WO2015068257A1 - 生産ラインのシミュレーション装置 - Google Patents
生産ラインのシミュレーション装置 Download PDFInfo
- Publication number
- WO2015068257A1 WO2015068257A1 PCT/JP2013/080234 JP2013080234W WO2015068257A1 WO 2015068257 A1 WO2015068257 A1 WO 2015068257A1 JP 2013080234 W JP2013080234 W JP 2013080234W WO 2015068257 A1 WO2015068257 A1 WO 2015068257A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- function
- data
- production line
- setting
- time
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 74
- 238000004088 simulation Methods 0.000 title claims abstract description 59
- 230000006870 function Effects 0.000 claims abstract description 250
- 238000004364 calculation method Methods 0.000 claims abstract description 94
- 238000013500 data storage Methods 0.000 claims abstract description 34
- 238000007726 management method Methods 0.000 claims abstract description 29
- 238000003860 storage Methods 0.000 claims abstract description 15
- 238000013480 data collection Methods 0.000 claims description 21
- 238000006243 chemical reaction Methods 0.000 claims description 12
- 230000000694 effects Effects 0.000 abstract description 4
- 239000000463 material Substances 0.000 description 30
- 238000005096 rolling process Methods 0.000 description 19
- 238000010586 diagram Methods 0.000 description 12
- 238000004904 shortening Methods 0.000 description 9
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 8
- 238000002347 injection Methods 0.000 description 7
- 239000007924 injection Substances 0.000 description 7
- 230000001133 acceleration Effects 0.000 description 6
- 238000010438 heat treatment Methods 0.000 description 5
- 230000004044 response Effects 0.000 description 2
- 238000004804 winding Methods 0.000 description 2
- 238000005097 cold rolling Methods 0.000 description 1
- 230000002860 competitive effect Effects 0.000 description 1
- 239000003209 petroleum derivative Substances 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/418—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
- G05B19/41885—Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM] characterised by modeling, simulation of the manufacturing system
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B17/00—Systems involving the use of models or simulators of said systems
- G05B17/02—Systems involving the use of models or simulators of said systems electric
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P90/00—Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
- Y02P90/02—Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
Definitions
- This invention relates to a production line simulation apparatus.
- Patent Document 1 describes a production line simulation device.
- the simulation apparatus uses data collected by an online control system.
- the data is associated with real time.
- the simulation apparatus performs the simulation over a time equivalent to the time required to collect the data.
- An object of the present invention is to provide a production line simulation apparatus capable of efficiently performing a simulation.
- the production line simulation device includes a data collection function for collecting production line operation data and production target characteristic data, and data for storing operation data and characteristic data collected by the data collection function. Based on the storage function, the operation data and characteristic data stored in the data storage function, a setting calculation function for calculating setting information regarding the production line using the model of the production line, and a calculation by the setting calculation function.
- the model learning function for learning the model of the production line based on the set setting information, the learning value storing function for storing the learning value of the model learned by the model learning function, and the setting calculation function
- Data collected function is and a run time management function to less than the time required to collect the operational data and the characteristic data.
- the setting information calculation time is shorter than the time required for the data collection function to collect the operation data and the characteristic data. For this reason, simulation can be implemented efficiently.
- FIG. 1 is a block diagram of a production line simulation apparatus according to Embodiment 1 of the present invention.
- FIG. It is a figure for demonstrating the after-update execution timing management function of the simulation apparatus of the production line in Embodiment 1 of this invention. It is a figure for demonstrating an example of shortening of the execution timing by the simulation apparatus of the production line in Embodiment 1 of this invention. It is a figure for demonstrating an example of shortening of the execution timing by the simulation apparatus of the production line in Embodiment 1 of this invention. It is a block diagram of the simulation apparatus of the production line in Embodiment 2 of this invention.
- FIG. 1 is a schematic diagram of a production line using a production line simulation apparatus according to Embodiment 1 of the present invention.
- the production line in FIG. 1 is a hot sheet rolling line.
- a heating furnace 1 is provided on the most upstream side of the hot sheet rolling line.
- a rough rolling mill 2 is provided on the downstream side of the heating furnace 1.
- the rough rolling mill 2 includes a support mechanism (not shown). The support mechanism supports the work roll 2a and the backup roll 2b. The shaft of the work roll 2a is attached to an electric motor (not shown).
- a bar heater 3 is provided on the downstream side of the roughing mill 2.
- a finishing mill entry side thermometer 4 is provided downstream of the bar heater 3.
- a finishing mill 5 is provided downstream of the finishing mill entry side thermometer 4.
- the finish rolling mill 5 includes a support mechanism (not shown). The support mechanism supports the work roll 5a and the backup roll 5b. The shaft of the work roll 5a is attached to an electric motor (not shown).
- a thickness gauge 6, a sheet width meter 7, and a finishing mill exit-side thermometer 8 are provided at the downstream side of the finishing mill 5.
- a run-out table 9 is provided on the downstream side of the plate thickness meter 6, the plate width meter 7, and the finishing mill exit-side thermometer 8.
- a water injection device 10 is provided on the upper side and the lower side of the runout table 9.
- a winder entry-side thermometer 11 is provided on the downstream side of the runout table 9.
- a winder 12 is provided downstream of the winder entry-side thermometer 11.
- the rolled material 13 is carried into the heating furnace 1 in the state of a rectangular parallelepiped slab.
- the rolled material 13 is heated to about 1200 ° C. in the heating furnace 1.
- the rolled material 13 is rolled by receiving a plurality of passes by the rough rolling mill 2.
- the work roll 2a is rotated by an electric motor with the rolled material 13 interposed therebetween.
- the backup roll 2b suppresses the deflection of the work roll 2a.
- the rolled material 13 becomes a rough bar having a desired thickness.
- the rolled material 13 is induction-heated by the bar heater 3.
- the rolled material 13 is rolled by the finish rolling mill 5.
- the work roll 5a is rotated by an electric motor with the rolled material 13 interposed therebetween.
- the backup roll 5b suppresses the deflection of the work roll 5a.
- the rolled material 13 has a desired thickness.
- the rolled material 13 is conveyed on the runout table 9.
- the rolled material 13 is water cooled by the water injection device 10.
- the rolled material 13 is wound up by the winder 12. As a result, a product coil is formed.
- the number of installed facilities may vary depending on the production line 14.
- the number of stands of the rough rolling mill 2 and the finish rolling mill 5, the presence or absence of the bar heater 3, the number of sensors such as thermometers are often different for each production line 14.
- FIG. 2 is a block diagram of a production line simulation apparatus according to Embodiment 1 of the present invention.
- the data collection function 16 collects the operation data of the production line 14 and the characteristic data of the production target.
- the pre-update execution timing management function 17 takes in information such as the position and speed of the rolled material 13 in the production line 14.
- the pre-update execution timing management function 17 may fetch information such as the position and speed of the rolled material 13 via the data collection function 16.
- the pre-update execution timing management function 17 determines the setting control timing of the rolled material 13 based on information such as the position and speed of the rolled material 13.
- the pre-update setting calculation function 18 calculates necessary setting information based on the operation data and the characteristic data collected by the data collection function 16 at the timing determined by the pre-update execution timing management function 17. At this time, the pre-update setting calculation function 18 uses the learning value of the model of the production line 14.
- the setting calculation of the finish rolling mill 5 is performed based on the result of the setting calculation of the rough rolling mill 2 at the timing when the temperature of the tip of the rolled material 13 is measured by the finishing mill entry side thermometer 4.
- the setting calculation timing of the finishing mill 5 is determined by the time interval at which the rolled material 13 is conveyed. For this reason, the time interval is not constant. For example, the time interval is 2-3 minutes in a short case. The time interval is 30 minutes to several hours in a long case. On the other hand, the setting calculation is completed within 1 second at most.
- the pre-update model learning function 19 learns a model based on the setting calculation result of the pre-update setting calculation function 18. Specifically, the pre-update model learning function 19 calculates the learning value of the model based on the setting calculation result of the pre-update setting calculation function 18.
- the pre-update learning value storage function 20 stores the learning value of the model learned by the pre-update model learning function 19.
- the setting control function 21 sends necessary setting information based on the setting calculation result of the pre-update setting calculation function 18 to a lower controller, sensor, etc. (not shown). Subordinate controllers, sensors, and the like are controlled based on the setting information. At this time, feedback control or the like is performed using a measured value by the sensor. The production line 14 is stably operated by the control. As a result, product quality is ensured over the entire length of the rolled material 13.
- the data storage function 22 temporarily stores the data collected by the data collection function 16.
- the collected data storage function 23 stores the data stored by the data storage function 22.
- the data is stored in association with the position of the rolled material 13 and the actual time.
- the post-update execution timing management function 25 collects data stored in the collected data storage function 23 via the data storage function 22 and the data collection function 16. The post-update execution timing management function 25 determines an appropriate execution timing for the setting calculation based on the data.
- the post-update setting calculation function 26 performs necessary setting calculation based on the data stored in the collected data storage function 23 at the timing determined by the post-update execution timing management function 25. At this time, the post-update setting calculation function 26 uses the learning value of the model of the production line 14.
- the post-update model learning function 27 learns a model based on the setting calculation result of the post-update setting calculation function 26. Specifically, the updated model learning function 27 calculates the learning value of the model based on the setting calculation result of the updated setting calculation function 26.
- the updated learning value storage function 28 stores the learning value calculated by the updated model learning function 27.
- FIG. 3 is a diagram for explaining the post-update execution timing management function of the production line simulation apparatus according to Embodiment 1 of the present invention.
- the post-update execution timing management function 25 includes a real-time processing function 25a and an acceleration function 25b.
- the real time processing function 25a is selected when the post-update setting calculation function 26 is executed in real time. At this time, the real time processing function 25 a sends information related to execution timing based on the real time to the post-update setting calculation function 26.
- the acceleration function 25b is selected when the post-update setting calculation function 26 is executed at high speed. At this time, the speed-up function 25b sends information related to the execution timing shortened from the execution timing by the real-time processing function 25a to the post-update setting calculation function 26.
- FIG. 4 is a diagram for explaining an example of shortening the execution timing by the production line simulation apparatus according to Embodiment 1 of the present invention.
- the setting calculation of the finishing mill 5 is executed based on the setting calculation result of the rough rolling mill 2. For this reason, in the setting calculation of the finishing mill 5, the order of execution timing and the time cannot be arbitrarily set.
- the speed-up function 25b shortens the time between the setting calculation for the rolled material 13 and the setting calculation for the next rolled material 13.
- the speed-up function 25b executes the shortening one after another.
- the speed-up function 25b fast-forwards a timer during setting calculation.
- the speed-up function 25b deletes a certain time between setting calculations.
- FIG. 5 is a diagram for explaining an example of shortening the execution timing by the production line simulation apparatus according to Embodiment 1 of the present invention.
- the effect of shortening the execution timing is limited.
- the shortening effect is limited in the plate thickness control and the tension control.
- the speed-up function 25b is not selected for these controls.
- the high-speed function 25b is selected in the case of control executed at a relatively long time interval such as winding temperature control.
- the speed-up function 25b is selected in the case of dynamic control whose interval is around 1 second or more than 1 second.
- the speed-up function 25b is selected at the time of dynamic control executed at intervals of several meters as a distance.
- the high speed function 25b shortens the time between execution timings of the dynamic control in the rolled material 13. For example, the speed-up function 25b fast-forwards a timer between dynamic controls. For example, the speed-up function 25b deletes a certain time between dynamic controls.
- the high-speed function 25b considers the dynamic characteristics of the dynamic control and the dead time.
- the response time of the water injection valve of the water injection device 10 includes a dead time of about 1 second and a response delay. In this case, it takes about 1 second from opening / closing command to the water injection valve until the water injection valve opens / closes. For this reason, in order to acquire data correctly, it is difficult to shorten the time from the control command to the execution by more than a second.
- the post-update setting calculation function 26 calculates the setting information in a time shorter than the time required for the data collection function to collect the operation data and the characteristic data. For this reason, simulation can be implemented efficiently. As a result, the function update of the production line 14 can be performed smoothly.
- the time that does not affect the model may be omitted.
- the time during which the production object is transported without being processed or cooled may be shortened.
- the time during which the production target is transported without being processed or cooled may be deleted. In these cases, the simulation can be performed efficiently without sacrificing the accuracy of the simulation.
- FIG. 6 is a block diagram of a production line simulation apparatus according to Embodiment 2 of the present invention.
- symbol is attached
- the online data collection function 30 functions in the same manner as the data collection function 16 in FIG. 2.
- the online execution timing management function 31 functions in the same manner as the pre-update execution timing management function 17 in FIG.
- the online setting calculation function 32 functions similarly to the pre-update setting calculation function 18 of FIG.
- the online model learning function 33 functions in the same manner as the pre-update model learning function 19 of FIG.
- the online learning value storage function 34 functions in the same manner as the pre-update learning value storage function 20.
- the online setting control function 35 functions similarly to the setting control function 21 of FIG.
- the offline simulation function 36 is used when realizing a function that cannot be confirmed in the online system or developing a function different from the online system.
- the offline data storage function 37 functions similarly to the data storage function 22 of FIG.
- the offline collection data storage function 38 functions in the same manner as the collection data storage function 23 of FIG.
- the offline execution timing management function 39 functions in the same manner as the post-update execution timing management function 25 of FIG.
- the offline setting calculation function 40 functions in the same manner as the post-update setting calculation function 26 of FIG.
- the offline model learning function 41 functions in the same manner as the updated model learning function 27 in FIG.
- the offline learned value storage function 42 functions in the same manner as the updated learned value storage function 28 of FIG.
- the offline simulation function 36 is executed at a timing completely unrelated to the control of the production line 14.
- the offline model learning function 41 may not be required.
- each function of the offline simulation function 36 is selectively used.
- the offline data storage function 37 and the offline collected data storage function 38 may be shared with an online system.
- FIG. 7 is a diagram for explaining an offline execution timing management function of the production line simulation apparatus according to the second embodiment of the present invention.
- the offline execution timing management function 39 includes a real-time processing function 39a and an acceleration function 39b.
- the real time processing function 39a is selected when the offline setting calculation function 40 is executed in real time. At this time, the real time processing function 39a sends information related to the execution timing based on the real time to the offline setting calculation function 40.
- the acceleration function 39b is selected when the offline setting calculation function 40 is executed at high speed. At this time, the speed-up function 39b sends to the offline setting calculation function 40 information related to execution timing that is shorter than the execution timing by the real-time processing function 39a.
- the offline simulation function 36 calculates setting information different from the setting information required for controlling the production line 14. For this reason, the simulation which confirms the effect of a new function, etc. can be implemented efficiently. As a result, new functions can be fully verified and applied.
- FIG. FIG. 8 is a diagram for explaining the data storage function of the production line simulation apparatus according to Embodiment 3 of the present invention.
- symbol is attached
- the data storage function 22 includes a data conversion function 22a and an event data storage function 22b.
- the data conversion function 22a converts the data of the collected data storage function 23 into data related to the execution timing of the setting calculation and data required for the setting calculation. For example, if there is a temperature actual value that has not been used for the setting calculation before the update, the data conversion function 22a converts the data related to the execution timing of the setting calculation and the data required for the setting calculation.
- the event data storage function 22b stores the data converted by the data conversion function 22a.
- the post-update execution timing management function 25 sends the data related to the execution timing stored in the event data storage function 22b to the post-update setting calculation function 26.
- the model parameters of the post-update setting calculation function 26 are changed, and the same simulation is performed again.
- the event data storage function 22b stores data relating to execution timing and data required for setting calculation. For this reason, the second and subsequent simulations are accelerated by using the data.
- FIG. 9 is a diagram for explaining data relating to execution timing of the production line simulation apparatus and data required for setting calculation according to the third embodiment of the present invention.
- the timing when the sensor for detecting the position of the rolled material 13 is turned on is set as the execution timing of the setting calculation.
- the timing at which the collection of data required for setting calculation is completed is set as the execution timing of setting calculation.
- the data conversion function 22a uses the data at the time when the signal for detecting the rolled material 13 is turned on as the data related to the execution timing.
- the data conversion function 22a uses the data at the time when the collection of data necessary for setting calculation is completed as the data related to the execution timing.
- the data required for the setting calculation is temperature
- the thermometer may be turned on.
- the threshold value may be adjusted to the updated system standard. For example, when the threshold value of the updated system is 1000 ° C., the time when the measured temperature value is 1000 ° C. or more may be set as the time when the thermometer is turned on. Thereafter, data collection may be started after Ss seconds. In this case, the data conversion function 22a uses the average value of the temperature for Sd seconds as the data required for the setting calculation.
- the simulation can be efficiently performed even when the data collected before and after the update is handled differently.
- the speed and measured temperature of the rolled material 13 are stored for each distance of the rolled material 13 before the update, it is assumed that the measured temperature for each hour is required after the update.
- the time may be calculated based on the information on the speed and the distance.
- the unit conversion may be performed by the data conversion function 22a.
- the converted data may be stored in the event data storage function 22b.
- the simulation apparatus according to the first to third embodiments is applied to a line for continuously producing products such as a plate rolling line, a cold rolling line, a production line for paper, pulp, chemical substances, petroleum products, and the like. You may apply. Moreover, you may apply the simulation apparatus of Embodiment 1 to Embodiment 3 to the line which manufactures a product in batches, such as a motor vehicle and a mechanism.
- the production line simulation apparatus can be used in a system for efficiently performing simulation.
Landscapes
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- General Engineering & Computer Science (AREA)
- Quality & Reliability (AREA)
- Management, Administration, Business Operations System, And Electronic Commerce (AREA)
- Business, Economics & Management (AREA)
- General Factory Administration (AREA)
- Control Of Metal Rolling (AREA)
- Health & Medical Sciences (AREA)
- Economics (AREA)
- General Health & Medical Sciences (AREA)
- Human Resources & Organizations (AREA)
- Marketing (AREA)
- Primary Health Care (AREA)
- Strategic Management (AREA)
- Tourism & Hospitality (AREA)
- General Business, Economics & Management (AREA)
- Theoretical Computer Science (AREA)
Abstract
Description
図1はこの発明の実施の形態1における生産ラインのシミュレーション装置を利用した生産ラインの模式図である。
図2はこの発明の実施の形態1における生産ラインのシミュレーション装置のブロック図である。
図3はこの発明の実施の形態1における生産ラインのシミュレーション装置の更新後実行タイミング管理機能を説明するための図である。
図4はこの発明の実施の形態1における生産ラインのシミュレーション装置による実行タイミングの短縮の一例を説明するための図である。
図5はこの発明の実施の形態1における生産ラインのシミュレーション装置による実行タイミングの短縮の一例を説明するための図である。
図6はこの発明の実施の形態2における生産ラインのシミュレーション装置のブロック図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
図7はこの発明の実施の形態2における生産ラインのシミュレーション装置のオフライン実行タイミング管理機能を説明するための図である。
図8はこの発明の実施の形態3における生産ラインのシミュレーション装置のデータ蓄積機能を説明するための図である。なお、実施の形態1と同一又は相当部分には同一符号を付して説明を省略する。
図9はこの発明の実施の形態3における生産ラインのシミュレーション装置の実行タイミングに関するデータと設定計算に要するデータとを説明するための図である。
Claims (6)
- 生産ラインの操業データと生産対象物の特性データとを採取するデータ採取機能と、
前記データ採取機能により採取された操業データと特性データとを保存するデータ保存機能と、
前記データ保存機能に保存された操業データと特性データとに基づいて、前記生産ラインのモデルを用いて前記生産ラインに関する設定情報を計算する設定計算機能と、
前記設定計算機能により計算された設定情報に基づいて、前記生産ラインのモデルを学習するモデル学習機能と、
前記モデル学習機能により学習されたモデルの学習値を保存する学習値保存機能と、
前記設定計算機能が設定情報を計算する際にモデルに影響のない時間を省略させ、前記設定計算機能による設定情報の計算時間を前記データ採取機能が操業データと特性データとを採取するために要した時間よりも短くさせる実行タイミング管理機能と、
を備えた生産ラインのシミュレーション装置。 - 設定情報に基づいて前記生産ラインを制御する設定制御機能、
を備え、
前記設定計算機能は、前記データ採取機能に採取された操業データと生産対象物の特性データとに基づいて、前記学習値保存機能により保存されたモデルの学習値を用いて前記設定制御機能が前記生産ラインを制御する際に用いる設定情報を計算する請求項1に記載の生産ラインのシミュレーション装置。 - 前記設定計算機能は、前記データ保存機能に保存された操業データと特性データとに基づいて、前記生産ラインのモデルを用いて前記生産ラインの制御に要する設定情報とは異なる設定情報を計算する請求項1に記載の生産ラインのシミュレーション装置。
- 前記実行タイミング管理機能は、生産対象物が加工処理及び冷却処理をなされておらずに搬送されている時間を短縮することにより前記設定計算機能による設定情報の計算時間を前記データ採取機能が操業データと特性データとを採取するために要した時間よりも短くする請求項1から請求項3のいずれか一項に記載の生産ラインのシミュレーション装置。
- 前記実行タイミング管理機能は、生産対象物が加工処理及び冷却処理をなされておらずに搬送されている時間を削除することにより前記設定計算機能による設定情報の計算時間を前記データ採取機能が操業データと特性データとを採取するために要した時間よりも短くする請求項1から請求項3のいずれか一項に記載の生産ラインのシミュレーション装置。
- 前記データ保存機能に保存された操業データと特性データを設定計算の実行タイミングに関するデータと設定計算に要するデータとに変換するデータ変換機能と、
前記データ変換機能により変換されたデータを保存するイベントデータ保存機能と、
を備え、
前記設定計算機能は、前記イベントデータ保存機能に保存されたデータに基づいた実行タイミングで、前記データ採取機能が操業データと特性データとを採取するために要した時間よりも短い時間で前記イベントデータ保存機能に保存されたデータを用いて設定計算を行う請求項1から請求項5のいずれか一項に記載の生産ラインのシミュレーション装置。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201380080785.1A CN105706010B (zh) | 2013-11-08 | 2013-11-08 | 生产线模拟装置 |
JP2015546222A JP6517147B2 (ja) | 2013-11-08 | 2013-11-08 | 生産ラインのシミュレーション装置 |
PCT/JP2013/080234 WO2015068257A1 (ja) | 2013-11-08 | 2013-11-08 | 生産ラインのシミュレーション装置 |
KR1020157036114A KR101972635B1 (ko) | 2013-11-08 | 2013-11-08 | 생산 라인의 시뮬레이션 장치 |
TW103100162A TWI542985B (zh) | 2013-11-08 | 2014-01-03 | 生產線的模擬裝置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2013/080234 WO2015068257A1 (ja) | 2013-11-08 | 2013-11-08 | 生産ラインのシミュレーション装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2015068257A1 true WO2015068257A1 (ja) | 2015-05-14 |
Family
ID=53041059
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2013/080234 WO2015068257A1 (ja) | 2013-11-08 | 2013-11-08 | 生産ラインのシミュレーション装置 |
Country Status (5)
Country | Link |
---|---|
JP (1) | JP6517147B2 (ja) |
KR (1) | KR101972635B1 (ja) |
CN (1) | CN105706010B (ja) |
TW (1) | TWI542985B (ja) |
WO (1) | WO2015068257A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10482202B2 (en) | 2016-06-30 | 2019-11-19 | The Procter & Gamble Company | Method for modeling a manufacturing process for a product |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6659647B2 (ja) | 2017-09-29 | 2020-03-04 | ファナック株式会社 | 数値制御システム及び逆流防止弁状態検知方法 |
JP6740277B2 (ja) * | 2018-04-13 | 2020-08-12 | ファナック株式会社 | 機械学習装置、制御装置、及び機械学習方法 |
WO2021048984A1 (ja) * | 2019-09-12 | 2021-03-18 | 東芝三菱電機産業システム株式会社 | 絞り発生予測システム |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002297226A (ja) * | 2001-03-29 | 2002-10-11 | Sumitomo Heavy Ind Ltd | 自動搬送システムのシミュレーション装置および自動搬送システムのシミュレーション方法ならびに自動搬送システムのシミュレーションプログラム |
Family Cites Families (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002091505A (ja) | 2000-09-14 | 2002-03-29 | Toshiba Corp | モデル同定装置 |
JP4208509B2 (ja) | 2002-07-18 | 2009-01-14 | 東芝三菱電機産業システム株式会社 | 圧延プロセスのモデル学習装置 |
JP5032764B2 (ja) | 2005-11-09 | 2012-09-26 | 株式会社日立ハイテクノロジーズ | 産業用装置の装置コントローラ |
JP5509062B2 (ja) * | 2010-12-28 | 2014-06-04 | 株式会社日立パワーソリューションズ | 生産シミュレーション装置 |
CN102393710A (zh) * | 2011-10-28 | 2012-03-28 | 无锡市星亿涂装环保设备有限公司 | 一种生产线行车的多任务生产仿真调度控制系统及其方法 |
JP2013191014A (ja) * | 2012-03-14 | 2013-09-26 | Hitachi Power Solutions Co Ltd | 工程間適正バッファ設計方法及び工程間適正バッファ設計装置 |
-
2013
- 2013-11-08 JP JP2015546222A patent/JP6517147B2/ja active Active
- 2013-11-08 KR KR1020157036114A patent/KR101972635B1/ko active IP Right Grant
- 2013-11-08 CN CN201380080785.1A patent/CN105706010B/zh active Active
- 2013-11-08 WO PCT/JP2013/080234 patent/WO2015068257A1/ja active Application Filing
-
2014
- 2014-01-03 TW TW103100162A patent/TWI542985B/zh active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002297226A (ja) * | 2001-03-29 | 2002-10-11 | Sumitomo Heavy Ind Ltd | 自動搬送システムのシミュレーション装置および自動搬送システムのシミュレーション方法ならびに自動搬送システムのシミュレーションプログラム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10482202B2 (en) | 2016-06-30 | 2019-11-19 | The Procter & Gamble Company | Method for modeling a manufacturing process for a product |
Also Published As
Publication number | Publication date |
---|---|
JPWO2015068257A1 (ja) | 2017-03-09 |
CN105706010A (zh) | 2016-06-22 |
KR20160013115A (ko) | 2016-02-03 |
TW201518920A (zh) | 2015-05-16 |
JP6517147B2 (ja) | 2019-05-22 |
CN105706010B (zh) | 2018-03-23 |
KR101972635B1 (ko) | 2019-04-25 |
TWI542985B (zh) | 2016-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI554340B (zh) | 壓延模擬裝置 | |
WO2015068257A1 (ja) | 生産ラインのシミュレーション装置 | |
JP5003483B2 (ja) | 圧延ラインの材質予測および材質制御装置 | |
CN101522325A (zh) | 在用于加工热轧板材或热轧带材的厚板轧机的控制的范围内对热轧板材或热轧带材的物理状态进行跟踪的方法 | |
Shardt et al. | Modelling the strip thickness in hot steel rolling mills using least‐squares support vector machines | |
US10095199B2 (en) | Energy consumption predicting device for rolling line | |
CN104190720A (zh) | 一种自适应自动厚度控制方法及装置 | |
JP4402502B2 (ja) | 巻取温度制御装置 | |
CN103567226A (zh) | 数据分析装置 | |
JP2017194995A (ja) | 生産ラインのシミュレーション装置 | |
Pengfei et al. | Flatness control strategy based on delay compensation for cold rolling mill | |
JP2020157327A (ja) | 鋼板の仕上出側温度制御方法、鋼板の仕上出側温度制御装置、及び鋼板の製造方法 | |
CN102115808B (zh) | 铁素体区轧制温度控制系统 | |
KR102448426B1 (ko) | 어닐링 로의 작동 방법 | |
JP2016157313A (ja) | 鉄鋼プラントの傾向監視装置 | |
US20220236725A1 (en) | Physical model identification system | |
JP2022108117A (ja) | 予測装置、学習装置、予測プログラム、及び学習プログラム | |
Zhang et al. | Research and application of computer control system for aluminium single‐stand 4‐high cold rolling mill | |
JP2755893B2 (ja) | 圧延制御方法および装置 | |
CN201915121U (zh) | 铁素体区轧制温度控制系统 | |
CN105618490A (zh) | 一种冷轧电工钢的边降自动控制方法 | |
JP5858265B1 (ja) | 圧下制御装置及び圧下制御方法 | |
CN109563559A (zh) | 使用于金属带材的退火的退火炉运行的方法 | |
JP2017164758A (ja) | 圧延ラインのミルペーシング制御方法 | |
JP2009191286A (ja) | 厚板製造方法及び厚板製造設備 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13897018 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2015546222 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20157036114 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13897018 Country of ref document: EP Kind code of ref document: A1 |