WO2015068282A1 - Infrared-absorptive inkjet printing ink - Google Patents

Infrared-absorptive inkjet printing ink Download PDF

Info

Publication number
WO2015068282A1
WO2015068282A1 PCT/JP2013/080328 JP2013080328W WO2015068282A1 WO 2015068282 A1 WO2015068282 A1 WO 2015068282A1 JP 2013080328 W JP2013080328 W JP 2013080328W WO 2015068282 A1 WO2015068282 A1 WO 2015068282A1
Authority
WO
WIPO (PCT)
Prior art keywords
ink
antimony
tin oxide
doped tin
infrared
Prior art date
Application number
PCT/JP2013/080328
Other languages
French (fr)
Japanese (ja)
Inventor
文人 小林
芝岡 良昭
博昭 島根
渉 吉住
正太 川▲崎▼
Original Assignee
共同印刷株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 共同印刷株式会社 filed Critical 共同印刷株式会社
Priority to PCT/JP2013/080328 priority Critical patent/WO2015068282A1/en
Publication of WO2015068282A1 publication Critical patent/WO2015068282A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B41PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
    • B41MPRINTING, DUPLICATING, MARKING, OR COPYING PROCESSES; COLOUR PRINTING
    • B41M3/00Printing processes to produce particular kinds of printed work, e.g. patterns
    • B41M3/14Security printing
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G30/00Compounds of antimony
    • C01G30/004Oxides; Hydroxides; Oxyacids
    • C01G30/005Oxides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09CTREATMENT OF INORGANIC MATERIALS, OTHER THAN FIBROUS FILLERS, TO ENHANCE THEIR PIGMENTING OR FILLING PROPERTIES ; PREPARATION OF CARBON BLACK  ; PREPARATION OF INORGANIC MATERIALS WHICH ARE NO SINGLE CHEMICAL COMPOUNDS AND WHICH ARE MAINLY USED AS PIGMENTS OR FILLERS
    • C09C1/00Treatment of specific inorganic materials other than fibrous fillers; Preparation of carbon black
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D11/00Inks
    • C09D11/30Inkjet printing inks
    • C09D11/32Inkjet printing inks characterised by colouring agents
    • C09D11/322Pigment inks
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/72Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/51Particles with a specific particle size distribution

Definitions

  • the present invention relates to an infrared absorbing ink jet printing ink, and more particularly to an infrared absorbing ink jet printing ink for preventing counterfeiting.
  • Infrared absorbing ink jet printing ink is configured by adding an infrared absorbing agent to commonly used ink jet printing ink.
  • infrared absorbers infrared absorbing organic materials such as cyanine compounds and phthalocyanine compounds; or infrared absorbing inorganic materials such as carbon black, tungsten oxide, and lead oxide are known.
  • Patent Document 1 discloses infrared absorbing organic materials such as polymethine compounds, cyanine compounds, phthalocyanine compounds, counterion conjugates of benzenedithiol metal complex anions and cyanine dye cations as infrared absorbers; and Infrared absorbing inorganic materials such as composite tungsten oxide, tin oxide, indium oxide, indium tin oxide (ITO) have been described.
  • organic materials such as polymethine compounds, cyanine compounds, phthalocyanine compounds, counterion conjugates of benzenedithiol metal complex anions and cyanine dye cations
  • ITO indium tin oxide
  • Patent Document 2 describes an ink jet printing ink containing an organic sulfur metal complex compound as an infrared absorber.
  • Patent Document 3 describes an ultraviolet curable ink jet printing ink containing antimony-containing tin oxide as an infrared absorber for tracking or authenticating an object.
  • inkjet printing inks containing an infrared absorbing organic material as an infrared absorber can be formulated with various colors because of the variety of colors of this material, but the problem is that the weather resistance of the ink is low. Has been pointed out.
  • ink-jet printing inks using carbon black as an infrared absorbing inorganic material have better weather resistance than inks containing infrared absorbing organic materials, but carbon black is a pigment having a dark color tone.
  • the color of was limited to black or low brightness.
  • carbon black was used as an infrared absorbing inorganic material, it was not possible to prepare an ink jet printing ink having a variety of colors by mixing with a pigment or dye having another color. In particular, it was impossible to prepare light-colored, particularly light-colored, light-colored inkjet printing inks.
  • the white pigment Even if a white pigment such as titanium oxide or zinc oxide is added to increase the brightness of an inkjet printing ink containing carbon black, the white pigment has the property of reflecting infrared rays, so that the ink absorbs infrared rays. As a result, the function as an anti-counterfeit ink is adversely affected.
  • Ink jet printing inks containing metal oxides such as tungsten oxide and lead oxide as infrared absorbing inorganic materials have high transparency but weak infrared absorbing effect, and sufficient infrared absorbing effect is obtained when ink or printed matter is formed. There is a problem that can not be.
  • ITO indium tin oxide
  • antimony tin oxide is excellent in transparency and weather resistance, but regulations of each industry (for example, chemical substance release and transfer notification system (PRTR), toy safety standards, etc.) Therefore, it has been desired to reduce the amount of antimony. Further, since antimony is also a rare metal, it has been desired to reduce the amount of antimony contained in ATO and thereby reduce the production cost of the ATO-containing ink.
  • PRTR chemical substance release and transfer notification system
  • the present invention provides an inkjet printing ink for preventing counterfeiting that is excellent in infrared absorption, transparency, weather resistance, safety and cost, and can exhibit a variety of colors in combination with colorants of various colors.
  • the purpose is to do.
  • an infrared absorbing ink jet printing ink comprising antimony-doped tin oxide and a vehicle
  • the antimony-doped tin oxide contains tin oxide and antimony oxide and satisfies the following (a) and / or (b):
  • a value obtained by dividing the peak value of the peak around 2 ⁇ 27 ° obtained by X-ray diffraction measurement by the half-value width ( ⁇ 2 ⁇ ), based on the weight of tin oxide, from 0.5 to 10.0% by weight.
  • the degree of crystallinity is 58427 or more.
  • Inkjet printing ink [2] The infrared-absorbing inkjet printing ink according to [1], which is used for preventing forgery. [3] The infrared-absorbing inkjet printing ink according to [1] or [2], wherein, in (a), the half width ( ⁇ 2 ⁇ ) is 0.21 or less. [4] In (b), the content of the antimony oxide is 2.8 to 9.3 wt% based on the weight of the antimony-doped tin oxide, according to [1] or [2] Infrared absorbing ink jet printing ink.
  • [5] The infrared-absorbing inkjet printing ink according to [1] or [2], wherein the crystallinity is 78020 or more.
  • [6] The infrared-absorbing inkjet printing ink according to any one of [1] to [5], wherein the antimony-doped tin oxide has an average particle size of 500 nm or less.
  • [7] The infrared-absorbing inkjet printing ink according to any one of [1] to [6], wherein the inkjet printing ink is a solvent-containing ink or an ultraviolet curable ink.
  • [8] The infrared-absorbing inkjet printing ink according to any one of [1] to [7], further comprising an auxiliary agent.
  • the antimony-doped tin oxide pigment used in the present invention is an inorganic pigment and hardly deteriorates due to light such as ultraviolet rays. Therefore, according to the present invention, an inkjet printing ink having high weather resistance and infrared absorption is obtained. Can do.
  • the inkjet printing ink of the present invention containing an antimony-doped tin oxide pigment has a high brightness and exhibits a light white color. Therefore, when mixed with other colorants, it can provide various colors, particularly bright colors. it can. That is, according to the present invention, it is possible to produce a light-colored infrared-absorbing ink jet printing ink that could not be realized by a conventional infrared-absorbing inorganic material such as carbon black, and therefore, the anti-counterfeiting effect and the design were excellent.
  • Printed matter such as banknotes, securities, and cards can be produced.
  • the production cost of antimony-doped tin oxide pigments is lower than that of tin-doped indium oxide pigments.
  • an antimony-doped tin oxide pigment having a lower content of antimony oxide than conventional antimony-doped tin oxide pigments can be used in ink jet printing inks. Therefore, according to the present invention, it is possible to provide an anti-counterfeit oil-based inkjet printing ink excellent in economic efficiency while complying with safety regulations regarding the amount of antimony used in a wide range of industries.
  • FIG. 1 is a process diagram showing one embodiment of the method of the present invention for producing antimony-doped tin oxide.
  • FIG. 2 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 1 (antimony oxide content: 0.7% by weight, with aerated firing / cooling), and
  • FIG. 4 is a graph showing the results of X-ray diffraction of antimony-doped tin oxide of Example 2 (antimony oxide content: 2.8% by weight, with aerated firing / cooling).
  • FIG. 2 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 1 (antimony oxide content: 0.7% by weight, with aerated firing / cooling)
  • FIG. 4 is a graph showing the results of X-ray diffraction of antimony-doped tin oxide of Example 2 (antimony oxide content: 2.8% by weight, with
  • FIG. 3 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 3 (antimony oxide content: 5.3% by weight, with aerated firing / cooling), and FIG. FIG. 6 is a graph showing the results of X-ray diffraction by antimony-doped tin oxide of Example 4 (antimony oxide content: 9.3 wt%, with aerated firing / cooling).
  • FIG. 4 (A) shows the X-ray diffraction pattern of antimony-doped tin oxide of Example 5 (ventilated and cooled by commercial cooling, cooling rate of 200 [° C./hour] or more, antimony oxide content 2.7% by weight).
  • FIG. 4 (B) shows the results, and FIG.
  • FIG. 4 shows antimony-doped tin oxide of Example 6 (commercially manufactured product by air firing and cooling, cooling rate of less than 200 [° C./hour], antimony oxide content 2.7 wt. %) Shows the result of X-ray diffraction.
  • FIG. 5 is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 7 (aerated firing / cooling of a mixture of metastannic acid and antimony trioxide, antimony oxide content 4.2% by weight).
  • 6A is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Comparative Example 1 (antimony oxide content: 9.9% by weight, commercially available product), and FIG.
  • FIG. 6B is a comparative example. It is a figure which shows the result of the X-ray diffraction of antimony dope tin oxide 2 (antimony oxide content rate 2.8 weight%, aeration baking and no cooling).
  • FIG. 7 is a conceptual diagram schematically showing a method for calculating the crystallinity.
  • FIG. 8 is a graph showing the influence of the antimony oxide content rate on the reflectance at a wavelength of 200 nm to 2500 nm.
  • FIG. 9 is a graph showing the influence of the ventilation firing process on the reflectance at a wavelength of 200 nm to 2500 nm and an antimony oxide content of 2.7 to 2.8% by weight.
  • FIG. 10 is a graph showing the influence of the air-fired process on the reflectance and antimony content of a commercially available antimony-doped tin oxide material at a wavelength of 200 nm to 2500 nm.
  • FIG. 11 is a graph showing the influence of the aeration firing process on the reflectance of a mixture of metastannic acid and antimony trioxide at a wavelength of 200 nm to 2500 nm.
  • FIG. 12 is a graph showing the reflectance of indigo / red / yellow (CMY) process ink at wavelengths of 350 nm to 1500 nm.
  • CY indigo / red / yellow
  • the ink of the present invention includes antimony-doped tin oxide and a vehicle.
  • the ink of the present invention can be used to prevent forgery of printed matter by utilizing the infrared absorptivity of antimony-doped tin oxide.
  • the inks of the present invention are roughly classified into solvent-containing inks and ultraviolet curable inks according to the type of printing machine used for inkjet printing.
  • the solvent-containing ink is an ink containing a solvent, and is sometimes called liquid ink.
  • the solvent-containing ink can be used, for example, in a piezo method, a thermal method, a continuous method, or the like.
  • the solvent-containing ink of the present invention can be used as an organic solvent-containing ink or a water-based ink depending on the type of solvent.
  • the organic solvent-containing ink is an ink containing an organic solvent or a non-volatile solvent, but it may not contain water substantially. “Substantially free of water” means that the content of water in the ink is 0% by mass, or that the ink inevitably contains 1% by mass or less of water.
  • the organic solvent-containing ink is sometimes called oil-based ink in the field of ink jet printing.
  • the water-based ink is an ink containing water as a solvent, and may contain an organic solvent.
  • the water-based ink can be used for home inkjet printers and the like.
  • the water-based ink preferably contains a resin such as a water-soluble resin, a colloidal dispersion resin, and an emulsion resin in addition to water.
  • UV ink ultraviolet curable ink
  • the UV ink contains a photopolymerizable resin, a photopolymerization initiator, and the like.
  • UV ink may be used for the piezo method, thermal method, continuous method, and the like. Since UV ink is excellent in quick-drying property, it is preferable to use it for industrial inkjet printing, high-speed inkjet printing, etc., for example.
  • an ink having the characteristics of both a solvent-containing ink and a UV ink (hereinafter abbreviated as “oil-based / UV combined ink”) may be used as the ink of the present invention.
  • the ink of the present invention may contain not only antimony-doped tin oxide and vehicle but also auxiliary agents and / or colorants.
  • auxiliary agents and / or colorants By controlling the type and content of the vehicle and / or auxiliary agent in the ink, the dispersibility of the antimony-doped tin oxide or the colorant, the drying property of the ink, the weather resistance and the solvent resistance are controlled during ink jet printing. be able to.
  • antimony-doped tin oxide, vehicle, auxiliary agent and colorant contained in the ink of the present invention will be described below.
  • Antimony-doped tin oxide is a substance in which tin oxide is doped with antimony.
  • the antimony-doped tin oxide may be in the form of a pigment containing tin oxide and antimony oxide.
  • the antimony-doped tin oxide of the present invention contains tin oxide and antimony oxide.
  • the content of antimony oxide is about 0.5% by weight or more, about 1.0% by weight or more, about 1.5% by weight or more, about 2.0% by weight or more based on the weight of antimony-doped tin oxide.
  • the content is preferably 2.5% by weight or more, or about 2.8% by weight or more, and the content thereof is about 10.0% by weight or less, about 9.5% by weight or less, and about 9.3% by weight. Or less, about 8.0% or less, about 7.0% or less, about 6.0% or less, about 5.5% or less, about 5.0% or less, about 4.0% or less, It is preferably about 3.5% by weight or less, or about 3.0% by weight or less.
  • the content of antimony oxide is about 2.5 to about 9.3 wt%, about 2.8 to about 9.3 wt%, and about 2.8 to about 5 based on the weight of antimony-doped tin oxide. More preferably, it is 0.5 wt%, or about 2.8 to about 3.5 wt%.
  • Conventional antimony-doped tin oxide needs to contain more than 10% by weight of antimony oxide in order to obtain a transparent conductive material having sufficient conductivity.
  • the antimony dope tin oxide of this invention can reduce the usage-amount of an antimony oxide compared with the conventional antimony dope tin oxide as above-mentioned.
  • antimony oxide is considered to play a role of absorbing infrared rays by entering into the crystal lattice of tin oxide, so if the amount used is simply reduced, the infrared absorption effect is reduced accordingly. Will do.
  • the infrared absorption effect is an effect that occurs when antimony oxide is dissolved (enters) into the crystal lattice of tin oxide, which is the main component. That is, when manufacturing antimony-doped tin oxide, antimony oxide is contained in tin oxide as the main component.
  • antimony oxide not dissolved in the tin oxide crystal lattice is present as an impurity as in conventional antimony-doped tin oxide, it is considered that the impurity did not contribute to the infrared absorption effect.
  • the portion of antimony oxide that does not contribute to the infrared absorption effect remains as a waste material (impurity).
  • the usage-amount of antimony oxide has increased more than necessary. Therefore, the inventors of the present invention have conducted research on this impurity, and as a result, the half-value width ( ⁇ 2 ⁇ ) of antimony-doped tin oxide is wide and / or the crystallinity (the crystallization of the whole material when the material is crystallized).
  • the ratio of the portion is low, antimony oxide as an impurity increases.
  • the half width ( ⁇ 2 ⁇ ) is narrow and / or the degree of crystallinity is high, antimony oxide as an impurity decreases. I found it.
  • examples of means for improving the crystallinity of antimony-doped tin oxide while removing antimony oxide as an impurity include aeration firing described later and vaporization purification described later.
  • the present invention provides an antimony-doped tin oxide having a narrowed half width ( ⁇ 2 ⁇ ) and / or an increased crystallinity in order to minimize the amount of antimony oxide used.
  • the half width ( ⁇ 2 ⁇ ) is narrowed or the crystallinity is increased, impurities are reduced, and antimony oxide can be effectively dissolved and the infrared absorption effect can be improved.
  • a commercially available X-ray diffractometer may be used to select an arbitrary scan speed, but the number of integrations is set to one.
  • the crystallinity of antimony-doped tin oxide is 58427 or more, particularly 78020 or more, impurities can be further reduced, and antimony oxide can be effectively solid-solved to further improve the infrared absorption effect. Therefore, according to the present invention, the infrared absorption effect can be sufficiently exhibited while reducing the amount of antimony oxide used.
  • the antimony-doped tin oxide is dissolved in a varnish containing an acrylic polymer and silicone, applied to a substrate, dried, and a solid content weight ratio of antimony-doped tin oxide having a thickness of 70 ⁇ m and about 11.6% by weight.
  • the solar reflectance of this coating film is measured according to JIS K5602 when a coating film having a thickness of 380 is formed, the average reflectance in the wavelength range of 780 to 1100 nm is subtracted from the average reflectance in the wavelength range of 380 to 780 nm.
  • the obtained value is preferably about 3.00% or more.
  • the antimony-doped tin oxide Visible light absorption is relatively low, that is, the visible light transparency of antimony-doped tin oxide is relatively high. Therefore, antimony-doped tin oxide can be used in a wide range of applications without being restricted by the color exhibited by antimony-doped tin oxide.
  • the value obtained by subtracting the average reflectance in the wavelength range of 780 to 1100 nm from the average reflectance in the wavelength range of 380 to 780 nm is about 4.80% or more, or about 4.85% or more. And more preferably about 99% or less, about 90% or less, or about 80% or less.
  • the infrared absorbing pigment used in the present invention may be an infrared absorbing pigment made of the above antimony-doped tin oxide.
  • the action and effect of the antimony-doped tin oxide described above can be realized by the infrared absorbing pigment. For this reason, while reducing the usage-amount of antimony oxide, the infrared absorption effect can fully be exhibited, and the high quality infrared absorption pigment which followed the predetermined safety standard etc. can be provided.
  • the printed matter of the present invention is a printed matter comprising a printing part printed with the above infrared absorbing ink.
  • the printed matter of the present invention since the above-described infrared absorbing ink is used to provide a printing unit on which characters, figures, and the like are printed, the printed matter has a sufficient effect of absorbing infrared rays while reducing the amount of antimony oxide used. be able to. In addition to providing high-quality printed materials, it is possible to provide printed materials that are environmentally friendly.
  • the printed matter of the present invention has a peak reflectance value of 28.776% or less in the infrared wavelength region of 780 to 1100 nm when the solid content weight ratio of the antimony-doped tin oxide contained in the printed part is 11.6% by weight. It is preferable that
  • the antimony-doped tin oxide of the present invention can be produced, for example, by the following method.
  • the method for producing antimony-doped tin oxide of the present invention includes an aeration firing step of firing the antimony-doped tin oxide raw material under aeration.
  • aeration firing or cooling is performed not only by firing or cooling while circulating a firing or cooling atmosphere, but also by firing or cooling in an open space (hereinafter also referred to as “open system”) that does not block outside air. Including.
  • the method for producing antimony-doped tin oxide of the present invention can narrow the half-value width of antimony-doped tin oxide from that of the conventional product and / or increase the crystallinity of antimony-doped tin oxide than that of the conventional product.
  • the method for producing antimony-doped tin oxide of the present invention comprises producing an antimony-doped tin oxide capable of sufficiently exhibiting the infrared absorption effect while reducing the amount of antimony oxide used by including an aeration firing step. Can do.
  • the antimony-doped tin oxide obtained by the production method of the present invention has a narrow half-value width and / or a high crystallinity, which is considered to be caused by a small amount of impurity antimony oxide. .
  • extra antimony oxide is present in the antimony-doped tin oxide, it is considered that X-rays are scattered during measurement by X-ray diffraction and the peak is lowered.
  • a method for producing antimony-doped tin oxide including at least an aeration firing step and a subsequent aeration cooling step is referred to as a “vaporization purification method”.
  • the production method of the present invention can appropriately maintain the crystal structure while removing a part thereof by the aeration firing step, so that a high infrared ray Absorption effect can be maintained. For this reason, a high infrared absorption effect can be obtained while reducing the amount of antimony oxide used by passing through the aeration firing step.
  • tin compound examples include metastannic acid, sodium stannate trihydrate, niobium tritin, fenbutane oxide, tin oxide, and tin hydride.
  • antimony compound examples include antimony oxide, indium antimonide, and stibine.
  • the method for producing antimony-doped tin oxide of the present invention may include the following steps after the aeration firing step: A ventilation cooling step of cooling the obtained antimony-doped tin oxide under ventilation; and / or a cooling step of cooling the obtained antimony-doped tin oxide at a cooling rate of 200 [° C./hour] or more.
  • the aeration cooling process can be performed, for example, by sending air into the furnace (specifically, it is possible to set the number of hours and how many times it is cooled by setting the cooling device).
  • the air cooling process may be performed in an earlier time (for example, about 5 hours). For this reason, the ventilation cooling process is more actively cooling than natural cooling.
  • the cooling rate is preferably 200 [° C./hour] or more, 215 [° C./hour] or more, or 216 [° C./hour] or more.
  • the manufacturing method of the antimony dope tin oxide of this invention includes the following mixing processes and a closed baking process before a ventilation baking process: A mixing step of mixing a tin compound and an antimony compound to obtain a mixture; and a closed baking step of firing the mixture in a closed system to obtain an antimony-doped tin oxide raw material.
  • the method for producing antimony-doped tin oxide of the present invention preferably includes a closed cooling step of cooling the antimony-doped tin oxide raw material in a closed system between the closed baking step and the aeration baking step.
  • the antimony-doped tin oxide raw material satisfying the above (i) to (iii) can be obtained by the mixing step, the closed firing step, and the closed cooling step, respectively.
  • the content of antimony trioxide is preferably 10% by weight, but may be about 5 to 20% by weight.
  • Step S102 In this step, the material mixed in the previous raw material mixing step (step S100) is dried at 320 ° C. Thereby, the water used when mixing materials in the previous raw material mixing step (step S100) can be removed.
  • Step S104 the material dried in the first drying step (step S102) is pulverized. Specifically, the dried material is pulverized into a powder by a fine pulverizer.
  • Step S106 the material pulverized in the first pulverization step (step S104) is baked. Specifically, the material pulverized in the first pulverization step (step S104) is fired at 1000 to 1300 ° C. for 1 hour or longer in a closed system. In the closed baking process, since baking is performed in a closed system, the content of antimony oxide (solid solution ratio) is maintained at about 10% by weight.
  • Step S107 the material fired in the previous closed firing step (step S106) is cooled. Specifically, cooling is started simultaneously with the end of the closed firing step, and the fired material is cooled in a closed system. Thereby, an antimony-doped tin oxide raw material in which tin (Sn) and antimony (Sb) are combined is generated. The antimony-doped tin oxide raw material is generated through a closed firing process (step S106) and a closed cooling process (step S107). In addition, although natural cooling may be sufficient as cooling, you may cool the baked material under ventilation similarly to the ventilation cooling process mentioned later.
  • this step may be performed to pulverize the material cooled in the previous closed cooling step (step S107).
  • the fired material can be pulverized using a bead mill while using water as a medium until the particle diameter (median diameter in the laser diffraction scattering method) reaches about 100 nm.
  • the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
  • Step S110 the material pulverized in the first pulverization step (step S108) may be dried by heating to 320 ° C. Thereby, the water used when the material is pulverized in the first fine pulverization step (step S108) can be removed.
  • the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
  • this step may be performed to pulverize the material dried in the second drying step (step S110). Specifically, the dried material can be pulverized with a fine pulverizer. In the case where this process is omitted, the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
  • Step S114 the material pulverized in the second pulverization step (step S112) is baked. Specifically, the material pulverized in the second pulverization step (step S112) is fired in a furnace under ventilation (a state in which ventilation is maintained inside the furnace).
  • the firing temperature may be 1000 ° C. or more, 1050 ° C. or more, 1100 ° C. or more, or 1150 ° C. or more, and the firing temperature may be 1300 ° C. or less, 1250 ° C. or less, or 1200 ° C. or less.
  • the firing time may be 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, 6 hours or more, 7 hours or more, or 8 hours or more. It may be 12 hours or less, 11 hours or less, 10 hours or less, or 9 hours or less.
  • Step S116 In this step, the antimony-doped tin oxide fired in the previous aeration firing step (step S114) is cooled under ventilation.
  • cooling is started simultaneously with the end of the aeration firing process, and the temperature in the firing furnace is set to room temperature (for example, about 20 to 25 ° C.) within 300 minutes. Cooling.
  • the aeration cooling step is performed under aeration.
  • an aeration cooling process (step S116) can be performed after an aeration baking process (step S114).
  • Step S118 the purified material cooled in the previous air cooling process (step S116) is pulverized. Specifically, using water as a medium, the purified material is pulverized using a bead mill until the particle size (median diameter in the laser diffraction scattering method) becomes about 100 nm.
  • Step S120 the impurities of the material whose particle size has been adjusted in the second fine pulverization step (step S118) are removed by washing with water.
  • Impurities are minute amounts of electrolyte (for example, sodium (Na), potassium (K), etc.) contained in the raw material, and whether or not the impurities are sufficiently removed can be confirmed by conductivity.
  • Step S122 the material cleaned in the previous cleaning step (step S120) is dried by heating to 145 ° C. Thereby, while being able to remove the water used when wash
  • Step S124 the material dried in the third drying step (step S122) is pulverized. Specifically, the dried material is pulverized with a fine pulverizer so that the particle diameter (median diameter by laser diffraction scattering method) is about several tens of nm to 100 ⁇ m.
  • antimony dope tin oxide of this invention is manufactured by passing through each said process.
  • the vehicle is a medium in which antimony-doped tin oxide and / or a colorant is dispersed and adhered to a substrate.
  • the ink of the present invention may contain a known vehicle component used for printing. Since the ink of the present invention can be formed as a solvent-containing ink or a UV ink, a vehicle suitable for the solvent-containing ink and a vehicle suitable for the UV ink will be described below.
  • Vehicles suitable for the solvent-containing ink are roughly classified into organic solvent-containing ink vehicles and water-based ink vehicles, and these vehicles will be described below.
  • Vehicle for organic solvent-containing ink As a vehicle suitable for the organic solvent-containing ink, for example, a resin, an organic solvent, or the like can be used alone or in combination. The resin and organic solvent will be described below.
  • organic solvent-containing inks are known to be used for printing These resins may be included.
  • the resin examples include vinyl resins such as vinyl chloride and vinyl acetate, acrylic resins, acrylamide resins, alkyd resins, styrene resins, polyester resins, polyurethane resins, silicone resins, fluorine resins, epoxy resins, phenoxy resins, polyolefin resins, and phenols.
  • These resins may be used alone or in combination of two or more.
  • a copolymer resin obtained by copolymerizing a plurality of monomers constituting these resins may be used. These resins may be the same as the dispersant described later.
  • vinyl resin acrylic resin, alkyd resin, polyester resin, polyurethane resin, silicone resin, fluororesin, epoxy resin, phenoxy resin, polyolefin resin, phenol resin are used for piezo ink jet printing.
  • Novolak resins rosin-modified phenolic resins, amino resins such as melamine and benzoguanamine, polyamide resins, polyester polyamide resins, cellulose diacetate, cellulose triacetate, nitrocellulose, cellulose nitrate, cellulose propionate, cellulose acetate butyrate, etc.
  • alkyd resin acrylic resin, acrylic resin, acrylamide resin, polyvinyl pyrrolidone resin and the like are preferable.
  • a resin used for continuous ink jet a resin that is soluble in the organic solvent used and has good compatibility with the conductivity imparting agent described later may be used.
  • acrylic resin, styrene / acrylic copolymer resin, silicone resin, phenolic resin, terpene / phenolic resin, epoxy resin, modified epoxy resin, polyester resin, cellulose resin (for example, nitrocellulose), vinyl chloride / Vinyl acetate copolymer resins, petroleum resins, rosin esters and the like are preferable.
  • ⁇ Organic solvent ⁇ Select the solvent used in the ink of the present invention in consideration of the boiling point of the solvent, the compatibility of the solvent and the resin, the compatibility of the solvent and the auxiliary agent, the drying property of the ink, the permeability to the printing medium, etc. Good.
  • organic solvents examples include alcohols (eg, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol).
  • alcohols eg, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol).
  • organic solvents examples include alcohols, polyhydric alcohols, ethers, amines, amides, heterocyclics, sulfoxides, sulfones, urea, acetonitrile are used as organic solvents for piezo ink jet printing. Acetone and the like are preferable.
  • organic solvent used for thermal ink jet printing alcohols, particularly alkyl alcohols having 1 to 10 carbon atoms, hydrocarbon solvents, ethers, ketones, esters and the like are preferable.
  • organic solvent used in the continuous ink jet an organic solvent having excellent compatibility with the resin used and / or the conductivity imparting agent described later may be used.
  • methyl ethyl ketone, methanol or ethanol is preferable.
  • Vehicle suitable for water-based ink includes water.
  • the vehicle suitable for the water-based ink may contain an organic solvent, a resin, or the like alone or in combination.
  • the water, organic solvent and resin will be described below.
  • Water is an essential component of water-based ink. Water can form an aqueous dispersion with antimony-doped tin oxide, resin, organic solvent, colorant, adjuvant and the like. Further, by using water as the vehicle, it is possible to suppress the risk of fire, the toxicity of organic solvents, the amount of hydrocarbon emissions, and the amount of residual organic solvent in the coating film during printing.
  • water used as a vehicle for water-based ink examples include pure water, deionized water, distilled water, drinking water, tap water, seawater, groundwater, agricultural water, industrial water, soft water, hard water, light water, and heavy water. It is done.
  • Organic solvents described as vehicles suitable for organic solvent-containing inks may be added to the aqueous ink.
  • an organic solvent such as ethanol, isopropyl alcohol, ethylene glycol, diethylene glycol or the like is used in combination with water.
  • Resins described as vehicles suitable for organic solvent-containing inks may be added to the water-based ink.
  • the resin contained in the water-based ink plays a different role during ink jet printing and after ink jet printing. Specifically, the resin contained in the water-based ink disperses antimony-doped tin oxide in water at the time of inkjet printing, whereas after ink-jet printing, the antimony-doped tin oxide is fixed to the substrate to be printed on the water. Prevent elution. Therefore, the resin contained in the water-based ink is preferably in the form of a water-soluble resin, a colloidal dispersion resin, or an emulsion resin. These forms will be described below.
  • Water-soluble resin is a resin that can be dissolved in water to form an aqueous solution. Therefore, the structure of the water-soluble resin is preferably designed so as to have a hydrophilic portion.
  • the resin having a hydrophilic portion is a nonionic resin having a hydrophilic group such as a hydroxyl group, an ether group, or an amide group; a hydrophilic group such as a carboxyl group, a sulfonic acid group, or a phosphate ester group is added to ammonia or an amine.
  • An anionic resin neutralized with an alkaline substance such as a cation resin or a cationic resin in which a hydrophilic group such as a primary, secondary, tertiary or quaternary amine group is neutralized with an acid such as acetic acid. .
  • the alkaline substance used for neutralization volatilizes with water, so that the resin before neutralization remains in the dried coating film.
  • the acid used for neutralization is volatilized with water, so that the resin before neutralization remains in the dried coating film.
  • a hydrophilic portion is incorporated into the resin so that the resin becomes a nonionic, anionic or cationic resin, and the resin
  • the resin may be made aqueous.
  • an aqueous dispersion of an aqueous resin is transparent.
  • the colloidal dispersion resin is a resin dispersion in which the resin is dispersed in a colloidal form in water.
  • a colloidal dispersion resin is a so-called semi-dissolved state in which a lipophilic portion of the resin is surrounded by a hydrophilic portion in water. Therefore, the resin in the colloidal dispersion is stably dispersed by Brownian motion.
  • colloidal dispersion resins have a resin particle size of about 0.01 ⁇ m to about 0.1 ⁇ m.
  • the colloidal dispersion resin has an intermediate property between the water-soluble resin and the emulsion resin, and therefore has an excellent balance between printability and physical properties of the coating film.
  • a colloidal dispersion resin is obtained by ionizing a part of a resin in the same manner as an anionic or cationic resin when polymerization is performed in an aqueous solution containing an emulsifier such as a surfactant. It is also preferable to obtain a colloidal dispersion resin by using alcohol together with water during polymerization.
  • colloidal dispersion resin for example, an aqueous dispersion such as urethane resin or acrylic resin can be used.
  • Emulsion resin is a resin dispersion obtained by polymerization in an aqueous solution in which an emulsifier such as a surfactant is present.
  • the resin in the dispersion is generally in the form of particles, and is stably dispersed in the aqueous solution by electrical repulsion between the particles.
  • an emulsion resin has a resin particle size of about 0.1 ⁇ m to about 1 ⁇ m in water when emulsion polymerization is employed, and has a resin particle size of about 1 ⁇ m to about 10 ⁇ m in water when suspension polymerization is employed.
  • the emulsion resin is generally cloudy.
  • an emulsion resin can increase the solid content of an ink as compared with a water-soluble resin, and thus it is easy to control drying properties and physical properties of a coating film.
  • water dispersions such as a urethane resin and an acrylic resin, can be used, for example.
  • the resins listed above can be used alone or in combination of two or more as a vehicle suitable for aqueous ink.
  • Vehicle suitable for UV ink examples include photopolymerizable resins such as monomers, oligomers, and binder polymers; photopolymerization initiators and the like. A monomer and an oligomer, a binder polymer, and a photoinitiator are demonstrated below.
  • the monomer may be a compound having an ethylenically unsaturated bond conventionally used for photopolymerization. Moreover, an oligomer is obtained by oligomerizing the compound which has an ethylenically unsaturated bond.
  • Oligomers are resins that govern the basic physical properties of UV ink.
  • the monomer mainly acts as a diluent and can be used to adjust properties such as ink viscosity, curability and adhesion.
  • Examples of compounds having an ethylenically unsaturated bond include (meth) acrylic acid compounds; maleic acid compounds; urethane-based, epoxy-based, polyester-based, polyol-based, vegetable oil-based compounds and the like. Examples include compounds having a heavy bond.
  • a monofunctional acrylate and / or a bifunctional acrylate may be used as the compound having an ethylenically unsaturated bond.
  • Examples of monofunctional acrylates include caprolactone acrylate, isodecyl acrylate, isooctyl acrylate, isomyristyl acrylate, isostearyl acrylate, 2-ethylhexyl-diglycol diacrylate, 2-hydroxybutyl acrylate, and 2-acryloyloxyethyl hexahydro.
  • bifunctional acrylate examples include hydroxypivalate neopentyl glycol diacrylate, alkoxylated hexanediol diacrylate, polytetramethylene glycol diacrylate, trimethylolpropane acrylate benzoate, diethylene glycol diacrylate, triethylene glycol diacrylate, Tetraethylene glycol diacrylate, polyethylene glycol (200) diacrylate, polyethylene glycol (400) diacrylate, polyethylene glycol (600) diacrylate, neopentyl glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butane Diol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonane Over diacrylate, dimethylol - diacrylate, and bisphenol A diacrylate.
  • oligomer it is preferable to use an oligomer such as urethane acrylate, polyester acrylate, epoxy acrylate, silicon acrylate, polybutadiene acrylate, or the like.
  • the binder polymer is a resin that can fix the colorant to the printing material.
  • the weight average molecular weight of the binder polymer is preferably about 1000 to about 3,000,000.
  • binder polymer examples include polyester, diallyl phthalate polymer, poly (meth) acrylic acid, poly (meth) acrylic ester, polyester-melamine polymer, styrene- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid- Alkyl (meth) acrylate copolymer, styrene-maleic acid copolymer, styrene-maleic acid-alkyl (meth) acrylate copolymer, styrene-maleic acid half ester copolymer, vinylnaphthalene- (meth) acrylic acid copolymer, vinylnaphthalene-maleic acid copolymer, And salts thereof.
  • the monomers, oligomers and binder polymers listed above can be used alone or in combination of two or more.
  • the photopolymerization initiator is a compound that generates radicals such as active oxygen when irradiated with ultraviolet rays.
  • the UV ink of the present invention may contain a known photopolymerization initiator used for printing.
  • photopolymerization initiator examples include, but are not limited to, acetophenone, ⁇ -aminoacetophenone, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, 2-hydroxy-2-methyl-1-phenylpropane -1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-methylpropyl) ) Ketone, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propane-1- ON, 2-benzyl-2-dimethylamino-1- (4-mol Acetophenones such as linophenyl) -butanone; beizoin, beizoin methyl ether, benzo
  • a photopolymerization initiation assistant such as ethyl 4-dimethylaminobenzoate or isoamyl 4-dimethylaminobenzoate may be used in combination with the photopolymerization initiator.
  • the resin, monomer, oligomer or binder polymer described above in the section of vehicle suitable for solvent-containing ink and vehicle suitable for UV ink is grafted, self-dispersed or encapsulated with antimony-doped tin oxide or colorant. Can be used to
  • the ink of the present invention may contain a known auxiliary agent used for printing.
  • a auxiliary agent for example, a dispersant, a conductivity imparting agent, an antifoaming agent, a water solubilizer, a penetrating agent, a drying inhibitor, a pH adjuster, an antiseptic / antifungal agent, an oxygen scavenger, an extender pigment, and a crosslinking agent And other additives.
  • auxiliary agent for example, a dispersant, a conductivity imparting agent, an antifoaming agent, a water solubilizer, a penetrating agent, a drying inhibitor, a pH adjuster, an antiseptic / antifungal agent, an oxygen scavenger, an extender pigment, and a crosslinking agent And other additives.
  • the dispersant is an auxiliary agent for improving the leveling property, stability, and dispersibility of the ink. Specifically, the dispersant improves the wetting of the antimony-doped tin oxide or colorant by the vehicle component, or adsorbs the antimony-doped tin oxide or colorant to the vehicle component and / or disperses in the ink. It can be used to prevent reagglomeration of the antimony doped tin oxide or colorant.
  • dispersant examples include a low molecular dispersant, a polymer dispersant, a pigment derivative, and a coupling agent.
  • the low molecular weight dispersant is a low molecular weight substance having a portion having high orientation or adsorptivity to antimony-doped tin oxide or a colorant and a portion having high affinity with a vehicle, and is also called a surfactant or a wetting agent.
  • low molecular weight dispersant examples include soap, ⁇ -sulfo fatty acid ester salt (MES), alkylbenzene sulfonate (ABS), linear alkylbenzene sulfonate (LAS), alkyl sulfate (AS), and alkyl ether sulfate.
  • MES ⁇ -sulfo fatty acid ester salt
  • ABS alkylbenzene sulfonate
  • LAS linear alkylbenzene sulfonate
  • AS alkyl sulfate
  • alkyl ether sulfate examples include soap, ⁇ -sulfo fatty acid ester salt (MES), alkylbenzene sulfonate (ABS), linear alkylbenzene sulfonate (LAS), alkyl sulfate (AS), and alkyl ether sulfate.
  • Anionic compounds such as salts (AES) and alkylsulfuric acid triethanolamine; cationic compounds such as alkyltrimethylammonium salts, dialkyldimethylammonium chloride and alkylpyridinium chloride; amphoteric compounds such as amino acids, alkylcarboxybetaines, sulfobetaines and lecithins; Nonionic compounds such as fatty acid diethanolamide, polyoxyethylene alkyl ether (AE), and polyoxyethylene alkyl phenyl ether (APE) are exemplified.
  • the polymer dispersant is a high molecular weight substance having an anchor group adsorbed on the surface of antimony-doped tin oxide or a colorant and a barrier group that exhibits a steric hindrance effect in the vehicle.
  • the polymer dispersant can be adsorbed at multiple points with antimony-doped tin oxide or a colorant.
  • the polymer dispersant has a higher barrier group than the low molecular dispersant, the dispersion stability of the antimony-doped tin oxide or the colorant is improved.
  • a polymer having a portion corresponding to an anchor group and a barrier group may be arbitrarily used.
  • a non-aqueous polymer dispersant such as a partial alkyl ester of polyacrylic acid or a polyalkylene polyamine for the organic solvent-containing ink.
  • Water-based inks include naphthalene sulfonate formalin condensate, polystyrene sulfonate, polyacrylate, copolymer salts of vinyl compounds and carboxylic acid-containing monomers, and water-based polymers such as carboxymethyl cellulose. It is preferred to use a dispersant.
  • the pigment derivative is obtained by introducing a polar group such as a carboxyl group, a sulfone group, or a tertiary amino group into the pigment skeleton.
  • a polar group such as a carboxyl group, a sulfone group, or a tertiary amino group.
  • the pigment skeleton portion of the pigment derivative is easily adsorbed with the corresponding pigment, while the introduced polar group is excellent in affinity with the vehicle or other dispersant.
  • the pigment derivative can be synthesized by a known method according to the skeleton of the pigment contained in the ink of the present invention.
  • dialkylaminomethylene copper phthalocyanine, amine salt copper phthalocyanine, and the like are used to form inks that contain phthalocyanine as a colorant.
  • the coupling agent is a material that adsorbs to the surface of the antimony-doped tin oxide or the colorant or chemically bonds to improve the adhesion between the antimony-doped tin oxide or the colorant and the vehicle.
  • the coupling agent include a silane coupling agent and a titanate coupling agent.
  • the silane coupling agent is an organosilicon compound having in its molecule an organic functional group that reacts with an organic material and a hydrolyzable group that reacts with an inorganic material.
  • organic functional group include a vinyl group, an epoxy group, a methacryloxy group, and an amino group
  • hydrolyzable group include an alkoxy group, a chloro group, and an acetoxy group.
  • the silane coupling agent is an antimony-doped tin oxide or the colorant and the vehicle. Adhesiveness with a component can be improved.
  • the hydrolyzable group is an alkoxy group such as a methoxy group or an ethoxy group
  • a silanol group obtained by hydrolysis of the alkoxy group self-condenses or reacts with a hydroxyl group of a component other than a silane coupling agent.
  • the silane coupling agent is preferably used for improving the dispersibility of a colorant having a hydroxyl group on the surface (for example, an inorganic pigment containing glass, silica, alumina, etc.).
  • examples of the silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Glycidoxypropyltrimethoxysilane, p-styryltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane , 3-aminopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane, and the like.
  • the titanate coupling agent is an organic titanium compound having in its molecule an organic functional group that reacts with an organic material and a hydrolyzable group that reacts with an inorganic material. Also, the organic functional groups and hydrolyzable groups described for the silane coupling agent can be incorporated into the titanate coupling agent.
  • the titanate coupling agent since the titanate coupling agent has low solubility in water, it is preferable to use the titanate coupling agent by dissolving it in an organic solvent.
  • the conductivity imparting agent is an additive that imparts conductivity to the ink.
  • the ink of the present invention may contain a conductivity imparting agent known in the printing field.
  • Examples of the conductivity imparting agent include alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as magnesium and calcium; and simple ammonium salts or quaternary ammonium salts. These salts are halogenated compounds (eg chloride, bromide, iodide, fluoride, etc.), perchlorate, nitrate, thiocyanate, formate, acetate, sulfate, sulfonate, propionate , Trifluoroacetate, triflate (trifluoro-methanesulfonate), hexafluorophosphate (eg potassium hexafluorophosphate), hexafluoro-antimonate, tetrafluoroborate, picrate and It may be a carboxylate or the like.
  • alkali metal salts such as lithium, sodium and potassium
  • alkaline earth metal salts such as magnesium and calcium
  • the conductivity imparting agents listed above can be used alone or in combination of two or more.
  • the conductivity imparting agent is preferably used in continuous ink jet printing.
  • An antifoaming agent is an auxiliary agent used to suppress the generation of bubbles in the ink or to reduce bubbles generated in the ink.
  • antifoaming agents can be used during ink manufacture, storage, circulation, transfer or printing.
  • a vehicle suitable for water-based ink is more likely to foam than a vehicle suitable for ink containing an organic solvent. Therefore, it is preferable to add an antifoaming agent to the water-based ink in order to suppress foaming of the water-based ink.
  • antifoaming agent for example, silicone compounds, polysiloxanes, polyglycols, polyalkoxy compounds and the like can be used alone or in combination.
  • examples of the antifoaming agent include BYK (registered trademark) -019, BYK (registered trademark) -022, BYK (registered trademark) -024, and BYK (registered trademark) -065 manufactured by Byk-Chemie. , And BYK®-088; Surfinol DF-37, Surfinol DF-75, Surfinol DF-110D, and Surfinol DF-210 manufactured by Nissin Chemical Industry; US Air Products and Examples include EnviroGem (registered trademark) AE03 manufactured by Chemicals, Inc., and FAMEX 835 commercially available from Evonik-Tego-Chemie, Germany.
  • the water-solubilizing agent is an auxiliary agent for making the antimony-doped tin oxide, the colorant, or the vehicle component water-soluble, and is generally used in the production of water-based inks.
  • a water-soluble agent suitable for antimony-doped tin oxide or colorant among the above-mentioned dispersants, a portion having high orientation or adsorptivity to antimony-doped tin oxide or colorant in the molecule, and affinity with water Those having a high portion may be used.
  • the water-solubilizing agent for making the vehicle component water-soluble may be an emulsifier such as a surfactant as described for the colloidal dispersion resin or the emulsion resin.
  • the penetrating agent is an additive for causing ink to penetrate into the printing medium and fixing it.
  • penetrants are used to improve the wettability and penetrability of ink with respect to a printing medium, and are classified into a printing medium dissolving type, a surface tension reducing type, and an evaporation combined type.
  • the printing medium-dissolving penetrant is a penetrant having a property of dissolving the surface of the printing medium.
  • Examples of the printing medium-dissolving penetrant include potassium hydroxide.
  • the surface tension reducing penetrant is a penetrant having the property of reducing the surface tension of the ink.
  • the above-described surfactants or organic solvents can be used.
  • the evaporation combined type penetrant is a penetrant that lowers the ink surface tension and suppresses ink bleeding by evaporation.
  • the evaporation combined use type penetrant is typified by a water-soluble organic solvent having a relatively low boiling point, and may be, for example, ethanol or isopropanol.
  • the anti-drying agent is an additive for preventing clogging of a nozzle of a printing machine head.
  • the anti-drying agent may be a hygroscopic compound.
  • the drying inhibitor include diethylene glycol, polyethylene glycol, glycerin, N-methyl-2-pyrrolidone and the like.
  • the pH adjuster is an additive for controlling the pH of the ink within a predetermined range.
  • the pH adjuster include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids such as acetic acid and benzoic acid; hydroxides such as sodium hydroxide and potassium hydroxide; halides such as ammonium chloride; sodium sulfate and the like. Sulfate such as potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, etc .; phosphates such as sodium hydrogen phosphate and sodium dihydrogen phosphate; organic acid salts such as ammonium acetate and sodium benzoate; tributylamine, And organic amines such as triethanolamine.
  • a pH adjuster having a buffering action is preferable, and potassium hydrogen carbonate or potassium carbonate is more preferable.
  • the pH of the ink obtained by adding the pH adjuster is preferably 6 to 10, and more preferably 7 to 10.
  • An antiseptic or fungicide is an additive for suppressing the generation or growth of microorganisms in the ink.
  • preservatives or fungicides can suppress the growth of microorganisms in the ink, and prevent a decrease in pH of the ink, sedimentation of contents in the ink, discoloration of the ink, clogging of the nozzle, and the like.
  • antiseptic or fungicide examples include sodium benzoate, potassium sorbitanate, thiabendazole, benzimidazole, siabendazole, thiazosulfamide, pyridine thiol oxide, and the like. Further, it is preferable to contain a preservative or a fungicide in the water-based ink.
  • An oxygen scavenger is an additive used to remove dissolved oxygen in the ink.
  • the oxygen scavenger include organic oxygen scavengers such as ascorbic acid, catechol, erythorbic acid, pyrogallol, hydroquinone, reducing sugars, and tannic acid; and organic acid salts such as sodium ascorbate.
  • the extender pigment is a pigment used to adjust the viscosity of the ink, and has a low refractive index and low coloring power. Therefore, the extender pigment is preferably used when the viscosity of the ink is high and wiping is difficult.
  • the ink of the present invention may contain a known extender pigment used for printing.
  • extender pigments examples include barium sulfate, calcium carbonate, calcium sulfate, kaolin, talc, silica, corn starch, titanium dioxide, and mixtures thereof.
  • the crosslinking agent is an auxiliary agent necessary for chemically bonding a plurality of substances, and is also called a gelling agent or a curing agent.
  • a gelling agent for cross-linking, the chain polymer changes to a shaded structure; the formation of a urethane bond by the reaction of an isocyanate group and a hydroxyl group; the formation of a secondary amine by the reaction of a primary amine and an epoxy group, followed by a secondary amine And reaction of epoxy group.
  • a crosslinking agent a polyisocyanate compound, a polyol compound, an epoxy compound, an amine compound, an oxazoline compound, a formalin compound, a divinyl compound, a melamine compound, or the like can be used alone or in combination.
  • isocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, tetramethylxylylene diisocyanate, polymethylene polyphenyl polyisocyanate; trimethylolpropane-tris- ⁇ -Aziridine compounds such as N-aziridinylpropionate and pentaerythritol propane-tris- ⁇ -N-aziridinylpropionate; epoxy compounds such as glycerol polyglycidyl ether and trimethylolpropane polyglycidyl ether; aluminum triiso Propoxide, mono-sec-butoxyaluminum diisopropoxide, aluminum tri-sec-butoxide, ethyl acetate
  • Aluminum alcoholates such as cetoacetate aluminum diisopropoxide and aluminum trisethylacetoacetate
  • a drying retarder In the ink of the present invention, a drying retarder; an antioxidant; an anti-reduction agent; a leveling agent; an anti-set-off agent; a drying oil / semi-drying oil; an oxidation polymerization catalyst; a wax; a nonionic surfactant, etc.
  • the adjuvants listed above can be used alone or in combination of two or more.
  • a colorant is a component that colors ink.
  • the ink of the present invention may contain a known colorant used for printing.
  • Examples of the colorant include inorganic pigments, organic pigments, dyes, organic pigments for toners, and the like.
  • inorganic pigments include chrome yellow, zinc yellow, bitumen, barium sulfate, cadmium red, titanium oxide, zinc white, alumina white, calcium carbonate, ultramarine, graphite, aluminum powder, bengara, barium ferrite, copper and zinc alloy. Examples thereof include powder, glass powder, and carbon black.
  • organic pigments examples include soluble azo pigments such as ⁇ -naphthol pigments, ⁇ -oxynaphthoic acid pigments, ⁇ -oxynaphthoic acid anilide pigments, acetoacetate anilide pigments, and pyrazolone pigments; ⁇ -naphthol pigments Insoluble azo pigments such as pigments, ⁇ -oxynaphthoic acid anilide pigments, acetoacetanilide monoazos, acetoacetanilide disazos, pyrazolone pigments; copper phthalocyanine blue, halogenated (eg chlorine or brominated) copper phthalocyanine blue, Phthalocyanine pigments such as sulfonated copper phthalocyanine blue and metal-free phthalocyanine; quinacridone pigments, dioxazine pigments, selenium pigments (pyrantron, anthrone, indanthrone, anthrapyrimidine
  • the dye examples include azo dyes, complex salts of azo dyes and chromium, anthraquinone dyes, indigo dyes, phthalocyanine dyes, xanthene dyes, thiazine dyes, and the like. Moreover, it is preferable to mix
  • the organic pigment includes a lake pigment.
  • a lake pigment is obtained by dyeing a dye on an inorganic pigment or extender, and the lake pigment also has water insolubility according to the water insolubility of the inorganic pigment or extender.
  • lake pigments include the fanal (FANAL (registered trademark)) color series available from BASF.
  • the organic dye for toner is an organic dye that can be contained in the toner, and has charging properties in addition to the general characteristics of the colorant.
  • a dye or an organic pigment may be used, but a dye is preferred from the viewpoint of transparency and coloring power.
  • CI solvent dye examples include C.I. I. Solvent black 27 or 29, C.I. I. Solvent black 7, C.I. I. Solvent black 35 or 45, C.I. I. Solvent blue 70, C.I. I. And solvent red 124.
  • CI pigment examples include Pigment Blue 60, Pigment Blue 15 and the like.
  • the functional material may be inorganic or organic, and may be an additive that imparts functionality to the ink of the present invention.
  • chromic materials examples include chromic materials, magnetic pigments, ultraviolet absorbers, optically variable materials, pearl pigments, and the like.
  • a chromic material is a material that develops a color in response to energy such as light, heat, electricity, and fades when the energy is blocked or lost.
  • the chromic material include fluorescent pigments, excited luminescent pigments, temperature-sensitive color changing materials, photochromic materials, and stress luminescent materials.
  • the colorants listed above can be used alone or in combination of two or more.
  • the ink of the present invention may have a solids content of about 40 wt% or less, about 30 wt% or less, about 20 wt% or less, about 10 wt% or less, or about 5 wt% or less. It may be 0.005% or more, about 0.01% or more, about 0.05% or more, or about 0.1% or more.
  • the mixing ratio of each component contained in the infrared-absorbing inkjet printing ink is about 80% by weight or more, or about 90% by weight or more, and about 99.995 wt% or less, about 95 wt% or less, or about 91 wt% or less, the colorant is 0 to about 10 wt%, or 0 to about 6 wt% or less, and the adjuvant is 0 to About 10% by weight and antimony doped tin oxide is about 0.005-10% by weight, or about 0.005-6% by weight.
  • the weight ratio of the solvent to the resin in the vehicle may be about 9 or more, and the weight ratio may be about 90 or less.
  • the viscosity of the solvent-containing ink used in the piezo method is preferably about 5.0 mPa ⁇ s or less, or about 4.0 mPa ⁇ s or less at a temperature of about 20 to 25 ° C. It is preferably about 1 mPa ⁇ s or more, or about 2 mPa ⁇ s or more.
  • the proportion of each component contained in the infrared-absorbing inkjet printing ink is about 40% by weight or more, or about 50% by weight or more, and about 99% by weight or less, about 90% by weight or less, about 80% by weight or less, about 70% by weight or less, or about 60% by weight or less, the colorant is 0 to about 50% by weight, and the adjuvant is 0 About 10% by weight and antimony-doped tin oxide is about 1-50% by weight.
  • the weight ratio of solvent to resin in the vehicle may be about 4 or more, or about 9.9 or more, and this weight ratio is about 99 or less, about 90 or less, or about It may be 40 or less.
  • the viscosity of the solvent-containing ink used in the thermal method is preferably about 30 mPa ⁇ s or less, or about 20 mPa ⁇ s or less at a temperature of about 20 ° C., and the viscosity is about 0.3 mPa ⁇ s. It is preferable that it is above or about 1 mPa ⁇ s or more.
  • the mixing ratio of each component contained in the infrared-absorbing inkjet printing ink is about 30% by weight or more, about 40% by weight or more, or about 50% by weight.
  • % By weight or more and about 99% by weight or less, about 90% by weight or less, about 80% by weight or less, or about 70% by weight or less, the colorant is 0 to about 20% by weight, and the adjuvant is 0 to about 10% by weight, and antimony-doped tin oxide is about 1 to 20% by weight.
  • the weight ratio of the solvent to the resin in the vehicle may be about 0.75 or more, or about 2.4 or more, and the weight ratio is about 9500 or less, about 5000 or less, or about 3000 or less. It's okay.
  • the solvent-containing ink used in the continuous method preferably contains about 0.1 to 20% by weight of an auxiliary agent, and more preferably contains a conductivity imparting agent as an auxiliary agent.
  • the viscosity of the solvent-containing ink used in the continuous method is preferably about 5 mPa ⁇ s or less, or about 4 mPa ⁇ s or less at a temperature of about 60 ° C., and the viscosity is about 2 mPa ⁇ s. It is preferable that the pressure is at least about 2.5 mPa ⁇ s.
  • the pH of the water-based ink is preferably about 6 or more, or about 7 or more, and this pH is about 10 or less. Or about 9 or less.
  • the blending ratio of each component contained in the infrared absorbing ink jet printing ink is about 50% by weight or more, about 60% by weight or more, and about 99.995 wt% or less, the colorant is 0 to about 20 wt%, the adjuvant is 0 to about 10 wt%, and the antimony-doped tin oxide is about 0.005 wt% or more, Or about 0.1% by weight or more and about 30% by weight or less, about 20% by weight or less, about 10% by weight or less, or about 6% by weight or less.
  • the content of the monomer, oligomer and photopolymerization initiator in the vehicle is about 30 to 70% by weight of monomer, about 20 to 60% by weight of oligomer, and The photopolymerization initiator is about 3 to 10% by weight.
  • the viscosity of the UV ink is preferably about 15 mPa ⁇ s or less, or about 10 mPa ⁇ s or less at a temperature of about 60 ° C., and the viscosity is about 1 mPa ⁇ s or more, or about 2 mPa ⁇ s. The above is preferable.
  • the ink of the present invention can be obtained by dispersing antimony-doped tin oxide in a vehicle together with an auxiliary and / or a colorant as desired.
  • One aspect of the method for producing the ink of the present invention includes the following steps: (1a) a blending step of blending antimony-doped tin oxide and / or colorant with a vehicle, optionally with adjuvant, to obtain a blend; (1b) a premixing step of premixing the formulation to obtain a mill base; (1c) a kneading step for kneading the mill base to obtain a rough ink; (1d) an adjustment step in which an antimony-doped tin oxide, a colorant, a vehicle and / or an auxiliary agent are added to the crude ink to obtain an ink; (1e) a polishing step of kneading the ink again to finish the ink; and (1f) a filling step of filling the container with the ink.
  • Step (1a) can be performed by mixing antimony-doped tin oxide and / or colorant into the vehicle in a container such as a mixing tank, using a mixer such as a dissolver, a single screw mixer, or a twin screw mixer.
  • a mixer such as a dissolver, a single screw mixer, or a twin screw mixer.
  • Step (1b) is performed to uniformly pulverize the antimony-doped tin oxide and / or colorant, wet it with the vehicle and uniformly disperse it in the vehicle before kneading the formulation.
  • step (1b) may be omitted, if step (1b) is performed, subsequent step (1c) can be efficiently advanced.
  • Step (1b) can be performed by a mixer such as a single screw mixer or a twin screw mixer.
  • Step (1c) is performed to achieve a higher degree of wetting and dispersion of antimony-doped tin oxide and / or colorant compared to step (1b). Further, the particle diameter of the dispersed material in the vehicle can be made uniform by the step (1c).
  • Step (1c) can be performed by a kneading machine (ink mill) such as a three roller mill, a bead mill, a ball mill, a sand grinder, or an attritor.
  • a kneading machine such as a three roller mill, a bead mill, a ball mill, a sand grinder, or an attritor.
  • the mill base becomes a thin film when passing through the roll, so that coarse ink can be deaerated.
  • coarse particles remain on the first roller, so that the dispersed substance can be classified.
  • the bead mill is suitable for producing an ink having a relatively low viscosity, such as an ink-jet printing ink such as an organic solvent-containing ink, an aqueous ink, and a UV ink.
  • Step (1d) is performed to add antimony-doped tin oxide, colorant, vehicle and / or adjuvant to the crude ink to adjust the final composition, viscosity, color tone or dryness of the ink.
  • Step (1d) can be performed by a mixer such as a single screw mixer or a twin screw mixer. Note that step (1d) may be omitted.
  • each component contained in the ink of the present invention can be finally adjusted to a desired blending ratio by steps (1a) and / or (1d). Therefore, antimony-doped tin oxide may be added to the vehicle in at least one of steps (1a) and (1d). Further, when preparing an ink containing antimony-doped tin oxide and not containing a colorant, it is not necessary to use a colorant in step (1a) or (1d).
  • Step (1e) is performed to remove bubbles or foreign matters from the ink so that the ink can be used.
  • Step (1e) can be performed with a meat mill such as a two-roller mill or a three-roller mill.
  • Step (1f) is performed to fill a container such as a can, a bottle, or a packaging bag with ink.
  • step (1f) can be performed by a metering and filling device provided in the grinder.
  • an inkjet printing ink can be manufactured.
  • an oil-based / UV combined ink it is possible to use both a vehicle suitable for solvent-containing ink and a vehicle suitable for UV ink as the vehicle, and to add an auxiliary agent suitable for both.
  • Another embodiment of the method for producing the ink of the present invention includes the following steps: (2a) a flushing step to flash the colorant and vehicle and optionally antimony-doped tin oxide and adjuvants to obtain a mill base; (2b) a kneading step for kneading the mill base to obtain a rough ink; (2c) an adjusting step for obtaining an ink by adding antimony-doped tin oxide, a colorant, a vehicle and / or an auxiliary agent to the crude ink; (2d) a polishing step in which the ink is kneaded again to finish the ink; and (2e) a filling step in which the container is filled with the ink.
  • Step (2a) is performed to omit the step of drying the colorant and the above steps (1a) and (1b) when the colorant contains water.
  • flushing refers to an operation of transferring the colorant from the aqueous phase to the vehicle phase by kneading the water-containing colorant with the vehicle.
  • Step (2a) can be performed by a flasher such as a kneader.
  • Steps (2b) to (2e) can be performed in the same manner as steps (1c) to (1f), respectively.
  • the average particle diameter of the antimony-doped tin oxide in the infrared-absorbing inkjet printing ink is 500 nm or less, 400 nm or less, 300 nm or less, 200 nm or less, 100 nm or less, 80 nm or less, 60 nm or less in consideration of the suitability of the ink for inkjet printing. , 40 nm or less, 20 nm or less, 15 nm or less, 10 nm or less, or 5 nm or less, and the average particle diameter may be 1 nm or more, or 2 nm or more.
  • the average particle diameter refers to the median diameter of the laser diffraction / scattering method.
  • the means for adjusting the average particle size of antimony-doped tin oxide in the ink to be in the range of 1 nm to 500 nm is not limited, but means for pulverizing antimony-doped tin oxide during the production of antimony-doped tin oxide, and inkjet printing This is considered to be a combination with means for dispersing antimony-doped tin oxide in the vehicle during the production of the ink.
  • the antimony-doped tin oxide is sufficiently pulverized by the step S118 or S124.
  • the antimony-doped tin oxide is sufficiently dispersed in the vehicle by the above steps (1b), (1c), (2a) or (2b).
  • the maximum particle size of the antimony-doped tin oxide in the infrared-absorbing inkjet printing ink is preferably 1 ⁇ m or less, 900 nm or less, or 800 nm or less from the viewpoint of preventing clogging of the head of the inkjet printer.
  • the maximum particle size can be measured by a laser diffraction / scattering method.
  • the average particle size of the colorant in the infrared-absorbing inkjet printing ink is also preferably 500 nm or less, 300 nm or less, 100 nm or less, 60 nm or less, 20 nm or less, 10 nm or less, or 5 nm or less, The average particle diameter is preferably 1 nm or more, or 2 nm or more.
  • the maximum particle size of the colorant in the infrared-absorbing inkjet printing ink is also preferably 1 ⁇ m or less, 900 nm or less, or 800 nm or less.
  • Ink jet printing is a printing method in which ink is ejected as ink droplets from a nozzle and deposited on a printing medium.
  • Inkjet printing does not use a plate, does not apply pressure to the substrate, and the nozzle and the substrate do not contact each other, so printing is faster without damaging the substrate compared to printing methods that use plates. It can be performed.
  • Examples of the substrate to be used for inkjet printing include paper such as inkjet printing paper, fabric, clothing, glass, metal, resin products, inorganic materials such as ceramics, wallpaper, flooring, and labels.
  • the method of ejecting ink from a nozzle is roughly divided into a continuous method and an on-demand method.
  • the continuous method is a method for electrically controlling the flight trajectory of the ink liquid by continuously discharging the ink liquid.
  • the continuous method is employed for industrial inkjet printing.
  • the continuous method is used for printing on a package (for example, production date, product number, etc.), creating a document such as an invoice.
  • ink continuously pushed out from a nozzle by a pump is turned into fine droplets by an ultrasonic oscillator.
  • the droplets are charged by the electrode, and the trajectory is bent by the deflection electrode as necessary, and reach the printing medium.
  • the ink that has not been bent by the deflection electrode is sucked into the recovery port, returned to the ink tank, and can be reused.
  • the ink of the present invention can be pushed out by increasing the pressure of the pump, the ink of the present invention can be easily printed even when the ink of the present invention has a relatively high viscosity.
  • the ink of the present invention can be continuously extruded, the ink of the present invention can be easily printed even when the ink of the present invention contains a volatile solvent or is quick-drying.
  • the on-demand method is a method for discharging a necessary amount of ink at the time of printing.
  • the on-demand method is adopted for household or industrial inkjet printing.
  • On-demand printing machines use the capillary action of ink to eject ink and supply it to the substrate, so that the ink of the present invention can be easily obtained even when the ink of the present invention has a relatively low viscosity. Can be printed.
  • an accumulation body also referred to as “head” of a plurality of nozzles for ejecting ink may be used.
  • on-demand ink jet printing can be performed by moving the print medium by moving the print head or by moving the print head according to the movement of the print medium.
  • the on-demand method is roughly classified into a piezo method, a thermal method, and an electrostatic induction method, depending on a method in which ink is pressurized and ejected.
  • the piezo method uses a piezo element that deforms when a voltage is applied.
  • the piezo element is distorted to reduce the volume of the ink chamber, whereby ink can be ejected from the nozzle.
  • the piezo method is classified into a push type, a bend type, and a shear type according to the form of deformation of the piezo element.
  • the piezo method is used for printing with a home inkjet printer, creation of a banner, wallpaper printing, clothing printing, and the like.
  • inks such as organic solvent-containing ink, water-based ink, and UV ink can be used.
  • the thermal method is a method in which ink is ejected by the pressure of bubbles generated by heating an ink chamber including a heat-generating member and vaporizing the ink.
  • the heating of the exothermic member can be performed, for example, by attaching a heater to at least a part of an ink chamber such as a fine tube.
  • the thermal method is used for printing on a paper medium.
  • the ink is heated in the thermal method, an ink that is hardly deteriorated by heat, such as water-based ink, can be easily printed by the thermal method.
  • the thermal method is hardly affected by physical means and mechanical means, it is easy to achieve high-speed printing or high-density printed matter.
  • the electrostatic induction method is a method in which a voltage is applied between the ink and the printing medium to discharge the ink electrostatically.
  • the electrostatic induction method is easy to control the amount of ink discharged, so it is excellent in forming a thin film and can reduce the amount of ink waste liquid.
  • the ink of the present invention can be printed by any of the methods described above.
  • the ink of the present invention may be used as any color ink, but is formed as indigo ink, red ink, yellow ink or spot color ink, or mixed with indigo process ink, red process ink or yellow process ink. It is preferred that
  • the ink of the present invention has infrared absorptivity. Therefore, when the printed matter obtained by printing the ink of the present invention on the substrate is observed with an infrared light detector such as an infrared camera, the portion on which the ink of the present invention is printed absorbs infrared rays, Since it is displayed blacker than the portion of, the infrared absorption contrast can be detected. For example, the authenticity of the printed matter can be determined by comparing a predetermined infrared absorption contrast with an infrared absorption contrast of the observation target.
  • the used firing furnace is a shuttle-type firing furnace with a cooling device (manufactured by Tsuji Electric Furnace).
  • Steps 100-124 were performed as described in FIG. 1 using 118.8 g of metastannic acid and 1 g of antimony trioxide.
  • the aerated firing step (S114) was performed for about 8 hours with the temperature in the aerated furnace set to about 1100 ° C.
  • the aeration cooling step (S116) was performed at a cooling rate of about 200 [° C./hour] or more.
  • Examples 2 to 7 and Comparative Examples 1 and 2 were performed as described in Table 1 below.
  • the content of antimony oxide in the obtained antimony-doped tin oxide was changed by changing the weight of metastannic acid and antimony trioxide and / or the time of the aeration firing step (S114). I let you.
  • Comparative Example 1 a commercially available antimony-doped tin oxide raw material was prepared.
  • Example 5 and 6 the commercial item of the comparative example 1 was used for the ventilation baking process (S114) and the ventilation cooling process (S116).
  • the cooling rate in the ventilation cooling step (S116) was 200 [° C./h] or more in Example 5, and less than 200 [° C./h] in Example 6.
  • Example 7 a simple mixture of metastannic acid and antimony trioxide was subjected to an aeration firing step (S114) and an aeration cooling step (S116).
  • the content of antimony oxide in the product is measured by an order analysis method using a fluorescent X-ray analyzer RIX-1000 (manufactured by Rigaku Corporation). Moreover, as measurement conditions, the measurement is performed using antimony-doped tin oxide as a powder. The powder is measured under the condition that the particle diameter (median diameter by laser diffraction scattering method) is 120 nm.
  • FIGS. 2 to 5 are diagrams showing the results of X-ray diffraction by the antimony-doped tin oxide of the example
  • FIG. 6 is a diagram showing the results of X-ray diffraction of the comparative example.
  • the vertical axis indicates “intensity (CPS)” of reflected light when X-rays are irradiated
  • the horizontal axis indicates “2 ⁇ (deg)”.
  • CPS Counterbalance Per Second
  • “2 ⁇ ” indicates an irradiation angle when the measurement object is irradiated with X-rays.
  • the reason for “2 ⁇ ” is that if the angle (incident angle) for irradiating X-rays is ⁇ , the reflection angle is also ⁇ , and the sum of the incident angle and the reflection angle is 2 ⁇ . It is.
  • the graph of FIG. 2 (B) is a graph showing the result of X-ray diffraction by antimony-doped tin oxide of Example 2.
  • points where the intensity of reflected light greatly increases are generated at a plurality of locations.
  • the crystallinity is calculated using the measured values of 2 ⁇ (deg) and intensity (CPS) at the point where the intensity of the reflected light is the highest among the points where the intensity of the reflected light increases.
  • FIG. 7 is a conceptual diagram schematically showing a method for calculating the crystallinity.
  • the crystallinity can be calculated from the measurement result of X-ray diffraction (XRD).
  • XRD X-ray diffraction
  • CPS Since CPS is the intensity (level) of reflected light, it has a waveform height in the illustrated example.
  • ⁇ 2 ⁇ is the width of the half width corresponding to a half value of the maximum value (peak value) of CPS obtained by the X-ray diffraction measurement (in FIG. 7, the length A1 is the same as the length A2. Length).
  • Example 2A is a graph showing the result of X-ray diffraction by the antimony-doped tin oxide of Example 1.
  • the maximum value of CPS is about 15000, and the waveform appearing at the point where the intensity of the reflected light is the highest is sharp and the width of the skirt portion is narrow. It has a sharp waveform.
  • the graph of FIG. 6 (A) is a graph showing the result of X-ray diffraction by the commercially available product of Comparative Example 1.
  • ⁇ 2 ⁇ the width of the bottom part of the waveform at which the CPS value reaches its peak is wider than those of the above-described Examples 1 to 7. This is considered to be caused by a large amount of impurities because it is antimony-doped tin oxide produced without using a vaporization purification method.
  • the graph of FIG. 6 (B) is a graph showing the result of X-ray diffraction by the product of Comparative Example 2.
  • the width of the bottom part of the waveform at which the CPS value reaches its peak is wider than those of the above-described Examples 1 to 7. This is considered to be caused by a large amount of impurities because it is antimony-doped tin oxide manufactured without using the above-described vaporization purification method.
  • This can also be seen from the fact that the crystallinity of Comparative Example 2 is lower than that of Example 2 even though Comparative Example 2 has the same antimony oxide content as Example 2.
  • the infrared absorption effect was measured by measuring the light reflectance using a spectrophotometer.
  • the equipment used, the measurement conditions, and the measurement method are as follows.
  • the acrylic / silicone varnish described in the above (2) includes a solid content such as a resin and a solvent that volatilizes and disappears when dried. Since the acrylic / silicone varnish solids weight ratio is 40% by weight, the acrylic / silicone varnish solids content is 38 parts, the infrared absorbing pigment is 5 parts, and the infrared absorbing pigment solids weight ratio is 11.6. % By weight. The remaining 88.4% by weight is resin and / or other additives.
  • FIG. 8 shows that antimony-doped tin oxide in which antimony oxide is dissolved in the crystal lattice of tin oxide has an infrared absorption effect.
  • the infrared absorption effect is high, and the solid content of the antimony-doped tin oxide pigment, which is a particularly general printing condition, is desirable.
  • the weight ratio is 11.6% by weight and the reflectance is 30% or less, when a printed matter is observed with an authenticity determination device such as an infrared camera, a printed part containing antimony-doped tin oxide and other parts The difference is large and 10 out of 10 people can be distinguished, so it is easy to use for authenticity determination and is preferred.
  • Examples 2 to 4 having an antimony oxide content of 2.8% by weight or more maintain a reflectance of 30% or less in that region.
  • the comparative example 2 that has not undergone the aeration firing process is compared with the examples 2, 5 and 6 that have undergone the aeration firing process. It is clear that the infrared absorption effect is low. That is, the aeration firing process can improve the crystallinity of the antimony-doped tin oxide, thereby improving the infrared absorption effect. This is supported by comparing the crystallinity of Examples 2, 5, and 6 and Comparative Example 2 in Table 1 below.
  • Example 5 performed at a cooling rate of 200 [° C./hour] or higher was more than Example 6 performed at a cooling rate of less than 200 [° C./hour].
  • the half width ( ⁇ 2 ⁇ ) is narrow and the degree of crystallinity is high.
  • adjusting the cooling rate to 200 [° C./hour] or more in the ventilation cooling step contributes to the improvement in crystallinity of the antimony-doped tin oxide.
  • Examples 1 to 6 have an average reflectance in the visible light wavelength range (380 nm to 780 nm) and an infrared wavelength range (780 to 1100 nm) than Example 7. )
  • the average reflectance difference is large. Therefore, it can be seen that the antimony-doped tin oxides of Examples 1 to 6 can be used in a wide range of applications without being restricted by the color exhibited by antimony-doped tin oxide as compared with the antimony-doped tin oxide of Example 7. .
  • the crystallinity can be improved with the minimum content of antimony oxide, and antimony-doped tin oxide having a sufficient infrared absorption effect is produced. can do.
  • the obtained antimony-doped tin oxide has an antimony oxide content of 9.3 wt% or less and an antimony oxide tin oxide having a content of 9.9 wt% is substantially equal to or higher than that. Infrared absorption effect is obtained.
  • solvent-containing ink for thermal method The following materials were stirred and uniformly dissolved in a sealed container, and then filtered to obtain a solvent-containing ink for the thermal method: Solvent: 10 parts by weight of ethylene glycol, 10 parts by weight of diethylene glycol, and 76 parts by weight of water; and pigment: 4 parts by weight of the infrared absorbing pigment of Example 2
  • UV ink for piezo method The following materials were stirred and uniformly dissolved in a closed container, and then filtered through a membrane filter to obtain a UV ink for piezo method: resin: Monomer: SR238 (1,6 hexanediol diacrylate manufactured by Sartomer Japan Co., Ltd.) 55 parts by weight; and oligomer: CN981 (aliphatic urethane acrylate oligomer Sartomer Japan Co., Ltd.
  • the solvent-containing ink for the continuous method obtained above is printed on high-quality paper (Shiraoi high-quality paper, manufactured by Nippon Paper Industries Co., Ltd.) using an inkjet printer (Excel MVP opaque made by Videojet Technologies), and dried to obtain printed matter I. Obtained.
  • the solvent-containing ink for the piezo method obtained above is used on high-quality paper (Shiraoi fine-quality paper, Nippon Paper Industries) on an inkjet printer ("Roll Jet” manufactured by Tritech Co., Ltd. and "KM512M head” manufactured by Konica Minolta Co., Ltd.) ) And dried to obtain Print II.
  • the solvent-containing ink for thermal method obtained above was printed on high-quality paper (Shiraoi fine-quality paper, manufactured by Nippon Paper Industries Co., Ltd.) with a thermal ink jet printer (Videojet Technologies VJ8510), and dried to obtain printed matter III .
  • the printed surface of the infrared absorbing ink appeared black because it absorbed infrared light, whereas infrared absorbing.
  • the non-ink-printed surface eg, the base paper portion, the general process ink print portion, etc. appeared white because it transmitted or reflected infrared light.
  • Print sample preparation conditions the above three color process inks were respectively printed on the substrate to obtain three types of print samples corresponding to the respective colors: (Print sample preparation conditions)
  • Printing machine Offset printing machine RI tester (manufactured by IHI Machine System Co., Ltd.) Ink volume: 0.125cc Ink film thickness: about 1 ⁇ m
  • the light reflectance of three types of printed samples was measured according to the following measurement conditions: (Measurement condition) Measuring device: UV-visible spectrophotometer U-4000 (manufactured by Hitachi, Ltd.) Measurement item: Reflectance (%) Measurement wavelength: 350-2500 nm
  • FIG. 12 shows the reflectance in the wavelength range of 350 to 1500 nm for the indigo (C), red (M), and yellow (Y) process inks.
  • FIG. 12 is a graph showing the reflectance of a printed matter obtained by offset printing of CMY process inks.
  • the reflectance of the printed matter obtained by inkjet printing is considered to be the same as the reflectance of the printed matter obtained by offset printing. Therefore, by combining the reflectance graph of the CMY process ink shown in FIG. 12 and the reflectance graphs of Examples 1 to 7 shown in FIGS. 8 to 11, the inkjet printing ink of the present invention can be used as a general color ink. Predict the relationship between color tone and infrared absorption when used.
  • the red and yellow process inks do not absorb light in the infrared wavelength region (780 to 1100 nm).
  • the reflectance graphs of Examples 1 to 7 shown in FIGS. 8 to 11 since the average reflectance in the infrared wavelength region is lower than the average reflectance in the visible light wavelength region (380 nm to 780 nm), it is higher than that of visible light. Infrared light is also considered to be absorbed. Therefore, when the antimony-doped tin oxide used in the present invention is contained in the red or yellow ink, or the ink jet printing ink of the present invention is used as the red or yellow ink, the ink is not affected without affecting the color tone of the red or yellow. It can be seen that infrared absorptivity can be provided.
  • the indigo process ink slightly absorbs light in the infrared wavelength region (780 to 1100 nm).
  • the ratio of the indigo process ink to absorb infrared light is so low that it does not need to be taken into consideration. Therefore, even if the antimony-doped tin oxide used in the present invention is contained in the indigo ink or the ink jet printing ink of the present invention is used as the indigo ink, the ink absorbs infrared rays without affecting the indigo color tone. It can be seen that sex can be imparted.
  • the infrared absorbing ink containing antimony-doped tin oxide obtained in Examples 1 to 7 and containing no colorant does not correspond to black, indigo, red or yellow ink.
  • the infrared absorbing ink containing antimony-doped tin oxide obtained in Examples 1 to 7 and containing no colorant has a high brightness and a light white color. The influence on the color tone of yellow ink is considered to be small. Therefore, the infrared absorbing ink containing antimony-doped tin oxide obtained in Examples 1 to 7 and containing no colorant can be grasped as a special color ink or functional ink suitable for inkjet printing. In that case, the reflectance graphs of Examples 1 to 7 shown in FIGS. 8 to 11 can be regarded as graphs representing the light reflection characteristics of the special color ink of the present invention.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)

Abstract

Provided is an infrared-absorptive inkjet printing ink including antimony-doped tin oxide, and a vehicle. The antimony-doped tin oxide includes tin oxide and antimony oxide, and satisfies (a) and/or (b): (a) the half-value width (∆2θ) of a peak in the vicinity of 2θ=27˚ obtained from an X-ray diffraction measurement is not more than 0.30; and/or (b) the antimony oxide content is 0.5-10.0 wt% using the weight of the antimony-doped tin oxide as a reference, and the degree of crystallization, i.e. a value obtained by dividing, by the half-value width (∆2θ), the peak value of the peak in the vicinity of 2θ=27˚ obtained from the X-ray diffraction measurement, is at least 58427.

Description

赤外線吸収性インクジェット印刷インクInfrared absorbing ink jet printing ink
 本発明は、赤外線吸収性インクジェット印刷インクに関し、特に、偽造防止用の赤外線吸収性インクジェット印刷インクに関する。 The present invention relates to an infrared absorbing ink jet printing ink, and more particularly to an infrared absorbing ink jet printing ink for preventing counterfeiting.
 紙幣、有価証券等に、赤外線吸収性インクジェット印刷インクを使用してインクジェット印刷を部分的に施すことが検討されている。 It has been studied to partially perform inkjet printing on bills, securities, etc. using infrared absorbing inkjet printing ink.
 赤外線吸収性インクジェット印刷インクは、一般に用いられるインクジェット印刷インクに赤外線吸収剤を加えて構成される。 Infrared absorbing ink jet printing ink is configured by adding an infrared absorbing agent to commonly used ink jet printing ink.
 赤外線吸収剤としては、シアニン系化合物、フタロシアニン系化合物などの赤外線吸収性有機材料;又はカーボンブラック、酸化タングステン、酸化鉛などの赤外線吸収性無機材料が、知られている。 As infrared absorbers, infrared absorbing organic materials such as cyanine compounds and phthalocyanine compounds; or infrared absorbing inorganic materials such as carbon black, tungsten oxide, and lead oxide are known.
 例えば、特許文献1には、赤外線吸収剤として、ポリメチン系化合物、シアニン系化合物、フタロシアニン系化合物、ベンゼンジチオール金属錯体アニオンとシアニン系色素カチオンとの対イオン結合体などの赤外線吸収性有機材料;及び複合タングステン酸化物、酸化スズ、酸化インジウム、酸化インジウム錫(ITO)などの赤外線吸収性無機材料が、記述されている。 For example, Patent Document 1 discloses infrared absorbing organic materials such as polymethine compounds, cyanine compounds, phthalocyanine compounds, counterion conjugates of benzenedithiol metal complex anions and cyanine dye cations as infrared absorbers; and Infrared absorbing inorganic materials such as composite tungsten oxide, tin oxide, indium oxide, indium tin oxide (ITO) have been described.
 また、特許文献2には、赤外線吸収剤として有機イオウ金属錯体化合物を含むインクジェット印刷インクが、記述されている。 Patent Document 2 describes an ink jet printing ink containing an organic sulfur metal complex compound as an infrared absorber.
 さらに、特許文献3には、対象物を追跡又は認証するために赤外線吸収剤としてアンチモン含有酸化錫を含む紫外線硬化型インクジェット印刷インクが、記述されている。 Further, Patent Document 3 describes an ultraviolet curable ink jet printing ink containing antimony-containing tin oxide as an infrared absorber for tracking or authenticating an object.
特開2012-121170号公報JP2012-121170A 特開2008-291072号公報JP 2008-291072 A 国際公開第2007/044106号International Publication No. 2007/044106
 しかしながら、赤外線吸収剤として赤外線吸収性有機材料を含有したインクジェット印刷インクは、この材料の色が多彩であるため、様々な色のインクを調合することができるが、インクの耐候性が低いという問題が指摘されている。 However, inkjet printing inks containing an infrared absorbing organic material as an infrared absorber can be formulated with various colors because of the variety of colors of this material, but the problem is that the weather resistance of the ink is low. Has been pointed out.
 一方、赤外線吸収性無機材料としてカーボンブラックを用いたインクジェット印刷インクは、耐候性が赤外線吸収性有機材料含有インクより優れているものの、カーボンブラックが濃い暗色系の色調を有する顔料であるため、インクの色は、黒色系又は明度の低いものに限られていた。このため、赤外線吸収性無機材料としてカーボンブラックを用いた場合、他の色を有する顔料又は染料と混合して、バリエーションに富んだ色彩を有するインクジェット印刷インクを調合することができなかった。中でも明色、特に淡色系の明色インクジェット印刷インクを調合することは不可能であった。仮に、カーボンブラックを含有するインクジェット印刷インクの明度を高くするため、酸化チタン、酸化亜鉛などの白色顔料を添加しても、白色顔料は赤外線を反射する特性を持つため、インクの赤外線吸収性が阻害されることになり、偽造防止用インクとしての機能に悪影響を及ぼすことになる。 On the other hand, ink-jet printing inks using carbon black as an infrared absorbing inorganic material have better weather resistance than inks containing infrared absorbing organic materials, but carbon black is a pigment having a dark color tone. The color of was limited to black or low brightness. For this reason, when carbon black was used as an infrared absorbing inorganic material, it was not possible to prepare an ink jet printing ink having a variety of colors by mixing with a pigment or dye having another color. In particular, it was impossible to prepare light-colored, particularly light-colored, light-colored inkjet printing inks. Even if a white pigment such as titanium oxide or zinc oxide is added to increase the brightness of an inkjet printing ink containing carbon black, the white pigment has the property of reflecting infrared rays, so that the ink absorbs infrared rays. As a result, the function as an anti-counterfeit ink is adversely affected.
 また、酸化タングステン、酸化鉛などの金属酸化物を赤外線吸収性無機材料として含むインクジェット印刷インクは、透明度が高いものの赤外線吸収効果が弱く、インク又は印刷物を形成したときに十分な赤外線吸収効果が得られないという問題がある。 Ink jet printing inks containing metal oxides such as tungsten oxide and lead oxide as infrared absorbing inorganic materials have high transparency but weak infrared absorbing effect, and sufficient infrared absorbing effect is obtained when ink or printed matter is formed. There is a problem that can not be.
 また、金属酸化物の中でも、酸化インジウム錫(ITO)は、比較的吸収効果が高いことで知られている。しかしながら、インジウムがレアメタルであるために、ITOのコストは高い。 Among metal oxides, indium tin oxide (ITO) is known for its relatively high absorption effect. However, since indium is a rare metal, the cost of ITO is high.
 また、金属酸化物の中でも、酸化アンチモン錫(ATO)は、透明性及び耐候性において優れているが、各業界の規制(例えば、化学物質排出移動量届出制度(PRTR)、玩具安全基準など)があるため、アンチモンの量を低減することが望まれていた。また、アンチモンもレアメタルであるため、ATO中に含まれるアンチモンの量を低減してATO含有インクの製造コストを抑制することが望まれていた。 Among metal oxides, antimony tin oxide (ATO) is excellent in transparency and weather resistance, but regulations of each industry (for example, chemical substance release and transfer notification system (PRTR), toy safety standards, etc.) Therefore, it has been desired to reduce the amount of antimony. Further, since antimony is also a rare metal, it has been desired to reduce the amount of antimony contained in ATO and thereby reduce the production cost of the ATO-containing ink.
 これに関連して、従来のアンチモン含有酸化錫に含まれる酸化アンチモンの量については検討の余地があった。また、従来のアンチモン含有酸化錫を含むインクジェット印刷インクについては、詳細な検討が行われていなかった。 In this connection, there was room for study on the amount of antimony oxide contained in the conventional antimony-containing tin oxide. In addition, no detailed investigation has been made on conventional ink jet printing inks containing antimony-containing tin oxide.
 したがって、本発明は、赤外線吸収性、透明性、耐候性、安全性及びコストに優れ、かつ様々な色の着色剤と組み合わせてバリエーションに富んだ色彩を呈し得る、偽造防止用インクジェット印刷インクを提供することを目的とする。 Therefore, the present invention provides an inkjet printing ink for preventing counterfeiting that is excellent in infrared absorption, transparency, weather resistance, safety and cost, and can exhibit a variety of colors in combination with colorants of various colors. The purpose is to do.
 上記課題を解決するために、本発明は以下の解決手段を採用する:
[1] アンチモンドープ酸化錫及びビヒクルを含む赤外線吸収性インクジェット印刷インクであって、
 前記アンチモンドープ酸化錫は、酸化錫と酸化アンチモンを含有し、かつ下記(a)及び/又は(b)を満たす:
  (a)X線回折測定により得られた2θ=27°付近のピークの半値幅(Δ2θ)が、0.30以下である;及び/又は
  (b)前記酸化アンチモンの含有量が、前記アンチモンドープ酸化錫の重量を基準として、0.5~10.0重量%であり、かつ、X線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、58427以上である、
 インクジェット印刷インク。
[2] 偽造防止用である、[1]に記載の赤外線吸収性インクジェット印刷インク。
[3] 前記(a)において、前記半値幅(Δ2θ)は、0.21以下である、[1]又は[2]に記載の赤外線吸収性インクジェット印刷インク。
[4] 前記(b)において、前記酸化アンチモンの含有量は、前記アンチモンドープ酸化錫の重量を基準として、2.8~9.3重量%である、[1]又は[2]に記載の赤外線吸収性インクジェット印刷インク。
[5] 前記結晶化度が78020以上である、[1]又は[2]に記載の赤外線吸収性インクジェット印刷インク。
[6] 前記アンチモンドープ酸化錫の平均粒径が、500nm以下である、[1]~[5]のいずれか1項に記載の赤外線吸収性インクジェット印刷インク。
[7] 前記インクジェット印刷インクは、溶剤含有インク又は紫外線硬化型インクである、[1]~[6]のいずれか1項に記載の赤外線吸収性インクジェット印刷インク。
[8] 補助剤をさらに含む、[1]~[7]のいずれか1項に記載の赤外線吸収性インクジェット印刷インク。
[9] 着色剤をさらに含む、[1]~[8]のいずれか1項に記載の赤外線吸収性インクジェット印刷インク。
[10] [1]~[9]のいずれか1項に記載の赤外線吸収性インクジェット印刷インクを使用して、インクジェット印刷で印刷物を得る方法。
[11] [1]~[9]のいずれか1項に記載の赤外線吸収性インクジェット印刷インクにより印刷された印刷部を備える印刷物。
In order to solve the above problems, the present invention adopts the following solutions:
[1] An infrared absorbing ink jet printing ink comprising antimony-doped tin oxide and a vehicle,
The antimony-doped tin oxide contains tin oxide and antimony oxide and satisfies the following (a) and / or (b):
(A) The half width (Δ2θ) of a peak around 2θ = 27 ° obtained by X-ray diffraction measurement is 0.30 or less; and / or (b) the content of the antimony oxide is the antimony dope A value obtained by dividing the peak value of the peak around 2θ = 27 ° obtained by X-ray diffraction measurement by the half-value width (Δ2θ), based on the weight of tin oxide, from 0.5 to 10.0% by weight. The degree of crystallinity is 58427 or more.
Inkjet printing ink.
[2] The infrared-absorbing inkjet printing ink according to [1], which is used for preventing forgery.
[3] The infrared-absorbing inkjet printing ink according to [1] or [2], wherein, in (a), the half width (Δ2θ) is 0.21 or less.
[4] In (b), the content of the antimony oxide is 2.8 to 9.3 wt% based on the weight of the antimony-doped tin oxide, according to [1] or [2] Infrared absorbing ink jet printing ink.
[5] The infrared-absorbing inkjet printing ink according to [1] or [2], wherein the crystallinity is 78020 or more.
[6] The infrared-absorbing inkjet printing ink according to any one of [1] to [5], wherein the antimony-doped tin oxide has an average particle size of 500 nm or less.
[7] The infrared-absorbing inkjet printing ink according to any one of [1] to [6], wherein the inkjet printing ink is a solvent-containing ink or an ultraviolet curable ink.
[8] The infrared-absorbing inkjet printing ink according to any one of [1] to [7], further comprising an auxiliary agent.
[9] The infrared-absorbing inkjet printing ink according to any one of [1] to [8], further including a colorant.
[10] A method for obtaining a printed matter by ink jet printing using the infrared absorbing ink jet printing ink according to any one of [1] to [9].
[11] A printed matter comprising a printing part printed with the infrared absorbing ink jet printing ink according to any one of [1] to [9].
 本発明に使用されるアンチモンドープ酸化錫顔料は、無機顔料であり、紫外線等の光線による劣化が起こり難いため、本発明によれば、高い耐候性及び赤外線吸収性を有するインクジェット印刷インクを得ることができる。 The antimony-doped tin oxide pigment used in the present invention is an inorganic pigment and hardly deteriorates due to light such as ultraviolet rays. Therefore, according to the present invention, an inkjet printing ink having high weather resistance and infrared absorption is obtained. Can do.
 また、アンチモンドープ酸化錫顔料を含む本発明インクジェット印刷インクは、明度が高く、かつ淡い白色を呈するので、他の着色剤と混合されることによって、様々な色彩、特に明るい色彩を提供することができる。すなわち、本発明によれば、カーボンブラックなどの従来の赤外線吸収性無機材料では実現できなかった淡色系の赤外線吸収性インクジェット印刷インクを作製することができるので、偽造防止効果及びデザイン性に優れた紙幣、有価証券、カード等の印刷物を作製することができる。 Further, the inkjet printing ink of the present invention containing an antimony-doped tin oxide pigment has a high brightness and exhibits a light white color. Therefore, when mixed with other colorants, it can provide various colors, particularly bright colors. it can. That is, according to the present invention, it is possible to produce a light-colored infrared-absorbing ink jet printing ink that could not be realized by a conventional infrared-absorbing inorganic material such as carbon black, and therefore, the anti-counterfeiting effect and the design were excellent. Printed matter such as banknotes, securities, and cards can be produced.
 また、アンチモンドープ酸化錫顔料は、スズドープ酸化インジウム顔料に比べて製造コストが低い。さらに、本発明によれば、従来のアンチモンドープ酸化錫顔料と比べて酸化アンチモン含有率の低いアンチモンドープ酸化錫顔料をインクジェット印刷インクに使用することができる。したがって、本発明によれば、幅広い業界において、アンチモンの使用量に関する安全規制を遵守しながら、経済性に優れた偽造防止用油性インクジェット印刷インクを提供できる。 Moreover, the production cost of antimony-doped tin oxide pigments is lower than that of tin-doped indium oxide pigments. Furthermore, according to the present invention, an antimony-doped tin oxide pigment having a lower content of antimony oxide than conventional antimony-doped tin oxide pigments can be used in ink jet printing inks. Therefore, according to the present invention, it is possible to provide an anti-counterfeit oil-based inkjet printing ink excellent in economic efficiency while complying with safety regulations regarding the amount of antimony used in a wide range of industries.
図1は、アンチモンドープ酸化錫を製造する本発明の方法の一態様を示す工程図である。FIG. 1 is a process diagram showing one embodiment of the method of the present invention for producing antimony-doped tin oxide. 図2(A)は、実施例1のアンチモンドープ酸化錫(酸化アンチモン含有率0.7重量%、通気焼成・冷却あり)のX線回折の結果を示す図であり、図2(B)は、実施例2のアンチモンドープ酸化錫(酸化アンチモン含有率2.8重量%、通気焼成・冷却あり)のX線回折の結果を示す図である。FIG. 2 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 1 (antimony oxide content: 0.7% by weight, with aerated firing / cooling), and FIG. FIG. 4 is a graph showing the results of X-ray diffraction of antimony-doped tin oxide of Example 2 (antimony oxide content: 2.8% by weight, with aerated firing / cooling). 図3(A)は、実施例3のアンチモンドープ酸化錫(酸化アンチモン含有率5.3重量%、通気焼成・冷却あり)のX線回折の結果を示す図であり、図3(B)は、実施例4のアンチモンドープ酸化錫(酸化アンチモン含有率9.3重量%、通気焼成・冷却あり)によるX線回折の結果を示す図である。FIG. 3 (A) is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 3 (antimony oxide content: 5.3% by weight, with aerated firing / cooling), and FIG. FIG. 6 is a graph showing the results of X-ray diffraction by antimony-doped tin oxide of Example 4 (antimony oxide content: 9.3 wt%, with aerated firing / cooling). 図4(A)は、実施例5のアンチモンドープ酸化錫(市販品の通気焼成・冷却、200[℃/時間]以上の冷却速度、酸化アンチモン含有率2.7重量%)のX線回折の結果を示す図であり、図4(B)は、実施例6のアンチモンドープ酸化錫(市販品の通気焼成・冷却、200[℃/時間]未満の冷却速度、酸化アンチモン含有率2.7重量%)によるX線回折の結果を示す図である。FIG. 4 (A) shows the X-ray diffraction pattern of antimony-doped tin oxide of Example 5 (ventilated and cooled by commercial cooling, cooling rate of 200 [° C./hour] or more, antimony oxide content 2.7% by weight). FIG. 4 (B) shows the results, and FIG. 4 (B) shows antimony-doped tin oxide of Example 6 (commercially manufactured product by air firing and cooling, cooling rate of less than 200 [° C./hour], antimony oxide content 2.7 wt. %) Shows the result of X-ray diffraction. 図5は、実施例7のアンチモンドープ酸化錫(メタ錫酸と三酸化アンチモンの混合物の通気焼成・冷却、酸化アンチモン含有率4.2重量%)のX線回折の結果を示す図である。FIG. 5 is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Example 7 (aerated firing / cooling of a mixture of metastannic acid and antimony trioxide, antimony oxide content 4.2% by weight). 図6(A)は、比較例1のアンチモンドープ酸化錫(酸化アンチモン含有率9.9重量%、市販品)のX線回折の結果を示す図であり、図6(B)は、比較例2のアンチモンドープ酸化錫(酸化アンチモン含有率2.8重量%、通気焼成・冷却なし)のX線回折の結果を示す図である。6A is a diagram showing the results of X-ray diffraction of antimony-doped tin oxide of Comparative Example 1 (antimony oxide content: 9.9% by weight, commercially available product), and FIG. 6B is a comparative example. It is a figure which shows the result of the X-ray diffraction of antimony dope tin oxide 2 (antimony oxide content rate 2.8 weight%, aeration baking and no cooling). 図7は、結晶化度の算出方法を概略的に示す概念図である。FIG. 7 is a conceptual diagram schematically showing a method for calculating the crystallinity. 図8は、200nm~2500nmの波長において酸化アンチモン含有率が反射率に与える影響を示すグラフである。FIG. 8 is a graph showing the influence of the antimony oxide content rate on the reflectance at a wavelength of 200 nm to 2500 nm. 図9は、200nm~2500nmの波長及び2.7~2.8重量%の酸化アンチモン含有率において、通気焼成工程が反射率に与える影響を示すグラフである。FIG. 9 is a graph showing the influence of the ventilation firing process on the reflectance at a wavelength of 200 nm to 2500 nm and an antimony oxide content of 2.7 to 2.8% by weight. 図10は、200nm~2500nmの波長において、通気焼成工程が、市販のアンチモンドープ酸化錫原料の反射率及びアンチモン含有率に与える影響を示すグラフである。FIG. 10 is a graph showing the influence of the air-fired process on the reflectance and antimony content of a commercially available antimony-doped tin oxide material at a wavelength of 200 nm to 2500 nm. 図11は、200nm~2500nmの波長において、通気焼成工程が、メタ錫酸と三酸化アンチモンの混合物の反射率に与える影響を示すグラフである。FIG. 11 is a graph showing the influence of the aeration firing process on the reflectance of a mixture of metastannic acid and antimony trioxide at a wavelength of 200 nm to 2500 nm. 図12は、350nm~1500nmの波長における藍・紅・黄(CMY)プロセスインクの反射率を示すグラフである。FIG. 12 is a graph showing the reflectance of indigo / red / yellow (CMY) process ink at wavelengths of 350 nm to 1500 nm.
<インクジェット印刷インク>
 本発明のインクは、アンチモンドープ酸化錫及びビヒクルを含む。また、本発明のインクは、アンチモンドープ酸化錫の赤外線吸収性を利用して印刷物の偽造を防止するために、使用されることができる。
<Inkjet printing ink>
The ink of the present invention includes antimony-doped tin oxide and a vehicle. In addition, the ink of the present invention can be used to prevent forgery of printed matter by utilizing the infrared absorptivity of antimony-doped tin oxide.
 本発明のインクは、インクジェット印刷に使用される印刷機の種類に応じて、溶剤含有インクと紫外線硬化型インクに概ね大別される。 The inks of the present invention are roughly classified into solvent-containing inks and ultraviolet curable inks according to the type of printing machine used for inkjet printing.
 溶剤含有インクは、溶剤を含むインクであり、またリキッドインクと呼ばれることもある。溶剤含有インクは、例えば、ピエゾ方式、サーマル方式、コンティニュアス方式などに使用されることができる。これに関連して、本発明の溶剤含有インクは、溶剤の種類に応じて、有機溶剤含有インク又は水性インクとして使用されることができる。 The solvent-containing ink is an ink containing a solvent, and is sometimes called liquid ink. The solvent-containing ink can be used, for example, in a piezo method, a thermal method, a continuous method, or the like. In this connection, the solvent-containing ink of the present invention can be used as an organic solvent-containing ink or a water-based ink depending on the type of solvent.
 ここで、有機溶剤含有インクは、有機溶剤又は不揮発性溶剤を含むインクであるが、実質的に水を含まなくてよい。なお、「実質的に水を含まない」とは、インク中の水の含有率が0質量%であること、又はインクが1質量%以下の水を不可避的に含むことをいう。また、有機溶剤含有インクは、インクジェット印刷の分野では、油性インクと呼ばれることもある。 Here, the organic solvent-containing ink is an ink containing an organic solvent or a non-volatile solvent, but it may not contain water substantially. “Substantially free of water” means that the content of water in the ink is 0% by mass, or that the ink inevitably contains 1% by mass or less of water. In addition, the organic solvent-containing ink is sometimes called oil-based ink in the field of ink jet printing.
 一方で、水性インクは、溶剤として水を含むインクであり、また有機溶剤を含んでもよい。一般に、水性インクは、家庭用のインクジェットプリンターなどに使用されることができる。さらに、水性インクは、水に加えて、例えば、水溶性樹脂、コロイダルディスパージョン樹脂、エマルション樹脂などの樹脂を含むことが好ましい。 On the other hand, the water-based ink is an ink containing water as a solvent, and may contain an organic solvent. In general, the water-based ink can be used for home inkjet printers and the like. Furthermore, the water-based ink preferably contains a resin such as a water-soluble resin, a colloidal dispersion resin, and an emulsion resin in addition to water.
 さらに、紫外線硬化型インク(以下、「UVインク」と略記する)は、ビヒクル成分の光重合により硬化可能なインクである。一般に、UVインクは、光重合性樹脂、光重合開始剤などを含む。また、UVインクもピエゾ方式、サーマル方式、コンティニュアス方式などに使用してよい。UVインクは、速乾性に優れるので、例えば、工業用のインクジェット印刷、高速インクジェット印刷などに使用されることが好ましい。 Furthermore, ultraviolet curable ink (hereinafter abbreviated as “UV ink”) is an ink that can be cured by photopolymerization of a vehicle component. In general, the UV ink contains a photopolymerizable resin, a photopolymerization initiator, and the like. Also, UV ink may be used for the piezo method, thermal method, continuous method, and the like. Since UV ink is excellent in quick-drying property, it is preferable to use it for industrial inkjet printing, high-speed inkjet printing, etc., for example.
 なお、所望により、本発明のインクとして、溶剤含有インクとUVインクの両方の特性を備えたインク(以下、「油性・UV併用インク」と略記する)を使用してもよい。 If desired, an ink having the characteristics of both a solvent-containing ink and a UV ink (hereinafter abbreviated as “oil-based / UV combined ink”) may be used as the ink of the present invention.
 また、本発明のインクは、アンチモンドープ酸化錫及びビヒクルだけでなく、補助剤及び/又は着色剤も含んでよい。インク中のビヒクル及び/又は補助剤の種類及び含有量を調整することにより、インクジェット印刷時に、アンチモンドープ酸化錫又は着色剤の分散性、インクの乾燥性、耐候性及び耐溶剤性などを制御することができる。 Further, the ink of the present invention may contain not only antimony-doped tin oxide and vehicle but also auxiliary agents and / or colorants. By controlling the type and content of the vehicle and / or auxiliary agent in the ink, the dispersibility of the antimony-doped tin oxide or the colorant, the drying property of the ink, the weather resistance and the solvent resistance are controlled during ink jet printing. be able to.
 本発明のインクに含まれるアンチモンドープ酸化錫、ビヒクル、補助剤及び着色剤について以下に説明する。 The antimony-doped tin oxide, vehicle, auxiliary agent and colorant contained in the ink of the present invention will be described below.
[アンチモンドープ酸化錫]
 アンチモンドープ酸化錫は、酸化錫にアンチモンがドープされている物質である。また、アンチモンドープ酸化錫は、酸化錫と酸化アンチモンを含む顔料の形態でよい。
[Antimony-doped tin oxide]
Antimony-doped tin oxide is a substance in which tin oxide is doped with antimony. The antimony-doped tin oxide may be in the form of a pigment containing tin oxide and antimony oxide.
 本発明のアンチモンドープ酸化錫は、酸化錫と酸化アンチモンを含む。酸化アンチモンの含有量は、アンチモンドープ酸化錫の重量を基準として、約0.5重量%以上、約1.0重量%以上、約1.5重量%以上、約2.0重量%以上、約2.5重量%以上、又は約2.8重量%以上であることが好ましく、また、この含有量は、約10.0重量%以下、約9.5重量%以下、約9.3重量%以下、約8.0重量%以下、約7.0重量%以下、約6.0重量%以下、約5.5重量%以下、約5.0重量%以下、約4.0重量%以下、約3.5重量%以下、又は約3.0重量%以下であることが好ましい。また、酸化アンチモンの含有量は、アンチモンドープ酸化錫の重量を基準として、約2.5~約9.3重量%、約2.8~約9.3重量%、約2.8~約5.5重量%、又は約2.8~約3.5重量%であることがより好ましい。 The antimony-doped tin oxide of the present invention contains tin oxide and antimony oxide. The content of antimony oxide is about 0.5% by weight or more, about 1.0% by weight or more, about 1.5% by weight or more, about 2.0% by weight or more based on the weight of antimony-doped tin oxide. The content is preferably 2.5% by weight or more, or about 2.8% by weight or more, and the content thereof is about 10.0% by weight or less, about 9.5% by weight or less, and about 9.3% by weight. Or less, about 8.0% or less, about 7.0% or less, about 6.0% or less, about 5.5% or less, about 5.0% or less, about 4.0% or less, It is preferably about 3.5% by weight or less, or about 3.0% by weight or less. The content of antimony oxide is about 2.5 to about 9.3 wt%, about 2.8 to about 9.3 wt%, and about 2.8 to about 5 based on the weight of antimony-doped tin oxide. More preferably, it is 0.5 wt%, or about 2.8 to about 3.5 wt%.
 従来のアンチモンドープ酸化錫は、十分な導電性を有する透明導電材料を得るために、10重量%を超える酸化アンチモンを含む必要があった。一方で、本発明のアンチモンドープ酸化錫は、上記の通り、従来のアンチモンドープ酸化錫と比較して、酸化アンチモンの使用量を低減させることができる。 Conventional antimony-doped tin oxide needs to contain more than 10% by weight of antimony oxide in order to obtain a transparent conductive material having sufficient conductivity. On the other hand, the antimony dope tin oxide of this invention can reduce the usage-amount of an antimony oxide compared with the conventional antimony dope tin oxide as above-mentioned.
 ただし、酸化アンチモンは、酸化錫の結晶格子中に入り込むことにより、赤外線を吸収する役割を発揮すると考えられているため、その使用量を単純に低減させるだけだと、その分赤外線吸収効果が低下することになる。 However, antimony oxide is considered to play a role of absorbing infrared rays by entering into the crystal lattice of tin oxide, so if the amount used is simply reduced, the infrared absorption effect is reduced accordingly. Will do.
 そこで、本発明のアンチモンドープ酸化錫は、赤外線吸収効果の低下を抑制するために、X線回折測定により得られた2θ=27°付近の半値幅(Δ2θ)が、0.35以下であり、かつ/又はX線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、18092以上である。 Therefore, the antimony-doped tin oxide of the present invention has a half-value width (Δ2θ) near 2θ = 27 ° obtained by X-ray diffraction measurement of 0.35 or less in order to suppress a decrease in infrared absorption effect, In addition, the degree of crystallinity, which is a value obtained by dividing the peak value of a peak around 2θ = 27 ° obtained by X-ray diffraction measurement by the half width (Δ2θ), is 18092 or more.
 赤外線吸収効果は、主成分である酸化錫の結晶格子中に、酸化アンチモンが固溶される(入り込む)ことで、発生する効果である。つまり、アンチモンドープ酸化錫を製造する際には、主成分である酸化錫に酸化アンチモンを含有させることになる。 The infrared absorption effect is an effect that occurs when antimony oxide is dissolved (enters) into the crystal lattice of tin oxide, which is the main component. That is, when manufacturing antimony-doped tin oxide, antimony oxide is contained in tin oxide as the main component.
 したがって、酸化錫の結晶格子中に酸化アンチモンが適切に固溶されている場合、本発明のアンチモンドープ酸化錫は、結晶構造を適切に維持することによって、アンチモンドープ酸化錫中の酸化アンチモン含有量が微量(例えば、少なくとも0.5重量%)であったとしても、赤外線吸収効果を発揮することができる。このとき、例えば、X線回折測定において、2θ=27°付近に鋭いピークが見られる。 Therefore, when antimony oxide is appropriately dissolved in the crystal lattice of tin oxide, the antimony-doped tin oxide of the present invention has an antimony oxide content in the antimony-doped tin oxide by appropriately maintaining the crystal structure. Even if it is a very small amount (for example, at least 0.5% by weight), an infrared absorption effect can be exhibited. At this time, for example, in the X-ray diffraction measurement, a sharp peak is observed in the vicinity of 2θ = 27 °.
 一方で、例えば従来のアンチモンドープ酸化錫のように、酸化錫の結晶格子中に固溶されない酸化アンチモンが不純物として存在していると、不純物は、赤外線吸収効果に寄与していなかったと考えられる。 On the other hand, for example, when antimony oxide not dissolved in the tin oxide crystal lattice is present as an impurity as in conventional antimony-doped tin oxide, it is considered that the impurity did not contribute to the infrared absorption effect.
 その場合、赤外線吸収効果に寄与していない部分の酸化アンチモンは、無駄な原料(不純物)としてそのまま残存することになる。このため、アンチモンドープ酸化錫を製造する際には、必要以上に酸化アンチモンの使用量が増加してしまっていた。そこで本発明の発明者等は、この不純物について研究を重ねた結果、アンチモンドープ酸化錫の半値幅(Δ2θ)が広く、かつ/又は結晶化度(物質が結晶化した際の物質全体に対する結晶化部分の割合)が低い場合には不純物としての酸化アンチモンが多くなり、一方で、半値幅(Δ2θ)が狭く、かつ/又は結晶化度が高い場合には不純物としての酸化アンチモンが少なくなることを突き止めた。 In this case, the portion of antimony oxide that does not contribute to the infrared absorption effect remains as a waste material (impurity). For this reason, when manufacturing antimony dope tin oxide, the usage-amount of antimony oxide has increased more than necessary. Therefore, the inventors of the present invention have conducted research on this impurity, and as a result, the half-value width (Δ2θ) of antimony-doped tin oxide is wide and / or the crystallinity (the crystallization of the whole material when the material is crystallized). When the ratio of the portion is low, antimony oxide as an impurity increases. On the other hand, when the half width (Δ2θ) is narrow and / or the degree of crystallinity is high, antimony oxide as an impurity decreases. I found it.
 なお、不純物としての酸化アンチモンを除去しながらアンチモンドープ酸化錫の結晶性を向上させる手段としては、例えば、後述する通気焼成、後述する気化精製などが挙げられる。 In addition, examples of means for improving the crystallinity of antimony-doped tin oxide while removing antimony oxide as an impurity include aeration firing described later and vaporization purification described later.
 そのため、本発明では、酸化アンチモンの使用量を必要最低限に抑えるために、半値幅(Δ2θ)を狭めたか、かつ/又は結晶化度を高めたアンチモンドープ酸化錫が提供される。この点、半値幅(Δ2θ)を狭めるか、又は結晶化度を高めると、不純物が少なくなり、効果的に酸化アンチモンを固溶した状態にすることができ、赤外線吸収効果を向上させることができる。 Therefore, the present invention provides an antimony-doped tin oxide having a narrowed half width (Δ2θ) and / or an increased crystallinity in order to minimize the amount of antimony oxide used. In this respect, when the half width (Δ2θ) is narrowed or the crystallinity is increased, impurities are reduced, and antimony oxide can be effectively dissolved and the infrared absorption effect can be improved. .
 したがって、X線回折測定において、2θ=27°付近の半値幅(Δ2θ)を0.35以下に調整し、かつ/又は2θ=27°付近の結晶化度を18092以上に調整することにより、酸化アンチモンの使用量を抑えても、十分な赤外線吸収効果を発揮することができる。 Therefore, in the X-ray diffraction measurement, by adjusting the half width (Δ2θ) near 2θ = 27 ° to 0.35 or less and / or adjusting the crystallinity near 2θ = 27 ° to 18092 or more, Even if the amount of antimony used is suppressed, a sufficient infrared absorption effect can be exhibited.
 なお、本明細書では、X線回折を測定するときに、市販のX線回折装置を用いて、任意のスキャン速度を選択してよいが、積算回数を1回に設定するものとする。 In this specification, when measuring X-ray diffraction, a commercially available X-ray diffractometer may be used to select an arbitrary scan speed, but the number of integrations is set to one.
 本発明のアンチモンドープ酸化錫では、酸化アンチモンの使用量を低減させながらも、赤外線吸収効果を十分に発揮させるために、2θ=27°付近の半値幅(Δ2θ)は、0.30以下、0.25以下、0.21以下、0.20以下、又は0.19以下であることが好ましい。 In the antimony-doped tin oxide of the present invention, the half width (Δ2θ) near 2θ = 27 ° is 0.30 or less, 0 in order to sufficiently exhibit the infrared absorption effect while reducing the amount of antimony oxide used. .25 or less, 0.21 or less, 0.20 or less, or 0.19 or less is preferable.
 また、本発明のアンチモンドープ酸化錫は、2θ=27°付近の結晶化度が58427以上、特に78020以上であることが好ましい。 Further, it is preferable that the antimony-doped tin oxide of the present invention has a crystallinity around 2θ = 27 ° of 58427 or more, particularly 78020 or more.
 アンチモンドープ酸化錫の結晶化度を58427以上、特に78020以上とすると、不純物をより減らし、効果的に酸化アンチモンを固溶した状態にして、赤外線吸収効果をより向上させることができる。それ故に、本発明によれば、酸化アンチモンの使用量を低減させながらも、赤外線吸収効果を十分に発揮させることができる。 When the crystallinity of antimony-doped tin oxide is 58427 or more, particularly 78020 or more, impurities can be further reduced, and antimony oxide can be effectively solid-solved to further improve the infrared absorption effect. Therefore, according to the present invention, the infrared absorption effect can be sufficiently exhibited while reducing the amount of antimony oxide used.
 また、上記アンチモンドープ酸化錫を、アクリルポリマー及びシリコーンを含むワニスに溶解させ、基材に塗布し、乾燥し、70μmの厚さ及び約11.6重量%のアンチモンドープ酸化錫の固形分重量比を有する塗膜を形成したときに、この塗膜の日射反射率をJIS K5602に従って測定すると、380~780nmの波長域における平均反射率から780~1100nmの波長域における平均反射率を引くことにより得られた値が、約3.00%以上であることが好ましい。 The antimony-doped tin oxide is dissolved in a varnish containing an acrylic polymer and silicone, applied to a substrate, dried, and a solid content weight ratio of antimony-doped tin oxide having a thickness of 70 μm and about 11.6% by weight. When the solar reflectance of this coating film is measured according to JIS K5602 when a coating film having a thickness of 380 is formed, the average reflectance in the wavelength range of 780 to 1100 nm is subtracted from the average reflectance in the wavelength range of 380 to 780 nm. The obtained value is preferably about 3.00% or more.
 これに関連して、380~780nmの波長域における平均反射率から780~1100nmの波長域における平均反射率を引くことにより得られた値が3.00%以上であれば、アンチモンドープ酸化錫の可視光吸収性が相対的に低く、すなわち、アンチモンドープ酸化錫の可視光透明性が相対的に高くなる。したがって、アンチモンドープ酸化錫の呈する色に束縛されることなく、アンチモンドープ酸化錫を幅広い用途で使用することができる。 In this connection, if the value obtained by subtracting the average reflectance in the wavelength region of 780 to 1100 nm from the average reflectance in the wavelength region of 380 to 780 nm is 3.00% or more, the antimony-doped tin oxide Visible light absorption is relatively low, that is, the visible light transparency of antimony-doped tin oxide is relatively high. Therefore, antimony-doped tin oxide can be used in a wide range of applications without being restricted by the color exhibited by antimony-doped tin oxide.
 また、380~780nmの波長域における平均反射率から780~1100nmの波長域における平均反射率を引くことにより得られた値は、約4.80%以上、又は約4.85%以上であることがより好ましく、また約99%以下、約90%以下、又は約80%以下であることがより好ましい。 The value obtained by subtracting the average reflectance in the wavelength range of 780 to 1100 nm from the average reflectance in the wavelength range of 380 to 780 nm is about 4.80% or more, or about 4.85% or more. And more preferably about 99% or less, about 90% or less, or about 80% or less.
 本発明に使用される赤外線吸収顔料は、上記のアンチモンドープ酸化錫からなる赤外線吸収顔料でよい。 The infrared absorbing pigment used in the present invention may be an infrared absorbing pigment made of the above antimony-doped tin oxide.
 本発明に使用される赤外線吸収顔料によれば、上述したアンチモンドープ酸化錫の作用・効果を赤外線吸収顔料にて実現することができる。このため、酸化アンチモンの使用量を低下させつつ、赤外線吸収効果も十分に発揮することができるとともに、所定の安全基準等を遵守した高品質の赤外線吸収顔料を提供することができる。 According to the infrared absorbing pigment used in the present invention, the action and effect of the antimony-doped tin oxide described above can be realized by the infrared absorbing pigment. For this reason, while reducing the usage-amount of antimony oxide, the infrared absorption effect can fully be exhibited, and the high quality infrared absorption pigment which followed the predetermined safety standard etc. can be provided.
 本発明の印刷物は、上記の赤外線吸収インクにより印刷された印刷部を備える印刷物である。 The printed matter of the present invention is a printed matter comprising a printing part printed with the above infrared absorbing ink.
 本発明の印刷物によれば、上記の赤外線吸収インクにより、文字、図形等を印刷した印刷部を備えるため、酸化アンチモンの使用量を低下させつつ、赤外線吸収効果も十分に発揮させた印刷物とすることができる。また、高品質の印刷物を提供するのみならず、環境にも配慮した印刷物を提供することができる。 According to the printed matter of the present invention, since the above-described infrared absorbing ink is used to provide a printing unit on which characters, figures, and the like are printed, the printed matter has a sufficient effect of absorbing infrared rays while reducing the amount of antimony oxide used. be able to. In addition to providing high-quality printed materials, it is possible to provide printed materials that are environmentally friendly.
 本発明の印刷物は、印刷部に含有されるアンチモンドープ酸化錫の固形分重量比が11.6重量%である場合、780~1100nmの赤外線波長域における反射率のピーク値が28.776%以下であることが好ましい。 The printed matter of the present invention has a peak reflectance value of 28.776% or less in the infrared wavelength region of 780 to 1100 nm when the solid content weight ratio of the antimony-doped tin oxide contained in the printed part is 11.6% by weight. It is preferable that
 このように、赤外線の反射率が低い印刷物とすることにより、印刷部に含有される酸化アンチモンを低減することができると共に、赤外線吸収効果を十分に発揮させることができる。 Thus, by using a printed matter having a low infrared reflectance, it is possible to reduce the antimony oxide contained in the printing portion and to sufficiently exhibit the infrared absorption effect.
 本発明のアンチモンドープ酸化錫は、例えば、以下の方法により製造されることができる。 The antimony-doped tin oxide of the present invention can be produced, for example, by the following method.
〔アンチモンドープ酸化錫の製造方法〕
 本発明のアンチモンドープ酸化錫の製造方法は、アンチモンドープ酸化錫原料を通気下で焼成する通気焼成工程を含む。
[Method for producing antimony-doped tin oxide]
The method for producing antimony-doped tin oxide of the present invention includes an aeration firing step of firing the antimony-doped tin oxide raw material under aeration.
 本発明において、通気焼成又は冷却は、焼成又は冷却雰囲気を流通させながら焼成又は冷却を行うことだけでなく、外気を遮断しない開放空間(以下、「開放系」とも呼ぶ)で焼成又は冷却を行うことも含む。 In the present invention, aeration firing or cooling is performed not only by firing or cooling while circulating a firing or cooling atmosphere, but also by firing or cooling in an open space (hereinafter also referred to as “open system”) that does not block outside air. Including.
 本発明のアンチモンドープ酸化錫の製造方法は、アンチモンドープ酸化錫の半値幅を従来品よりも狭め、かつ/又はアンチモンドープ酸化錫の結晶化度を従来品よりも高めることができる。 The method for producing antimony-doped tin oxide of the present invention can narrow the half-value width of antimony-doped tin oxide from that of the conventional product and / or increase the crystallinity of antimony-doped tin oxide than that of the conventional product.
 本発明のアンチモンドープ酸化錫の製造方法は、通気焼成工程を含むことにより、酸化アンチモンの使用量を低減させながらも、赤外線吸収効果を十分に発揮させることができるアンチモンドープ酸化錫を製造することができる。 The method for producing antimony-doped tin oxide of the present invention comprises producing an antimony-doped tin oxide capable of sufficiently exhibiting the infrared absorption effect while reducing the amount of antimony oxide used by including an aeration firing step. Can do.
 本明細書では、「アンチモンドープ酸化錫原料」は、通気焼成により本発明のアンチモンドープ酸化錫になる原料であり、例えば、下記(i)~(v)の少なくとも1つを満たす原料である:
(i)錫化合物とアンチモン化合物の混合物;
(ii)上記(i)の混合物を閉鎖系(外気を遮断する密閉空間)で焼成することにより得られる生成物;
(iii)上記(ii)の生成物を閉鎖系で冷却することにより得られる生成物;
(iv)錫化合物及びアンチモン化合物を原料として用いる共沈焼成法により得られる粗アンチモンドープ酸化錫;及び
(v)X線回折測定により得られた2θ=27°付近の半値幅(Δ2θ)が、0.35を超えており、かつ/又は、X線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、18092未満である粗アンチモンドープ酸化錫。
In the present specification, the “antimony-doped tin oxide raw material” is a raw material that becomes the antimony-doped tin oxide of the present invention by aeration firing, for example, a raw material that satisfies at least one of the following (i) to (v):
(I) a mixture of a tin compound and an antimony compound;
(Ii) a product obtained by firing the mixture of (i) above in a closed system (closed space that blocks outside air);
(Iii) a product obtained by cooling the product of (ii) above in a closed system;
(Iv) a crude antimony-doped tin oxide obtained by a coprecipitation firing method using a tin compound and an antimony compound as raw materials; and (v) a half width (Δ2θ) near 2θ = 27 ° obtained by X-ray diffraction measurement, The crystallinity, which is a value exceeding 0.35 and / or the peak value of the peak around 2θ = 27 ° obtained by X-ray diffraction measurement, divided by the half width (Δ2θ) is less than 18092 Some crude antimony-doped tin oxide.
 上記(ii)及び(iii)からも明らかな通り、従来は閉鎖系で焼成工程及び冷却工程を行っていたため、従来のアンチモンドープ酸化錫では、酸化錫の結晶格子中に固溶されない酸化アンチモンが不純物として存在しており、赤外線吸収効果に寄与していないにもかかわらず、酸化アンチモンの多いアンチモンドープ酸化錫となっていた。 As apparent from the above (ii) and (iii), since the firing process and the cooling process are conventionally performed in a closed system, in the conventional antimony-doped tin oxide, antimony oxide that is not solid-solved in the crystal lattice of tin oxide is present. Despite being present as an impurity and not contributing to the infrared absorption effect, it was antimony-doped tin oxide with a large amount of antimony oxide.
 そこで、本件発明者等は、通気焼成工程、及びその後の冷却工程を行うことにより、余分な酸化アンチモンの除去を達成できることを見出した。そして、本発明の製造方法により得られるアンチモンドープ酸化錫は、半値幅が狭く、かつ/又は結晶化度が高くなるが、これは不純物の酸化アンチモンが少ないことに起因しているものと考えられる。一方、アンチモンドープ酸化錫の中に、余分な酸化アンチモンが存在していると、X線回折での測定時にX線が散乱され、ピークが低くなるものと考えられる。 Therefore, the inventors of the present invention have found that the removal of excess antimony oxide can be achieved by performing an aeration firing process and a subsequent cooling process. The antimony-doped tin oxide obtained by the production method of the present invention has a narrow half-value width and / or a high crystallinity, which is considered to be caused by a small amount of impurity antimony oxide. . On the other hand, if extra antimony oxide is present in the antimony-doped tin oxide, it is considered that X-rays are scattered during measurement by X-ray diffraction and the peak is lowered.
 なお、本明細書では、通気焼成工程、及びその後の通気冷却工程を少なくとも含むアンチモンドープ酸化錫の製造方法を「気化精製法」と呼ぶ。 In the present specification, a method for producing antimony-doped tin oxide including at least an aeration firing step and a subsequent aeration cooling step is referred to as a “vaporization purification method”.
 また、結晶格子中に固溶されている酸化アンチモンについては、本発明の製造方法では、通気焼成工程により、その一部を除去しつつ、結晶構造を適切に維持することができるため、高い赤外線吸収効果を維持することができる。このため、通気焼成工程を経ることにより、酸化アンチモンの使用量を低減させながら、高い赤外線吸収効果を得ることができる。 In addition, for the antimony oxide solid-solved in the crystal lattice, the production method of the present invention can appropriately maintain the crystal structure while removing a part thereof by the aeration firing step, so that a high infrared ray Absorption effect can be maintained. For this reason, a high infrared absorption effect can be obtained while reducing the amount of antimony oxide used by passing through the aeration firing step.
 「錫化合物」としては、例えば、メタ錫酸、錫酸ナトリウム三水和物、ニオブ三錫、酸化フェンブタ錫、酸化錫、水素化錫を挙げることができる。 Examples of the “tin compound” include metastannic acid, sodium stannate trihydrate, niobium tritin, fenbutane oxide, tin oxide, and tin hydride.
 「アンチモン化合物」としては、例えば、酸化アンチモン、アンチモン化インジウム、スチビンを挙げることができる。 Examples of the “antimony compound” include antimony oxide, indium antimonide, and stibine.
 所望により、本発明のアンチモンドープ酸化錫の製造方法は、通気焼成工程の後に、以下の工程を含んでよい:
 得られたアンチモンドープ酸化錫を、通気下で冷却する通気冷却工程;及び/又は
 得られたアンチモンドープ酸化錫を200[℃/時間]以上の冷却速度で冷却する冷却工程。
If desired, the method for producing antimony-doped tin oxide of the present invention may include the following steps after the aeration firing step:
A ventilation cooling step of cooling the obtained antimony-doped tin oxide under ventilation; and / or a cooling step of cooling the obtained antimony-doped tin oxide at a cooling rate of 200 [° C./hour] or more.
 通気冷却工程は、例えば、炉の中に空気を送り込むことにより行なわれることができる(具体的には、冷却装置の設定により何時間後に何度まで冷却するという設定が可能である)。 The aeration cooling process can be performed, for example, by sending air into the furnace (specifically, it is possible to set the number of hours and how many times it is cooled by setting the cooling device).
 仮に密閉冷却工程(いわゆる自然冷却)に要する時間が10時間であるとすれば、通気冷却工程では、それよりも早い時間(例えば5時間程度)で冷却させてよい。このため、通気冷却工程は、自然冷却よりも積極的に冷却していることになる。 If the time required for the hermetic cooling process (so-called natural cooling) is 10 hours, the air cooling process may be performed in an earlier time (for example, about 5 hours). For this reason, the ventilation cooling process is more actively cooling than natural cooling.
 通気冷却工程又は単なる冷却工程において、冷却速度は、200[℃/時間]以上、215[℃/時間]以上、又は216[℃/時間]以上であることが好ましい。 In the ventilation cooling process or the simple cooling process, the cooling rate is preferably 200 [° C./hour] or more, 215 [° C./hour] or more, or 216 [° C./hour] or more.
 また、本発明のアンチモンドープ酸化錫の製造方法は、通気焼成工程の前に、以下の混合工程及び閉鎖焼成工程を含むことが好ましい:
 錫化合物とアンチモン化合物を混合して、混合物を得る混合工程;及び
 混合物を閉鎖系で焼成して、アンチモンドープ酸化錫原料を得る閉鎖焼成工程。
Moreover, it is preferable that the manufacturing method of the antimony dope tin oxide of this invention includes the following mixing processes and a closed baking process before a ventilation baking process:
A mixing step of mixing a tin compound and an antimony compound to obtain a mixture; and a closed baking step of firing the mixture in a closed system to obtain an antimony-doped tin oxide raw material.
 さらに、本発明のアンチモンドープ酸化錫の製造方法は、閉鎖焼成工程と通気焼成工程の間に、アンチモンドープ酸化錫原料を閉鎖系で冷却する閉鎖冷却工程を含むことが好ましい。 Furthermore, the method for producing antimony-doped tin oxide of the present invention preferably includes a closed cooling step of cooling the antimony-doped tin oxide raw material in a closed system between the closed baking step and the aeration baking step.
 混合工程、閉鎖焼成工程、及び閉鎖冷却工程によって、それぞれ上記(i)~(iii)を満たすアンチモンドープ酸化錫原料を得ることができる。 The antimony-doped tin oxide raw material satisfying the above (i) to (iii) can be obtained by the mixing step, the closed firing step, and the closed cooling step, respectively.
 本発明の一実施形態に係るアンチモンドープ酸化錫の製造方法の各工程について、図1を参照して、以下に説明する。 Each process of the manufacturing method of the antimony dope tin oxide which concerns on one Embodiment of this invention is demonstrated below with reference to FIG.
〔原料混合工程:ステップS100〕
 この工程では、アンチモンドープ酸化錫の原料となる錫化合物とアンチモン化合物と混合する。具体的には、粉末状のメタ錫酸(H2SnO3)と粉末状の三酸化アンチモン(Sb23)とを混合する。配合の割合は、「メタ錫酸(H2SnO3)=90重量%、三酸化アンチモン(Sb23)=10重量%」の割合とし、水を媒体としてボールミルで砕混合を行う。なお、三酸化アンチモンの含有量は、10重量%が好ましいが、5~20重量%程度であってもよい。
[Raw material mixing step: Step S100]
In this step, a tin compound and an antimony compound as raw materials for antimony-doped tin oxide are mixed. Specifically, powdered metastannic acid (H 2 SnO 3 ) and powdered antimony trioxide (Sb 2 O 3 ) are mixed. The proportions of blending are “metastannic acid (H 2 SnO 3 ) = 90 wt%, antimony trioxide (Sb 2 O 3 ) = 10 wt%”, and the mixture is pulverized and mixed with a ball mill using water as a medium. The content of antimony trioxide is preferably 10% by weight, but may be about 5 to 20% by weight.
〔第1乾燥工程:ステップS102〕
 この工程では、先の原料混合工程(ステップS100)で混合された材料を320℃にて乾燥させる。これにより、先の原料混合工程(ステップS100)にて材料を混合する際に使用した水を除去することができる。
[First drying step: Step S102]
In this step, the material mixed in the previous raw material mixing step (step S100) is dried at 320 ° C. Thereby, the water used when mixing materials in the previous raw material mixing step (step S100) can be removed.
〔第1粉砕工程:ステップS104〕
 この工程では、先の第1乾燥工程(ステップS102)にて乾燥された材料を粉砕する。具体的には、乾燥された材料を微粉砕機で粉末状に粉砕する。
[First grinding step: Step S104]
In this step, the material dried in the first drying step (step S102) is pulverized. Specifically, the dried material is pulverized into a powder by a fine pulverizer.
〔閉鎖焼成工程:ステップS106〕
 この工程では、先の第1粉砕工程(ステップS104)にて粉砕された材料を焼成する。具体的には、先の第1粉砕工程(ステップS104)にて粉砕された材料を閉鎖系にて1000~1300℃で1時間以上焼成する。閉鎖焼成工程では、閉鎖系にて焼成しているため、酸化アンチモンの含有率(固溶比率)は、10重量%程度に維持される。
[Closed firing process: Step S106]
In this step, the material pulverized in the first pulverization step (step S104) is baked. Specifically, the material pulverized in the first pulverization step (step S104) is fired at 1000 to 1300 ° C. for 1 hour or longer in a closed system. In the closed baking process, since baking is performed in a closed system, the content of antimony oxide (solid solution ratio) is maintained at about 10% by weight.
〔閉鎖冷却工程:ステップS107〕
 この工程では、先の閉鎖焼成工程(ステップS106)で焼成された材料を冷却する。具体的には、閉鎖焼成工程の終了と同時に冷却を開始して、焼成された材料を閉鎖系で冷却する。これにより、錫(Sn)とアンチモン(Sb)とを複合させたアンチモンドープ酸化錫原料が生成される。アンチモンドープ酸化錫原料は、閉鎖焼成工程(ステップS106)及び閉鎖冷却工程(ステップS107)を経て生成される。なお、冷却は自然冷却でもよいが、後述する通気冷却工程と同様に、焼成された材料を通気下で冷却してもよい。
[Closed cooling process: Step S107]
In this step, the material fired in the previous closed firing step (step S106) is cooled. Specifically, cooling is started simultaneously with the end of the closed firing step, and the fired material is cooled in a closed system. Thereby, an antimony-doped tin oxide raw material in which tin (Sn) and antimony (Sb) are combined is generated. The antimony-doped tin oxide raw material is generated through a closed firing process (step S106) and a closed cooling process (step S107). In addition, although natural cooling may be sufficient as cooling, you may cool the baked material under ventilation similarly to the ventilation cooling process mentioned later.
〔第1微粉砕工程:ステップS108〕
 所望により、この工程を行なって、先の閉鎖冷却工程(ステップS107)にて冷却された材料を粉砕してよい。具体的には、水を媒体としつつ、ビーズミルを用いて、焼成後の材料を粒径(レーザー回折散乱法でのメディアン径)が100nm程度になるまで粉砕することができる。なお、この工程を省略する場合には、この工程より前の工程(例えば、ステップS106、ステップS107など)で使用された装置内において、連続的に後の工程に進んでよい。
[First fine grinding step: Step S108]
If desired, this step may be performed to pulverize the material cooled in the previous closed cooling step (step S107). Specifically, the fired material can be pulverized using a bead mill while using water as a medium until the particle diameter (median diameter in the laser diffraction scattering method) reaches about 100 nm. In the case where this process is omitted, the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
〔第2乾燥工程:ステップS110〕
 所望により、この工程を行なって、先の第1微粉砕工程(ステップS108)で粉砕された材料を、320℃に加熱することにより乾燥させてよい。これにより、先の第1微粉砕工程(ステップS108)にて材料を粉砕する際に使用した水を除去することができる。なお、この工程を省略する場合には、この工程より前の工程(例えば、ステップS106、ステップS107など)で使用された装置内において、連続的に後の工程に進んでよい。
[Second drying step: Step S110]
If desired, this step may be performed, and the material pulverized in the first pulverization step (step S108) may be dried by heating to 320 ° C. Thereby, the water used when the material is pulverized in the first fine pulverization step (step S108) can be removed. In the case where this process is omitted, the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
〔第2粉砕工程:ステップS112〕
 所望により、この工程を行なって、先の第2乾燥工程(ステップS110)にて乾燥された材料を粉砕してよい。具体的には、乾燥された材料を微粉砕機で粉末状に粉砕することができる。なお、この工程を省略する場合には、この工程より前の工程(例えば、ステップS106、ステップS107など)で使用された装置内において、連続的に後の工程に進んでよい。
[Second grinding step: Step S112]
If desired, this step may be performed to pulverize the material dried in the second drying step (step S110). Specifically, the dried material can be pulverized with a fine pulverizer. In the case where this process is omitted, the process may be continuously performed in the apparatus used in the process before this process (for example, step S106, step S107, etc.).
〔通気焼成工程:ステップS114〕
 この工程では、先の第2粉砕工程(ステップS112)にて粉砕された材料を焼成する。具体的には、先の第2粉砕工程(ステップS112)にて粉砕された材料を、炉において通気下(炉内部に通気を保った状態)にて焼成する。この工程では、焼成温度は、1000℃以上、1050℃以上、1100℃以上、又は1150℃以上でよく、また、この焼成温度は、1300℃以下、1250℃以下、又は1200℃以下でよい。この工程では、焼成時間は、1時間以上、2時間以上、3時間以上、4時間以上、5時間以上、6時間以上、7時間以上、又は8時間以上でよく、また、この焼成時間は、12時間以下、11時間以下、10時間以下、又は9時間以下でよい。この通気焼成工程により、閉鎖焼成工程により生成されたアンチモンドープ酸化錫原料を通気下で再び焼成することになる。また、通気焼成工程では、通気下にて焼成しているため、酸化錫(SnO2)中の余分な酸化アンチモンを気化させて消失させることができる。そして、最終的な酸化アンチモンの含有量(固溶比率)は、約0.5~10.0重量%になる。
[Ventilation firing process: Step S114]
In this step, the material pulverized in the second pulverization step (step S112) is baked. Specifically, the material pulverized in the second pulverization step (step S112) is fired in a furnace under ventilation (a state in which ventilation is maintained inside the furnace). In this step, the firing temperature may be 1000 ° C. or more, 1050 ° C. or more, 1100 ° C. or more, or 1150 ° C. or more, and the firing temperature may be 1300 ° C. or less, 1250 ° C. or less, or 1200 ° C. or less. In this step, the firing time may be 1 hour or more, 2 hours or more, 3 hours or more, 4 hours or more, 5 hours or more, 6 hours or more, 7 hours or more, or 8 hours or more. It may be 12 hours or less, 11 hours or less, 10 hours or less, or 9 hours or less. By this aeration firing process, the antimony-doped tin oxide raw material produced by the closed firing process is fired again under ventilation. In the aeration firing process, since the firing is performed under ventilation, excess antimony oxide in tin oxide (SnO 2 ) can be vaporized and eliminated. The final content of antimony oxide (solid solution ratio) is about 0.5 to 10.0% by weight.
〔通気冷却工程:ステップS116〕
 この工程では、先の通気焼成工程(ステップS114)で焼成されたアンチモンドープ酸化錫を、通気下にて冷却する。
[Ventilation cooling step: Step S116]
In this step, the antimony-doped tin oxide fired in the previous aeration firing step (step S114) is cooled under ventilation.
 具体的には、通気焼成工程の終了と同時に冷却を開始し、300分以内に焼成炉内の温度を室温(例えば20~25℃程度)にすることにより、再び焼成されたアンチモンドープ酸化錫を冷却する。なお、通気冷却工程は通気下で行われる。 Specifically, cooling is started simultaneously with the end of the aeration firing process, and the temperature in the firing furnace is set to room temperature (for example, about 20 to 25 ° C.) within 300 minutes. Cooling. The aeration cooling step is performed under aeration.
 なお、実施形態において気化精製法を行う場合には、通気焼成工程(ステップS114)の後に、通気冷却工程(ステップS116)を行うことができる。 In addition, when performing the vaporization refinement | purification method in embodiment, an aeration cooling process (step S116) can be performed after an aeration baking process (step S114).
〔第2微粉砕工程:ステップS118〕
 この工程では、先の通気冷却工程(ステップS116)にて冷却された精製後の材料を粉砕する。具体的には、水を媒体としつつ、ビーズミルを用いて、精製後の材料を粒径(レーザー回折散乱法でのメディアン径)が100nm程度になるまで粉砕する。
[Second fine grinding step: Step S118]
In this process, the purified material cooled in the previous air cooling process (step S116) is pulverized. Specifically, using water as a medium, the purified material is pulverized using a bead mill until the particle size (median diameter in the laser diffraction scattering method) becomes about 100 nm.
〔洗浄工程:ステップS120〕
 この工程では、先の第2微粉砕工程(ステップS118)にて粒度調整された材料の不純物を水洗により除去する。不純物は、原材料に含まれる微量の電解質(例えば、ナトリウム(Na)、カリウム(K)など)であり、不純物が十分に除去されたか否かは、導電率で確認することができる。
[Washing process: Step S120]
In this step, the impurities of the material whose particle size has been adjusted in the second fine pulverization step (step S118) are removed by washing with water. Impurities are minute amounts of electrolyte (for example, sodium (Na), potassium (K), etc.) contained in the raw material, and whether or not the impurities are sufficiently removed can be confirmed by conductivity.
〔第3乾燥工程:ステップS122〕
 この工程では、先の洗浄工程(ステップS120)で洗浄された材料を145℃に加熱することにより乾燥させる。これにより、先の洗浄工程(ステップS120)にて材料を洗浄する際に使用した水を除去することができるとともに、洗浄後の材料を乾燥させることができる。
[Third drying step: Step S122]
In this step, the material cleaned in the previous cleaning step (step S120) is dried by heating to 145 ° C. Thereby, while being able to remove the water used when wash | cleaning material by the previous washing | cleaning process (step S120), the material after washing | cleaning can be dried.
〔仕上粉砕工程:ステップS124〕
 この工程では、先の第3乾燥工程(ステップS122)にて乾燥された材料を粉砕する。具体的には、乾燥された材料を微粉砕機で、粒径(レーザー回折散乱法でのメディアン径)が数10nm~100μm程度になるように仕上粉砕する。
[Finish grinding process: Step S124]
In this step, the material dried in the third drying step (step S122) is pulverized. Specifically, the dried material is pulverized with a fine pulverizer so that the particle diameter (median diameter by laser diffraction scattering method) is about several tens of nm to 100 μm.
 そして、上記の各工程を経ることにより、本発明のアンチモンドープ酸化錫が製造される。 And the antimony dope tin oxide of this invention is manufactured by passing through each said process.
[ビヒクル]
 ビヒクルは、アンチモンドープ酸化錫及び/又は着色剤を分散させて、被印刷物に付着させる媒体である。
[Vehicle]
The vehicle is a medium in which antimony-doped tin oxide and / or a colorant is dispersed and adhered to a substrate.
 本発明のインクには、印刷に使用されている既知のビヒクル成分を含有させてよい。本発明のインクは、溶剤含有インク又はUVインクとして形成されることができるので、溶剤含有インクに適したビヒクル及びUVインクに適したビヒクルについて、以下に説明する。 The ink of the present invention may contain a known vehicle component used for printing. Since the ink of the present invention can be formed as a solvent-containing ink or a UV ink, a vehicle suitable for the solvent-containing ink and a vehicle suitable for the UV ink will be described below.
(溶剤含有インクに適したビヒクル)
 溶剤含有インクに適したビヒクルは、有機溶剤含有インク用ビヒクルと水性インク用ビヒクルに概ね大別されるので、これらのビヒクルについて以下に説明する。
(Vehicle suitable for solvent-containing ink)
Vehicles suitable for the solvent-containing ink are roughly classified into organic solvent-containing ink vehicles and water-based ink vehicles, and these vehicles will be described below.
「有機溶剤含有インク用ビヒクル」
 有機溶剤含有インクに適したビヒクルとしては、例えば、樹脂、有機溶剤などを単独又は複数組み合わせて使用することができる。樹脂及び有機溶剤について以下に説明する。
"Vehicle for organic solvent-containing ink"
As a vehicle suitable for the organic solvent-containing ink, for example, a resin, an organic solvent, or the like can be used alone or in combination. The resin and organic solvent will be described below.
〔樹脂〕
 被印刷体に対する密着性、乾燥性、耐熱性、光沢性、アンチモンドープ酸化錫又は着色剤の分散性などの所望のインク特性に応じて、有機溶剤含有インクには、印刷に使用されている既知の樹脂を含有させてよい。
〔resin〕
Depending on the desired ink properties such as adhesion to the substrate, drying properties, heat resistance, gloss, dispersibility of antimony-doped tin oxide or colorant, organic solvent-containing inks are known to be used for printing These resins may be included.
 樹脂としては、例えば、塩化ビニル、酢酸ビニルなどのビニル樹脂、アクリル樹脂、アクリルアミド樹脂、アルキド樹脂、スチレン樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、フェノキシ樹脂、ポリオレフィン樹脂、フェノール樹脂、ノボラック樹脂、ロジン変性フェノール樹脂、石油系樹脂、ポリビニルピロリドン樹脂、メラミン、ベンゾグアナミン等のアミノ樹脂、ポリアミド樹脂、ポリエステルポリアミド樹脂、セルロースジアセテート、セルローストリアセテート、ニトロセルロース、硝酸セルロース、プロピオン酸セルロース、セルロースアセテートブチレート等のセルロースエステル樹脂、メチルセルロース、エチルセルロース、ベンジルセルロース、トリメチルセルロース、シアンエチルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース、アミノエチルセルロース等のセルロースエーテル樹脂、シリコーン樹脂、テルペン樹脂、及びこれらの変性樹脂などが挙げられる。また、これらの樹脂は単独で用いても二種以上を併用してもよい。さらに、これらの樹脂を構成する複数のモノマーを共重合して得られる共重合樹脂を使用してもよい。なお、これらの樹脂は、後述する分散剤と同じでもよい。 Examples of the resin include vinyl resins such as vinyl chloride and vinyl acetate, acrylic resins, acrylamide resins, alkyd resins, styrene resins, polyester resins, polyurethane resins, silicone resins, fluorine resins, epoxy resins, phenoxy resins, polyolefin resins, and phenols. Resin, novolac resin, rosin modified phenolic resin, petroleum resin, polyvinylpyrrolidone resin, amino resin such as melamine, benzoguanamine, polyamide resin, polyester polyamide resin, cellulose diacetate, cellulose triacetate, nitrocellulose, cellulose nitrate, cellulose propionate, Cellulose ester resins such as cellulose acetate butyrate, methyl cellulose, ethyl cellulose, benzyl cellulose, trimethyl cellulose, Ann cellulose, carboxymethyl cellulose, carboxyethyl cellulose, cellulose ether resin, such as amino ethyl cellulose, silicone resins, terpene resins, and the like of these modified resins. These resins may be used alone or in combination of two or more. Furthermore, a copolymer resin obtained by copolymerizing a plurality of monomers constituting these resins may be used. These resins may be the same as the dispersant described later.
 これらの樹脂の中でも、ピエゾ方式のインクジェット印刷に使用される樹脂として、ビニル樹脂、アクリル樹脂、アルキド樹脂、ポリエステル樹脂、ポリウレタン樹脂、シリコーン樹脂、フッ素樹脂、エポキシ樹脂、フェノキシ樹脂、ポリオレフィン樹脂、フェノール樹脂、ノボラック樹脂、ロジン変性フェノール樹脂、メラミン、ベンゾグアナミン等のアミノ樹脂、ポリアミド樹脂、ポリエステルポリアミド樹脂、セルロースジアセテート、セルローストリアセテート、ニトロセルロース、硝酸セルロース、プロピオン酸セルロース、セルロースアセテートブチレート等のセルロースエステル樹脂、メチルセルロース、エチルセルロース、ベンジルセルロース、トリメチルセルロース、シアンエチルセルロース、カルボキシメチルセルロース、カルボキシエチルセルロース、アミノエチルセルロース等のセルロースエーテル樹脂、酢酸ビニル共重合樹脂などが好ましい。 Among these resins, vinyl resin, acrylic resin, alkyd resin, polyester resin, polyurethane resin, silicone resin, fluororesin, epoxy resin, phenoxy resin, polyolefin resin, phenol resin are used for piezo ink jet printing. , Novolak resins, rosin-modified phenolic resins, amino resins such as melamine and benzoguanamine, polyamide resins, polyester polyamide resins, cellulose diacetate, cellulose triacetate, nitrocellulose, cellulose nitrate, cellulose propionate, cellulose acetate butyrate, etc. , Methylcellulose, ethylcellulose, benzylcellulose, trimethylcellulose, cyanethylcellulose, carboxymethylcellulose Scan, carboxyethyl cellulose, cellulose ether resin, such as amino ethyl cellulose, vinyl acetate copolymer resins are preferable.
 また、サーマル方式のインクジェット印刷に使用される樹脂として、アルキド樹脂、アクリル樹脂、アクリル樹脂、アクリルアミド樹脂、ポリビニルピロリドン樹脂などが好ましい。 Further, as the resin used for thermal ink jet printing, alkyd resin, acrylic resin, acrylic resin, acrylamide resin, polyvinyl pyrrolidone resin and the like are preferable.
 さらに、コンティニュアス方式のインクジェットに使用される樹脂としては、使用される有機溶剤に可溶であり、かつ後述する導電性付与剤と相溶性の良好な樹脂を使用してよいが、具体的には、アクリル樹脂、スチレン/アクリル系共重合体樹脂、シリコーン樹脂、フェノール樹脂、テルペン/フェノール樹脂、エポキシ樹脂、変性エポキシ樹脂、ポリエステル樹脂、セルロース系樹脂(例えば、ニトロセルロース等)、塩化ビニル/酢酸ビニル系共重合体樹脂、石油系樹脂、ロジンエステル等が好ましい。 Furthermore, as a resin used for continuous ink jet, a resin that is soluble in the organic solvent used and has good compatibility with the conductivity imparting agent described later may be used. Include acrylic resin, styrene / acrylic copolymer resin, silicone resin, phenolic resin, terpene / phenolic resin, epoxy resin, modified epoxy resin, polyester resin, cellulose resin (for example, nitrocellulose), vinyl chloride / Vinyl acetate copolymer resins, petroleum resins, rosin esters and the like are preferable.
〔有機溶剤〕
 溶剤の沸点、溶剤と樹脂の相溶性、溶剤と補助剤の相溶性、インクの乾燥性、被印刷体への浸透性などを考慮して、本発明のインクに使用される溶剤を選択してよい。
〔Organic solvent〕
Select the solvent used in the ink of the present invention in consideration of the boiling point of the solvent, the compatibility of the solvent and the resin, the compatibility of the solvent and the auxiliary agent, the drying property of the ink, the permeability to the printing medium, etc. Good.
 有機溶剤としては、例えば、アルコール類(例えば、メタノール、エタノール、n-プロピルアルコール、イソプロピルアルコール、n-ブチルアルコール、sec-ブチルアルコール、tert-ブチルアルコール、イソブチルアルコール、ペンチルアルコール、ヘキシルアルコール、ヘプチルアルコール、オクチルアルコール、ノニルアルコール、デシルアルコール、シクロヘキサノール、ベンジルアルコール、ジアセトンアルコール等);多価アルコール類(例えば、エチレングリコール、ジエチレングリコール、トリメチレングリコール、トリエチレングリコール、テトラエチレングリコール、ポリエチレングリコール、プロピレングリコール、ジプロピレングリコール、ポリプロピレングリコール、ブチレングリコール、ヘキサンジオール、ペンタンジオール、グリセリン、ヘキサントリオール、チオジグリコール、1,3-プロパンジオール、1,4-ブタンジオール、1,5-ペンタンジオール、1,2- ペンタンジオール、1,2-ヘキサンジオール、1,2,6-ヘキサントリオール等);エーテル系溶剤(例えば、エチルエーテル、ブチルエーテル、エチレングリコールモノエチルエーテル、ジエチレングリコールモノエチルエーテル、ジエチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、ジプロピレングリコールモノエチルエーテル等);エステル系溶剤(例えば、ギ酸エチル、メチルアセテート、プロピルアセテート、フェニルアセテート、エチレングリコールモノエチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート等);炭化水素系溶剤(例えば、ヘキサン、オクタン、シクロペンタン、ベンゼン、トルエン、キシロール等);ハロゲン化炭化水素系溶剤(例えば、四塩化炭素、トリクロロエチレン、テトラクロロエタン、ジクロロベンゼン等);ケトン系溶剤(例えば、アセトン、メチルエチルケトン、メチルプロピルケトン、メチルアミルケトン、シクロヘキサノン等);アミン類(例えば、エタノールアミン、ジエタノールアミン、トリエタノールアミン、N-メチルジエタノールアミン、N-エチルジエタノールアミン、モルホリン、N-エチルモルホリン、エチレンジアミン、ジエチレンジアミン、トリエチレンテトラミン、テトラエチレンペンタミン、ポリエチレンイミン、ペンタメチルジエチレントリアミン、テトラメチルプロピレンジアミン等);アミド類(例えば、ホルムアミド、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド等);複素環類(例えば、2-ピロリドン、N-メチル-2-ピロリドン、シクロヘキシルピロリドン、2-オキサゾリドン等);スルホキシド類(例えば、ジメチルスルホキシド等);ラクトン類(例えば、γ-ブチロラクトン等);スルホン類(例えば、スルホラン等);尿素;ピリジン;アセトニトリル;鉱物油などが挙げられる。 Examples of organic solvents include alcohols (eg, methanol, ethanol, n-propyl alcohol, isopropyl alcohol, n-butyl alcohol, sec-butyl alcohol, tert-butyl alcohol, isobutyl alcohol, pentyl alcohol, hexyl alcohol, heptyl alcohol). , Octyl alcohol, nonyl alcohol, decyl alcohol, cyclohexanol, benzyl alcohol, diacetone alcohol, etc.); polyhydric alcohols (eg, ethylene glycol, diethylene glycol, trimethylene glycol, triethylene glycol, tetraethylene glycol, polyethylene glycol, propylene) Glycol, dipropylene glycol, polypropylene glycol, butylene glycol, hexa Diol, pentanediol, glycerin, hexanetriol, thiodiglycol, 1,3-propanediol, 1,4-butanediol, 1,5-pentanediol, 1,2- pentanediol, 1,2-hexanediol, 1 Ether solvents (for example, ethyl ether, butyl ether, ethylene glycol monoethyl ether, diethylene glycol monoethyl ether, diethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene glycol monoethyl ether, dipropylene glycol) Monoethyl ether, etc.); ester solvents (eg, ethyl formate, methyl acetate, propyl acetate, phenyl acetate, ethylene glycol monoethyl) Ether acetate, propylene glycol monoethyl ether acetate, etc.); hydrocarbon solvents (eg, hexane, octane, cyclopentane, benzene, toluene, xylol, etc.); halogenated hydrocarbon solvents (eg, carbon tetrachloride, trichloroethylene, tetra) Chloroethane, dichlorobenzene, etc.); ketone solvents (eg, acetone, methyl ethyl ketone, methyl propyl ketone, methyl amyl ketone, cyclohexanone, etc.); amines (eg, ethanolamine, diethanolamine, triethanolamine, N-methyldiethanolamine, N— Ethyldiethanolamine, morpholine, N-ethylmorpholine, ethylenediamine, diethylenediamine, triethylenetetramine, tetraethylenepentamine, polyethylene Amides (for example, formamide, N, N-dimethylformamide, N, N-dimethylacetamide, etc.); heterocycles (for example, 2-pyrrolidone, N-methyl- 2-pyrrolidone, cyclohexyl pyrrolidone, 2-oxazolidone etc.); sulfoxides (eg dimethyl sulfoxide etc.); lactones (eg γ-butyrolactone etc.); sulfones (eg sulfolane etc.); urea; pyridine; acetonitrile; mineral Examples include oil.
 これらの有機溶剤の中でも、ピエゾ方式のインクジェット印刷に使用される有機溶剤として、アルコール類、多価アルコール類、エーテル類、アミン類、アミド類、複素環類、スルホキシド類、スルホン類、尿素、アセトニトリル、アセトンなどが好ましい。 Among these organic solvents, alcohols, polyhydric alcohols, ethers, amines, amides, heterocyclics, sulfoxides, sulfones, urea, acetonitrile are used as organic solvents for piezo ink jet printing. Acetone and the like are preferable.
 また、サーマル方式のインクジェット印刷に使用される有機溶剤として、アルコール類、特に炭素数1~10のアルキルアルコール類、炭化水素系溶剤、エーテル類、ケトン類、エステル類などが好ましい。 Further, as the organic solvent used for thermal ink jet printing, alcohols, particularly alkyl alcohols having 1 to 10 carbon atoms, hydrocarbon solvents, ethers, ketones, esters and the like are preferable.
 さらに、コンティニュアス方式のインクジェットに使用される有機溶剤としては、使用される樹脂及び/又は後述する導電性付与剤との相溶性に優れる有機溶剤を使用してよいが、インクの電気伝導度及び乾燥性を向上させるために、メチルエチルケトン、メタノール又はエタノールが好ましい。 Furthermore, as the organic solvent used in the continuous ink jet, an organic solvent having excellent compatibility with the resin used and / or the conductivity imparting agent described later may be used. In order to improve the drying property, methyl ethyl ketone, methanol or ethanol is preferable.
「水性インクに適したビヒクル」
 水性インクに適したビヒクルは、水を含む。また、水性インクに適したビヒクルには、有機溶剤、樹脂などを単独または複数組み合わせて含有させてよい。水、有機溶剤及び樹脂について以下に説明する。
"Vehicle suitable for water-based ink"
A suitable vehicle for water-based ink includes water. The vehicle suitable for the water-based ink may contain an organic solvent, a resin, or the like alone or in combination. The water, organic solvent and resin will be described below.
〔水〕
 水は、水性インクの必須成分である。水は、アンチモンドープ酸化錫、樹脂、有機溶剤、着色剤、補助剤などと共に水性分散体を形成することができる。また、ビヒクルとして水を使用することにより、印刷時に、火災の危険性、有機溶剤の毒性、炭化水素の排出量、及び塗膜中の残留有機溶剤量を抑制することができる。
〔water〕
Water is an essential component of water-based ink. Water can form an aqueous dispersion with antimony-doped tin oxide, resin, organic solvent, colorant, adjuvant and the like. Further, by using water as the vehicle, it is possible to suppress the risk of fire, the toxicity of organic solvents, the amount of hydrocarbon emissions, and the amount of residual organic solvent in the coating film during printing.
 水性インクのビヒクルとして使用される水としては、例えば、純水、脱イオン水、蒸留水、飲料水、水道水、海水、地下水、農業用水、工業用水、軟水、硬水、軽水、重水などが挙げられる。 Examples of water used as a vehicle for water-based ink include pure water, deionized water, distilled water, drinking water, tap water, seawater, groundwater, agricultural water, industrial water, soft water, hard water, light water, and heavy water. It is done.
〔有機溶剤〕
 有機溶剤含有インクに適したビヒクルとして説明された有機溶剤を、水性インクに加えてよい。水と有機溶剤の混合物を使用するときには、混合物の引火点、燃焼継続時間、揮発性などを考慮して、有機溶剤の種類及び含有量を決定することが好ましい。一般に、エタノール、イソプロピルアルコール、エチレングリコール、ジエチレングリコールなどのアルコール系溶剤が、水と併用される。
〔Organic solvent〕
Organic solvents described as vehicles suitable for organic solvent-containing inks may be added to the aqueous ink. When using a mixture of water and an organic solvent, it is preferable to determine the type and content of the organic solvent in consideration of the flash point of the mixture, the combustion duration, volatility, and the like. In general, an alcohol solvent such as ethanol, isopropyl alcohol, ethylene glycol, diethylene glycol or the like is used in combination with water.
〔樹脂〕
 有機溶剤含有インクに適したビヒクルとして説明された樹脂を、水性インクに加えてよい。
〔resin〕
Resins described as vehicles suitable for organic solvent-containing inks may be added to the water-based ink.
 また、水性インクに含まれる樹脂は、インクジェット印刷時とインクジェット印刷後に異なる役割を果たす。具体的には、水性インクに含まれる樹脂は、インクジェット印刷時には、アンチモンドープ酸化錫を水中に分散させるのに対して、インクジェット印刷後には、アンチモンドープ酸化錫を被印刷体に固着させて水への溶出を防ぐ。それ故に、水性インクに含まれる樹脂は、水溶性樹脂、コロイダルディスパージョン樹脂、又はエマルション樹脂の形態であることが好ましい。これらの形態について以下に説明する。 Also, the resin contained in the water-based ink plays a different role during ink jet printing and after ink jet printing. Specifically, the resin contained in the water-based ink disperses antimony-doped tin oxide in water at the time of inkjet printing, whereas after ink-jet printing, the antimony-doped tin oxide is fixed to the substrate to be printed on the water. Prevent elution. Therefore, the resin contained in the water-based ink is preferably in the form of a water-soluble resin, a colloidal dispersion resin, or an emulsion resin. These forms will be described below.
 水溶性樹脂は、水中に溶解して水溶液を形成できる樹脂である。したがって、水溶性樹脂の構造は、親水性部分を有するように設計されていることが好ましい。その場合、親水性部分を有する樹脂は、水酸基、エーテル基、アミド基などの親水性基を有するノニオン型樹脂;カルボキシル基、スルホン酸基、リン酸エステル基などの親水性基が、アンモニア、アミンなどのアルカリ物質で中和されているアニオン型樹脂;又は、一級、二級、三級若しくは四級アミン基などの親水性基が、酢酸などの酸で中和されているカチオン型樹脂でよい。 Water-soluble resin is a resin that can be dissolved in water to form an aqueous solution. Therefore, the structure of the water-soluble resin is preferably designed so as to have a hydrophilic portion. In that case, the resin having a hydrophilic portion is a nonionic resin having a hydrophilic group such as a hydroxyl group, an ether group, or an amide group; a hydrophilic group such as a carboxyl group, a sulfonic acid group, or a phosphate ester group is added to ammonia or an amine. An anionic resin neutralized with an alkaline substance such as a cation resin or a cationic resin in which a hydrophilic group such as a primary, secondary, tertiary or quaternary amine group is neutralized with an acid such as acetic acid. .
 例えば、アニオン型樹脂を乾燥させると、中和に使用されたアルカリ物質が水と共に揮散するので、乾燥された塗膜には、中和前の樹脂が残る。また、カチオン型樹脂を乾燥させると、中和に使用された酸が水と共に揮散するので、乾燥された塗膜には、中和前の樹脂が残る。 For example, when the anionic resin is dried, the alkaline substance used for neutralization volatilizes with water, so that the resin before neutralization remains in the dried coating film. Further, when the cationic resin is dried, the acid used for neutralization is volatilized with water, so that the resin before neutralization remains in the dried coating film.
 例えば、有機溶剤含有インクに適したビヒクルとして説明された樹脂の水溶性が低いときには、その樹脂がノニオン型、アニオン型又はカチオン型樹脂になるように、その樹脂に親水性部分を組み込んで、その樹脂を水性化してよい。一般に、水性化された樹脂の水分散体は、透明である。 For example, when a resin described as a vehicle suitable for an organic solvent-containing ink has low water solubility, a hydrophilic portion is incorporated into the resin so that the resin becomes a nonionic, anionic or cationic resin, and the resin The resin may be made aqueous. In general, an aqueous dispersion of an aqueous resin is transparent.
 コロイダルディスパージョン樹脂は、樹脂が水中でコロイドの形態で分散している樹脂分散体である。一般に、コロイダルディスパージョン樹脂は、水中で、樹脂の親油性部分が親水性部分で囲まれている状態であり、いわゆる半溶解状態である。したがって、コロイド状分散体中の樹脂は、ブラウン運動により安定に分散している。 The colloidal dispersion resin is a resin dispersion in which the resin is dispersed in a colloidal form in water. In general, a colloidal dispersion resin is a so-called semi-dissolved state in which a lipophilic portion of the resin is surrounded by a hydrophilic portion in water. Therefore, the resin in the colloidal dispersion is stably dispersed by Brownian motion.
 一般に、コロイダルディスパージョン樹脂は、約0.01μm~約0.1μmの樹脂粒径を有する。また、コロイダルディスパージョン樹脂は、水溶性樹脂とエマルション樹脂の中間的性質を有しているので、印刷適性と塗膜物性のバランスに優れる。 Generally, colloidal dispersion resins have a resin particle size of about 0.01 μm to about 0.1 μm. In addition, the colloidal dispersion resin has an intermediate property between the water-soluble resin and the emulsion resin, and therefore has an excellent balance between printability and physical properties of the coating film.
 例えば、コロイダルディスパージョン樹脂は、界面活性剤などの乳化剤の存在する水溶液中で重合を行なうときに、アニオン型又はカチオン型樹脂と同様に、樹脂の一部をイオン化することにより得られる。また、重合時に水と共にアルコールを使用して、コロイダルディスパージョン樹脂を得ることも好ましい。 For example, a colloidal dispersion resin is obtained by ionizing a part of a resin in the same manner as an anionic or cationic resin when polymerization is performed in an aqueous solution containing an emulsifier such as a surfactant. It is also preferable to obtain a colloidal dispersion resin by using alcohol together with water during polymerization.
 コロイダルディスパージョン樹脂としては、例えば、ウレタン樹脂、アクリル樹脂などの水分散体を使用することができる。 As the colloidal dispersion resin, for example, an aqueous dispersion such as urethane resin or acrylic resin can be used.
 エマルション樹脂は、界面活性剤などの乳化剤の存在する水溶液中で重合を行なうことにより得られる樹脂分散体である。エマルション樹脂は、分散体中の樹脂が概ね粒子の形態であり、粒子同士の電気的反発により、水溶液中で安定に分散している。一般に、エマルション樹脂は、乳化重合を採用すると、水中で約0.1μm~約1μmの樹脂粒径を有し、懸濁重合を採用すると、水中で約1μm~約10μmの樹脂粒径を有する。また、エマルション樹脂は、概ね白濁している。 Emulsion resin is a resin dispersion obtained by polymerization in an aqueous solution in which an emulsifier such as a surfactant is present. In the emulsion resin, the resin in the dispersion is generally in the form of particles, and is stably dispersed in the aqueous solution by electrical repulsion between the particles. In general, an emulsion resin has a resin particle size of about 0.1 μm to about 1 μm in water when emulsion polymerization is employed, and has a resin particle size of about 1 μm to about 10 μm in water when suspension polymerization is employed. The emulsion resin is generally cloudy.
 一般に、エマルション樹脂は、水溶性樹脂と比べて、インクの固形分量を高くすることができるので、乾燥性及び塗膜物性を制御し易い。また、エマルション樹脂としては、例えば、ウレタン樹脂、アクリル樹脂などの水分散体を使用することができる。 Generally, an emulsion resin can increase the solid content of an ink as compared with a water-soluble resin, and thus it is easy to control drying properties and physical properties of a coating film. Moreover, as an emulsion resin, water dispersions, such as a urethane resin and an acrylic resin, can be used, for example.
 上記で列挙された樹脂は、それぞれ単独で、又は2種以上を組み合わせて、水性インクに適したビヒクルとして使用されることができる。 The resins listed above can be used alone or in combination of two or more as a vehicle suitable for aqueous ink.
(UVインクに適したビヒクル)
 UVインクに適したビヒクルとしては、例えば、モノマー、オリゴマー、バインダーポリマーなどの光重合性樹脂;光重合開始剤などが挙げられる。モノマー及びオリゴマー、バインダーポリマー、並びに光重合開始剤について以下に説明する。
(Vehicle suitable for UV ink)
Examples of the vehicle suitable for the UV ink include photopolymerizable resins such as monomers, oligomers, and binder polymers; photopolymerization initiators and the like. A monomer and an oligomer, a binder polymer, and a photoinitiator are demonstrated below.
〔モノマー・オリゴマー〕
 モノマーは、従来から光重合に使用されていたエチレン性不飽和結合を有する化合物でよい。また、オリゴマーは、エチレン性不飽和結合を有する化合物を、オリゴマー化することにより得られる。
[Monomer / Oligomer]
The monomer may be a compound having an ethylenically unsaturated bond conventionally used for photopolymerization. Moreover, an oligomer is obtained by oligomerizing the compound which has an ethylenically unsaturated bond.
 オリゴマーは、UVインクの基本物性を支配する樹脂である。一方で、モノマーは、主に希釈剤として作用し、インクの粘度、硬化性、接着性などの性質を調整するために使用されることができる。 Oligomers are resins that govern the basic physical properties of UV ink. On the other hand, the monomer mainly acts as a diluent and can be used to adjust properties such as ink viscosity, curability and adhesion.
 エチレン性不飽和結合を有する化合物としては、例えば、(メタ)アクリル酸系化合物;マレイン酸系化合物;ウレタン系、エポキシ系、ポリエステル系、ポリオール系、植物油系化合物等で変性したエチレン性不飽和二重結合を有する化合物などが挙げられる。 Examples of compounds having an ethylenically unsaturated bond include (meth) acrylic acid compounds; maleic acid compounds; urethane-based, epoxy-based, polyester-based, polyol-based, vegetable oil-based compounds and the like. Examples include compounds having a heavy bond.
 具体的には、エチレン性不飽和結合を有する化合物としては、単官能アクリレート及び/又は2官能アクリレートを使用してよい。 Specifically, a monofunctional acrylate and / or a bifunctional acrylate may be used as the compound having an ethylenically unsaturated bond.
 単官能アクリレートとしては、例えば、カプロラクトンアクリレート、イソデシルアクリレート、イソオクチルアクリレート、イソミリスチルアクリレート、イソステアリルアクリレート、2-エチルヘキシル-ジグリコールジアクリレート、2-ヒドロキシブチルアクリレート、2-アクリロイロキシエチルヘキサヒドロフタル酸、ネオペンチルフリコールアクリル酸安息香酸エステル、イソアミルアクリレート、ラウリルアクリレート、ステアリルアクリレート、ブトキシエチルアクリレート、エトキシ-ジエチレングリコールアクリレート、メトキシ-トリエチレングリコールアクリレート、メトキシ-ポリエチレングリコールアクリレート、メトキシジプロピレングリコールアクリレート、フェノキシエチルアクリレート、フェノキシ-ポリエチレングリコールアクリレート、ノニルフェノールエチレンオキサイド付加物アクリレート、テトラヒドロフルフリルアクリレート、イソボニルアクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルアクリレート、2-ヒドロキシ-3-フェノキシプロピルアクリレート、2-アクリロイロキシエチル-コハク酸、2-アクリロイロキシエチル-フタル酸、2-アクリロイロキシエチル-2-ヒドロキシエチル-フタル酸などが挙げられる。 Examples of monofunctional acrylates include caprolactone acrylate, isodecyl acrylate, isooctyl acrylate, isomyristyl acrylate, isostearyl acrylate, 2-ethylhexyl-diglycol diacrylate, 2-hydroxybutyl acrylate, and 2-acryloyloxyethyl hexahydro. Phthalic acid, neopentylglycol acrylic acid benzoate, isoamyl acrylate, lauryl acrylate, stearyl acrylate, butoxyethyl acrylate, ethoxy-diethylene glycol acrylate, methoxy-triethylene glycol acrylate, methoxy-polyethylene glycol acrylate, methoxydipropylene glycol acrylate, Phenoxyethyl acrylate, pheno Si-polyethylene glycol acrylate, nonylphenol ethylene oxide adduct acrylate, tetrahydrofurfuryl acrylate, isobornyl acrylate, 2-hydroxyethyl acrylate, 2-hydroxypropyl acrylate, 2-hydroxy-3-phenoxypropyl acrylate, 2-acryloyloxyethyl -Succinic acid, 2-acryloyloxyethyl-phthalic acid, 2-acryloyloxyethyl-2-hydroxyethyl-phthalic acid and the like.
 2官能アクリレートとしては、例えば、ヒドロキシピバリン酸ネオペンチルグリコールジアクリレート、アルコキシ化ヘキサンジオールジアクリレート、ポリテトラメチレングリコールジアクリレート、トリメチロールプロパンアクリル酸安息香酸エステル、ジエチレングリコールジアクリレート、トリエチレングリコールジアクリレート、テトラエチレングリコールジアクリレート、ポリエチレングリコール(200)ジアクリレート、ポリエチレングリコール(400)ジアクリレート、ポリエチレングリコール(600)ジアクリレート、ネオペンチルグリコールジアクリレート、1,3-ブチレングリコールジアクリレート、1,4-ブタンジオールジアクリレート、1,6-ヘキサンジオールジアクリレート、1,9-ノナンジオールジアクリレート、ジメチロール-トリシクロデカンジアクリレート、ビスフェノールAジアクリレートなどが挙げられる。 Examples of the bifunctional acrylate include hydroxypivalate neopentyl glycol diacrylate, alkoxylated hexanediol diacrylate, polytetramethylene glycol diacrylate, trimethylolpropane acrylate benzoate, diethylene glycol diacrylate, triethylene glycol diacrylate, Tetraethylene glycol diacrylate, polyethylene glycol (200) diacrylate, polyethylene glycol (400) diacrylate, polyethylene glycol (600) diacrylate, neopentyl glycol diacrylate, 1,3-butylene glycol diacrylate, 1,4-butane Diol diacrylate, 1,6-hexanediol diacrylate, 1,9-nonane Over diacrylate, dimethylol - diacrylate, and bisphenol A diacrylate.
 さらに、オリゴマーとしては、例えば、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、シリコンアクリレート、ポリブタジエンアクリレートなどのオリゴマーを使用することが好ましい。 Furthermore, as the oligomer, it is preferable to use an oligomer such as urethane acrylate, polyester acrylate, epoxy acrylate, silicon acrylate, polybutadiene acrylate, or the like.
〔バインダーポリマー〕
 バインダーポリマーは、被印刷物に着色剤を固定することができる樹脂である。バインダーポリマーの重量平均分子量は、約1000~約3,000,000であることが好ましい。
[Binder polymer]
The binder polymer is a resin that can fix the colorant to the printing material. The weight average molecular weight of the binder polymer is preferably about 1000 to about 3,000,000.
 バインダーポリマーとしては、例えば、ポリエステル、ジアリルフタレートポリマー、ポリ(メタ)アクリル酸、ポリ(メタ)アクリル酸エステル、ポリエステル-メラミンポリマー、スチレン-(メタ)アクリル酸コポリマー、スチレン-(メタ)アクリル酸-アルキル(メタ)アクリレートコポリマー、スチレン-マレイン酸コポリマー、スチレン-マレイン酸-アルキル(メタ)アクリレートコポリマー、スチレン-マレイン酸半エステルコポリマー、ビニルナフタレン-(メタ)アクリル酸コポリマー、ビニルナフタレン-マレイン酸コポリマー、及びそれらの塩などが挙げられる。 Examples of the binder polymer include polyester, diallyl phthalate polymer, poly (meth) acrylic acid, poly (meth) acrylic ester, polyester-melamine polymer, styrene- (meth) acrylic acid copolymer, styrene- (meth) acrylic acid- Alkyl (meth) acrylate copolymer, styrene-maleic acid copolymer, styrene-maleic acid-alkyl (meth) acrylate copolymer, styrene-maleic acid half ester copolymer, vinylnaphthalene- (meth) acrylic acid copolymer, vinylnaphthalene-maleic acid copolymer, And salts thereof.
 上記で列挙したモノマー、オリゴマー及びバインダーポリマーは、それぞれ単独で又は2種以上を組み合わせて使用されることができる。 The monomers, oligomers and binder polymers listed above can be used alone or in combination of two or more.
〔光重合開始剤〕
 光重合開始剤は、紫外線照射によって活性酸素等のラジカルを発生する化合物である。本発明のUVインクには、印刷に使用されている既知の光重合開始剤を含有させてよい。
(Photopolymerization initiator)
The photopolymerization initiator is a compound that generates radicals such as active oxygen when irradiated with ultraviolet rays. The UV ink of the present invention may contain a known photopolymerization initiator used for printing.
 光重合開始剤としては、限定されるものではないが、例えば、アセトフェノン、α-アミノアセトフェノン、2,2-ジエトキシアセトフェノン、p-ジメチルアミノアセトフェノン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、ベンジルジメチルケタール、1-(4-イソプロピルフェニル)-2-ヒドロキシ-2-メチルプロパン-1-オン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-メチルプロピル)ケトン、4-(2-ヒドロキシエトキシ)フェニル-(2-ヒドロキシ-2-プロピル)ケトン、1-ヒドロキシシクロヘキシル-フェニルケトン、2-メチル-2-モルホリノ(4-チオメチルフェニル)プロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-ブタノンなどのアセトフェノン類;ベイゾイン、ベイゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾイン-n-プロピルエーテル、ベイゾインイソプロピルエーテル、ベンゾイン-n-ブチルエーテル、ベンゾインイソブチルエーテル、ベンゾインジメチルケタール、ベンゾインパーオキサイドなどのベンゾイン類;2,4,6-トリメトキシベンゾインジフェニルホスフィンオキサイドなどのアシルホフィンオキサイド類;ベンジル及びメチルフェニル-グリオキシエステル;ベンゾフェノン、メチル-4-フェニルベンゾフェノン、o-ベンゾイルベンゾエート、2-クロロベンゾフェノン、4,4’-ジクロロベンゾフェノン、ヒドロキシベンゾフェノン、4-ベンゾイル-4’-メチル-ジフェニルスルフィド、アクリル-ベンゾフェノン、3,3’4,4’-テトラ(t-ブチルペルオキシカルボニル)ベンゾフェノン、3,3’-ジメチル-4-メトキシベンゾフェノンなどのベンゾフェノン類;2-メチルチオキサントン、2-イソプロピルチオキサントン、2,4-ジメチルチオキサントン、2,4-ジエチルチオキサントン、2-クロロチオキサントン、2,4-ジクロロチオキサントンなどのチオキサントン類;ミヒラーケトン、4,4’-ジエチルアミノベンゾフェノンなどのアミノベンゾフェノン類;テトラメチルチウラムモノスルフィド;アゾビスイソブチロニトリル;ジ-tert-ブチルパーオキサイド;10-ブチル-2-クロロアクリドン;2-エチルアントラキノン;9,10-フェナントレンキノン;カンファキノン;チタノセン類などが挙げられる。 Examples of the photopolymerization initiator include, but are not limited to, acetophenone, α-aminoacetophenone, 2,2-diethoxyacetophenone, p-dimethylaminoacetophenone, 2-hydroxy-2-methyl-1-phenylpropane -1-one, benzyldimethyl ketal, 1- (4-isopropylphenyl) -2-hydroxy-2-methylpropan-1-one, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-methylpropyl) ) Ketone, 4- (2-hydroxyethoxy) phenyl- (2-hydroxy-2-propyl) ketone, 1-hydroxycyclohexyl-phenylketone, 2-methyl-2-morpholino (4-thiomethylphenyl) propane-1- ON, 2-benzyl-2-dimethylamino-1- (4-mol Acetophenones such as linophenyl) -butanone; beizoin, beizoin methyl ether, benzoin ethyl ether, benzoin-n-propyl ether, beizoin isopropyl ether, benzoin-n-butyl ether, benzoin isobutyl ether, benzoin dimethyl ketal, benzoin per Benzoins such as oxides; acyl phosphine oxides such as 2,4,6-trimethoxybenzoin diphenylphosphine oxide; benzyl and methylphenyl-glyoxyesters; benzophenone, methyl-4-phenylbenzophenone, o-benzoylbenzoate, 2 -Chlorobenzophenone, 4,4'-dichlorobenzophenone, hydroxybenzophenone, 4-benzoyl-4'-methyl-diphenyls Benzophenones such as luffide, acrylic-benzophenone, 3,3'4,4'-tetra (t-butylperoxycarbonyl) benzophenone, 3,3'-dimethyl-4-methoxybenzophenone; 2-methylthioxanthone, 2-isopropylthioxanthone Thioxanthones such as 2,4-dimethylthioxanthone, 2,4-diethylthioxanthone, 2-chlorothioxanthone, 2,4-dichlorothioxanthone; aminobenzophenones such as Michler ketone, 4,4′-diethylaminobenzophenone; tetramethylthiuram mono Sulfide; Azobisisobutyronitrile; Di-tert-butyl peroxide; 10-butyl-2-chloroacridone; 2-ethylanthraquinone; 9,10-phenanthrenequinone; Quinones; and titanocene and the like.
 また、4-ジメチルアミノ安息香酸エチル、4-ジメチルアミノ安息香酸イソアミルなどの光重合開始助剤を上記光重合開始剤と併用してもよい。 Further, a photopolymerization initiation assistant such as ethyl 4-dimethylaminobenzoate or isoamyl 4-dimethylaminobenzoate may be used in combination with the photopolymerization initiator.
 なお、溶剤含有インクに適したビヒクル及びUVインクに適したビヒクルの項目において上記で説明された樹脂、モノマー、オリゴマー又はバインダーポリマーは、アンチモンドープ酸化錫又は着色剤をグラフト化、自己分散化又はカプセル化するために使用されることができる。 The resin, monomer, oligomer or binder polymer described above in the section of vehicle suitable for solvent-containing ink and vehicle suitable for UV ink is grafted, self-dispersed or encapsulated with antimony-doped tin oxide or colorant. Can be used to
[補助剤]
 本発明のインクには、印刷に使用されている既知の補助剤を含有させてよい。補助剤としては、例えば、分散剤、導電性付与剤、消泡剤、水溶化剤、浸透剤、乾燥防止剤、pH調整剤、防腐剤・防かび剤、脱酸素剤、体質顔料、架橋剤、その他の添加剤などが挙げられる。これらの補助剤について以下に説明する。
[Adjuvant]
The ink of the present invention may contain a known auxiliary agent used for printing. As an auxiliary agent, for example, a dispersant, a conductivity imparting agent, an antifoaming agent, a water solubilizer, a penetrating agent, a drying inhibitor, a pH adjuster, an antiseptic / antifungal agent, an oxygen scavenger, an extender pigment, and a crosslinking agent And other additives. These adjuvants will be described below.
〔分散剤〕
 分散剤は、インクのレベリング性、安定性及び分散性を向上させるための補助剤である。具体的には、分散剤は、ビヒクル成分によるアンチモンドープ酸化錫又は着色剤の濡れを向上させるか、アンチモンドープ酸化錫又は着色剤をビヒクル成分に吸着させるか、かつ/又は、インク中に分散しているアンチモンドープ酸化錫又は着色剤の再凝集を防ぐために、使用されることができる。
[Dispersant]
The dispersant is an auxiliary agent for improving the leveling property, stability, and dispersibility of the ink. Specifically, the dispersant improves the wetting of the antimony-doped tin oxide or colorant by the vehicle component, or adsorbs the antimony-doped tin oxide or colorant to the vehicle component and / or disperses in the ink. It can be used to prevent reagglomeration of the antimony doped tin oxide or colorant.
 分散剤としては、例えば、低分子分散剤、高分子分散剤、顔料誘導体、カップリング剤などが挙げられる。 Examples of the dispersant include a low molecular dispersant, a polymer dispersant, a pigment derivative, and a coupling agent.
 低分子分散剤は、アンチモンドープ酸化錫又は着色剤への配向性又は吸着性が高い部分、及びビヒクルとの親和性が高い部分を有する低分子量物質であり、界面活性剤又は湿潤剤とも呼ばれる。 The low molecular weight dispersant is a low molecular weight substance having a portion having high orientation or adsorptivity to antimony-doped tin oxide or a colorant and a portion having high affinity with a vehicle, and is also called a surfactant or a wetting agent.
 低分子分散剤としては、例えば、石けん、α-スルホ脂肪酸エステル塩(MES)、アルキルベンゼンスルホン酸塩(ABS)、直鎖アルキルベンゼンスルホン酸塩(LAS)、アルキル硫酸塩(AS)、アルキルエーテル硫酸エステル塩(AES)、アルキル硫酸トリエタノールアミンなどのアニオン性化合物;アルキルトリメチルアンモニウム塩、ジアルキルジメチルアンモニウムクロリド、アルキルピリジニウムクロリドなどのカチオン性化合物;アミノ酸、アルキルカルボキシベタイン、スルホベタイン、レシチンなどの両性化合物;脂肪酸ジエタノールアミド、ポリオキシエチレンアルキルエーテル(AE)、ポリオキシエチレンアルキルフェニルエーテル(APE)などのノニオン性化合物などが挙げられる。 Examples of the low molecular weight dispersant include soap, α-sulfo fatty acid ester salt (MES), alkylbenzene sulfonate (ABS), linear alkylbenzene sulfonate (LAS), alkyl sulfate (AS), and alkyl ether sulfate. Anionic compounds such as salts (AES) and alkylsulfuric acid triethanolamine; cationic compounds such as alkyltrimethylammonium salts, dialkyldimethylammonium chloride and alkylpyridinium chloride; amphoteric compounds such as amino acids, alkylcarboxybetaines, sulfobetaines and lecithins; Nonionic compounds such as fatty acid diethanolamide, polyoxyethylene alkyl ether (AE), and polyoxyethylene alkyl phenyl ether (APE) are exemplified.
 高分子分散剤は、アンチモンドープ酸化錫又は着色剤の表面に吸着するアンカー基と、ビヒクル中で立体障害効果を発揮するバリアー基とを有する高分子量物質である。一般に、高分子分散剤には、複数のアンカー基を組み込み易いので、高分子分散剤はアンチモンドープ酸化錫又は着色剤との多点吸着が可能である。また、高分子分散剤は、低分子分散剤と比べて、バリアー基が、かさ高くなるので、アンチモンドープ酸化錫又は着色剤の分散安定性が向上する。 The polymer dispersant is a high molecular weight substance having an anchor group adsorbed on the surface of antimony-doped tin oxide or a colorant and a barrier group that exhibits a steric hindrance effect in the vehicle. In general, since a plurality of anchor groups can be easily incorporated into a polymer dispersant, the polymer dispersant can be adsorbed at multiple points with antimony-doped tin oxide or a colorant. In addition, since the polymer dispersant has a higher barrier group than the low molecular dispersant, the dispersion stability of the antimony-doped tin oxide or the colorant is improved.
 高分子分散剤としては、アンカー基とバリアー基に対応する部分を有するポリマーを任意に使用してよい。例えば、有機溶剤含有インクには、ポリアクリル酸の部分アルキルエステル、ポリアルキレンポリアミンなどの非水系高分子分散剤を使用することが好ましい。また、水性インクには、ナフタレンスルホン酸塩のホルマリン縮合物、ポリスチレンスルホン酸塩、ポリアクリル酸塩、ビニル化合物とカルボン酸含有単量体との共重合体の塩、カルボキシメチルセルロースなどの水系高分子分散剤を使用することが好ましい。 As the polymer dispersant, a polymer having a portion corresponding to an anchor group and a barrier group may be arbitrarily used. For example, it is preferable to use a non-aqueous polymer dispersant such as a partial alkyl ester of polyacrylic acid or a polyalkylene polyamine for the organic solvent-containing ink. Water-based inks include naphthalene sulfonate formalin condensate, polystyrene sulfonate, polyacrylate, copolymer salts of vinyl compounds and carboxylic acid-containing monomers, and water-based polymers such as carboxymethyl cellulose. It is preferred to use a dispersant.
 顔料誘導体は、顔料骨格にカルボキシル基、スルホン基、三級アミノ基などの極性基を導入することにより得られる。顔料誘導体の顔料骨格部分は、対応する顔料と吸着し易く、一方で、導入された極性基は、ビヒクル又は他の分散剤との親和性に優れる。 The pigment derivative is obtained by introducing a polar group such as a carboxyl group, a sulfone group, or a tertiary amino group into the pigment skeleton. The pigment skeleton portion of the pigment derivative is easily adsorbed with the corresponding pigment, while the introduced polar group is excellent in affinity with the vehicle or other dispersant.
 顔料誘導体は、本発明のインクに含まれる顔料の骨格に応じて、既知の方法により合成されることができる。例えば、ジアルキルアミノメチレン銅フタロシアニン、アミン塩銅フタロシアニンなどが、フタロシアニンを着色剤として含むインクを形成するために使用される。 The pigment derivative can be synthesized by a known method according to the skeleton of the pigment contained in the ink of the present invention. For example, dialkylaminomethylene copper phthalocyanine, amine salt copper phthalocyanine, and the like are used to form inks that contain phthalocyanine as a colorant.
 カップリング剤は、アンチモンドープ酸化錫又は着色剤の表面に吸着するか、又は化学結合して、アンチモンドープ酸化錫又は着色剤とビヒクルとの接着性を向上させる材料である。カップリング剤としては、例えば、シランカップリング剤、チタネートカップリング剤などが挙げられる。 The coupling agent is a material that adsorbs to the surface of the antimony-doped tin oxide or the colorant or chemically bonds to improve the adhesion between the antimony-doped tin oxide or the colorant and the vehicle. Examples of the coupling agent include a silane coupling agent and a titanate coupling agent.
 シランカップリング剤は、分子内に、有機材料と反応結合する有機官能基、及び無機材料と反応結合する加水分解性基を有する有機ケイ素化合物である。一般に、有機官能基としては、例えば、ビニル基、エポキシ基、メタクリロキシ基、アミノ基などが挙げられ、かつ加水分解性基としては、例えば、アルコキシ基、クロル基、アセトキシ基などが挙げられる。 The silane coupling agent is an organosilicon compound having in its molecule an organic functional group that reacts with an organic material and a hydrolyzable group that reacts with an inorganic material. In general, examples of the organic functional group include a vinyl group, an epoxy group, a methacryloxy group, and an amino group, and examples of the hydrolyzable group include an alkoxy group, a chloro group, and an acetoxy group.
 加水分解性基が、アンチモンドープ酸化錫又は着色剤と結合し、かつ有機官能基がビヒクル成分との親和性又は反応性を有するので、シランカップリング剤は、アンチモンドープ酸化錫又は着色剤とビヒクル成分との接着性を向上させることができる。 Since the hydrolyzable group is bonded to the antimony-doped tin oxide or the colorant and the organic functional group has affinity or reactivity with the vehicle component, the silane coupling agent is an antimony-doped tin oxide or the colorant and the vehicle. Adhesiveness with a component can be improved.
 例えば、加水分解性基が、メトキシ基、エトキシ基などのアルコキシ基であるときには、アルコキシ基の加水分解により得られるシラノール基が、自己縮合するか、又はシランカップリング剤以外の成分の水酸基と反応する。したがって、シランカップリング剤は、表面に水酸基を有する着色剤(例えば、ガラス、シリカ、アルミナなどを含む無機顔料)の分散性を向上させるために使用されることが好ましい。 For example, when the hydrolyzable group is an alkoxy group such as a methoxy group or an ethoxy group, a silanol group obtained by hydrolysis of the alkoxy group self-condenses or reacts with a hydroxyl group of a component other than a silane coupling agent. To do. Therefore, the silane coupling agent is preferably used for improving the dispersibility of a colorant having a hydroxyl group on the surface (for example, an inorganic pigment containing glass, silica, alumina, etc.).
 具体的には、シランカップリング剤としては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルメチルジメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、p-スチリルトリメトキシシラン、3-アクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、3-アミノプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシランなどが挙げられる。 Specifically, examples of the silane coupling agent include vinyltrimethoxysilane, vinyltriethoxysilane, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropylmethyldimethoxysilane, 3 -Glycidoxypropyltrimethoxysilane, p-styryltrimethoxysilane, 3-acryloxypropyltrimethoxysilane, 3-methacryloxypropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane , 3-aminopropyltrimethoxysilane, 3-mercaptopropylmethyldimethoxysilane, bis (triethoxysilylpropyl) tetrasulfide, 3-isocyanatopropyltriethoxysilane, and the like.
 チタネートカップリング剤は、分子内に、有機材料と反応結合する有機官能基、及び無機材料と反応結合する加水分解性基を有する有機チタン化合物である。また、シランカップリング剤について説明された有機官能基及び加水分解性基を、チタネートカップリング剤に組み込むことができる。 The titanate coupling agent is an organic titanium compound having in its molecule an organic functional group that reacts with an organic material and a hydrolyzable group that reacts with an inorganic material. Also, the organic functional groups and hydrolyzable groups described for the silane coupling agent can be incorporated into the titanate coupling agent.
 一般に、チタネートカップリング剤は、水への溶解性が低いので、チタネートカップリング剤を有機溶剤に溶解させて使用することが好ましい。 Generally, since the titanate coupling agent has low solubility in water, it is preferable to use the titanate coupling agent by dissolving it in an organic solvent.
〔導電性付与剤〕
 導電性付与剤は、インクに導電性を与える添加剤である。本発明のインクには、印刷分野において既知の導電性付与剤を含有させてよい。
[Conductivity imparting agent]
The conductivity imparting agent is an additive that imparts conductivity to the ink. The ink of the present invention may contain a conductivity imparting agent known in the printing field.
 導電性付与剤としては、例えば、リチウム、ナトリウム及びカリウムなどのアルカリ金属塩;マグネシウム及びカルシウムなどのアルカリ土類金属塩;及び単純アンモニウム塩または第4級アンモニウム塩が挙げられる。これらの塩は、ハロゲン化合物(例えば、塩化物、臭化物、ヨウ化物、フッ化物など)、過塩素酸塩、硝酸塩、チオシアン酸塩、ギ酸塩、酢酸塩、硫酸塩、スルホン酸塩、プロピオン酸塩、トリフルオロ酢酸塩、トリフラート(トリフルオロ-メタンスルホン酸塩)、ヘキサフルオロリン酸塩(例えば、ヘキサフルオロリン酸カリウムなど)、ヘキサフルオロ‐アンチモン酸塩、テトラフルオロホウ酸塩、ピクリン酸塩及びカルボン酸塩等でよい。 Examples of the conductivity imparting agent include alkali metal salts such as lithium, sodium and potassium; alkaline earth metal salts such as magnesium and calcium; and simple ammonium salts or quaternary ammonium salts. These salts are halogenated compounds (eg chloride, bromide, iodide, fluoride, etc.), perchlorate, nitrate, thiocyanate, formate, acetate, sulfate, sulfonate, propionate , Trifluoroacetate, triflate (trifluoro-methanesulfonate), hexafluorophosphate (eg potassium hexafluorophosphate), hexafluoro-antimonate, tetrafluoroborate, picrate and It may be a carboxylate or the like.
 上記で列挙された導電性付与剤は、単独で、又は2種以上の組み合わせとして使用されることができる。また、導電性付与剤は、コンティニュアス方式インクジェット印刷に使用されることが好ましい。 The conductivity imparting agents listed above can be used alone or in combination of two or more. The conductivity imparting agent is preferably used in continuous ink jet printing.
〔消泡剤〕
 消泡剤は、インク中の泡の発生を抑制するか、又はインク中に発生した泡を減少させるために使用される補助剤である。例えば、消泡剤は、インクの製造、貯蔵、循環、移動又は印刷の際に、使用されることができる。
[Defoamer]
An antifoaming agent is an auxiliary agent used to suppress the generation of bubbles in the ink or to reduce bubbles generated in the ink. For example, antifoaming agents can be used during ink manufacture, storage, circulation, transfer or printing.
 また、水の表面張力が高いので、水性インクに適したビヒクルは、有機溶剤を含むインクに適したビヒクルよりも発泡し易い。したがって、水性インクの発泡を抑制するために、消泡剤を水性インクに加えることが好ましい。 Also, since the surface tension of water is high, a vehicle suitable for water-based ink is more likely to foam than a vehicle suitable for ink containing an organic solvent. Therefore, it is preferable to add an antifoaming agent to the water-based ink in order to suppress foaming of the water-based ink.
 消泡剤としては、例えば、シリコーン化合物、ポリシロキサン、ポリグリコール、ポリアルコキシ化合物などを単独または複数組み合わせて使用することができる。 As the antifoaming agent, for example, silicone compounds, polysiloxanes, polyglycols, polyalkoxy compounds and the like can be used alone or in combination.
 具体的には、消泡剤としては、例えば、Byk-Chemie社製のBYK(登録商標)-019、BYK(登録商標)-022、BYK(登録商標)-024、BYK(登録商標)-065、及びBYK(登録商標)-088;日信化学工業社製のサーフィノールDF-37、サーフィノールDF-75、サーフィノールDF-110D、及びサーフィノールDF-210;米国のエア・プロダクツ・アンド・ケミカルズ社製のEnviroGem(登録商標)AE03;独国のEvonik Tego Chemie社から市販されているFOAMEX835などが挙げられる。 Specifically, examples of the antifoaming agent include BYK (registered trademark) -019, BYK (registered trademark) -022, BYK (registered trademark) -024, and BYK (registered trademark) -065 manufactured by Byk-Chemie. , And BYK®-088; Surfinol DF-37, Surfinol DF-75, Surfinol DF-110D, and Surfinol DF-210 manufactured by Nissin Chemical Industry; US Air Products and Examples include EnviroGem (registered trademark) AE03 manufactured by Chemicals, Inc., and FAMEX 835 commercially available from Evonik-Tego-Chemie, Germany.
〔水溶化剤〕
 水溶化剤は、アンチモンドープ酸化錫、着色剤、又はビヒクル成分を水溶性にするための補助剤であり、水性インクの製造に概ね使用される。
[Water-solubilizing agent]
The water-solubilizing agent is an auxiliary agent for making the antimony-doped tin oxide, the colorant, or the vehicle component water-soluble, and is generally used in the production of water-based inks.
 アンチモンドープ酸化錫又は着色剤に適した水溶化剤としては、上記分散剤の中でも、分子内に、アンチモンドープ酸化錫又は着色剤への配向性又は吸着性が高い部分、及び水との親和性が高い部分を有するものを使用してよい。 As a water-soluble agent suitable for antimony-doped tin oxide or colorant, among the above-mentioned dispersants, a portion having high orientation or adsorptivity to antimony-doped tin oxide or colorant in the molecule, and affinity with water Those having a high portion may be used.
 ビヒクル成分を水溶性にするための水溶化剤は、上記コロイダルディスパージョン樹脂又は上記エマルション樹脂について説明した通り、界面活性剤などの乳化剤でよい。 The water-solubilizing agent for making the vehicle component water-soluble may be an emulsifier such as a surfactant as described for the colloidal dispersion resin or the emulsion resin.
〔浸透剤〕
 浸透剤は、インクを被印刷体に浸透させて、定着させるための添加剤である。一般に、浸透剤は、被印刷体に対するインクの濡れ性及び浸透性を向上させるために使用され、かつ被印刷体溶解型、表面張力低下型、及び蒸発併用型に分類される。
(Penetration agent)
The penetrating agent is an additive for causing ink to penetrate into the printing medium and fixing it. Generally, penetrants are used to improve the wettability and penetrability of ink with respect to a printing medium, and are classified into a printing medium dissolving type, a surface tension reducing type, and an evaporation combined type.
 被印刷体溶解型浸透剤は、被印刷体の表面を溶かす性質を有する浸透剤である。被印刷体溶解型浸透剤は、例えば、水酸化カリウムに代表される。 The printing medium-dissolving penetrant is a penetrant having a property of dissolving the surface of the printing medium. Examples of the printing medium-dissolving penetrant include potassium hydroxide.
 表面張力低下型浸透剤は、インクの表面張力を低下させる性質を有する浸透剤である。表面張力低下型浸透剤としては、上記で説明した界面活性剤又は有機溶剤を使用することができる。 The surface tension reducing penetrant is a penetrant having the property of reducing the surface tension of the ink. As the surface tension reducing penetrant, the above-described surfactants or organic solvents can be used.
 蒸発併用型浸透剤は、インクの表面張力を低下させるとともに、蒸発によってインクの滲みを抑制する浸透剤である。蒸発併用型浸透剤は、比較的低い沸点を有する水溶性有機溶剤に代表され、例えば、エタノール、イソプロパノールなどでよい。 The evaporation combined type penetrant is a penetrant that lowers the ink surface tension and suppresses ink bleeding by evaporation. The evaporation combined use type penetrant is typified by a water-soluble organic solvent having a relatively low boiling point, and may be, for example, ethanol or isopropanol.
〔乾燥防止剤〕
 乾燥防止剤は、印刷機のヘッドのノズルの目詰まりを防止するための添加剤である。一般に、乾燥防止剤は、吸湿性化合物でよい。乾燥防止剤としては、例えば、ジエチレングリコール、ポリエチレングリコール、グリセリン、N-メチル-2-ピロリドンなどが挙げられる。
[Drying inhibitor]
The anti-drying agent is an additive for preventing clogging of a nozzle of a printing machine head. In general, the anti-drying agent may be a hygroscopic compound. Examples of the drying inhibitor include diethylene glycol, polyethylene glycol, glycerin, N-methyl-2-pyrrolidone and the like.
〔pH調整剤〕
 pH調整剤は、インクのpHを所定の範囲に制御するための添加剤である。pH調整剤としては、例えば、塩酸、硫酸又は燐酸などの無機酸;酢酸又は安息香酸などの有機酸;水酸化ナトリウム、水酸化カリウムなどの水酸化物;塩化アンモニウムなどのハロゲン化物;硫酸ナトリウムなどの硫酸塩;炭酸カリウム、炭酸水素カリウム、炭酸水素ナトリウムなどの炭酸塩;リン酸水素ナトリウム、リン酸二水素ナトリウムなどのリン酸塩;酢酸アンモニウム、安息香酸ナトリウムなどの有機酸塩;トリブチルアミン、トリエタノールアミンなどの有機アミンなどが挙げられる。
[PH adjuster]
The pH adjuster is an additive for controlling the pH of the ink within a predetermined range. Examples of the pH adjuster include inorganic acids such as hydrochloric acid, sulfuric acid, and phosphoric acid; organic acids such as acetic acid and benzoic acid; hydroxides such as sodium hydroxide and potassium hydroxide; halides such as ammonium chloride; sodium sulfate and the like. Sulfate such as potassium carbonate, potassium hydrogen carbonate, sodium hydrogen carbonate, etc .; phosphates such as sodium hydrogen phosphate and sodium dihydrogen phosphate; organic acid salts such as ammonium acetate and sodium benzoate; tributylamine, And organic amines such as triethanolamine.
 インクの吐出安定性及び保存安定性の観点から、緩衝作用を有するpH調整剤が好ましく、炭酸水素カリウム又は炭酸カリウムがより好ましい。また、インクの保存安定性の観点から、pH調整剤の添加により得られるインクのpHは、6~10であることが好ましく、7~10であることがより好ましい。 From the viewpoint of ink ejection stability and storage stability, a pH adjuster having a buffering action is preferable, and potassium hydrogen carbonate or potassium carbonate is more preferable. Further, from the viewpoint of the storage stability of the ink, the pH of the ink obtained by adding the pH adjuster is preferably 6 to 10, and more preferably 7 to 10.
〔防腐剤・防かび剤〕
 防腐剤又は防かび剤は、インク中における微生物の発生又は増殖を抑制するための添加剤である。一般に、防腐剤又は防かび剤は、インク中の微生物の増殖を抑制して、インクのpHの低下、インク中の含有物の沈降、インクの変色、ノズルの目詰まりなどを防ぐことができる。
[Preservatives and fungicides]
An antiseptic or fungicide is an additive for suppressing the generation or growth of microorganisms in the ink. In general, preservatives or fungicides can suppress the growth of microorganisms in the ink, and prevent a decrease in pH of the ink, sedimentation of contents in the ink, discoloration of the ink, clogging of the nozzle, and the like.
 防腐剤又は防かび剤としては、例えば、安息香酸ナトリウム、ソルビタン酸カリウム、チアベンダゾール、ベンズイミダゾール、サイアベンダゾール、チアゾスルファミド、ピリジンチオールオキシドなどが挙げられる。また、水性インクに防腐剤又は防かび剤を含有させることが好ましい。 Examples of the antiseptic or fungicide include sodium benzoate, potassium sorbitanate, thiabendazole, benzimidazole, siabendazole, thiazosulfamide, pyridine thiol oxide, and the like. Further, it is preferable to contain a preservative or a fungicide in the water-based ink.
〔脱酸素剤〕
 脱酸素剤は、インク中の溶存酸素を除くために使用される添加剤である。脱酸素剤としては、例えば、アスコルビン酸、カテコール、エリソルビン酸、ピロガロール、ヒドロキノン、還元性糖類、タンニン酸などの有機脱酸素剤;アスコルビン酸ナトリウムなどの有機酸塩などが挙げられる。
[Oxygen scavenger]
An oxygen scavenger is an additive used to remove dissolved oxygen in the ink. Examples of the oxygen scavenger include organic oxygen scavengers such as ascorbic acid, catechol, erythorbic acid, pyrogallol, hydroquinone, reducing sugars, and tannic acid; and organic acid salts such as sodium ascorbate.
〔体質顔料〕
 体質顔料は、インクの粘度を調整するために使用される顔料であり、屈折率が小さく、かつ着色力が低い。したがって、体質顔料は、インクの粘度が高く、拭きが困難な場合に使用されることが好ましい。本発明のインクには、印刷に使用されている既知の体質顔料を含有させてよい。
[External pigment]
The extender pigment is a pigment used to adjust the viscosity of the ink, and has a low refractive index and low coloring power. Therefore, the extender pigment is preferably used when the viscosity of the ink is high and wiping is difficult. The ink of the present invention may contain a known extender pigment used for printing.
 体質顔料としては、例えば、硫酸バリウム、炭酸カルシウム、硫酸カルシウム、カオリン、タルク、シリカ、コーン澱粉、二酸化チタン、又はこれらの混合物などが挙げられる。 Examples of extender pigments include barium sulfate, calcium carbonate, calcium sulfate, kaolin, talc, silica, corn starch, titanium dioxide, and mixtures thereof.
〔架橋剤〕
 架橋剤は、複数の物質を化学的に結合させるために必要な補助剤であり、ゲル化剤又は硬化剤とも呼ばれる。例えば、架橋には、鎖状高分子が網掛け構造に変わること;イソシアネート基と水酸基の反応によるウレタン結合の形成;一級アミンとエポキシ基の反応による二級アミンの形成と、それに続く二級アミンとエポキシ基の反応などが含まれる。
[Crosslinking agent]
The crosslinking agent is an auxiliary agent necessary for chemically bonding a plurality of substances, and is also called a gelling agent or a curing agent. For example, for cross-linking, the chain polymer changes to a shaded structure; the formation of a urethane bond by the reaction of an isocyanate group and a hydroxyl group; the formation of a secondary amine by the reaction of a primary amine and an epoxy group, followed by a secondary amine And reaction of epoxy group.
 一般に、架橋剤としては、ポリイソシアネート化合物、ポリオール化合物、エポキシ化合物、アミン化合物、オキサゾリン化合物、ホルマリン化合物、ジビニル化合物、メラミン化合物などを単独または複数組み合わせて使用することができる。 Generally, as a crosslinking agent, a polyisocyanate compound, a polyol compound, an epoxy compound, an amine compound, an oxazoline compound, a formalin compound, a divinyl compound, a melamine compound, or the like can be used alone or in combination.
 具体的には、架橋剤としては、例えば、トリレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネート、ヘキサメチレンジイソシアネート、テトラメチルキシリレンジイソシアネート、ポリメチレンポリフェニルポリイソシアネートなどのイソシアネート化合物;トリメチロールプロパン-トリス-β-N-アジリジニルプロピオネート、ペンタエリスリトールプロパン-トリス-β-N-アジリジニルプロピオネートなどのアジリジン化合物;グリセロールポリグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテルなどのエポキシ化合物;アルミニウムトリイソプロポキシド、モノ-sec-ブトキシアルミニウムジイソプロポキシド、アルミニウムトリ-sec-ブトキシド、エチルアセトアセテートアルミニウムジイソプロポキシド、アルミニウムトリスエチルアセトアセテートなどのアルミニウムアルコラート類;アルミニウムキレート化合物;ステアリン酸アルミニウム、オクタン酸アルミニウムなどの金属セッケン;金属セッケンのオリゴマー又はキレート化合物;ベントナイトなどが挙げられる。 Specifically, as the crosslinking agent, for example, isocyanate compounds such as tolylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, hexamethylene diisocyanate, tetramethylxylylene diisocyanate, polymethylene polyphenyl polyisocyanate; trimethylolpropane-tris-β -Aziridine compounds such as N-aziridinylpropionate and pentaerythritol propane-tris-β-N-aziridinylpropionate; epoxy compounds such as glycerol polyglycidyl ether and trimethylolpropane polyglycidyl ether; aluminum triiso Propoxide, mono-sec-butoxyaluminum diisopropoxide, aluminum tri-sec-butoxide, ethyl acetate Aluminum alcoholates such as cetoacetate aluminum diisopropoxide and aluminum trisethylacetoacetate; aluminum chelate compounds; metal soaps such as aluminum stearate and aluminum octoate; oligomers or chelate compounds of metal soaps; bentonite and the like.
〔その他の添加剤〕
 本発明のインクには、所望により、乾燥遅延剤;酸化防止剤;還元防止剤;レベリング剤;裏移り防止剤;乾性油・半乾性油;酸化重合触媒;ワックス;非イオン系界面活性剤などの界面活性剤;増感剤;熱安定剤;重合禁止剤;紫外線吸収剤;光安定剤などを含有させてよい。
[Other additives]
In the ink of the present invention, a drying retarder; an antioxidant; an anti-reduction agent; a leveling agent; an anti-set-off agent; a drying oil / semi-drying oil; an oxidation polymerization catalyst; a wax; a nonionic surfactant, etc. A surfactant, a sensitizer, a heat stabilizer, a polymerization inhibitor, an ultraviolet absorber, a light stabilizer, and the like.
 上記で列挙された補助剤は、それぞれ単独で、又は2種以上を組み合わせて使用されることができる。 The adjuvants listed above can be used alone or in combination of two or more.
[着色剤]
 着色剤は、インクに色を付ける成分である。本発明のインクには、印刷に使用されている既知の着色剤を含有させてよい。着色剤としては、例えば、無機顔料、有機顔料、染料、トナー用有機色素などが挙げられる。
[Colorant]
A colorant is a component that colors ink. The ink of the present invention may contain a known colorant used for printing. Examples of the colorant include inorganic pigments, organic pigments, dyes, organic pigments for toners, and the like.
 無機顔料としては、例えば、黄鉛、亜鉛黄、紺青、硫酸バリウム、カドミウムレッド、酸化チタン、亜鉛華、アルミナホワイト、炭酸カルシウム、群青、グラファイト、アルミニウム粉、ベンガラ、バリウムフェライト、銅と亜鉛の合金粉、ガラス粉、カーボンブラックなどが挙げられる。 Examples of inorganic pigments include chrome yellow, zinc yellow, bitumen, barium sulfate, cadmium red, titanium oxide, zinc white, alumina white, calcium carbonate, ultramarine, graphite, aluminum powder, bengara, barium ferrite, copper and zinc alloy. Examples thereof include powder, glass powder, and carbon black.
 有機顔料としては、例えば、β-ナフトール系顔料、β-オキシナフトエ酸系顔料、β-オキシナフトエ酸系アニリド系顔料、アセト酢酸アニリド系顔料、ピラゾロン系顔料などの溶性アゾ顔料;β-ナフトール系顔料、β-オキシナフトエ酸アニリド系顔料、アセト酢酸アニリド系モノアゾ、アセト酢酸アニリド系ジスアゾ、ピラゾロン系顔料などの不溶性アゾ顔料;銅フタロシアニンブルー、ハロゲン化(例えば、塩素又は臭素化)銅フタロシアニンブルー、スルホン化銅フタロシアニンブルー、金属フリーフタロシアニンなどのフタロシアニン系顔料;キナクリドン系顔料、ジオキサジン系顔料、スレン系顔料(ピラントロン、アントアントロン、インダントロン、アントラピリミジン、フラバントロン、チオインジゴ、アントラキノン、ペリノン、ペリレンなど)、イソインドリノン系顔料、金属錯体系顔料、キノフタロン系顔料などの多環式又は複素環式顔料などが挙げられる。 Examples of organic pigments include soluble azo pigments such as β-naphthol pigments, β-oxynaphthoic acid pigments, β-oxynaphthoic acid anilide pigments, acetoacetate anilide pigments, and pyrazolone pigments; β-naphthol pigments Insoluble azo pigments such as pigments, β-oxynaphthoic acid anilide pigments, acetoacetanilide monoazos, acetoacetanilide disazos, pyrazolone pigments; copper phthalocyanine blue, halogenated (eg chlorine or brominated) copper phthalocyanine blue, Phthalocyanine pigments such as sulfonated copper phthalocyanine blue and metal-free phthalocyanine; quinacridone pigments, dioxazine pigments, selenium pigments (pyrantron, anthrone, indanthrone, anthrapyrimidine, flavantron, thioindigo, anthraquinone , Perinone, perylene, etc.), isoindolinone pigments, metal complex pigments, polycyclic or heterocyclic pigments such as quinophthalone pigments.
 染料としては、例えば、アゾ染料、アゾ染料とクロムの錯塩、アントラキノン染料、インジゴ染料、フタロシアニン染料、キサンテン系染料、チアジン系染料などが挙げられる。また、水に対する溶解性の観点から、染料は、水性インクに配合されることが好ましい。 Examples of the dye include azo dyes, complex salts of azo dyes and chromium, anthraquinone dyes, indigo dyes, phthalocyanine dyes, xanthene dyes, thiazine dyes, and the like. Moreover, it is preferable to mix | blend dye with water-based ink from a soluble viewpoint with respect to water.
 ここで、有機顔料は、レーキ顔料を含むものとする。一般に、レーキ顔料は、染料を無機顔料又は体質顔料に染め付けることにより得られるものであり、無機顔料又は体質顔料の水不溶性に応じて、レーキ顔料も水不溶性を有する。レーキ顔料としては、例えば、BASF社から入手可能なファナル(FANAL、登録商標)カラーシリーズなどが挙げられる。 Here, the organic pigment includes a lake pigment. In general, a lake pigment is obtained by dyeing a dye on an inorganic pigment or extender, and the lake pigment also has water insolubility according to the water insolubility of the inorganic pigment or extender. Examples of lake pigments include the fanal (FANAL (registered trademark)) color series available from BASF.
 トナー用有機色素は、トナーに含有させることができる有機色素であり、着色剤の一般的な特性に加えて帯電性を有する。トナー用有機色素としては、染料又は有機顔料を使用してよいが、透明性及び着色力の観点から染料が好ましい。 The organic dye for toner is an organic dye that can be contained in the toner, and has charging properties in addition to the general characteristics of the colorant. As the organic pigment for toner, a dye or an organic pigment may be used, but a dye is preferred from the viewpoint of transparency and coloring power.
 また、カラーインデックス(Colour Index International)において「C.I.溶媒染料」及び「C.I.顔料」の名称で認定されている染料及び顔料をビヒクルに分散して使用することも好ましい。 In addition, it is also preferable to use a dye and a pigment which are recognized by the names of “CI solvent dye” and “CI pigment” in the color index (Color Index International) dispersed in a vehicle.
 「C.I.溶媒染料」としては、例えば、C.I.溶媒ブラック27又は29、C.I.溶媒ブラック7、C.I.溶媒ブラック35又は45、C.I.溶媒ブルー70、C.I.溶媒レッド124などが挙げられる。「C.I.顔料」としては、例えば、顔料ブルー60、顔料ブルー15などが挙げられる。 Examples of “CI solvent dye” include C.I. I. Solvent black 27 or 29, C.I. I. Solvent black 7, C.I. I. Solvent black 35 or 45, C.I. I. Solvent blue 70, C.I. I. And solvent red 124. Examples of “CI pigment” include Pigment Blue 60, Pigment Blue 15 and the like.
 さらに、上記で説明した着色剤以外に、機能性顔料、機能性染料などの他の機能性材料を本発明のインクに配合してもよい。ここで、機能性材料は、無機でも有機でもよく、また本発明のインクに機能性を付与する添加剤でもよい。 Furthermore, in addition to the colorant described above, other functional materials such as functional pigments and functional dyes may be blended in the ink of the present invention. Here, the functional material may be inorganic or organic, and may be an additive that imparts functionality to the ink of the present invention.
 機能性材料としては、例えば、クロミック材料、磁性顔料、紫外線吸収剤、光学可変材料、パール顔料などが挙げられる。一般に、クロミック材料は、光・熱・電気などのエネルギーに反応して呈色し、かつ該エネルギーが遮られるか、又は失われると、退色する材料である。クロミック材料としては、例えば、蛍光顔料、励起発光顔料、感温変色材料、フォトクロミック材料、応力発光体などが挙げられる。 Examples of functional materials include chromic materials, magnetic pigments, ultraviolet absorbers, optically variable materials, pearl pigments, and the like. In general, a chromic material is a material that develops a color in response to energy such as light, heat, electricity, and fades when the energy is blocked or lost. Examples of the chromic material include fluorescent pigments, excited luminescent pigments, temperature-sensitive color changing materials, photochromic materials, and stress luminescent materials.
 なお、上記で列挙した着色剤は、それぞれ単独で、又は2種類以上を併用して、使用されることができる。 The colorants listed above can be used alone or in combination of two or more.
<赤外線吸収性インクジェット印刷インクの組成、粘度及びpH>
 本発明のインクの固形分は、約40重量%以下、約30重量%以下、約20重量%以下、約10重量%以下、又は約5重量%以下でよく、また、この固形分は、約0.005重量%以上、約0.01重量%以上、約0.05重量%以上、又は約0.1重量%以上でよい。
<Composition, viscosity and pH of infrared absorbing ink jet printing ink>
The ink of the present invention may have a solids content of about 40 wt% or less, about 30 wt% or less, about 20 wt% or less, about 10 wt% or less, or about 5 wt% or less. It may be 0.005% or more, about 0.01% or more, about 0.05% or more, or about 0.1% or more.
 赤外線吸収性インクジェット印刷インクに含まれる各成分の配合比率は、ピエゾ方式に使用される溶剤含有インクの場合には、ビヒクルが、約80重量%以上、又は約90重量%以上であり、かつ約99.995重量%以下、約95重量%以下、又は約91重量%以下であり、着色剤が、0~約10重量%、又は0~約6重量%以下であり、補助剤が、0~約10重量%であり、かつアンチモンドープ酸化錫が、約0.005~10重量%、又は約0.005~6重量%である。この場合には、ビヒクル中では樹脂に対する溶剤の重量比が、約9以上でよく、また、この重量比は約90以下でよい。 In the case of the solvent-containing ink used in the piezo method, the mixing ratio of each component contained in the infrared-absorbing inkjet printing ink is about 80% by weight or more, or about 90% by weight or more, and about 99.995 wt% or less, about 95 wt% or less, or about 91 wt% or less, the colorant is 0 to about 10 wt%, or 0 to about 6 wt% or less, and the adjuvant is 0 to About 10% by weight and antimony doped tin oxide is about 0.005-10% by weight, or about 0.005-6% by weight. In this case, the weight ratio of the solvent to the resin in the vehicle may be about 9 or more, and the weight ratio may be about 90 or less.
 ピエゾ方式に使用される溶剤含有インクの粘度は、約20~25℃の温度において、約5.0mPa・s以下、又は約4.0mPa・s以下であることが好ましく、また、この粘度は、約1mPa・s以上、又は約2mPa・s以上であることが好ましい。 The viscosity of the solvent-containing ink used in the piezo method is preferably about 5.0 mPa · s or less, or about 4.0 mPa · s or less at a temperature of about 20 to 25 ° C. It is preferably about 1 mPa · s or more, or about 2 mPa · s or more.
 赤外線吸収性インクジェット印刷インクに含まれる各成分の配合比率は、サーマル方式に使用される溶剤含有インクの場合には、ビヒクルが、約40重量%以上、又は約50重量%以上であり、かつ約99重量%以下、約90重量%以下、約80重量%以下、約70重量%以下、又は約60重量%以下であり、着色剤が、0~約50重量%であり、補助剤が、0~約10重量%であり、かつアンチモンドープ酸化錫が、約1~50重量%である。この場合には、ビヒクルとして樹脂を使用しなくてもよい。また、ビヒクルとして樹脂を使用するときには、ビヒクル中では樹脂に対する溶剤の重量比が、約4以上、又は約9.9以上でよく、また、この重量比は約99以下、約90以下、又は約40以下でよい。 In the case of the solvent-containing ink used in the thermal method, the proportion of each component contained in the infrared-absorbing inkjet printing ink is about 40% by weight or more, or about 50% by weight or more, and about 99% by weight or less, about 90% by weight or less, about 80% by weight or less, about 70% by weight or less, or about 60% by weight or less, the colorant is 0 to about 50% by weight, and the adjuvant is 0 About 10% by weight and antimony-doped tin oxide is about 1-50% by weight. In this case, it is not necessary to use a resin as the vehicle. Also, when using a resin as the vehicle, the weight ratio of solvent to resin in the vehicle may be about 4 or more, or about 9.9 or more, and this weight ratio is about 99 or less, about 90 or less, or about It may be 40 or less.
 サーマル方式に使用される溶剤含有インクの粘度は、約20℃の温度において、約30mPa・s以下、又は約20mPa・s以下であることが好ましく、また、この粘度は、約0.3mPa・s以上、又は約1mPa・s以上であることが好ましい。 The viscosity of the solvent-containing ink used in the thermal method is preferably about 30 mPa · s or less, or about 20 mPa · s or less at a temperature of about 20 ° C., and the viscosity is about 0.3 mPa · s. It is preferable that it is above or about 1 mPa · s or more.
 赤外線吸収性インクジェット印刷インクに含まれる各成分の配合比率は、コンティニュアス方式に使用される溶剤含有インクの場合には、ビヒクルが、約30重量%以上、約40重量%以上、又は約50重量%以上であり、かつ約99重量%以下、約90重量%以下、約80重量%以下、又は約70重量%以下であり、着色剤が、0~約20重量%であり、補助剤が、0~約10重量%であり、かつアンチモンドープ酸化錫が、約1~20重量%である。この場合には、ビヒクル中では樹脂に対する溶剤の重量比が、約0.75以上、又は約2.4以上でよく、また、この重量比は、約9500以下、約5000以下、又は約3000以下でよい。さらに、コンティニュアス方式に使用される溶剤含有インクは、約0.1~20重量%の補助剤を含むことが好ましく、補助剤として導電性付与剤を含むことがより好ましい。 In the case of the solvent-containing ink used in the continuous method, the mixing ratio of each component contained in the infrared-absorbing inkjet printing ink is about 30% by weight or more, about 40% by weight or more, or about 50% by weight. % By weight or more and about 99% by weight or less, about 90% by weight or less, about 80% by weight or less, or about 70% by weight or less, the colorant is 0 to about 20% by weight, and the adjuvant is 0 to about 10% by weight, and antimony-doped tin oxide is about 1 to 20% by weight. In this case, the weight ratio of the solvent to the resin in the vehicle may be about 0.75 or more, or about 2.4 or more, and the weight ratio is about 9500 or less, about 5000 or less, or about 3000 or less. It's okay. Further, the solvent-containing ink used in the continuous method preferably contains about 0.1 to 20% by weight of an auxiliary agent, and more preferably contains a conductivity imparting agent as an auxiliary agent.
 コンティニュアス方式に使用される溶剤含有インクの粘度は、約60℃の温度において、約5mPa・s以下、又は約4mPa・s以下であることが好ましく、また、この粘度は、約2mPa・s以上、又は約2.5mPa・s以上であることが好ましい。 The viscosity of the solvent-containing ink used in the continuous method is preferably about 5 mPa · s or less, or about 4 mPa · s or less at a temperature of about 60 ° C., and the viscosity is about 2 mPa · s. It is preferable that the pressure is at least about 2.5 mPa · s.
 なお、各種のインクジェット方式に使用される溶剤含有インクを水性インクとして調製するときには、水性インクのpHは、約6以上、又は約7以上であることが好ましく、また、このpHは、約10以下、又は約9以下であることが好ましい。 When preparing a solvent-containing ink used in various inkjet methods as a water-based ink, the pH of the water-based ink is preferably about 6 or more, or about 7 or more, and this pH is about 10 or less. Or about 9 or less.
 赤外線吸収性インクジェット印刷インクに含まれる各成分の配合比率は、各種のインクジェット方式に使用されるUVインクの場合には、ビヒクルが、約50重量%以上、約60重量%以上であり、かつ約99.995重量%以下であり、着色剤が、0~約20重量%であり、補助剤が、0~約10重量%であり、かつアンチモンドープ酸化錫が、約0.005重量%以上、又は約0.1重量%以上であり、かつ約30重量%以下、約20重量%以下、約10重量%以下、又は約6重量%以下である。 In the case of UV inks used in various ink jet methods, the blending ratio of each component contained in the infrared absorbing ink jet printing ink is about 50% by weight or more, about 60% by weight or more, and about 99.995 wt% or less, the colorant is 0 to about 20 wt%, the adjuvant is 0 to about 10 wt%, and the antimony-doped tin oxide is about 0.005 wt% or more, Or about 0.1% by weight or more and about 30% by weight or less, about 20% by weight or less, about 10% by weight or less, or about 6% by weight or less.
 また、UVインクの場合には、ビヒクル中におけるモノマー、オリゴマー及び光重合開始剤の含有率は、モノマーが、約30~70重量%であり、オリゴマーが、約20~60重量%であり、かつ光重合開始剤が、約3~10重量%である。 In the case of UV ink, the content of the monomer, oligomer and photopolymerization initiator in the vehicle is about 30 to 70% by weight of monomer, about 20 to 60% by weight of oligomer, and The photopolymerization initiator is about 3 to 10% by weight.
 さらに、UVインクの粘度は、約60℃の温度において、約15mPa・s以下、又は約10mPa・s以下であることが好ましく、また、この粘度は、約1mPa・s以上、又は約2mPa・s以上であることが好ましい。 Further, the viscosity of the UV ink is preferably about 15 mPa · s or less, or about 10 mPa · s or less at a temperature of about 60 ° C., and the viscosity is about 1 mPa · s or more, or about 2 mPa · s. The above is preferable.
<インクの製造方法>
 本発明のインクは、アンチモンドープ酸化錫を、所望により補助剤及び/又は着色剤とともに、ビヒクルに分散することにより得られる。
<Ink production method>
The ink of the present invention can be obtained by dispersing antimony-doped tin oxide in a vehicle together with an auxiliary and / or a colorant as desired.
 本発明のインクを製造する方法の一態様は、以下のステップを含む:
 (1a)アンチモンドープ酸化錫及び/又は着色剤を、所望により補助剤とともに、ビヒクルに配合して、配合物を得る配合ステップ;
 (1b)上記配合物をプレミキシングして、ミルベースを得るプレミキシングステップ;
 (1c)上記ミルベースを練肉して、粗インクを得る練肉ステップ;
 (1d)上記粗インクにアンチモンドープ酸化錫、着色剤、ビヒクル及び/又は補助剤を加えて、インクを得る調整ステップ;
 (1e)上記インクを再び練肉して、上記インクを仕上げるポリッシングステップ;及び
 (1f)上記インクを容器に充填する充填ステップ。
One aspect of the method for producing the ink of the present invention includes the following steps:
(1a) a blending step of blending antimony-doped tin oxide and / or colorant with a vehicle, optionally with adjuvant, to obtain a blend;
(1b) a premixing step of premixing the formulation to obtain a mill base;
(1c) a kneading step for kneading the mill base to obtain a rough ink;
(1d) an adjustment step in which an antimony-doped tin oxide, a colorant, a vehicle and / or an auxiliary agent are added to the crude ink to obtain an ink;
(1e) a polishing step of kneading the ink again to finish the ink; and (1f) a filling step of filling the container with the ink.
 ステップ(1a)は、混合タンクなどの容器において、ディゾルバー、一軸ミキサー、二軸ミキサーなどのミキサーを用いて、アンチモンドープ酸化錫及び/又は着色剤をビヒクルに混合することにより行なわれることができる。アンチモンドープ酸化錫又は着色剤が、乾燥された固体又は紛体であるときに、ステップ(1a)によって、アンチモンドープ酸化錫又は着色剤の飛散を防ぐことができる。 Step (1a) can be performed by mixing antimony-doped tin oxide and / or colorant into the vehicle in a container such as a mixing tank, using a mixer such as a dissolver, a single screw mixer, or a twin screw mixer. When the antimony-doped tin oxide or colorant is a dried solid or powder, the scattering of the antimony-doped tin oxide or colorant can be prevented by step (1a).
 ステップ(1b)は、配合物を練肉する前に、アンチモンドープ酸化錫及び/又は着色剤を均一に粉砕し、ビヒクルで濡らして、ビヒクルに均一に分散するために行なわれる。ステップ(1b)を省略してもよいが、ステップ(1b)を行えば、その後のステップ(1c)を効率的に進めることができる。ステップ(1b)は、一軸ミキサー、二軸ミキサーなどのミキサーにより行なわれることができる。 Step (1b) is performed to uniformly pulverize the antimony-doped tin oxide and / or colorant, wet it with the vehicle and uniformly disperse it in the vehicle before kneading the formulation. Although step (1b) may be omitted, if step (1b) is performed, subsequent step (1c) can be efficiently advanced. Step (1b) can be performed by a mixer such as a single screw mixer or a twin screw mixer.
 ステップ(1c)は、ステップ(1b)と比べて、アンチモンドープ酸化錫及び/又は着色剤のより高度な濡れ及び分散を達成するために行われる。また、ステップ(1c)によって、ビヒクル中の分散物質の粒径を揃えることができる。 Step (1c) is performed to achieve a higher degree of wetting and dispersion of antimony-doped tin oxide and / or colorant compared to step (1b). Further, the particle diameter of the dispersed material in the vehicle can be made uniform by the step (1c).
 ステップ(1c)は、3本ローラーミル、ビーズミル、ボールミル、サンドグラインダー、アトライターなどの練肉機(ink mill)により行なわれることができる。例えば、3本ローラーミルを使用すると、ロールの通過時にミルベースが薄膜になるので、粗インクの脱気が可能になる。また、3本ローラーミルを使用すると、粗大粒子は第一ローラーに残存するので、分散物質の分級が可能になる。ビーズミルは、有機溶剤含有インク、水性インク、UVインクなどのインクジェット印刷インクのように、比較的粘度の低いインクの製造に適する。 Step (1c) can be performed by a kneading machine (ink mill) such as a three roller mill, a bead mill, a ball mill, a sand grinder, or an attritor. For example, when a three-roller mill is used, the mill base becomes a thin film when passing through the roll, so that coarse ink can be deaerated. In addition, when a three-roller mill is used, coarse particles remain on the first roller, so that the dispersed substance can be classified. The bead mill is suitable for producing an ink having a relatively low viscosity, such as an ink-jet printing ink such as an organic solvent-containing ink, an aqueous ink, and a UV ink.
 ステップ(1d)は、アンチモンドープ酸化錫、着色剤、ビヒクル及び/又は補助剤を粗インクに加えて、インクの最終組成、粘度、色調又は乾燥度を調整するために行われる。ステップ(1d)は、一軸ミキサー、二軸ミキサーなどのミキサーにより行なわれることができる。なお、ステップ(1d)を省略してもよい。 Step (1d) is performed to add antimony-doped tin oxide, colorant, vehicle and / or adjuvant to the crude ink to adjust the final composition, viscosity, color tone or dryness of the ink. Step (1d) can be performed by a mixer such as a single screw mixer or a twin screw mixer. Note that step (1d) may be omitted.
 本発明のインクに含まれる各成分は、ステップ(1a)及び/又は(1d)により、最終的に所望の配合比率に調整されることができる。したがって、ステップ(1a)及び(1d)の少なくとも1つにおいて、アンチモンドープ酸化錫をビヒクルに加えればよい。また、アンチモンドープ酸化錫を含み、かつ着色剤を含まないインクを調製するときには、ステップ(1a)又は(1d)において着色剤を使用しなくてよい。 Each component contained in the ink of the present invention can be finally adjusted to a desired blending ratio by steps (1a) and / or (1d). Therefore, antimony-doped tin oxide may be added to the vehicle in at least one of steps (1a) and (1d). Further, when preparing an ink containing antimony-doped tin oxide and not containing a colorant, it is not necessary to use a colorant in step (1a) or (1d).
 ステップ(1e)は、インクから気泡又は異物を除去して、インクを使用可能な状態にするために行われる。ステップ(1e)は、2本ローラーミル、3本ローラーミルなどの練肉機で行なわれることができる。 Step (1e) is performed to remove bubbles or foreign matters from the ink so that the ink can be used. Step (1e) can be performed with a meat mill such as a two-roller mill or a three-roller mill.
 ステップ(1f)は、缶、瓶、包装袋などの容器にインクを充填するために行われる。一般に、ステップ(1f)は、練肉機に備えられている計量充填器により行なわれることができる。 Step (1f) is performed to fill a container such as a can, a bottle, or a packaging bag with ink. In general, step (1f) can be performed by a metering and filling device provided in the grinder.
 上記の態様において、インクジェット印刷インクを製造することができる。なお、油性・UV併用インクを調製するときには、溶剤含有インクに適したビヒクルとUVインクに適したビヒクルの両方をビヒクルとして使用し、かつ両方に適した補助剤を加えることができる。 In the above embodiment, an inkjet printing ink can be manufactured. When preparing an oil-based / UV combined ink, it is possible to use both a vehicle suitable for solvent-containing ink and a vehicle suitable for UV ink as the vehicle, and to add an auxiliary agent suitable for both.
 本発明のインクを製造する方法の別の態様は、以下のステップを含む:
 (2a)着色剤及びビヒクルと、所望によりアンチモンドープ酸化錫及び補助剤とをフラッシング(flashing)して、ミルベースを得るフラッシングステップ;
 (2b)上記ミルベースを練肉して、粗インクを得る練肉ステップ;
 (2c)上記粗インクにアンチモンドープ酸化錫、着色剤、ビヒクル及び/又は補助剤を加えて、インクを得る調整ステップ;
 (2d)上記インクを再び練肉して、上記インクを仕上げるポリッシングステップ;及び
 (2e)上記インクを容器に充填する充填ステップ。
Another embodiment of the method for producing the ink of the present invention includes the following steps:
(2a) a flushing step to flash the colorant and vehicle and optionally antimony-doped tin oxide and adjuvants to obtain a mill base;
(2b) a kneading step for kneading the mill base to obtain a rough ink;
(2c) an adjusting step for obtaining an ink by adding antimony-doped tin oxide, a colorant, a vehicle and / or an auxiliary agent to the crude ink;
(2d) a polishing step in which the ink is kneaded again to finish the ink; and (2e) a filling step in which the container is filled with the ink.
 ステップ(2a)は、着色剤が水を含んでいるときに、着色剤を乾燥するステップ並びに上記ステップ(1a)及び(1b)を省略するために行われる。ステップ(2a)において、フラッシングとは、含水着色剤をビヒクルと混練することにより、着色剤を水相からビヒクル相に移す操作をいう。ステップ(2a)は、ニーダーなどのフラッシャーにより行なわれることができる。 Step (2a) is performed to omit the step of drying the colorant and the above steps (1a) and (1b) when the colorant contains water. In step (2a), flushing refers to an operation of transferring the colorant from the aqueous phase to the vehicle phase by kneading the water-containing colorant with the vehicle. Step (2a) can be performed by a flasher such as a kneader.
 ステップ(2b)~(2e)は、それぞれステップ(1c)~(1f)と同様に行なわれることができる。 Steps (2b) to (2e) can be performed in the same manner as steps (1c) to (1f), respectively.
<赤外線吸収性インクジェット印刷インク中のアンチモンドープ酸化錫及び着色剤の粒径>
 赤外線吸収性インクジェット印刷インク中のアンチモンドープ酸化錫の平均粒径は、インクのインクジェット印刷への適性を考慮して、500nm以下、400nm以下、300nm以下、200nm以下、100nm以下、80nm以下、60nm以下、40nm以下、20nm以下、15nm以下、10nm以下、又は5nm以下であってよく、また、この平均粒径は、1nm以上、又は2nm以上であってよい。なお、平均粒径とは、レーザー回析・散乱法のメディアン径を指す。
<Particle size of antimony-doped tin oxide and colorant in infrared absorbing ink jet printing ink>
The average particle diameter of the antimony-doped tin oxide in the infrared-absorbing inkjet printing ink is 500 nm or less, 400 nm or less, 300 nm or less, 200 nm or less, 100 nm or less, 80 nm or less, 60 nm or less in consideration of the suitability of the ink for inkjet printing. , 40 nm or less, 20 nm or less, 15 nm or less, 10 nm or less, or 5 nm or less, and the average particle diameter may be 1 nm or more, or 2 nm or more. The average particle diameter refers to the median diameter of the laser diffraction / scattering method.
 インク中のアンチモンドープ酸化錫の平均粒径を1nm~500nmの範囲に調整する手段は、限定されるものではないが、アンチモンドープ酸化錫の製造時にアンチモンドープ酸化錫を粉砕する手段と、インクジェット印刷インクの製造時にアンチモンドープ酸化錫をビヒクルに分散する手段との組み合わせであると考えられる。例えば、上記ステップS118又はS124により、アンチモンドープ酸化錫は、十分に粉砕される。また、上記ステップ(1b)、(1c)、(2a)又は(2b)により、アンチモンドープ酸化錫は、ビヒクルに十分に分散される。 The means for adjusting the average particle size of antimony-doped tin oxide in the ink to be in the range of 1 nm to 500 nm is not limited, but means for pulverizing antimony-doped tin oxide during the production of antimony-doped tin oxide, and inkjet printing This is considered to be a combination with means for dispersing antimony-doped tin oxide in the vehicle during the production of the ink. For example, the antimony-doped tin oxide is sufficiently pulverized by the step S118 or S124. Further, the antimony-doped tin oxide is sufficiently dispersed in the vehicle by the above steps (1b), (1c), (2a) or (2b).
 また、赤外線吸収性インクジェット印刷インク中のアンチモンドープ酸化錫の最大粒径は、インクジェット印刷機のヘッドの目詰まりを防止する観点から、1μm以下、900nm以下、又は800nm以下であることが好ましい。なお、最大粒径は、レーザー回析・散乱法により測定されることができる。 In addition, the maximum particle size of the antimony-doped tin oxide in the infrared-absorbing inkjet printing ink is preferably 1 μm or less, 900 nm or less, or 800 nm or less from the viewpoint of preventing clogging of the head of the inkjet printer. The maximum particle size can be measured by a laser diffraction / scattering method.
 アンチモンドープ酸化錫と同様に、赤外線吸収性インクジェット印刷インク中の着色剤の平均粒径も500nm以下、300nm以下、100nm以下、60nm以下、20nm以下、10nm以下、又は5nm以下であることが好ましく、また、この平均粒径は、1nm以上、又は2nm以上であることが好ましい。さらに、赤外線吸収性インクジェット印刷インク中の着色剤の最大粒径も1μm以下、900nm以下、又は800nm以下であることが好ましい。 Like antimony-doped tin oxide, the average particle size of the colorant in the infrared-absorbing inkjet printing ink is also preferably 500 nm or less, 300 nm or less, 100 nm or less, 60 nm or less, 20 nm or less, 10 nm or less, or 5 nm or less, The average particle diameter is preferably 1 nm or more, or 2 nm or more. Furthermore, the maximum particle size of the colorant in the infrared-absorbing inkjet printing ink is also preferably 1 μm or less, 900 nm or less, or 800 nm or less.
<インクジェット印刷>
 本発明のインクを使用して、インクジェット印刷で印刷物を得ることができる。インクジェット印刷は、ノズルからインクをインク滴として吐出して、被印刷体上に堆積させる印刷方式である。
<Inkjet printing>
Using the ink of the present invention, a printed matter can be obtained by ink jet printing. Ink jet printing is a printing method in which ink is ejected as ink droplets from a nozzle and deposited on a printing medium.
 インクジェット印刷では、版を使用せず、被印刷体に圧力を掛けず、かつノズルと被印刷体が接触しないので、版を使用する印刷法と比べて、被印刷体を傷めることなく高速な印刷を行うことができる。 Inkjet printing does not use a plate, does not apply pressure to the substrate, and the nozzle and the substrate do not contact each other, so printing is faster without damaging the substrate compared to printing methods that use plates. It can be performed.
 インクジェット印刷に使用される被印刷体としては、例えば、インクジェット印刷用紙などの紙、布地、衣類、ガラス、金属、樹脂製品、セラミックなどの無機物、壁紙、床材、ラベルなどが挙げられる。 Examples of the substrate to be used for inkjet printing include paper such as inkjet printing paper, fabric, clothing, glass, metal, resin products, inorganic materials such as ceramics, wallpaper, flooring, and labels.
 一般に、インクジェット印刷機において、ノズルからインクを吐出する方式は、コンティニュアス方式とオンデマンド方式に大別される。 Generally, in an ink jet printer, the method of ejecting ink from a nozzle is roughly divided into a continuous method and an on-demand method.
 コンティニュアス方式は、インク液を連続的に吐出させて、インク液の飛行軌道を電気的に制御する方式である。一般に、コンティニュアス方式は、工業用インクジェット印刷に採用される。例えば、コンティニュアス方式は、パッケージへの印字(例えば、生産日、製品番号など)、請求書などの文書の作成などに利用される。 The continuous method is a method for electrically controlling the flight trajectory of the ink liquid by continuously discharging the ink liquid. In general, the continuous method is employed for industrial inkjet printing. For example, the continuous method is used for printing on a package (for example, production date, product number, etc.), creating a document such as an invoice.
 コンティニュアス型印刷機では、ポンプによってノズルから連続的に押し出されたインクが、超音波発振器によって微小な液滴になる。この液滴は、電極によって電荷を加えられ、必要に応じて偏向電極で軌道を曲げられて、被印刷体に到達する。この際、偏向電極で曲げられなかったインクは、回収口に吸い込まれ、インクタンクに戻されて、再利用されることができる。 In a continuous type printing machine, ink continuously pushed out from a nozzle by a pump is turned into fine droplets by an ultrasonic oscillator. The droplets are charged by the electrode, and the trajectory is bent by the deflection electrode as necessary, and reach the printing medium. At this time, the ink that has not been bent by the deflection electrode is sucked into the recovery port, returned to the ink tank, and can be reused.
 コンティニュアス方式では、ポンプの圧力を高めて本発明のインクを押し出すことができるので、本発明のインクが比較的高い粘度を有するときでも、本発明のインクを容易に印刷することができる。また、本発明のインクを連続的に押し出すことができるので、本発明のインクが揮発性溶剤を含むか、又は速乾性であるときでも、本発明のインクを容易に印刷することができる。 In the continuous method, since the ink of the present invention can be pushed out by increasing the pressure of the pump, the ink of the present invention can be easily printed even when the ink of the present invention has a relatively high viscosity. In addition, since the ink of the present invention can be continuously extruded, the ink of the present invention can be easily printed even when the ink of the present invention contains a volatile solvent or is quick-drying.
 一方で、オンデマンド方式は、印刷時に必要な量のインクを吐出する方式である。一般に、オンデマンド方式は、家庭用又は工業用インクジェット印刷に採用される。オンデマンド印刷機では、インクを吐出して被印刷体に供給するために、インクの毛管現象を利用するので、本発明のインクが比較的低い粘度を有するときでも、本発明のインクを容易に印刷することができる。 On the other hand, the on-demand method is a method for discharging a necessary amount of ink at the time of printing. In general, the on-demand method is adopted for household or industrial inkjet printing. On-demand printing machines use the capillary action of ink to eject ink and supply it to the substrate, so that the ink of the present invention can be easily obtained even when the ink of the present invention has a relatively low viscosity. Can be printed.
 オンデマンド方式では、インクを吐出させるための複数のノズルの集積体(「ヘッド」とも呼ばれる)を使用してよい。例えば、被印刷体の動きに応じてヘッドを動かすか、又はヘッドを固定して、被印刷体を動かすことによって、オンデマンド方式インクジェット印刷を行うことができる。 In the on-demand method, an accumulation body (also referred to as “head”) of a plurality of nozzles for ejecting ink may be used. For example, on-demand ink jet printing can be performed by moving the print medium by moving the print head or by moving the print head according to the movement of the print medium.
 一般に、オンデマンド方式は、インクを加圧して吐出させる方法によって、ピエゾ方式、サーマル方式、及び静電誘導方式に大別される。 Generally, the on-demand method is roughly classified into a piezo method, a thermal method, and an electrostatic induction method, depending on a method in which ink is pressurized and ejected.
 ピエゾ方式は、電圧を加えると変形するピエゾ素子を使用する方式である。ピエゾ素子を備えるインク室において、ピエゾ素子を歪ませて、インク室の体積を減らすことによりノズルからインクを吐出させることができる。また、ピエゾ方式は、ピエゾ素子の変形する態様に応じて、プッシュ型、ベンド型及びシェア型に分類される。 The piezo method uses a piezo element that deforms when a voltage is applied. In an ink chamber provided with a piezo element, the piezo element is distorted to reduce the volume of the ink chamber, whereby ink can be ejected from the nozzle. Further, the piezo method is classified into a push type, a bend type, and a shear type according to the form of deformation of the piezo element.
 例えば、ピエゾ方式は、家庭用インクジェット印刷機による印刷、バナーの作成、壁紙の捺染、衣類の捺染などに利用される。また、ピエゾ方式には、有機溶剤含有インク、水性インク、UVインクなどのインクを利用することができる。 For example, the piezo method is used for printing with a home inkjet printer, creation of a banner, wallpaper printing, clothing printing, and the like. In the piezo method, inks such as organic solvent-containing ink, water-based ink, and UV ink can be used.
 ピエゾ方式では、インクの吐出及び制御に熱を使用しないので、ヘッドを比較的高温にすることができる。したがって、本発明のインクが、比較的高い粘度を有するときでも、ピエゾ方式で容易に印刷されることができる。 In the piezo method, heat is not used for ink ejection and control, so the head can be made relatively hot. Therefore, even when the ink of the present invention has a relatively high viscosity, it can be easily printed by a piezo method.
 サーマル方式は、発熱性部材を含むインク室を加熱して、インクを気化させることにより発生した気泡の圧力でインクを吐出させる方式である。発熱性部材の加熱は、例えば、微細管などのインク室の少なくとも一部分に、ヒーターを取り付けることにより行なわれることができる。例えば、サーマル方式は、紙媒体の印刷に利用される。 The thermal method is a method in which ink is ejected by the pressure of bubbles generated by heating an ink chamber including a heat-generating member and vaporizing the ink. The heating of the exothermic member can be performed, for example, by attaching a heater to at least a part of an ink chamber such as a fine tube. For example, the thermal method is used for printing on a paper medium.
 サーマル方式ではインクを加熱することになるので、例えば水性インクのように、熱による劣化が少ないインクを、サーマル方式で容易に印刷することができる。また、サーマル方式は、物理的手段及び機械的手段による影響を受け難いので、印刷の高速化又は印刷物の高密度化などを達成し易い。 Since the ink is heated in the thermal method, an ink that is hardly deteriorated by heat, such as water-based ink, can be easily printed by the thermal method. In addition, since the thermal method is hardly affected by physical means and mechanical means, it is easy to achieve high-speed printing or high-density printed matter.
 静電誘導方式は、インクと被印刷体の間に電圧を印加して、静電的にインクを吐出させる方式である。静電誘導方式は、インクの吐出量を制御し易いので、薄膜の形成に優れ、かつインク廃液の量を減少させることができる。 The electrostatic induction method is a method in which a voltage is applied between the ink and the printing medium to discharge the ink electrostatically. The electrostatic induction method is easy to control the amount of ink discharged, so it is excellent in forming a thin film and can reduce the amount of ink waste liquid.
 本発明のインクは、上記で説明された方式のいずれでも、印刷されることができる。 The ink of the present invention can be printed by any of the methods described above.
 通常、インクジェット印刷を行なうときには、墨インク、藍(シアン)インク、紅(マゼンタ)インク、黄(イエロー)インク、特色インクなどが使用される。ここで、本発明に使用されるアンチモンドープ酸化錫のみをビヒクルに分散させると、分散体は、明度が高く、かつ淡い白色を呈する。したがって、本発明のインクは、任意の色インクとして使用されてよいが、藍インク、紅インク、黄インク若しくは特色インクとして形成されるか、又は藍プロセスインク、紅プロセスインク若しくは黄プロセスインクと混合されることが好ましい。 Usually, when ink-jet printing is performed, black ink, cyan ink, magenta ink, yellow ink, special color ink, and the like are used. Here, when only the antimony-doped tin oxide used in the present invention is dispersed in the vehicle, the dispersion has a high brightness and a light white color. Therefore, the ink of the present invention may be used as any color ink, but is formed as indigo ink, red ink, yellow ink or spot color ink, or mixed with indigo process ink, red process ink or yellow process ink. It is preferred that
<印刷物>
 本発明のインクは、赤外線吸収性を有する。したがって、本発明のインクを基材に印刷することにより得られた印刷物を、赤外線カメラなどの赤外光検知器で観察すると、本発明のインクが印刷された部分は、赤外線を吸収し、その他の部分よりも黒く表示されるので、赤外線吸収のコントラストを検知することができる。例えば、所定の赤外線吸収のコントラストと観察対象の赤外線吸収のコントラストとを比較することにより、印刷物の真贋を判定することができる。
<Printed matter>
The ink of the present invention has infrared absorptivity. Therefore, when the printed matter obtained by printing the ink of the present invention on the substrate is observed with an infrared light detector such as an infrared camera, the portion on which the ink of the present invention is printed absorbs infrared rays, Since it is displayed blacker than the portion of, the infrared absorption contrast can be detected. For example, the authenticity of the printed matter can be determined by comparing a predetermined infrared absorption contrast with an infrared absorption contrast of the observation target.
<アンチモンドープ酸化錫の作製>
 使用した材料は、以下の通りである:
 メタ錫酸:日本化学産業株式会社製のメタ錫酸
 三酸化アンチモン:PATOX-CF(登録商標;日本精鉱株式会社製)
 アンチモンドープ酸化錫原料(市販品):日揮触媒化成株式会社製のELCOM(登録商標) P-特殊品(酸化アンチモンの含有量:9.9重量%、通気焼成なし、通気冷却なし)
<Preparation of antimony-doped tin oxide>
The materials used are as follows:
Metastannic acid: Metastannic acid manufactured by Nippon Chemical Industry Co., Ltd. Antimony trioxide: PATOX-CF (registered trademark; manufactured by Nippon Seiko Co., Ltd.)
Antimony-doped tin oxide raw material (commercially available): ELCOM (registered trademark) P-specialized product manufactured by JGC Catalysts & Chemicals Co., Ltd. (antimony oxide content: 9.9% by weight, no air firing, no air cooling)
 使用した焼成炉は、冷却装置付きシャトル式焼成炉(司電気炉製作所製)である。 The used firing furnace is a shuttle-type firing furnace with a cooling device (manufactured by Tsuji Electric Furnace).
[実施例1]
 118.8gのメタ錫酸及び1gの三酸化アンチモンを用いて、図1に記載の通りに、ステップ100~ステップ124を行なった。
[Example 1]
Steps 100-124 were performed as described in FIG. 1 using 118.8 g of metastannic acid and 1 g of antimony trioxide.
 具体的には、下記表1に記載の通りに、混合工程(S100)、閉鎖焼成工程(S106)、閉鎖冷却工程(S107)、通気焼成工程(S114)及び通気冷却工程(S116)を含む方法により、酸化アンチモン含有量が0.7重量%であるアンチモンドープ酸化錫を得た。 Specifically, as described in Table 1 below, a method including a mixing step (S100), a closed firing step (S106), a closed cooling step (S107), an aeration firing step (S114), and an aeration cooling step (S116). Thus, antimony-doped tin oxide having an antimony oxide content of 0.7% by weight was obtained.
 なお、通気焼成工程(S114)は、通気された炉内の温度を約1100℃に設定して、約8時間に亘って行われた。また、通気冷却工程(S116)は、約200[℃/時間]以上の冷却速度で行われた。 The aerated firing step (S114) was performed for about 8 hours with the temperature in the aerated furnace set to about 1100 ° C. The aeration cooling step (S116) was performed at a cooling rate of about 200 [° C./hour] or more.
[実施例2~7並びに比較例1及び2]
 下記表1に記載の通りに、実施例2~7並びに比較例1及び2を行なった。実施例2~4については、メタ錫酸及び三酸化アンチモンの重量、及び/又は通気焼成工程(S114)の時間を変化させることによって、得られたアンチモンドープ酸化錫中の酸化アンチモン含有量を変化させた。
[Examples 2 to 7 and Comparative Examples 1 and 2]
Examples 2 to 7 and Comparative Examples 1 and 2 were performed as described in Table 1 below. For Examples 2 to 4, the content of antimony oxide in the obtained antimony-doped tin oxide was changed by changing the weight of metastannic acid and antimony trioxide and / or the time of the aeration firing step (S114). I let you.
 一方で、比較例2では、混合工程(S100)、閉鎖焼成工程(S106)及び閉鎖冷却工程(S107)を実施例1と同様に行なったが、通気焼成工程(S114)及び通気冷却工程(S116)を行わずに、実施例2と同じ酸化アンチモン含有量を有する生成物を得た。 On the other hand, in Comparative Example 2, the mixing step (S100), the closed firing step (S106), and the closed cooling step (S107) were performed in the same manner as in Example 1, but the aeration firing step (S114) and the aeration cooling step (S116). ), A product having the same antimony oxide content as in Example 2 was obtained.
 比較例1では、市販品のアンチモンドープ酸化錫原料を用意した。一方で、実施例5及び6では、比較例1の市販品を通気焼成工程(S114)及び通気冷却工程(S116)に供した。通気冷却工程(S116)の冷却速度は、実施例5では200[℃/h]以上であり、実施例6では200[℃/h]未満であった。 In Comparative Example 1, a commercially available antimony-doped tin oxide raw material was prepared. On the other hand, in Example 5 and 6, the commercial item of the comparative example 1 was used for the ventilation baking process (S114) and the ventilation cooling process (S116). The cooling rate in the ventilation cooling step (S116) was 200 [° C./h] or more in Example 5, and less than 200 [° C./h] in Example 6.
 実施例7では、メタ錫酸と三酸化アンチモンの単なる混合物を通気焼成工程(S114)及び通気冷却工程(S116)に供した。 In Example 7, a simple mixture of metastannic acid and antimony trioxide was subjected to an aeration firing step (S114) and an aeration cooling step (S116).
〔生成物中の酸化アンチモン含有量の測定方法〕
 生成物中の酸化アンチモン含有量の測定は、蛍光X線分析装置RIX-1000(株式会社リガク製)のオーダー分析法にて行っている。また、測定条件としては、アンチモンドープ酸化錫を粉末にして測定を行っている。粉末は、粒径(レーザー回折散乱法でのメディアン径)が120nmの条件で測定を行っている。
[Method for measuring content of antimony oxide in product]
The content of antimony oxide in the product is measured by an order analysis method using a fluorescent X-ray analyzer RIX-1000 (manufactured by Rigaku Corporation). Moreover, as measurement conditions, the measurement is performed using antimony-doped tin oxide as a powder. The powder is measured under the condition that the particle diameter (median diameter by laser diffraction scattering method) is 120 nm.
〔生成物のX線回折測定〕
 そして、実施例及び比較例の各生成物についてX線回折を行い、その測定結果から結晶化度の値を算出した。
[X-ray diffraction measurement of product]
And X-ray diffraction was performed about each product of the Example and the comparative example, and the value of crystallinity was computed from the measurement result.
 表1に示す通り、図2~5は、実施例のアンチモンドープ酸化錫によるX線回折の結果を示す図であり、図6は、比較例のX線回折の結果を示す図である。なお、各図において、縦軸はX線を照射した際の反射光の「強度(CPS)」を示しており、横軸は「2θ(deg)」を示している。 As shown in Table 1, FIGS. 2 to 5 are diagrams showing the results of X-ray diffraction by the antimony-doped tin oxide of the example, and FIG. 6 is a diagram showing the results of X-ray diffraction of the comparative example. In each figure, the vertical axis indicates “intensity (CPS)” of reflected light when X-rays are irradiated, and the horizontal axis indicates “2θ (deg)”.
〔CPS〕
 ここで、「CPS(Count Per Second)」とは、測定対象物にX線を照射した際の1秒あたりの光子の反射量を示しており、反射光の強度(レベル)として捉えることもできる。
[CPS]
Here, “CPS (Count Per Second)” indicates the amount of reflected photons per second when the measurement object is irradiated with X-rays, and can also be regarded as the intensity (level) of reflected light. .
〔2θ〕
 また、「2θ」は、測定対象物にX線を照射する際の照射角度を示している。なお、「2θ」としている理由は、X線を照射する角度(入射角)がθであれば、反射角もθとなるため、この入射角と反射角とを合計した角度は2θとなるからである。
[2θ]
Further, “2θ” indicates an irradiation angle when the measurement object is irradiated with X-rays. The reason for “2θ” is that if the angle (incident angle) for irradiating X-rays is θ, the reflection angle is also θ, and the sum of the incident angle and the reflection angle is 2θ. It is.
〔結晶化度の算出方法〕
 結晶化度は、X線回折(XRD)の測定結果に基づいて算出している。使用機器及び測定条件は、以下の通りである。
(1)使用機器:株式会社リガク製 MultiFlex(X線回折装置)
(2)測定条件:
    スキャン速度:4.0°/min.
    線源:40kV、30mA
    積算回数:1回
[Calculation method of crystallinity]
The degree of crystallinity is calculated based on the measurement result of X-ray diffraction (XRD). The equipment used and the measurement conditions are as follows.
(1) Equipment used: Rigaku Corporation MultiFlex (X-ray diffractometer)
(2) Measurement conditions:
Scan speed: 4.0 ° / min.
Radiation source: 40 kV, 30 mA
Integration count: 1 time
 例えば、図2(B)のグラフは、実施例2のアンチモンドープ酸化錫によるX線回折の結果を示すグラフである。実施例2のアンチモンドープ酸化錫では、反射光の強度が大きく上昇する地点(波形が立ち上がる地点)が複数箇所にわたって発生している。 For example, the graph of FIG. 2 (B) is a graph showing the result of X-ray diffraction by antimony-doped tin oxide of Example 2. In the antimony-doped tin oxide of Example 2, points where the intensity of reflected light greatly increases (points where the waveform rises) are generated at a plurality of locations.
 具体的には、「2θ=27°」付近の地点、「2θ=34°」付近の地点、「2θ=38°」付近の地点、「2θ=52°」付近の地点、「2θ=55°」付近の地点、「2θ=58°」付近の地点である。
 そして、反射光の強度が上昇する地点のうち、反射光の強度が最も高い地点での2θ(deg)と強度(CPS)の測定値を用いて結晶化度を算出する。アンチモンドープ酸化錫で反射光の強度が最も高い地点は、「2θ=27°」付近の地点である。
Specifically, a point near “2θ = 27 °”, a point near “2θ = 34 °”, a point near “2θ = 38 °”, a point near “2θ = 52 °”, “2θ = 55 ° ”And a point near“ 2θ = 58 ° ”.
Then, the crystallinity is calculated using the measured values of 2θ (deg) and intensity (CPS) at the point where the intensity of the reflected light is the highest among the points where the intensity of the reflected light increases. The point where the intensity of reflected light is the highest in antimony-doped tin oxide is a point near “2θ = 27 °”.
 図7は、結晶化度の算出方法を概略的に示す概念図である。
 結晶化度は、物質が結晶化した際の物質全体に対する結晶化部分の割合を示しており、ここでは、結晶化度=CPS/Δ2θ(半値幅)と定義している。すなわち、結晶化度は、2θ=27°付近の地点における数値で定義している。これにより、X線回折(XRD)の測定結果から結晶化度を算出することができる。また、図示のグラフにおいて、規則正しい結晶構造を持ち、不純物がない程、波形のピークは大きく、波形の先端がシャープになる。
FIG. 7 is a conceptual diagram schematically showing a method for calculating the crystallinity.
The crystallinity indicates the ratio of the crystallized portion with respect to the entire material when the material is crystallized, and is defined here as crystallinity = CPS / Δ2θ (half-value width). That is, the crystallinity is defined by a numerical value at a point near 2θ = 27 °. Thereby, the crystallinity can be calculated from the measurement result of X-ray diffraction (XRD). In the illustrated graph, the peak of the waveform is larger and the tip of the waveform becomes sharper as the crystal structure is regular and there are no impurities.
〔CPS〕
 CPSは、反射光の強度(レベル)であるため、図示の例では波形の高さとなる。
[CPS]
Since CPS is the intensity (level) of reflected light, it has a waveform height in the illustrated example.
〔Δ2θ〕
 また、Δ2θは、X線回折測定により得られたCPSの最大値(ピーク値)の半分の値に対応する半値幅の広さとなる(図7において、長さA1と、長さA2とは同じ長さである)。
[Δ2θ]
Further, Δ2θ is the width of the half width corresponding to a half value of the maximum value (peak value) of CPS obtained by the X-ray diffraction measurement (in FIG. 7, the length A1 is the same as the length A2. Length).
 このため、CPSの値が大きいほど(波形のピークが高いほど)、結晶化度の値は大きくなる。また、Δ2θの値が小さいほど(半値幅が狭いほど)、結晶化度の値は大きくなる。 For this reason, the larger the CPS value (the higher the peak of the waveform), the larger the crystallinity value. Further, the smaller the value of Δ2θ (the narrower the half width), the larger the crystallinity value.
 ここで、検査対象となる材料にX線を照射する場合、X線を照射する角度によって、反射光が発生する角度と反射光が発生しない角度とがある。反射光が発生する角度は、物質によって一定したものとなっており、同じ物質であれば、波形の立ち上がり又は立ち下がりの傾向はおおむね一致する。本実施形態では、各実施例及び各比較例において、同じ物質であるアンチモンドープ酸化錫を用いているため、CPSの値が最大となる2θの位置は「2θ=27°」で統一されている。 Here, when X-rays are applied to the material to be inspected, there are an angle at which the reflected light is generated and an angle at which the reflected light is not generated depending on the angle at which the X-ray is applied. The angle at which the reflected light is generated is constant depending on the material. If the material is the same, the rising or falling tendency of the waveform is almost the same. In the present embodiment, since antimony-doped tin oxide, which is the same material, is used in each example and each comparative example, the position of 2θ at which the CPS value is maximum is unified as “2θ = 27 °”. .
 実施例1~7並びに比較例1及び2について、2θ=27°付近の半値幅(Δ2θ)、2θ=27°付近の強度(CPS)、結晶化度(CPS/Δ2θ)及びX線回折グラフの図面番号を下記表1に示す。 For Examples 1 to 7 and Comparative Examples 1 and 2, the full width at half maximum (Δ2θ) near 2θ = 27 °, the intensity (CPS) near 2θ = 27 °, the crystallinity (CPS / Δ2θ), and the X-ray diffraction graph The drawing numbers are shown in Table 1 below.
 図2(A)のグラフは、実施例1のアンチモンドープ酸化錫によるX線回折の結果を示すグラフである。実施例1のアンチモンドープ酸化錫は、「2θ=27°」付近の地点で反射光の強度が最も高く、CPSの最大値が12000程度である。Δ2θに関しても、CPSの値がピークとなる波形の裾部分の幅が、上記実施例2~4のものと比較してほとんど変わらない。したがって、実施例1は、アンチモンドープ酸化錫として十分な結晶度であると考えられる。ただし、酸化アンチモンの含有量が0.7重量%であり、酸化錫の結晶格子中に固溶されている酸化アンチモンの量が少ないため、実施例2~4よりも赤外線吸収効果が低いと考えられる。 2A is a graph showing the result of X-ray diffraction by the antimony-doped tin oxide of Example 1. FIG. The antimony-doped tin oxide of Example 1 has the highest reflected light intensity at a point near “2θ = 27 °”, and the maximum value of CPS is about 12,000. Also regarding Δ2θ, the width of the bottom part of the waveform where the CPS value reaches a peak is almost the same as that in Examples 2 to 4 described above. Therefore, Example 1 is considered to have sufficient crystallinity as antimony-doped tin oxide. However, since the content of antimony oxide is 0.7% by weight and the amount of antimony oxide dissolved in the crystal lattice of tin oxide is small, the infrared absorption effect is considered to be lower than those of Examples 2 to 4. It is done.
 図3(A)及び(B)のグラフは、それぞれ実施例3及び4のアンチモンドープ酸化錫によるX線回折の結果を示すグラフである。実施例3及び4のアンチモンドープ酸化錫でも、反射光の強度が最も高い地点は、「2θ=27°」付近の地点である。 3 (A) and 3 (B) are graphs showing the results of X-ray diffraction using antimony-doped tin oxide of Examples 3 and 4, respectively. Even in the antimony-doped tin oxides of Examples 3 and 4, the point where the intensity of the reflected light is the highest is a point near “2θ = 27 °”.
 また、図4(A)及び(B)のグラフは、それぞれ実施例5及び6のアンチモンドープ酸化錫によるX線回折の結果を示すグラフであり、そして図5のグラフは、実施例7のアンチモンドープ酸化錫によるX線回折の結果を示すグラフである。実施例5~7のアンチモンドープ酸化錫でも、反射光の強度が最も高い地点は、「2θ=27°」付近の地点である。 4A and 4B are graphs showing the results of X-ray diffraction by antimony-doped tin oxide of Examples 5 and 6, respectively, and the graph of FIG. 5 is the antimony of Example 7. It is a graph which shows the result of the X-ray diffraction by dope tin oxide. Even in the antimony-doped tin oxides of Examples 5 to 7, the point where the intensity of the reflected light is the highest is a point in the vicinity of “2θ = 27 °”.
 実施例2~4のアンチモンドープ酸化錫は、いずれもCPSの最大値が15000程度であり、反射光の強度が最も高い地点に出現する波形に関しても、先が尖っており裾部分の幅が狭いシャープな波形となっている。 In each of the antimony-doped tin oxides of Examples 2 to 4, the maximum value of CPS is about 15000, and the waveform appearing at the point where the intensity of the reflected light is the highest is sharp and the width of the skirt portion is narrow. It has a sharp waveform.
 図6(A)のグラフは、比較例1の市販品によるX線回折の結果を示すグラフである。比較例1の市販品は、反射光の強度が最も高いのは「2θ=27°」付近の地点であるが、CPSの値が上記実施例1~7のものと比較して極端に小さい(2000程度)。また、Δ2θに関しても、CPSの値がピークとなる波形の裾部分の幅が、上記実施例1~7のものと比較して広くなっている。これは、気化精製法を用いずに製造したアンチモンドープ酸化錫であるため、不純物が多いことが原因であると考えられる。 The graph of FIG. 6 (A) is a graph showing the result of X-ray diffraction by the commercially available product of Comparative Example 1. In the commercially available product of Comparative Example 1, the intensity of reflected light is highest at a point in the vicinity of “2θ = 27 °”, but the CPS value is extremely small compared to those of Examples 1 to 7 above ( About 2000). As for Δ2θ, the width of the bottom part of the waveform at which the CPS value reaches its peak is wider than those of the above-described Examples 1 to 7. This is considered to be caused by a large amount of impurities because it is antimony-doped tin oxide produced without using a vaporization purification method.
 図6(B)のグラフは、比較例2の生成物によるX線回折の結果を示すグラフである。比較例2の生成物は、反射光の強度が最も高いのは「2θ=27°」付近の地点であるが、CPSの値が上記実施例1~7のものと比較して小さい(CPS=6860.0)。また、Δ2θに関しても、CPSの値がピークとなる波形の裾部分の幅が、上記実施例1~7のものと比較して広くなっている。これは、上述した気化精製法を用いずに製造したアンチモンドープ酸化錫であるため、不純物が多いことが原因であると考えられる。これは、比較例2が実施例2と同じ酸化アンチモン含有量であるにもかかわらず、実施例2に比べて比較例2の結晶化度が低いことからもわかる。 The graph of FIG. 6 (B) is a graph showing the result of X-ray diffraction by the product of Comparative Example 2. In the product of Comparative Example 2, the intensity of reflected light is highest at a point in the vicinity of “2θ = 27 °”, but the CPS value is smaller than those in Examples 1 to 7 (CPS = 6860.0). As for Δ2θ, the width of the bottom part of the waveform at which the CPS value reaches its peak is wider than those of the above-described Examples 1 to 7. This is considered to be caused by a large amount of impurities because it is antimony-doped tin oxide manufactured without using the above-described vaporization purification method. This can also be seen from the fact that the crystallinity of Comparative Example 2 is lower than that of Example 2 even though Comparative Example 2 has the same antimony oxide content as Example 2.
〔赤外線吸収効果の測定〕
 赤外線吸収効果の測定は、分光光度計を用いて光反射率を測定することによって行った。使用機器、測定条件、及び測定方法は、以下の通りである。
[Measurement of infrared absorption effect]
The infrared absorption effect was measured by measuring the light reflectance using a spectrophotometer. The equipment used, the measurement conditions, and the measurement method are as follows.
(1)使用機器:日本分光株式会社製 分光光度計V570
(2)試料作成条件:アクリル/シリコーン系ワニス(ウレタン技研工業株式会社製 水性セフコート #800 クリアー)95部に、実施例及び比較例の赤外線吸収顔料5部を添加し、遊星式分散ミルを用いて分散させて赤外線吸収インクを作成し、厚さ200μmのPETフィルム上にフィルムアプリケーターで塗工して、乾燥させ、乾燥状態で膜厚70μmの印刷部を形成し、塗工フィルム(試料印刷物)を作成した。
(3)測定方法:塗工フィルムの背面に標準白色板を装着し、200~2500nmの波長範囲での反射率を測定した。なお、実施例及び比較例の赤外線吸収顔料については、いずれも粒径(レーザー回折散乱法でのメディアン径)を120nmにして測定している。
 また、標準白色板の反射率を、約100%の標準値として設定した。
 なお、上記測定方法は「JISK5602 塗膜の日射反射率の求め方」に準拠している。また、印刷部に含有される赤外線吸収顔料の固形分重量比(顔料比)については、次のように計算する。上記(2)記載のアクリル/シリコーン系ワニスには樹脂等の固形分のほか、乾燥時に揮発して消失する溶剤等が含まれる。アクリル/シリコーン系ワニスの固形分重量比が40重量%であるため、アクリル/シリコーン系ワニスの固形分が38部、赤外線吸収顔料が5部となり、赤外線吸収顔料の固形分重量比は11.6重量%である。なお、残りの88.4重量%は、樹脂及び/又はその他の添加剤である。
(1) Equipment used: Spectrophotometer V570 manufactured by JASCO Corporation
(2) Sample preparation conditions: 95 parts of acrylic / silicone varnish (Aqueous Cefcote # 800 Clear manufactured by Urethane Giken Co., Ltd.) is added with 5 parts of the infrared absorbing pigments of Examples and Comparative Examples, and a planetary dispersion mill is used. An infrared-absorbing ink is prepared by dispersing and coated with a film applicator on a PET film having a thickness of 200 μm, dried, and a printed part having a thickness of 70 μm is formed in a dried state. It was created.
(3) Measuring method: A standard white plate was attached to the back of the coated film, and the reflectance in the wavelength range of 200 to 2500 nm was measured. In addition, about the infrared absorption pigment of an Example and a comparative example, all are measuring by making a particle size (median diameter in a laser diffraction scattering method) into 120 nm.
Further, the reflectance of the standard white plate was set as a standard value of about 100%.
In addition, the said measuring method is based on "How to obtain | require the solar reflectance of a coating film". Moreover, about the solid content weight ratio (pigment ratio) of the infrared rays absorption pigment contained in a printing part, it calculates as follows. The acrylic / silicone varnish described in the above (2) includes a solid content such as a resin and a solvent that volatilizes and disappears when dried. Since the acrylic / silicone varnish solids weight ratio is 40% by weight, the acrylic / silicone varnish solids content is 38 parts, the infrared absorbing pigment is 5 parts, and the infrared absorbing pigment solids weight ratio is 11.6. % By weight. The remaining 88.4% by weight is resin and / or other additives.
 実施例1~7並びに比較例1及び2について、200nm~2500nmの波長と反射率の関係を図8~11に示し、かつ380nm~780nm及び/又は780~1100nmの波長域において、平均反射率、最大反射率、及び最大反射率を示す波長を下記表1に示す。 For Examples 1 to 7 and Comparative Examples 1 and 2, the relationship between the wavelength of 200 nm to 2500 nm and the reflectance is shown in FIGS. 8 to 11, and the average reflectance in the wavelength range of 380 nm to 780 nm and / or 780 to 1100 nm, Table 1 below shows the maximum reflectivity and the wavelength indicating the maximum reflectivity.
 図8から、酸化アンチモンが酸化錫の結晶格子中に固溶しているアンチモンドープ酸化錫は、赤外線吸収効果を奏することが分かる。 FIG. 8 shows that antimony-doped tin oxide in which antimony oxide is dissolved in the crystal lattice of tin oxide has an infrared absorption effect.
 また、一般的な真贋判定に用いられる近赤外領域(波長が780~1100nmの領域)では、赤外線吸収効果が高いことが望ましく、特に一般的な印刷条件であるアンチモンドープ酸化錫顔料の固形分重量比が11.6重量%のときに、反射率が30%以下であると、赤外線カメラ等の真贋判定装置で印刷物を観察した場合、アンチモンドープ酸化錫を含有する印刷部と他の部分との差が大きく、10人中10人が区別できるため、真贋判定に用い易く、好まれる。これに関連して、図8に示されるように、2.8重量%以上の酸化アンチモン含有率を有する実施例2~4は、その領域で反射率30%以下を保っている。 In the near infrared region (wavelength region of 780 to 1100 nm) used for general authenticity determination, it is desirable that the infrared absorption effect is high, and the solid content of the antimony-doped tin oxide pigment, which is a particularly general printing condition, is desirable. When the weight ratio is 11.6% by weight and the reflectance is 30% or less, when a printed matter is observed with an authenticity determination device such as an infrared camera, a printed part containing antimony-doped tin oxide and other parts The difference is large and 10 out of 10 people can be distinguished, so it is easy to use for authenticity determination and is preferred. In this connection, as shown in FIG. 8, Examples 2 to 4 having an antimony oxide content of 2.8% by weight or more maintain a reflectance of 30% or less in that region.
 図9から、2.7~2.8重量%の酸化アンチモン含有率を有するとしても、通気焼成工程を経ていない比較例2は、通気焼成工程を経た実施例2、5及び6に比べて、赤外線吸収効果が低いことが明らかである。つまり、通気焼成工程は、アンチモンドープ酸化錫の結晶性を高め、それによって、赤外線吸収効果を向上させることができる。これは、下記表1において、実施例2、5及び6と比較例2の結晶性を対比することにより裏付けられる。 From FIG. 9, even if it has an antimony oxide content of 2.7 to 2.8% by weight, the comparative example 2 that has not undergone the aeration firing process is compared with the examples 2, 5 and 6 that have undergone the aeration firing process. It is clear that the infrared absorption effect is low. That is, the aeration firing process can improve the crystallinity of the antimony-doped tin oxide, thereby improving the infrared absorption effect. This is supported by comparing the crystallinity of Examples 2, 5, and 6 and Comparative Example 2 in Table 1 below.
 また、実施例5及び6は、通気冷却工程(S116)の冷却速度を除いて、ほぼ同じ条件下で行われた。しかしながら、下記表1に示されるように、200[℃/時間]以上の冷却速度で行われた実施例5は、200[℃/時間]未満の冷却速度で行われた実施例6よりも、半値幅(Δ2θ)が狭く、かつ結晶化度が高い。これに関連して、通気焼成によって、酸化錫の結晶格子中に固溶されていない余分な酸化アンチモンとともに、その結晶格子中に固溶されている酸化アンチモンも微量ながら除去されるとしても、通気焼成後に積極的に冷却することによって、その結晶格子は維持されることが予想される。したがって、通気冷却工程において冷却速度を200[℃/時間]以上に調整することは、アンチモンドープ酸化錫の結晶性の向上に寄与するものと考えられる。 Further, Examples 5 and 6 were performed under substantially the same conditions except for the cooling rate in the aeration cooling step (S116). However, as shown in Table 1 below, Example 5 performed at a cooling rate of 200 [° C./hour] or higher was more than Example 6 performed at a cooling rate of less than 200 [° C./hour]. The half width (Δ2θ) is narrow and the degree of crystallinity is high. In this connection, even if a small amount of antimony oxide dissolved in the crystal lattice is removed together with excess antimony oxide not dissolved in the crystal lattice of tin oxide by aeration baking, By actively cooling after firing, it is expected that the crystal lattice will be maintained. Therefore, it is considered that adjusting the cooling rate to 200 [° C./hour] or more in the ventilation cooling step contributes to the improvement in crystallinity of the antimony-doped tin oxide.
 図10から、酸化アンチモンの含有率が9.9重量%である市販品のアンチモンドープ酸化錫顔料(比較例1)であったとしても、通気焼成工程を経ることによって、十分な赤外線吸収効果を有し、かつ酸化アンチモンの含有率が2.7重量%であるアンチモンドープ酸化錫(実施例5)になることが分かる。つまり、通気焼成工程によって、結晶格子中に固溶されていない余分な酸化アンチモン(すなわち、赤外線吸収効果に寄与していない不純物)を除去することができる。 From FIG. 10, even if it is a commercially available antimony-doped tin oxide pigment (Comparative Example 1) having an antimony oxide content of 9.9% by weight, a sufficient infrared absorption effect can be obtained through the aeration firing process. It can be seen that the antimony-doped tin oxide (Example 5) has an antimony oxide content of 2.7% by weight. That is, excess antimony oxide that is not dissolved in the crystal lattice (that is, impurities that do not contribute to the infrared absorption effect) can be removed by the aeration firing process.
 図11から、閉鎖焼成工程及び閉鎖冷却工程を省略しても、つまり、混合工程、通気焼成工程及び通気冷却工程しか行わなくても、十分な赤外線吸収効果を有するアンチモンドープ酸化錫が得られることが分かる。 From FIG. 11, even if the closed firing step and the closed cooling step are omitted, that is, only the mixing step, the aeration firing step and the aeration cooling step are performed, an antimony-doped tin oxide having a sufficient infrared absorption effect can be obtained. I understand.
 ここで、下記表1について実施例1~7を対比すると、実施例1~6は、実施例7よりも、可視光波長域(380nm~780nm)の平均反射率と赤外線波長域(780~1100nm)の平均反射率の差が大きい。したがって、実施例1~6のアンチモンドープ酸化錫は、実施例7のアンチモンドープ酸化錫と比べて、アンチモンドープ酸化錫の呈する色に束縛されることなく、幅広い用途で使用可能であることが分かる。 Here, when comparing Examples 1 to 7 with respect to Table 1 below, Examples 1 to 6 have an average reflectance in the visible light wavelength range (380 nm to 780 nm) and an infrared wavelength range (780 to 1100 nm) than Example 7. ) The average reflectance difference is large. Therefore, it can be seen that the antimony-doped tin oxides of Examples 1 to 6 can be used in a wide range of applications without being restricted by the color exhibited by antimony-doped tin oxide as compared with the antimony-doped tin oxide of Example 7. .
 したがって、通気焼成工程を用いてアンチモンドープ酸化錫を製造することにより、必要最低限の酸化アンチモンの含有量で結晶性を向上させることができ、十分な赤外線吸収効果を有するアンチモンドープ酸化錫を製造することができる。 Therefore, by producing antimony-doped tin oxide using an aerated firing process, the crystallinity can be improved with the minimum content of antimony oxide, and antimony-doped tin oxide having a sufficient infrared absorption effect is produced. can do.
 しかも、得られたアンチモンドープ酸化錫は、酸化アンチモンの含有量が9.3重量%以下でありながら、酸化アンチモンの含有量が9.9重量%であるアンチモンドープ酸化錫と略同等又はそれ以上の赤外線吸収効果が得られている。 In addition, the obtained antimony-doped tin oxide has an antimony oxide content of 9.3 wt% or less and an antimony oxide tin oxide having a content of 9.9 wt% is substantially equal to or higher than that. Infrared absorption effect is obtained.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<インクジェット印刷インクの作製>
〔コンティニュアス方式用の溶剤含有インクの作製〕
 以下の材料を密閉容器中で攪拌して均一に溶解させた後に濾過して、コンティニュアス方式用の溶剤含有インクを得た:
溶剤:純粋エチラール 41重量部、及び変性エタノール 42重量部;
樹脂:フェノール樹脂 10重量部;
顔料:実施例2の赤外線吸収顔料 5重量部;並びに
導電性付与剤:ヘキサフルオロリン酸カリウム 2重量部
<Preparation of inkjet printing ink>
[Preparation of solvent-containing ink for continuous method]
The following materials were stirred and uniformly dissolved in a sealed container and then filtered to obtain a solvent-containing ink for continuous use:
Solvent: 41 parts by weight pure ethylal and 42 parts by weight denatured ethanol;
Resin: phenol resin 10 parts by weight;
Pigment: 5 parts by weight of infrared absorbing pigment of Example 2; and conductivity imparting agent: 2 parts by weight of potassium hexafluorophosphate
〔ピエゾ方式用の溶剤含有インクの作製〕
 ミキサーを用いて、1-プロパノール、イソプロパノール及び1-ヘキサノールを、1-プロパノール:イソプロパノール:1-ヘキサノール=9:5:5の重量比で混合して、混合有機溶剤を得た。
[Production of solvent-containing ink for piezo method]
Using a mixer, 1-propanol, isopropanol and 1-hexanol were mixed at a weight ratio of 1-propanol: isopropanol: 1-hexanol = 9: 5: 5 to obtain a mixed organic solvent.
 実施例2の赤外線吸収顔料10重量部、上記混合有機溶剤88重量部、及び分散剤(「フローレンDOPA-33」 変性アクリル系共重合物 共栄社化学株式会社製)2重量部をサンドミルで分散して、赤外線吸収顔料分散液を得た。 10 parts by weight of the infrared absorbing pigment of Example 2, 88 parts by weight of the mixed organic solvent, and 2 parts by weight of a dispersant (“Floren DOPA-33” modified acrylic copolymer (manufactured by Kyoeisha Chemical Co., Ltd.)) were dispersed with a sand mill. Infrared absorbing pigment dispersion was obtained.
 76重量部の上記混合有機溶剤、4重量部のスチレン-アクリル樹脂、及び20重量部の上記赤外線吸収顔料分散液を密閉容器中で攪拌して均一に溶解させた後に濾過して、ピエゾ方式用の溶剤含有インクを得た。 76 parts by weight of the mixed organic solvent, 4 parts by weight of styrene-acrylic resin, and 20 parts by weight of the infrared-absorbing pigment dispersion are stirred and uniformly dissolved in a closed container, and then filtered to obtain a piezo method. A solvent-containing ink was obtained.
〔サーマル方式用の溶剤含有インクの作製〕
 以下の材料を密閉容器中で攪拌して均一に溶解させた後に濾過して、サーマル方式用の溶剤含有インクを得た:
溶剤:エチレングリコール10 重量部、ジエチレングリコール 10重量部、及び水 76重量部;並びに
顔料:実施例2の赤外線吸収顔料 4重量部
[Preparation of solvent-containing ink for thermal method]
The following materials were stirred and uniformly dissolved in a sealed container, and then filtered to obtain a solvent-containing ink for the thermal method:
Solvent: 10 parts by weight of ethylene glycol, 10 parts by weight of diethylene glycol, and 76 parts by weight of water; and pigment: 4 parts by weight of the infrared absorbing pigment of Example 2
〔ピエゾ方式用のUVインクの作製〕
 以下の材料を密閉容器中で攪拌して均一に溶解させた後に、メンブランフィルターで濾過して、ピエゾ方式用のUVインクを得た:
樹脂:
 モノマー:SR238(1,6ヘキサンジオールジアクリレート サートマージャパン株式会社製) 55重量部;及び
 オリゴマー:CN981(脂肪族ウレタンアクリレートオリゴマー サートマージャパン株式会社製) 32重量部;
光重合開始剤:ダロキュア1173(2-ヒドロキシ-2-メチル-1-フェニル-プロパン-1-オン チバ・ジャパン株式会社製) 10重量部;
顔料:実施例2の赤外線吸収顔料 2重量部;並びに
分散剤:フローレンDOPA-33(変性アクリル系共重合物 共栄社化学株式会社製) 1重量部
[Preparation of UV ink for piezo method]
The following materials were stirred and uniformly dissolved in a closed container, and then filtered through a membrane filter to obtain a UV ink for piezo method:
resin:
Monomer: SR238 (1,6 hexanediol diacrylate manufactured by Sartomer Japan Co., Ltd.) 55 parts by weight; and oligomer: CN981 (aliphatic urethane acrylate oligomer Sartomer Japan Co., Ltd. manufactured) 32 parts by weight;
Photopolymerization initiator: Darocur 1173 (2-hydroxy-2-methyl-1-phenyl-propan-1-one, manufactured by Ciba Japan Ltd.) 10 parts by weight;
Pigment: Infrared absorbing pigment of Example 2 2 parts by weight; and Dispersant: Florene DOPA-33 (modified acrylic copolymer, manufactured by Kyoeisha Chemical Co., Ltd.) 1 part by weight
〔インクジェット印刷インクの赤外線吸収効果〕
 上記で得られたコンティニュアス方式用の溶剤含有インクをインクジェット印刷機(Videojet Technologies社製 Excel MVP opaque)で上質紙(しらおい上質紙、日本製紙製)に印刷し、乾燥させて印刷物Iを得た。
[Infrared absorption effect of inkjet printing ink]
The solvent-containing ink for the continuous method obtained above is printed on high-quality paper (Shiraoi high-quality paper, manufactured by Nippon Paper Industries Co., Ltd.) using an inkjet printer (Excel MVP opaque made by Videojet Technologies), and dried to obtain printed matter I. Obtained.
 上記で得られたピエゾ方式用の溶剤含有インクをインクジェット印刷機(株式会社トライテック製「Roll Jet」、及びコニカミノルタ株式会社製「KM512Mヘッド」)で上質紙(しらおい上質紙、日本製紙製)に印刷し、乾燥させて、印刷物IIを得た。 The solvent-containing ink for the piezo method obtained above is used on high-quality paper (Shiraoi fine-quality paper, Nippon Paper Industries) on an inkjet printer ("Roll Jet" manufactured by Tritech Co., Ltd. and "KM512M head" manufactured by Konica Minolta Co., Ltd.) ) And dried to obtain Print II.
 上記で得られたサーマル方式用の溶剤含有インクをサーマルインクジェット印刷機(Videojet Technologies社製 VJ8510)で上質紙(しらおい上質紙、日本製紙製)に印刷し、乾燥させて、印刷物IIIを得た。 The solvent-containing ink for thermal method obtained above was printed on high-quality paper (Shiraoi fine-quality paper, manufactured by Nippon Paper Industries Co., Ltd.) with a thermal ink jet printer (Videojet Technologies VJ8510), and dried to obtain printed matter III .
 上記で得られたピエゾ方式用のUVインクをインクジェット印刷機(株式会社トライテック製「Roll Jet」、及びコニカミノルタ株式会社製「KM512Mヘッド」)で上質紙(しらおい上質紙、日本製紙製)に印刷し、乾燥させて、印刷物IVを得た。 Using the piezo method UV ink obtained above with a inkjet printer ("Roll Jet" manufactured by Tritech Co., Ltd. and "KM512M head" manufactured by Konica Minolta Co., Ltd.) And dried to obtain a printed matter IV.
 上記印刷物I~IVを赤外線カメラ(ANMO社製Dino-Lite Pro)を用いて観察したところ、赤外線吸収インクの印刷面は、赤外光を吸収するために黒く見えたのに対して、赤外線吸収インクを印刷していない面(例えば、原紙部分、一般プロセスインクの印刷部分など)は、赤外線を透過又は反射するために、白く見えた。 When the printed materials I to IV were observed using an infrared camera (Dino-Lite Pro manufactured by ANMO), the printed surface of the infrared absorbing ink appeared black because it absorbed infrared light, whereas infrared absorbing. The non-ink-printed surface (eg, the base paper portion, the general process ink print portion, etc.) appeared white because it transmitted or reflected infrared light.
〔インクジェット印刷インクの色調と赤外線吸収性の関係〕
 以下に示される基材及びインクを用意した:
  基材:一般紙(王子製紙株式会社製 OKプリンス上質 斤量90kg)
  プロセスインク(3色):
   藍色(C):スーパーテックGTシリーズ 藍(株式会社T&K TOKA製)
   紅色(M):スーパーテックGTシリーズ 紅(株式会社T&K TOKA製)
   黄色(Y):スーパーテックGTシリーズ 黄(株式会社T&K TOKA製)
[Relationship between color tone of inkjet printing ink and infrared absorptivity]
The following substrates and inks were prepared:
Base material: General paper (OK Prince fine quality 90 kg)
Process ink (3 colors):
Indigo (C): Super Tech GT Series Indigo (T & K TOKA Co., Ltd.)
Crimson (M): Super Tech GT Series Crimson (T & K TOKA Co., Ltd.)
Yellow (Y): Super Tech GT Series Yellow (manufactured by T & K TOKA Corporation)
 以下の印刷サンプル作製条件に従って、基材に上記3色のプロセスインクをそれぞれ印刷して、それぞれの色に対応した3種類の印刷サンプルを得た:
(印刷サンプル作製条件)
 印刷機:オフセット印刷機 RIテスター(株式会社IHI機械システム製)
 インク盛量:0.125cc
 インク膜厚:約1μm
According to the following print sample preparation conditions, the above three color process inks were respectively printed on the substrate to obtain three types of print samples corresponding to the respective colors:
(Print sample preparation conditions)
Printing machine: Offset printing machine RI tester (manufactured by IHI Machine System Co., Ltd.)
Ink volume: 0.125cc
Ink film thickness: about 1 μm
 以下の測定条件に従って、3種類の印刷サンプルの光反射率を測定した:
(測定条件)
 測定装置:紫外可視分光光度計 U-4000 (株式会社日立製作所製)
 測定項目:反射率(%)
 測定波長:350~2500nm
The light reflectance of three types of printed samples was measured according to the following measurement conditions:
(Measurement condition)
Measuring device: UV-visible spectrophotometer U-4000 (manufactured by Hitachi, Ltd.)
Measurement item: Reflectance (%)
Measurement wavelength: 350-2500 nm
 藍(C)、紅(M)及び黄(Y)プロセスインクについて、350~1500nmの波長域における反射率を図12に示す。 FIG. 12 shows the reflectance in the wavelength range of 350 to 1500 nm for the indigo (C), red (M), and yellow (Y) process inks.
 図12は、CMYプロセスインクのオフセット印刷により得られた印刷物の反射率を示すグラフである。しかしながら、着色剤濃度、膜厚及び測定条件を揃える限り、インクジェット印刷により得られた印刷物の反射率は、オフセット印刷により得られた印刷物の反射率と同じであると考えられる。したがって、図12に示されるCMYプロセスインクの反射率グラフと、図8~11に示される実施例1~7の反射率グラフとを組み合わせることにより、本発明インクジェット印刷インクを一般的な色インクとして使用したときの色調と赤外線吸収性の関係を予想できる。 FIG. 12 is a graph showing the reflectance of a printed matter obtained by offset printing of CMY process inks. However, as long as the colorant concentration, the film thickness, and the measurement conditions are uniform, the reflectance of the printed matter obtained by inkjet printing is considered to be the same as the reflectance of the printed matter obtained by offset printing. Therefore, by combining the reflectance graph of the CMY process ink shown in FIG. 12 and the reflectance graphs of Examples 1 to 7 shown in FIGS. 8 to 11, the inkjet printing ink of the present invention can be used as a general color ink. Predict the relationship between color tone and infrared absorption when used.
 例えば、図12では、紅及び黄プロセスインクが、赤外線波長域(780~1100nm)の光を吸収していない。一方で、図8~11に示される実施例1~7の反射率グラフでは、可視光波長域(380nm~780nm)の平均反射率よりも赤外線波長域の平均反射率が低いので、可視光よりも赤外光が吸収されていると考えられる。したがって、本発明に使用されるアンチモンドープ酸化錫を紅又は黄インクに含有させるか、又は本発明インクジェット印刷インクを紅又は黄インクとして使用すると、紅色又は黄色の色調に影響を与えることなく、インクに赤外線吸収性を付与できることが分かる。 For example, in FIG. 12, the red and yellow process inks do not absorb light in the infrared wavelength region (780 to 1100 nm). On the other hand, in the reflectance graphs of Examples 1 to 7 shown in FIGS. 8 to 11, since the average reflectance in the infrared wavelength region is lower than the average reflectance in the visible light wavelength region (380 nm to 780 nm), it is higher than that of visible light. Infrared light is also considered to be absorbed. Therefore, when the antimony-doped tin oxide used in the present invention is contained in the red or yellow ink, or the ink jet printing ink of the present invention is used as the red or yellow ink, the ink is not affected without affecting the color tone of the red or yellow. It can be seen that infrared absorptivity can be provided.
 また、図12から、藍プロセスインクが、赤外線波長域(780~1100nm)の光を僅かに吸収していると考えることもできる。しかしながら、図8~11において実施例1~7の赤外線吸収インクが赤外光を吸収する割合と比べれば、藍プロセスインクが赤外光を吸収する割合は、考慮しなくてよいほど低い。したがって、本発明に使用されるアンチモンドープ酸化錫を藍インクに含有させるか、又は本発明インクジェット印刷インクを藍インクとして使用しても、藍色の色調に影響を与えることなく、インクに赤外線吸収性を付与できることが分かる。 From FIG. 12, it can also be considered that the indigo process ink slightly absorbs light in the infrared wavelength region (780 to 1100 nm). However, in FIGS. 8 to 11, compared with the ratio of the infrared absorbing inks of Examples 1 to 7 to absorb infrared light, the ratio of the indigo process ink to absorb infrared light is so low that it does not need to be taken into consideration. Therefore, even if the antimony-doped tin oxide used in the present invention is contained in the indigo ink or the ink jet printing ink of the present invention is used as the indigo ink, the ink absorbs infrared rays without affecting the indigo color tone. It can be seen that sex can be imparted.
 さらに、実施例1~7で得られたアンチモンドープ酸化錫を含み、かつ着色剤を含まない赤外線吸収インクは、墨、藍、紅又は黄インクに該当しない。これに関連して、実施例1~7で得られたアンチモンドープ酸化錫を含み、かつ着色剤を含まない赤外線吸収インクは、明度が高く、かつ淡い白色を呈するので、墨、藍、紅又は黄インクの色調に与える影響は少ないと考えられる。したがって、実施例1~7で得られたアンチモンドープ酸化錫を含み、かつ着色剤を含まない赤外線吸収インクを、インクジェット印刷に適した特色インク又は機能性インクとして把握することができる。その場合、図8~11に示される実施例1~7の反射率グラフを、本発明の特色インクの光反射特性を表すグラフとして見なすことができる。 Furthermore, the infrared absorbing ink containing antimony-doped tin oxide obtained in Examples 1 to 7 and containing no colorant does not correspond to black, indigo, red or yellow ink. In this connection, the infrared absorbing ink containing antimony-doped tin oxide obtained in Examples 1 to 7 and containing no colorant has a high brightness and a light white color. The influence on the color tone of yellow ink is considered to be small. Therefore, the infrared absorbing ink containing antimony-doped tin oxide obtained in Examples 1 to 7 and containing no colorant can be grasped as a special color ink or functional ink suitable for inkjet printing. In that case, the reflectance graphs of Examples 1 to 7 shown in FIGS. 8 to 11 can be regarded as graphs representing the light reflection characteristics of the special color ink of the present invention.
 本発明は、上述した実施形態及び実施例に制約されることなく、各種の変形又は置換を伴って実施することができる。また、上述した実施形態及び実施例で挙げた構成又は材料はいずれも好ましい例示であり、これらを適宜変形して実施可能であることを理解されたい。 The present invention can be implemented with various modifications or replacements without being limited to the above-described embodiments and examples. In addition, it should be understood that any of the configurations and materials described in the above-described embodiments and examples are preferable examples and can be implemented by appropriately modifying them.

Claims (11)

  1.  アンチモンドープ酸化錫及びビヒクルを含む赤外線吸収性インクジェット印刷インクであって、
     前記アンチモンドープ酸化錫は、酸化錫と酸化アンチモンを含有し、かつ下記(a)及び/又は(b)を満たす:
      (a)X線回折測定により得られた2θ=27°付近のピークの半値幅(Δ2θ)が、0.30以下である;及び/又は
      (b)前記酸化アンチモンの含有量が、前記アンチモンドープ酸化錫の重量を基準として、0.5~10.0重量%であり、かつ、X線回折測定により得られた2θ=27°付近のピークのピーク値を半値幅(Δ2θ)で除算した値である結晶化度が、58427以上である、
     インクジェット印刷インク。
    An infrared absorbing ink jet printing ink comprising antimony-doped tin oxide and a vehicle,
    The antimony-doped tin oxide contains tin oxide and antimony oxide and satisfies the following (a) and / or (b):
    (A) The half width (Δ2θ) of a peak around 2θ = 27 ° obtained by X-ray diffraction measurement is 0.30 or less; and / or (b) the content of the antimony oxide is the antimony dope A value obtained by dividing the peak value of the peak around 2θ = 27 ° obtained by X-ray diffraction measurement by the half-value width (Δ2θ), based on the weight of tin oxide, from 0.5 to 10.0% by weight. The degree of crystallinity is 58427 or more.
    Inkjet printing ink.
  2.  偽造防止用である、請求項1に記載の赤外線吸収性インクジェット印刷インク。 The infrared-absorbing inkjet printing ink according to claim 1, which is used for preventing counterfeiting.
  3.  前記(a)において、前記半値幅(Δ2θ)は、0.21以下である、請求項1又は2に記載の赤外線吸収性インクジェット印刷インク。 3. The infrared-absorbing inkjet printing ink according to claim 1, wherein in (a), the half width (Δ2θ) is 0.21 or less.
  4.  前記(b)において、前記酸化アンチモンの含有量は、前記アンチモンドープ酸化錫の重量を基準として、2.8~9.3重量%である、請求項1又は2に記載の赤外線吸収性インクジェット印刷インク。 The infrared-absorbing inkjet printing according to claim 1 or 2, wherein in (b), the content of the antimony oxide is 2.8 to 9.3 wt% based on the weight of the antimony-doped tin oxide. ink.
  5.  前記結晶化度が78020以上である、請求項1又は2に記載の赤外線吸収性インクジェット印刷インク。 The infrared-absorbing inkjet printing ink according to claim 1 or 2, wherein the crystallinity is 78020 or more.
  6.  前記アンチモンドープ酸化錫の平均粒径が、500nm以下である、請求項1~5のいずれか1項に記載の赤外線吸収性インクジェット印刷インク。 The infrared-absorbing inkjet printing ink according to any one of claims 1 to 5, wherein the antimony-doped tin oxide has an average particle size of 500 nm or less.
  7.  前記インクジェット印刷インクは、溶剤含有インク又は紫外線硬化型インクである、請求項1~6のいずれか1項に記載の赤外線吸収性インクジェット印刷インク。 The infrared-absorbing ink-jet printing ink according to any one of claims 1 to 6, wherein the ink-jet printing ink is a solvent-containing ink or an ultraviolet curable ink.
  8.  補助剤をさらに含む、請求項1~7のいずれか1項に記載の赤外線吸収性インクジェット印刷インク。 The infrared-absorbing inkjet printing ink according to any one of claims 1 to 7, further comprising an auxiliary agent.
  9.  着色剤をさらに含む、請求項1~8のいずれか1項に記載の赤外線吸収性インクジェット印刷インク。 The infrared-absorbing inkjet printing ink according to any one of claims 1 to 8, further comprising a colorant.
  10.  請求項1~9のいずれか1項に記載の赤外線吸収性インクジェット印刷インクを使用して、インクジェット印刷で印刷物を得る方法。 A method for obtaining a printed matter by ink jet printing using the infrared absorbing ink jet printing ink according to any one of claims 1 to 9.
  11.  請求項1~9のいずれか1項に記載の赤外線吸収性インクジェット印刷インクにより印刷された印刷部を備える印刷物。 A printed matter comprising a printing part printed with the infrared-absorbing inkjet printing ink according to any one of claims 1 to 9.
PCT/JP2013/080328 2013-11-08 2013-11-08 Infrared-absorptive inkjet printing ink WO2015068282A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080328 WO2015068282A1 (en) 2013-11-08 2013-11-08 Infrared-absorptive inkjet printing ink

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/080328 WO2015068282A1 (en) 2013-11-08 2013-11-08 Infrared-absorptive inkjet printing ink

Publications (1)

Publication Number Publication Date
WO2015068282A1 true WO2015068282A1 (en) 2015-05-14

Family

ID=53041083

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/080328 WO2015068282A1 (en) 2013-11-08 2013-11-08 Infrared-absorptive inkjet printing ink

Country Status (1)

Country Link
WO (1) WO2015068282A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132048A (en) * 2016-01-25 2017-08-03 セイコーエプソン株式会社 Pretreatment liquid, ink set for oily inkjet recording and oily inkjet recording method
JP2019077797A (en) * 2017-10-25 2019-05-23 ゼネラル株式会社 Inkjet ink and method for forming semi-stereoscopic image using the same
WO2020066388A1 (en) * 2018-09-28 2020-04-02 富士フイルム株式会社 Inkjet recording method
WO2022004524A1 (en) * 2020-06-29 2022-01-06 共同印刷株式会社 Infrared ray-absorbing ultraviolet-ray curable ink and infrared ray-absorbing printed matter
WO2022136211A1 (en) * 2020-12-21 2022-06-30 Agfa-Gevaert Nv Nir absorbing inkjet ink, method of recording
WO2022163499A1 (en) * 2021-01-29 2022-08-04 共同印刷株式会社 Infrared-absorbing ultraviolet-curable ink, and infrared-absorbing printed matter

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337500A (en) * 1995-04-10 1996-12-24 Sumitomo Chem Co Ltd Tin oxide whisker and its production
JPH10316425A (en) * 1997-05-12 1998-12-02 Tokuyama Corp Production of spherical composite tin oxide powder
JP2003176132A (en) * 2001-09-28 2003-06-24 Sumitomo Metal Mining Co Ltd Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP2005531661A (en) * 2002-06-28 2005-10-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Curing and drying of surface coating systems and printing inks
JP2009057441A (en) * 2007-08-31 2009-03-19 Kyodo Printing Co Ltd Ink composition
JP2009114298A (en) * 2007-11-06 2009-05-28 Brother Ind Ltd Water-based infrared absorptive ink for ink-jet recording, ink-jet recording method, and ink-jet recording apparatus
JP2010006999A (en) * 2008-06-29 2010-01-14 Kyodo Printing Co Ltd Infrared absorptive ink for preventing forgery
JP2010084079A (en) * 2008-10-01 2010-04-15 Kyodo Printing Co Ltd Infrared absorbing ink for preventing counterfeiting and printed matter
WO2013146937A1 (en) * 2012-03-28 2013-10-03 共同印刷株式会社 Watermarked printing medium for forgery prevention
WO2013147033A1 (en) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 Infrared cut material
WO2013147029A1 (en) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 Antimony-doped tin oxide powder and process for manufacturing same
WO2013168812A1 (en) * 2012-05-11 2013-11-14 共同印刷株式会社 Antimony-doped tin oxide, infrared-ray-absorbable pigment, infrared-ray-absorbable ink, printed matter, and method for producing antimony-doped tin oxide

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08337500A (en) * 1995-04-10 1996-12-24 Sumitomo Chem Co Ltd Tin oxide whisker and its production
JPH10316425A (en) * 1997-05-12 1998-12-02 Tokuyama Corp Production of spherical composite tin oxide powder
JP2003176132A (en) * 2001-09-28 2003-06-24 Sumitomo Metal Mining Co Ltd Antimony-tin oxide particle for shielding insolation, coating solution for forming insolation shielding film and insolation shielding film
JP2005531661A (en) * 2002-06-28 2005-10-20 メルク パテント ゲゼルシャフト ミット ベシュレンクテル ハフトング Curing and drying of surface coating systems and printing inks
JP2009057441A (en) * 2007-08-31 2009-03-19 Kyodo Printing Co Ltd Ink composition
JP2009114298A (en) * 2007-11-06 2009-05-28 Brother Ind Ltd Water-based infrared absorptive ink for ink-jet recording, ink-jet recording method, and ink-jet recording apparatus
JP2010006999A (en) * 2008-06-29 2010-01-14 Kyodo Printing Co Ltd Infrared absorptive ink for preventing forgery
JP2010084079A (en) * 2008-10-01 2010-04-15 Kyodo Printing Co Ltd Infrared absorbing ink for preventing counterfeiting and printed matter
WO2013146937A1 (en) * 2012-03-28 2013-10-03 共同印刷株式会社 Watermarked printing medium for forgery prevention
WO2013147033A1 (en) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 Infrared cut material
WO2013147029A1 (en) * 2012-03-29 2013-10-03 三菱マテリアル株式会社 Antimony-doped tin oxide powder and process for manufacturing same
WO2013168812A1 (en) * 2012-05-11 2013-11-14 共同印刷株式会社 Antimony-doped tin oxide, infrared-ray-absorbable pigment, infrared-ray-absorbable ink, printed matter, and method for producing antimony-doped tin oxide

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017132048A (en) * 2016-01-25 2017-08-03 セイコーエプソン株式会社 Pretreatment liquid, ink set for oily inkjet recording and oily inkjet recording method
JP2019077797A (en) * 2017-10-25 2019-05-23 ゼネラル株式会社 Inkjet ink and method for forming semi-stereoscopic image using the same
WO2020066388A1 (en) * 2018-09-28 2020-04-02 富士フイルム株式会社 Inkjet recording method
JPWO2020066388A1 (en) * 2018-09-28 2021-08-30 富士フイルム株式会社 Inkjet recording method
JP7065994B2 (en) 2018-09-28 2022-05-12 富士フイルム株式会社 Inkjet recording method
WO2022004524A1 (en) * 2020-06-29 2022-01-06 共同印刷株式会社 Infrared ray-absorbing ultraviolet-ray curable ink and infrared ray-absorbing printed matter
WO2022136211A1 (en) * 2020-12-21 2022-06-30 Agfa-Gevaert Nv Nir absorbing inkjet ink, method of recording
CN116635490A (en) * 2020-12-21 2023-08-22 爱克发-格法特公司 NIR absorbing inkjet ink and method of recording
WO2022163499A1 (en) * 2021-01-29 2022-08-04 共同印刷株式会社 Infrared-absorbing ultraviolet-curable ink, and infrared-absorbing printed matter
CN116829656A (en) * 2021-01-29 2023-09-29 共同印刷株式会社 Infrared-absorbing ultraviolet-curable ink and infrared-absorbing printed matter

Similar Documents

Publication Publication Date Title
WO2015068282A1 (en) Infrared-absorptive inkjet printing ink
EP1036831B1 (en) Photocurable ink composition for ink jet recording and ink jet recording method using the same
US11613638B2 (en) Three-dimensional printing
US10174217B2 (en) Ink, ink stored container, image forming method, liquid discharging apparatus, and image
US20130135384A1 (en) Photocurable ink composition for ink jet recording
WO2019199328A1 (en) Three-dimensional printing
WO2016018306A1 (en) Ink composition and pre-treatment fixing fluid
AU2018289672B2 (en) Counterfeit-preventing ink composition, counterfeit-preventing ink, printed article for counterfeit prevention, and method for producing counterfeit-preventing ink composition
CN101774296A (en) Ink jet recording method, recorded product, ink composition for ink jet recording, ink set, ink cartridge, and ink jet recording apparatus
JP2014070185A (en) Image formation method
JP2007231214A (en) Encapsulated resin particle
US11479682B2 (en) Three-dimensional printing
JP5455818B2 (en) Ink composition, ink set, and image forming method
WO2019156655A1 (en) Three-dimensional printing methods
WO2015068290A1 (en) Infrared-absorptive intaglio printing ink
WO2015068292A1 (en) Printed article
JP6319642B1 (en) Aqueous pigment dispersion and method for producing aqueous pigment dispersion
JP2006257361A (en) Water-based ink composition
WO2019156656A1 (en) Three-dimensional printing compositions
EP3733793B1 (en) Production method for pigment aqueous dispersion
TW201518125A (en) Printed matter
WO2015068291A1 (en) Printed article
WO2015068281A1 (en) Infrared-absorptive screen printing ink
WO2015068280A1 (en) Infrared-absorptive gravure printing ink
TW201518424A (en) Infrared absorbance ink-jet ink

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896917

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP