WO2015067099A1 - 基于重构-等效啁啾以及串联或与并联混合集成的可调谐半导体激光器及制备 - Google Patents

基于重构-等效啁啾以及串联或与并联混合集成的可调谐半导体激光器及制备 Download PDF

Info

Publication number
WO2015067099A1
WO2015067099A1 PCT/CN2014/087035 CN2014087035W WO2015067099A1 WO 2015067099 A1 WO2015067099 A1 WO 2015067099A1 CN 2014087035 W CN2014087035 W CN 2014087035W WO 2015067099 A1 WO2015067099 A1 WO 2015067099A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
series
lasers
distributed feedback
parallel
Prior art date
Application number
PCT/CN2014/087035
Other languages
English (en)
French (fr)
Inventor
李连艳
唐松
陈向飞
张云山
陆骏
Original Assignee
南京大学科技园发展有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201310548888.8A external-priority patent/CN104638511A/zh
Priority claimed from CN201310548890.5A external-priority patent/CN104638514A/zh
Application filed by 南京大学科技园发展有限公司 filed Critical 南京大学科技园发展有限公司
Priority to US14/903,740 priority Critical patent/US9742152B2/en
Publication of WO2015067099A1 publication Critical patent/WO2015067099A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/125Distributed Bragg reflector [DBR] lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/028Coatings ; Treatment of the laser facets, e.g. etching, passivation layers or reflecting layers
    • H01S5/0287Facet reflectivity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/06Arrangements for controlling the laser output parameters, e.g. by operating on the active medium
    • H01S5/0607Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature
    • H01S5/0612Arrangements for controlling the laser output parameters, e.g. by operating on the active medium by varying physical parameters other than the potential of the electrodes, e.g. by an electric or magnetic field, mechanical deformation, pressure, light, temperature controlled by temperature
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/1092Multi-wavelength lasing
    • H01S5/1096Multi-wavelength lasing in a single cavity
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1212Chirped grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/3403Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers having a strained layer structure in which the strain performs a special function, e.g. general strain effects, strain versus polarisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/30Structure or shape of the active region; Materials used for the active region
    • H01S5/34Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers
    • H01S5/343Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser
    • H01S5/3434Structure or shape of the active region; Materials used for the active region comprising quantum well or superlattice structures, e.g. single quantum well [SQW] lasers, multiple quantum well [MQW] lasers or graded index separate confinement heterostructure [GRINSCH] lasers in AIIIBV compounds, e.g. AlGaAs-laser, InP-based laser with a well layer comprising at least both As and P as V-compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4006Injection locking
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4025Array arrangements, e.g. constituted by discrete laser diodes or laser bar
    • H01S5/4087Array arrangements, e.g. constituted by discrete laser diodes or laser bar emitting more than one wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/02Structural details or components not essential to laser action
    • H01S5/026Monolithically integrated components, e.g. waveguides, monitoring photo-detectors, drivers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/10Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region
    • H01S5/12Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers
    • H01S5/1206Construction or shape of the optical resonator, e.g. extended or external cavity, coupled cavities, bent-guide, varying width, thickness or composition of the active region the resonator having a periodic structure, e.g. in distributed feedback [DFB] lasers having a non constant or multiplicity of periods
    • H01S5/1209Sampled grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S5/00Semiconductor lasers
    • H01S5/40Arrangement of two or more semiconductor lasers, not provided for in groups H01S5/02 - H01S5/30
    • H01S5/4012Beam combining, e.g. by the use of fibres, gratings, polarisers, prisms

Definitions

  • the invention belongs to the field of optoelectronic technology and relates to distributed feedback semiconductor lasers, in particular to the design and fabrication of complex distributed feedback tunable semiconductor lasers, and more particularly to low-cost tunable distributed feedback based on reconstruction-equivalent chirp technology.
  • a method and apparatus for a semiconductor laser is a method and apparatus for a semiconductor laser.
  • Dense Wavelength Division Multiplexing is a kind of It is highly efficient and flexible, and it is easy to upgrade and transform based on existing equipment, which has won people's favor and has been applied on a large scale.
  • Dense wavelength division multiplexing technology increases the transmission capacity of the system by increasing the number of wavelengths that can transmit signals. For example, 80 to 100 wavelength signals can be multiplexed and transmitted with the same fiber. After reaching the user, separate signals are separated. , thereby greatly improving the utilization efficiency of the device.
  • a distributed feedback (DFB) semiconductor laser is the main source, and multiple signals need to work simultaneously, and the wavelength interval between the lasers needs to meet the standards of the International Telecommunications Union (ITU-T).
  • ITU-T International Telecommunications Union
  • a fixed-wavelength semiconductor laser this means that each user needs to have a separate transceiver module to download the multi-wavelength signal from the central office, and then demodulate the signal they need, and to ensure long-term stability of the system.
  • a wavelength-controllable tunable laser in a DWDM system, so that only one laser backup can be used in a DWDM system, and any laser can be used instead of the laser when it has a problem. Reduces the complexity of the DWDM system while reducing its operating costs.
  • the communication capacity cannot be increased indefinitely by increasing the number of wavelengths.
  • fiber amplifiers are required to relay and amplify signals, and the commonly used erbium-doped fiber amplifiers operate in the range of 1530 nm to 1570 nm. If the number of wavelengths used at the same time is too large, crosstalk between signals will occur because the wavelength interval is too small. Therefore, people need to find ways to increase the transmission speed of each wavelength signal while increasing the number of wavelengths.
  • Current fiber-optic transmission systems can achieve transmission speeds of 40 Gbit/s, while higher-speed 100 Gbit/s systems and coherent optical communication systems with more advanced modulation/detection technologies are already in the pipeline. In such a system, the tunable laser can be used not only as a light source for the system, but also as a source of local oscillator signals at the receiving end.
  • the tunable laser mainly contains a gain region and a wavelength-adjustable filter, which adjusts the working wavelength of the filter by means of temperature, mechanical, current, electric field, etc., thereby realizing the change of the laser wavelength.
  • the structure of internationally tunable lasers can be mainly divided into three types: external cavity structure, distributed Bragg reflection (DBR) structure and distributed feedback (DFB) structure. These designed lasers are capable of achieving a 40nm tuning range that meets the requirements of DWDM systems, but each has its own advantages and disadvantages.
  • Tunable laser performance based on external cavity structure is ideal, it can be continuously adjusted over a wide range of wavelengths Harmonic, with high output power, and can achieve linewidths less than 100 kHz, but this type of laser is wavelength-tuned by external optical feedback, which includes multiple optical components, making and packaging in a complex, costly manner, and The wavelength adjustment method is also complicated.
  • Tunable lasers based on distributed Bragg reflection structures have been studied earlier and more extensively. It can take advantage of the cursor effect between the two reflective gratings to achieve wide-range wavelength tuning. It does not require multiple optical components to achieve feedback like an external cavity structure, so packaging and conditioning are relatively simple.
  • the filtering part is fabricated on a passive waveguide, the integration of active materials and passive materials is difficult in the semiconductor process, and it is difficult to achieve large-scale industrialization. Limits the development of such lasers.
  • tunable lasers based on DBR structure generally use wavelength to adjust the wavelength. Although the regulation speed can reach nanoseconds faster, the plasma effect caused by carriers will cause the laser line. The width is increased.
  • a tunable laser based on a distributed feedback structure is relatively inexpensive because it is a single device that does not require feedback and does not require complex active passive material integration.
  • the adjustment range is small, and generally only reaches about 3 nm.
  • the current DFB tunable lasers are generally implemented by means of an array, that is, a plurality of fixed-wavelength lasers having different wavelengths are used, outputted by coupling, and one of the wavelengths is selected in a certain manner.
  • the advantage of this tunable method is that the laser performance is stable, no mode hopping occurs during wavelength adjustment, and complicated packaging and wavelength adjustment methods are avoided, making it easier to achieve monolithic integration.
  • Such a parallel-based DFB laser array is generally used in a 10 Gbit/s transmission system.
  • the tunable laser described in the present invention is related thereto, but is designed and fabricated by using a reconstruction-equivalent ⁇ technique.
  • the cost of a single DFB laser is greatly reduced, and the present invention also proposes a way of integrating in series or in parallel.
  • a tunable laser based on an external cavity structure can be found in Intel ("Automated Optical Packaging Technology for 10Gb/s Transceivers and its Application to a Low-Cost Full C-Band Tunable Transmitter,” Intel Technology Journal, vol. 08, 101- 114, 2004.) and NEC ("Full C-Band External Cavity Wavelength Tunable Laser Using a Liquid-Crystal-Based Tunable Mirror," IEEE Phton. Tech. Lett., vol. 17, 681-683, 2005.).
  • a tunable laser based on a distributed Bragg reflection structure can be found in JDSU's SG-DBR structure ("Tunable Semiconductor Lasers: A tutorial," J. Lightwave Technol., vol.
  • a tunable laser array based on a distributed feedback structure can be found in the NEC research ("Wavelength-Selectable microarray light sources for S-, C-, and L-band WDM systems," IEEE Photon. Technol. Lett., vol. 15, 903- 905, 2003.), which covers the entire S, C, and L bands with six 8-array DFB semiconductor lasers.
  • the tunable laser From the perspective of the price of the tunable laser, if it is used in the trunk of the optical communication system, although the required performance requirements are high, such as narrow line width, large tuning range, high stability, long life, etc., due to the number of lasers required. Less, the system is not sensitive to the price of a single tunable laser. However, if a tunable laser is used in an optical access system, such as a future developed passive optical network (WDM-PON), which is directly used at the user end, it is necessary to equip each user with an optical transceiver module, and then the tunable laser The amount used will be very large, so that the price is very low.
  • WDM-PON future developed passive optical network
  • Tunable lasers used in WDM-PON systems have no special requirements for tuning speed, but require a tuning range greater than 10 nm and can span more than 10 ITU-T 100 GHz channels.
  • a simple and effective way to improve the wavelength tuning range is to integrate multiple DFB lasers in series or in parallel to adjust the wavelength of the laser by temperature or current.
  • a holographic exposure plus ordinary sub-micron precision lithography is used to fabricate a sampled Bragg grating
  • the sampled Bragg grating contains an equivalent grating corresponding to a normal Bragg grating
  • the lasing wavelength of the distributed feedback semiconductor laser is sampled by a Bragg grating.
  • the wavelength interval between the equivalent gratings is inversely proportional to the sampling period and the effective refractive index of the distributed feedback semiconductor laser, so that a uniform uniform grating can be used on the same chip, and then through different sampling periods.
  • To change the position of the equivalent grating it is possible to realize distributed feedback semiconductor lasers with different working wavelengths on the same chip.
  • the laser and laser array fabricated by this method are low in cost, and since the Bragg grating is fabricated by holographic exposure and ordinary lithography exposure, the grating on the entire epitaxial wafer can be written at one time, which greatly shortens the grating fabrication time. And it is easy to achieve mass production, which further reduces the overall cost.
  • the present invention integrates lasers having different working wavelengths on the same chip by series or parallel hybrid integration, and passes temperature or current. Fine-tuning the operating wavelength of a single laser enables a low-cost tunable distributed feedback semiconductor laser that meets the requirements of passive optical networks (WDM-PON).
  • WDM-PON passive optical networks
  • the basic technology is to integrate a plurality of distributed feedback semiconductor lasers of different wavelengths on the same chip by serial or parallel mixing. It is also an object of the present invention to provide a means and preparation for crosstalk isolation between adjacent laser chips.
  • a low-cost tunable distributed feedback (DFB) semiconductor laser based on series or parallel hybridization is a sampled Bragg grating based on reconstruction-equivalent ⁇ technology, which is characterized by series combination or series and parallel mixing. Integrating DFB lasers based on reconstruction-equivalent ⁇ technology with different working wavelengths, selecting one of the lasers by current, and controlling the working wavelength of the laser by adjusting temperature or current, thereby realizing laser operation Continuous tuning of wavelengths; each wavelength signal in a parallel channel is coupled out from the same waveguide.
  • DFB distributed feedback
  • An electrical isolation region is used between the series lasers or between the lasers in series and parallel (mixed mode) to reduce crosstalk between adjacent lasers, thereby achieving independent control of each laser.
  • the number of the series lasers is 2 to 20, and the series and parallel combination lasers include m rows and n columns of independent distributed feedback semiconductor lasers based on reconstruction-equivalent enthalpy technology, and the total number of lasers Is m ⁇ n, where 2 ⁇ m ⁇ 20, 2 ⁇ n ⁇ 50, the wavelength range of adjacent series lasers is within the range of 1 nm to 5 nm; The operating wavelength is continuously tuned within a range of 60 nm.
  • the single laser is designed and fabricated by equivalent ⁇ and equivalent phase shift.
  • the phase shift position is within +/-40% of the center of the sampled grating, and the wavelength interval between adjacent series lasers is greater than 1 nm, less than 5 nm.
  • the invention is prepared by etching away the ohmic contact layer InGaAsP and the ridge waveguide layer InP to cover the 100 nm to 300 nm SiO 2 insulating material between adjacent lasers (the isolation region width is between 5 um and 80 um), or by engraving
  • the ohmic contact layer InGaAsP is etched, ion implanted, and covered with a 100 nm to 300 nm SiO 2 insulating material (the isolation region width is between 2 um and 15 um) to achieve electrical isolation.
  • the series or parallel hybrid integrated lasers may also employ laterally coupled gratings.
  • the series and parallel hybrid integrated lasers use a multimode reflective coupling device (MMI), an arrayed waveguide grating device (AWG), or other means to achieve a coupled output.
  • MMI multimode reflective coupling device
  • AWG arrayed waveguide grating device
  • each DFB laser can be tuned in a thermally tuned manner with a range of thermal tuning equal to the wavelength spacing between the lasers.
  • thermoelectric cooler TEC containing temperature sensitive material, generally adopting Peltier effect, also called thermo-electric effect
  • the operating wavelength in general, for every 1 degree Celsius increase in temperature, the laser operating wavelength can be changed by 0.1 nm, then when the temperature changes by 40 degrees Celsius, the working wavelength of the laser changes by 4 nm.
  • a total of N lasers are connected in series or in parallel on a chip.
  • the wavelength intervals of these lasers are the same, ⁇ m nm, and the wavelength of each laser can be varied around the center wavelength under temperature adjustment ( ⁇ ⁇ p /2) nm, then the result of the interaction of these lasers is that the tuning range of [(N-1) ⁇ ⁇ m + ⁇ p ] nm can be achieved. It works by selecting the laser that needs to work by current and then fine-tuning its operating wavelength by temperature. It should be noted that at the same temperature, the operating wavelengths of these lasers are different, the wavelength spacing of adjacent lasers is uniform, and the wavelength error can be controlled within +/- 0.5 nm.
  • the light from each laser needs to be coupled together and output through the same waveguide.
  • the method implements a single waveguide output. Which output method is actually used is outside the scope of the present invention.
  • the invention has the beneficial effects that the distributed feedback semiconductor laser designed and fabricated is extended to a laser device fabricated based on serial or parallel hybrid integration based on the low cost manufacturing reconfiguration-equivalent enthalpy technique, thereby obtaining low cost.
  • a wide range of tunable lasers Among them, it is necessary to deal with laser wavelength control, crosstalk between lasers, and multi-wavelength passive coupling output problems.
  • the wavelength control problem of the laser has been solved in the Chinese invention patent "Method and Apparatus for Manufacturing Monolithic Integrated Semiconductor Laser Array" (CN200810156592.0).
  • Wavelength-accurate control is a unique advantage of the reconfigurable-equivalent ⁇ technique, which is based on the design and fabrication of laser operating wavelengths that can be controlled in the +/-0.2 nm range.
  • the crosstalk problem between lasers has been solved in the present invention, and the ridge waveguide layer which etches away the isolation region can effectively avoid crosstalk between lasers, and no leakage phenomenon is found.
  • the passive coupling output problem of the laser it is not within the scope of the present invention because of the variety of coupling methods and the relative maturity and simplicity.
  • An advantage of the present invention is that the resulting tunable laser can have a wide operating wavelength range and multiple wavelengths can operate simultaneously.
  • the tuning range of the laser can be maximized, and the laser can work anywhere within the material gain spectrum. Generally, the gain spectrum of the material can reach 80 nm, and the tuning range of the laser can reach 80 nm.
  • series and parallel hybrid lasers have their unique advantages.
  • the price of tunable lasers currently on the market is basically more than $1,000, and tunable lasers produced by series are expected to be controlled in the range of $50 to $100.
  • multiple wavelength signals are usually required to work simultaneously. For example, when 80 wavelength signals are required to work simultaneously, the laser integrated by series and parallel mixing is 80 times lower than that of a single series.
  • the series and parallel hybrid integration method not only improves the performance of the laser, but also achieves better economic benefits.
  • FIG. 1 is a schematic diagram of a three-segment series distributed feedback semiconductor tunable laser based on a reconstruction-equivalent enthalpy technique.
  • N electrode 1-1.
  • N electrode 1-2. substrate; 1-3. lower waveguide layer; 1-4. multiple quantum well layer; 1-5. upper waveguide layer; 1-6. grating layer; Corrosion prevention layer; 1-8. ridge waveguide; 1-9. Electrical isolation material; 1-10.
  • P electrode 1-11.
  • FIG. 2 is a schematic diagram of a distributed feedback semiconductor tunable laser based on a series approach.
  • FIG. 3 is a schematic diagram of output spectral superposition of a three-segment series tunable laser based on a reconstruction-equivalent enthalpy technique.
  • Figure 4 is a diagram showing the change of operating wavelength with current of a three-stage series tunable laser based on reconstruction-equivalent enthalpy technique. Figure.
  • Figure 5 is a schematic diagram of a distributed feedback semiconductor tunable laser integrated based on series and parallel hybrids.
  • N electrode 3-1.
  • N electrode 3-2. substrate; 3-3. lower waveguide layer; 3-4. multiple quantum well layer; 3-5. upper waveguide layer; 3-6. grating layer; Corrosion prevention layer; 3-8. ridge waveguide; 3-9. Electrical isolation material; 3-10. P electrode; 3-11.
  • Figure 6 is a schematic diagram of a distributed feedback semiconductor tunable laser integrated based on series and parallel hybrids.
  • Figure 7 is a schematic diagram of the output spectral superposition of a tunable laser based on a series and parallel hybrid integration.
  • Figure 8 is a schematic diagram showing the change of the operating wavelength of a tunable laser fabricated in series and parallel hybrid integration.
  • Example 1 A three-stage series tunable semiconductor laser with a working wavelength of 1555 to 1561 nm:
  • the epitaxial material of the device is described as follows: First, an N-type InP buffer layer (thickness: 200 nm, doping concentration: about 1.1 ⁇ 10 18 cm -2 ), 100 nm thick amorphous doping is performed on the N-line substrate material. Hybrid lattice matching InGaAsP waveguide layer, strained InGaAsP multiple quantum well layer (light fluorescence wavelength 1.52 ⁇ m, 7 quantum wells: well width 8 nm, 0.5% compressive strain; barrier width 10 nm, lattice matching material), 70 nm thick InGaAsP grating Material layer.
  • a mask containing the sampling period distribution required for the equivalent grating is then fabricated using a conventional microelectronic process.
  • a grating structure was fabricated by sampling mask and holographic interference exposure, and then a 100 nm thick P-type lattice matched InGaAsP waveguide layer was secondarily epitaxially (doped concentration was about 1.1 ⁇ 10 17 cm -2 , and the layer of DFB was a p-type InP confinement layer having a thickness of 100 nm) and a thickness of 1.7 ⁇ m (the doping concentration is gradually changed from 3.5 ⁇ 10 17 cm ⁇ 2 to 1 ⁇ 10 18 cm ⁇ 2 ) and a 100 nm thick P-type InGaAs ohmic contact layer (doping concentration greater than 1 ⁇ 10) 19 cm -2 ).
  • the laser uses a ridge waveguide structure with a total length of 1200 microns and is divided into three segments, each of which has a length of 350 microns and a spacing of 75 microns between each two segments, i.e., the length of the isolation region is 75 microns.
  • the ridge waveguide has a width of 3 microns and a groove width of 20 microns on both sides and a depth of 1.5 microns.
  • An electrical isolation trench is formed in the process of fabricating the ridge waveguide, that is, the InGaAsP ohmic contact layer and the InP ridge waveguide layer in the electrically isolated trench region are etched together, and then the surface is covered with a 300 nm thick SiO 2 insulating layer.
  • the SiO 2 material above the ridge waveguide is then etched away and a P-type electrode on the front side of the laser is fabricated.
  • the laser substrate is thinned to form an N-type electrode on the back side.
  • the device has an anti-reflection film at both ends, and the reflectance after coating is less than 1%.
  • the three electrodes of the laser are respectively energized by three currents. Since the operating wavelengths of the three-stage laser are different, they are designed at 1555 nm, 1558 nm and 1561 nm, respectively. Then if the current of one of the lasers is set to be above the threshold, For example, the current of the 1555 nm section is set to 50 mA, and the currents of the other two sections are set to a transparent current (that is, the light generated by other sections of the laser can pass through the section of the laser, but no loss is generated or amplified, in this case, 10 mA) Then this laser can work at 1555nm.
  • the operating wavelength can be adjusted in the range of (1555 ⁇ 1555 ⁇ 1.5) nm.
  • the same processing can be performed to make the laser at 1553.5 nm to 1562.5 nm. Work within the scope.
  • Example 2 A multi-segment tunable semiconductor laser based on series connection:
  • the three-stage series tunable semiconductor laser in Example 1 can be extended to n stages, and the adjacent lasers have a wavelength interval of 3 nm, and the material structure is the same as in Example 1.
  • the ohmic contact layer InGaAsP of the corresponding region of the laser is first etched away by dry or wet method, and then ion implantation is performed in this region, and then the insulating material SiO2 having a thickness of 300 nm is covered.
  • the SiO 2 material above the ridge waveguide is then etched away and a P-type electrode on the front side of the laser is fabricated.
  • the laser substrate is thinned to form an N-type electrode on the back side.
  • the device has an anti-reflection film at both ends, and the reflectance after coating is less than 1%.
  • the laser When the laser is working, it is necessary to use n currents to power each segment of the laser separately.
  • the current of the segment is set as the working current, and the current of the remaining segments is set to the transparent current.
  • the laser can work at the specified wavelength.
  • the laser operating wavelength can be varied within ⁇ 1.5 nm by adjusting the overall temperature of the laser, and the total laser tuning range is 3 n (nm).
  • the epitaxial material of the device is described as follows: First, an N-type InP buffer layer (thickness: 200 nm, doping concentration: about 1.1 ⁇ 10 18 cm ⁇ 2 ), 100 nm thick amorphous doping is performed on the N-line substrate material. Hybrid lattice matching InGaAsP waveguide layer, strained InGaAsP multiple quantum well layer (light fluorescence wavelength 1.52 ⁇ m, 7 quantum wells: well width 8 nm, 0.5% compressive strain; barrier width 10 nm, lattice matching material), 70 nm thick InGaAsP grating Material layer.
  • a mask containing the sampling period distribution required for the equivalent grating is then fabricated using a conventional microelectronic process.
  • a grating structure is fabricated by sampling mask and holographic interference exposure, and then a 100 nm thick P-type lattice-matched InGaAsP waveguide layer is epitaxially grown (doping concentration is about 1.1 ⁇ 10 17 cm ⁇ 2 , DFB segment of the layer a p-type InP confinement layer with a thickness of 100 nm) and a thickness of 1.7 ⁇ m (the doping concentration gradually changes from 3.5 ⁇ 10 17 cm ⁇ 2 to 1 ⁇ 10 18 cm ⁇ 2 ) and a 100 nm thick P-type InGaAs ohmic contact layer (doping concentration greater than 1 ⁇ 10) 19 cm ⁇ 2 ).
  • the laser uses a ridge waveguide structure, including a 3x4 segment laser, in which 75um of electrically isolated trenches are fabricated between rows and columns.
  • the ridge waveguide has a width of 3 microns and a groove width of 20 microns on both sides and a depth of 1.5 microns.
  • An electrical isolation trench is formed in the process of fabricating the ridge waveguide, that is, the InGaAsP ohmic contact layer and the InP ridge waveguide layer in the electrically isolated trench region are etched together, and then the surface is covered with a 300 nm thick SiO 2 insulating layer.
  • the SiO 2 material above the ridge waveguide is then etched away and a P-type electrode on the front side of the laser is fabricated.
  • the laser substrate is thinned to form an N-type electrode on the back side.
  • the device has an anti-reflection film at both ends, and the reflectance after coating is less than 1%.
  • the laser is listed between columns using MMI, AWG or other means to achieve the coupled output.
  • the current I ij on it can be set to an operating current, such as 50 mA, and then the currents of the remaining lasers are all set to a transparent current (ie, The light generated by the other segment lasers can pass through the laser, but without loss or amplification, in this case 10 mA), then the laser can operate at the wavelength ⁇ ij and can be adjusted by the temperature at ( ⁇ ) Working in the range of ij ⁇ 1.5) nm.
  • an operating current such as 50 mA
  • the currents of the remaining lasers are all set to a transparent current (ie, The light generated by the other segment lasers can pass through the laser, but without loss or amplification, in this case 10 mA)
  • the laser can operate at the wavelength ⁇ ij and can be adjusted by the temperature at ( ⁇ ) Working in the range of ij ⁇ 1.5) nm.
  • Example 4 A multi-segment tunable semiconductor laser integrated based on series and parallel mixing:
  • the 3X4 segment tunable laser of Example 1 can be extended to an mxn segment tunable laser comprising m rows and n columns of lasers, the material structure being the same as in Example 1, with rows and rows and columns and columns 75um electrical isolation slots are made between the two.
  • the ohmic contact layer InGaAsP of the corresponding region of the laser is first etched away by dry or wet method, and then ion implantation is performed in this region, and then the insulating material SiO2 having a thickness of 300 nm is covered.
  • the SiO 2 material above the ridge waveguide is then etched away and a P-type electrode on the front side of the laser is fabricated.
  • the laser substrate is thinned to form an N-type electrode on the back side.
  • the device has an anti-reflection film at both ends, and the reflectance after coating is less than 1%.
  • the MMI, AWG or other means are used between the laser columns and columns to achieve the coupled output.
  • the current I ij on it can be set to an operating current, such as 50 mA, and then the currents of the remaining lasers are all set to a transparent current (ie, The light generated by the other segment lasers can pass through the laser, but without loss or amplification, in this case 10 mA), then the laser can operate at the wavelength ⁇ ij and can be adjusted by the temperature at ( ⁇ ) Working in the range of ij ⁇ 1.5) nm.
  • an operating current such as 50 mA
  • the currents of the remaining lasers are all set to a transparent current (ie, The light generated by the other segment lasers can pass through the laser, but without loss or amplification, in this case 10 mA)
  • the laser can operate at the wavelength ⁇ ij and can be adjusted by the temperature at ( ⁇ ) Working in the range of ij ⁇ 1.5) nm.

Landscapes

  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Optics & Photonics (AREA)
  • Semiconductor Lasers (AREA)

Abstract

基于串联或与并联混合方式的可调谐分布反馈(DFB)半导体激光器,激光器光栅结构是基于重构-等效啁啾技术的采样布拉格光栅,采样串联结合或串联/并联混合方式将不同工作波长的基于重构-等效啁啾技术的DFB激光器集成在一起,通过电流来选择其中一个激光器工作,并且可以通过调节电流或者温度来控制该激光器的工作波长,从而实现激光器工作波长的连续调谐;并联信道中的各波长信号通过耦合后从同一根波导输出。串联激光器之间或串联与并联结合的各激光器之间采用一个电隔离区(1-11)来减小相邻激光器之间的串扰。

Description

基于重构-等效啁啾以及串联或与并联混合集成的可调谐半导体激光器及制备 技术领域
本发明属于光电子技术领域,与分布反馈半导体激光器有关,尤其涉及复杂分布反馈可调谐半导体激光器的设计和制作,更具体而言,是基于重构-等效啁啾技术的低成本可调谐分布反馈半导体激光器的方法及装置。
背景技术
在过去的20多年中,全球宽带需求的不断增长极大地促进了光纤通信产业的发展,人们提出了多种能够增加通信容量的设想和方案,其中密集波分复用技术(DWDM)是一种高效灵活的方式,并且容易在现有设备的基础上进行升级和改造,从而获得了人们的青睐并已经得到大规模应用。密集波分复用技术是通过增加可以传输信号的波长数目来提高系统传输容量的,例如可以将80~100个波长信号通过复用后用同一根光纤进行传输,到达用户之后再分离出各个信号,从而大大提高了设备的利用效率。在传统的波分复用系统中,分布反馈(DFB)半导体激光器是主要光源,多路信号需要同时工作,并且激光器之间的波长间隔需要满足国际电信联盟(ITU-T)的标准。如果采用固定波长的半导体激光器,这就意味着需要为每一个用户配备一个独立的收发模块,下载来自中心局的多波长信号,然后再解调出自己需要的信号,并且为了保证系统能够长期稳定地工作,还需要为每个激光器配置一个后备,以防止因为某一个激光器出现问题而导致系统瘫痪,这就大大提高了系统的能耗和维护保养成本。因此,人们希望在DWDM系统中使用波长可控的可调谐激光器,这样在一个DWDM系统中就可以只使用一个激光器后备,任何一个激光器出现问题时都可以用这个激光器来代替其工作,这就大大降低了DWDM系统的复杂度,同时也降低了其运行成本。
另一方面,通过增加波长数目也不能无限增加通信容量。在长距离传输系统中,需要使用光纤放大器来对信号进行中继和放大,而通常采用的掺铒光纤放大器的工作范围在1530nm~1570nm。如果同时使用的波长数目太多,将会因为波长间隔太小而产生信号之间的串扰。于是人们在增加波长数目的同时需要想办法提高每个波长信号的传输速度。目前的光纤传输系统可以达到40Gbit/s的传输速度,而更高速度的100Gbit/s系统,以及具有更先进的调制/检测技术的相干光通信系统也已经在酝酿之中。在这样的系统中,可调谐激光器不仅可以作为系统的光源,而且可以作为接收端的本振信号源。
早在上个世纪80年代,人们就开始了对可调谐激光器的研究。可调谐激光器主要含有一个增益区以及一个波长可调的滤波器,通过温度、机械、电流、电场等方式来调节滤波器的工作波长,从而实现激光器波长的改变。目前国际上可调谐激光器的结构主要可以分为三种:外腔结构、分布布拉格反射(DBR)结构以及分布反馈(DFB)结构。这些设计的激光器都能达到40nm的调谐范围,可以满足DWDM系统的要求,但都各自具有优缺点。
基于外腔结构的可调谐激光器性能是最为理想的,它可以在较宽的波长范围内连续调 谐,具有较高的输出功率,并且可以获得小于100kHz的线宽,但这类激光器是通过外部光反馈来实现波长调节的,它包括多个光学部件,制作和封装方式复杂、成本高,并且波长调节方式也较为复杂。
基于分布布拉格反射结构的可调谐激光器是研究较早也较为广泛的。它可以利用两个反射光栅之间的游标效应来实现大范围波长调谐。它不像外腔结构一样需要多个光学部件来实现反馈,因此封装和调节相对简单。但就其制作方式来看,由于它的滤波部分是制作在无源波导上的,而有源材料和无源材料的集成在半导体工艺中具有一定难度,很难实现大规模产业化,因此也限制了这类激光器的发展。另外,基于DBR结构的可调谐激光器一般是通过电流来进行波长调节的,虽然其调节速度较快可以达到纳秒量级,但在注入电流时因为载流子引起的等离子效应会使激光器的线宽增加。
基于分布反馈结构的可调谐激光器成本相对低廉,因为它是一个单一器件,不需要反馈并且也不需要采用复杂的有源无源材料集成方式。但由于有源材料的折射率随温度或者电流的变化不大,因此其调节范围很小,一般只能达到3nm左右。目前的DFB可调谐激光器一般是通过阵列的方式来实现的,即采用多个波长不同的固定波长激光器,通过耦合的方式输出,并利用一定的方式选择其中的一个波长工作。这种可调谐方式的优点是激光器性能稳定,在波长调节过程中不会出现跳模,并且避免了复杂的封装以及波长调节方式,更容易实现单片集成。这种基于并联方式的DFB激光器阵列通常被用在10Gbit/s的传输系统中,本发明中所述的可调谐激光器与此有关,但由于采用了重构-等效啁啾技术来设计和制作单个的DFB激光器,其成本大大降低,并且本发明还提出了串联或与并联混合集成的方式。
更具体的,基于外腔结构的可调谐激光器可参见Intel("Automated Optical Packaging Technology for 10Gb/s Transceivers and its Application to a Low-Cost Full C-Band Tunable Transmitter,"Intel Technology Journal,vol.08,101-114,2004.)以及NEC("Full C-Band External Cavity Wavelength Tunable Laser Using a Liquid-Crystal-Based Tunable Mirror,"IEEE Phton.Tech.Lett.,vol.17,681-683,2005.)的研究成果。基于分布布拉格反射结构的可调谐激光器可参见JDSU的SG-DBR结构("Tunable Semiconductor Lasers:A Tutorial,"J.Lightwave Technol.,vol.22,193-202,2004.)、Oclaro的DS-DBR结构(”Widely Tunable DS-DBR Laser With Monolithically Integrated SOA:Design and Performance,"IEEE J.Select.Topics Quantum Electron.,vol.11,149-156,2005.)以及Syntune的MGY结构(Jan-Olof
Figure PCTCN2014087035-appb-000001
Stefan Hammerfeldt,Jens Buus,Robert Siljan,Reinhard Laroy,and Harry de Vries,“Design of a Widely Tunable Modulated Grating Y-branch Laser using the Additive Vernier Effect for Improved Super-Mode Selection”)。基于分布反馈结构的可调谐激光器阵列可参见NEC的研究成果(“Wavelength-Selectable microarray light sources for  S-,C-,and L-band WDM systems,”IEEE Photon.Technol.Lett.,vol.15,903–905,2003.),它采用六个8阵列的DFB半导体激光器覆盖了整个S、C和L波段。
除了以上日本和欧美各实验室及企业的研究成果外,我国也对可调谐激光器展开了较为深入的研究。其具有代表性的是浙江大学何建军教授课题组提出的基于V形耦合腔的低成本大范围的可调谐半导体激光器方案(“Simple and compact V-cavity semiconductor laser with50×100GHz wavelength tuning”,Vol.21,No.11,Optics Express,2013),它用100GHz间隔的50个信道覆盖了整个C波段,这是国内对低成本可调谐半导体激光器研究的出色成果。
从可调谐激光器的价格来看,如果是用在光通信系统的干线上,虽然需要的性能要求高,比如线宽窄,调谐范围大,稳定性高,寿命长等,但由于需要的激光器个数少,系统对单个可调谐激光器的价格也不敏感。但若将可调谐激光器应用在光接入系统中,比如未来发展的无源光网络(WDM-PON)上,直接用于用户端,需要为每一个用户配备一个光收发模块,则可调谐激光器的用量将会非常大,这样就需要价格很低才行。这样一个光收发模块目标价格是50美元,一般不会超过100美元,而当前市面上的可调谐激光器的价格基本都在1000美元以上,如果再降低,将可能无法收回综合成本。因此,本发明的目的就是要设计和制作这种面向广大的WDM-PON市场的低成本的可调谐分布反馈半导体激光器。应用于WDM-PON系统的可调谐激光器对调谐速度没有特别的要求,但是需要调谐范围大于10nm,能够跨越10多个ITU-T的100GHz信道。改善波长调谐范围的一种简单有效的方式是将多个DFB激光器通过串联或与并联混合的方式集成在一起,通过温度或者电流来对激光器的波长进行调节。
然而,在同一芯片上制作工作波长不同的激光器并非易事。传统的方法是采用电子束曝光技术。但由于电子束曝光技术的成本很高,刻写速度非常慢,并且由于电子束本身的特点,其做出来的激光器阵列工作波长准确性不够,影响了激光器阵列的质量或者成品率,从而降低了激光器的性能,并增加了激光器的成本。为了解决这个问题,南京大学陈向飞于2006年发明了专利“基于重构-等效啁啾技术制备半导体激光器的方法及装置”(CN200610038728.9),并申请了国际PCT专利(申请号PCT/CN2007/000601)。在该方法中采用全息曝光加上普通亚微米级精度的光刻来制作采样布拉格光栅,采样布拉格光栅含有对应普通布拉格光栅的等效光栅,分布反馈半导体激光器的激射波长在采样布拉格光栅的等效光栅的作用带宽里,等效光栅之间的波长间隔反比于采样周期和分布反馈半导体激光器的有效折射率,这样就可以在同一个芯片上采用周期统一的均匀光栅,然后通过不同的采样周期来改变等效光栅的位置,从而能够在同一芯片上实现不同工作波长的分布反馈半导体激光器。通过这种方法制作的激光器及激光器阵列成本很低,并且由于采用全息曝光和普通光刻曝光来制作布拉格光栅,则整个外延片上的光栅可以一次性写成,大大缩短了光栅制作时间 并且容易实现大规模生产,从而更进一步降低了综合成本。关于重构-等效啁啾技术的细节以及基于此制作的分布反馈半导体激光器及激光器阵列的性能可参见中国发明专利“单片集成半导体激光器阵列的制造方法及装置”(CN200810156592.0)以及文献:Jingsi Li,Huan Wang,Xiangfei Chen,et.al,”Experimental demonstration of distributed feedback semiconductor lasers based on reconstruction-equivalent-chirp technology”(基于重构-等效啁啾技术的分布反馈半导体激光器的实验验证),Optics Express,2009,17(7):5240-5245,以及Yuechun Shi,Xiangfei Chen,et.al,“Experimental demonstration of eight-wavelength distributed feedback semiconductor laser array using equivalent phase shift”,(采用等效相移的八波长分布反馈半导体激光器阵列的实验验证),Optics Letters,2012.37(16):p.3315-3317。
在基于重构-等效啁啾技术制作分布反馈半导体激光器及激光器阵列的基础上,本发明采用串联或与并联混合集成的方式将工作波长不同的激光器集成在同一芯片上,并且通过温度或者电流对单个激光器的工作波长进行微调,从而能够实现满足无源光网络(WDM-PON)要求的低成本可调谐分布反馈半导体激光器。需要指出的是,通过串联或与并联混合集成的分布反馈半导体激光器并不是单个激光器的简单叠加,它需要处理激光器之间的串扰问题以及耦合输出方式,而其性能也是多个激光器综合作用的结果。
发明内容
本发明的目的是采用低成本制造的重构-等效啁啾(REC)技术,为未来的WDM-PON市场提供低成本的可调谐分布反馈半导体激光器。其基础技术是把多个不同波长的分布反馈半导体激光器通过串联或与并联混合的方式集成在同一个芯片上。本发明的目的还在于提供相邻激光器芯片之间串扰隔离的方式及制备。
本发明的技术方案是:
基于串联或与并联混合方式实现低成本可调谐分布反馈(DFB)半导体激光器,激光器光栅结构是基于重构-等效啁啾技术的采样布拉格光栅,其特征在于采用串联结合或串联与并联混合方式将不同工作波长的基于重构-等效啁啾技术的DFB激光器集成在一起,通过电流来选择其中的一个激光器工作,并且可以通过调节温度或者电流来控制该激光器的工作波长,从而实现激光器工作波长的连续调谐;并联信道中的各波长信号通过耦合后从同一根波导输出。
串联激光器之间或串联与并联结合(混合的方式)的各激光器之间采用一个电隔离区来减小相邻激光器之间的串扰,从而实现对每个激光器的独立控制。
所述的串联激光器的个数在2到20个,所述的串联与并联结合的激光器包含m行和n列独立的基于重构-等效啁啾技术的分布反馈半导体激光器,总的激光器数目为m×n个,其中2≤m≤20,2≤n≤50,相邻的串联激光器的波长间隔在1nm到5nm范围以内;激光器的 工作波长在60nm的范围以内连续调谐。
其中的单个激光器是采用等效啁啾和等效相移的方法设计和制作的,其相移位置在取样光栅中心的+/-40%区域内,相邻的串联激光器之间的波长间隔大于1nm,小于5nm。
本发明的制备是,相邻激光器之间通过刻蚀掉欧姆接触层InGaAsP以及脊波导层InP再覆盖100nm~300nm SiO2绝缘材料的方式(隔离区宽度在5um到80um之间),或者通过刻蚀掉欧姆接触层InGaAsP,进行离子注入,再覆盖100nm~300nm SiO2绝缘材料的方式(隔离区宽度在2um到15um之间)来实现电隔离。所述串联或与并联混合集成激光器也可采用侧向耦合的光栅。所述串联或与并联混合集成激光器的两端需采用抗反射膜,抗反射膜的端面反射率范围在10-5到10%之间。所述串联与并联混合集成激光器采用多模反射耦合器件(MMI)、阵列波导光栅器件(AWG),或者其他的方式来实现耦合输出。
在基于REC技术和串联或与并联混合集成方式设计和制作的低成本可调谐激光器中,每个DFB激光器的调谐可以采用热调谐的方式,热调谐的范围等于激光器间的波长间隔。制作过程中在可调谐激光器的底座上有热电制冷器TEC(含有温度敏感材料,一般采用帕尔贴效应,又称为热-电效应),通过TEC控制激光器的工作温度,从而可以控制激光器的工作波长,一般情况下是温度每升高1摄氏度,激光器工作波长可以改变0.1nm,则当温度变化40摄氏度时,激光器的工作波长改变了4nm。
例如,一个芯片上共串联或并联了N个激光器,这些激光器的波长间隔是相同的,为λmnm,并且在温度的调节下,每个激光器的波长可在中心波长附近范围内变化(±λp/2)nm,那么这些激光器共同作用的结果是可以实现[(N-1)×λmp]nm的调谐范围。其工作方式是:通过电流来选择需要工作的激光器,然后通过温度来对其工作波长进行微调。需要指出的是,在同一温度下,这些激光器的工作波长都不相同,相邻激光器的波长间隔是均匀的,波长误差可以控制在+/-0.5nm以内。在理想情况下,λm=λp,即相邻激光器的波长间距等于单个激光器的热调谐范围,但考虑到激光器本身的波长误差,一般使λm略小于λp,比如让λm=0.8×λp
在基于REC技术和串联或与并联混合集成方式设计和制作的低成本可调谐激光器中,各激光器发出来的光需要先耦合在一起,再通过同一根波导输出。这主要可以采用两种方式来实现:其一是将串联或并联的激光器和无源耦合器件做成单片集成芯片,即在制作激光器芯片的同时考虑激光器的耦合输出问题,最终得到的是单一波导输出的集成芯片;其二是采用混合集成的方法,即将串联或并联激光器和无源耦合器件分别制作,然后通过空间耦合的方 法实现单一波导输出。实际采用何种输出方式不在本发明的讨论范围。
本发明的有益效果是:基于低成本制造的重构-等效啁啾技术,将其设计和制作的分布反馈半导体激光器扩展到基于串联或与并联混合集成方式制作的激光器器件,从而得到低成本的大范围可调谐激光器。其中需要处理激光器的波长控制,激光器间的串扰以及多波长的无源耦合输出问题。激光器的波长控制问题在中国发明专利“单片集成半导体激光器阵列的制造方法及装置”(CN200810156592.0)中已经得到解决。波长精确控制是重构-等效啁啾技术独特的优点,基于其设计和制作的激光器工作波长可以控制在+/-0.2nm的范围内。激光器间的串扰问题在本发明中已经得到解决,采用刻蚀掉隔离区域的脊波导层可以有效地避免激光器之间的串扰,并且没有发现漏电现象。至于激光器的无源耦合输出问题,因为耦合方式多样且相对成熟和简单,因此不在本发明的讨论范围内。本发明的优点在于得到的可调谐激光器工作波长范围可以很宽,并且多个波长可以同时工作。当只考虑串联方式制作可调谐激光器时,由于远离出光端的激光器在工作时很难完全避免出光端激光器的吸收作用,因此可以串联的激光器数目是有限的,从而可调谐的波长范围也受到限制。而如果同时采用串联和并联的方式,则可以最大限度地扩宽激光器的调谐范围,激光器可以工作在材料增益谱范围内的任何位置。通常材料的增益谱半高宽可以达到80nm,则激光器的调谐范围也可以达到80nm。另一方面,如果仅采用串联方式,激光器在某个特定时间只能工作在一个波长,而如果采用串联与并联混合集成方式,激光器可以同时工作在不同波长,这样在需要多个波长的激光器同时工作时,串联与并联混合激光器就有其独特的优势。当前市面上可调谐激光器的价格基本都在1000美元以上,而通过串联方式制作的可调谐激光器有望控制在50美元~100美元的范围。但在DWDM系统中,通常需要多个波长信号同时工作,例如当需要80个波长信号同时工作时,采用串联与并联混合集成的激光器就比采用单个的串联方式的激光器成本降低了80倍,可见串联与并联混合集成方式不仅提高了激光器的性能,而且可以获得更好的经济效益。
附图说明
图1为基于重构-等效啁啾技术的三段串联分布反馈半导体可调谐激光器示意图。
1-1.N电极;1-2.衬底;1-3.下波导层;1-4.多量子阱层;1-5.上波导层;1-6.光栅层;1-7.腐蚀阻止层;1-8.脊波导;1-9.电隔离材料;1-10.P电极;1-11.电隔离槽
图2为基于串联方式的分布反馈半导体可调谐激光器示意图。
2-1.单个DFB激光器;2-2.光的传输方向
图3为基于重构-等效啁啾技术的三段串联可调谐激光器的输出光谱叠加示意图。
图4为基于重构-等效啁啾技术的三段串联可调谐激光器的工作波长随电流的变化示意 图。
图5为基于串联与并联混合集成的分布反馈半导体可调谐激光器示意图。
3-1.N电极;3-2.衬底;3-3.下波导层;3-4.多量子阱层;3-5.上波导层;3-6.光栅层;3-7.腐蚀阻止层;3-8.脊波导;3-9.电隔离材料;3-10.P电极;3-11.电隔离槽
图6为基于串联与并联混合集成的分布反馈半导体可调谐激光器示意图。
4-1.单个DFB激光器;4-2.无源耦合器件;4-3.光的传输方向
图7基于串联与并联混合集成方式制作的可调谐激光器输出光谱叠加示意图。
图8基于串联与并联混合集成方式制作的可调谐激光器的工作波长随电流的变化示意图。
具体实施方式
下面分别就基于重构-等效啁啾技术的三段串联DFB可调谐激光器以及基于串联与并联混合集成的3X4段可调谐激光器进行描述。
【实例1】工作波长在1555~1561nm的三段串联可调谐半导体激光器:
如图1所示,器件的外延材料描述如下:首先在N行衬底材料上一次外延N型InP缓冲层(厚度200nm、掺杂浓度约为1.1X1018cm-2)、100nm厚非晶掺杂晶格匹配InGaAsP波导层、应变InGaAsP多量子阱层(光荧光波长1.52微米,7个量子阱:阱宽8nm,0.5%压应变;垒宽10nm,晶格匹配材料)、70nm厚的InGaAsP光栅材料层。然后使用普通微电子工艺制作含有等效光栅所需的取样周期分布的掩膜板。接下来通过取样掩模板和全息干涉曝光的方法制作出光栅结构,然后二次外延100nm厚的P型晶格匹配InGaAsP波导层(掺杂浓度约为1.1X1017cm-2,DFB段该层的厚度为100nm)、1.7微米厚的p型InP限制层(掺杂浓度从3.5X1017cm-2逐渐变化为1X1018cm-2)和100nm厚的P型InGaAs欧姆接触层(掺杂浓度大于1X1019cm-2)。
激光器采用脊波导结构,器件总长度为1200微米,被分成三段,其中每段的长度为350微米,每两段之间的间隔是75微米,即隔离区的长度为75微米。脊波导的宽度为3微米,其两侧的沟槽宽度为20微米,深为1.5微米。在制作脊波导的过程中一并制作电隔离槽,即将电隔离槽区域的InGaAsP欧姆接触层和InP脊波导层一起刻蚀掉,然后在表面覆盖300nm厚的SiO2绝缘层。之后将脊波导上方的SiO2材料刻蚀掉,并制作激光器正面的P型电极。激光器衬底进行减薄后制作背面的N型电极。器件的两端均有抗反射膜,镀膜后反射率小于1%。
利用三个电流分别对激光器的三个电极加电,由于三段激光器的工作波长是不同的,分别设计在1555nm,1558nm和1561nm。则如果将其中一段激光器的电流设置为阈值以上,比 如将1555nm段的电流设置为50mA,而其余两段的电流设置在透明电流(即其他段激光器产生的光可以透过该段激光器,但不产生损耗也不被放大,此例中为10mA),那么这个激光器就可以工作在1555nm。之后通过控制激光器的工作温度,可以使工作波长在(1555(1555±1.5)nm的范围内进行调节。对于其余的两个电极也做同样的处理,则可以使激光器在1553.5nm~1562.5nm的范围内工作。
此激光器的输出光谱叠加图形见图3,其工作波长随电流的变化见图4。
【实例2】基于串联方式实现的多段可调谐半导体激光器:
如图2所示,可将实例1中的三段串联可调谐半导体激光器扩展到n段,相邻激光器的波长间隔为3nm,材料结构与实例1相同。在制作电隔离的过程中,先将激光器相应区域的欧姆接触层InGaAsP通过干法或者湿法方式刻蚀掉,再在此区域进行离子注入,然后覆盖厚度为300nm的绝缘材料SiO2。之后将脊波导上方的SiO2材料刻蚀掉,并制作激光器正面的P型电极。激光器衬底进行减薄后制作背面的N型电极。器件的两端均有抗反射膜,镀膜后反射率小于1%。
当激光器工作时,需要利用n个电流对激光器的各段分别加电,当需要其中的某段激光工作时,将该段的电流设置为工作电流,而将其余段的电流都设置为透明电流,则激光器可在指定波长工作。另一方面,可以通过调节激光器的整体温度而使激光器工作波长在±1.5nm的范围内变化,则总的激光器调谐范围为3n(nm)。
【实例3】基于串联与并联混合集成的3X4段可调谐半导体激光器:
如图5所示,器件的外延材料描述如下:首先在N行衬底材料上一次外延N型InP缓冲层(厚度200nm、掺杂浓度约为1.1X1018cm‐2)、100nm厚非晶掺杂晶格匹配InGaAsP波导层、应变InGaAsP多量子阱层(光荧光波长1.52微米,7个量子阱:阱宽8nm,0.5%压应变;垒宽10nm,晶格匹配材料)、70nm厚的InGaAsP光栅材料层。然后使用普通微电子工艺制作含有等效光栅所需的取样周期分布的掩膜板。接下来通过取样掩模板和全息干涉曝光的方法制作出光栅结构,然后二次外延100nm厚的P型晶格匹配InGaAsP波导层(掺杂浓度约为1.1X1017cm‐2,DFB段该层的厚度为100nm)、1.7微米厚的p型InP限制层(掺杂浓度从3.5X1017cm‐2逐渐变化为1X1018cm‐2)和100nm厚的P型InGaAs欧姆接触层(掺杂浓度大于1X1019cm‐2)。
激光器采用脊波导结构,包括3x4段激光器,其中行与行之间以及列于列之间都制作 75um的电隔离槽。脊波导的宽度为3微米,其两侧的沟槽宽度为20微米,深为1.5微米。在制作脊波导的过程中一并制作电隔离槽,即将电隔离槽区域的InGaAsP欧姆接触层和InP脊波导层一起刻蚀掉,然后在表面覆盖300nm厚的SiO2绝缘层。之后将脊波导上方的SiO2材料刻蚀掉,并制作激光器正面的P型电极。激光器衬底进行减薄后制作背面的N型电极。器件的两端均有抗反射膜,镀膜后反射率小于1%。激光器列于列之间采用MMI、AWG或其他的方式来实现耦合输出。
当需要第i行上第j列的激光器(工作波长为λij)工作时,可将其上的电流Iij设置为工作电流,比如50mA,然后将其余激光器的电流都设置在透明电流(即其他段激光器产生的光可以透过该段激光器,但不产生损耗也不被放大,此例中为10mA),那么这个激光器就可以工作在波长λij,并且可以通过调节温度使其在(λij±1.5)nm的范围内工作。当需要使用另一个激光器时,只需将另外一个激光器的电流设置为工作电流,并将剩余激光器的电流都设置在透明电流即可。
此激光器的输出光谱叠加图形见图7,其工作波长随电流的变化见图8。
【实例4】基于串联与并联混合集成的多段可调谐半导体激光器:
如图6所示,可将实例1中的3X4段可调谐激光器扩展到包含m行和n列激光器的mxn段可调谐激光器,材料结构与实例1相同,其中行与行之间以及列与列之间都制作75um的电隔离槽。在制作电隔离的过程中,先将激光器相应区域的欧姆接触层InGaAsP通过干法或者湿法方式刻蚀掉,再在此区域进行离子注入,然后覆盖厚度为300nm的绝缘材料SiO2。之后将脊波导上方的SiO2材料刻蚀掉,并制作激光器正面的P型电极。激光器衬底进行减薄后制作背面的N型电极。器件的两端均有抗反射膜,镀膜后反射率小于1%。激光器列与列之间采用MMI、AWG或其他的方式来实现耦合输出。
当需要第i行上第j列的激光器(工作波长为λij)工作时,可将其上的电流Iij设置为工作电流,比如50mA,然后将其余激光器的电流都设置在透明电流(即其他段激光器产生的光可以透过该段激光器,但不产生损耗也不被放大,此例中为10mA),那么这个激光器就可以工作在波长λij,并且可以通过调节温度使其在(λij±1.5)nm的范围内工作。当需要使用另一个激光器时,只需将另外一个激光器的电流设置为工作电流,并将剩余激光器的电流都设置在透明电流即可。

Claims (11)

  1. 基于串联或与并联混合方式的可调谐分布反馈(DFB)半导体激光器,激光器光栅结构是基于重构-等效啁啾技术的采样布拉格光栅,其特征在于采用串联结合或串联/并联混合方式将不同工作波长的基于重构-等效啁啾技术的DFB激光器集成在一起,通过电流来选择其中的一个激光器工作,并且可以通过调节电流或者温度来控制该激光器的工作波长,从而实现激光器工作波长的连续调谐;并联信道中的各波长信号通过耦合后从同一根波导输出。
  2. 根据权利要求1所述的基于串联或与并联混合方式的可调谐分布反馈半导体激光器,其特征在于串联激光器之间或串联/并联的各激光器之间采用一个电隔离区来减小相邻激光器之间的串扰,从而实现对每个激光器的独立控制。
  3. 根据权利要求1或2所述的基于串联或与并联混合方式的可调谐分布反馈半导体激光器,其特征在于所述的串联激光器的个数在2到20个,所述的串联与并联结合的激光器包含m行和n列独立的基于等效-重构啁啾技术的分布反馈半导体激光器,总的激光器数目为m×n个,其中2≤m≤20,2≤n≤50,相邻的串联激光器的波长间隔在1nm到5nm范围以内,激光器的工作波长在60nm的范围以内连续调谐。
  4. 根据权利要求1或2所述的基于串联或与并联混合方式的可调谐分布反馈半导体激光器,其特征在于所述的串、并联激光器中单个的激光器采用等效啁啾和等效相移的方法来设计和制作,相移位置在取样光栅中心的±40%区域内。
  5. 根据权利要求1或2所述的基于串联或与并联混合方式的可调谐分布反馈半导体激光器,其特征在于所述激光器中分布反馈结构采用侧向耦合光栅结构,其光栅位于脊波导两侧。
  6. 根据权利要求1或2所述的基于串联或与并联混合方式的可调谐分布反馈半导体激光器,其特征在于所述激光器两端采用抗反射膜,抗反射膜的端面反射率范围在10-5到10%范围以内。
  7. 根据权利要求1-6之一所述的基于串联或与并联混合方式的可调谐分布反馈(DFB)半导体激光器的制备,其特征在于:电隔离区的制作方式是将激光器相应区域的欧姆接触层InGaAsP和脊波导层InP通过干法或者湿法方式刻蚀掉,然后覆盖厚度为100nm到300nm范围以内的绝缘材料SiO2,隔离区的宽度在5um到80um范围以内。
  8. 根据权利要求1-6之一所述的基于串联或与并联混合方式的可调谐分布反馈(DFB)半导体激光器的制备,其特征在于:电隔离区的制作方式是:将激光器相应区域的欧姆接触层InGaAsP通过干法或者湿法方式刻蚀掉,再在此区域进行离子注入,之后覆盖厚度为100nm到300nm范围以内的绝缘材料SiO2,隔离区的宽度在2um到15um范围以内。
  9. 根据权利要求7或8所述的基于串联或与并联混合方式的可调谐分布反馈半导体激光器的制备,其特征在于所述激光器中单个激光器是采用等效相移方法来设计和制作的激光器,其相移位置在取样光栅中心的±40%区域内。
  10. 根据权利要求7或8所述的基于串联或与并联混合方式的可调谐分布反馈半导体激光器的制备,其特征在于所述激光器是采用侧向耦合光栅结构制作的激光器。
  11. 根据权利要求7或8所述的基于串联或与并联混合方式的可调谐分布反馈半导体激光器的制备,其特征在于所述激光器是两端镀了抗反射膜的激光器,抗反射膜的端面反射率范围在10-5到10%范围以内。
PCT/CN2014/087035 2013-11-08 2014-09-22 基于重构-等效啁啾以及串联或与并联混合集成的可调谐半导体激光器及制备 WO2015067099A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US14/903,740 US9742152B2 (en) 2013-11-08 2014-09-22 Tunable semiconductor laser based on reconstruction-equivalent chirp and series mode or series and parallel hybrid integration, and preparation thereof

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201310548888.8A CN104638511A (zh) 2013-11-08 2013-11-08 基于重构-等效啁啾以及串联/并联混合集成技术的低成本可调谐半导体激光器的方法及装置
CN201310548890.5A CN104638514A (zh) 2013-11-08 2013-11-08 基于重构-等效啁啾以及串联技术的低成本可调谐半导体激光器的方法及装置
CN201310548890.5 2013-11-08
CN201310548888.8 2013-11-08

Publications (1)

Publication Number Publication Date
WO2015067099A1 true WO2015067099A1 (zh) 2015-05-14

Family

ID=53040873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/087035 WO2015067099A1 (zh) 2013-11-08 2014-09-22 基于重构-等效啁啾以及串联或与并联混合集成的可调谐半导体激光器及制备

Country Status (2)

Country Link
US (1) US9742152B2 (zh)
WO (1) WO2015067099A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917051A (zh) * 2015-05-29 2015-09-16 江苏微宁科技有限公司 基于重构-等效啁啾技术的分布耦合系数dfb激光器及其阵列

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10530124B2 (en) 2017-05-11 2020-01-07 Hewlett Packard Enterprise Development Lp Tunable laser
US10439357B2 (en) 2017-07-06 2019-10-08 Hewlett Packard Enterprise Development Lp Tunable laser
CN111162454B (zh) * 2020-01-02 2021-03-12 中国科学院半导体研究所 一种宽波段调谐系统及调谐方法
CN111490457A (zh) * 2020-04-22 2020-08-04 南京鼎芯瑞科股权投资合伙企业(有限合伙) 基于多波长阵列的无制冷可调谐半导体激光器及制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309457A (en) * 1992-12-22 1994-05-03 Minch Richard B Micro-heatpipe cooled laser diode array
US20080025361A1 (en) * 2006-07-19 2008-01-31 Jerman John H Linear diode-laser array with series-connected emitters
CN101369718A (zh) * 2008-10-06 2009-02-18 南京大学 单片集成半导体激光器阵列的制造方法及装置
CN102474069A (zh) * 2009-07-30 2012-05-23 古河电气工业株式会社 集成型半导体激光元件、半导体激光组件及光传输系统
CN102651535A (zh) * 2012-05-17 2012-08-29 中国科学院半导体研究所 一种制作双波长分布反馈集成激光器的方法
CN103956652A (zh) * 2014-04-25 2014-07-30 南京威宁锐克信息技术有限公司 集成调制器的低成本可调谐dfb半导体激光器及制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100444482C (zh) 2006-03-09 2008-12-17 南京大学 基于重构-等效啁啾技术制备半导体激光器的方法及装置
KR101381235B1 (ko) * 2010-08-31 2014-04-04 한국전자통신연구원 이중 모드 반도체 레이저 및 이를 이용한 테라헤르츠파 장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5309457A (en) * 1992-12-22 1994-05-03 Minch Richard B Micro-heatpipe cooled laser diode array
US20080025361A1 (en) * 2006-07-19 2008-01-31 Jerman John H Linear diode-laser array with series-connected emitters
CN101369718A (zh) * 2008-10-06 2009-02-18 南京大学 单片集成半导体激光器阵列的制造方法及装置
CN102474069A (zh) * 2009-07-30 2012-05-23 古河电气工业株式会社 集成型半导体激光元件、半导体激光组件及光传输系统
CN102651535A (zh) * 2012-05-17 2012-08-29 中国科学院半导体研究所 一种制作双波长分布反馈集成激光器的方法
CN103956652A (zh) * 2014-04-25 2014-07-30 南京威宁锐克信息技术有限公司 集成调制器的低成本可调谐dfb半导体激光器及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104917051A (zh) * 2015-05-29 2015-09-16 江苏微宁科技有限公司 基于重构-等效啁啾技术的分布耦合系数dfb激光器及其阵列

Also Published As

Publication number Publication date
US20160134082A1 (en) 2016-05-12
US9742152B2 (en) 2017-08-22

Similar Documents

Publication Publication Date Title
US9031412B2 (en) Coolerless photonic integrated circuits (PICs) for WDM transmission networks and PICs operable with a floating signal channel grid changing with temperature but with fixed channel spacing in the floating grid
CN104638511A (zh) 基于重构-等效啁啾以及串联/并联混合集成技术的低成本可调谐半导体激光器的方法及装置
CN100583579C (zh) 单片集成半导体激光器阵列的制造方法及装置
US7342950B1 (en) Tunable laser source with integrated optical modulator
WO2015067099A1 (zh) 基于重构-等效啁啾以及串联或与并联混合集成的可调谐半导体激光器及制备
CN103956652A (zh) 集成调制器的低成本可调谐dfb半导体激光器及制备方法
CN104638514A (zh) 基于重构-等效啁啾以及串联技术的低成本可调谐半导体激光器的方法及装置
CN107910746B (zh) 一种反射式半导体光放大器
CN104779520A (zh) 基于重构—等效啁啾的快速可调谐半导体激光器及制备方法
CN104124611A (zh) 基于重构-等效啁啾的单片集成注入锁定dfb激光器及阵列及其制造方法
CN105356292A (zh) 一种可调谐波长半导体激光器
CN102369676B (zh) 光发射机、光探测器和无源光网络系统
CN105981239B (zh) 集成型半导体激光器元件以及半导体激光器模块
CN103151702A (zh) 相移电控制dfb半导体激光器装置及其制作方法
CN112290385A (zh) 多波长硅基iii-v族混合集成激光器阵列单元及制作方法
CN111244751B (zh) 一种集成激光器和光电探测器的光通信收发结构
Ward et al. Monolithic integration of AlInGaAs DS-DBR tunable laser and AlInGaAs MZ modulator with small footprint, low power dissipation and long-haul 10Gb/s performance
JP2006173563A (ja) 集積型半導体光源
CN107453202A (zh) 一种热隔离的可调谐dbr激光器及其加工方法和使用方法
Darja et al. Four channel DFB laser array with integrated combiner for 1.55 µm CWDM systems by MOVPE selective area growth
Liang et al. Fabrication of InP-based monolithically integrated laser transmitters
CN114899697B (zh) 一种双波长级联半导体激光器及制备方法
Le Liepvre et al. Long-Reach $6\times 10$ Gb/s WDM Access Network Based on Hybrid Silicon Lasers
Yao et al. High-density monolithic 6× 30 Gb/s tunable WDM transmitter in generic III-V platform
Yunlong et al. 4 channel EAM modulated DBR laser array

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859395

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14903740

Country of ref document: US

WA Withdrawal of international application
NENP Non-entry into the national phase

Ref country code: DE