WO2015066908A1 - 基于智能天线技术的无线多跳网络数据发送、接收方法 - Google Patents

基于智能天线技术的无线多跳网络数据发送、接收方法 Download PDF

Info

Publication number
WO2015066908A1
WO2015066908A1 PCT/CN2013/086812 CN2013086812W WO2015066908A1 WO 2015066908 A1 WO2015066908 A1 WO 2015066908A1 CN 2013086812 W CN2013086812 W CN 2013086812W WO 2015066908 A1 WO2015066908 A1 WO 2015066908A1
Authority
WO
WIPO (PCT)
Prior art keywords
node
angle
interference
coverage
transmitting
Prior art date
Application number
PCT/CN2013/086812
Other languages
English (en)
French (fr)
Inventor
谢宁
王晖
陈玉龙
Original Assignee
深圳大学
谢宁
王晖
陈玉龙
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳大学, 谢宁, 王晖, 陈玉龙 filed Critical 深圳大学
Priority to PCT/CN2013/086812 priority Critical patent/WO2015066908A1/zh
Publication of WO2015066908A1 publication Critical patent/WO2015066908A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/06Systems for the simultaneous transmission of one television signal, i.e. both picture and sound, by more than one carrier
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06KGRAPHICAL DATA READING; PRESENTATION OF DATA; RECORD CARRIERS; HANDLING RECORD CARRIERS
    • G06K7/00Methods or arrangements for sensing record carriers, e.g. for reading patterns
    • G06K7/10Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation
    • G06K7/10009Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves
    • G06K7/10316Methods or arrangements for sensing record carriers, e.g. for reading patterns by electromagnetic radiation, e.g. optical sensing; by corpuscular radiation sensing by radiation using wavelengths larger than 0.1 mm, e.g. radio-waves or microwaves using at least one antenna particularly designed for interrogating the wireless record carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N7/00Television systems
    • H04N7/08Systems for the simultaneous or sequential transmission of more than one television signal, e.g. additional information signals, the signals occupying wholly or partially the same frequency band, e.g. by time division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/18Self-organising networks, e.g. ad-hoc networks or sensor networks

Definitions

  • the invention belongs to the field of wireless mobile communication, and in particular relates to a method for transmitting and receiving data of a wireless multi-hop network based on a smart antenna technology.
  • the omnidirectional antenna has the same gain in all directions, 360
  • the horizontal radiation mode is very beneficial to the installation of wireless nodes, and can ensure effective communication of nodes and avoid blind spots.
  • the omnidirectional antenna technology is relatively mature and the price is relatively cheap, it has promoted the large-scale application of omnidirectional antennas.
  • the omnidirectional antenna consumes most of the valuable energy in an ineffective direction, and the signal coverage is much smaller than that of the directional antenna and the smart antenna.
  • Figure 1 shows the coverage of omnidirectional antennas and smart antennas. As shown in Figure 1, with omnidirectional antennas, packets need to be redirected more times to reach the destination, resulting in longer end-to-end delays.
  • the directional antenna Compared with the omnidirectional antenna, the directional antenna has relatively concentrated energy and high gain, which is suitable for long-distance point-to-point communication. At the same time, due to its directionality and strong anti-interference ability, it can realize spatial separation of channels and increase spatial multiplexing. Increase network capacity.
  • the use of a directional antenna not only ensures communication quality but also saves energy in an ineffective direction.
  • the directional antenna is more suitable for the case where the mobility of the network node is relatively low. It cannot flexibly change the direction of the antenna according to the direction of the signal, and the directional antenna will have a blind zone problem, as shown in the figure. 2 is shown.
  • the smart antenna not only has all the advantages of the directional antenna, but also the beam formed by the antenna can be flexibly changed according to the change of the desired angle and the interference angle.
  • the prior art cannot solve the contradiction between node coverage, communication quality and communication efficiency and communication blind zone.
  • the purpose of the embodiments of the present invention is to solve the antenna coverage, communication quality, communication efficiency, and communication dead zone existing in the prior art.
  • the problem is to provide a wireless multi-hop network data transmission method based on smart antenna technology and a wireless multi-hop network data receiving method based on smart antenna technology, which can improve nodes Coverage, communication quality and communication efficiency, effectively reducing communication blind spots.
  • the embodiment of the present invention is implemented by the method for transmitting data of a wireless multi-hop network based on a smart antenna technology, including the following steps:
  • Step a1 obtaining target address information from the data packet to be sent
  • Step a2 determining, according to the acquired target address information, a target node among all the coverage nodes covered by the transmitting node;
  • Step a3 determining a desired angle and an interference angle according to the determined target node and other coverage nodes covered by the transmitting node;
  • Step a4 Calculating a weight vector of the adaptive beamforming according to the determined desired angle and the interference angle, so that the main lobe is aligned with the desired signal, and the zero point is aligned with the interference signal;
  • Step a5 weighting the data packet according to the weight vector of the adaptive beamforming and transmitting the data packet to the target node.
  • Another object of embodiments of the present invention is to provide A wireless multi-hop network data receiving method based on smart antenna technology, comprising the following steps:
  • step b1 the target node receives a data packet including at least two signal components
  • step b2 determining a desired angle and an interference angle according to a next hop address in each signal component and an address of the target node
  • Step b3 Calculating the weight vector of the adaptive beamforming according to the determined desired angle and the interference angle, so that the main lobe is aligned with the desired signal, and the zero point is aligned with the interference signal;
  • step b4 the received data packet is processed according to the weight vector of the adaptive beamforming.
  • the weight vector of the adaptive beamforming is calculated according to the determined desired angle and the interference angle, the main lobe is aligned with the desired signal, and the zero point is aligned with the interference signal, thereby realizing a wireless multi-hop network data transmission method based on the smart antenna technology. It can improve node coverage, communication quality and communication efficiency, and effectively reduce communication blind spots.
  • FIG. 1 is a schematic diagram of coverage of an omnidirectional antenna and a smart antenna provided by the prior art
  • FIG. 2 is a schematic diagram of a 'blind zone' problem occurring when using a smart antenna provided by the prior art
  • FIG. 3 is a flowchart of implementing a method for transmitting data of a wireless multi-hop network based on a smart antenna technology according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of finding, by a circumferential loop, all coverage nodes covered by a transmitting node according to an embodiment of the present invention
  • FIG. 5 is a flowchart of implementing a wireless multi-hop network data receiving method based on a smart antenna technology according to an embodiment of the present invention
  • FIG. 6 is a simulation scene diagram provided by an embodiment of the present invention.
  • FIG. 7 is a simulation diagram of a bit error rate when a receiving node uses different antennas according to an embodiment of the present invention.
  • FIG. 8 is a simulation diagram of throughput when a receiving node uses different antennas according to an embodiment of the present invention.
  • FIG. 9 is an end-to-end delay when an omnidirectional antenna and a smart antenna are used in a multi-hop scenario according to an embodiment of the present invention.
  • FIG. 10 is a signal to noise ratio when an omnidirectional antenna and a smart antenna are used in a multi-hop scenario according to an embodiment of the present invention.
  • the weight vector of the adaptive beamforming is calculated according to the determined desired angle and the interference angle, the main lobe is aligned with the desired signal, and the zero point is aligned with the interference signal, thereby realizing a wireless based on the smart antenna technology.
  • Multi-hop network data transmission method Multi-hop network data transmission method.
  • step S301 the target address information is obtained from the data packet to be sent.
  • step S302 determining a target node among all the coverage nodes covered by the transmitting node according to the acquired target address information
  • step S303 determining a desired angle and an interference angle according to the determined target node and other coverage nodes covered by the transmitting node;
  • step S304 Calculating the weight vector of the adaptive beamforming according to the determined desired angle and the interference angle, so that the main lobe is aligned with the desired signal, and the zero point is aligned with the interference signal;
  • step S305 the data packet is weighted according to the weight vector of the adaptive beamforming and then transmitted to the target node.
  • the smart antenna of the transmitting node is from the MAC
  • the layer acquires the data packet to be sent and sends the data packet to the target node through the physical layer.
  • step S302 includes:
  • Step S3021 Comparing the addresses of all the coverage nodes with the target address within the coverage of the transmitting node;
  • step S3022 If the address of a coverage node is the same as the destination address obtained in the data packet, determining that the coverage node is the target node;
  • step S3023 In this case, if the addresses of all the coverage nodes are different from the destination addresses obtained in the data packet, one of the coverage nodes is selected as the target node of the next hop according to the shortest path criterion.
  • Step S303 includes:
  • Step S3031 determining a determined angle of the target node relative to the transmitting node as a desired angle
  • Step S3032 The angles of other coverage nodes covered by the transmitting node with respect to the transmitting node are taken as interference angles.
  • step S302 and step S303 the information of all the coverage nodes covered by the smart antenna of the transmitting node is cyclically circulated, which can most effectively avoid the 'blind zone', but sacrifices certain communication efficiency; in addition, the transmitting node smart antenna can also be pre-arranged.
  • the information of all the covered nodes covered is stored in the coverage node information table, where the information of all the coverage nodes covered by the transmitting node is searched from the stored coverage node information table, which can improve communication efficiency, but update the coverage node.
  • the frequency of the information table determines the probability of the occurrence of a 'blind zone'. The more frequently the coverage information fee is updated, the more the 'blind zone' can be avoided.
  • the information of the node includes at least a node address and an angle, and the node address is unique in the entire network, and the angle is unique within the coverage of the smart antenna.
  • the overlay node information table it also searches for information of all target nodes covered by the smart antenna by circularly.
  • the RTS (Request) To Send, request to send) continually directional transmission in the circumferential order until all areas 360 degrees around the smart antenna are scanned.
  • the 360-degree area around the smart antenna is equally divided into 8 sectors.
  • the smart antenna sends the RTS from sector 1 and the CTS returned by the corresponding destination node (Cl To Send, allow sending).
  • the RTS is cyclically transmitted in a circumferential order until the RTS transmission and CTS of the 8th sector are completed. Receive. In this way, information about all target nodes covered by the smart antenna, including the node address and angle, can be obtained.
  • step S303 The method for transmitting data of the wireless multi-hop network based on the smart antenna technology further includes:
  • Step S3041 And determining whether the determined desired angle and the interference angle are the same as the expected angle and the interference angle of the last use. If the same, the original weight vector of the adaptive beamforming is kept unchanged, and the process proceeds to step S305, otherwise the step is entered. S304.
  • FIG. 5 The implementation flow of the wireless multi-hop network data receiving method based on the smart antenna technology provided by the embodiment of the present invention is shown in the following:
  • step S501 the target node receives a data packet including at least two signal components
  • step S502 determining a desired angle and an interference angle according to a next hop address in each signal component and an address of the target node
  • step S503 Calculating the weight vector of the adaptive beamforming according to the determined desired angle and the interference angle, so that the main lobe is aligned with the desired signal, and the zero point is aligned with the interference signal;
  • step S504 the received data packet is processed according to the weight vector of the adaptive beamforming.
  • only one of the at least two signal components included in the received data packet is a desired signal, and the remaining signal components are interference signals.
  • step S502 includes:
  • Step S5021 If the next hop address of the signal component is the same as the address of the target node, determining that the signal component is a desired signal, and the angle of the transmitting node transmitting the signal component relative to the target node is a desired angle;
  • Step S5022 If the next hop address of the signal component is different from the address of the target node, it is determined that the signal component is an interference signal, and the angle of the transmitting node transmitting the signal component with respect to the target node is an interference angle.
  • the angle of the transmitting node relative to the target node may be estimated according to the coordinates of the transmitting node, and the angle of the transmitting node relative to the target node may also be estimated according to the feature code included in the received signal component.
  • step S502 The method for receiving data of the wireless multi-hop network based on the smart antenna technology further includes:
  • Step S5031 And determining whether the determined desired angle and the interference angle are the same as the expected angle and the interference angle of the previous use. If the same, the original adaptive beamforming weight vector is kept unchanged, and the process proceeds to step S504, otherwise the step is entered. S503.
  • the bit error rate is the lowest, and only when the interfering node passes between the transmitting node and the receiving node, the bit error rate is obtained. At other times, the bit error rate is zero.
  • the adaptive beamforming algorithm forms a null in the interference direction and suppresses the interference signal.
  • the directional antenna only forms the main lobe in the desired direction, and the interference signal cannot be suppressed in the interference direction. Therefore, when the interfering node is relatively close to the receiving node, some interference is caused to the receiving node, and the bit error rate is increased.
  • the gain of the omnidirectional antenna in all directions is the same, so the interference nodes are gradually approaching, and the bit error rate is gradually increasing.
  • the throughput of the smart antenna is the highest because its bit error rate is the lowest, that is to say it is the least interfered. From Figure 9 and Figure 10 It can be seen that the bit error rate and throughput are just inversely proportional. When the bit error rate is low, the throughput is high. When the bit error rate is high, the throughput is low or even zero. This is because the smart antenna can form a main lobe in the desired signal direction to obtain a high antenna gain, form a null in the interference direction, the antenna gain is small, suppress the interference signal, reduce the system interference, and improve the output signal-to-noise ratio of the array, that is, improve.
  • the anti-interference ability of the system can weaken multipath interference, and can also realize spatial separation of channels, increase spatial multiplexing, and improve network capacity.
  • the weight vector of the adaptive beamforming is calculated according to the determined desired angle and the interference angle, the main lobe is aligned with the desired signal, and the zero point is aligned with the interference signal, thereby realizing a wireless based on the smart antenna technology.
  • Multi-hop network data transmission method It can improve node coverage, communication quality and communication efficiency, and effectively reduce communication blind spots.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • General Health & Medical Sciences (AREA)
  • Artificial Intelligence (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Transmission System (AREA)

Abstract

本发明适用于无线移动通信领域,提供了一种基于智能天线技术的无线多跳网络数据发送、接收方法,所述数据发送方法包括: a1 ,从要发送的数据包中获取目标地址信息; a2 ,根据获取的目标地址信息在发射节点所覆盖的所有覆盖节点中确定目标节点; a3 ,根据确定的目标节点和发射节点所覆盖的其他覆盖节点确定期望角度和干扰角度; a4 ,根据确定的期望角度和干扰角度来计算自适应波束成型的权值向量,使主瓣对准期望信号,零点对准干扰信号; a5 ,根据自适应波束成型的权值向量将数据包加权后发送给目标节点。在本发明提供的基于智能天线技术的无线多跳网络数据发送方法能提高节点覆盖范围、通信质量和通信效率,有效降低通信盲区。

Description

基于智能天线技术的无线多跳网络数据发送、接收方法 Technical Field
本发明属于无线移动通信领域,尤其涉及一种基于智能天线技术的无线多跳网络数据发送、接收方法。
Background Art
当今的信息社会正从个人计算机时代进入到互联网时代,在这个时代,用户能够随时随地根据需求使用各种电子平台来访问所需要的各种信息。无线网络成为互联接入的最简单解决方案,无线领域在过去十几年间迅速发展,用户数量急剧增加。由于频率资源有限,众多的用户造成了大量的干扰,从而严重地影响了网络的性能。另外,随着网络业务的快速增长,特别是语音、视频等多媒体业务的应用日益增多,对无线网络的容量和带宽提出了更高的要求。因此,如何最小化网络干扰以及提高网络容量和带宽是当前无线网络的重大课题。
现有的无线通信大多数都是采用全向天线和扇形天线(即定向天线),全向天线在各个方向上增益完全相同,具有 360 度的水平辐射模式,非常有利于无线节点的安装,并且能够保证节点的有效通信,避免盲区问题。另外,由于全向天线技术比较成熟,价格也相对便宜,促使了全向天线的大规模应用。然而,在点对点通信的时候,全向天线把宝贵的能量大部分耗费在无效的方向上,并且信号的覆盖范围比定向天线和智能天线的小很多。图 1 示出了全向天线与智能天线的覆盖范围,如图 1 所示,采用全向天线,数据包需要跳转更多次才能到达目的地,从而导致了更长的端到端延迟。
相对于全向天线,定向天线的能量比较集中,增益比较高,适合于远距离点对点通信,同时由于具有方向性,抗干扰能力比较强,可以实现信道在空间上的分离,增加空间复用,提高网络容量。当节点需要在某个方向上长期通信时,使用定向天线不但能够保证通信质量而且节省在无效方向上的能量。但是定向天线比较适用于网络节点移动性比较低的情况,它不能够根据信号的方向灵活地改变天线的方向,并且使用定向天线将会出现盲区问题,如图 2 所示。节点 A 和 B 正在通信,但是节点 B 的旁瓣增益很小,无法接收到节点 C 的数据包。智能天线不仅具备了定向天线的所有优点,而且天线形成的波束能够灵活地根据期望角度和干扰角度的改变而改变。
智能天线的使用带来了诸多优点,但是由于其方向性也带来了'盲区'( Deafness )现象,这种现象是使用智能天线时最常见的问题,除了天线的主瓣方向外,其他方面的增益非常小,无法正常收发数据包。因此,在本发明中,我们提出了一个解决盲区问题的方案
综上所述,现有技术无法解决节点覆盖范围、通信质量和通信效率与通信盲区之间的矛盾。
Technical Problem
本发明实施例的目的旨在解决现有技术存在的 天线覆盖范围、通信质量和通信效率与通信盲区 之间的问题,提供一种基于智能天线技术的无线多跳网络数据发送方法和一种基于智能天线技术的无线多跳网络数据接收方法,能提高节点 覆盖范围、通信质量和通信效率,有效降低通信盲区 。
Technical Solution
本发明实施例是这样实现的,一种基于智能天线技术的无线多跳网络数据发送方法,包括下述步骤:
步骤 a1 ,从要发送的数据包中获取目标地址信息;
步骤 a2 ,根据获取的目标地址信息在发射节点所覆盖的所有覆盖节点中确定目标节点;
步骤 a3 ,根据确定的目标节点和发射节点所覆盖的其他覆盖节点确定期望角度和干扰角度;
步骤 a4 ,根据确定的期望角度和干扰角度来计算自适应波束成型的权值向量,使主瓣对准期望信号,零点对准干扰信号;
步骤 a5 ,根据自适应波束成型的权值向量将数据包加权后发送给目标节点。
本发明实施例的另一目的在于提供 一种基于智能天线技术的无线多跳网络数据接收方法,包括下述步骤:
步骤 b1 中,目标节点接收到包含至少两个信号成份的数据包;
步骤 b2 中,根据各信号成份中的下一跳地址与目标节点的地址确定期望角度和干扰角度;
步骤 b3 中,根据确定的期望角度和干扰角度计算自适应波束成型的权值向量,使主瓣对准期望信号,零点对准干扰信号;
步骤 b4 中,根据自适应波束成型的权值向量处理接收到的数据包。
Advantageous Effects
在本发明实施例中, 根据确定的期望角度和干扰角度来计算自适应波束成型的权值向量,使主瓣对准期望信号,零点对准干扰信号,实现了一种基于智能天线技术的无线多跳网络数据发送方法, 能提高节点 覆盖范围、通信质量和通信效率,有效降低通信盲区 。
Description of Drawings
图 1 是现有技术提供的全向天线与智能天线的覆盖范围的示意图;
图 2 是现有技术提供的使用智能天线时出现的'盲区'问题的示意图;
图 3 是本发明 实施例提供的 基于智能天线技术的无线多跳网络数据发送方法的实现流程图;
图 4 是本发明 实施例提供的 按圆周循环查找发射节点所覆盖的所有覆盖节点的示意图;
图 5 是本发明 实施例提供的 基于智能天线技术的无线多跳网络数据接收方法的实现流程图;
图 6 是本发明 实施例提供的仿真场景图;
图 7 是本发明 实施例提供的 接收节点使用不同天线时的误码率仿真图;
图 8 是本发明 实施例提供的 接收节点使用不同天线时的吞吐量仿真图;
图 9 是本发明 实施例提供的在多跳场景下使用全向天线和智能天线时的端到端延迟;;
图 10 是本发明 实施例提供的在多跳场景下使用全向天线和智能天线时的信噪比。
Mode for Invention
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
在本发明实施例中,根据确定的期望角度和干扰角度来计算自适应波束成型的权值向量,使主瓣对准期望信号,零点对准干扰信号,实现了一种基于智能天线技术的无线多跳网络数据发送方法。
图 3 示出了本发明实施例提供的基于智能天线技术的无线多跳网络数据发送方法的实现流程,详述如下:
在步骤 S301 中,从要发送的数据包中获取目标地址信息;
在步骤 S302 中,根据获取的目标地址信息在发射节点所覆盖的所有覆盖节点中确定目标节点;
在步骤 S303 中,根据确定的目标节点和发射节点所覆盖的其他覆盖节点确定期望角度和干扰角度;
在步骤 S304 中,根据确定的期望角度和干扰角度来计算自适应波束成型的权值向量,使主瓣对准期望信号,零点对准干扰信号;
在步骤 S305 中,根据自适应波束成型的权值向量将数据包加权后发送给目标节点。
在本发明实施例中,发射节点的智能天线从 MAC 层获取要发送的数据包,通过物理层向目标节点发送数据包。
具体地,步骤 S302 包括:
步骤 S3021 ,在发射节点的覆盖范围内,将所有覆盖节点的地址与目标地址相比较;
在步骤 S3022 ,如果有一个覆盖节点的地址与数据包中获取的目标地址相同,则确定该覆盖节点为目标节点;
在步骤 S3023 这,如果所有覆盖节点的地址与数据数据包中获取的目标地址均不相同,则根据最短路径准则选择其中的一个覆盖节点作为下一跳的目标节点。
步骤 S303 包括:
步骤 S3031 ,将确定的目标节点相对于发射节点的角度作为期望角度;
步骤 S3032 ,将发射节点所覆盖的其他覆盖节点相对于发射节点的角度均作为干扰角度。
在本发明实施例中,在步骤 S302 和步骤 S303 中,可是按圆周循环查找发射节点智能天线所覆盖的所有覆盖节点的信息,这样做能最有效地避免'盲区',但会牺牲一定的通信效率;另外,也可以预先将该发射节点智能天线所覆盖的所有覆盖节点的信息存储到覆盖节点信息表中,这里就从存储的覆盖节点信息表中查找发射节点所覆盖的所有覆盖节点的信息,这样做能提高通信效率,但更新该覆盖节点信息表的频率决定了出现'盲区'的概率,该覆盖信息费更新的越频繁,则越能避免出现'盲区'。这里,节点的信息至少包括节点地址和角度,该节点地址在全网络中唯一,该角度则在该智能天线覆盖范围内唯一。更新覆盖节点信息表时,也是通过按按圆周循环查找智能天线所覆盖的所有目标节点的信息。
具体地,按圆周循环查找发射节点智能天线所覆盖的所有覆盖节点的信息时,将 RTS ( Request To Send ,请求发送)连续地按照圆周顺序定向发送,直到扫描完智能天线周围 360 度的所有区域。下面以一个例子来详细说明,如图 4 所示,假设将智能天线周围 360 度的区域均分为 8 个扇区。初始时,智能天线从扇区 1 开始发送 RTS ,并接对应目标节点返回的 CTS ( Clear To Send ,允许发送)。接着,按照圆周顺序循环发送 RTS ,直至完成第 8 个扇区的 RTS 发送和 CTS 接收。这样,就可以的得到该智能天线所覆盖的所有目标节点的信息,包括节点地址和角度。
另外,为了减少不必要的根据确定的期望角度和干扰角度计算自适应波束成型的权值向量的次数,作为本发明的一个优先实施例,在步骤 S303 之后,该基于智能天线技术的无线多跳网络数据发送方法还包括:
步骤 S3041 ,判断所确定的期望角度和干扰角度与上一次使用的期望角度和干扰角度是否相同,如果相同则保持原来的自适应波束成型的权值向量不变,进入步骤 S305 ,否则进入步骤 S304 。
图 5 示出了本发明实施例提供的基于智能天线技术的无线多跳网络数据接收方法的实现流程,详述如下:
在步骤 S501 中,目标节点接收到包含至少两个信号成份的数据包;
在步骤 S502 中,根据各信号成份中的下一跳地址与目标节点的地址确定期望角度和干扰角度;
在步骤 S503 中,根据确定的期望角度和干扰角度计算自适应波束成型的权值向量,使主瓣对准期望信号,零点对准干扰信号;
在步骤 S504 中,根据自适应波束成型的权值向量处理接收到的数据包。
在本发明实施例中,接收到的数据包中包含的至少两个信号成份中仅有一个信号成份为期望信号,其余的信号成份均为干扰信号。
具体地,步骤 S502 包括:
步骤 S5021 ,如果信号成份的下一跳地址与目标节点的地址相同,则确定该信号成份为期望信号,发射该信号成份的发射节点相对于目标节点的角度则为期望角度;
步骤 S5022 ,如果信号成份的下一跳地址与目标节点的地址不相同,则确定该信号成份为干扰信号,发射该信号成份的发射节点相对于目标节点的角度则为干扰角度。
在本发明实施例中,可以根据发射节点坐标估算出发射节点相对于目标节点的角度,也可以根据接收到的信号成份中包含的特征码估算发射节点相对于目标节点的角度。
为了减少不必要的计算自适应波束成型权值向量的次数,作为本发明的一个优先实施例,在步骤 S502 之后,该基于智能天线技术的无线多跳网络数据接收方法还包括:
步骤 S5031 ,判断所确定的期望角度和干扰角度与上一次使用的期望角度和干扰角度是否相同,如果相同则保持原来的自适应波束成型的权值向量不变,进入步骤 S504 ,否则进入步骤 S503 。
我们通过一个实验得到了当接收节点使用不同天线时的误码率图,仿真场景如图 6 所示,在网络中只有三个节点,分别为:干扰节点 jam 、接收节点 rx 和发射节点 tx ,目的是为了测试全向天线、定向天线以及智能天线的抗干扰能力。干扰节点 jam 和发射节点 tx 同时向接收节点 rx 发送数据包,发射节点 tx 和接收节点 rx 固定不动,而干扰节点 jam 沿着预先设置好的轨迹运动,先慢慢地接近接收节点 rx ,再慢慢地远离接收节点接收节点 rx 。通过仿真得到的误码率如图 7 所示,可以很明显的看出当使用智能天线时,误码率是最低的,只有当干扰节点经过发射节点和接收节点中间的时候才有误码率,其它时候的误码率都为零,这是因为自适应波束形成算法在干扰方向形成零陷,抑制了干扰信号。定向天线只在期望方向上形成主瓣,在干扰方向上无法抑制干扰信号,因此当干扰节点比较靠近接收节点时,对接收节点造成了一些干扰,误码率有所上升。全向天线在各个方向上的增益都是相同的,所以干扰节点的逐渐接近,误码率也随着逐渐上升。
从图 8 可以看到,智能天线的吞吐量是最高的,因为它的误码率是最低的,也就是说它受到的干扰是最少的。从图 9 和图 10 可以看到,误码率和吞吐量刚好成反比,当误码率低时,吞吐量则高,当误码率高时,吞吐量则低,甚至为零。这是因为智能天线能够在期望信号方向形成主瓣获得很高的天线增益,在干扰方向形成零陷,天线增益很小,抑制干扰信号,降低系统干扰,提高阵列的输出信噪比,即提高系统的抗干扰能力,削弱多径干扰,也可以实现信道在空间上的分离,增加空间复用,提高网络容量。
在本发明实施例中,根据确定的期望角度和干扰角度来计算自适应波束成型的权值向量,使主瓣对准期望信号,零点对准干扰信号,实现了一种基于智能天线技术的无线多跳网络数据发送方法, 能提高节点 覆盖范围、通信质量和通信效率,有效降低通信盲区 。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种基于智能天线技术的无线多跳网络数据发送方法,其特征在于,所述方法包括下述步骤:
    步骤 a1 ,从要发送的数据包中获取目标地址信息;
    步骤 a2 ,根据获取的目标地址信息在发射节点所覆盖的所有覆盖节点中确定目标节点;
    步骤 a3 ,根据确定的目标节点和发射节点所覆盖的其他覆盖节点确定期望角度和干扰角度;
    步骤 a4 ,根据确定的期望角度和干扰角度来计算自适应波束成型的权值向量,使主瓣对准期望信号,零点对准干扰信号;
    步骤 a5 ,根据自适应波束成型的权值向量将数据包加权后发送给目标节点。
  2. 如权利要求 1 所述的方法,其特征在于,更优地,所述步骤 a2 包括:
    步骤 a21 ,在发射节点的覆盖范围内,将所有覆盖节点的地址与目标地址相比较;
    在步骤 a22 ,如果有一个覆盖节点的地址与数据包中获取到的目标地址相同,则确定该覆盖节点为目标节点;
    在步骤 a23 ,如果所有覆盖节点的地址与数据数据包中获取的目标地址均不相同,则根据最短路径准则选择其中的一个覆盖节点作为下一跳的目标节点。
  3. 如权利要求1 所述的方法,其特征在于,所述步骤 a3 包括:
    步骤 a31 ,将确定的目标节点相对于发射节点的角度作为期望角度;
    步骤 a32 ,将发射节点所覆盖的其他覆盖节点相对于发射节点的角度均作为干扰角度。
  4. 如权利要求 1 所述的方法,其特征在于,在所述步骤 a2 和步骤 a3 中,按圆周循环查找发射节点所覆盖的所有覆盖节点的信息。
  5. 如权利要求1 所述的方法,其特征在于,预先将发射节点所覆盖的所有覆盖节点的信息存储到覆盖节点信息表中,所述步骤 a2 和步骤 a3 从存储的覆盖节点信息表中查找发射节点所覆盖的所有覆盖节点的信息。
  6. 如权利要求 1 至 5 任一项所述的方法,其特征在于,在所述步骤 a3 之后,所述方法还包括:
    步骤 a41 ,判断所确定的期望角度和干扰角度与上一次使用的期望角度和干扰角度是否相同,如果相同则保持原来的自适应波束成型的权值向量不变,进入步骤 a5 ,否则进入步骤 a4 。
  7. 一种基于智能天线技术的无线多跳网络数据接收方法,其特征在于,所述方法包括下述步骤:
    步骤 b1 中,目标节点接收到包含至少两个信号成份的数据包;
    步骤 b2 中,根据各信号成份中的下一跳地址与目标节点的地址确定期望角度和干扰角度;
    步骤 b3 中,根据确定的期望角度和干扰角度计算自适应波束成型的权值向量,使主瓣对准期望信号,零点对准干扰信号;
    步骤 b4 中,根据自适应波束成型的权值向量处理接收到的数据包。
  8. 如权利要求 7 所述的方法,其特征在于,更优地,所述步骤 b2 包括:
    步骤 b21 ,如果信号成份的下一跳地址与目标节点的地址相同,则确定该信号成份为期望信号,发射该信号成份的发射节点相对于目标节点的角度则为期望角度;
    步骤 b22 ,如果信号成份的下一跳地址与目标节点的地址不相同,则确定该信号成份为干扰信号,发射该信号成份的发射节点相对于目标节点的角度则为干扰角度。
  9. 如权利要求 8 所述的方法,其特征在于,根据发射节点坐标估算出发射节点相对于目标节点的角度或根据接收到的信号成份中包含的特征码估算发射节点相对于目标节点的角度。
  10. 如权利要求 7 至 9 任一项所述的方法,其特征在于,所述在步骤 b2 之后,该方法还包括:
    步骤
    b31
    ,判断所确定的期望角度和干扰角度与上一次使用的期望角度和干扰角度是否相同,如果相同则保持原来的自适应波束成型的权值向量不变,进入步骤
    b4
    ,否则进入步骤
    b3
PCT/CN2013/086812 2013-11-10 2013-11-10 基于智能天线技术的无线多跳网络数据发送、接收方法 WO2015066908A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/086812 WO2015066908A1 (zh) 2013-11-10 2013-11-10 基于智能天线技术的无线多跳网络数据发送、接收方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/086812 WO2015066908A1 (zh) 2013-11-10 2013-11-10 基于智能天线技术的无线多跳网络数据发送、接收方法

Publications (1)

Publication Number Publication Date
WO2015066908A1 true WO2015066908A1 (zh) 2015-05-14

Family

ID=53040804

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086812 WO2015066908A1 (zh) 2013-11-10 2013-11-10 基于智能天线技术的无线多跳网络数据发送、接收方法

Country Status (1)

Country Link
WO (1) WO2015066908A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816115B1 (en) * 2003-01-31 2004-11-09 Bbnt Solutions Llc Systems and methods for antenna selection in an ad-hoc wireless network
CN101651982A (zh) * 2009-08-07 2010-02-17 重庆邮电大学 一种基于New-Memetic算法的波束成型方法
CN102355290A (zh) * 2011-07-05 2012-02-15 深圳大学 基于智能天线技术的无线多跳网络数据发送、接收方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6816115B1 (en) * 2003-01-31 2004-11-09 Bbnt Solutions Llc Systems and methods for antenna selection in an ad-hoc wireless network
CN101651982A (zh) * 2009-08-07 2010-02-17 重庆邮电大学 一种基于New-Memetic算法的波束成型方法
CN102355290A (zh) * 2011-07-05 2012-02-15 深圳大学 基于智能天线技术的无线多跳网络数据发送、接收方法

Similar Documents

Publication Publication Date Title
KR101076906B1 (ko) 기반 구조 컴포넌트들 상호 간의 통신 방법, 물리적 컴퓨터 판독가능 저장매체 및 기반 구조 컴포넌트
US7236470B1 (en) Tracking multiple interface connections by mobile stations
US7672274B2 (en) Mobility support via routing
US7957741B2 (en) Token-based receiver diversity
JP5448226B2 (ja) 複数の無線ネットワークの共存
EP1482654A2 (en) Using directional antennas to enhance throughput in wireless networks
US20070047484A1 (en) Location tracking in a wireless communication system using power levels of packets received by repeaters
WO2012021132A1 (en) Combining bandwidth aware routing with channel selection and channel switching in a multi-hop wireless home network
KR20100123632A (ko) 스플릿―플레인 무선 네트워크 아키텍처
CN104639289B (zh) 一种wlan中空闲节点辅助的定向接入控制方法
CN102355290B (zh) 基于智能天线技术的无线多跳网络数据发送、接收方法
US20090088075A1 (en) Method and System for Enhance Roaming and Connectivity in MIMO-Based Systems
US6965605B1 (en) Split access point
US20060215594A1 (en) Radio lan system, diversity apparatus, and radio lan terminal
JP2011514759A (ja) ミリ波wpanにおける干渉を回避しチャネル効率を高めるメカニズム
TW201937893A (zh) 在分散式網路中的動態空間重用
WO2015066908A1 (zh) 基于智能天线技术的无线多跳网络数据发送、接收方法
Athwani et al. Resource discovery in mobile cloud computing: A clustering based approach
Alsharbaty et al. An enhanced industrial wireless communication network for hard real time performance substation automation purposes
Mahadevaswamy et al. Delay aware and load balanced multi-path routing in wireless sensor networks
Luo et al. Virtual resource allocation based on link interference in cayley wireless data centers
Sun et al. A survey on multi-path routing protocols in wireless multimedia sensor networks
Jain et al. Mitigating deafness in multiple beamforming antennas
WO2017057897A1 (ko) 통신 시스템에서 상향링크 데이터를 처리하는 방법 및 장치
Majumder et al. Directional mac protocols in ad-hoc networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896901

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13896901

Country of ref document: EP

Kind code of ref document: A1