WO2015067210A1 - 巯基三唑类输气管道减阻剂及其制备方法 - Google Patents

巯基三唑类输气管道减阻剂及其制备方法 Download PDF

Info

Publication number
WO2015067210A1
WO2015067210A1 PCT/CN2014/090570 CN2014090570W WO2015067210A1 WO 2015067210 A1 WO2015067210 A1 WO 2015067210A1 CN 2014090570 W CN2014090570 W CN 2014090570W WO 2015067210 A1 WO2015067210 A1 WO 2015067210A1
Authority
WO
WIPO (PCT)
Prior art keywords
reducing agent
gas pipeline
mercaptotriazole
drag reducing
phosphate
Prior art date
Application number
PCT/CN2014/090570
Other languages
English (en)
French (fr)
Inventor
李国平
张志恒
艾慕阳
刘广文
常维纯
郭海峰
徐海红
刘诚
李绍玉
Original Assignee
中国石油天然气股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油天然气股份有限公司 filed Critical 中国石油天然气股份有限公司
Priority to US15/035,214 priority Critical patent/US20160297776A1/en
Priority to RU2016122454A priority patent/RU2637014C1/ru
Priority to GB1609956.6A priority patent/GB2538876B/en
Publication of WO2015067210A1 publication Critical patent/WO2015067210A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/041,2,3-Triazoles; Hydrogenated 1,2,3-triazoles
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D249/00Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms
    • C07D249/02Heterocyclic compounds containing five-membered rings having three nitrogen atoms as the only ring hetero atoms not condensed with other rings
    • C07D249/081,2,4-Triazoles; Hydrogenated 1,2,4-triazoles
    • C07D249/101,2,4-Triazoles; Hydrogenated 1,2,4-triazoles with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D249/12Oxygen or sulfur atoms
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D7/00Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
    • C09D7/80Processes for incorporating ingredients
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • C08K2003/329Phosphorus containing acids
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/36Sulfur-, selenium-, or tellurium-containing compounds
    • C08K5/37Thiols
    • C08K5/378Thiols containing heterocyclic rings
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2230/00Function and purpose of a components of a fuel or the composition as a whole
    • C10L2230/14Function and purpose of a components of a fuel or the composition as a whole for improving storage or transport of the fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L2270/00Specifically adapted fuels
    • C10L2270/10Specifically adapted fuels for transport, e.g. in pipelines as a gas hydrate slurry
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/003Additives for gaseous fuels

Definitions

  • the invention relates to a gas pipeline drag reducing agent and a preparation method thereof, in particular to a sulfhydryl triazole gas pipeline drag reducing agent used for reducing drag of a natural gas long-distance pipeline and a preparation method thereof, belonging to the field of organic macromolecular compounds and preparation technology .
  • the roughness When passing through the pipeline, the roughness causes friction and generates a vortex of gas, causing energy loss, resulting in pressure loss of the pipeline.
  • the wall roughness For natural gas pipeline transportation in turbulent state, the wall roughness has the greatest influence on the friction coefficient. To increase the transmission, the wall roughness should be reduced.
  • the drag reduction methods can be roughly summarized as follows: natural gas pipeline inner coating drag reduction technology and drag reducer drag reduction technology.
  • a liquid drag reducer such as a drag reducer used in the TranAlaska crude oil pipeline, is a typical long-chain polymer that melts into the liquid phase to reduce turbulence in the liquid. Its molecular weight is millions of orders, liquid The drag reducer extends the laminar bottom layer from the inner surface of the pipe to the central turbulent zone, and its effective zone is at the interface between laminar flow and turbulent flow. The molecular weight of the natural gas drag reducer is unlikely to be large, because its atomization ability and its "filling" capacity on the pipe wall are considered, and the action zone of the natural gas drag reducer is not laminar.
  • the drag reducer molecules and the metal surface are firmly combined to form a smooth elastic surface to alleviate the turbulence at the gas-solid interface and reduce the flow between the fluid and the pipe wall.
  • the friction that is, directly reduces the surface roughness of the pipe, thereby achieving drag reduction, which does not change the properties of the fluid.
  • a method for applying a drag reducing agent in a gas pipeline is mentioned in the patents US Pat. No. 4, 495, 563, US Pat. No. 5,020, 561.
  • the drag reducing agent is a substance similar to a corrosion inhibitor, a lubricant, for example, having a carbon number between 18 and 54.
  • Some of the inventions are also proposed Natural crude oil also meets the conditions of drag reducers. These natural crude oils are composed of asphaltenes, resins and long-chain alkanes (C1-C40). They also contain small amounts of N, S, O, Fe and V. Most of these heteroatoms are concentrated in large The molecular weight fraction, such as the asphaltene fraction, imparts polarity to the asphaltenes.
  • the object of the present invention is to provide a mercaptotriazole gas pipeline drag reducing agent which is directly sourced, has simple operation, mild reaction conditions, and can be atomized by in-line atomization, and a preparation method thereof.
  • the natural gas pipeline drag reducing agent provided by the invention is a thiol triazole gas pipeline drag reducing agent, and the sulfhydryl triazole gas pipeline drag reducing agent is prepared by the following steps:
  • 1,3-dithiosemicarbazide is formed by the action of catalyst I at a mass ratio of 3:1 to 4:1, and the mass ratio of 1,3-dithiosemicarbazide to aromatic aldehyde is 1:1-1: 1.5 condensation reaction to produce bis-dithiosemicarbazide, bis-dithiosemicarbazide and aromatic ester under the action of catalyst II to form mercaptotriazole compounds in a mass ratio of 1:1-1:3, fluorenyltriazoles
  • the compound is dissolved in acetone, and phosphoric acid or phosphate is added and thoroughly mixed to obtain the thiol triazole gas pipeline drag reducing agent.
  • the catalyst I used is 2-chloroethanol, 2-mercaptoethanol, ethylene chlorohydrin or 2-(2-chloroethoxy). Ethanol.
  • the aromatic aldehyde used is benzaldehyde or o-hydroxybenzaldehyde.
  • the aromatic ester used is ethyl benzoate, n-propyl benzoate, isopropyl benzoate, n-butyl benzoate, benzoic acid Butyl ester, sec-butyl benzoate, tert-butyl benzoate, n-pentyl benzoate, isoamyl benzoate or hexyl benzoate.
  • the phosphoric acid or phosphate used is one of phosphoric acid, zinc phosphate, sodium phosphate, potassium phosphate, nickel phosphate, ferrous phosphate and iron phosphate. Or a combination of several.
  • the catalyst II used is potassium hydroxide or sodium hydroxide.
  • the invention also provides a preparation method of the above-mentioned mercaptotriazole gas pipeline drag reducing agent, which comprises the following steps:
  • Step 1 hydrazine hydrate and carbon disulfide are formed under the action of catalyst I to form 1,3-dithiosemicarbazide;
  • Step two condensation reaction of 1,3-dithiosemicarbazide with aromatic aldehyde to form bisdithiosemicarbazide;
  • Step 3 The bis-dithiosemicarbazide and the aromatic ester are formed under the action of the catalyst II to form a mercaptotriazole compound;
  • Step 4 Dissolving the mercaptotriazole compound in acetone, adding phosphoric acid or phosphate, and thoroughly mixing to obtain the mercaptotriazole gas pipeline drag reducing agent.
  • hydrazine hydrate or carbon disulfide forms 1,3-dithiosemicarbazide under the action of the catalyst I, specifically including the following step:
  • the carbon disulfide is added dropwise to the mixture of hydrazine hydrate and ethanol under stirring, and refluxed at 85-100 ° C for 4-8 h, then cooled in an ice water bath 1- 4h, suction filtration, the filtered product was added to the ethanol solution in which the catalyst I was dissolved, and reacted at room temperature for 8-24 hours, refluxed at 95-105 ° C for 4-12 hours, adjusted to pH 2-5 with dilute hydrochloric acid, and dried by suction filtration. Recrystallization from absolute ethanol gave the 1,3-dithiosemicarbazide.
  • the 1,3-dithiosemicarbazide is condensed with an aromatic aldehyde to form a bis-dithiosemicarbazide, specifically Includes the following steps:
  • the aldehyde was heated to keep boiling for 4-8 h, cooled to room temperature, and the product obtained by suction filtration was washed with absolute ethanol for 3-5 times, and dried under vacuum to obtain the bisdithiosemicarbazide.
  • the bis-dithiosemicarbazide and the aromatic ester form a mercaptotriazole compound under the action of the catalyst II, specifically Includes the following steps:
  • the fourth step is to dissolve the obtained mercaptotriazole compound in acetone and add phosphoric acid or phosphate, wherein phosphoric acid or The mass ratio of the phosphate to the mercaptotriazole compound is from 3:1 to 3:3, and the mixture is thoroughly stirred and mixed to obtain the target product.
  • the catalyst I used is 2-chloroethanol, 2-mercaptoethanol, ethylene chlorohydrin or 2-(2-chloroethyl). Oxy)ethanol.
  • the aromatic aldehyde used is benzaldehyde or o-hydroxybenzaldehyde.
  • the aromatic ester used is ethyl benzoate, n-propyl benzoate, isopropyl benzoate, n-butyl benzoate, Isobutyl benzoate, sec-butyl benzoate, tert-butyl benzoate, n-pentyl benzoate, isoamyl benzoate or hexyl benzoate.
  • the phosphoric acid or phosphate used is phosphoric acid, zinc phosphate, sodium phosphate, potassium phosphate, nickel phosphate, ferrous phosphate and iron phosphate.
  • the phosphoric acid or phosphate used is phosphoric acid, zinc phosphate, sodium phosphate, potassium phosphate, nickel phosphate, ferrous phosphate and iron phosphate.
  • the phosphoric acid or phosphate used is phosphoric acid, zinc phosphate, sodium phosphate, potassium phosphate, nickel phosphate, ferrous phosphate and iron phosphate.
  • the catalyst II used is potassium hydroxide or sodium hydroxide.
  • the mercaptotriazole gas pipeline drag reducing agent of the invention utilizes a special macromolecular compound or polymer having the similar structural characteristics of a surfactant, and the polar end thereof is firmly bonded to the inner surface of the pipe metal and forms a smooth layer.
  • the membrane rather than the polar end, exists between the fluid and the inner surface of the pipe to form a gas-solid interface.
  • the membrane has a special molecular structure that absorbs the energy at the interface between the fluid and the inner surface, thereby reducing the consumption on the inner surface. The energy, the absorbed enthalpy can then escape into the fluid, thereby reducing the turbulence of the turbulence to achieve the purpose of drag reduction.
  • the drag reducing agent of the invention After the drag reducing agent of the invention is injected into the natural gas pipeline, it adheres to the inner wall of the pipeline and forms a film, so that the surface roughness of the inner wall of the pipeline is obviously reduced, the "valley” on the surface is “filled” by it, and the “filling" is relatively uniform;
  • the surface film has good flexibility, indicating that the synthesized pyridinium drag reducing compound has the properties required for the natural gas drag reducing agent, and its film forming property and flexibility fully demonstrate its potential application as a natural gas pipeline drag reducing agent. value.
  • the drag reducing agent of the invention has obvious effect on reducing the resistance of the gas pipeline, the source of the raw material is direct, and the preparation method has the advantages of simple operation, mild reaction condition, low requirement on equipment, and easy realization of large-scale industrial production.
  • Figure 1 is an SEM picture of the original surface of the steel sheet
  • Fig. 2 is a SEM photograph of the surface of a steel sheet coated with the perfluorophosphate-based gas pipe drag reducing agent of Example 3.
  • the present embodiment provides a thiol triazole gas pipeline drag reducing agent and a preparation method thereof, and the preparation method comprises the following steps:
  • the dithiodithiourea is dissolved in a toluene or xylene solution containing 300 g of an aromatic ester, and stirred at a constant temperature and low temperature for 10 hours at 100 ° C, and the mixture is heated to 140 ° C for vacuum distillation, and toluene and xylene are distilled off to obtain a mercaptotriazole compound;
  • the mercaptotriazole compound was dissolved in 800 mL of acetone, 300 g of phosphoric acid was added, and the mixture was thoroughly stirred and mixed to obtain a target product.
  • the present embodiment provides a thiol triazole gas pipeline drag reducing agent and a preparation method thereof, and the preparation method comprises the following steps:
  • the dithiodithiourea is dissolved in a toluene or xylene solution containing 350 g of an aromatic ester, and stirred at a constant temperature and low temperature for 10 hours at 80 ° C, and the mixture is heated to 140 ° C for vacuum distillation, and toluene and xylene are distilled off to obtain a mercaptotriazole compound;
  • the mercaptotriazole compound was dissolved in 800 mL of acetone, and 350 g of phosphoric acid was added thereto, and the mixture was thoroughly stirred and mixed to obtain a target product.
  • the present embodiment provides a thiol triazole gas pipeline drag reducing agent and a preparation method thereof, and the preparation method comprises the following steps:
  • the dithiodithiourea is dissolved in a toluene or xylene solution containing 320 g of an aromatic ester, and stirred at a constant temperature and low temperature for 10 hours at 100 ° C, and the mixture is heated to 140 ° C for vacuum distillation, and toluene and xylene are distilled off to obtain a mercaptotriazole compound;
  • the mercaptotriazole compound was dissolved in 700 mL of acetone, 330 g of phosphoric acid was added, and the mixture was thoroughly stirred and mixed to obtain a target product.
  • the sulfhydryl triazole gas pipeline drag reducing agent obtained in this embodiment is subjected to a film forming process and an electron microscope analysis, that is, a certain amount of the product is dissolved in an appropriate amount of solvent (diesel, kerosene, butanol, hexanol, octanol, etc.)
  • solvent diesel, kerosene, butanol, hexanol, octanol, etc.
  • the steel sheet (the SEM picture of the original surface of the steel sheet is shown in Figure 1) is immersed in the treatment (deoiling, descaling, and polishing with metallographic paper), and after a certain period of time, it is taken out and blown dry, in JEDL JSM-6700F. Microscopic analysis was performed on a scanning electron microscope.
  • the indoor gas evaluation system for natural gas drag reducing agent is tested (the indoor test method for reducing drag effect of natural gas drag reducing agent, standard number: Q/SY GD0221-2012), and the results show that The drag reduction rate is greater than 18%, and the effect can be stabilized for more than 60 days, indicating that the thiol triazole gas pipeline drag reducing composition has the application value of gas pipeline drag reducing.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Materials Engineering (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Preventing Corrosion Or Incrustation Of Metals (AREA)
  • Lubricants (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

本发明提供了一种巯基三唑类输气管道减阻剂及其制备方法。该巯基三唑类输气管道减阻剂是通过以下步骤制备的:由水合肼、二硫化碳按质量比3:1-4:1在催化剂Ⅰ作用下生成1,3-二氨基硫脲,1,3-二氨基硫脲与芳香醛按照质量比1:1-1:1.5发生缩合反应生成双缩二氨基硫脲,双缩二氨基硫脲再与芳香酯在催化剂Ⅱ的作用下按照质量比1:1-1:3生成巯基三唑类化合物,将巯基三唑类化合物溶于丙酮,加入磷酸或磷酸盐,充分混合即得目标产品。本发明原料来源直接,操作简单,反应条件温和,可以在线雾化注入。

Description

巯基三唑类输气管道减阻剂及其制备方法 技术领域
本发明涉及一种气体管道减阻剂及其制备方法,特别涉及用于天然气长输管道减阻的巯基三唑类输气管道减阻剂及其制备方法,属于有机大分子化合物及制备技术领域。
背景技术
天然气能源的利用是目前国内外发展的重要方向之一。由于全球对经济可持续发展的要求和对“洁净能源”的呼唤,天然气的需求量与日俱增。
目前,天然气的主要运输方式为管道运输。现代意义上的输气管道已有近120年的发展历史。当气体流
经管道时,粗糙度会引起摩擦进而产生气体涡流,造成能量损失,从而造成管道的压力损失。对处于紊流状态的天然气管道输送而言,管壁粗糙度对摩擦系数影响最大,要增加输量就要减少管壁粗糙度。近年来,天然气管道输送减阻研究取得了较大的进展,就目前研究结果而言,减阻方法大致可归纳为:天然气管道内涂层减阻技术和减阻剂减阻技术。
众所周知,同原油减阻剂一样,天然气减阻剂的应用可以显著增加输量、降低压缩机的动力消耗、减少压缩机的安装功率、减少压缩站数,所带来的经济效益是巨大的,有着很好的实际生产需要和市场前景。
但是天然气减阻剂不同于商业液体(如石油)减阻剂。一种液体减阻剂,例如用在TranAlaska原油管道中的减阻剂是典型的长链聚合物,这种聚合物融进液相来减少液体中的涡流,它的分子量是百万数量级,液体减阻剂从管道内表面把层流底层拓展到中心湍流区,它的有效区在层流与湍流的界面处。而天然气减阻剂的分子量不可能很大,因为要考虑到它的雾化能力和以及它在管壁上“凹谷”的“填充”能力,并且天然气减阻剂的作用区不是在层流与湍流的界面处,它是直接作用在管道内表面,减阻剂分子与金属表面牢固地结合在一起形成光滑的弹性表面来缓和气-固界面处的湍动,减少流体与管壁之间的摩擦,即直接减少管道内表面粗糙度,从而达到减阻作用,它不改变流体的性质。
在专利US4958653,US5020561中都提到了在气体管道中应用减阻剂的方法,该减阻剂是类似于缓蚀剂、润滑剂之类的物质,例如:碳原子数处于18-54之间的脂肪酸、烷氧基化的脂肪酸胺或酰胺,其长链烃的分子量约从300到900。在该发明中还提出某些 天然原油也符合减阻剂的条件,这些天然原油由沥青质、树脂和长链烷烃(C1-C40)组成,也含有少量的N、S、O、Fe和V,这些杂原子大多集中在大分子量部分如沥青质部分,使沥青质带有极性。
上述减阻剂虽然提出了在气体管道在应用减阻剂减阻的方法及一些减阻化合物,但是这些物质的减阻效果有限,并非理想的减阻剂。
发明内容
本发明的目的是提供一种原料来源直接、操作简单、反应条件温和、可以在线雾化注入的巯基三唑类输气管道减阻剂及其制备方法。
本发明提供的天然气管道减阻剂是一种巯基三唑类输气管道减阻剂,该巯基三唑类输气管道减阻剂是通过以下步骤制备的:
由水合肼、二硫化碳按质量比3:1-4:1在催化剂Ⅰ作用下生成1,3-二氨基硫脲,1,3-二氨基硫脲与芳香醛按质量比1:1-1:1.5发生缩合反应生成双缩二氨基硫脲,双缩二氨基硫脲再与芳香酯在催化剂Ⅱ的作用下按质量比1:1-1:3生成巯基三唑类化合物,将巯基三唑类化合物溶于丙酮,加入磷酸或磷酸盐,充分混合即得到所述巯基三唑类输气管道减阻剂。
本发明提供的巯基三唑类输气管道减阻剂中,优选地,采用的催化剂Ⅰ为2-氯乙醇、2-巯基乙醇、亚乙基氯乙醇或2-(2-氯乙氧基)乙醇。
本发明提供的巯基三唑类输气管道减阻剂中,优选地,采用的芳香醛为苯甲醛或邻羟基苯甲醛。
本发明提供的巯基三唑类输气管道减阻剂中,优选地,采用的芳香酯为苯甲酸乙酯、苯甲酸正丙酯、苯甲酸异丙酯、苯甲酸正丁酯、苯甲酸异丁酯、苯甲酸仲丁酯、苯甲酸叔丁酯、苯甲酸正戊酯、苯甲酸异戊酯或苯甲酸己酯。
本发明提供的巯基三唑类输气管道减阻剂中,优选地,采用的磷酸或磷酸盐为磷酸、磷酸锌、磷酸钠、磷酸钾、磷酸镍、磷酸亚铁和磷酸铁中的一种或几种的组合。
本发明提供的巯基三唑类输气管道减阻剂中,优选地,采用的催化剂Ⅱ为氢氧化钾或氢氧化钠。
本发明还提供了上述巯基三唑类输气管道减阻剂的制备方法,其包括以下步骤:
步骤一:使水合肼、二硫化碳在催化剂Ⅰ的作用下生成1,3-二氨基硫脲;
步骤二:使1,3-二氨基硫脲与芳香醛发生缩合反应生成双缩二氨基硫脲;
步骤三:使双缩二氨基硫脲与芳香酯在催化剂Ⅱ的作用下生成巯基三唑类化合物;
步骤四:将巯基三唑类化合物溶于丙酮中,加入磷酸或磷酸盐,充分混合得到所述巯基三唑类输气管道减阻剂。
本发明提供的巯基三唑类输气管道减阻剂的制备方法中,优选地,所述步骤一中水合肼、二硫化碳在催化剂Ⅰ的作用下生成1,3-二氨基硫脲,具体包括以下步骤:
按照二硫化碳与水合肼质量比为3:1-4:1的比例在搅拌下向水合肼与乙醇的混合液中滴入二硫化碳,在85-100℃下回流4-8h,然后冰水浴冷却1-4h,抽滤,将抽滤产物加入溶有催化剂Ⅰ的乙醇溶液中,室温反应8-24h,95-105℃回流4-12h后,稀盐酸调节pH为2-5,抽滤烘干,用无水乙醇重结晶,得到所述1,3-二氨基硫脲。
本发明提供的巯基三唑类输气管道减阻剂的制备方法中,优选地,所述步骤二中1,3-二氨基硫脲与芳香醛发生缩合反应生成双缩二氨基硫脲,具体包括以下步骤:
将所述1,3-二氨基硫脲溶于冰醋酸溶剂中,加热升温使其沸腾后,按照1,3-二氨基硫脲:芳香醛=1:1-1:1.5的质量比加入芳香醛,加热保持沸腾4-8h,冷却至室温,抽滤得到的产物用无水乙醇洗3-5次,真空干燥得到所述双缩二氨基硫脲。
本发明提供的巯基三唑类输气管道减阻剂的制备方法中,优选地,所述步骤三中双缩二氨基硫脲与芳香酯在催化剂Ⅱ的作用下生成巯基三唑类化合物,具体包括以下步骤:
将所述双缩二氨基硫脲溶于芳香酯的甲苯或二甲苯溶液,双缩二氨基硫脲与芳香酯的质量比为1:1-1:3,在80℃-100℃恒温低速搅拌12h,升温至140℃真空蒸馏,蒸掉甲苯和二甲苯,得到所述巯基三唑类化合物。
本发明提供的巯基三唑类输气管道减阻剂的制备方法中,优选地,所述步骤四是将得到的巯基三唑类化合物溶于丙酮中,加入磷酸或磷酸盐,其中,磷酸或磷酸盐与巯基三唑类化合物的质量比为3:1-3:3,充分搅拌混合均匀,即得到目标产品。
本发明提供的巯基三唑类输气管道减阻剂的制备方法中,优选地,采用的催化剂Ⅰ为2-氯乙醇、2-巯基乙醇、亚乙基氯乙醇或2-(2-氯乙氧基)乙醇。
本发明提供的巯基三唑类输气管道减阻剂的制备方法中,优选地,采用的芳香醛为苯甲醛或邻羟基苯甲醛。
本发明提供的巯基三唑类输气管道减阻剂的制备方法中,优选地,采用的芳香酯为苯甲酸乙酯、苯甲酸正丙酯、苯甲酸异丙酯、苯甲酸正丁酯、苯甲酸异丁酯、苯甲酸仲丁酯、苯甲酸叔丁酯、苯甲酸正戊酯、苯甲酸异戊酯或苯甲酸己酯。
本发明提供的巯基三唑类输气管道减阻剂的制备方法中,优选地,采用的磷酸或磷酸盐为磷酸、磷酸锌、磷酸钠、磷酸钾、磷酸镍、磷酸亚铁和磷酸铁中的一种或几种的组合。
本发明提供的巯基三唑类输气管道减阻剂的制备方法中,优选地,采用的催化剂Ⅱ为氢氧化钾或氢氧化钠。
本发明的巯基三唑类输气管道减阻剂利用特殊的具有表面活性剂类似结构特点的大分子化合物或聚合物,其极性端牢固地粘合在管道金属内表面,并形成一层光滑的膜,而非极性端存在于流体与管道内表面之间形成气-固界面,利用膜所具有的特殊的分子结构,吸收流体与内表面交界处的湍能,从而减少消耗于内表面的能量,吸收的湍能随后又逸散到流体中,从而减少湍流的紊乱程度,以达到减阻目的。
本发明提供的巯基三唑类输气管道减阻剂及其制备方法具有如下优点:
本发明的减阻剂注入天然气管道后,附着在管道内壁并成膜,使管道内壁表面粗糙度明显减小,表面上的“凹谷”被其“填充”,并且“填充”比较均匀;
另外,成膜后原金属表面上的腐蚀产物消失,表明该产品具有减阻应用价值。该表面膜有较好的柔韧性,说明合成的该吡啶盐类减阻化合物具有天然气减阻剂所需要的性质,其成膜性和柔韧性充分显示了它作为天然气管道减阻剂的潜在应用价值。
本发明的减阻剂对气体管道减阻效果明显,原料来源直接,而且其制备方法的操作简单、反应条件温和,对设备要求低,易于实现大规模的工业化生产。
附图说明
图1为钢片原始表面的SEM图片;
图2为涂有实施例3的全氟磷酸盐类气体管道减阻剂的钢片表面的SEM图片。
具体实施方式
为了对本发明的技术特征、目的和有益效果有更加清楚的理解,现对本发明的技术方案进行以下详细说明,但不能理解为对本发明的可实施范围的限定。
实施例1
本实施例提供了一种巯基三唑类输气管道减阻剂及其制备方法,该制备方法具体包括以下步骤:
取100g的二硫化碳,搅拌下滴入25g水合肼与50g乙醇的混合液中,在100℃回流 8h,然后冰水浴冷却4h,抽滤,将抽滤产物加入溶有2-氯乙醇的乙醇溶液中,室温反应24h,100℃温度范围内回流12h后,稀盐酸调节pH为5,抽滤烘干后,无水乙醇重结晶,得到197g的1,3-二氨基硫脲;
将1,3-二氨基硫脲溶于冰醋酸溶剂中,加热升温使其沸腾后,加入200g芳香醛,加热保持沸腾8h后,冷却至室温,抽滤产物用无水乙醇洗涤5次,真空干燥得到311g双缩二氨基硫脲;
将双缩二氨基硫脲溶于含有300g芳香酯的甲苯或二甲苯溶液,100℃下恒温低速搅拌12h,升温至140℃真空蒸馏,蒸掉甲苯和二甲苯,得到巯基三唑类化合物;
将巯基三唑类化合物溶于800mL的丙酮中,加入300g的磷酸,充分搅拌混合均匀,即得到目标产品。
实施例2
本实施例提供了一种巯基三唑类输气管道减阻剂及其制备方法,该制备方法具体包括以下步骤:
取100g的二硫化碳,搅拌下滴入30g水合肼与60g乙醇的混合液中,在100℃回流7h,然后冰水浴冷却2h,抽滤,将抽滤产物加入溶有2-氯乙醇的乙醇溶液中,室温反应24h,100℃温度范围内回流11h后,稀盐酸调节pH为3,抽滤烘干后,无水乙醇重结晶,得到213g的1,3-二氨基硫脲;
将1,3-二氨基硫脲溶于冰醋酸溶剂中,加热升温使其沸腾后,加入220g的芳香醛,加热保持沸腾8h后,冷却至室温,抽滤产物用无水乙醇洗涤3次,真空干燥得到342g的双缩二氨基硫脲;
将双缩二氨基硫脲溶于含有350g的芳香酯的甲苯或二甲苯溶液,80℃下恒温低速搅拌10h,升温至140℃真空蒸馏,蒸掉甲苯和二甲苯,得到巯基三唑类化合物;
将巯基三唑类化合物溶于800mL的丙酮中,加入350g的磷酸,充分搅拌混合均匀,即得到目标产品。
实施例3
本实施例提供了一种巯基三唑类输气管道减阻剂及其制备方法,该制备方法具体包括以下步骤:
取100g的二硫化碳,搅拌下滴入28g的水合肼与55g的乙醇的混合液中,在100℃回流8h,然后冰水浴冷却3h,抽滤,将抽滤产物加入溶有2-氯乙醇的乙醇溶液中,室温反应20h,100℃温度范围内回流12h后,稀盐酸调节pH为4,抽滤烘干后,无水 乙醇重结晶,得到204g的1,3-二氨基硫脲;
将1,3-二氨基硫脲溶于冰醋酸溶剂中,加热升温使其沸腾后,加入200g的芳香醛,加热保持沸腾8h后,冷却至室温,抽滤产物用无水乙醇洗涤5次,真空干燥得到319g的双缩二氨基硫脲;
将双缩二氨基硫脲溶于含有320g的芳香酯的甲苯或二甲苯溶液,100℃下恒温低速搅拌12h,升温至140℃真空蒸馏,蒸掉甲苯和二甲苯,得到巯基三唑类化合物;
将巯基三唑类化合物溶于700mL的丙酮中,加入330g的磷酸,充分搅拌混合均匀,即得到目标产品。
本实施例得到的巯基三唑类输气管道减阻剂经成膜工艺及电镜分析,即将一定量的该产品溶于适量的溶剂(柴油、煤油、丁醇、己醇、辛醇等溶剂)中,把处理(除油、除锈、用金相纸打磨)过的钢片(钢片原始表面的SEM图片如图1所示)浸入其中,一定时间后取出吹干,在JEDL JSM-6700F扫描电子显微镜上进行显微分析。
结果显示,涂有本实施例的巯基三唑类输气管道减阻剂的钢片表面,如图2所示,其粗糙度有了明显的改善,表面上的“凹谷”被其“填充”,并且“填充”比较均匀。且该巯基三唑类气体管道减阻组合物成膜后,进行天然气减阻剂室内评价系统测试(天然气减阻剂减阻效果室内测试方法,标准号:Q/SY GD0221-2012),结果表明减阻率大于18%,效果可以稳定在60天以上,表明该巯基三唑类气体管道减阻组合物具有气体管道减阻应用价值。

Claims (16)

  1. 一种巯基三唑类输气管道减阻剂,该巯基三唑类输气管道减阻剂是通过以下步骤制备的:
    由水合肼、二硫化碳按质量比3:1-4:1在催化剂Ⅰ作用下生成1,3-二氨基硫脲,1,3-二氨基硫脲与芳香醛按照质量比1:1-1:1.5发生缩合反应生成双缩二氨基硫脲,双缩二氨基硫脲再与芳香酯在催化剂Ⅱ的作用下按照质量比1:1-1:3生成巯基三唑类化合物,将巯基三唑类化合物溶于丙酮,加入磷酸或磷酸盐,充分混合得到所述巯基三唑类输气管道减阻剂。
  2. 根据权利要求1所述的巯基三唑类输气管道减阻剂,其中,所述催化剂Ⅰ为2-氯乙醇、2-巯基乙醇、亚乙基氯乙醇或2-(2-氯乙氧基)乙醇。
  3. 根据权利要求1所述的巯基三唑类输气管道减阻剂,其中,所述芳香醛为苯甲醛或邻羟基苯甲醛。
  4. 根据权利要求1所述的巯基三唑类输气管道减阻剂,其中,所述芳香酯为苯甲酸乙酯、苯甲酸正丙酯、苯甲酸异丙酯、苯甲酸正丁酯、苯甲酸异丁酯、苯甲酸仲丁酯、苯甲酸叔丁酯、苯甲酸正戊酯、苯甲酸异戊酯或苯甲酸己酯。
  5. 根据权利要求1所述的巯基三唑类输气管道减阻剂,其中,所述磷酸或磷酸盐为磷酸、磷酸锌、磷酸钠、磷酸钾、磷酸镍、磷酸亚铁和磷酸铁中的一种或几种的组合。
  6. 根据权利要求1所述的巯基三唑类输气管道减阻剂,其中,所述催化剂Ⅱ为氢氧化钾或氢氧化钠。
  7. 一种权利要求1所述巯基三唑类输气管道减阻剂的制备方法,其包括以下步骤:
    步骤一:使水合肼、二硫化碳在催化剂Ⅰ的作用下生成1,3-二氨基硫脲;
    步骤二:使1,3-二氨基硫脲与芳香醛发生缩合反应生成双缩二氨基硫脲;
    步骤三:使双缩二氨基硫脲与芳香酯在催化剂Ⅱ的作用下生成巯基三唑类化合物;
    步骤四:将巯基三唑类化合物溶于丙酮中,加入磷酸或磷酸盐,充分混合得到所述巯基三唑类输气管道减阻剂。
  8. 根据权利要求7所述的巯基三唑类输气管道减阻剂的制备方法,其中,所述步骤一中水合肼、二硫化碳在催化剂Ⅰ的作用下生成1,3-二氨基硫脲,具体包括以下步骤:
    按照二硫化碳与水合肼质量比为3:1-4:1的比例向水合肼与乙醇的混合液中滴入二硫化碳,在85-100℃回流4-8h,然后冰水浴冷却1-4h,抽滤,将抽滤产物加入溶有催化剂Ⅰ的乙醇溶液中,室温反应8-24h,95-105℃回流4-12h后,稀盐酸调节pH为2-5, 抽滤烘干,用无水乙醇重结晶,得到所述1,3-二氨基硫脲。
  9. 根据权利要求7所述的巯基三唑类输气管道减阻剂的制备方法,其中,所述步骤二中1,3-二氨基硫脲与芳香醛发生缩合反应生成双缩二氨基硫脲,具体包括以下步骤:
    将所述1,3-二氨基硫脲溶于冰醋酸中,加热升温使其沸腾后,按照1,3-二氨基硫脲:芳香醛=1:1-1:1.5的质量比加入芳香醛,加热保持沸腾4-8h,冷却至室温,抽滤得到的产物用无水乙醇洗3-5次,真空干燥得到所述双缩二氨基硫脲。
  10. 根据权利要求7所述的巯基三唑类输气管道减阻剂的制备方法,其中,所述步骤三中双缩二氨基硫脲与芳香酯在催化剂Ⅱ的作用下生成巯基三唑类化合物,具体包括以下步骤:
    将所述双缩二氨基硫脲溶于芳香酯的甲苯或二甲苯溶液,双缩二氨基硫脲与芳香酯的质量比为1:1-1:3,在80℃-100℃恒温低速搅拌12h,升温至140℃真空蒸馏,蒸掉甲苯和二甲苯,得到所述巯基三唑类化合物。
  11. 根据权利要求7所述的巯基三唑类输气管道减阻剂的制备方法,其中,所述步骤四是将得到的巯基三唑类化合物溶于丙酮中,加入磷酸或磷酸盐,其中,磷酸或磷酸盐与巯基三唑类化合物的质量比为3:1-3:3,充分搅拌混合均匀,即得到目标产品。
  12. 根据权利要求7所述的巯基三唑类输气管道减阻剂的制备方法,其中,所述催化剂Ⅰ为2-氯乙醇、2-巯基乙醇、亚乙基氯乙醇或2-(2-氯乙氧基)乙醇。
  13. 根据权利要求7所述的巯基三唑类输气管道减阻剂的制备方法,其中,所述芳香醛为苯甲醛或邻羟基苯甲醛。
  14. 根据权利要求7所述的巯基三唑类输气管道减阻剂的制备方法,其中,所述芳香酯为苯甲酸乙酯、苯甲酸正丙酯、苯甲酸异丙酯、苯甲酸正丁酯、苯甲酸异丁酯、苯甲酸仲丁酯、苯甲酸叔丁酯、苯甲酸正戊酯、苯甲酸异戊酯或苯甲酸己酯。
  15. 根据权利要求7所述的巯基三唑类输气管道减阻剂的制备方法,其中,所述磷酸或磷酸盐为磷酸、磷酸锌、磷酸钠、磷酸钾、磷酸镍、磷酸亚铁和磷酸铁中的一种或几种的组合。
  16. 根据权利要求7所述的巯基三唑类输气管道减阻剂的制备方法,其中,所述催化剂Ⅱ为氢氧化钾或氢氧化钠。
PCT/CN2014/090570 2013-11-08 2014-11-07 巯基三唑类输气管道减阻剂及其制备方法 WO2015067210A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/035,214 US20160297776A1 (en) 2013-11-08 2014-11-07 Mercaptotriazole drag reducer for transmission pipeline and preparation method therefor
RU2016122454A RU2637014C1 (ru) 2013-11-08 2014-11-07 Антифрикционный агент на основе меркаптотриазола для газопроводов и способ его приготовления
GB1609956.6A GB2538876B (en) 2013-11-08 2014-11-07 Mercaptotriazole-based drag-reducing agent for gas transmission pipelines and preparation method therefor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310551929.9A CN104629359A (zh) 2013-11-08 2013-11-08 巯基三唑类输气管道减阻剂及其制备方法
CN201310551929.9 2013-11-08

Publications (1)

Publication Number Publication Date
WO2015067210A1 true WO2015067210A1 (zh) 2015-05-14

Family

ID=53040923

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/090570 WO2015067210A1 (zh) 2013-11-08 2014-11-07 巯基三唑类输气管道减阻剂及其制备方法

Country Status (5)

Country Link
US (1) US20160297776A1 (zh)
CN (1) CN104629359A (zh)
GB (1) GB2538876B (zh)
RU (1) RU2637014C1 (zh)
WO (1) WO2015067210A1 (zh)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074344A (zh) * 2006-05-18 2007-11-21 中国石油天然气集团公司 天然气输送管道用减阻剂及制造方法
CN101329011A (zh) * 2007-06-20 2008-12-24 中国石油天然气股份有限公司 一种输气管道减阻剂及其制备方法
CN101328442A (zh) * 2007-06-20 2008-12-24 中国石油天然气股份有限公司 一种气体输送管道减阻剂及其制备方法
CN101328441A (zh) * 2007-06-20 2008-12-24 中国石油天然气股份有限公司 一种气体管道减阻剂及其制备方法
CN101575495A (zh) * 2008-05-09 2009-11-11 中国石油天然气股份有限公司 吡啶盐类输气管道减阻剂及其制备方法
CN101575497A (zh) * 2008-05-09 2009-11-11 中国石油天然气股份有限公司 硫酸酯类输气管道减阻剂及其制备方法
CN101575496A (zh) * 2008-05-09 2009-11-11 中国石油天然气股份有限公司 咪唑盐类输气管道减阻剂及其制备方法
CN101638569A (zh) * 2008-07-31 2010-02-03 中国石油天然气股份有限公司 一种油酸及其酯类衍生物减阻剂及其制备方法
CN102443022A (zh) * 2011-08-25 2012-05-09 中国海洋石油总公司 一种天然气管道减阻剂及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2352620C2 (ru) * 2006-08-04 2009-04-20 Виктор Евгеньевич Букин Уплотнительная паста для герметизации и устранения утечек газа и защиты от коррозии узлов уплотнения запорной арматуры
RU133245U1 (ru) * 2013-03-15 2013-10-10 Федеральное государственное бюджетное образовательное учреждение высшего профессионального образования "Тихоокеанский государственный университет" Многоканальный трубопровод для транспортировки жидкости и/или газа под высоким давлением

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101074344A (zh) * 2006-05-18 2007-11-21 中国石油天然气集团公司 天然气输送管道用减阻剂及制造方法
CN101329011A (zh) * 2007-06-20 2008-12-24 中国石油天然气股份有限公司 一种输气管道减阻剂及其制备方法
CN101328442A (zh) * 2007-06-20 2008-12-24 中国石油天然气股份有限公司 一种气体输送管道减阻剂及其制备方法
CN101328441A (zh) * 2007-06-20 2008-12-24 中国石油天然气股份有限公司 一种气体管道减阻剂及其制备方法
CN101575495A (zh) * 2008-05-09 2009-11-11 中国石油天然气股份有限公司 吡啶盐类输气管道减阻剂及其制备方法
CN101575497A (zh) * 2008-05-09 2009-11-11 中国石油天然气股份有限公司 硫酸酯类输气管道减阻剂及其制备方法
CN101575496A (zh) * 2008-05-09 2009-11-11 中国石油天然气股份有限公司 咪唑盐类输气管道减阻剂及其制备方法
CN101638569A (zh) * 2008-07-31 2010-02-03 中国石油天然气股份有限公司 一种油酸及其酯类衍生物减阻剂及其制备方法
CN102443022A (zh) * 2011-08-25 2012-05-09 中国海洋石油总公司 一种天然气管道减阻剂及其制备方法

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
LI, FENG ET AL., NATURAL GAS INDUSTRY, vol. 11, no. 30, 30 November 2010 (2010-11-30) *
LI, FENG: "Study on the Synthesis Process and Drug Reducing Property of Compounding Natural Gas DRAs", SHANDONG UNIVERSITY MASTER'S THEIS, 31 December 2010 (2010-12-31), pages 19 - 30 AND 40-41 *

Also Published As

Publication number Publication date
US20160297776A1 (en) 2016-10-13
GB2538876B (en) 2020-11-04
GB201609956D0 (en) 2016-07-20
RU2637014C1 (ru) 2017-11-29
CN104629359A (zh) 2015-05-20
GB2538876A (en) 2016-11-30

Similar Documents

Publication Publication Date Title
CN101328441A (zh) 一种气体管道减阻剂及其制备方法
CN103059825B (zh) 一种油井用缓蚀剂及制备方法
CN103539786B (zh) 苯并三唑咪唑啉、其衍生物和合成工艺及应用
CN103483998A (zh) 钢丝防锈剂及其制备方法
CN101329011B (zh) 一种输气管道减阻剂及其制备方法
CN107312504A (zh) 一种液压支架防冻液及其制备方法
CN101575495B (zh) 吡啶盐类输气管道减阻剂及其制备方法
CN101328443B (zh) 一种气体管道减阻组合物及其制备方法
CN104674225A (zh) 一种水基金属表面防锈剂
CN105860694A (zh) 一种高耐热可剥离金属防锈剂
CN105695127A (zh) 一种高粘度石油产品输送管道清洗剂
WO2015067210A1 (zh) 巯基三唑类输气管道减阻剂及其制备方法
CN105907197A (zh) 一种抗氧化金属表面处理剂
CN106637176A (zh) 一种添加竹醋液的水基黄铜抗氧化剂及其制作方法
CN101575496B (zh) 咪唑盐类输气管道减阻剂及其制备方法
CN105154049B (zh) 一种缓蚀剂及其制备方法
CN104629050B (zh) 全氟磷酸盐类气体管道减阻剂及其制备方法
CN109385635A (zh) 一种复配离子液体缓蚀剂及其制备方法
CN108640301A (zh) 一种化工领域用阻垢缓蚀剂及其制备工艺
CN106380532A (zh) 一种可控长效缓释亚硝酸钠缓蚀剂微胶囊的制备方法
CN105860693A (zh) 一种添加二氧化硅金属用处理剂
CN105968984A (zh) 一种机壳金属表面处理剂
WO2019233162A1 (zh) 镀锌管专用水性抗氧化液及其制备方法以及镀锌管表面防护的方法和镀锌管
CN105885566A (zh) 一种石蜡金属表面处理剂
CN111100608B (zh) 一种对镀锌管有缓蚀作用的水-乙二醇型热传导介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14860321

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 201609956

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20141107

ENP Entry into the national phase

Ref document number: 2016122454

Country of ref document: RU

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 15035214

Country of ref document: US

122 Ep: pct application non-entry in european phase

Ref document number: 14860321

Country of ref document: EP

Kind code of ref document: A1