value.
  • the flux-cored welding wire to be used will be described separately for the flux component and the alloy component.
  • content of the component in description about a flux cored welding wire represents the mass% with respect to the total mass of a flux cored welding wire.
  • Ti oxide eg TiO 2
  • Si oxide eg SiO 2
  • Mg oxide eg MgO
  • Al oxide for example, Al 2 O 3
  • the total amount ⁇ is 3.3% or more by mass% with respect to the total mass of the flux-cored wire, 8 0.0% or less, and when the total amount of Ti oxide, Si oxide, Mg oxide and Al oxide contained is ⁇ , the total amount ⁇ is 0% by mass with respect to the total mass of the flux-cored wire.
  • the ratio of the CaF 2 content to the ⁇ is 0.90 or more, and the ratio of the total amount ⁇ to the total amount ⁇ ([total amount ⁇ ] / [Total amount ⁇ ]) is 3.0 or more and 80.0 or less.
  • the total amount ⁇ of the metal fluoride contained is less than 3.3%, the amount of diffusible hydrogen in the weld metal cannot be stably reduced to less than 1.0 ml / 100 g.
  • the lower limit of the total amount ⁇ may be 3.5%, 3.7%, or 3.9%.
  • the upper limit of the total amount ⁇ may be 7.5%, 7.0%, 6.5%, 6.0%, or 5.7%.
  • the total amount ⁇ of the metal oxides contained is less than 0.10%, the shape of the weld bead may be deteriorated, and if it exceeds 1.50%, the toughness may be lowered.
  • the lower limit of the total amount ⁇ may be 0.20%, 0.30%, 0.40%, or 0.50%.
  • the upper limit of the total amount ⁇ may be 1.30%, 1.20%, 1.10%, 1.00%, 0.90%, or 0.80%.
  • the ratio of the total amount ⁇ to the total amount ⁇ is less than 3.0, the amount of diffusible hydrogen in the weld metal cannot be stably reduced to less than 1.0 ml / 100 g, and if it exceeds 80.0 Since welding fume and slag are excessively generated, welding workability is remarkably lowered, which is not preferable.
  • the lower limit of the ratio ([total amount ⁇ ] / [total amount ⁇ ]) is set to 3.2, 3.5, 3.7, or 4.0. Also good.
  • the upper limit of the ratio ([total amount ⁇ ] / [total amount ⁇ ]) is set to 40.0, 30.0, 20.0, 15.0 or 13. It may be 0.
  • the ratio of the content of CaF 2 to ⁇ is less than 0.90, the amount of diffusible hydrogen in the weld metal cannot be made less than 1.0 ml / 100 g. This is because CaF 2 has the greatest effect of reducing the amount of diffusible hydrogen among metal fluorides.
  • the ratio of the content of CaF 2 with respect to ⁇ is maximized when no metal fluoride other than CaF 2 is contained in the flux. Therefore, the upper limit of the ratio of the content of CaF 2 to ⁇ is 1.0.
  • the ratio of the total amount ⁇ of metal fluoride to the total amount ⁇ of metal fluoride, the total amount ⁇ of metal oxide, and the total amount ⁇ of metal oxide is limited as described above.
  • the total amount ⁇ is the content in the flux-cored wire, and the total content is also included in binders (water glass containing SiO 2 as a main component) used for flux granulation. .
  • one or more metal carbonates of CaCO 3 , BaCO 3 , SrCO 3 , and MgCO 3 are further added for the purpose of improving the arc stability action and the arc concentration. it can.
  • these metal carbonates are added in an amount of 0.60% or more, the arc concentration is too strong, resulting in an increased amount of spatter and an increased amount of oxygen in the weld metal. Therefore, when these metal carbonates are contained, the total content is less than 0.60%.
  • the lower limit of the total content of these metal carbonates is 0%.
  • the upper limit may be set to 0.50%, 0.40%, 0.20%, or 0.10% in order to suppress the amount of spatter generated.
  • metal fluoride reduces the amount of diffusible hydrogen is not necessarily clear, but was metal fluoride decomposed by a welding arc, and the generated fluorine combined with hydrogen and dissipated into the atmosphere as HF gas? Alternatively, it is considered that hydrogen is fixed as HF in the weld metal as it is.
  • the lower limit value of the CaO content is 0%.
  • CaO may be contained in the flux raw material.
  • the CaO content is limited to less than 0.20%.
  • it is 0.15% or less or 0.10% or less. If the content is limited to less than 0.20%, the effect of the welded joint manufacturing method according to the present embodiment can be obtained. Since CaO changes to CaOH when exposed to the atmosphere, it may increase diffusible hydrogen in the weld metal.
  • the amount of alloying elements in the flux-cored wire excluding metal fluorides, metal oxides, and metal carbonates is also limited as follows.
  • C When the average Vickers hardness HV 1 mm below the surface of the weld metal is 337 to 440, it is 0.010 to 0.350%, and the average Vickers hardness HV 1 mm below the surface of the weld metal is 380 to 533. In the case of 0.060 to 0.350%) If the C content in the flux-cored wire is less than 0.010%, the C content in the weld metal is less than 0.100% and the hardness of the weld metal is less than HV337. The C content is 0.010% or more.
  • the C content in the flux-cored wire is less than 0.060%, the C content of the weld metal is less than 0.120% and the hardness of the weld metal is less than HV380.
  • the C content in the flux-cored wire is set to 0.060% or more.
  • the lower limit value of the C content may be 0.020% or 0.030%.
  • the lower limit of the C content may be 0.070%, 0.080%, 0.090%, 0.100%, or 0.110%.
  • the C content in the flux-cored wire exceeds 0.350%, the C content in the weld metal exceeds 0.250%, so the C content in the flux-cored wire is 0.350% or less.
  • the upper limit of the C content may be 0.300%, 0.250%, 0.180%, 0.170%, or 0.160%.
  • the Si content in the flux-cored wire is less than 0.05%, the Si content in the weld metal is less than 0.05%, so the Si content in the flux-cored wire is 0.05% or more. .
  • the lower limit of the Si content may be 0.10%, 0.20%, 0.30%, or 0.40%. If the Si content in the flux-cored wire exceeds 1.80%, the Si content in the weld metal exceeds 0.80% even if oxidation consumption is taken into consideration, so the Si content in the flux-cored wire is 1 80% or less.
  • the upper limit of the Si content may be 1.50%, 1.20%, 1.00%, 0.80%, or 0.60%.
  • the Mn content in the flux-cored wire is less than 0.50%, the Mn content in the weld metal is less than 0.20%, so the Mn content in the flux-cored wire is 0.50% or more. .
  • the lower limit of the Mn content may be 0.70%, 0.80%, 0.90%, 1.00%, or 1.10%. If the Mn content in the flux-cored wire exceeds 4.00%, the Mn content of the weld metal exceeds 2.50% even if oxidation consumption is taken into consideration, so the Mn content in the flux-cored wire is 4. 00% or less.
  • the upper limit of the Mn content may be 3.00%, 2.50%, 2.20%, 2.00%, or 1.80%.
  • the P content in the flux-cored wire exceeds 0.050%, the P content in the weld metal may exceed 0.050%, so the P content in the flux-cored wire is 0.050%.
  • the upper limit of the P content may be limited to 0.030%, 0.025%, 0.020%, or 0.015%. There is no need to limit the lower limit of the P content.
  • the lower limit of the P content is 0%.
  • the S content in the flux-cored wire exceeds 0.020%, the S content in the weld metal may exceed 0.020%, so the S content in the flux-cored wire is 0.020%.
  • the upper limit of the S content may be limited to 0.015%, 0.010%, 0.008%, or 0.006%.
  • the lower limit of the S content is 0%.
  • the Al content in the flux-cored wire is less than 0.005%, the Al content in the weld metal is less than 0.005%, so the Al content in the flux-cored wire is 0.005% or more. .
  • the lower limit of the Al content may be 0.007%, 0.010%, or 0.012%. If the Al content in the flux cored wire exceeds 0.150%, the Al content in the weld metal may exceed 0.100%, so the Al content in the flux cored wire is 0.150%.
  • the upper limit of the Al content may be limited to 0.090%, 0.070%, 0.050%, or 0.040%.
  • the Cu content in the flux-cored wire exceeds 0.75%, the Cu content in the weld metal exceeds 0.50%, so the Cu content in the flux-cored wire is 0.75% or less. .
  • the Cu content may be 0.50% or less.
  • the upper limit of Cu content may be 0.40% or 0.30%.
  • the minimum of Cu content is 0%.
  • the weld metal may contain 0.10% or more of Cu.
  • the Ni content in the flux-cored wire is 1.00% or more, the Ni content of the weld metal is 0.70% or more, and the alloy cost of the wire becomes high. Therefore, the Ni content in the flux-cored wire is Less than 1.00%.
  • the upper limit of the Ni content may be 0.50%, 0.40%, 0.30%, 0.20%, or 0.10%. There is no need to limit the lower limit of the Ni content. For this reason, the lower limit of the Ni content is 0%.
  • the Cr content in the flux-cored wire exceeds 3.50%, the Cr content in the weld metal exceeds 2.50%, so the Cr content in the flux-cored wire is 3.50% or less. .
  • the upper limit of the Cr content may be 1.50%, 1.00%, 0.50%, or 0.10%.
  • the lower limit of the Cr content is 0%.
  • 0.05% or more may be contained in order to obtain the effect.
  • Mo 0 to 1.50%
  • the Mo content in the flux-cored wire exceeds 1.50%, the Mo content in the weld metal exceeds 1.00%, so the Mo content in the flux-cored wire is 1.50% or less.
  • the upper limit of the Mo content may be 0.70%, 0.50%, 0.30%, or 0.20%.
  • the lower limit of the Mo content is 0%.
  • 0.05% or more may be contained in order to obtain the effect.
  • the Ti content in the flux-cored wire exceeds 0.150%, the Ti content of the weld metal exceeds 0.100%, so the Ti content in the flux-cored wire is 0.150% or less. .
  • the upper limit of the Ti content may be 0.100%, 0.080%, or 0.050%. There is no need to limit the lower limit of the Ti content. For this reason, the lower limit of the Ti content is 0%. You may make it contain 0.010% or more for the purpose of toughness improvement.
  • the Nb content in the flux-cored wire exceeds 0.15%, the Nb content in the weld metal exceeds 0.10%, so the Nb content in the flux-cored wire is 0.15% or less. .
  • the upper limit of the Nb content may be 0.10%, 0.08%, or 0.05%.
  • the lower limit of the Nb content is 0%. You may make it contain 0.01% or more for the purpose of the hardness improvement of a weld metal.
  • V (V: 0 to 0.45%) If the V content in the flux-cored wire exceeds 0.45%, the V content in the weld metal exceeds 0.30%, so the V content in the flux-cored wire is 0.45% or less. .
  • the upper limit of the V content may be 0.25%, 0.20%, or 0.15%. There is no need to limit the lower limit of the V content. For this reason, the lower limit of the V content is 0%. You may make it contain 0.01% or more for the hardness improvement of a weld metal.
  • the B content in the flux-cored wire exceeds 0.0500%, the B content in the weld metal exceeds 0.0100%, so the B content in the flux-cored wire is 0.0500% or less.
  • the upper limit of the B content may be 0.0400%, 0.0200%, 0.0100%, or 0.0050%.
  • the lower limit of the B content is 0%.
  • the Mg content in the flux-cored wire exceeds 2.0%, the Mg content in the weld metal exceeds 0.10%, so the Mg content in the flux-cored wire is 2.0% or less. .
  • the upper limit of the Mg content may be 1.5%, 1.0%, 0.4%, or 0.2%. There is no need to limit the lower limit of the Mg content, and the lower limit of the Mg content is 0%.
  • the Ca content in the flux-cored wire exceeds 2.0%, the Ca content in the weld metal exceeds 0.10%, so the Ca content in the flux-cored wire is 2.0% or less. .
  • the upper limit of the Ca content may be 1.5%, 1.0%, 0.5%, or 0.3%. There is no need to limit the lower limit of the Ca content, and the lower limit of the Ca content is 0%.
  • the REM content in the flux-cored wire exceeds 0.0150%, the REM content in the weld metal exceeds 0.0100%, so the REM content in the flux-cored wire is 0.0150% or less.
  • the upper limit of the REM content may be 0.0100%, 0.0050%, or 0.0030%. There is no need to limit the lower limit of the REM content, and the lower limit of the REM content is 0%.
  • the above is the reason for limitation regarding the chemical composition of the flux-cored wire according to the present embodiment.
  • Other chemical components of the remaining alloy may contain impurities mixed in the manufacturing process or the like as long as the balance containing Fe as a main component does not hinder the characteristics of the welded joint according to the present embodiment.
  • the Fe component includes Fe in the steel outer shell, iron powder added in the flux, and Fe in the alloy component.
  • the content of iron powder in the flux is less than 10.0% in mass% with respect to the total mass of the flux-cored wire. When there is much iron powder content, the amount of oxygen may increase. If necessary, the iron powder content may be less than 5.0% or less than 1.0%. Since it is not necessary to contain iron powder, the lower limit of the iron powder content is 0%.
  • a flux-cored wire includes a seamless wire without a slit-like seam in the steel outer shell (that is, a wire in which the steel outer seam is welded), and a wire having a seam with a slit-like gap at the steel outer seam. And can be broadly divided. In the present invention, any cross-sectional structure can be adopted, but it is preferable that there is no slit-like seam (seamless wire) in order to suppress cold cracking of the weld metal.
  • Hydrogen that penetrates into the weld during welding diffuses into the weld metal and on the steel side, accumulates in the stress concentration part, and causes cold cracking.
  • This hydrogen source can increase moisture contained in the welding material, moisture mixed in from the atmosphere, rust and scale attached to the steel surface, etc., but under the welding where the cleanliness of the weld and the gas shield conditions are sufficiently controlled. Then, hydrogen mainly contained in water in the wire is a main factor of diffusible hydrogen existing in the weld joint.
  • the steel outer shell into a slit-like seamless (seamless) pipe, and to suppress the invasion of hydrogen in the atmosphere from the steel outer shell to the flux after the wire is manufactured and used.
  • a pipe with a slit-like seam (having a seam) in the steel outer skin moisture in the atmosphere easily enters the flux from the slit-like seam (seam part) of the outer skin, and as it is, hydrogen such as moisture Source intrusion cannot be prevented. Therefore, when the period until use after production is long, the entire wire is preferably vacuum-packed or stored in a container that can be kept dry.
  • lubricating oil may be applied to the wire surface. From the viewpoint of reducing diffusible hydrogen, the lubricating oil applied to the wire surface is preferably an oil that does not contain hydrogen, such as perfluoropolyether (PFPE) oil.
  • PFPE perfluoropolyether
  • the flux cored wire used in the present invention can be manufactured by the same manufacturing process as that of a normal flux cored wire manufacturing method. That is, first, a steel strip to be an outer skin and a flux containing metal fluoride, an alloy component, a metal oxide, a metal carbonate, and an arc stabilizer are prepared so as to have predetermined contents. While feeding the steel strip in the longitudinal direction, it is formed into an open tube (U-shaped) with a forming roll to form a steel outer shell. During this forming, flux is supplied from the opening of the open tube, and the opposing edge surface of the opening is Butt seam welding.
  • a seamless pipe obtained by welding is drawn and annealed during or after the drawing process to obtain a slit-like seamless (seamless) wire having a desired wire diameter.
  • a wire having a slit-like seam (having a seam) is obtained by supplying a flux from an opening of an open pipe, then forming a pipe with a seam without seam welding, and drawing the wire.
  • a cross section of a wire without slit-like gaps made by butt seam welding looks like FIG. 3A. If this cross section is polished and etched, welding marks are observed, but if not etched, no welding marks are observed. Therefore, it may be called seamless.
  • FIG. 3B a wire without slit-like gaps can be obtained even after brazing and brazing or brazing as shown in FIG. 3C.
  • the wire as it is without brazing becomes a wire having a slit-like gap.
  • the object can be achieved, and the method of gas shield arc welding is not particularly limited, and a commonly used method can be adopted.
  • the shielding gas in addition to 100% CO 2 gas, a mixed gas of Ar gas and 3 to 20 vol% CO 2 gas can be used.
  • the flow rate of the shielding gas can be a normal condition, that is, about 15 to 30 L / min.
  • the welding conditions such as current and voltage are, for example, a current of 200 to 350 A and a voltage of 25 to 35 V.
  • the welding speed may be controlled so that the welding heat input is 10 to 50 kJ / cm.
  • the shape of the welded joint to be manufactured is determined according to the application and is not particularly limited. It can be applied to welded joints that form grooves, such as ordinary butt joints, square joints, and T joints. Therefore, the shape of the steel plate to be welded is not limited as long as at least the portion forming the welded joint is plate-like, and the whole may not be a plate, and includes, for example, a shape steel. Moreover, it is not limited to what is comprised from a separate steel plate, The butt-welding joint of what shape
  • a steel plate having the components shown in Table 1 was used as a base material.
  • the same steel plate as the base material was used for the backing metal for welding.
  • a seamless pipe was used, and annealing was performed in the course of drawing the drawn wire, and a flux-cored wire with a final wire diameter of ⁇ 1.2 mm was made as a trial product.
  • a part of the tube was a slit-like pipe that was not seam-welded, and a wire with a wire diameter of ⁇ 1.2 mm was prototyped by drawing it.
  • the entire wire was vacuum-packed and stored in a container that can be kept dry until welding.
  • the analysis of the chemical composition of the prototype flux cored wire was performed as follows. First, the filled flux was taken out from the flux-cored wire, and the flux-cored wire was divided into a steel outer shell and a flux. The chemical component of the steel outer skin was determined by measuring the content of each metal component by chemical analysis. The chemical composition of the flux was performed according to the following procedure.
  • the above base material was abutted at a root gap of 16 mm and a groove angle of 20 °, and using a backing metal, under the welding conditions shown in Tables 4-1-1 to 4-2-3 Welding was performed.
  • the groove surface of the base material and the surface of the backing metal were subjected to buttering with two or more layers and a height of 3 mm or more using a flux-cored wire to be tested.
  • Ti oxide, Si oxide, Mg oxide, Al oxide respectively by using the TiO 2, SiO 2, MgO, Al 2 O 3.
  • the metal carbonates are CaCO 3 , BaCO 3 , SrCO 3 , and MgCO 3 .
  • the chemical composition analysis results of the obtained weld metal are shown in Table 5-1-1, Table 5-1-2, Table 5-2-1, Table 5-2-2, Table 5-2-4, and Table 5-2. Shown in -5.
  • a sample obtained by polishing a cross section perpendicular to the welding direction was taken from this weld metal, measured at 10 points of Vickers hardness at a position 1 mm below the surface of the weld metal, and Brinell hardness from SAE J417 (1983) hardness conversion table. Converted to Further, a No. 4 Charpy test piece (2 mmV notch) based on JIS Z3111 (2005) was sampled, and the Charpy absorbed energy at ⁇ 40 ° C. of the weld metal was measured. A sample having an absorption energy of ⁇ 40 ° C. or more of 27 J or more was regarded as acceptable.
  • the obtained hardness and Charpy test results are shown in Tables 5-1-3, 5-2-3 and 5-2-6.
  • the low temperature crack test and the diffusible hydrogen content measurement test were done to the welded joint obtained by the same welding conditions, respectively.
  • the low-temperature cracking test was conducted at room temperature (25 ° C.) in accordance with JIS Z3158 (y-type weld cracking test method: 1993).
  • the diffusible hydrogen content measurement test was carried out by a gas chromatograph method based on JIS Z3118 (Method for measuring the hydrogen content of steel welds; 2007). This diffusible hydrogen content was less than 1.0 ml / 100 g.
  • Table 5-1-3, Table 5-2-3, and Table 5-2-6 The results are shown in Table 5-1-3, Table 5-2-3, and Table 5-2-6.
  • the weld metals of Examples 1 to 54 which are examples of the present invention, are all excellent in hardness, toughness, cold crack resistance, and welding workability. there were.
  • the weld metals of Comparative Examples 101 to 165 do not satisfy the requirements specified in the present invention. At least one of cold cracking resistance and welding workability was rejected.
  • the underlined numbers in the comparative examples in Tables 5-2-1 to 5-2-6 indicate that they are outside the scope of the present invention.
  • the surface hardness is HV337 or more and HV533 or less
  • wear resistance Weld metal with excellent surface resistance or weld metal with surface hardness of HV380 or higher and HV533 or lower and excellent wear resistance can be obtained without generating low-temperature cracks without preheating.
  • the value in the industry is extremely high.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Nonmetallic Welding Materials (AREA)
  • Butt Welding And Welding Of Specific Article (AREA)
  • Arc Welding In General (AREA)

Abstract

This weld joint production method is a method for producing a weld joint by subjecting a steel plate having a predetermined Vickers hardness HV, plate thickness, C content, and CEN to gas-shielded arc welding by using a flux-cored wire in which a steel-made outer sheath is filled with a flux, wherein: at the time of said gas-shielded arc welding, no preheating operation is performed in cases where the temperature of the steel plate is 10°C or higher, and, in cases where the temperature of the steel plate is below 10°C, preheating operation is performed such that the temperature of the steel plate is raised to 10°C or higher; the weld metal of the weld joint has a predetermined chemical composition; the weld metal has a CEN of from 0.20 to 0.58 mass%; and the average Vickers hardness HV at a depth 1 mm below the surface of the weld metal is from 337 to 440.

Description

溶接継手の製造方法Manufacturing method of welded joint
 本発明は、建設機械や産業機械分野で利用される耐摩耗性に優れる高硬度鋼板を溶接する際に、硬さが高くて耐摩耗性に優れ、かつ低温割れの発生しにくい溶接金属を有する溶接継手の製造方法に関する。
 本願は、2013年11月8日に国際出願されたPCT/JP2013/080242号に基づき優先権を主張し、その内容をここに援用する。
The present invention has a weld metal that has high hardness, excellent wear resistance, and is resistant to low-temperature cracking when welding high-hardness steel plates with excellent wear resistance used in the construction machinery and industrial machinery fields. The present invention relates to a method for manufacturing a welded joint.
This application claims priority based on PCT / JP2013 / 080242 internationally filed on November 8, 2013, the contents of which are incorporated herein by reference.
 鉱山での掘削や土木作業用の建設機械に用いられる鋼板は、摩耗のために交換が必要となる場合が多いが、その使用寿命を長くするために、鋼板の硬さを高めた耐摩耗鋼が用いられる。使用される環境や目的によって鋼板の硬さは様々であるが、一般にはHB400級(ブリネル硬さの規格値でHB360からHB440、ビッカース硬さの規格値ではHV380からHV469)、HB450級(ブリネル硬さの規格値でHB410からHB490、ビッカース硬さの規格値ではHV435からHV533)、HB500級(ブリネル硬さの規格値でHB450からHB550、ビッカース硬さの規格値ではHV478からHV585)又はHB600級(ブリネル硬さの規格値でHB550からHB650、ビッカース硬さの規格値ではHV585からHV693)の耐摩耗鋼板が多く用いられている。 Steel plates used for construction machines for excavation and civil engineering work in mines often need to be replaced due to wear, but in order to extend their service life, wear-resistant steel with increased steel hardness Is used. The hardness of the steel sheet varies depending on the environment and purpose of use, but in general, it is HB400 grade (Brinell hardness standard value HB360 to HB440, Vickers hardness standard value HV380 to HV469), HB450 grade (Brinell hardness) Standard values of HB410 to HB490, Vickers hardness standard value of HV435 to HV533), HB500 class (Brinell hardness standard value of HB450 to HB550, Vickers hardness standard value of HV478 to HV585) or HB600 class ( Abrasion-resistant steel sheets having a standard value of Brinell hardness of HB550 to HB650 and a standard value of Vickers hardness of HV585 to HV693) are often used.
 耐摩耗鋼の多くは溶接されるが、その溶接金属にも母材(耐摩耗鋼)に近い耐摩耗性が求められることがある。溶接金属の耐摩耗性を高めるためにも、やはりその硬さを高くする必要がある。しかしながら、溶接金属の硬さを高くすると、溶接時に侵入する水素を起因とする低温割れが非常に発生しやすくなる。さらに、高硬度である耐摩耗鋼を母材とするので、拘束力が強くなることも低温割れが生じやすくなる一因である。 Most wear-resistant steels are welded, but the weld metal may require wear resistance close to that of the base material (wear-resistant steel). In order to increase the wear resistance of the weld metal, it is also necessary to increase its hardness. However, when the hardness of the weld metal is increased, low temperature cracks caused by hydrogen that enters during welding are very likely to occur. Furthermore, since the wear-resistant steel having high hardness is used as the base material, the strengthening of the restraining force is also a cause of low temperature cracking.
 このような低温割れを回避するためには、一般に溶接に先立って予熱が行われる。しかし、耐摩耗鋼は、通常の鋼よりも加熱によって硬さが低下しやすいので、あまり高い予熱温度をとることができない。
 溶接金属の硬さは、母材と同等程度であることが望ましい。例えばHB400あるいはHB500級耐摩耗鋼を母材とする場合では、溶接金属の硬さを少なくともHV337(HB320)以上、できればHV380(HB360)以上とすることが望ましい。
In order to avoid such cold cracking, preheating is generally performed prior to welding. However, since wear-resistant steel is more likely to be reduced in hardness by heating than ordinary steel, it cannot take a very high preheating temperature.
The hardness of the weld metal is preferably about the same as that of the base material. For example, when HB400 or HB500 class wear resistant steel is used as a base material, it is desirable that the hardness of the weld metal is at least HV337 (HB320) or higher, preferably HV380 (HB360) or higher.
 また、溶接金属部において、耐摩耗性の観点で重要になるのは、表面付近の硬さである。多層盛り溶接においては、下層の溶接金属は、後続パスによって再熱されるために硬さがやや低下するが、多層盛り溶接の場合はその最上層の溶接金属、また1パス溶接の場合はその溶接金属の、それぞれの表面付近が十分な硬さを有していればよい。
 以上のようなことから、HV380以上、HV693以下である高硬度の耐摩耗鋼を母材とする溶接継手において、表面硬さがHV337以上、HV533以下であり十分な耐摩耗性を有しながら、予熱をしなくても低温割れが発生しない溶接金属を形成させる溶接方法、または表面硬さがHV380以上、HV533以下であり十分な耐摩耗性を有しながら、予熱をしなくても低温割れが発生しない溶接金属を形成させる溶接方法があれば極めて有用であると考えられる。
Further, in the weld metal part, what is important from the viewpoint of wear resistance is the hardness near the surface. In multi-layer welding, the weld metal in the lower layer is reheated by subsequent passes, so that the hardness is slightly reduced. In multi-layer welding, the weld metal in the uppermost layer is used. It is sufficient that the vicinity of each surface of the metal has sufficient hardness.
From the above, in a welded joint using a high-hardness wear-resistant steel of HV380 or more and HV693 or less as a base material, the surface hardness is HV337 or more and HV533 or less and having sufficient wear resistance, A welding method for forming a weld metal that does not generate cold cracks even without preheating, or a surface hardness of HV380 or higher and HV533 or lower and sufficient wear resistance, and low temperature cracks without preheating. A welding method that forms a weld metal that does not occur is considered extremely useful.
 高強度溶接金属で発生する水素起因の低温割れを抑制する技術としては、例えば特許文献1から5の方法が提案されている。
 これらのうち特許文献1は、高強度ラインパイプなどの用途に用いられる鋼板について、残留オーステナイトを水素のトラップサイトとして機能させることにより、低温割れの発生を防ぐものである。特許文献2は、やはり高強度ラインパイプなどの用途に用いられる鋼板について、酸化物を水素のトラップサイトとして機能させることにより、低温割れの発生を防ぐものである。
For example, methods disclosed in Patent Documents 1 to 5 have been proposed as techniques for suppressing the low-temperature cracking caused by hydrogen generated in a high-strength weld metal.
Among these, patent document 1 prevents generation | occurrence | production of a cold crack by making a retained austenite function as a hydrogen trap site about the steel plate used for uses, such as a high intensity | strength line pipe. Patent Document 2 prevents the occurrence of cold cracking by causing an oxide to function as a hydrogen trap site for a steel sheet that is also used for applications such as a high-strength line pipe.
 特許文献3は、引張強さ800~1150MPaの鋼材について、Mo炭化物をトラップサイトとして機能させることにより、低温割れの発生を防ぐ技術を開示している。特許文献4は、被覆アーク溶接材料の被覆材にMgを適量配合することによって、溶接直後の溶接金属中の拡散性水素量を3.0~4.0ml/100g程度に低減して引張強さ880~1180MPaの鋼材の耐低温割れ性を改善する技術を開示している。特許文献5は、ガスシールドアーク溶接用のフラックス入りワイヤに含まれる水素量を制限することで、低温割れを抑制する技術を開示している。
 これらはいずれも母材および溶接金属の強度が1200MPa未満であり、HV380(引張強さ換算約1200MPa)以上の硬さを有して耐摩耗性を具備する溶接金属の低温割れ性を改善できる技術ではない。
Patent Document 3 discloses a technique for preventing the occurrence of cold cracking by causing Mo carbide to function as a trap site for a steel material having a tensile strength of 800 to 1150 MPa. Patent Document 4 discloses that the amount of diffusible hydrogen in the weld metal immediately after welding is reduced to about 3.0 to 4.0 ml / 100 g by adding an appropriate amount of Mg to the coating material of the coated arc welding material, thereby increasing the tensile strength. A technique for improving cold cracking resistance of a steel material of 880 to 1180 MPa is disclosed. Patent document 5 is disclosing the technique which suppresses a low temperature crack by restrict | limiting the amount of hydrogen contained in the flux cored wire for gas shield arc welding.
These are technologies that can improve the low-temperature cracking property of weld metal having a base metal and weld metal strength of less than 1200 MPa, and having a hardness of HV380 (approximately 1200 MPa in terms of tensile strength) or more and wear resistance. is not.
 さらに、一般に、オーステナイト系ステンレス溶接材料を用いると、溶接金属中への水素の侵入が大きく低減されるので、低温割れ感受性を下げることができる。また、オーステナイト組織であるため延性低下割れも生じにくい。しかし、オーステナイト系ステンレス溶接材料を用いた溶接金属は、強度つまり硬さを高くすることが容易でなく、耐摩耗性を具備することは期待できない。 Furthermore, generally, when an austenitic stainless steel welding material is used, the penetration of hydrogen into the weld metal is greatly reduced, so that the low temperature cracking susceptibility can be lowered. Moreover, since it is an austenite structure, a ductile fall cracking is hard to produce. However, a weld metal using an austenitic stainless steel welding material is not easy to increase strength, that is, hardness, and cannot be expected to have wear resistance.
 このようなことから、HV380以上、HV693以下の高硬度の耐摩耗鋼を母材とする溶接継手において、表面硬さがHV337以上HV533以下であって、耐摩耗性に優れるとともに、低温割れが発生しにくい溶接金属、または表面硬さがHV380以上HV533以下であって、耐摩耗性に優れるとともに、低温割れが発生しにくい溶接金属を、ガスシールドアーク溶接によって形成することが求められている。 For this reason, in a welded joint made of a high hardness wear resistant steel of HV 380 or higher and HV 693 or lower, the surface hardness is HV 337 or higher and HV 533 or lower. It is demanded to form a weld metal that is difficult to be welded or a weld metal that has a surface hardness of HV380 or more and HV533 or less and that is excellent in wear resistance and that does not easily cause cold cracking by gas shield arc welding.
日本国特開2012-176434号公報Japanese Unexamined Patent Publication No. 2012-176434 日本国特開2012-218034号公報Japanese Unexamined Patent Publication No. 2012-218034 日本国特開2005-40816号公報Japanese Unexamined Patent Publication No. 2005-40816 日本国特開平11-147196号公報Japanese Unexamined Patent Publication No. 11-147196 日本国特開2009-255168号公報Japanese Unexamined Patent Publication No. 2009-255168
 本発明の課題は、C含有量が高く表面硬さがHV380以上、HV693以下であるような高硬度鋼板を母材とした溶接継手であって、表面硬さがHV337以上HV533以下であって耐摩耗性に優れるとともに、低温割れが発生しにくい溶接金属、または表面硬さがHV380以上HV533以下であって耐摩耗性に優れるとともに、低温割れが発生しにくい溶接金属を有する溶接継手の製造方法を提供することである。 An object of the present invention is a welded joint using a high-hardness steel plate having a high C content and a surface hardness of HV380 or more and HV693 or less as a base material, and having a surface hardness of HV337 or more and HV533 or less. A method for producing a welded metal having excellent wear resistance and low-temperature cracking, or a welded joint having a surface hardness of HV380 to HV533 and having excellent wear resistance and low-temperature cracking. Is to provide.
 従来の耐摩耗鋼は、低温割れ防止のために、溶接時の予熱温度が重要だったので、軟鋼用の溶接材料で、予熱温度を最優先して溶接するのが普通であった。従って溶接金属部の硬さが低くて、摩耗が非常に起こりやすかったことを課題としていた。本発明は、それに対して溶接金属部の硬さを高くしようとすると、母材の熱影響部ではなくて、溶接金属自体が非常に割れやすいことを新たに見出した。それで、溶接金属のCENと割れとの関係を調査した上で、溶接金属のCENの適正範囲を見出した。 In conventional wear-resistant steels, the preheating temperature at the time of welding was important to prevent low temperature cracking, so it was common to weld with the preheating temperature as the top priority with a welding material for mild steel. Therefore, the problem was that the hardness of the weld metal part was low and wear was very likely to occur. In contrast to this, the present invention has newly found that when the hardness of the weld metal part is increased, the weld metal itself is very susceptible to cracking, not the heat-affected part of the base material. Therefore, after investigating the relationship between weld metal CEN and cracks, we found the appropriate range of weld metal CEN.
 溶接時に溶接金属で発生する低温割れは、溶接金属の強度と、継手拘束力と、溶接金属中の拡散性水素量とに影響される。発明者らは、表面硬さがHV337以上HV533以下であるような高硬度の溶接金属、または表面硬さがHV380以上HV533以下であるようなさらに高硬度の溶接金属で、低温割れを確実に抑制するための方法を種々検討した結果、その最も確実な方法は、溶接金属中の拡散性水素量を十分低くすること、かつ溶接金属中の合金成分で規定されるCENを0.20~0.58質量%にすることであるという結論を得た。 低温 Cold cracks that occur in the weld metal during welding are affected by the strength of the weld metal, the joint restraint force, and the amount of diffusible hydrogen in the weld metal. The inventors reliably suppress low-temperature cracking with a high-hardness weld metal having a surface hardness of HV337 or more and HV533 or less, or with a higher hardness of a weld metal with a surface hardness of HV380 or more and HV533 or less. As a result of various investigations on the method for achieving this, the most reliable method is to sufficiently reduce the amount of diffusible hydrogen in the weld metal and to reduce the CEN defined by the alloy component in the weld metal from 0.20 to 0.00. The conclusion that it is 58 mass% was obtained.
 図1は、JIS Z3158に規定のy形溶接割れ試験を、種々の鋼板およびフラックス組成などを変化させた溶接材料により様々な条件にて実施し、種々の溶接金属の硬さおよび溶接金属中の拡散性水素量を有する溶接金属を作製し、その割れ発生を抑制する限界予熱温度を求めた結果である。図1には、溶接金属中の拡散性水素量と割れ発生を抑制する限界予熱温度との関係を、溶接金属の硬さレベル別に整理して示している。
 ここで、低温割れ試験は、JIS Z3158(y形溶接割れ試験方法;1993年)に準拠し、室温(25℃)にて試験を実施し、表面および断面に割れがないことをもって合格とした。拡散性水素量の測定試験は、JIS Z3118(鋼溶接部の水素量測定方法;2007年)に準拠したガスクロマトグラフ法にて実施した。
FIG. 1 shows that the y-type weld cracking test specified in JIS Z3158 was carried out under various conditions with various steel sheets and welding materials with different flux compositions, etc. It is the result of having produced the weld metal which has the amount of diffusible hydrogen, and calculated | required the limit preheating temperature which suppresses the crack generation. FIG. 1 shows the relationship between the amount of diffusible hydrogen in the weld metal and the limit preheating temperature at which cracking is suppressed, organized according to the hardness level of the weld metal.
Here, the low-temperature cracking test was conducted at room temperature (25 ° C.) in accordance with JIS Z3158 (y-type weld cracking test method: 1993), and was accepted as having passed on the surface and the cross section. The measurement test of the amount of diffusible hydrogen was carried out by a gas chromatograph method based on JIS Z3118 (method for measuring the amount of hydrogen in steel welds; 2007).
 図1に示すように、溶接直後における溶接金属中の拡散性水素量が1.0ml/100g未満であれば、低温割れ発生の限界予熱温度は、溶接金属の硬さにはあまり依存しない。従って、拡散性水素量を1.0ml/100g未満とすることにより、硬さがHV337以上HV533以下の溶接金属と、硬さがHV380以上HV533以下の溶接金属との低温割れ感受性を大きく低減することができる。 As shown in FIG. 1, if the amount of diffusible hydrogen in the weld metal immediately after welding is less than 1.0 ml / 100 g, the limit preheating temperature for the occurrence of cold cracking does not depend much on the hardness of the weld metal. Therefore, by setting the amount of diffusible hydrogen to less than 1.0 ml / 100 g, the low-temperature cracking susceptibility between a weld metal having a hardness of HV337 to HV533 and a weld metal having a hardness of HV380 to HV533 is greatly reduced. Can do.
 しかしながら、このレベルまで溶接直後における溶接金属中の拡散性水素量を低減することは、従来の技術では容易ではなかった。発明者らは、種々の検討を重ね、フラックス入りワイヤのフラックス組成の改善によって、溶接金属中の拡散性水素量を、従来には困難であったレベルまで安定して低減できることを新たに知見した。具体的には、フラックス成分にCaFをはじめとする弗化物を一定量含有させるとともに酸化物の量を調整し、かつ弗化物と酸化物との配合比を一定範囲とすることにより、溶接金属中の拡散性水素量を安定して1.0ml/100g未満に抑制することができることを知見した。 However, reducing the amount of diffusible hydrogen in the weld metal immediately after welding up to this level has not been easy with the prior art. The inventors have made various studies and have newly found that the amount of diffusible hydrogen in the weld metal can be stably reduced to a level that has been difficult in the past by improving the flux composition of the flux-cored wire. . Specifically, the weld metal contains a certain amount of fluoride such as CaF 2 in the flux component, the amount of oxide is adjusted, and the compounding ratio of fluoride and oxide is within a certain range. It was found that the amount of diffusible hydrogen therein can be stably suppressed to less than 1.0 ml / 100 g.
 溶接金属の低温割れ感受性は、溶接金属の硬さに大きく依存するが、合金元素によっても影響される。発明者らは、HV337以上HV533以下の溶接金属、およびHV380以上HV533以下の溶接金属の、種々の合金組成と低温割れ感受性(割れ抑制予熱温度)との関係を調査した。低温割れ試験は、JIS Z3158(y形溶接割れ試験方法;1993年)に準拠して試験を実施し、予熱温度を変化させて低温割れを生じない最低の予熱温度を、割れ発生限界予熱温度とした。溶接にあたっては、以下で説明する本発明のフラックス入り溶接ワイヤを用いており、溶接金属中の拡散性水素量は、いずれも1.0ml/100g未満である。 低温 Low-temperature cracking susceptibility of weld metal depends greatly on the hardness of the weld metal, but is also affected by alloying elements. The inventors investigated the relationship between various alloy compositions and low-temperature cracking susceptibility (cracking suppression preheating temperature) of a weld metal of HV337 to HV533 and a weld metal of HV380 to HV533. The low temperature cracking test is conducted in accordance with JIS Z3158 (y-type weld cracking test method: 1993), and the minimum preheating temperature that does not cause low temperature cracking by changing the preheating temperature is determined as the crack initiation limit preheating temperature. did. In welding, the flux-cored welding wire of the present invention described below is used, and the amount of diffusible hydrogen in the weld metal is less than 1.0 ml / 100 g.
 その結果、図2に示すように、式1(溶接選書10.「鉄鋼材料の溶接」 産報出版(1999), p.163参照)で計算されるCENを0.58質量%以下とすれば割れ発生限界予熱温度を室温(25℃)以下とすることができ、予熱なしでも低温割れの発生を抑制できることを知見した。
CEN=[C]+(0.75+0.25×tanh(20×([C]-0.12)))×([Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5×[B]) ・・・(式1)
 ただし、[]付元素は、それぞれの元素の含有量(質量%)を表す。また、添加元素が無しの場合は、[]内にゼロを代入する。
As a result, as shown in FIG. 2, if CEN calculated by Equation 1 (see Welding Form 10. “Welding of Steel Materials”, Industrial Publication (1999), p. 163) is 0.58% by mass or less. It has been found that the cracking limit preheating temperature can be set to room temperature (25 ° C.) or less, and the occurrence of low temperature cracking can be suppressed without preheating.
CEN = [C] + (0.75 + 0.25 × tanh (20 × ([C] −0.12))) × ([Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 × [B]) (Formula 1)
However, the element with [] represents the content (% by mass) of each element. If there is no additive element, zero is substituted in [].
 本発明は、上記知見に基づいてなされたもので、その要旨は以下のとおりである。 The present invention has been made on the basis of the above findings, and the gist thereof is as follows.
 (1)本発明の第一の態様に係る溶接継手の製造方法は、ビッカース硬さHVが380以上514以下であり、板厚が20~100mmであり、Cの含有量が0.120~0.300質量%であり、下記の式1で計算されるCENが、0.20~0.75質量%である鋼板、ビッカース硬さHVが514超565以下であり、板厚が12~100mmであり、Cの含有量が0.120~0.300質量%であり、下記の式1で計算されるCENが、0.20~0.75質量%である鋼板、およびビッカース硬さHVが565超693以下であり、板厚が6~12mmであり、Cの含有量が0.350~0.450質量%であり、下記の式1で計算されるCENが、0.20~0.85質量%である鋼板、のいずれか一つに対し、鋼製外皮にフラックスが充填されたフラックス入りワイヤを用いて、ガスシールドアーク溶接を行うことにより、溶接継手を製造する方法であって、(a)前記ガスシールドアーク溶接時に、前記鋼板の温度が10℃以上の場合に予熱作業を行わず、前記鋼板の温度が10℃未満の場合には前記鋼板の温度が10℃以上となるように前記予熱作業を行い、(b)前記フラックス入りワイヤが、CaF、BaF、SrF、MgFのうちの1種以上を含有し、その含有量の合計をαとしたとき、前記αが前記フラックス入りワイヤの全質量に対する質量%で3.3~8.0%であり、Ti酸化物、Si酸化物、Mg酸化物、Al酸化物のうちの1種以上を含有し、その含有量の合計をβとしたとき、前記βが前記フラックス入りワイヤの全質量に対する質量%で0.10~1.50%であり、CaCO、BaCO、SrCO、MgCOの含有量の合計が、前記フラックス入りワイヤの全質量に対する質量%で0.60%未満であり、前記フラックス中の鉄粉の含有量が、前記フラックス入りワイヤの全質量に対する質量%で10.0%未満であり、前記αに対する前記CaFの含有量の比が0.90以上であり、前記βに対する前記αの比が3.0以上80.0以下であり、CaOの含有量が、前記フラックス入りワイヤの全質量に対する質量%で0.20%未満であり、金属弗化物、金属酸化物、および金属炭酸塩を除く、前記フラックス入りワイヤ中の化学成分が、前記フラックス入りワイヤの全質量に対する質量%で:C:0.010~0.060%未満;Si:0.05~1.80%;Mn:0.50~4.00%;P:0.050%以下;S:0.020%以下;Al:0.005~0.150%;Cu:0~0.75%;Ni:0~1.00%未満;Cr:0~3.50%;Mo:0~1.50%;Ti:0~0.150%;Nb:0~0.15%;V:0~0.45%;B:0~0.0500%;Mg:0~2.0%;Ca:0~2.0%;REM:0~0.0150%;残部:Feおよび不純物;からなり、(c)前記溶接継手の溶接金属の化学組成が、質量%で:C:0.100~0.170%;Si:0.05~0.80%;Mn:0.20~2.50%;Al:0.0050~0.1000%;P:0.050%以下;S:0.020%以下;N:0.015%以下;Cu:0~0.50%;Ni:0~0.70%未満;Cr:0~2.50%;Mo:0~1.00%;Ti:0~0.100%;Nb:0~0.100%;V:0~0.30%;B:0~0.0100%;O:0~0.100%;Mg:0~0.100%;Ca:0~0.100%;REM:0~0.0100%;残部:Feおよび不純物;からなり、前記溶接金属の、下記の式1で計算されるCENが、0.20~0.58質量%であり、前記溶接金属の表面下1mmの平均ビッカース硬さHVが、337~440であり、上記(a)~(c)の全てを満足する。
CEN=[C]+(0.75+0.25×tanh(20×([C]-0.12)))×([Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5×[B]) ・・・(式1)
 ただし、[]付元素は、それぞれの元素の含有量(質量%)を表す。
(1) The method for manufacturing a welded joint according to the first aspect of the present invention has a Vickers hardness HV of 380 to 514, a plate thickness of 20 to 100 mm, and a C content of 0.120 to 0. .300 mass%, CEN calculated by the following formula 1 is 0.20 to 0.75 mass%, Vickers hardness HV is more than 514 and less than 565, and the thickness is 12 to 100 mm. A steel sheet having a C content of 0.120 to 0.300 mass%, a CEN calculated by the following formula 1 of 0.20 to 0.75 mass%, and a Vickers hardness HV of 565 It is ultra 693 or less, the plate thickness is 6 to 12 mm, the C content is 0.350 to 0.450 mass%, and CEN calculated by the following formula 1 is 0.20 to 0.85. For any one of the steel plates, A method of manufacturing a welded joint by performing gas shielded arc welding using a flux-cored wire filled with metal, wherein (a) the temperature of the steel sheet is 10 ° C. or higher during the gas shielded arc welding. If the temperature of the steel plate is less than 10 ° C, the preheating operation is performed so that the temperature of the steel plate is 10 ° C or higher, and (b) the flux-cored wire is CaF 2 , When one or more of BaF 2 , SrF 2 , and MgF 2 are contained and the total content thereof is α, the α is 3.3 to 8.0 in terms of mass% with respect to the total mass of the flux-cored wire. %, And containing at least one of Ti oxide, Si oxide, Mg oxide, and Al oxide, where β is the total content, β is the total mass of the flux-cored wire Vs. That is from 0.10 to 1.50 percent by mass%, CaCO 3, BaCO 3, SrCO 3, the total content of MgCO 3 is less than 0.60% by mass% relative to the total weight of the flux-cored wire Yes, the content of iron powder in the flux is less than 10.0% by mass% with respect to the total mass of the flux-cored wire, and the ratio of the CaF 2 content to α is 0.90 or more. The ratio of α to β is 3.0 or more and 80.0 or less, and the content of CaO is less than 0.20% by mass% with respect to the total mass of the flux-cored wire. The chemical components in the flux-cored wire, excluding oxides and metal carbonates, in mass% with respect to the total mass of the flux-cored wire: C: 0.010 to less than 0.060%; Si: 0.0. 5 to 1.80%; Mn: 0.50 to 4.00%; P: 0.050% or less; S: 0.020% or less; Al: 0.005 to 0.150%; Cu: 0 to 0 Ni: 0 to less than 1.00%; Cr: 0 to 3.50%; Mo: 0 to 1.50%; Ti: 0 to 0.150%; Nb: 0 to 0.15%; V: 0 to 0.45%; B: 0 to 0.0500%; Mg: 0 to 2.0%; Ca: 0 to 2.0%; REM: 0 to 0.0150%; balance: Fe and impurities (C) the chemical composition of the weld metal of the weld joint is in mass%: C: 0.100 to 0.170%; Si: 0.05 to 0.80%; Mn: 0.20 to 2.50%; Al: 0.0050 to 0.1000%; P: 0.050% or less; S: 0.020% or less; N: 0.015% or less; Cu: 0 to 0.50% Ni: 0 to less than 0.70%; Cr: 0 to 2.50%; Mo: 0 to 1.00%; Ti: 0 to 0.100%; Nb: 0 to 0.100%; V: 0 to 0.30%; B: 0 to 0.0100%; O: 0 to 0.100%; Mg: 0 to 0.100%; Ca: 0 to 0.100%; REM: 0 to 0.0100%; The balance: Fe and impurities; CEN of the weld metal calculated by the following formula 1 is 0.20 to 0.58% by mass, and the average Vickers hardness HV is 1 mm below the surface of the weld metal. 337 to 440, which satisfies all of the above (a) to (c).
CEN = [C] + (0.75 + 0.25 × tanh (20 × ([C] −0.12))) × ([Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 × [B]) (Formula 1)
However, the element with [] represents the content (% by mass) of each element.
 (2)本発明の第二の態様に係る溶接継手の製造方法は、ビッカース硬さHVが380以上514以下であり、板厚が20~100mmであり、Cの含有量が0.120~0.300質量%であり、下記の式1で計算されるCENが、0.20~0.75質量%である鋼板、ビッカース硬さHVが514超565以下であり、板厚が12~100mmであり、Cの含有量が0.120~0.300質量%であり、下記の式1で計算されるCENが、0.20~0.75質量%である鋼板、およびビッカース硬さHVが565超693以下であり、板厚が6~12mmであり、Cの含有量が0.350~0.450%質量であり、下記の式1で計算されるCENが、0.20~0.85質量%である鋼板、のいずれか一つに対し、鋼製外皮にフラックスが充填されたフラックス入りワイヤを用いて、ガスシールドアーク溶接を行うことにより、溶接継手を製造する方法であって、(a)前記ガスシールドアーク溶接時に、前記鋼板の温度が10℃以上の場合に予熱作業を行わず、前記鋼板の温度が10℃未満の場合には前記鋼板の温度が10℃以上となるように前記予熱作業を行い、(b)前記フラックス入りワイヤが、CaF、BaF、SrF、MgFのうちの1種以上を含有し、その含有量の合計をαとしたとき、前記αが前記フラックス入りワイヤの全質量に対する質量%で3.3~8.0%であり、Ti酸化物、Si酸化物、Mg酸化物、Al酸化物のうちの1種以上を含有し、その含有量の合計をβとしたとき、前記βが前記フラックス入りワイヤの全質量に対する質量%で0.10~1.50%であり、CaCO、BaCO、SrCO、MgCOの含有量の合計が、前記フラックス入りワイヤの全質量に対する質量%で0.60%未満であり、前記フラックス中の鉄粉の含有量が、前記フラックス入りワイヤの全質量に対する質量%で10.0%未満であり、前記αに対する前記CaFの含有量の比が0.90以上であり、前記βに対する前記αの比が3.0以上80.0以下であり、CaOの含有量が、前記フラックス入りワイヤの全質量に対する質量%で0.20%未満であり、金属弗化物、金属酸化物、および金属炭酸塩を除く、前記フラックス入りワイヤ中の化学成分が、前記フラックス入りワイヤの全質量に対する質量%で:C:0.060~0.350%;Si:0.05~1.80%;Mn:0.50~4.00%;P:0.050%以下;S:0.020%以下;Al:0.005~0.150%;Cu:0~0.75%;Ni:0~1.00%未満;Cr:0~3.50%;Mo:0~1.50%;Ti:0~0.150%;Nb:0~0.15%;V:0~0.45%;B:0~0.0500%;Mg:0~2.0%;Ca:0~2.0%;REM:0~0.0150%;残部:Feおよび不純物;からなり、(c)前記溶接継手の溶接金属の化学組成が、質量%で:C:0.120~0.250%;Si:0.05~0.80%;Mn:0.20~2.50%;Al:0.0050~0.1000%;P:0.050%以下;S:0.020%以下;N:0.015%以下;Cu:0~0.50%;Ni:0~0.70%未満;Cr:0~2.50%;Mo:0~1.00%;Ti:0~0.100%;Nb:0~0.100%;V:0~0.30%;B:0~0.0100%;O:0~0.100%;Mg:0~0.100%;Ca:0~0.100%;REM:0~0.0100%;残部:Feおよび不純物;からなり、前記溶接金属の、下記の式1で計算されるCENが、0.20~0.58質量%であり、前記溶接金属の表面下1mmの平均ビッカース硬さHVが、380~533であり、上記(a)~(c)の全てを満足する。
CEN=[C]+(0.75+0.25×tanh(20×([C]-0.12)))×([Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5×[B]) ・・・(式1)
 ただし、[]付元素は、それぞれの元素の含有量(質量%)を表す。
(3)本発明の第三の態様に係る溶接継手の製造方法は、ビッカース硬さHVが565超693以下であり、板厚が12~20mmであり、Cの含有量が0.350~0.450質量%であり、下記の式2で計算されるCENが、0.20~0.85質量%である鋼板、およびビッカース硬さHVが565超693以下であり、板厚が20mm超50mm以下であり、Cの含有量が0.350~0.450質量%であり、下記の式2で計算されるCENが、0.20~0.85質量%である鋼板、のいずれか一つに対し、鋼製外皮にフラックスが充填されたフラックス入りワイヤを用いて、ガスシールドアーク溶接を行うことにより、溶接継手を製造する方法であって、(a)前記ガスシールドアーク溶接時に、前記鋼板の前記板厚が20mm以下の場合、前記鋼板の温度が100℃以上となるように予熱作業を行い、前記鋼板の前記板厚が20mm超の場合、前記鋼板の温度が150℃以上となるように前記予熱作業を行い、(b)前記フラックス入りワイヤが、CaF、BaF、SrF、MgFのうちの1種以上を含有し、その含有量の合計をαとしたとき、前記αが前記フラックス入りワイヤの全質量に対する質量%で3.3~8.0%であり、Ti酸化物、Si酸化物、Mg酸化物、Al酸化物のうちの1種以上を含有し、その含有量の合計をβとしたとき、前記βが前記フラックス入りワイヤの全質量に対する質量%で0.10~1.50%であり、CaCO、BaCO、SrCO、MgCOの含有量の合計が、前記フラックス入りワイヤの全質量に対する質量%で0.60%未満であり、前記フラックス中の鉄粉の含有量が、前記フラックス入りワイヤの全質量に対する質量%で10.0%未満であり、前記αに対する前記CaFの含有量の比が0.90以上であり、前記βに対する前記αの比が3.0以上80.0以下であり、CaOの含有量が、前記フラックス入りワイヤの全質量に対する質量%で0.20%未満であり、金属弗化物、金属酸化物、および金属炭酸塩を除く、前記フラックス入りワイヤ中の化学成分が、前記フラックス入りワイヤの全質量に対する質量%で:C:0.060~0.350%;Si:0.05~1.80%;Mn:0.50~4.00%;P:0.050%以下;S:0.020%以下;Al:0.005~0.150%;Cu:0~0.75%;Ni:0~1.00%未満;Cr:0~3.50%;Mo:0~1.50%;Ti:0~0.150%;Nb:0~0.15%;V:0~0.45%;B:0~0.0500%;Mg:0~2.0%;Ca:0~2.0%;REM:0~0.0150%;残部:Feおよび不純物;からなり、(c)前記溶接継手の溶接金属の化学組成が、質量%で:C:0.120~0.250%;Si:0.05~0.80%;Mn:0.20~2.50%;Al:0.0050~0.1000%;P:0.050%以下;S:0.020%以下;N:0.015%以下;Cu:0~0.50%;Ni:0~0.70%未満;Cr:0~2.50%;Mo:0~1.00%;Ti:0~0.100%;Nb:0~0.100%;V:0~0.30%;B:0~0.0100%;O:0~0.100%;Mg:0~0.100%;Ca:0~0.100%;REM:0~0.0100%;残部:Feおよび不純物;からなり、前記溶接金属の、下記の式2で計算されるCENが、0.20~0.58質量%であり、前記溶接金属の表面下1mmの平均ビッカース硬さHVが、380~533であり、上記(a)~(c)の全てを満足する。
CEN=[C]+(0.75+0.25×tanh(20×([C]-0.12)))×([Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5×[B]) ・・・(式2)
 ただし、[]付元素は、それぞれの元素の含有量(質量%)を表す。
(2) In the method for manufacturing a welded joint according to the second aspect of the present invention, the Vickers hardness HV is 380 to 514, the plate thickness is 20 to 100 mm, and the C content is 0.120 to 0. .300 mass%, CEN calculated by the following formula 1 is 0.20 to 0.75 mass%, Vickers hardness HV is more than 514 and less than 565, and the thickness is 12 to 100 mm. A steel sheet having a C content of 0.120 to 0.300 mass%, a CEN calculated by the following formula 1 of 0.20 to 0.75 mass%, and a Vickers hardness HV of 565 It is ultra 693 or less, the plate thickness is 6 to 12 mm, the C content is 0.350 to 0.450% by mass, and CEN calculated by the following formula 1 is 0.20 to 0.85. For any one of the steel plates, A method of manufacturing a welded joint by performing gas shielded arc welding using a flux-cored wire filled with metal, wherein (a) the temperature of the steel sheet is 10 ° C. or higher during the gas shielded arc welding. If the temperature of the steel plate is less than 10 ° C, the preheating operation is performed so that the temperature of the steel plate is 10 ° C or higher, and (b) the flux-cored wire is CaF 2 , When one or more of BaF 2 , SrF 2 , and MgF 2 are contained and the total content thereof is α, the α is 3.3 to 8.0 in terms of mass% with respect to the total mass of the flux-cored wire. %, And containing at least one of Ti oxide, Si oxide, Mg oxide, and Al oxide, where β is the total content, β is the total mass of the flux-cored wire Vs. That is from 0.10 to 1.50 percent by mass%, CaCO 3, BaCO 3, SrCO 3, the total content of MgCO 3 is less than 0.60% by mass% relative to the total weight of the flux-cored wire Yes, the content of iron powder in the flux is less than 10.0% by mass% with respect to the total mass of the flux-cored wire, and the ratio of the CaF 2 content to α is 0.90 or more. The ratio of α to β is 3.0 or more and 80.0 or less, and the content of CaO is less than 0.20% by mass% with respect to the total mass of the flux-cored wire. The chemical components in the flux-cored wire, excluding oxides and metal carbonates, in mass% with respect to the total mass of the flux-cored wire: C: 0.060 to 0.350%; Si: 0.05 1.80%; Mn: 0.50 to 4.00%; P: 0.050% or less; S: 0.020% or less; Al: 0.005 to 0.150%; Cu: 0 to 0.75 Ni: 0 to less than 1.00%; Cr: 0 to 3.50%; Mo: 0 to 1.50%; Ti: 0 to 0.150%; Nb: 0 to 0.15%; V: B: 0 to 0.0500%; Mg: 0 to 2.0%; Ca: 0 to 2.0%; REM: 0 to 0.0150%; balance: Fe and impurities; (C) the chemical composition of the weld metal of the weld joint is in mass%: C: 0.120-0.250%; Si: 0.05-0.80%; Mn: 0.20-2. 50%; Al: 0.0050 to 0.1000%; P: 0.050% or less; S: 0.020% or less; N: 0.015% or less; Cu: 0 to 0.50%; N : 0 to less than 0.70%; Cr: 0 to 2.50%; Mo: 0 to 1.00%; Ti: 0 to 0.100%; Nb: 0 to 0.100%; V: 0 to 0 30%; B: 0 to 0.0100%; O: 0 to 0.100%; Mg: 0 to 0.100%; Ca: 0 to 0.100%; REM: 0 to 0.0100%; CEN of the weld metal calculated by the following formula 1 is 0.20 to 0.58% by mass, and the average Vickers hardness HV 1 mm below the surface of the weld metal is 380 to 533, which satisfies all of the above (a) to (c).
CEN = [C] + (0.75 + 0.25 × tanh (20 × ([C] −0.12))) × ([Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 × [B]) (Formula 1)
However, the element with [] represents the content (% by mass) of each element.
(3) The method for manufacturing a welded joint according to the third aspect of the present invention has a Vickers hardness HV of more than 565 and not more than 693, a plate thickness of 12 to 20 mm, and a C content of 0.350 to 0. .450% by mass, CEN calculated by the following formula 2 is 0.20 to 0.85% by mass, and the Vickers hardness HV is more than 565 to 693 and the plate thickness is more than 20 mm and 50 mm. Any one of the following: a steel sheet having a C content of 0.350 to 0.450 mass% and a CEN calculated by the following formula 2 of 0.20 to 0.85 mass% On the other hand, a method of manufacturing a welded joint by performing gas shielded arc welding using a flux-cored wire in which a steel outer sheath is filled with flux, (a) during the gas shielded arc welding, The plate thickness is 20m In the following cases, the preheating operation is performed so that the temperature of the steel plate is 100 ° C. or more. When the plate thickness of the steel plate is more than 20 mm, the preheating operation is performed so that the temperature of the steel plate is 150 ° C. or more. (B) The flux-cored wire contains one or more of CaF 2 , BaF 2 , SrF 2 , and MgF 2 , and when the total content is α, the α is the flux-cored wire. It is 3.3 to 8.0% by mass with respect to the total mass, and contains at least one of Ti oxide, Si oxide, Mg oxide, and Al oxide, and the total content is β and The β is 0.10 to 1.50% by mass% with respect to the total mass of the flux-cored wire, and the total content of CaCO 3 , BaCO 3 , SrCO 3 , and MgCO 3 is the flux-cored wire. The whole quality of Less than 0.60% by mass% with respect to the content of iron powder in said flux is less than 10.0% in percentage by weight relative to the total weight of the flux-cored wire, inclusion of the CaF 2 with respect to the α The ratio of the amount is 0.90 or more, the ratio of α to β is 3.0 or more and 80.0 or less, and the content of CaO is 0.20 by mass% with respect to the total mass of the flux-cored wire. % Of the chemical component in the flux-cored wire, excluding metal fluoride, metal oxide, and metal carbonate, in terms of mass% with respect to the total mass of the flux-cored wire: C: 0.060-0. 350%; Si: 0.05 to 1.80%; Mn: 0.50 to 4.00%; P: 0.050% or less; S: 0.020% or less; Al: 0.005 to 0.150 %: Cu: 0 to 0.75% Ni: 0 to less than 1.00%; Cr: 0 to 3.50%; Mo: 0 to 1.50%; Ti: 0 to 0.150%; Nb: 0 to 0.15%; V: 0 to 0.45%; B: 0-0.0500%; Mg: 0-2.0%; Ca: 0-2.0%; REM: 0-0.0150%; balance: Fe and impurities; (C) The chemical composition of the weld metal of the weld joint is in mass%: C: 0.120 to 0.250%; Si: 0.05 to 0.80%; Mn: 0.20 to 2.50% Al: 0.0050 to 0.1000%; P: 0.050% or less; S: 0.020% or less; N: 0.015% or less; Cu: 0 to 0.50%; Ni: 0 to 0 Less than 70%; Cr: 0 to 2.50%; Mo: 0 to 1.00%; Ti: 0 to 0.100%; Nb: 0 to 0.100%; V: 0 to 0.30%; B O: 0 to 0.100%; Mg: 0 to 0.100%; Ca: 0 to 0.100%; REM: 0 to 0.0100%; balance: Fe and impurities; The CEN calculated by the following formula 2 of the weld metal is 0.20 to 0.58% by mass, and the average Vickers hardness HV 1 mm below the surface of the weld metal is 380 to 533. All of the above (a) to (c) are satisfied.
CEN = [C] + (0.75 + 0.25 × tanh (20 × ([C] −0.12))) × ([Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 × [B]) (Formula 2)
However, the element with [] represents the content (% by mass) of each element.
 (4)上記(1)~(3)に記載の溶接継手の製造方法は、前記フラックス入りワイヤ中の前記CaOの含有量が、前記フラックス入りワイヤの全質量に対する質量%で0.15%以下であってもよい。 (4) In the method for manufacturing a welded joint according to (1) to (3) above, the content of the CaO in the flux-cored wire is 0.15% or less by mass% with respect to the total mass of the flux-cored wire. It may be.
 (5)上記(1)~(4)のいずれか一項に記載の溶接継手の製造方法は、前記金属弗化物、前記金属酸化物、および前記金属炭酸塩を除く、前記フラックス入りワイヤ中の前記化学組成が、前記フラックス入りワイヤの全質量に対する質量%で:Ni:0~0.1%であってもよい。 (5) The method for manufacturing a welded joint according to any one of (1) to (4) above, wherein the metal-containing fluoride, the metal oxide, and the metal carbonate are excluded from the flux-cored wire. The chemical composition may be Ni: 0 to 0.1% by mass% with respect to the total mass of the flux-cored wire.
 (6)上記(1)~(5)のいずれか一項に記載の溶接継手の製造方法は、前記金属弗化物、前記金属酸化物、および前記金属炭酸塩を除く、前記フラックス入りワイヤ中の前記化学組成が、前記フラックス入りワイヤの全質量に対する質量%で:Cu:0~0.50%;Cr:0~1.00%;Mo:0~0.50%;Ti:0~0.050%;Nb:0~0.05%であってもよい。 (6) The method for producing a welded joint according to any one of (1) to (5) above, wherein the metal-containing fluoride, the metal oxide, and the metal carbonate are excluded from the flux-cored wire. The chemical composition is in mass% with respect to the total mass of the flux-cored wire: Cu: 0 to 0.50%; Cr: 0 to 1.00%; Mo: 0 to 0.50%; 050%; Nb: 0 to 0.05%.
 (7)上記(1)~(6)のいずれか一項に記載の溶接継手の製造方法は、前記フラックス入りワイヤの前記鋼製外皮にスリット状の隙間があってもよい。
 (8)上記(1)~(6)のいずれか一項に記載の溶接継手の製造方法は、前記フラックス入りワイヤの前記鋼製外皮にスリット上の隙間がなくてもよい。
(7) In the method for manufacturing a welded joint according to any one of (1) to (6) above, there may be a slit-like gap in the steel outer sheath of the flux-cored wire.
(8) In the method for manufacturing a welded joint according to any one of the above (1) to (6), there may be no gap on the slit in the steel outer shell of the flux-cored wire.
 (9)上記(1)~(8)のいずれか一項に記載の溶接継手の製造方法は、前記フラックス入りワイヤの表面にパーフルオロポリエーテル油が塗布されていてもよい。 (9) In the method for manufacturing a welded joint according to any one of (1) to (8) above, perfluoropolyether oil may be applied to the surface of the flux-cored wire.
 本発明の上記各態様によれば、C含有量が高く表面硬さがHV380以上、HV693以下であるような高硬度鋼板を母材とする溶接継手であって、表面硬さがHV320以上HV533以下であって耐摩耗性に優れるとともに低温割れが発生しにくい溶接金属、または表面硬さがHV380以上HV533以下であって耐摩耗性に優れるとともに低温割れが発生しにくい溶接金属を有する溶接継手を得ることができる。 According to each aspect of the present invention, a welded joint using a high-hardness steel plate having a high C content and a surface hardness of HV380 or more and HV693 or less as a base material, the surface hardness of HV320 or more and HV533 or less. It is possible to obtain a weld metal having a weld metal that is excellent in wear resistance and hardly generates low temperature cracks, or has a surface hardness of HV380 or more and HV533 or less and that has excellent wear resistance and low temperature cracks. be able to.
母材の硬さおよび溶接金属中の拡散性水素量と割れ発生限界予熱温度との関係を示す図である。It is a figure which shows the relationship between the hardness of a base material, the amount of diffusible hydrogen in a weld metal, and a crack generation limit preheating temperature. HV337以上、HV533以下で溶接金属中の拡散性水素量1.0ml/100g未満の溶接金属における、CENと割れ発生限界予熱温度との関係を示す図である。It is a figure which shows the relationship between CEN and a crack generation limit preheating temperature in the weld metal which is HV337 or more and HV533 or less and the amount of diffusible hydrogen in a weld metal is less than 1.0 ml / 100g. ワイヤの切断断面を示す図である。It is a figure which shows the cut cross section of a wire. ワイヤの切断断面を示す図である。It is a figure which shows the cut cross section of a wire. ワイヤの切断断面を示す図である。It is a figure which shows the cut cross section of a wire.
 高硬度鋼板を母材とする溶接継手において、発明者らは、上記のように、溶接直後における溶接金属中の拡散性水素量が1.0ml/100g未満であれば、低温割れ発生限界予熱温度は、溶接金属の硬さにはあまり依存せず、HV337以上HV533以下の溶接金属とHV380以上HV533以下の溶接金属との低温割れ感受性を大きく低減することができることを知見した。 In a welded joint using a high-hardness steel plate as a base material, the inventors, as described above, have a cold crack initiation limit preheating temperature if the amount of diffusible hydrogen in the weld metal immediately after welding is less than 1.0 ml / 100 g. Has found that it does not depend much on the hardness of the weld metal and can greatly reduce the low-temperature cracking susceptibility between a weld metal of HV 337 and HV 533 and a weld metal of HV 380 and HV 533.
 さらに発明者らは、溶接直後における溶接金属中の拡散性水素量を1.0ml/100g未満とするために、フラックス入りワイヤのフラックス成分の組合せとその配合比とを種々変化させて検討を重ねた。
 その結果、水素低減に特に効果のあるのはCaFをはじめとする弗化物であり、フラックス成分に一定量を含有させることにより溶接金属中の拡散性水素量を大きく低減でき、さらに酸化物の量を調整し、かつ弗化物と酸化物の配合比を一定範囲とすることにより、拡散性水素量を安定して1.0ml/100g未満に抑制することができることを知見するに至った。
Furthermore, the inventors have repeatedly studied various combinations and combinations of flux components of the flux-cored wire in order to reduce the amount of diffusible hydrogen in the weld metal immediately after welding to less than 1.0 ml / 100 g. It was.
As a result, fluorides such as CaF 2 are particularly effective in reducing hydrogen. By containing a certain amount of the flux component, the amount of diffusible hydrogen in the weld metal can be greatly reduced. The inventors have found that the amount of diffusible hydrogen can be stably suppressed to less than 1.0 ml / 100 g by adjusting the amount and keeping the blending ratio of fluoride and oxide within a certain range.
 本発明は、このような検討に基づいてなされたものである。以下、本実施形態に係る溶接継手の製造方法の一態様について説明する。
 本発明は、耐摩耗鋼板として広く用いられている、C含有量が質量%で0.12~0.45%で、HV380以上、HV693以下の高硬度の厚鋼板を母材として用い、それをガスシールドアーク溶接して形成した溶接継手を対象とする。
 本発明では、溶接金属を、上記(1)または(2)に記載した化学組成を有するものとする。
 以下、溶接金属の化学組成の限定理由について説明する。以下の説明において、「%」は特に説明がない限り、「質量%」を意味する。
The present invention has been made based on such studies. Hereinafter, an aspect of the method for manufacturing the welded joint according to the present embodiment will be described.
The present invention uses, as a base material, a high-hardness thick steel plate having a C content of 0.12 to 0.45% by mass, HV380 or more and HV693 or less, which is widely used as a wear-resistant steel plate. The target is a welded joint formed by gas shielded arc welding.
In the present invention, the weld metal has the chemical composition described in (1) or (2) above.
Hereinafter, the reason for limiting the chemical composition of the weld metal will be described. In the following description, “%” means “% by mass” unless otherwise specified.
(C:0.100~0.250%)
 Cは、溶接金属の硬さに最も影響する元素である。母材硬さがHV380以上であるときに、溶接金属にある程度の耐摩耗性を確保するためには、溶接金属の表面硬さは少なくともHV337以上であることが望ましい。そのためには溶接金属のC含有量は0.100%以上が必要である。また、母材硬さがHV380以上であるときに、母材に近い耐摩耗性を確保するためには、溶接金属の表面硬さもHV380以上であることが望ましい。溶接金属の表面硬さをHV380以上にする必要がある場合には、溶接金属のC含有量を0.120%以上にする必要がある。しかし、C含有量が0.250%を超えると、溶接金属の硬さがHV533を超えて溶接金属の靭性が低下することがあるので、C含有量の上限を0.250%とする。なお、後述するC含有量が0.010~0.060%未満のフラックス入りワイヤを用いて作られた溶接継手の溶接金属のC含有量は、0.100~0.170%となることが通常である。安定してHV380以上の母材硬さを得るためには、C含有量の下限を0.130%または0.140%としてもよい。また、溶接金属の靭性を安定して得るために、C含有量の上限を0.230%または0.210%としてもよい。
(C: 0.100 to 0.250%)
C is an element that most affects the hardness of the weld metal. When the base metal hardness is HV380 or higher, it is desirable that the surface hardness of the weld metal is at least HV337 in order to ensure a certain degree of wear resistance in the weld metal. For that purpose, the C content of the weld metal needs to be 0.100% or more. Further, when the base metal hardness is HV380 or more, it is desirable that the surface hardness of the weld metal is HV380 or more in order to ensure wear resistance close to that of the base material. When the surface hardness of the weld metal needs to be HV380 or more, the C content of the weld metal needs to be 0.120% or more. However, if the C content exceeds 0.250%, the hardness of the weld metal exceeds HV533 and the toughness of the weld metal may decrease, so the upper limit of the C content is set to 0.250%. Note that the C content of the weld metal of a welded joint made using a flux-cored wire having a C content of 0.010 to less than 0.060%, which will be described later, may be 0.100 to 0.170%. It is normal. In order to stably obtain a base material hardness of HV380 or higher, the lower limit of the C content may be 0.130% or 0.140%. Moreover, in order to acquire the toughness of a weld metal stably, it is good also considering the upper limit of C content as 0.230% or 0.210%.
(Si:0.05~0.80%)
 Siは、脱酸元素であり、溶接金属のO含有量を低減して清浄度を高めるためにフラックスには一定量添加する。そのため溶接金属中のSi含有量も0.05%以上が含有される。必要に応じて、Si含有量の下限を0.10%、0.15%又は0.20%としてもよい。Siは、0.80%を超えて含有すると溶接金属の靱性を劣化させることがあるため、これを上限とする。溶接金属の靭性改善のため、Si含有量の上限を0.70%、0.65%、0.60%又は0.50%としてもよい。
(Si: 0.05-0.80%)
Si is a deoxidizing element, and a certain amount is added to the flux in order to reduce the O content of the weld metal and increase the cleanliness. Therefore, the Si content in the weld metal is also 0.05% or more. If necessary, the lower limit of the Si content may be 0.10%, 0.15%, or 0.20%. If Si is contained in an amount exceeding 0.80%, the toughness of the weld metal may be deteriorated, so this is the upper limit. In order to improve the toughness of the weld metal, the upper limit of the Si content may be 0.70%, 0.65%, 0.60%, or 0.50%.
(Mn:0.20~2.50%)
 Mnは、MnSを形成してSによる粒界脆化を抑制する効果があるので、溶接金属には少なくとも0.20%以上含有させるようにする。またMnは溶接金属の焼入性を確保して強度を高める効果のある元素であるので、硬さを安定的に得るためには、0.50%以上含有することが望ましい。溶接金属の硬さ向上のため、Mn含有量の下限を0.60%、0.70%、0.80%又は0.90%としてもよい。一方、Mnは、2.50%を超えて含有すると、粒界脆化感受性が増加して溶接金属の靱性が劣化するため、これを上限とする。溶接金属の靭性改善のため、Mn含有量の上限を2.30%、2.10%、1.90%、1.70%又は1.50%に制限してもよい。
(Mn: 0.20-2.50%)
Since Mn has the effect of forming MnS and suppressing grain boundary embrittlement due to S, it is contained in the weld metal at least 0.20% or more. Further, since Mn is an element that has the effect of ensuring the hardenability of the weld metal and increasing the strength, it is desirable to contain 0.50% or more in order to stably obtain the hardness. In order to improve the hardness of the weld metal, the lower limit of the Mn content may be 0.60%, 0.70%, 0.80%, or 0.90%. On the other hand, if Mn exceeds 2.50%, the grain boundary embrittlement susceptibility increases and the toughness of the weld metal deteriorates, so this is the upper limit. In order to improve the toughness of the weld metal, the upper limit of the Mn content may be limited to 2.30%, 2.10%, 1.90%, 1.70%, or 1.50%.
(Al:0.0050~0.1000%)
 Alは脱酸元素であり、Siと同様に、溶接金属中のO含有量を低減することにより、溶接金属の清浄度を向上させる効果があるので、フラックスには一定量を添加する必要がある。本実施形態に係るフラックス入りワイヤを用いて得られた溶接継手の溶接金属には、通常、0.0050%以上のAlが含まれる。Al量が0.0050%未満であった場合、溶接金属の低温靱性が低下するおそれがある。一方、0.1000%を超えて含有させると、窒化物や酸化物を形成して、溶接金属の靱性を劣化させるので、これを上限とする。溶接金属の靭性改善のため、Al含有量の上限を0.0900%、0.0800%、0.0700%又は0.0600%に制限してもよい。
(Al: 0.0050 to 0.1000%)
Al is a deoxidizing element and, like Si, has the effect of improving the cleanliness of the weld metal by reducing the O content in the weld metal, so a certain amount needs to be added to the flux. . The weld metal of the welded joint obtained using the flux cored wire according to the present embodiment usually contains 0.0050% or more of Al. When the amount of Al is less than 0.0050%, the low temperature toughness of the weld metal may be reduced. On the other hand, if the content exceeds 0.1000%, nitrides and oxides are formed and the toughness of the weld metal is deteriorated, so this is the upper limit. In order to improve the toughness of the weld metal, the upper limit of the Al content may be limited to 0.0900%, 0.0800%, 0.0700%, or 0.0600%.
(P:0.050%以下)
 Pは不純物元素であり、靱性を劣化させる。そのため極力低減する必要があるが、靱性への悪影響が許容できる範囲として、溶接金属のP含有量は0.050%以下に制限する。必要に応じて、P含有量の上限を0.030%、0.0250%、0.0200%又は0.0150%に制限してもよい。P含有量の下限を制限する必要はない。P含有量の下限は0%である。
(P: 0.050% or less)
P is an impurity element and degrades toughness. Therefore, although it is necessary to reduce as much as possible, the P content of the weld metal is limited to 0.050% or less as a range in which an adverse effect on toughness can be tolerated. If necessary, the upper limit of the P content may be limited to 0.030%, 0.0250%, 0.0200%, or 0.0150%. There is no need to limit the lower limit of the P content. The lower limit of the P content is 0%.
(S:0.020%以下)
 Sも不純物元素であり、溶接金属中に過大に存在すると靱性と延性とをともに劣化させるため、極力低減することが好ましい。靱性、延性への悪影響が許容できる範囲として、溶接金属のS含有量は0.020%以下に制限する。必要に応じて、S含有量の上限を0.015%、0.010%、0.008%又は0.006%に制限してもよい。S含有量の下限を制限する必要はない。S含有量の下限は0%である。
(S: 0.020% or less)
S is also an impurity element, and if it is excessively present in the weld metal, it deteriorates both toughness and ductility, so it is preferable to reduce it as much as possible. As a range in which an adverse effect on toughness and ductility can be tolerated, the S content of weld metal is limited to 0.020% or less. If necessary, the upper limit of the S content may be limited to 0.015%, 0.010%, 0.008%, or 0.006%. There is no need to limit the lower limit of the S content. The lower limit of the S content is 0%.
(N:0.015%以下)
 Nは、溶接金属中には不可避的に含有されるが、0.015%を超えると粗大なAlNやBNを形成して靭性を低下させる。溶接金属への影響を許容できる上限としてN含有量は0.015%以下に制限する。必要に応じて、N含有量の上限を0.010%、0.008%又は0.006%に制限してもよい。N含有量の下限を制限する必要はない。N含有量の下限は0%である。
(N: 0.015% or less)
N is inevitably contained in the weld metal, but if it exceeds 0.015%, coarse AlN or BN is formed and the toughness is lowered. The N content is limited to 0.015% or less as an upper limit that can allow an influence on the weld metal. If necessary, the upper limit of the N content may be limited to 0.010%, 0.008%, or 0.006%. There is no need to limit the lower limit of the N content. The lower limit of the N content is 0%.
(O:0~0.100%)
 Oは、溶接金属中には不可避的に含有されるが、靱性、延性への悪影響が許容できる範囲として、溶接金属のO含有量は0.100%以下に制限する。必要に応じて、O含有量の上限を0.080%、0.060%、0.050%又は0.040%としてもよい。O含有量の下限を制限する必要はない。O含有量の下限は0%である。
(O: 0 to 0.100%)
O is inevitably contained in the weld metal, but the O content of the weld metal is limited to 0.100% or less as a range in which an adverse effect on toughness and ductility can be tolerated. If necessary, the upper limit of the O content may be 0.080%, 0.060%, 0.050%, or 0.040%. There is no need to limit the lower limit of the O content. The lower limit of the O content is 0%.
(Cu:0~0.50%)
 Cuは、溶接金属の強度と靭性とを向上させることができるので、選択元素として含有できる。しかしながら、Cu含有量が0.50%を超えると靭性が低下することがあるため、溶接金属のCu含有量は0.50%以下とする。必要に応じて、Cu含有量の上限を0.40%又は0.30%としてもよい。Cu含有量の下限を制限しなくてもよい。このため、Cu含有量の下限は0%である。一方、強化効果を十分に得るために、溶接金属に0.10%以上含有させてもよい。溶接金属中にCuを含有させる方法としては、ワイヤの外皮表面のめっき、あるいは、フラックスに単体または合金元素として添加する等の方法がある。
(Cu: 0 to 0.50%)
Since Cu can improve the strength and toughness of the weld metal, it can be contained as a selective element. However, if the Cu content exceeds 0.50%, the toughness may decrease, so the Cu content of the weld metal is set to 0.50% or less. If necessary, the upper limit of Cu content may be 0.40% or 0.30%. There is no need to limit the lower limit of the Cu content. For this reason, the minimum of Cu content is 0%. On the other hand, in order to obtain a sufficient strengthening effect, the weld metal may be contained by 0.10% or more. As a method for incorporating Cu into the weld metal, there are a method of plating the outer surface of the wire, or a method of adding it as a simple substance or an alloy element to the flux.
(Ni:0~0.70%未満)
 Niは靱性向上に有効な元素とされる選択元素として含有できる。しかし、C含有量が高い場合にはその効果は限定的であり、高価な元素でもあるので、溶接金属へのNi含有量は0.70%未満とする。必要に応じて、Ni含有量の上限を0.60%、0.40%又は0.20%としてもよい。Ni含有量の下限を制限しなくてもよい。このため、Ni含有量の下限は0%である。一方、靭性向上効果を得るために、溶接金属に0.05%以上含有させてもよい。
(Ni: 0 to less than 0.70%)
Ni can be contained as a selective element that is effective for improving toughness. However, when the C content is high, the effect is limited and it is also an expensive element, so the Ni content in the weld metal is less than 0.70%. If necessary, the upper limit of the Ni content may be 0.60%, 0.40%, or 0.20%. There is no need to limit the lower limit of the Ni content. For this reason, the lower limit of the Ni content is 0%. On the other hand, in order to obtain the effect of improving toughness, 0.05% or more may be contained in the weld metal.
(Cr:0~2.50%)
 Crは、焼入性を高めることにより溶接金属の硬さ向上に有効な元素であり、選択元素として含有できる。しかしながら、2.50%を超えて過剰に含有させると、靱性を低下させることがあるため、Cr含有量は2.50%を上限とする。必要に応じて、Cr含有量の上限を1.50%、1.00%、0.70%又は0.40%としてもよい。Cr含有量の下限を制限しなくてもよい。このため、Cr含有量の下限は0%である。一方、溶接金属の硬さ向上の目的で添加する場合には、その効果を得るために0.10%以上含有させてもよい。
(Cr: 0-2.50%)
Cr is an element effective for improving the hardness of the weld metal by increasing the hardenability, and can be contained as a selective element. However, if the content exceeds 2.50% excessively, the toughness may be reduced, so the upper limit of the Cr content is 2.50%. If necessary, the upper limit of the Cr content may be 1.50%, 1.00%, 0.70%, or 0.40%. There is no need to limit the lower limit of the Cr content. For this reason, the lower limit of the Cr content is 0%. On the other hand, when it is added for the purpose of improving the hardness of the weld metal, it may be contained by 0.10% or more in order to obtain the effect.
(Mo:0~1.00%)
 Moは、焼入性を高めることにより溶接金属の硬さ向上に有効な元素であり、選択元素として含有できる。しかしながら、1.00%を超えて過剰に含有させると、靱性を低下させることがあるため、Mo含有量は1.00%を上限とする。必要に応じて、Mo含有量の上限を0.70%、0.60%、0.40%又は0.20%としてもよい。Mo含有量の下限を制限しなくてもよい。このため、Mo含有量の下限は0%である。一方、硬さ向上の目的で添加する場合には、その効果を得るために0.05%以上含有させてもよい。
(Mo: 0-1.00%)
Mo is an element effective for improving the hardness of the weld metal by increasing the hardenability, and can be contained as a selective element. However, if the content exceeds 1.00% excessively, the toughness may be lowered, so the Mo content is limited to 1.00%. If necessary, the upper limit of the Mo content may be 0.70%, 0.60%, 0.40%, or 0.20%. There is no need to limit the lower limit of the Mo content. For this reason, the lower limit of the Mo content is 0%. On the other hand, when added for the purpose of improving the hardness, 0.05% or more may be contained in order to obtain the effect.
(Ti:0~0.100%)
 TiもAlと同様、脱酸元素として有効であり、溶接金属中のO含有量を低減させる効果があり、選択元素として含有できる。また、固溶Nを固定して靱性への悪影響を緩和するためにも有効であるが、溶接金属中のTi含有量が0.100%を超えて過剰になると、粗大な酸化物の形成に起因した靱性劣化、過度な析出強化による靱性劣化が生じる可能性が大きくなるので、Ti含有量の上限は0.100%とする。必要に応じて、Ti含有量の上限を0.080%、0.050%、0.030%又は0.020%としてもよい。Ti含有量の下限を制限しなくてもよい。このため、Ti含有量の下限は0%である。靱性改善の目的に、0.010%以上含有させてもよい。
(Ti: 0 to 0.100%)
Ti, like Al, is effective as a deoxidizing element, has an effect of reducing the O content in the weld metal, and can be contained as a selective element. It is also effective for fixing the solid solution N and mitigating the adverse effect on toughness. However, when the Ti content in the weld metal exceeds 0.100%, it becomes a coarse oxide. Since the possibility of toughness deterioration due to excessive toughening due to excessive precipitation strengthening increases, the upper limit of the Ti content is set to 0.100%. If necessary, the upper limit of the Ti content may be 0.080%, 0.050%, 0.030%, or 0.020%. There is no need to limit the lower limit of the Ti content. For this reason, the lower limit of the Ti content is 0%. You may make it contain 0.010% or more for the purpose of toughness improvement.
(Nb:0~0.100%)
 Nbは固溶により溶接金属の硬さを向上させる効果があり、選択元素として含有できる。しかしながら、0.100%を超えて含有させると、溶接金属中に過剰に含有され、粗大な析出物を形成して靭性を劣化させるため好ましくないので、Nb含有量の上限を0.100%とする。必要に応じて、Nb含有量の上限を0.080%、0.050%、0.030%又は0.020%としてもよい。Nb含有量の下限を制限しなくてもよい。このため、Nb含有量の下限は0%である。溶接金属の硬さ向上目的に0.010%以上含有させてもよい。
(Nb: 0 to 0.100%)
Nb has the effect of improving the hardness of the weld metal by solid solution, and can be contained as a selective element. However, if the content exceeds 0.100%, it is not preferable because it is excessively contained in the weld metal and coarse precipitates are formed to deteriorate toughness. Therefore, the upper limit of the Nb content is 0.100%. To do. If necessary, the upper limit of the Nb content may be 0.080%, 0.050%, 0.030%, or 0.020%. There is no need to limit the lower limit of the Nb content. For this reason, the lower limit of the Nb content is 0%. You may make it contain 0.010% or more for the purpose of the hardness improvement of a weld metal.
(V:0~0.30%)
 Vは、焼入性を高めることにより溶接金属の硬さ向上に有効な元素であり、選択元素として含有できる。しかしながら、0.30%を超えて過剰に含有させると、靱性を低下させることがあるため、V含有量は0.30%を上限とする。必要に応じて、V含有量の上限を0.25%、0.20%又は0.15としてもよい。V含有量の下限を制限しなくてもよい。このため、V含有量の下限は0%である。溶接金属の硬さ向上のために0.01%以上含有させてもよい。
(V: 0 to 0.30%)
V is an element effective for improving the hardness of the weld metal by increasing the hardenability, and can be contained as a selective element. However, if the content exceeds 0.30%, the toughness may be lowered, so the V content is 0.30% as the upper limit. As needed, it is good also considering the upper limit of V content as 0.25%, 0.20%, or 0.15. There is no need to limit the lower limit of the V content. For this reason, the lower limit of the V content is 0%. You may make it contain 0.01% or more for the hardness improvement of a weld metal.
(B:0~0.0100%)
 Bは、溶接金属中に適正量含有させると、固溶Nと結びついてBNを形成して、固溶Nの靭性に対する悪影響を減じる効果がある。またBは、焼入性を高めて強度向上に寄与する効果もあり、選択元素として含有できる。これらの効果を得るために0.0003%以上含有させてもよい。一方、B含有量が0.0100%超になると、溶接金属中のBが過剰となり、粗大なBNやFe23(C、B)等のB化合物を形成して靭性を逆に劣化させるため、好ましくない。そこで、Bを含有させる場合のB含有量の上限は0.0100%とする。必要に応じて、B含有量の上限を0.0080%、0.0060%、0.0040%又は0.0020%としてもよい。B含有量の下限を制限する必要はなく、B含有量の下限は0%である。
(B: 0 to 0.0100%)
When an appropriate amount of B is contained in the weld metal, it has an effect of forming a BN in combination with the solid solution N and reducing the adverse effect on the toughness of the solid solution N. B also has the effect of enhancing the hardenability and contributing to the strength improvement, and can be contained as a selective element. In order to obtain these effects, 0.0003% or more may be contained. On the other hand, when the B content exceeds 0.0100%, B in the weld metal becomes excessive, and coarse toughness is deteriorated by forming coarse B compounds such as BN and Fe 23 (C, B) 6. Is not preferable. Therefore, the upper limit of the B content when B is contained is 0.0100%. If necessary, the upper limit of the B content may be 0.0080%, 0.0060%, 0.0040%, or 0.0020%. There is no need to limit the lower limit of the B content, and the lower limit of the B content is 0%.
(Mg:0~0.100%)
 Mg含有量の下限を制限する必要はなく、Mg含有量の下限は0%である。しかし、Mgは強脱酸元素であり、溶接金属中のO含有量を低減し、溶接金属の延性及び靭性を向上させために、0.001%以上含有させてもよい。しかし、溶接金属中のMg含有量が0.100%を超えると、溶接金属中での粗大酸化物の形成による靭性低下が無視できなくなる。このため、Mgを含有させる場合にも、Mg含有量を0.100%以下とする。必要に応じて、Mg含有量の上限を0.0080%、0.0060%、0.0040%又は0.0020%としてもよい。
(Mg: 0 to 0.100%)
There is no need to limit the lower limit of the Mg content, and the lower limit of the Mg content is 0%. However, Mg is a strong deoxidizing element, and may be contained by 0.001% or more in order to reduce the O content in the weld metal and improve the ductility and toughness of the weld metal. However, if the Mg content in the weld metal exceeds 0.100%, a decrease in toughness due to the formation of coarse oxides in the weld metal cannot be ignored. For this reason, also when it contains Mg, Mg content shall be 0.100% or less. If necessary, the upper limit of the Mg content may be 0.0080%, 0.0060%, 0.0040%, or 0.0020%.
(Ca:0~0.100%)
(REM:0~0.0100%)
 CaおよびREM含有量の下限を制限する必要はなく、CaおよびREM含有量の下限は0%である。しかし、Ca、REMはいずれも溶接金属中での硫化物の構造を変化させ、また硫化物、酸化物のサイズを微細化して延性及び靭性向上に有効であり、Caを0.002%以上、REMを0.0002%以上、含有してもよい。一方、過剰に含有すると、硫化物や酸化物の粗大化を生じ、延性、靭性の劣化を招くため、含有させる場合のそれぞれの上限を、Caでは0.100%、REMでは0.0100%とする。
(Ca: 0 to 0.100%)
(REM: 0-0.0100%)
There is no need to limit the lower limit of Ca and REM content, and the lower limit of Ca and REM content is 0%. However, both Ca and REM are effective in improving the ductility and toughness by changing the structure of the sulfide in the weld metal and reducing the size of the sulfide and oxide. You may contain REM 0.0002% or more. On the other hand, if it is contained excessively, it causes coarsening of sulfides and oxides, leading to deterioration of ductility and toughness. Therefore, the upper limit of each inclusion is 0.100% for Ca and 0.0100% for REM. To do.
 以上の化学組成を含有する溶接金属は、鉄(Fe)を主成分とする残部が本実施形態に係る溶接継手の特性を阻害しない範囲で、製造過程等で混入する不純物を含有してもよい。 The weld metal containing the above chemical composition may contain impurities that are mixed in during the manufacturing process, etc., as long as the balance containing iron (Fe) as a main component does not hinder the characteristics of the welded joint according to the present embodiment. .
(CEN:0.20~0.58質量%)
 図2に示すように、HV380以上、HV533以下の溶接金属において、溶接金属中の拡散性水素量が1.0ml/100g未満であるとき、式1で計算されるCENを0.58質量%以下とすることで、JIS Z3158のy形溶接割れ試験において、割れ発生限界予熱温度が25℃以下となり、実質的に予熱なしでの溶接が可能となる。
 ここで、溶接割れを確実に防止するために、CENの上限を0.55質量%、0.53質量%、0.50質量%、0.47質量%又は0.45質量%としてもよい。溶接金属の硬さをHV380以上とするために、CENの下限を0.20質量%とする。溶接金属の硬さが高い方が、耐摩耗性が向上するため、CENの下限を0.24質量%、0.28質量%、0.30質量%又は0.32質量%としてもよい。
 (a)母材のビッカース硬さHVが380以上514以下(HB360以上475以下に相当)であり、母材の板厚が20~100mmであり、母材のCの含有量が0.120~0.300%であり、式1で計算されるCENが、0.20~0.75質量%である母材。
 (b)母材のビッカース硬さHVが514超565以下(HB475超530以下に相当)であり、母材の板厚が12~100mmであり、母材のCの含有量が0.120~0.300%であり、式1で計算されるCENが、0.20~0.75質量%である母材。
 (c)母材のビッカース硬さHVが565超693以下(HB530超650以下に相当)であり、母材の板厚が6~12mmであり、母材のCの含有量が0.350~0.450%であり、式1で計算されるCENが、0.20~0.85質量%である母材。
 上記(a)~(c)のいずれかひとつを満足する母材に対し、ガスシールドアーク溶接時に、母材の温度が10℃以上の場合、溶接時の予熱作業を行う必要がないが、母材の温度が10℃未満の場合には、母材の温度が10℃以上となるように予熱作業を行う必要がある。つまり、母材(鋼板)の温度が10℃未満の場合のみ、母材(鋼板)の温度が10℃以上になるように予熱作業を行う必要がある。この母材の温度(予熱温度)の上限を特に定める必要はないが、75℃未満又は50℃未満としても差し支えない。
 (d)母材のビッカース硬さHVが565超693以下(HB530超650以下に相当)であり、母材の板厚が12~20mmであり、母材のCの含有量が0.350~0.450%であり、式1で計算されるCENが、0.20~0.85質量%である母材。
 (e)母材のビッカース硬さHVが565超693以下(HB530超650以下に相当)であり、母材の板厚が20mm超50mm以下であり、母材のCの含有量が0.350~0.450%であり、式1で計算されるCENが、0.20~0.85質量%である母材。
 上記(d)または(e)を満足する母材に対し、ガスシールドアーク溶接時に、母材の板厚が20mm以下の場合、母材を100℃以上に予熱を行い、母材の板厚が20mm超の場合、母材を150℃以上の予熱を行う。この母材の温度(予熱温度)の上限を特に定める必要はないが、175℃未満又は150℃未満としても差し支えない。また、HV380以上にするために、CENを0.20質量%以上とする。
CEN=[C]+(0.75+0.25×tanh(20×([C]-0.12)))×([Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5×[B]) ・・・(式1)
 ただし、[]付元素は、それぞれの元素の含有量(質量%)を表す。
(CEN: 0.20 to 0.58 mass%)
As shown in FIG. 2, in a weld metal of HV380 or more and HV533 or less, when the amount of diffusible hydrogen in the weld metal is less than 1.0 ml / 100 g, CEN calculated by Formula 1 is 0.58% by mass or less. By doing so, in the y-type weld cracking test of JIS Z3158, the crack initiation limit preheating temperature is 25 ° C. or less, and welding without substantially preheating becomes possible.
Here, in order to reliably prevent weld cracking, the upper limit of CEN may be set to 0.55% by mass, 0.53% by mass, 0.50% by mass, 0.47% by mass, or 0.45% by mass. In order to make the hardness of the weld metal HV380 or more, the lower limit of CEN is 0.20% by mass. The higher the hardness of the weld metal, the better the wear resistance. Therefore, the lower limit of CEN may be 0.24 mass%, 0.28 mass%, 0.30 mass%, or 0.32 mass%.
(A) The base material has a Vickers hardness HV of 380 to 514 (corresponding to HB 360 to 475), the base material has a thickness of 20 to 100 mm, and the base material has a C content of 0.120 to A base material having 0.300% and CEN calculated by Formula 1 of 0.20 to 0.75% by mass.
(B) The Vickers hardness HV of the base material is 514 to 565 or less (corresponding to HB475 to 530 or less), the thickness of the base material is 12 to 100 mm, and the C content of the base material is 0.120 to A base material having 0.300% and CEN calculated by Formula 1 of 0.20 to 0.75% by mass.
(C) The base material has a Vickers hardness HV of over 565 to 693 (corresponding to HB 530 of over 650), the base material has a thickness of 6 to 12 mm, and the base material has a C content of 0.350 to A base material having 0.450% and CEN calculated by Formula 1 of 0.20 to 0.85 mass%.
If the base metal temperature satisfying any one of the above (a) to (c) is 10 ° C or higher during gas shielded arc welding, there is no need to perform preheating work during welding. When the temperature of the material is less than 10 ° C., it is necessary to perform preheating work so that the temperature of the base material becomes 10 ° C. or higher. That is, it is necessary to perform the preheating work so that the temperature of the base material (steel plate) is 10 ° C. or higher only when the temperature of the base material (steel plate) is less than 10 ° C. The upper limit of the base material temperature (preheating temperature) is not particularly required, but may be less than 75 ° C or less than 50 ° C.
(D) The base material has a Vickers hardness HV of more than 565 and less than 693 (corresponding to more than HB 530 and less than 650), the thickness of the base material is 12 to 20 mm, and the C content of the base material is 0.350 to A base material having 0.450% and CEN calculated by Formula 1 of 0.20 to 0.85 mass%.
(E) The Vickers hardness HV of the base material is more than 565 to 693 or less (corresponding to HB 530 or more and 650 or less), the thickness of the base material is more than 20 mm and 50 mm or less, and the C content of the base material is 0.350. A base material having a CEN of 0.20 to 0.85% by mass calculated from Equation 1.
For a base material satisfying the above (d) or (e), when the thickness of the base material is 20 mm or less during gas shielded arc welding, the base material is preheated to 100 ° C. or more, and the thickness of the base material is In the case of over 20 mm, the base material is preheated to 150 ° C. or higher. The upper limit of the base material temperature (preheating temperature) is not particularly required, but may be less than 175 ° C or less than 150 ° C. Moreover, in order to make it HV380 or more, CEN shall be 0.20 mass% or more.
CEN = [C] + (0.75 + 0.25 × tanh (20 × ([C] −0.12))) × ([Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 × [B]) (Formula 1)
However, the element with [] represents the content (% by mass) of each element.
 式1では、含有されていない元素は、その元素に対応する[]内にゼロを代入する。この計算方法は、母材(鋼板)および溶接金属、共通である。 In Formula 1, an element that is not contained substitutes zero in [] corresponding to the element. This calculation method is common to the base material (steel plate) and the weld metal.
 本発明では、溶接金属について、さらに、その表面下1mmの平均ビッカース硬さをHV337以上HV533以下、またはHV380以上HV533以下にする。本発明では、溶接金属について、さらに、溶接直後の拡散性水素量が1.0ml/100g未満であるようにする。
 表面下1mmの位置の硬さが、HV337以上、HV533以下となれば、溶接金属に必要な耐摩耗性の要件を満たす。HV337未満では、耐磨耗性が不足する。HV533を超えると、低温割れが発生しやすくなる。
 硬さの測定は、溶接金属において、溶接方向と垂直の断面を切断し、研磨したサンプルを採取し、溶接金属の表面下1mmの位置のビッカース硬さを10点測定し、平均値を算出することによって求めるものとする。
In the present invention, the average Vickers hardness of 1 mm below the surface of the weld metal is further set to HV337 or higher and HV533 or lower, or HV380 or higher and HV533 or lower. In the present invention, the amount of diffusible hydrogen immediately after welding is set to be less than 1.0 ml / 100 g for the weld metal.
If the hardness at a position 1 mm below the surface is HV337 or higher and HV533 or lower, the wear resistance requirement necessary for the weld metal is satisfied. If it is less than HV337, the wear resistance is insufficient. If it exceeds HV533, cold cracking is likely to occur.
The hardness is measured by cutting a cross section perpendicular to the welding direction in a weld metal, collecting a polished sample, measuring 10 points of Vickers hardness at a position 1 mm below the surface of the weld metal, and calculating an average value. Shall be determined by
 また、溶接直後における溶接金属中の拡散性水素量については、図1を引用して先に説明したように、1.0ml/100g未満であれば、低温割れ発生限界予熱温度は、溶接金属の硬さにはあまり依存せず、硬さがHV337以上HV533以下の溶接金属、およびHV380以上HV533以下の溶接金属の低温割れ感受性を大きく低減することができる。
 拡散性水素量は、JIS Z 3118(鋼溶接部の水素量測定方法;2007年)に準拠したガスクロマトグラフ法により測定する。
 なお、水素の拡散速度は常温で比較的大きいため、溶接金属の拡散性水素量は溶接直後に測定する必要がある。このため、溶接直後に測定しない限り、拡散性水素量を正確に測定できない。
Further, as described above with reference to FIG. 1, the amount of diffusible hydrogen in the weld metal immediately after welding is less than 1.0 ml / 100 g. It does not depend much on the hardness, and the cold cracking susceptibility of the weld metal having a hardness of HV337 to HV533 and the weld metal of HV380 to HV533 can be greatly reduced.
The amount of diffusible hydrogen is measured by a gas chromatographic method based on JIS Z 3118 (Method for measuring the amount of hydrogen in steel welds; 2007).
Since the diffusion rate of hydrogen is relatively high at room temperature, the amount of diffusible hydrogen in the weld metal must be measured immediately after welding. For this reason, unless it measures immediately after welding, the amount of diffusible hydrogen cannot be measured correctly.
 以上のような溶接金属を有する溶接継手を製造するには、溶接しようとする高硬度厚鋼板を母材とし、例えば、上記母材2枚を間に開先を形成するように溶接位置にセットし、フラックス入り溶接ワイヤを用いてガスシールドアーク溶接を行い、母材間に溶接金属を生成させることによって、溶接金属とその両側の母材鋼板とから成る溶接継手が形成される。
 以下、上記溶接金属を形成するために用いられる、鋼板、フラックス入り溶接ワイヤ及び溶接条件などについて説明する。
In order to manufacture a welded joint having a weld metal as described above, a high-hardness thick steel plate to be welded is used as a base material, and, for example, the two base materials are set at a welding position so as to form a groove therebetween. Then, by performing gas shielded arc welding using a flux-cored welding wire and generating a weld metal between the base materials, a weld joint composed of the weld metal and base metal plates on both sides thereof is formed.
Hereinafter, steel plates, flux-cored welding wires, welding conditions and the like used for forming the weld metal will be described.
 母材とする鋼板としては、C含有量が、質量%で、0.120%以上、0.450%以下であり、HV380以上、HV693以下である高硬度厚鋼板を対象とする。
 用いる鋼板の板厚としては、一般的に厚板といわれる6mm以上100mm以下のものを対象としている。
 このような条件を満たす鋼板は、土木・建築作業用の機械など、耐摩耗性が必要な個所に広く用いられているもので、C含有量以外の化学組成について特に限定されるものではないが、一例をあげれば、
 C:0.120~3.000%、Si:0.10~0.55%、Mn:0.20~2.00%、Al:0.01~0.10%、P:0.020%以下、S:0.015%以下、Cu:0.50%以下、Ni:1.00%以下、Cr:1.20%以下、Mo:0.60%以下、Nb:0.05%以下、V:0.10%以下、B:0.0050%以下を含有する鋼がある。また、式1で計算されるCENが0.20~0.85質量%であるものを対象としている。
 母材の溶接熱影響部(HAZ)で溶接割れを生じないようにするために、CENの上限を0.85質量%とする。より確実にHAZ部での溶接割れを防止するために、CENの上限を0.80質量%、0.75質量%、0.73質量%、0.70質量%、0.68質量%、0.65質量%、0.63質量%又は0.60質量%としてもよい。母材の硬さをHV380以上とするために、CENの下限を0.20質量%とする。母材の硬さを高めるため、CENの下限を0.24質量%、0.28質量%、0.30質量%、0.32質量%、0.35質量%又は0.38質量%としてもよい。母材の硬さがHV565以下の鋼板は一般的にCENが0.75質量%を超えることは少ないため、母材の硬さがHV565以下の鋼板のCENの上限を0.75質量%とする。
 母材の硬さの測定方法は、母材の板厚方向断面の表面下1mmの位置のビッカース硬さを5点以上測定し、平均値を求める方法とする。
As a steel plate used as a base material, a high-hardness thick steel plate having a C content of 0.120% or more and 0.450% or less and HV380 or more and HV693 or less in mass% is an object.
As the plate thickness of the steel plate to be used, the thickness of 6 mm or more and 100 mm or less, which is generally referred to as a thick plate, is targeted.
Steel sheets satisfying such conditions are widely used in places where wear resistance is required, such as machinery for civil engineering and construction work, and there is no particular limitation on the chemical composition other than the C content. For example,
C: 0.120 to 3.000%, Si: 0.10 to 0.55%, Mn: 0.20 to 2.00%, Al: 0.01 to 0.10%, P: 0.020% Hereinafter, S: 0.015% or less, Cu: 0.50% or less, Ni: 1.00% or less, Cr: 1.20% or less, Mo: 0.60% or less, Nb: 0.05% or less, There is steel containing V: 0.10% or less and B: 0.0050% or less. Further, the CEN calculated by the equation 1 is 0.20 to 0.85% by mass.
In order to prevent weld cracks from occurring in the weld heat affected zone (HAZ) of the base metal, the upper limit of CEN is set to 0.85% by mass. In order to prevent weld cracking in the HAZ part more reliably, the upper limit of CEN is 0.80 mass%, 0.75 mass%, 0.73 mass%, 0.70 mass%, 0.68 mass%, 0 It is good also as .65 mass%, 0.63 mass%, or 0.60 mass%. In order to make the hardness of the base material HV380 or more, the lower limit of CEN is 0.20% by mass. In order to increase the hardness of the base material, the lower limit of CEN may be 0.24 mass%, 0.28 mass%, 0.30 mass%, 0.32 mass%, 0.35 mass% or 0.38 mass%. Good. A steel sheet having a base metal hardness of HV565 or less generally has a CEN of less than 0.75% by mass. Therefore, the upper limit of the CEN of a steel sheet having a base metal hardness of HV565 or less is set to 0.75% by mass. .
The method for measuring the hardness of the base material is a method in which five or more Vickers hardnesses at a position 1 mm below the surface of the cross section in the thickness direction of the base material are measured to obtain an average value.
 続いて、用いるフラックス入り溶接ワイヤについて、フラックス成分と合金成分とに分けて説明する。なお、フラックス入り溶接ワイヤについての説明中の成分の含有量は、フラックス入り溶接ワイヤ全質量に対する質量%を表す。
 最初に、ワイヤの鋼製外皮の内部に挿入されるフラックス成分について説明する。
Subsequently, the flux-cored welding wire to be used will be described separately for the flux component and the alloy component. In addition, content of the component in description about a flux cored welding wire represents the mass% with respect to the total mass of a flux cored welding wire.
First, the flux component inserted into the inside of the steel outer sheath of the wire will be described.
 CaF、BaF、SrF、MgFの金属弗化物の1種または2種以上と、Ti酸化物(例えばTiO)、Si酸化物(例えばSiO)、Mg酸化物(例えばMgO)、Al酸化物(例えばAl)の金属酸化物の1種または2種以上を、溶接ワイヤ中に一定量含有させ、かつそれらの弗化物と酸化物との比を一定範囲とすることで、溶接金属中の拡散性水素量を安定して1.0ml/100g未満とすることができる。
 この効果を得るには、含有するCaF、BaF、SrF、MgFの合計量をαとしたとき、合計量αがフラックス入りワイヤの全質量に対する質量%で3.3%以上、8.0%以下であること、また含有するTi酸化物、Si酸化物、Mg酸化物、Al酸化物の合計量をβとしたとき、合計量βがフラックス入りワイヤの全質量に対する質量%で0.10%以上、1.50%以下であること、さらに上記αに対する上記CaFの含有量の比が0.90以上であり、上記合計量βに対する上記合計量αの比([合計量α]/[合計量β])が3.0以上、80.0以下であることが要件となる。
One or more metal fluorides of CaF 2 , BaF 2 , SrF 2 , MgF 2 , Ti oxide (eg TiO 2 ), Si oxide (eg SiO 2 ), Mg oxide (eg MgO), By containing a certain amount of one or more metal oxides of Al oxide (for example, Al 2 O 3 ) in the welding wire and keeping the ratio of the fluoride and oxide within a certain range. The amount of diffusible hydrogen in the weld metal can be stably reduced to less than 1.0 ml / 100 g.
In order to obtain this effect, when the total amount of CaF 2 , BaF 2 , SrF 2 and MgF 2 to be contained is α, the total amount α is 3.3% or more by mass% with respect to the total mass of the flux-cored wire, 8 0.0% or less, and when the total amount of Ti oxide, Si oxide, Mg oxide and Al oxide contained is β, the total amount β is 0% by mass with respect to the total mass of the flux-cored wire. The ratio of the CaF 2 content to the α is 0.90 or more, and the ratio of the total amount α to the total amount β ([total amount α ] / [Total amount β]) is 3.0 or more and 80.0 or less.
 含有する金属弗化物の合計量αが3.3%未満では、溶接金属中の拡散性水素量を安定して1.0ml/100g未満とすることができない。溶接金属中の拡散性水素量をより低減するために、合計量αの下限を3.5%、3.7%又は3.9%としてもよい。また、8.0%を超えると、溶接ヒューム、スラグが過剰に生成するため、溶接作業性が著しく低下し、好ましくない。溶接ヒュームやスラグの過剰生成などを回避するために、合計量αの上限を7.5%、7.0%、6.5%、6.0%又は5.7%としてもよい。含有する金属酸化物の合計量βが0.10%未満では、溶接ビードの形状が悪くなることがあり、1.50%超では、靭性を低下させることがある。溶接ビードの形状をよくするため、合計量βの下限を0.20%、0.30%、0.40%又は0.50%としてもよい。靭性の改善のため、合計量βの上限を1.30%、1.20%、1.10%、1.00%、0.90%又は0.80%としてもよい。
 さらに、上記合計量βに対する上記合計量αの比が3.0未満では、溶接金属中の拡散性水素量を安定して1.0ml/100g未満とすることができず、80.0超では、溶接ヒューム、スラグが過剰に生成するため、溶接作業性が著しく低下し、好ましくない。溶接金属中の拡散性水素量をより低減するために、上記比([合計量α]/[合計量β])の下限を3.2、3.5、3.7又は4.0にしてもよい。溶接ヒュームやスラグの過剰生成などを回避するために、上記比([合計量α]/[合計量β])の上限を40.0、30.0、20.0、15.0又は13.0としてもよい。αに対するCaFの含有量の比が0.90未満である場合、溶接金属中の拡散性水素量を1.0ml/100g未満とすることができなくなる。何故なら、CaFは、金属弗化物の中で最も拡散性水素量を低減させる効果が大きいからである。αに対するCaFの含有量の比が最大となるのは、フラックス中にCaF以外の金属弗化物が含まれない場合である。従って、αに対するCaFの含有量の比の上限値は1.0である。
If the total amount α of the metal fluoride contained is less than 3.3%, the amount of diffusible hydrogen in the weld metal cannot be stably reduced to less than 1.0 ml / 100 g. In order to further reduce the amount of diffusible hydrogen in the weld metal, the lower limit of the total amount α may be 3.5%, 3.7%, or 3.9%. On the other hand, if it exceeds 8.0%, welding fume and slag are excessively generated, so that welding workability is remarkably lowered, which is not preferable. In order to avoid excessive formation of welding fume and slag, the upper limit of the total amount α may be 7.5%, 7.0%, 6.5%, 6.0%, or 5.7%. If the total amount β of the metal oxides contained is less than 0.10%, the shape of the weld bead may be deteriorated, and if it exceeds 1.50%, the toughness may be lowered. In order to improve the shape of the weld bead, the lower limit of the total amount β may be 0.20%, 0.30%, 0.40%, or 0.50%. In order to improve toughness, the upper limit of the total amount β may be 1.30%, 1.20%, 1.10%, 1.00%, 0.90%, or 0.80%.
Further, if the ratio of the total amount α to the total amount β is less than 3.0, the amount of diffusible hydrogen in the weld metal cannot be stably reduced to less than 1.0 ml / 100 g, and if it exceeds 80.0 Since welding fume and slag are excessively generated, welding workability is remarkably lowered, which is not preferable. In order to further reduce the amount of diffusible hydrogen in the weld metal, the lower limit of the ratio ([total amount α] / [total amount β]) is set to 3.2, 3.5, 3.7, or 4.0. Also good. In order to avoid excessive generation of welding fume and slag, the upper limit of the ratio ([total amount α] / [total amount β]) is set to 40.0, 30.0, 20.0, 15.0 or 13. It may be 0. When the ratio of the content of CaF 2 to α is less than 0.90, the amount of diffusible hydrogen in the weld metal cannot be made less than 1.0 ml / 100 g. This is because CaF 2 has the greatest effect of reducing the amount of diffusible hydrogen among metal fluorides. The ratio of the content of CaF 2 with respect to α is maximized when no metal fluoride other than CaF 2 is contained in the flux. Therefore, the upper limit of the ratio of the content of CaF 2 to α is 1.0.
 以上から、含有する金属弗化物の合計量α、金属酸化物の合計量β、および金属酸化物の合計量βに対する金属弗化物の合計量αの比を、それぞれ上記のように限定する。
 なお、上記合計量βは、フラックス入りワイヤ中の含有量であり、フラックスの造粒に使用されるバインダー(SiOを主成分とする水ガラス)などに含まれるものも合計した含有量とする。
From the above, the ratio of the total amount α of metal fluoride to the total amount α of metal fluoride, the total amount β of metal oxide, and the total amount β of metal oxide is limited as described above.
The total amount β is the content in the flux-cored wire, and the total content is also included in binders (water glass containing SiO 2 as a main component) used for flux granulation. .
 本実施形態に係るフラックス入り溶接ワイヤでは、CaCO、BaCO、SrCO、MgCOの金属炭酸塩の1種または2種以上を、アーク安定性作用とアーク集中性とを高める目的でさらに添加できる。しかし、これら金属炭酸塩の1種または2種以上を0.60%以上添加すると、アークの集中性が強すぎるので、スパッタ発生量が多くなり、さらに溶接金属の酸素量も多くなる。したがって、これらの金属炭酸塩を含有させる場合には、その含有量を合計で0.60%未満とする。これらの金属炭酸塩の含有量の合計の下限は0%である。スパッタ発生量の抑制のため、その上限を0.50%、0.40%、0.20%又は0.10%としてもよい。 In the flux-cored welding wire according to this embodiment, one or more metal carbonates of CaCO 3 , BaCO 3 , SrCO 3 , and MgCO 3 are further added for the purpose of improving the arc stability action and the arc concentration. it can. However, if one or more of these metal carbonates are added in an amount of 0.60% or more, the arc concentration is too strong, resulting in an increased amount of spatter and an increased amount of oxygen in the weld metal. Therefore, when these metal carbonates are contained, the total content is less than 0.60%. The lower limit of the total content of these metal carbonates is 0%. The upper limit may be set to 0.50%, 0.40%, 0.20%, or 0.10% in order to suppress the amount of spatter generated.
 金属弗化物が拡散性水素量を低減する理由については、必ずしも明らかではないが、金属弗化物が溶接アークにより分解し、生成されたフッ素が水素と結合してHFガスとして大気中に散逸したか、あるいは、そのまま溶接金属中に水素がHFとして固定されたためではないかと考えている。 The reason why metal fluoride reduces the amount of diffusible hydrogen is not necessarily clear, but was metal fluoride decomposed by a welding arc, and the generated fluorine combined with hydrogen and dissipated into the atmosphere as HF gas? Alternatively, it is considered that hydrogen is fixed as HF in the weld metal as it is.
 また、本発明においては、フラックスにCaOは添加しないことが好ましい。従って、CaO含有量の下限値は0%である。しかしながら、フラックスの原料にCaOが含有されている場合がある。その場合、CaOの含有量を0.20%未満に制限する。好ましくは0.15%以下又は0.10%以下とする。0.20%未満に制限すれば、本実施形態に係る溶接継手の製造方法による効果は得られる。CaOは、大気に触れることで、CaOHに変化するため、溶接金属中の拡散性水素を増加させる可能性がある。 In the present invention, it is preferable not to add CaO to the flux. Therefore, the lower limit value of the CaO content is 0%. However, CaO may be contained in the flux raw material. In that case, the CaO content is limited to less than 0.20%. Preferably it is 0.15% or less or 0.10% or less. If the content is limited to less than 0.20%, the effect of the welded joint manufacturing method according to the present embodiment can be obtained. Since CaO changes to CaOH when exposed to the atmosphere, it may increase diffusible hydrogen in the weld metal.
 金属弗化物、金属酸化物、および金属炭酸塩を除く、フラックス入りワイヤ中の合金元素量も以下のように限定される。 The amount of alloying elements in the flux-cored wire excluding metal fluorides, metal oxides, and metal carbonates is also limited as follows.
(C:溶接金属の表面下1mmの平均ビッカース硬さHVを337~440とする場合、0.010~0.350%であり、溶接金属の表面下1mmの平均ビッカース硬さHVを380~533とする場合、0.060~0.350%)
 フラックス入りワイヤ中のC含有量が0.010%未満であると、溶接金属のC含有量が0.100%未満になって溶接金属の硬さがHV337未満になるので、フラックス入りワイヤ中のC含有量は0.010%以上とする。さらにフラックス入りワイヤ中のC含有量が0.060%未満であると、溶接金属のC含有量が0.120%未満になって溶接金属の硬さがHV380未満になるので、溶接金属の硬さをHV380とするためには、フラックス入りワイヤ中のC含有量は0.060%以上とする。溶接金属の硬さの向上のために、C含有量の下限値を0.020%または0.030%としてもよい。溶接金属の硬さのさらなる向上のために、C含有量の下限を0.070%、0.080%、0.090%、0.100%又は0.110%としてもよい。フラックス入りワイヤ中のC含有量が0.350%を超えると、溶接金属のC含有量が0.250%を超えてしまうので、フラックス入りワイヤ中のC含有量は0.350%以下とする。溶接金属の耐低温割れ性の改善のため、C含有量の上限を0.300%、0.250%、0.180%、0.170%又は0.160%としてもよい。
(C: When the average Vickers hardness HV 1 mm below the surface of the weld metal is 337 to 440, it is 0.010 to 0.350%, and the average Vickers hardness HV 1 mm below the surface of the weld metal is 380 to 533. In the case of 0.060 to 0.350%)
If the C content in the flux-cored wire is less than 0.010%, the C content in the weld metal is less than 0.100% and the hardness of the weld metal is less than HV337. The C content is 0.010% or more. Furthermore, if the C content in the flux-cored wire is less than 0.060%, the C content of the weld metal is less than 0.120% and the hardness of the weld metal is less than HV380. In order to set the thickness to HV380, the C content in the flux-cored wire is set to 0.060% or more. In order to improve the hardness of the weld metal, the lower limit value of the C content may be 0.020% or 0.030%. In order to further improve the hardness of the weld metal, the lower limit of the C content may be 0.070%, 0.080%, 0.090%, 0.100%, or 0.110%. If the C content in the flux-cored wire exceeds 0.350%, the C content in the weld metal exceeds 0.250%, so the C content in the flux-cored wire is 0.350% or less. . In order to improve the cold cracking resistance of the weld metal, the upper limit of the C content may be 0.300%, 0.250%, 0.180%, 0.170%, or 0.160%.
(Si:0.05~1.80%)
 フラックス入りワイヤ中のSi含有量が0.05%未満であると、溶接金属のSi含有量が0.05%未満になるので、フラックス入りワイヤ中のSi含有量は0.05%以上とする。溶接金属中のO含有量の低減のため、Si含有量の下限を0.10%、0.20%、0.30%又は0.40%としてもよい。フラックス入りワイヤ中のSi含有量が1.80%を超えると、酸化消耗を考慮しても溶接金属のSi量が0.80%を超えてしまうので、フラックス入りワイヤ中のSi含有量は1.80%以下とする。溶接金属の靭性改善のため、Si含有量の上限を1.50%、1.20%、1.00%、0.80%又は0.60%としてもよい。
(Si: 0.05-1.80%)
If the Si content in the flux-cored wire is less than 0.05%, the Si content in the weld metal is less than 0.05%, so the Si content in the flux-cored wire is 0.05% or more. . In order to reduce the O content in the weld metal, the lower limit of the Si content may be 0.10%, 0.20%, 0.30%, or 0.40%. If the Si content in the flux-cored wire exceeds 1.80%, the Si content in the weld metal exceeds 0.80% even if oxidation consumption is taken into consideration, so the Si content in the flux-cored wire is 1 80% or less. In order to improve the toughness of the weld metal, the upper limit of the Si content may be 1.50%, 1.20%, 1.00%, 0.80%, or 0.60%.
(Mn:0.50~4.00%)
 フラックス入りワイヤ中のMn含有量が0.50%未満であると、溶接金属のMn含有量が0.20%未満になるので、フラックス入りワイヤ中のMn含有量は0.50%以上とする。溶接金属の硬さの向上のため、Mn含有量の下限を0.70%、0.80%、0.90%、1.00%又は1.10%としてもよい。フラックス入りワイヤ中のMn含有量が4.00%を超えると、酸化消耗を考慮しても溶接金属のMn量が2.50%を超えてしまうので、フラックス入りワイヤ中のMn量は4.00%以下とする。溶接金属の靭性改善のため、Mn含有量の上限を3.00%、2.50%、2.20%、2.00%又は1.80%としてもよい。
(Mn: 0.50 to 4.00%)
If the Mn content in the flux-cored wire is less than 0.50%, the Mn content in the weld metal is less than 0.20%, so the Mn content in the flux-cored wire is 0.50% or more. . In order to improve the hardness of the weld metal, the lower limit of the Mn content may be 0.70%, 0.80%, 0.90%, 1.00%, or 1.10%. If the Mn content in the flux-cored wire exceeds 4.00%, the Mn content of the weld metal exceeds 2.50% even if oxidation consumption is taken into consideration, so the Mn content in the flux-cored wire is 4. 00% or less. In order to improve the toughness of the weld metal, the upper limit of the Mn content may be 3.00%, 2.50%, 2.20%, 2.00%, or 1.80%.
(P:0.050%以下)
 フラックス入りワイヤ中のP含有量が0.050%を超えると、溶接金属のP含有量が0.050%を超えてしまうことがあるので、フラックス入りワイヤ中のP含有量は0.050%以下とする。必要に応じて、P含有量の上限を0.030%、0.025%、0.020%又は0.015%に制限してもよい。P含有量の下限を制限する必要はない。P含有量の下限は0%である。
(P: 0.050% or less)
If the P content in the flux-cored wire exceeds 0.050%, the P content in the weld metal may exceed 0.050%, so the P content in the flux-cored wire is 0.050%. The following. If necessary, the upper limit of the P content may be limited to 0.030%, 0.025%, 0.020%, or 0.015%. There is no need to limit the lower limit of the P content. The lower limit of the P content is 0%.
(S:0.020%以下)
 フラックス入りワイヤ中のS含有量が0.020%を超えると、溶接金属のS含有量が0.020%を超えてしまうことがあるので、フラックス入りワイヤ中のS含有量は0.020%以下とする。必要に応じて、S含有量の上限を0.015%、0.010%、0.008%又は0.006%に制限してもよい。S含有量の下限を制限する必要はない。S含有量の下限は0%である。
(S: 0.020% or less)
If the S content in the flux-cored wire exceeds 0.020%, the S content in the weld metal may exceed 0.020%, so the S content in the flux-cored wire is 0.020%. The following. If necessary, the upper limit of the S content may be limited to 0.015%, 0.010%, 0.008%, or 0.006%. There is no need to limit the lower limit of the S content. The lower limit of the S content is 0%.
(Al:0.005~0.150%)
 フラックス入りワイヤ中のAl含有量が0.005%未満であると、溶接金属のAl含有量が0.005%未満になるので、フラックス入りワイヤ中のAl含有量は0.005%以上とする。溶接金属中のO含有量の一層の低減のため、Al含有量の下限を0.007%、0.010%又は0.012%としてもよい。フラックス入りワイヤ中のAl含有量が0.150%を超えると、溶接金属のAl含有量が0.100%を超えてしまうことがあるので、フラックス入りワイヤ中のAl含有量は0.150%以下とする。溶接金属の靭性改善のため、Al含有量の上限を0.090%、0.070%、0.050%又は0.040%に制限してもよい。
(Al: 0.005 to 0.150%)
If the Al content in the flux-cored wire is less than 0.005%, the Al content in the weld metal is less than 0.005%, so the Al content in the flux-cored wire is 0.005% or more. . In order to further reduce the O content in the weld metal, the lower limit of the Al content may be 0.007%, 0.010%, or 0.012%. If the Al content in the flux cored wire exceeds 0.150%, the Al content in the weld metal may exceed 0.100%, so the Al content in the flux cored wire is 0.150%. The following. In order to improve the toughness of the weld metal, the upper limit of the Al content may be limited to 0.090%, 0.070%, 0.050%, or 0.040%.
(Cu:0~0.75%以下)
 フラックス入りワイヤ中のCu含有量が0.75%を超えると、溶接金属のCu含有量が0.50%を超えてしまうので、フラックス入りワイヤ中のCu含有量は0.75%以下とする。溶接金属のCu含有量を低減するために、Cu含有量を0.50%以下としてもよい。必要に応じて、Cu含有量の上限を0.40%又は0.30%としてもよい。Cu含有量の下限を制限しなくてもよい。このため、Cu含有量の下限は0%である。一方、溶接金属の硬さを向上させるために、溶接金属にCuを0.10%以上含有させてもよい。
(Cu: 0 to 0.75% or less)
If the Cu content in the flux-cored wire exceeds 0.75%, the Cu content in the weld metal exceeds 0.50%, so the Cu content in the flux-cored wire is 0.75% or less. . In order to reduce the Cu content of the weld metal, the Cu content may be 0.50% or less. If necessary, the upper limit of Cu content may be 0.40% or 0.30%. There is no need to limit the lower limit of the Cu content. For this reason, the minimum of Cu content is 0%. On the other hand, in order to improve the hardness of the weld metal, the weld metal may contain 0.10% or more of Cu.
(Ni:0~1.00%未満)
 フラックス入りワイヤ中のNi含有量が1.00%以上であると、溶接金属のNi含有量が0.70%以上となり、ワイヤの合金コストが高くなるので、フラックス入りワイヤ中のNi含有量は1.00%未満とする。溶接金属の凝固割れの防止のため、Ni含有量の上限を、0.50%、0.40%、0.30%、0.20%又は0.10%としてもよい。Ni含有量の下限を制限しなくてもよい。このため、Ni含有量の下限は0%である。
(Ni: 0 to less than 1.00%)
When the Ni content in the flux-cored wire is 1.00% or more, the Ni content of the weld metal is 0.70% or more, and the alloy cost of the wire becomes high. Therefore, the Ni content in the flux-cored wire is Less than 1.00%. In order to prevent solidification cracking of the weld metal, the upper limit of the Ni content may be 0.50%, 0.40%, 0.30%, 0.20%, or 0.10%. There is no need to limit the lower limit of the Ni content. For this reason, the lower limit of the Ni content is 0%.
(Cr:0~3.50%)
 フラックス入りワイヤ中のCr含有量が3.50%を超えると、溶接金属のCr含有量が2.50%を超えてしまうので、フラックス入りワイヤ中のCr含有量は3.50%以下とする。必要に応じて、Cr含有量の上限を1.50%、1.00%、0.50%又は0.10%としてもよい。Cr含有量の下限を制限しなくてもよい。このため、Cr含有量の下限は0%である。一方、溶接金属の硬さ向上の目的で添加する場合には、その効果を得るために0.05%以上含有させてもよい。
(Cr: 0 to 3.50%)
If the Cr content in the flux-cored wire exceeds 3.50%, the Cr content in the weld metal exceeds 2.50%, so the Cr content in the flux-cored wire is 3.50% or less. . If necessary, the upper limit of the Cr content may be 1.50%, 1.00%, 0.50%, or 0.10%. There is no need to limit the lower limit of the Cr content. For this reason, the lower limit of the Cr content is 0%. On the other hand, when added for the purpose of improving the hardness of the weld metal, 0.05% or more may be contained in order to obtain the effect.
(Mo:0~1.50%)
 フラックス入りワイヤ中のMo含有量が1.50%を超えると、溶接金属のMo含有量が1.00%を超えてしまうので、フラックス入りワイヤ中のMo含有量は1.50%以下とする。靱性向上のため、Mo含有量の上限を0.70%、0.50%、0.30%又は0.20%としてもよい。Mo含有量の下限を制限しなくてもよい。このため、Mo含有量の下限は0%である。一方、溶接金属の硬さ向上の目的で添加する場合には、その効果を得るために0.05%以上含有させてもよい。
(Mo: 0 to 1.50%)
If the Mo content in the flux-cored wire exceeds 1.50%, the Mo content in the weld metal exceeds 1.00%, so the Mo content in the flux-cored wire is 1.50% or less. . In order to improve toughness, the upper limit of the Mo content may be 0.70%, 0.50%, 0.30%, or 0.20%. There is no need to limit the lower limit of the Mo content. For this reason, the lower limit of the Mo content is 0%. On the other hand, when added for the purpose of improving the hardness of the weld metal, 0.05% or more may be contained in order to obtain the effect.
(Ti:0~0.150%)
 フラックス入りワイヤ中のTi含有量が0.150%を超えると、溶接金属のTi含有量が0.100%を超えてしまうので、フラックス入りワイヤ中のTi含有量は0.150%以下とする。靱性向上のため、Ti含有量の上限を0.100%、0.080%又は0.050%としてもよい。Ti含有量の下限を制限しなくてもよい。このため、Ti含有量の下限は0%である。靱性改善の目的に、0.010%以上含有させてもよい。
(Ti: 0 to 0.150%)
If the Ti content in the flux-cored wire exceeds 0.150%, the Ti content of the weld metal exceeds 0.100%, so the Ti content in the flux-cored wire is 0.150% or less. . In order to improve toughness, the upper limit of the Ti content may be 0.100%, 0.080%, or 0.050%. There is no need to limit the lower limit of the Ti content. For this reason, the lower limit of the Ti content is 0%. You may make it contain 0.010% or more for the purpose of toughness improvement.
(Nb:0~0.15%)
 フラックス入りワイヤ中のNb含有量が0.15%を超えると、溶接金属のNb含有量が0.10%を超えてしまうので、フラックス入りワイヤ中のNb含有量は0.15%以下とする。靱性向上のため、Nb含有量の上限を0.10%、0.08%又は0.05%としてもよい。Nb含有量の下限を制限しなくてもよい。このため、Nb含有量の下限は0%である。溶接金属の硬さ向上の目的で0.01%以上含有させてもよい。
(Nb: 0 to 0.15%)
If the Nb content in the flux-cored wire exceeds 0.15%, the Nb content in the weld metal exceeds 0.10%, so the Nb content in the flux-cored wire is 0.15% or less. . In order to improve toughness, the upper limit of the Nb content may be 0.10%, 0.08%, or 0.05%. There is no need to limit the lower limit of the Nb content. For this reason, the lower limit of the Nb content is 0%. You may make it contain 0.01% or more for the purpose of the hardness improvement of a weld metal.
(V:0~0.45%)
 フラックス入りワイヤ中のV含有量が0.45%を超えると、溶接金属のV含有量が0.30%を超えてしまうので、フラックス入りワイヤ中のV含有量は0.45%以下とする。靭性向上のため、V含有量の上限を0.25%、0.20%又は0.15%としてもよい。V含有量の下限を制限しなくてもよい。このため、V含有量の下限は0%である。溶接金属の硬さ向上のために0.01%以上含有させてもよい。
(V: 0 to 0.45%)
If the V content in the flux-cored wire exceeds 0.45%, the V content in the weld metal exceeds 0.30%, so the V content in the flux-cored wire is 0.45% or less. . In order to improve toughness, the upper limit of the V content may be 0.25%, 0.20%, or 0.15%. There is no need to limit the lower limit of the V content. For this reason, the lower limit of the V content is 0%. You may make it contain 0.01% or more for the hardness improvement of a weld metal.
(B:0~0.0500%)
 フラックス入りワイヤ中のB含有量が0.0500%を超えると、溶接金属のB含有量が0.0100%を超えてしまうので、フラックス入りワイヤ中のB含有量は0.0500%以下とする。靭性の向上のため、B含有量の上限を0.0400%、0.0200%、0.0100%又は0.0050%としてもよい。B含有量の下限を制限する必要はなく、B含有量の下限は0%である。
(B: 0-0.0500%)
If the B content in the flux-cored wire exceeds 0.0500%, the B content in the weld metal exceeds 0.0100%, so the B content in the flux-cored wire is 0.0500% or less. . In order to improve toughness, the upper limit of the B content may be 0.0400%, 0.0200%, 0.0100%, or 0.0050%. There is no need to limit the lower limit of the B content, and the lower limit of the B content is 0%.
(Mg:0~2.0%)
 フラックス入りワイヤ中のMg含有量が2.0%を超えると、溶接金属のMg含有量が0.10%を超えてしまうので、フラックス入りワイヤ中のMg含有量は2.0%以下とする。溶接金属の靭性と延性の改善のため、Mg含有量の上限を1.5%、1.0%、0.4%又は0.2%としてもよい。Mg含有量の下限を制限する必要はなく、Mg含有量の下限は0%である。
(Mg: 0-2.0%)
If the Mg content in the flux-cored wire exceeds 2.0%, the Mg content in the weld metal exceeds 0.10%, so the Mg content in the flux-cored wire is 2.0% or less. . In order to improve the toughness and ductility of the weld metal, the upper limit of the Mg content may be 1.5%, 1.0%, 0.4%, or 0.2%. There is no need to limit the lower limit of the Mg content, and the lower limit of the Mg content is 0%.
(Ca:0~2.0%)
 フラックス入りワイヤ中のCa含有量が2.0%を超えると、溶接金属のCa含有量が0.10%を超えてしまうので、フラックス入りワイヤ中のCa含有量は2.0%以下とする。溶接金属の靭性と延性の改善のため、Ca含有量の上限を1.5%、1.0%、0.5%又は0.3%としてもよい。Ca含有量の下限を制限する必要はなく、Ca含有量の下限は0%である。
(Ca: 0 to 2.0%)
If the Ca content in the flux-cored wire exceeds 2.0%, the Ca content in the weld metal exceeds 0.10%, so the Ca content in the flux-cored wire is 2.0% or less. . In order to improve the toughness and ductility of the weld metal, the upper limit of the Ca content may be 1.5%, 1.0%, 0.5%, or 0.3%. There is no need to limit the lower limit of the Ca content, and the lower limit of the Ca content is 0%.
(REM:0~0.0150%)
 フラックス入りワイヤ中のREM含有量が0.0150%を超えると、溶接金属のREM含有量が0.0100%を超えてしまうので、フラックス入りワイヤ中のREM含有量は0.0150%以下とする。溶接金属の靭性と延性の改善のため、REM含有量の上限を0.0100%、0.0050%又は0.0030%としてもよい。REM含有量の下限を制限する必要はなく、REM含有量の下限は0%である。
(REM: 0-0.0150%)
If the REM content in the flux-cored wire exceeds 0.0150%, the REM content in the weld metal exceeds 0.0100%, so the REM content in the flux-cored wire is 0.0150% or less. . In order to improve the toughness and ductility of the weld metal, the upper limit of the REM content may be 0.0100%, 0.0050%, or 0.0030%. There is no need to limit the lower limit of the REM content, and the lower limit of the REM content is 0%.
 以上が本実施形態に係るフラックス入りワイヤの化学組成に関する限定理由である。その他の残部の合金の化学成分は、Feを主成分とする残部が本実施形態に係る溶接継手の特性を阻害しない範囲で、製造過程等で混入する不純物を含有してもよい。Fe成分としては、鋼製外皮のFe、フラックス中に添加された鉄粉及び合金成分中のFeが含まれる。フラックス中の鉄粉の含有量は、フラックス入りワイヤの全質量に対する質量%で10.0%未満とする。鉄粉含有量が多いと、酸素量が多くなる場合がある。必要に応じて、鉄粉の含有量を5.0%未満又は1.0%未満としてもよい。鉄粉を含有する必要はないので、鉄粉の含有量の下限値は0%である。 The above is the reason for limitation regarding the chemical composition of the flux-cored wire according to the present embodiment. Other chemical components of the remaining alloy may contain impurities mixed in the manufacturing process or the like as long as the balance containing Fe as a main component does not hinder the characteristics of the welded joint according to the present embodiment. The Fe component includes Fe in the steel outer shell, iron powder added in the flux, and Fe in the alloy component. The content of iron powder in the flux is less than 10.0% in mass% with respect to the total mass of the flux-cored wire. When there is much iron powder content, the amount of oxygen may increase. If necessary, the iron powder content may be less than 5.0% or less than 1.0%. Since it is not necessary to contain iron powder, the lower limit of the iron powder content is 0%.
 続いて、フラックス入りワイヤの形態について説明する。
 フラックス入りワイヤには、鋼製外皮にスリット状の継目がないシームレスワイヤ(すなわち鋼製外皮の継目が溶接されているワイヤ)と、鋼製外皮の継目にスリット状の隙間を有するシームを有するワイヤとに大別できる。本発明ではいずれの断面構造も採用することができるが、溶接金属の低温割れを抑制するためには、スリット状の継ぎ目がない(シームレスワイヤ)とすることが好ましい。
Subsequently, the form of the flux-cored wire will be described.
A flux-cored wire includes a seamless wire without a slit-like seam in the steel outer shell (that is, a wire in which the steel outer seam is welded), and a wire having a seam with a slit-like gap at the steel outer seam. And can be broadly divided. In the present invention, any cross-sectional structure can be adopted, but it is preferable that there is no slit-like seam (seamless wire) in order to suppress cold cracking of the weld metal.
 溶接時に溶接部に侵入する水素は、溶接金属内及び鋼材側に拡散し、応力集中部に集積して低温割れの発生原因となる。この水素源は溶接材料が保有する水分、大気から混入する水分、鋼表面に付着した錆びやスケール等が上げられるが、十分に溶接部の清浄性、ガスシールドの条件が管理された溶接の下では、ワイヤ中に主として水分で含有される水素が、溶接継ぎ手中に存在する拡散性水素の主要因となる。 水 素 Hydrogen that penetrates into the weld during welding diffuses into the weld metal and on the steel side, accumulates in the stress concentration part, and causes cold cracking. This hydrogen source can increase moisture contained in the welding material, moisture mixed in from the atmosphere, rust and scale attached to the steel surface, etc., but under the welding where the cleanliness of the weld and the gas shield conditions are sufficiently controlled. Then, hydrogen mainly contained in water in the wire is a main factor of diffusible hydrogen existing in the weld joint.
 このため、鋼製外皮をスリット状の継ぎ目がない(シームレスの)管とし、ワイヤ製造後から使用するまでの間に、鋼製外皮からフラックスへの大気中の水素の侵入を抑制することが望ましい。鋼製外皮にスリット状の継ぎ目がある(シームを有する)管とした場合、大気中の水分は外皮のスリット状の継ぎ目(シーム部)からフラックス中に侵入しやすく、そのままでは、水分等の水素源の侵入を防止することはできない。従って、製造後使用するまでの期間が長い場合、ワイヤ全体を真空包装するか、乾燥した状態に保持できる容器内で保存することが望ましい。
 また、ワイヤの送給性をよくするため、ワイヤ表面に潤滑油が塗布される場合がある。拡散性水素を低減する観点から、ワイヤ表面に塗布される潤滑油は、パーフルオロポリエーテル(PFPE)油のように水素分を含まない油が好ましい。
For this reason, it is desirable to make the steel outer shell into a slit-like seamless (seamless) pipe, and to suppress the invasion of hydrogen in the atmosphere from the steel outer shell to the flux after the wire is manufactured and used. . In the case of a pipe with a slit-like seam (having a seam) in the steel outer skin, moisture in the atmosphere easily enters the flux from the slit-like seam (seam part) of the outer skin, and as it is, hydrogen such as moisture Source intrusion cannot be prevented. Therefore, when the period until use after production is long, the entire wire is preferably vacuum-packed or stored in a container that can be kept dry.
Further, in order to improve the wire feedability, lubricating oil may be applied to the wire surface. From the viewpoint of reducing diffusible hydrogen, the lubricating oil applied to the wire surface is preferably an oil that does not contain hydrogen, such as perfluoropolyether (PFPE) oil.
 本発明で用いるフラックス入りワイヤは、通常のフラックス入りワイヤの製造方法と同様の製造工程によって製造することができる。
 すなわち、まず、外皮となる鋼帯、及び、金属弗化物、合金成分、金属酸化物、金属炭酸塩及びアーク安定剤が所定の含有量になるように配合したフラックスを準備する。鋼帯を長手方向に送りながら成形ロールによりオープン管(U字型)に成形して鋼製外皮とし、この成形途中でオープン管の開口部からフラックスを供給し、開口部の相対するエッジ面を突合せシーム溶接する。溶接により得られた継目無し管を伸線し、伸線途中あるいは伸線工程完了後に焼鈍処理して、所望の線径を有するスリット状の継ぎ目がない(シームレス)ワイヤを得る。また、スリット状の継目がある(シームを有する)ワイヤは、オープン管の開口部からフラックスを供給した後、シーム溶接をしない継目有りの管とし、それを伸線することで得られる。突合せシーム溶接されて作ったスリット状の隙間が無いワイヤを切断した断面は、図3Aのように見える。この断面は、研磨して、エッチングすれば、溶接跡が観察されるが、エッチングしないと溶接跡は観察されない。そのため、シームレスと呼ぶことがある。溶接学会編「新版 溶接・接合技術入門」(2008年)産報出版、p.111には、シームレスタイプと記載されている。図3Bのように、突合せてから、ろう付けしたり、図3Cのように、かしめてから、ろう付けしても、スリット状の隙間が無いワイヤが得られる。図3B、図3Cにおいて、ろう付けせず、そのままのワイヤは、スリット状の隙間があるワイヤとなる。
The flux cored wire used in the present invention can be manufactured by the same manufacturing process as that of a normal flux cored wire manufacturing method.
That is, first, a steel strip to be an outer skin and a flux containing metal fluoride, an alloy component, a metal oxide, a metal carbonate, and an arc stabilizer are prepared so as to have predetermined contents. While feeding the steel strip in the longitudinal direction, it is formed into an open tube (U-shaped) with a forming roll to form a steel outer shell. During this forming, flux is supplied from the opening of the open tube, and the opposing edge surface of the opening is Butt seam welding. A seamless pipe obtained by welding is drawn and annealed during or after the drawing process to obtain a slit-like seamless (seamless) wire having a desired wire diameter. Further, a wire having a slit-like seam (having a seam) is obtained by supplying a flux from an opening of an open pipe, then forming a pipe with a seam without seam welding, and drawing the wire. A cross section of a wire without slit-like gaps made by butt seam welding looks like FIG. 3A. If this cross section is polished and etched, welding marks are observed, but if not etched, no welding marks are observed. Therefore, it may be called seamless. It is described as “seamless type” in the “New Edition Introduction to Welding and Joining Technology” (2008) Sangyo Shuppan, p.111, edited by the Japan Welding Society. As shown in FIG. 3B, a wire without slit-like gaps can be obtained even after brazing and brazing or brazing as shown in FIG. 3C. In FIG. 3B and FIG. 3C, the wire as it is without brazing becomes a wire having a slit-like gap.
 本発明では、上記鋼板に対して、上述した条件に適合するフラックス入りワイヤを使用して、ガスシールドアーク溶接による多層盛溶接を行って、上述した条件に適合する溶接金属を形成することによって、目的を達成することができるものであり、ガスシールドアーク溶接の方法は、特に限定されず、通常用いられる方法を採用することができる。例えば、シールドガスとしては、100%COガスの他、Arガスと3~20vol%のCOガスとの混合ガスなどを用いることができる。シールドガスの流量は、通常の条件、すなわち約15~30L/minとすることができる。
 また、電流、電圧などの溶接条件については、例えば電流200~350A、電圧25~35Vなどである。溶接入熱が10~50kJ/cmとなるように、溶接速度を制御してもよい。
In the present invention, for the steel sheet, using a flux-cored wire that meets the above-mentioned conditions, by performing multi-layer welding by gas shield arc welding, and forming a weld metal that meets the above-described conditions, The object can be achieved, and the method of gas shield arc welding is not particularly limited, and a commonly used method can be adopted. For example, as the shielding gas, in addition to 100% CO 2 gas, a mixed gas of Ar gas and 3 to 20 vol% CO 2 gas can be used. The flow rate of the shielding gas can be a normal condition, that is, about 15 to 30 L / min.
The welding conditions such as current and voltage are, for example, a current of 200 to 350 A and a voltage of 25 to 35 V. The welding speed may be controlled so that the welding heat input is 10 to 50 kJ / cm.
 製造される溶接継手の形状は、用途等に応じて決定され、特に限定されるものではない。通常の突合せ継手、角継手、T継手など、開先を形成する溶接継手に適用できる。したがって、溶接される鋼板の形状も、少なくとも溶接継手を形成する部分が板状であればよく、全体が板でなくともよく、例えば、形鋼なども含むものである。また、別々の鋼板から構成されるものに限定されず、1枚の鋼板を管状などの所定の形状に成形したものの突合せ溶接継手であってもよい。 The shape of the welded joint to be manufactured is determined according to the application and is not particularly limited. It can be applied to welded joints that form grooves, such as ordinary butt joints, square joints, and T joints. Therefore, the shape of the steel plate to be welded is not limited as long as at least the portion forming the welded joint is plate-like, and the whole may not be a plate, and includes, for example, a shape steel. Moreover, it is not limited to what is comprised from a separate steel plate, The butt-welding joint of what shape | molded one steel plate in predetermined shapes, such as a tubular shape, may be sufficient.
 次に、実施例により本実施形態に係る溶接継手の実施可能性および効果について説明する。
 表1に示す成分の鋼板を母材として使用した。また、溶接の裏当金には母材と同じ鋼板を使用した。
 鋼帯を長手方向に送りながら成形ロールによりオープン管に成形し、この成形途中でオープン管の開口部からフラックスを供給し、開口部の相対するエッジ面を突合わせシーム溶接することでスリット状の継目が無い管とし、造管したワイヤの伸線作業の途中で焼鈍を加え、最終のワイヤ径がφ1.2mmのフラックス入りワイヤを試作した。また、一部は、シーム溶接をしないスリット状の継目がある管とし、それを伸線することで、ワイヤ径がφ1.2mmのフラックス入りワイヤを試作した。スリット状の隙間が有るワイヤの場合、溶接施工するまで、ワイヤ全体を真空包装して乾燥した状態に保持できる容器内に保存した。
 試作したフラックス入りワイヤの化学成分の分析は以下のように行った。まず、充填されたフラックスをフラックス入りワイヤから取り出し、フラックス入りワイヤを鋼製外皮とフラックスとに分けた。鋼製外皮の化学成分は、化学分析によって各金属成分の含有量を測定することにより求められた。フラックスの化学成分は以下の手順により行われた。先ずX線回折、及び蛍光X線分析によってフラックスの構成物および成分についての定量評価を行った。この後、浮遊選鉱、及び磁力選鉱などの選鉱法を用いてフラックスをスラグ分と合金分とに分離し、それぞれの化学成分を、化学分析、及びガス分析などを行うことにより分析した。試作したフラックス入りワイヤの化学組成を表2-1-1~表2-2、表3-1-1~表3-2に示す。
Next, the feasibility and effect of the welded joint according to the present embodiment will be described by way of examples.
A steel plate having the components shown in Table 1 was used as a base material. In addition, the same steel plate as the base material was used for the backing metal for welding.
While forming the steel strip in the longitudinal direction, it is formed into an open tube by a forming roll. During this forming, a flux is supplied from the opening of the open tube, and the opposite edge surfaces of the opening are butt-seamed and welded to form a slit. A seamless pipe was used, and annealing was performed in the course of drawing the drawn wire, and a flux-cored wire with a final wire diameter of φ1.2 mm was made as a trial product. A part of the tube was a slit-like pipe that was not seam-welded, and a wire with a wire diameter of φ1.2 mm was prototyped by drawing it. In the case of a wire having a slit-like gap, the entire wire was vacuum-packed and stored in a container that can be kept dry until welding.
The analysis of the chemical composition of the prototype flux cored wire was performed as follows. First, the filled flux was taken out from the flux-cored wire, and the flux-cored wire was divided into a steel outer shell and a flux. The chemical component of the steel outer skin was determined by measuring the content of each metal component by chemical analysis. The chemical composition of the flux was performed according to the following procedure. First, quantitative evaluation of the constituents and components of the flux was performed by X-ray diffraction and fluorescent X-ray analysis. Thereafter, the flux was separated into a slag component and an alloy component using a beneficiation method such as flotation and magnetic beneficiation, and each chemical component was analyzed by performing chemical analysis and gas analysis. Tables 2-1-1 to 2-2 and Tables 3-1-1 to 3-2 show the chemical compositions of the prototype flux cored wires.
 このフラックス入りワイヤを用い、上記の母材を、ルートギャップ16mm、開先角度20°で突き合わせ、裏当金を用いて、表4-1-1~表4-2-3に示す溶接条件で溶接を実施した。母材の開先面及び裏当金の表面には、試験を行うフラックス入りワイヤを用いて2層以上、かつ余盛高さ3mm以上のバタリングを実施した。
 ここで、Ti酸化物、Si酸化物、Mg酸化物、Al酸化物は、それぞれTiO、SiO、MgO、Alを使用した。表2-2、表2-4において、金属炭酸塩とはCaCO、BaCO、SrCO、MgCOである。
Using this flux-cored wire, the above base material was abutted at a root gap of 16 mm and a groove angle of 20 °, and using a backing metal, under the welding conditions shown in Tables 4-1-1 to 4-2-3 Welding was performed. The groove surface of the base material and the surface of the backing metal were subjected to buttering with two or more layers and a height of 3 mm or more using a flux-cored wire to be tested.
Here, Ti oxide, Si oxide, Mg oxide, Al oxide, respectively by using the TiO 2, SiO 2, MgO, Al 2 O 3. In Tables 2-2 and 2-4, the metal carbonates are CaCO 3 , BaCO 3 , SrCO 3 , and MgCO 3 .
 得られた溶接金属の化学組成分析結果を表5-1-1、表5-1-2、表5-2-1、表5-2-2、表5-2-4、表5-2-5に示す。この溶接金属から、溶接方向と垂直の断面を研磨したサンプルを採取し、溶接金属の表面下1mmの位置のビッカース硬さを10点測定し、SAE J417(1983年)硬さ換算表からブリネル硬さに換算した。また、JIS Z3111(2005年)に準拠した4号シャルピー試験片(2mmVノッチ)を採取し、溶接金属の-40℃でのシャルピー吸収エネルギーを測定した。この-40℃吸収エネルギーが27J以上のものを合格とした。
 得られた硬さおよびシャルピー試験の結果を表5-1-3、表5-2-3、表5-2-6に示す。
The chemical composition analysis results of the obtained weld metal are shown in Table 5-1-1, Table 5-1-2, Table 5-2-1, Table 5-2-2, Table 5-2-4, and Table 5-2. Shown in -5. A sample obtained by polishing a cross section perpendicular to the welding direction was taken from this weld metal, measured at 10 points of Vickers hardness at a position 1 mm below the surface of the weld metal, and Brinell hardness from SAE J417 (1983) hardness conversion table. Converted to Further, a No. 4 Charpy test piece (2 mmV notch) based on JIS Z3111 (2005) was sampled, and the Charpy absorbed energy at −40 ° C. of the weld metal was measured. A sample having an absorption energy of −40 ° C. or more of 27 J or more was regarded as acceptable.
The obtained hardness and Charpy test results are shown in Tables 5-1-3, 5-2-3 and 5-2-6.
 また、それぞれ同じ溶接条件によって得られた溶接継手に、低温割れ試験と拡散性水素量測定試験を行った。低温割れ試験は、JIS Z3158(y形溶接割れ試験方法;1993年)に準拠し、室温(25℃)にて試験を実施し、表面および断面に割れがないことをもって合格とした。拡散性水素量測定試験は、JIS Z3118(鋼溶接部の水素量測定方法;2007年)に準拠したガスクロマトグラフ法にて実施した。この拡散性水素量が1.0ml/100g未満のものを合格とした。
 それぞれの結果を表5-1-3、表5-2-3、表5-2-6に示す。
Moreover, the low temperature crack test and the diffusible hydrogen content measurement test were done to the welded joint obtained by the same welding conditions, respectively. The low-temperature cracking test was conducted at room temperature (25 ° C.) in accordance with JIS Z3158 (y-type weld cracking test method: 1993). The diffusible hydrogen content measurement test was carried out by a gas chromatograph method based on JIS Z3118 (Method for measuring the hydrogen content of steel welds; 2007). This diffusible hydrogen content was less than 1.0 ml / 100 g.
The results are shown in Table 5-1-3, Table 5-2-3, and Table 5-2-6.
 溶接中、ヒュームまたはスラグの発生の著しい水準は、溶接作業性が不良と判定した。ヒューム、スラグとも発生が少ない水準を溶接作業性が良好と判定した。それぞれの結果を表5-1-3、表5-2-3、表5-2-6に示す。 著 し い During welding, the remarkable level of fume or slag generation was judged as poor welding workability. The level at which both fume and slag are less likely to be generated was judged to have good welding workability. The results are shown in Table 5-1-3, Table 5-2-3, and Table 5-2-6.
 表5-1-3の試験結果に示されるように、本発明例である実施例1~54の溶接金属は、硬さ、靭性、耐低温割れ性、溶接作業性のすべてが優れ、合格であった。
 一方、表5-2-3、表5-2-6の試験結果に示されるように、比較例101~165の溶接金属は、本発明で規定する要件を満たしていないため、硬さ、靭性、耐低温割れ性、溶接作業性の少なくとも1つ以上が不合格となった。表5-2-1~表5-2-6の比較例における下線の数字は、本発明範囲外であることを示す。
As shown in the test results of Table 5-1-3, the weld metals of Examples 1 to 54, which are examples of the present invention, are all excellent in hardness, toughness, cold crack resistance, and welding workability. there were.
On the other hand, as shown in the test results of Tables 5-2-3 and 5-2-6, the weld metals of Comparative Examples 101 to 165 do not satisfy the requirements specified in the present invention. At least one of cold cracking resistance and welding workability was rejected. The underlined numbers in the comparative examples in Tables 5-2-1 to 5-2-6 indicate that they are outside the scope of the present invention.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000011
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000012
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000013
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000014
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000015
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000016
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000017
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000018
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
Figure JPOXMLDOC01-appb-T000021
 本発明によれば、C含有量が高く表面硬さがHV380以上、HV693以下であるような高硬度鋼板を母材とする溶接継手において、表面硬さがHV337以上HV533以下であって耐摩耗性に優れる溶接金属、または表面硬さがHV380以上HV533以下であって耐摩耗性に優れる溶接金属を、予熱をしなくとも低温割れを発生させないで得ることができるので、溶接施工能率を著しく向上させることができ、産業界における価値はきわめて高い。 According to the present invention, in a welded joint whose base material is a high hardness steel plate having a high C content and a surface hardness of HV380 or more and HV693 or less, the surface hardness is HV337 or more and HV533 or less, and wear resistance Weld metal with excellent surface resistance or weld metal with surface hardness of HV380 or higher and HV533 or lower and excellent wear resistance can be obtained without generating low-temperature cracks without preheating. And the value in the industry is extremely high.

Claims (9)

  1.  ビッカース硬さHVが380以上514以下であり、
     板厚が20~100mmであり、
     Cの含有量が0.120~0.300質量%であり、
     下記の式1で計算されるCENが、0.20~0.75質量%である鋼板、
     ビッカース硬さHVが514超565以下であり、
     板厚が12~100mmであり、
     Cの含有量が0.120~0.300質量%であり、
     下記の式1で計算されるCENが、0.20~0.75質量%である鋼板、および
     ビッカース硬さHVが565超693以下であり、
     板厚が6~12mmであり、
     Cの含有量が0.350~0.450質量%であり、
     下記の式1で計算されるCENが、0.20~0.85質量%である鋼板、
     のいずれか一つに対し、鋼製外皮にフラックスが充填されたフラックス入りワイヤを用いて、ガスシールドアーク溶接を行うことにより、溶接継手を製造する方法であって、
     (a)前記ガスシールドアーク溶接時に、前記鋼板の温度が10℃以上の場合に予熱作業を行わず、前記鋼板の温度が10℃未満の場合には前記鋼板の温度が10℃以上となるように前記予熱作業を行い、
     (b)前記フラックス入りワイヤが、
     CaF、BaF、SrF、MgFのうちの1種以上を含有し、その含有量の合計をαとしたとき、前記αが前記フラックス入りワイヤの全質量に対する質量%で3.3~8.0%であり、
     Ti酸化物、Si酸化物、Mg酸化物、Al酸化物のうちの1種以上を含有し、その含有量の合計をβとしたとき、前記βが前記フラックス入りワイヤの全質量に対する質量%で0.10~1.50%であり、
     CaCO、BaCO、SrCO、MgCOの含有量の合計が、前記フラックス入りワイヤの全質量に対する質量%で0.60%未満であり、
     前記フラックス中の鉄粉の含有量が、前記フラックス入りワイヤの全質量に対する質量%で10.0%未満であり、
     前記αに対する前記CaFの含有量の比が0.90以上であり、
     前記βに対する前記αの比が3.0以上80.0以下であり、
     CaOの含有量が、前記フラックス入りワイヤの全質量に対する質量%で0.20%未満であり、
     金属弗化物、金属酸化物、および金属炭酸塩を除く、前記フラックス入りワイヤ中の化学成分が、前記フラックス入りワイヤの全質量に対する質量%で:
     C:0.010~0.060%未満;
     Si:0.05~1.80%;
     Mn:0.50~4.00%;
     P:0.050%以下;
     S:0.020%以下;
     Al:0.005~0.150%;
     Cu:0~0.75%;
     Ni:0~1.00%未満;
     Cr:0~3.50%;
     Mo:0~1.50%;
     Ti:0~0.150%;
     Nb:0~0.15%;
     V:0~0.45%;
     B:0~0.0500%;
     Mg:0~2.0%;
     Ca:0~2.0%;
     REM:0~0.0150%;
     残部:Feおよび不純物;
    からなり、
     (c)前記溶接継手の溶接金属の化学組成が、質量%で:
     C:0.100~0.170%;
     Si:0.05~0.80%;
     Mn:0.20~2.50%;
     Al:0.0050~0.1000%; 
     P:0.050%以下;
     S:0.020%以下;
     N:0.015%以下;
     Cu:0~0.50%;
     Ni:0~0.70%未満;
     Cr:0~2.50%;
     Mo:0~1.00%;
     Ti:0~0.100%;
     Nb:0~0.100%;
     V:0~0.30%;
     B:0~0.0100%;
     O:0~0.100%;
     Mg:0~0.100%;
     Ca:0~0.100%;
     REM:0~0.0100%;
     残部:Feおよび不純物;
    からなり、
     前記溶接金属の、下記の式1で計算されるCENが、0.20~0.58質量%であり、
     前記溶接金属の表面下1mmの平均ビッカース硬さHVが、337~440であり、
     上記(a)~(c)の全てを満足する
    ことを特徴とする溶接継手の製造方法。
    CEN=[C]+(0.75+0.25×tanh(20×([C]-0.12)))×([Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5×[B]) ・・・(式1)
     ただし、[]付元素は、それぞれの元素の含有量(質量%)を表す。
    Vickers hardness HV is 380 or more and 514 or less,
    The plate thickness is 20-100mm,
    The C content is 0.120 to 0.300 mass%,
    A steel sheet having a CEN calculated by the following formula 1 of 0.20 to 0.75% by mass,
    Vickers hardness HV is more than 514 and less than 565,
    The plate thickness is 12-100mm,
    The C content is 0.120 to 0.300 mass%,
    A steel sheet having a CEN calculated by the following formula 1 of 0.20 to 0.75% by mass, and a Vickers hardness HV of more than 565 and not more than 693,
    The plate thickness is 6-12mm,
    The C content is 0.350 to 0.450 mass%,
    A steel sheet having a CEN calculated by the following formula 1 of 0.20 to 0.85 mass%,
    For any one of the above, a method for manufacturing a welded joint by performing gas shielded arc welding using a flux-cored wire filled with a flux in a steel outer shell,
    (A) During the gas shielded arc welding, no preheating work is performed when the temperature of the steel plate is 10 ° C. or higher, and when the temperature of the steel plate is lower than 10 ° C., the temperature of the steel plate is 10 ° C. or higher. To perform the pre-heating work,
    (B) The flux-cored wire is
    When one or more of CaF 2 , BaF 2 , SrF 2 , and MgF 2 are contained and the total content is α, the α is 3.3% by mass% with respect to the total mass of the flux-cored wire. 8.0%,
    When one or more of Ti oxide, Si oxide, Mg oxide, and Al oxide is contained, and the total content is β, the β is a mass% with respect to the total mass of the flux-cored wire. 0.10 to 1.50%,
    The total content of CaCO 3 , BaCO 3 , SrCO 3 , MgCO 3 is less than 0.60% in mass% with respect to the total mass of the flux-cored wire,
    The content of iron powder in the flux is less than 10.0% by mass% with respect to the total mass of the flux-cored wire,
    The ratio of the content of CaF 2 to α is 0.90 or more,
    The ratio of α to β is 3.0 or more and 80.0 or less,
    The content of CaO is less than 0.20% by mass% with respect to the total mass of the flux-cored wire,
    The chemical components in the flux-cored wire, excluding metal fluorides, metal oxides, and metal carbonates, in mass% with respect to the total mass of the flux-cored wire:
    C: 0.010 to less than 0.060%;
    Si: 0.05 to 1.80%;
    Mn: 0.50 to 4.00%;
    P: 0.050% or less;
    S: 0.020% or less;
    Al: 0.005 to 0.150%;
    Cu: 0 to 0.75%;
    Ni: 0 to less than 1.00%;
    Cr: 0 to 3.50%;
    Mo: 0 to 1.50%;
    Ti: 0 to 0.150%;
    Nb: 0 to 0.15%;
    V: 0 to 0.45%;
    B: 0 to 0.0500%;
    Mg: 0 to 2.0%;
    Ca: 0 to 2.0%;
    REM: 0 to 0.0150%;
    Balance: Fe and impurities;
    Consists of
    (C) The chemical composition of the weld metal of the weld joint is in mass%:
    C: 0.100 to 0.170%;
    Si: 0.05 to 0.80%;
    Mn: 0.20 to 2.50%;
    Al: 0.0050 to 0.1000%;
    P: 0.050% or less;
    S: 0.020% or less;
    N: 0.015% or less;
    Cu: 0 to 0.50%;
    Ni: 0 to less than 0.70%;
    Cr: 0-2.50%;
    Mo: 0 to 1.00%;
    Ti: 0 to 0.100%;
    Nb: 0 to 0.100%;
    V: 0 to 0.30%;
    B: 0 to 0.0100%;
    O: 0 to 0.100%;
    Mg: 0 to 0.100%;
    Ca: 0 to 0.100%;
    REM: 0 to 0.0100%;
    Balance: Fe and impurities;
    Consists of
    CEN calculated by the following formula 1 of the weld metal is 0.20 to 0.58% by mass,
    The average Vickers hardness HV of 1 mm below the surface of the weld metal is 337 to 440,
    A method for producing a welded joint satisfying all of the above (a) to (c).
    CEN = [C] + (0.75 + 0.25 × tanh (20 × ([C] −0.12))) × ([Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 × [B]) (Formula 1)
    However, the element with [] represents the content (% by mass) of each element.
  2.  ビッカース硬さHVが380以上514以下であり、
     板厚が20~100mmであり、
     Cの含有量が0.120~0.300質量%であり、
     下記の式1で計算されるCENが、0.20~0.75質量%である鋼板、
     ビッカース硬さHVが514超565以下であり、
     板厚が12~100mmであり、
     Cの含有量が0.120~0.300質量%であり、
     下記の式1で計算されるCENが、0.20~0.75質量%である鋼板、および
     ビッカース硬さHVが565超693以下であり、
     板厚が6~12mmであり、
     Cの含有量が0.350~0.450質量%であり、
     下記の式1で計算されるCENが、0.20~0.85質量%である鋼板、
     のいずれか一つに対し、鋼製外皮にフラックスが充填されたフラックス入りワイヤを用いて、ガスシールドアーク溶接を行うことにより、溶接継手を製造する方法であって、
     (a)前記ガスシールドアーク溶接時に、前記鋼板の温度が10℃以上の場合に予熱作業を行わず、前記鋼板の温度が10℃未満の場合には前記鋼板の温度が10℃以上となるように前記予熱作業を行い、
     (b)前記フラックス入りワイヤが、
     CaF、BaF、SrF、MgFのうちの1種以上を含有し、その含有量の合計をαとしたとき、前記αが前記フラックス入りワイヤの全質量に対する質量%で3.3~8.0%であり、
     Ti酸化物、Si酸化物、Mg酸化物、Al酸化物のうちの1種以上を含有し、その含有量の合計をβとしたとき、前記βが前記フラックス入りワイヤの全質量に対する質量%で0.10~1.50%であり、
     CaCO、BaCO、SrCO、MgCOの含有量の合計が、前記フラックス入りワイヤの全質量に対する質量%で0.60%未満であり、
     前記フラックス中の鉄粉の含有量が、前記フラックス入りワイヤの全質量に対する質量%で10.0%未満であり、
     前記αに対する前記CaFの含有量の比が0.90以上であり、
     前記βに対する前記αの比が3.0以上80.0以下であり、
     CaOの含有量が、前記フラックス入りワイヤの全質量に対する質量%で0.20%未満であり、
     金属弗化物、金属酸化物、および金属炭酸塩を除く、前記フラックス入りワイヤ中の化学成分が、前記フラックス入りワイヤの全質量に対する質量%で:
     C:0.060~0.350%;
     Si:0.05~1.80%;
     Mn:0.50~4.00%;
     P:0.050%以下;
     S:0.020%以下;
     Al:0.005~0.150%;
     Cu:0~0.75%;
     Ni:0~1.00%未満;
     Cr:0~3.50%;
     Mo:0~1.50%;
     Ti:0~0.150%;
     Nb:0~0.15%;
     V:0~0.45%;
     B:0~0.0500%;
     Mg:0~2.0%;
     Ca:0~2.0%;
     REM:0~0.0150%;
     残部:Feおよび不純物;
    からなり、
     (c)前記溶接継手の溶接金属の化学組成が、質量%で:
     C:0.120~0.250%;
     Si:0.05~0.80%;
     Mn:0.20~2.50%;
     Al:0.0050~0.1000%; 
     P:0.050%以下;
     S:0.020%以下;
     N:0.015%以下;
     Cu:0~0.50%;
     Ni:0~0.70%未満;
     Cr:0~2.50%;
     Mo:0~1.00%;
     Ti:0~0.100%;
     Nb:0~0.100%;
     V:0~0.30%;
     B:0~0.0100%;
     O:0~0.100%;
     Mg:0~0.100%;
     Ca:0~0.100%;
     REM:0~0.0100%;
     残部:Feおよび不純物;
    からなり、
     前記溶接金属の、下記の式1で計算されるCENが、0.20~0.58質量%であり、
     前記溶接金属の表面下1mmの平均ビッカース硬さHVが、380~533であり、
     上記(a)~(c)の全てを満足する
    ことを特徴とする溶接継手の製造方法。
    CEN=[C]+(0.75+0.25×tanh(20×([C]-0.12)))×([Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5×[B]) ・・・(式1)
     ただし、[]付元素は、それぞれの元素の含有量(質量%)を表す。
    Vickers hardness HV is 380 or more and 514 or less,
    The plate thickness is 20-100mm,
    The C content is 0.120 to 0.300 mass%,
    A steel sheet having a CEN calculated by the following formula 1 of 0.20 to 0.75% by mass,
    Vickers hardness HV is more than 514 and less than 565,
    The plate thickness is 12-100mm,
    The C content is 0.120 to 0.300 mass%,
    A steel sheet having a CEN calculated by the following formula 1 of 0.20 to 0.75% by mass, and a Vickers hardness HV of more than 565 and not more than 693,
    The plate thickness is 6-12mm,
    The C content is 0.350 to 0.450 mass%,
    A steel sheet having a CEN calculated by the following formula 1 of 0.20 to 0.85 mass%,
    For any one of the above, a method for manufacturing a welded joint by performing gas shielded arc welding using a flux-cored wire filled with a flux in a steel outer shell,
    (A) During the gas shielded arc welding, no preheating work is performed when the temperature of the steel plate is 10 ° C. or higher, and when the temperature of the steel plate is lower than 10 ° C., the temperature of the steel plate is 10 ° C. or higher. To perform the pre-heating work,
    (B) The flux-cored wire is
    When one or more of CaF 2 , BaF 2 , SrF 2 , and MgF 2 are contained and the total content is α, the α is 3.3% by mass% with respect to the total mass of the flux-cored wire. 8.0%,
    When one or more of Ti oxide, Si oxide, Mg oxide, and Al oxide is contained, and the total content is β, the β is a mass% with respect to the total mass of the flux-cored wire. 0.10 to 1.50%,
    The total content of CaCO 3 , BaCO 3 , SrCO 3 , MgCO 3 is less than 0.60% in mass% with respect to the total mass of the flux-cored wire,
    The content of iron powder in the flux is less than 10.0% by mass% with respect to the total mass of the flux-cored wire,
    The ratio of the content of CaF 2 to α is 0.90 or more,
    The ratio of α to β is 3.0 or more and 80.0 or less,
    The content of CaO is less than 0.20% by mass% with respect to the total mass of the flux-cored wire,
    The chemical components in the flux-cored wire, excluding metal fluorides, metal oxides, and metal carbonates, in mass% with respect to the total mass of the flux-cored wire:
    C: 0.060 to 0.350%;
    Si: 0.05 to 1.80%;
    Mn: 0.50 to 4.00%;
    P: 0.050% or less;
    S: 0.020% or less;
    Al: 0.005 to 0.150%;
    Cu: 0 to 0.75%;
    Ni: 0 to less than 1.00%;
    Cr: 0 to 3.50%;
    Mo: 0 to 1.50%;
    Ti: 0 to 0.150%;
    Nb: 0 to 0.15%;
    V: 0 to 0.45%;
    B: 0 to 0.0500%;
    Mg: 0 to 2.0%;
    Ca: 0 to 2.0%;
    REM: 0 to 0.0150%;
    Balance: Fe and impurities;
    Consists of
    (C) The chemical composition of the weld metal of the weld joint is in mass%:
    C: 0.120 to 0.250%;
    Si: 0.05 to 0.80%;
    Mn: 0.20 to 2.50%;
    Al: 0.0050 to 0.1000%;
    P: 0.050% or less;
    S: 0.020% or less;
    N: 0.015% or less;
    Cu: 0 to 0.50%;
    Ni: 0 to less than 0.70%;
    Cr: 0-2.50%;
    Mo: 0 to 1.00%;
    Ti: 0 to 0.100%;
    Nb: 0 to 0.100%;
    V: 0 to 0.30%;
    B: 0 to 0.0100%;
    O: 0 to 0.100%;
    Mg: 0 to 0.100%;
    Ca: 0 to 0.100%;
    REM: 0 to 0.0100%;
    Balance: Fe and impurities;
    Consists of
    CEN calculated by the following formula 1 of the weld metal is 0.20 to 0.58% by mass,
    The average Vickers hardness HV of 1 mm below the surface of the weld metal is 380 to 533,
    A method for producing a welded joint satisfying all of the above (a) to (c).
    CEN = [C] + (0.75 + 0.25 × tanh (20 × ([C] −0.12))) × ([Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 × [B]) (Formula 1)
    However, the element with [] represents the content (% by mass) of each element.
  3.  ビッカース硬さHVが565超693以下であり、
     板厚が12~20mmであり、
     Cの含有量が0.350~0.450質量%であり、
     下記の式2で計算されるCENが、0.20~0.85質量%である鋼板、および
     ビッカース硬さHVが565超693以下であり、
     板厚が20mm超50mm以下であり、
     Cの含有量が0.350~0.450質量%であり、
     下記の式2で計算されるCENが、0.20~0.85質量%である鋼板、
     のいずれか一つに対し、鋼製外皮にフラックスが充填されたフラックス入りワイヤを用いて、ガスシールドアーク溶接を行うことにより、溶接継手を製造する方法であって、
     (a)前記ガスシールドアーク溶接時に、前記鋼板の前記板厚が20mm以下の場合、前記鋼板の温度が100℃以上となるように予熱作業を行い、前記鋼板の前記板厚が20mm超の場合、前記鋼板の温度が150℃以上となるように前記予熱作業を行い、
     (b)前記フラックス入りワイヤが、
     CaF、BaF、SrF、MgFのうちの1種以上を含有し、その含有量の合計をαとしたとき、前記αが前記フラックス入りワイヤの全質量に対する質量%で3.3~8.0%であり、
     Ti酸化物、Si酸化物、Mg酸化物、Al酸化物のうちの1種以上を含有し、その含有量の合計をβとしたとき、前記βが前記フラックス入りワイヤの全質量に対する質量%で0.10~1.50%であり、
     CaCO、BaCO、SrCO、MgCOの含有量の合計が、前記フラックス入りワイヤの全質量に対する質量%で0.60%未満であり、
     前記フラックス中の鉄粉の含有量が、前記フラックス入りワイヤの全質量に対する質量%で10.0%未満であり、
     前記αに対する前記CaFの含有量の比が0.90以上であり、
     前記βに対する前記αの比が3.0以上80.0以下であり、
     CaOの含有量が、前記フラックス入りワイヤの全質量に対する質量%で0.20%未満であり、
     金属弗化物、金属酸化物、および金属炭酸塩を除く、前記フラックス入りワイヤ中の化学成分が、前記フラックス入りワイヤの全質量に対する質量%で:
     C:0.060~0.350%;
     Si:0.05~1.80%;
     Mn:0.50~4.00%;
     P:0.050%以下;
     S:0.020%以下;
     Al:0.005~0.150%;
     Cu:0~0.75%;
     Ni:0~1.00%未満;
     Cr:0~3.50%;
     Mo:0~1.50%;
     Ti:0~0.150%;
     Nb:0~0.15%;
     V:0~0.45%;
     B:0~0.0500%;
     Mg:0~2.0%;
     Ca:0~2.0%;
     REM:0~0.0150%;
     残部:Feおよび不純物;
    からなり、
     (c)前記溶接継手の溶接金属の化学組成が、質量%で:
     C:0.120~0.250%;
     Si:0.05~0.80%;
     Mn:0.20~2.50%;
     Al:0.0050~0.1000%;
     P:0.050%以下;
     S:0.020%以下;
     N:0.015%以下;
     Cu:0~0.50%;
     Ni:0~0.70%未満;
     Cr:0~2.50%;
     Mo:0~1.00%;
     Ti:0~0.100%;
     Nb:0~0.100%;
     V:0~0.30%;
     B:0~0.0100%;
     O:0~0.100%;
     Mg:0~0.100%;
     Ca:0~0.100%;
     REM:0~0.0100%;
     残部:Feおよび不純物;
    からなり、
     前記溶接金属の、下記の式2で計算されるCENが、0.20~0.58質量%であり、
     前記溶接金属の表面下1mmの平均ビッカース硬さHVが、380~533であり、
     上記(a)~(c)の全てを満足する
    ことを特徴とする溶接継手の製造方法。
    CEN=[C]+(0.75+0.25×tanh(20×([C]-0.12)))×([Si]/24+[Mn]/6+[Cu]/15+[Ni]/20+([Cr]+[Mo]+[Nb]+[V])/5+5×[B]) ・・・(式2)
     ただし、[]付元素は、それぞれの元素の含有量(質量%)を表す。
    Vickers hardness HV is more than 565 and less than 693,
    The plate thickness is 12-20mm,
    The C content is 0.350 to 0.450 mass%,
    A steel sheet having a CEN calculated by the following formula 2 of 0.20 to 0.85 mass%, and a Vickers hardness HV of more than 565 and not more than 693,
    The plate thickness is more than 20 mm and 50 mm or less,
    The C content is 0.350 to 0.450 mass%,
    A steel sheet having a CEN calculated by the following formula 2 of 0.20 to 0.85 mass%,
    For any one of the above, a method for manufacturing a welded joint by performing gas shielded arc welding using a flux-cored wire filled with a flux in a steel outer shell,
    (A) At the time of the gas shield arc welding, when the plate thickness of the steel plate is 20 mm or less, a preheating operation is performed so that the temperature of the steel plate is 100 ° C. or more, and the plate thickness of the steel plate is more than 20 mm The preheating operation is performed so that the temperature of the steel sheet is 150 ° C. or higher,
    (B) The flux-cored wire is
    When one or more of CaF 2 , BaF 2 , SrF 2 , and MgF 2 are contained and the total content is α, the α is 3.3% by mass% with respect to the total mass of the flux-cored wire. 8.0%,
    When one or more of Ti oxide, Si oxide, Mg oxide, and Al oxide is contained, and the total content is β, the β is a mass% with respect to the total mass of the flux-cored wire. 0.10 to 1.50%,
    The total content of CaCO 3 , BaCO 3 , SrCO 3 , MgCO 3 is less than 0.60% in mass% with respect to the total mass of the flux-cored wire,
    The content of iron powder in the flux is less than 10.0% by mass% with respect to the total mass of the flux-cored wire,
    The ratio of the content of CaF 2 to α is 0.90 or more,
    The ratio of α to β is 3.0 or more and 80.0 or less,
    The content of CaO is less than 0.20% by mass% with respect to the total mass of the flux-cored wire,
    The chemical components in the flux-cored wire, excluding metal fluorides, metal oxides, and metal carbonates, in mass% with respect to the total mass of the flux-cored wire:
    C: 0.060 to 0.350%;
    Si: 0.05 to 1.80%;
    Mn: 0.50 to 4.00%;
    P: 0.050% or less;
    S: 0.020% or less;
    Al: 0.005 to 0.150%;
    Cu: 0 to 0.75%;
    Ni: 0 to less than 1.00%;
    Cr: 0 to 3.50%;
    Mo: 0 to 1.50%;
    Ti: 0 to 0.150%;
    Nb: 0 to 0.15%;
    V: 0 to 0.45%;
    B: 0 to 0.0500%;
    Mg: 0 to 2.0%;
    Ca: 0 to 2.0%;
    REM: 0 to 0.0150%;
    Balance: Fe and impurities;
    Consists of
    (C) The chemical composition of the weld metal of the weld joint is in mass%:
    C: 0.120 to 0.250%;
    Si: 0.05 to 0.80%;
    Mn: 0.20 to 2.50%;
    Al: 0.0050 to 0.1000%;
    P: 0.050% or less;
    S: 0.020% or less;
    N: 0.015% or less;
    Cu: 0 to 0.50%;
    Ni: 0 to less than 0.70%;
    Cr: 0-2.50%;
    Mo: 0 to 1.00%;
    Ti: 0 to 0.100%;
    Nb: 0 to 0.100%;
    V: 0 to 0.30%;
    B: 0 to 0.0100%;
    O: 0 to 0.100%;
    Mg: 0 to 0.100%;
    Ca: 0 to 0.100%;
    REM: 0 to 0.0100%;
    Balance: Fe and impurities;
    Consists of
    CEN calculated by the following formula 2 of the weld metal is 0.20 to 0.58% by mass,
    The average Vickers hardness HV of 1 mm below the surface of the weld metal is 380 to 533,
    A method for producing a welded joint satisfying all of the above (a) to (c).
    CEN = [C] + (0.75 + 0.25 × tanh (20 × ([C] −0.12))) × ([Si] / 24 + [Mn] / 6 + [Cu] / 15 + [Ni] / 20 + ([Cr] + [Mo] + [Nb] + [V]) / 5 + 5 × [B]) (Formula 2)
    However, the element with [] represents the content (% by mass) of each element.
  4.  前記フラックス入りワイヤ中の前記CaOの含有量が、前記フラックス入りワイヤの全質量に対する質量%で0.15%以下であることを特徴とする請求項1~3のいずれか一項に記載の溶接継手の製造方法。 The welding according to any one of claims 1 to 3, wherein a content of the CaO in the flux-cored wire is 0.15% or less by mass% with respect to a total mass of the flux-cored wire. A method for manufacturing a joint.
  5.  前記金属弗化物、前記金属酸化物、および前記金属炭酸塩を除く、前記フラックス入りワイヤ中の前記化学組成が、前記フラックス入りワイヤの全質量に対する質量%で:
    Ni:0~0.1%である
    ことを特徴とする請求項1~4のいずれか一項に記載の溶接継手の製造方法。
    Except for the metal fluoride, the metal oxide, and the metal carbonate, the chemical composition in the flux-cored wire is in mass% with respect to the total mass of the flux-cored wire:
    The method for producing a welded joint according to any one of claims 1 to 4, wherein Ni is 0 to 0.1%.
  6.  前記金属弗化物、前記金属酸化物、および前記金属炭酸塩を除く、前記フラックス入りワイヤ中の前記化学組成が、前記フラックス入りワイヤの全質量に対する質量%で:
     Cu:0~0.50%;
     Cr:0~1.00%;
     Mo:0~0.50%;
     Ti:0~0.050%;
     Nb:0~0.05%
    であることを特徴とする請求項1~5のいずれか一項に記載の溶接継手の製造方法。
    Except for the metal fluoride, the metal oxide, and the metal carbonate, the chemical composition in the flux-cored wire is in mass% with respect to the total mass of the flux-cored wire:
    Cu: 0 to 0.50%;
    Cr: 0 to 1.00%;
    Mo: 0 to 0.50%;
    Ti: 0 to 0.050%;
    Nb: 0 to 0.05%
    The method for producing a welded joint according to any one of claims 1 to 5, wherein:
  7.  前記フラックス入りワイヤの前記鋼製外皮に、スリット状の隙間がないことを特徴とする請求項1~6のいずれか一項に記載の溶接継手の製造方法。 The method for manufacturing a welded joint according to any one of claims 1 to 6, wherein there is no slit-like gap in the steel outer sheath of the flux-cored wire.
  8. 前記フラックス入りワイヤの前記鋼製外皮に、スリット状の隙間があることを特徴とする、請求項1~6のいずれか一項に記載の溶接継手の製造方法。 The method for manufacturing a welded joint according to any one of claims 1 to 6, wherein a slit-like gap is formed in the steel outer sheath of the flux-cored wire.
  9.  前記フラックス入りワイヤの表面にパーフルオロポリエーテル油が塗布されていることを特徴とする請求項1~8のいずれか一項に記載の溶接継手の製造方法。 The method for manufacturing a welded joint according to any one of claims 1 to 8, wherein perfluoropolyether oil is applied to a surface of the flux-cored wire.
PCT/JP2014/070878 2013-11-08 2014-08-07 Method for producing weld joint WO2015068443A1 (en)

Priority Applications (8)

Application Number Priority Date Filing Date Title
JP2014553365A JP5696824B1 (en) 2013-11-08 2014-08-07 Manufacturing method of welded joint
KR1020157033517A KR101655057B1 (en) 2013-11-08 2014-08-07 Method for producing weld joint
CA2915026A CA2915026C (en) 2013-11-08 2014-08-07 Method of producing weld joint
AU2014345139A AU2014345139B2 (en) 2013-11-08 2014-08-07 Method for producing weld joint
BR112015029349-2A BR112015029349B1 (en) 2013-11-08 2014-08-07 method for the production of weld joints
CN201480030521.XA CN105339132B (en) 2013-11-08 2014-08-07 Method for producing weld joint
MX2015017087A MX352525B (en) 2013-11-08 2014-08-07 Method for producing weld joint.
PH12015502625A PH12015502625A1 (en) 2013-11-08 2015-11-25 Method for producing weld joint

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/080242 WO2015068261A1 (en) 2013-11-08 2013-11-08 Method for producing weld joint
JPPCT/JP2013/080242 2013-11-08

Publications (1)

Publication Number Publication Date
WO2015068443A1 true WO2015068443A1 (en) 2015-05-14

Family

ID=53041063

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2013/080242 WO2015068261A1 (en) 2013-11-08 2013-11-08 Method for producing weld joint
PCT/JP2014/070878 WO2015068443A1 (en) 2013-11-08 2014-08-07 Method for producing weld joint

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080242 WO2015068261A1 (en) 2013-11-08 2013-11-08 Method for producing weld joint

Country Status (9)

Country Link
KR (1) KR101655057B1 (en)
CN (1) CN105339132B (en)
AU (1) AU2014345139B2 (en)
BR (1) BR112015029349B1 (en)
CA (2) CA2926569C (en)
MX (1) MX352525B (en)
MY (1) MY158148A (en)
PH (1) PH12015502625A1 (en)
WO (2) WO2015068261A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017154120A1 (en) * 2016-03-08 2017-09-14 新日鐵住金株式会社 Flux-cored wire, weld joint manufacturing method and weld joint
WO2017154122A1 (en) * 2016-03-08 2017-09-14 新日鐵住金株式会社 Flux-cored wire, weld joint manufacturing method and weld joint
WO2021125280A1 (en) * 2019-12-20 2021-06-24 Jfeスチール株式会社 Steel wire for gas-shielded arc welding, gas-shielded arc welding method, and method for manufacturing gas-shielded arc welded joint
US11400539B2 (en) 2016-11-08 2022-08-02 Nippon Steel Corporation Flux-cored wire, manufacturing method of welded joint, and welded joint

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2548175B (en) * 2016-03-09 2018-10-03 Goodwin Plc A steel, a welding consumable and a cast steel product
CN106346166A (en) * 2016-08-31 2017-01-25 晋城市金菲机电有限公司 Low-temperature preheating high-strength flux-cored wire and production process thereof
JP6874425B2 (en) * 2017-03-06 2021-05-19 日本製鉄株式会社 Manufacturing method of flux-cored wire and welded joint for gas shielded arc welding
KR102134310B1 (en) * 2017-12-26 2020-07-15 주식회사 포스코 Cold-rolled steel sheet for flux cored wire and manufacturing the same
CN111819029B (en) * 2018-03-28 2021-09-21 日本制铁株式会社 Method for manufacturing flux-cored wire, and method for manufacturing welded joint
CN111819030B (en) * 2018-03-28 2021-09-07 日本制铁株式会社 Method for manufacturing flux-cored wire and method for manufacturing welded joint
CN108588572A (en) * 2018-07-27 2018-09-28 安徽卓煌机械设备有限公司 A kind of high strength easy welding grinding roller basis material
CN109440011A (en) * 2018-12-27 2019-03-08 攀钢集团江油长城特殊钢有限公司 A kind of nitrogenous welding wire steel of vacuum induction furnace smelting low-alloy and its smelting process
US11701730B2 (en) * 2019-01-15 2023-07-18 Postle Industries, Inc. Nickel-containing stick electrode
KR102233335B1 (en) * 2019-02-26 2021-03-29 고려용접봉 주식회사 Smaw welded metal having excellent strength
EP3950996B1 (en) * 2019-03-27 2024-01-10 Nippon Steel Corporation Automobile undercarriage part
JP7143937B2 (en) * 2019-03-27 2022-09-29 日本製鉄株式会社 Undercarriage parts for automobiles
CN110819770B (en) * 2019-10-28 2021-08-20 鞍钢股份有限公司 Steel plate for large-thickness hydrogenation reactor shell and manufacturing method thereof
US20210229204A1 (en) * 2020-01-29 2021-07-29 Lincoln Global, Inc. Systems and methods for multi-wire submerged arc welding using a flux-cored wire electrode
CN112975197B (en) * 2021-02-24 2023-02-21 天津市金桥焊材集团股份有限公司 Flux-cored wire for surfacing hard surface layer of efficient welding hot forging die
CN112975196B (en) * 2021-02-24 2023-02-21 天津市金桥焊材集团股份有限公司 Flux-cored wire for efficient welding hot forging die surfacing transition layer
CN115041866A (en) * 2022-06-30 2022-09-13 三一重机有限公司 Gas shielded welding wire and application thereof in welding of low-alloy high-strength steel

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217195A (en) * 1989-02-18 1990-08-29 Nippon Steel Corp Flux cored wire for gas shielded arc welding for heat resistant steel
JPH08197283A (en) * 1995-01-23 1996-08-06 Nippon Steel Corp Flux cored wire for mig welding by which high-toughness weld zone having lessened welding deformation is obtainable
JPH08257785A (en) * 1995-01-23 1996-10-08 Nippon Steel Corp Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JP2001205483A (en) * 2000-01-19 2001-07-31 Nippon Steel Weld Prod & Eng Co Ltd Flux-containing wire for gas shield arc welding
WO2013168670A1 (en) * 2012-05-08 2013-11-14 新日鐵住金株式会社 Flux-containing wire for welding ultrahigh-tensile steel
WO2014119082A1 (en) * 2013-01-31 2014-08-07 新日鐵住金株式会社 Flux cored wire, welding method using flux cored wire, method for producing welded joint using flux cored wire, and welded joint

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3354460B2 (en) 1997-11-11 2002-12-09 川崎製鉄株式会社 Covered arc welding method for high strength steel
JP4564245B2 (en) 2003-07-25 2010-10-20 新日本製鐵株式会社 Super high strength welded joint with excellent low temperature cracking property of weld metal and method for producing high strength welded steel pipe
JP5136466B2 (en) 2008-03-28 2013-02-06 新日鐵住金株式会社 Flux-cored wire for welding high-strength steel and method for producing the same
WO2009145347A1 (en) * 2008-05-27 2009-12-03 新日鐵住金ステンレス株式会社 Flux-cored wire for welding of duplex stainless steel which enables the miniaturization of solidified crystal particles
CN102655978B (en) * 2009-12-16 2015-08-05 新日铁住金株式会社 Can the coat core-wire for gas-protection arc welding of all-position welding
KR101211284B1 (en) * 2010-06-07 2012-12-11 신닛테츠스미킨 카부시키카이샤 Ultra high-strength welded joint and method for producing same
JP5607002B2 (en) 2011-02-02 2014-10-15 株式会社神戸製鋼所 Weld metal with excellent resistance to hydrogen embrittlement
BR112013020444B1 (en) * 2011-02-14 2022-09-20 Nippon Steel Corporation DUPLEX STAINLESS STEEL WELDED JOINT
JP5606985B2 (en) 2011-04-08 2014-10-15 株式会社神戸製鋼所 Weld metal with excellent resistance to hydrogen embrittlement

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02217195A (en) * 1989-02-18 1990-08-29 Nippon Steel Corp Flux cored wire for gas shielded arc welding for heat resistant steel
JPH08197283A (en) * 1995-01-23 1996-08-06 Nippon Steel Corp Flux cored wire for mig welding by which high-toughness weld zone having lessened welding deformation is obtainable
JPH08257785A (en) * 1995-01-23 1996-10-08 Nippon Steel Corp Flux cored wire for arc welding to improve low temp. crack resistance of steel weld zone
JP2001205483A (en) * 2000-01-19 2001-07-31 Nippon Steel Weld Prod & Eng Co Ltd Flux-containing wire for gas shield arc welding
WO2013168670A1 (en) * 2012-05-08 2013-11-14 新日鐵住金株式会社 Flux-containing wire for welding ultrahigh-tensile steel
WO2014119082A1 (en) * 2013-01-31 2014-08-07 新日鐵住金株式会社 Flux cored wire, welding method using flux cored wire, method for producing welded joint using flux cored wire, and welded joint

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3427890A4 (en) * 2016-03-08 2019-10-30 Nippon Steel Corporation Flux-cored wire, weld joint manufacturing method and weld joint
WO2017154122A1 (en) * 2016-03-08 2017-09-14 新日鐵住金株式会社 Flux-cored wire, weld joint manufacturing method and weld joint
JPWO2017154120A1 (en) * 2016-03-08 2018-09-13 新日鐵住金株式会社 Flux-cored wire, welded joint manufacturing method, and welded joint
JPWO2017154122A1 (en) * 2016-03-08 2018-10-04 新日鐵住金株式会社 Flux-cored wire, welded joint manufacturing method, and welded joint
AU2016396548B2 (en) * 2016-03-08 2019-09-12 Nippon Steel Corporation Flux-cored wire, weld joint manufacturing method and weld joint
AU2016396546B2 (en) * 2016-03-08 2019-10-17 Nippon Steel Corporation Flux-cored wire, manufacturing method of welded joint, and welded joint
WO2017154120A1 (en) * 2016-03-08 2017-09-14 新日鐵住金株式会社 Flux-cored wire, weld joint manufacturing method and weld joint
EP3427891A4 (en) * 2016-03-08 2019-11-13 Nippon Steel Corporation Flux-cored wire, weld joint manufacturing method and weld joint
US10946486B2 (en) 2016-03-08 2021-03-16 Nippon Steel Corporation Flux-cored wire, manufacturing method of welded joint, and welded joint
US11331742B2 (en) 2016-03-08 2022-05-17 Nippon Steel Corporation Flux-cored wire, manufacturing method of welded joint, and welded joint
US11400539B2 (en) 2016-11-08 2022-08-02 Nippon Steel Corporation Flux-cored wire, manufacturing method of welded joint, and welded joint
WO2021125280A1 (en) * 2019-12-20 2021-06-24 Jfeスチール株式会社 Steel wire for gas-shielded arc welding, gas-shielded arc welding method, and method for manufacturing gas-shielded arc welded joint
JP6969705B1 (en) * 2019-12-20 2021-11-24 Jfeスチール株式会社 Steel wire for gas shielded arc welding, gas shielded arc welding method, and manufacturing method of gas shielded arc welded joint

Also Published As

Publication number Publication date
BR112015029349B1 (en) 2020-12-08
MY158148A (en) 2016-09-15
BR112015029349A2 (en) 2017-07-25
KR101655057B1 (en) 2016-09-06
PH12015502625B1 (en) 2016-03-07
MX2015017087A (en) 2016-04-11
CA2915026C (en) 2016-10-04
CN105339132A (en) 2016-02-17
MX352525B (en) 2017-11-29
CA2926569C (en) 2017-04-18
CN105339132B (en) 2017-04-12
AU2014345139B2 (en) 2016-03-31
WO2015068261A1 (en) 2015-05-14
AU2014345139A1 (en) 2015-12-17
PH12015502625A1 (en) 2016-03-07
CA2926569A1 (en) 2015-05-14
KR20150136551A (en) 2015-12-07
CA2915026A1 (en) 2015-05-14

Similar Documents

Publication Publication Date Title
WO2015068443A1 (en) Method for producing weld joint
US20220281024A1 (en) Flux-cored wire, manufacturing method of welded joint, and welded joint
JP5565518B2 (en) Welding method, welded joint manufacturing method and welded joint
JP6766866B2 (en) Flux-cored wire, welded joint manufacturing method, and welded joint
CN108698174B (en) Flux-cored wire, method for manufacturing welded joint, and welded joint
JPWO2014119082A1 (en) Flux-cored wire, welding method using flux-cored wire, manufacturing method of welded joint using flux-cored wire, and welded joint
JP6390204B2 (en) Flux-cored wire for gas shielded arc welding
JP6155810B2 (en) High Ni flux cored wire for gas shielded arc welding
JP6801494B2 (en) Flux-cored wire for gas shielded arc welding and welding joint manufacturing method
JP5696824B1 (en) Manufacturing method of welded joint
JP2019048323A (en) Flux-cored wire for gas shield arc-welding, and method of manufacturing weld joint
JP6728806B2 (en) High Ni flux-cored wire for gas shield arc welding and method for manufacturing welded joint

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 201480030521.X

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2014553365

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2915026

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 20157033517

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 12015502625

Country of ref document: PH

WWE Wipo information: entry into national phase

Ref document number: IDP00201508432

Country of ref document: ID

Ref document number: MX/A/2015/017087

Country of ref document: MX

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112015029349

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2014345139

Country of ref document: AU

Date of ref document: 20140807

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14860893

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112015029349

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20151124