WO2015065077A1 - Apparatus and method for configuring reference signal in wireless communication system to support small cells - Google Patents

Apparatus and method for configuring reference signal in wireless communication system to support small cells Download PDF

Info

Publication number
WO2015065077A1
WO2015065077A1 PCT/KR2014/010330 KR2014010330W WO2015065077A1 WO 2015065077 A1 WO2015065077 A1 WO 2015065077A1 KR 2014010330 W KR2014010330 W KR 2014010330W WO 2015065077 A1 WO2015065077 A1 WO 2015065077A1
Authority
WO
WIPO (PCT)
Prior art keywords
csi
resource
configuration information
configuration
sequence
Prior art date
Application number
PCT/KR2014/010330
Other languages
French (fr)
Korean (ko)
Inventor
윤성준
Original Assignee
주식회사 아이티엘
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아이티엘 filed Critical 주식회사 아이티엘
Publication of WO2015065077A1 publication Critical patent/WO2015065077A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/24Radio transmission systems, i.e. using radiation field for communication between two or more posts
    • H04B7/26Radio transmission systems, i.e. using radiation field for communication between two or more posts at least one of which is mobile
    • H04B7/2603Arrangements for wireless physical layer control
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0023Interference mitigation or co-ordination

Definitions

  • the present invention relates to wireless communication, and more particularly, to an apparatus and method for configuring a reference signal in a wireless communication system supporting a small cell.
  • next-generation communication systems such as LTE-A (Advanced)
  • F1 macro cell
  • F2 small cell
  • F1 macro cell
  • F2 small cell
  • the small cell may be considered both in the frequency band which is the coverage of the macro cell and in the frequency band other than the coverage of the macro cell, and may be provided in both an indoor environment (in a cube) and an outdoor environment (out of a cube).
  • an ideal or non-ideal backhaul network may be supported between the macro cell and the small cell and / or between the small cells.
  • the small cell may be provided in both a low density deployment environment and / or a high density deployment environment.
  • the terminal may discover a small cell capable of providing a service to itself among a plurality of small cells distributed in the macro cell. This operation is called small cell discovery.
  • the small cell transmits a discovery signal to the terminal so that the small cell can be found by the terminal, and the terminal can discover the small cell using the discovery signal. If a large amount of resources are allocated to transmit a discovery signal, the detection accuracy of the discovery signal may be increased, but there is a concern that the overhead is increased and power is wasted in a power-sensitive small cell. On the contrary, if a small resource is allocated to transmit a discovery signal, the overhead is reduced, while the detection accuracy of the discovery signal may be lowered.
  • An object of the present invention is to provide an apparatus and method for configuring a reference signal in a wireless communication system supporting a small cell.
  • Another object of the present invention is to provide an apparatus and method for configuring a CSI-RS as a discovery signal.
  • Another technical problem of the present invention is to provide an apparatus and method for transmitting a CSI-RS using four resource elements in a time-frequency resource region corresponding to one subframe and one RB on a time axis. have.
  • a method for transmitting a reference signal (RS) by a base station (BS) in a wireless communication system includes generating CSI-RS_DS (discovery signal) configuration information indicating patterns of channel state information (CSI) -RS configured for k small cells, and the CSI- And transmitting the RS_DS configuration information to a user equipment (UE).
  • CSI-RS_DS discovery signal
  • a base station for transmitting a reference signal (RS) in a wireless communication system.
  • the base station generates a radio resource control (RRC) for generating CSI-RS_DS (discovery signal) configuration information indicating patterns of channel state information (CSI) -RS configured for k small cells.
  • RRC radio resource control
  • a control unit and a transmission unit for transmitting the CSI-RS_DS configuration information to a user equipment (UE).
  • a method for receiving a reference signal (RS) by a user equipment (UE) in a wireless communication system includes CSI-RS_DS (discovery signal) configuration information indicating patterns of channel state information (CSI) -RS configured for k small cells from a serving base station. And receiving the CSI-RS from at least one small cell based on the CSI-RS_DS configuration information.
  • CSI-RS_DS discovery signal
  • a user equipment (UE) for receiving a reference signal (RS) in a wireless communication system receives CSI-RS_DS (discovery signal) configuration information indicating patterns of channel state information (CSI) -RS configured in k small cells from a serving base station. And a receiver configured to receive the CSI-RS from at least one small cell based on the CSI-RS_DS configuration information.
  • CSI-RS_DS channel state information
  • the sequence used to generate the CSI-RS is one orthogonal frequency division in a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis.
  • one sequence value according to one sequence index may be repeatedly mapped to two resource elements.
  • a sequence used to generate the CSI-RS is one orthogonal frequency division in a time-frequency resource region corresponding to one resource frame on one subframe and one frequency block on a time axis.
  • two sequence values according to two consecutive sequence indices may be mapped to two resource elements, respectively.
  • discovery signals having orthogonality to each other for a plurality of small cells may be transmitted.
  • these discovery signals are orthogonal to each other, interference can be minimized.
  • FIG. 1 is a diagram illustrating a communication system in which a high power node and a low power node are disposed.
  • FIG. 2 is a block diagram showing a wireless communication system to which the present invention is applied.
  • 3 and 4 schematically show the structure of a radio frame to which the present invention is applied.
  • 5A and 5B illustrate an example of a CSI-RS configuration and a CSI-RS pattern according to the number of CSI-RS antenna ports in a general CP.
  • FIG. 6 shows an example of a CSI-RS configuration and a CSI-RS pattern according to the number of CSI-RS antenna ports in an extended CP.
  • FIG. 7 is a flowchart illustrating a configuration and transmission method of a CSI-RS according to an example of the present invention.
  • FIG. 8 illustrates a CSI-RS pattern according to an example of the present invention. This is according to the CSI-RS configuration according to Table 1 or Table 2.
  • FIG 9 illustrates a CSI-RS pattern according to another example of the present invention. This is according to the CSI-RS configuration according to Table 11 or Table 12.
  • FIG. 10 is a block diagram illustrating a terminal and a base station according to an example of the present invention.
  • the present specification describes a communication network, and the work performed in the communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in a system (for example, a base station) that manages the communication network, or a terminal linked to
  • FIG. 2 is a block diagram showing a wireless communication system to which the present invention is applied.
  • the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data.
  • the wireless communication system 10 includes at least one base station (BS) 11.
  • Each base station 11 provides a communication service for a specific geographic area or frequency area and may be called a site.
  • the site may be divided into a plurality of regions 15a, 15b, and 15c, which may be called sectors, and the sectors may have different cell IDs.
  • the UE 12 may be fixed or mobile and may have a mobile station (MS), a mobile terminal (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, or a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms.
  • MS mobile station
  • MS mobile terminal
  • MT mobile terminal
  • UT user terminal
  • SS subscriber station
  • PDA personal digital assistant
  • wireless modem wireless modem
  • handheld device handheld device
  • the base station 11 generally refers to a station communicating with the terminal 12, and includes an evolved-nodeb (eNodeB), a base transceiver system (BTS), an access point, an femto base station, a femto eNodeB, and a household It may be called other terms such as a base station (Home eNodeB: HeNodeB), a relay, a remote radio head (RRH), and the like.
  • Cells 15a, 15b, and 15c should be interpreted in a comprehensive sense indicating some areas covered by the base station 11, and encompass all of the various coverage areas such as megacells, macrocells, microcells, picocells, and femtocells. to be.
  • downlink refers to a communication or communication path from the base station 11 to the terminal 12
  • uplink refers to a communication or communication path from the terminal 12 to the base station 11.
  • the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12.
  • the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11.
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single Carrier-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-FDMA OFDM-FDMA
  • OFDM-TDMA OFDM-FDMA
  • the uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme transmitted using different times or a frequency division duplex (FDD) scheme transmitted using different frequencies.
  • TDD time division duplex
  • FDD frequency division duplex
  • the layers of the radio interface protocol between the terminal and the base station are based on the lower three layers of the Open System Interconnection (OSI) model, which is well known in the communication system. It may be divided into a second layer L2 and a third layer L3. Among them, the physical layer belonging to the first layer provides an information transfer service using a physical channel.
  • OSI Open System Interconnection
  • the physical downlink control channel is a resource allocation and transmission format of a downlink shared channel (DL-SCH), a resource of an uplink shared channel (UL-SCH).
  • Resource allocation of upper layer control messages such as allocation information, random access response transmitted on a physical downlink shared channel (PDSCH), and transmission power control for individual terminals in any terminal group : TPC) can carry a set of commands.
  • a plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
  • DCI downlink control information
  • the DCI may include an uplink or downlink resource allocation field, an uplink transmission power control command field, a control field for paging, a control field for indicating a random access response (RA response), and the like.
  • 3 and 4 schematically show the structure of a radio frame to which the present invention is applied.
  • a radio frame includes 10 subframes.
  • One subframe includes two slots.
  • the time (length) of transmitting one subframe is called a transmission time interval (TTI).
  • TTI transmission time interval
  • one subframe may have a length of 1 ms
  • one slot may have a length of 0.5 ms.
  • One slot may include a plurality of symbols in the time domain.
  • the symbol in a wireless system using orthogonal frequency division multiple access (OFDMA) in downlink (DL), the symbol may be an orthogonal frequency division multiplexing (OFDM) symbol.
  • OFDM orthogonal frequency division multiplexing
  • the representation of the symbol period in the time domain is not limited by the multiple access scheme or the name.
  • the plurality of symbols in the time domain may be a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol, a symbol interval, or the like in addition to the OFDM symbol.
  • SC-FDMA Single Carrier-Frequency Division Multiple Access
  • the number of OFDM symbols included in one slot may vary depending on the length of a cyclic prefix (CP). For example, one slot may include seven OFDM symbols in the case of a normal CP, and one slot may include six OFDM symbols in the case of an extended CP.
  • CP cyclic prefix
  • a resource element (RE) represents the smallest time-frequency unit to which a modulation symbol of a data channel or a modulation symbol of a control channel is mapped.
  • a resource block (RB) is a resource allocation unit and includes time-frequency resources corresponding to 180 kHz on the frequency axis and 1 slot on the time axis.
  • a resource block pair (PBR) refers to a resource unit including two consecutive slots on the time axis.
  • a wireless communication system it is necessary to estimate an uplink channel or a downlink channel for data transmission / reception, system synchronization acquisition, channel information feedback, and the like.
  • the process of restoring a transmission signal by compensating for distortion of a signal caused by a sudden change in channel environment is called channel estimation.
  • channel estimation it is also necessary to measure the channel state (channel state) for the cell to which the terminal belongs or other cells.
  • a reference signal (RS) that is known between a terminal and a transmission / reception point is used for channel estimation or channel state measurement.
  • the channel estimate estimated using the reference signal p Is Depends on the value, so to get an accurate estimate of Needs to converge to zero.
  • the reference signal is generally transmitted by generating a signal from a sequence of reference signals.
  • the reference signal sequence one or more of various sequences having excellent correlation characteristics may be used.
  • pseudo-noise such as Constant Amplitude Zero Auto-Correlation (CAZAC) sequences such as Zadoff-Chu (ZC) sequences, m-sequences, Gold sequences, and Kasami sequences.
  • ZC Zadoff-Chu sequences
  • m-sequences m-sequences
  • Gold sequences Gold sequences
  • Kasami sequences a sequence having excellent correlation characteristics
  • reference signal sequence may be used by cyclic extension or truncation to adjust the length of the sequence, and may be various forms such as binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK). May be modulated and mapped to a resource element.
  • BPSK binary phase shift keying
  • QPSK quadrature phase shift keying
  • the downlink reference signal includes a cell-specific RS (CRS), a multimedia broadcast and multicast single frequency network (MBSFN) reference signal, a UE-specific RS (RS), and a position reference signal (PRS).
  • CRS cell-specific RS
  • MMSFN multimedia broadcast and multicast single frequency network
  • RS UE-specific RS
  • PRS position reference signal
  • CSI-RS channel state information reference signals
  • the UE-specific reference signal is a reference signal received by a specific terminal or a specific terminal group in a cell, and is mainly used for data demodulation of a specific terminal or a specific terminal group and may be called a demodulation reference signal (DMRS).
  • DMRS demodulation reference signal
  • the CSI-RS is used for channel estimation for the physical downlink shared channel (PDSCH) of the LTE-A terminal.
  • the CSI-RSs are arranged relatively sparse in the frequency domain or the time domain.
  • Channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI), etc. may be reported from the UE when necessary through estimation of CSI.
  • the CSI-RS may be transmitted through one, two, four or eight antenna ports.
  • CSI-RS is defined for the case where the frequency spacing ⁇ f between subcarriers is 15 kHz.
  • the CSI-RS sequence r l, ns (m) may be defined as in Equation 2.
  • n s is a slot number in a radio frame and l is an OFDM symbol number in a slot.
  • the m-th CSI-RS sequence is generated by normalizing the real part and the imaginary part through a pseudo-random sequence c (i), respectively.
  • c (i) may be defined by a Gold sequence of length-31.
  • c (i) may have a value of 0 or 1 as a binary pseudo-random sequence. Therefore, as shown in Equation 2, 1-2 ⁇ c (i) may represent a value of 1 or -1, and the 2m-th sequence corresponding to an even number in the real part and the odd number in the imaginary part (2m Use the +1) th sequence.
  • N C 1600
  • the initialization of the second m-sequence x 2 (i) may be initialized to different values depending on the system parameter values used in the channel or signal to which the sequence is applied. It can be expressed as.
  • the pseudo random sequence c (i) may be initialized by Equation 4 at the start of each OFDM symbol.
  • N CP has a value of 1 in a general CP and 0 in an extended CP.
  • the N ID CSI may have any one of integers from 0 to 503.
  • the N ID CSI may be a virtual cell ID (VCID) for CSI-RS when signaled from a higher layer.
  • the N ID CSI may be equal to a physical cell ID (PCID) if there is no signaling from a higher layer.
  • the CSI-RS sequence r l, ns (m) is a complex-valued modulation symbol a k used as a reference symbol on the antenna port p according to Equation 5 , l (p) can be mapped.
  • a k, l (p) is a complex modulation symbol mapped to the k th subcarrier and the l th OFDM symbol of the p th antenna port.
  • a k, l (p) is mapped by multiplying the CSI-RS sequence r l, ns (m ') and the orthogonal sequence w l'' .
  • Equation 6 Each parameter of Equation 5 may be defined by Equation 6.
  • the CSI-RS configuration includes a non-zero transmission power CSI-RS configuration indicating a pattern in which a CSI-RS is transmitted to a terminal of each cell (or transmission point (TP)), and a neighboring cell (or It may be classified into a zero transmission power CSI-RS configuration for muting a PDSCH region corresponding to CSI-RS transmission of TP).
  • Zero or one CSI-RS configuration per CSI process may be used for a terminal assuming non-zero power CSI-RS, and zero or several CSI RS configurations may be used for a terminal assuming zero power CSI-RS.
  • Information about one or more non-zero power CSI-RS configuration may be transmitted to each terminal of the corresponding cell.
  • the information on the CSI-RS configuration includes 2-bit information indicating whether the number of antenna ports (hereinafter, CSI-RS antenna ports) for transmitting non-zero power CSI-RS is any one of 1, 2, 4, and 8; 5 bit information indicating a CSI-RS pattern configurable for each number of CSI-RS antenna ports may be included.
  • Table 1 shows the mapping of the CSI-RS configuration and (k ', l'), that is, the CSI-RS pattern in Equation 6, in the general CP, and Table 2 shows the CSI-RS configuration and (k) in Equation 6 in the extended CP. ', l'), that is, mapping of the CSI-RS pattern.
  • frame structure type 1 means FDD and frame structure type 2 means TDD.
  • CSI-RS configurations are used when the number of antenna ports is 1 or 2
  • 16 CSI-RS configurations are used when the number of antenna ports is 4
  • the number of antenna ports is There are eight CSI-RS configurations when there are eight.
  • Table 2 in case of the extended CP, 28 CSI-RS configurations in total with one or two antenna ports, 14 CSI-RS configurations in total with four antenna ports, and the number of antenna ports In eight, there are a total of seven CSI-RS configurations.
  • the location of one specific resource element to which the CSI-RS is mapped may be indicated for each CSI-RS antenna port with respect to the CSI-RS configuration. That is, the location of the remaining resource elements to which the CSI-RS is mapped may be determined by Equation 6 based on the location of the one specific resource element, and thus the total CSI-RS configurable for each number of CSI-RS antenna ports. The pattern can be seen.
  • the CSI-RS is mapped to a resource element having a subcarrier index of 9 and an OFDM symbol index of 2 in the second slot.
  • the resource element indicated by Table 1 may be one of locations of resource elements to which CSI-RSs transmitted through the first CSI-RS antenna port are mapped.
  • the positions of the remaining resource elements to which the CSI-RSs transmitted through the first CSI-RS antenna port are mapped and the positions of the resource elements to which the CSI-RSs are transmitted through the remaining CSI-RS antenna port are mapped according to Equation (6). It may be located at a predetermined distance from the resource element indicated by 1.
  • 5A and 5B illustrate an example of a CSI-RS configuration and a CSI-RS pattern according to the number of CSI-RS antenna ports in a general CP.
  • FIG. 5A is a case where it can be applied in frame structure type 1 (FDD) and frame structure type 2 (TDD), and FIG. 5B shows a CSI-RS pattern when it is applicable only in frame structure type 2 (TDD).
  • numerals denoted for each resource element indicate a CSI-RS configuration number.
  • a is CSI-RS antenna port ⁇ 15, 16 ⁇
  • b is CSI-RS antenna port ⁇ 17, 18 ⁇
  • c is CSI-RS antenna port ⁇ 19, 20 ⁇
  • d is CSI-RS antenna port ⁇ 19, 20 ⁇
  • A denotes DMRS antenna ports ⁇ 7, 8, 11, 13 ⁇
  • B denotes transmission of DMRS on DMRS antenna ports ⁇ 9, 10, 12, 14 ⁇
  • C represents a resource element to which the CRS is mapped.
  • the number of CRS antenna ports is two, and the control region (shading part) is allocated to the first three OFDM symbols of the subframe.
  • the CSI-RS pattern of FIGS. 5A and 5B may be applied even when the number of CRS antenna ports is one or four or when no CRS is transmitted. In addition, the CSI-RS pattern of FIGS. 5A and 5B may be applied even when a control region is allocated to an OFDM symbol in the first 1 to 4 subframes, or when the control region is not allocated.
  • DMRS is divided into two code division multiplexing (CDM) groups (A: DMRS antenna ports ⁇ 7, 8, 11, 13 ⁇ , and B: DMRS antenna ports ⁇ 9, 10, 12, 14 ⁇ ).
  • CDM code division multiplexing
  • FIG. 6 shows an example of a CSI-RS configuration and a CSI-RS pattern according to the number of CSI-RS antenna ports in an extended CP.
  • each resource element in FIG. 6 indicates CSI-RS configuration numbers.
  • a is CSI-RS antenna port ⁇ 15, 16 ⁇
  • b is CSI-RS antenna port ⁇ 17, 18 ⁇
  • c is CSI-RS antenna port ⁇ 19, 20 ⁇
  • d is CSI-RS antenna port ⁇ 19, 20 ⁇
  • E indicates transmitting DMRS on DMRS antenna port ⁇ 7, 8 ⁇ .
  • C represents a resource element to which the CRS is mapped.
  • the number of CRS antenna ports is two, and the control region (shading part) is allocated to the first three OFDM symbols of the subframe.
  • the CSI-RS pattern of FIG. 6 may be applied even when the number of CRS antenna ports is one or four or when no CRS is transmitted. In addition, the CSI-RS pattern of FIG. 6 may be applied even when a control region is allocated to an OFDM symbol in the first 1 to 4 of the subframe, or when the control region is not allocated.
  • Table 3 shows an example of a subframe configuration in which the CSI-RS is transmitted.
  • the period (CSI-RS period, T CSI-RS ) and offset ( ⁇ CSI-RS ) of the subframe in which the CSI-RS is transmitted according to the CSI-RS subframe configuration (I CSI-RS ) Can be determined.
  • the CSI-RS subframe configuration may be configured separately for the non-zero power CSI-RS and zero-power CSI-RS.
  • the subframe for transmitting the CSI-RS needs to satisfy the equation (7).
  • the zero power CSI-RS configuration may include a 16-bit bitmap corresponding to the CSI-RS pattern when each bit has four CSI-RS antenna ports. That is, for a bit set to 1 in a 16-bit bitmap configured by a higher layer, the UE selects a resource element corresponding to the case where the number of CSI-RS antenna ports is 4 in Tables 1 and 2, and zero-power CSI-. Can be set to RS. More specifically, the most significant bit (MSB) of the 16-bit bitmap corresponds to the first CSI-RS configuration index when the number of CSI-RS antenna ports is 4 in Tables 1 and 2.
  • MSB most significant bit
  • Subsequent bits of the 16-bit bitmap correspond to the direction in which the CSI-RS configuration index increases when the number of CSI-RS antenna ports is 4 in Tables 1 and 2.
  • the resource element set to the zero power CSI-RS may mute the PDSCH corresponding to the CSI-RS transmission of the neighbor cell or the TP, and transmit the PDSCH to the resource element not set to the zero power CSI-RS.
  • the parameters transmitted in the RRC layer for zero power CSI-RS are as follows.
  • Zero power CSI-RS configuration list 16-bit bitmap composed of one CSI-RS configuration as one bit when the number of CSI-RS antenna ports is 4 in Table 1 or Table 2.
  • I CSI-RS Zero Power CSI-RS Subframe Configuration: Like the subframeConfig parameter transmitted for the non-zero power CSI-RS described below, it indicates a subframe configuration for the zero power CSI-RS.
  • the zero-power CSI-RS subframe configuration has a length of 8 bits, and the period (T CSI-RS ) and offset (T CSI-RS ) of the subframe in which the zero-power CSI-RS is used for transmission according to the zero-power CSI-RS subframe configuration ⁇ CSI-RS ) can be determined.
  • the terminal may discover a small cell capable of providing a service to itself among a plurality of small cells distributed in the macro cell. This operation is called small cell discovery.
  • the small cell transmits a discovery signal to the terminal so that the small cell can be found by the terminal, and the terminal can discover the small cell using the discovery signal. If a large amount of resources are allocated to transmit a discovery signal, the detection accuracy of the discovery signal may be increased, but there is a concern that the overhead is increased and power is wasted in a power-sensitive small cell. On the contrary, if a small resource is allocated to transmit a discovery signal, the overhead is reduced, while the detection accuracy of the discovery signal may be lowered. In consideration of this aspect, it is necessary to allocate an appropriate level of resources for the discovery signal, and in particular, a definition of how much resources are allocated is required, and information on this may be transmitted from the base station to the terminal.
  • the discovery signal may include a CSI-RS.
  • the discovery signal one or more of physical signals such as CRS, PSS / SSS, modified CRS, modified PSS / SSS, CSI-RS, or PRS may be included, but in the present embodiment, CSI-RS is included.
  • CRS CRS
  • PSS / SSS modified CRS
  • PSS / SSS modified PSS
  • CSI-RS is included.
  • the technical features of the present invention as a discovery signal using the CSI-RS, but the technical features based on the CSI-RS may be equally applicable to the case where all other physical signals are used as the discovery signal.
  • a total of two resource elements in a time-frequency resource region consisting of one subframe on the time axis and one RB on the frequency axis Is used for transmission of the CSI-RS.
  • Up to 20 CSI-RS patterns with orthogonality on a time-frequency resource consisting of one subframe on the time axis with normal CP and one RB on the frequency axis (but maximum when extended CP is used) 16 (when FDD) or 28 (when TDD) CSI-RS patterns) may be defined.
  • discovery signals having orthogonality to each other may be transmitted in up to 20 small cells. Since these discovery signals are orthogonal to each other, interference can be minimized.
  • CSI-RS in configuring the CSI-RS through one or two antenna ports as a discovery signal, a total of four within a time-frequency resource region including one subframe on the time axis and one RB on the frequency axis Resource elements (not two) are used to transmit CSI-RS.
  • up to 10 CSI-RS patterns having orthogonality except in case of extended CPs, up to 8 (in case of FDD) or 14) CSI-RS pattern) in the case of TDD
  • discovery signals having orthogonality to each other may be transmitted in up to 10 small cells.
  • one small cell cluster may be composed of up to 10 small cells.
  • the orthogonality is minimized and interference is minimized for all 10 small cells included in one small cell cluster.
  • Discovery signals may be sent.
  • the CSI-RS is mapped and transmitted to an appropriate number of resource elements, and the CSI-RS is used as the discovery signal, the overhead burden may be reduced and the detection accuracy of the discovery signal may be improved.
  • FIG. 7 is a flowchart illustrating a configuration and transmission method of a CSI-RS according to an example of the present invention.
  • the base station generates CSI-RS_DS configuration information (S700).
  • the base station provides a serving cell to the terminal.
  • the CSI-RS_DS configuration information includes a configuration related to transmission of a discovery signal (DS).
  • the CSI-RS_DS configuration information may be referred to simply as CSI-RS configuration information.
  • the CSI-RS_DS configuration information may be selectively generated and transmitted by the base station. As an example, when CSI-RS_DS configuration information is not generated and transmitted, only CRS may be used as a discovery signal. As another example, when CSI-RS_DS configuration information is generated and transmitted, both CRS and CSI-RS_DS may be used as a discovery signal.
  • the CSI-RS_DS configuration information may have various embodiments.
  • the CSI-RS_DS configuration information may include at least one of a resource configuration list field and a subframe configuration field.
  • the CSI-RS_DS configuration information may further include a CSI-RS_DS configuration ID field. Table 4 below is an example in which the CSI-RS_DS configuration information includes all of a CSI-RS_DS configuration ID field, a resource configuration list field, and a subframe configuration field.
  • the CSI-RS_DS configuration ID field is used to identify a resource configuration for transmitting the CSI-RS when CoMP (Coordinated Multiple Point) is supported.
  • the first embodiment may include an embodiment in which the CSI-RS_DS configuration ID field is excluded from Table 4 above.
  • the resource configuration list field is a bitmap of length Z and provides information on CSI-RS patterns configured in k small cells.
  • a specific CSI-RS pattern may be mapped to each of the Z bits of the resource configuration list field.
  • the specific CSI-RS pattern may be a CSI-RS pattern when four antenna ports are used.
  • four antenna port-based CSI-RS patterns may be 16 kinds, such as CSI-RS patterns 0 to 9 and 20 to 25, based on subframes of a normal CP.
  • the 16 CSI-RS patterns may be mapped 1: 1 to the 16 bits.
  • the information provided by the resource configuration list field is as follows. If any bit in the resource configuration list field is 0, it is indicated that the CSI-RS pattern corresponding to the arbitrary bit is not configured in any small cell. On the contrary, if an arbitrary bit in the resource configuration list field is 1, it is indicated that a CSI-RS pattern corresponding to the arbitrary bit is configured in at least one small cell.
  • the CSI-RS_DS configuration information may further include at least one of an ID list field of small cells transmitting the CSI-RS and a number field of antenna ports.
  • Table 5 shows CSI-RS_DS configuration information further including a small cell ID list field.
  • the small cell ID list field may include up to maxSmallCell as small cell IDs.
  • maxSmallCell may be 10.
  • the small cell ID included in the small cell ID list field may be a physical cell ID (PhysCellID) identifying a physical ID of each small cell.
  • the small cell ID may be 9 bits.
  • the small cell ID list field includes only the IDs of the small cells, but as shown in Table 6, the small cell ID list field may further include the antenna port number and / or the Pc field in addition to the small cell ID. have.
  • the small cell ID list field may include an antenna port count field and a P-c field of antenna ports having an1 or an2.
  • the number field of the antenna ports may be omitted in Table 6.
  • the P-c field may indicate the strength of the CSI-RS transmission power in a range of -8 to 15 dB. If all the small cells transmit the CSI-RS with the same power strength, the P-c field may be omitted in Table 6.
  • the small cell ID list field may include only the ID of the small cell configured with the CSI-RS pattern corresponding to the bit indicated by 1 in the resource configuration list field.
  • the small cell ID list field does not include the small cell IDs of maxSmallCell as shown in Table 5 or Table 6, but the small cell ID list field is composed of the CSI-RS pattern corresponding to the bit indicated by 1 in the resource configuration list field. It includes as many small cell IDs. In this case, the small cell IDs may be listed in order according to the bit indicated by 1 in the resource configuration list field.
  • the CSI-RS_DS configuration information may include at least one of k small cell resource configuration list (resourceConfigList_small) fields and a subframe configuration field.
  • the CSI-RS_DS configuration information may further include a CSI-RS_DS configuration ID field. Table 7 below is an example in which the CSI-RS_DS configuration information includes all of the CSI-RS_DS configuration ID field, k small cell resource configuration list fields, and a subframe configuration field.
  • the second embodiment may include an embodiment in which the CSI-RS_DS configuration ID field is excluded from Table 7.
  • the small cell resource configuration list field includes an ID field of the small cell and a resource configuration list field indicating a CSI-RS pattern configured in the small cell.
  • the resource configuration list field is a length Z bitmap. The combination of the ID field / resource list field of the small cell may be defined individually for a total of k small cells.
  • the second embodiment may further include that the number of antenna ports field and / or the P-c field are included in the small cell resource configuration list field.
  • the small cell resource configuration list field may be expressed as shown in the following table.
  • the CSI-RS_DS configuration information may include at least one of a resourceConfig field and a subframeConfig field.
  • the CSI-RS_DS configuration information may further include a CSI-RS_DS configuration ID field. Table 9 below is an example in which the CSI-RS_DS configuration information includes all of the CSI-RS_DS configuration ID field, resource configuration field, and subframe configuration field.
  • CSI-RS_DS-Config SEQUENCE ⁇ csi-RS_DS-ConfigId CSI-RS_DS-ConfigId, resourceConfig INTEGER (0 ... 31), subframeConfig INTEGER (0..154), ... ⁇ -ASN1STOP
  • the CSI-RS_DS Configuration ID field is used to identify a resource configuration for transmitting the CSI-RS as a discovery signal.
  • the third embodiment may further include an embodiment in which the CSI-RS_DS configuration ID field is excluded from Table 9 above.
  • the resource configuration field indicates 32 CSI-RS patterns provided in Table 1 or Table 2 as indices 0 to 31.
  • the CSI-RS pattern indicated by the resource configuration field means a CSI-RS pattern configured in the small cell transmitting the discovery signal. For example, 4 or 5 bits may be allocated to the resource configuration field.
  • the CSI-RS_DS configuration information may further include a P-c indicating the power of the CSI-RS transmitted in the CSI-RS pattern indicated by the resource configuration field.
  • CSI-RS_DS configuration information may be included in non-zero power CSI-RS configuration information.
  • the non-zero power CSI-RS configuration information includes an antenna port count (antennaPortsCount) and a resource configuration (resourceConfig) field.
  • the non-zero power CSI-RS configuration information may be defined as shown in Table 10 below.
  • CSI-RS-ConfigNZP SEQUENCE ⁇ csi-RS-ConfigNZPId CSI-RS-ConfigNZPId, antennaPortsCount ENUMERATED ⁇ an1, an2, an4, an8 ⁇ , resourceConfig INTEGER (0..31), subframeConfig INTEGER (0..154), scramblingIdentity INTEGER (0..503), qcl-CRS-Info SEQUENCE ⁇ qcl-ScramblingIdentity INTEGER (0..503), crs-PortsCount ENUMERATED ⁇ n1, n2, n4, spare1 ⁇ , mbsfn-SubframeConfigList CHOICE ⁇ release NULL, setup SEQUENCE ⁇ subframeConfigList MBSFN-SubframeConfigList ⁇ ⁇ OPTIONAL-Need ON ⁇ OPTIONAL,-Need OR ... ⁇ -ASN1STOP
  • the resource configuration field indicates indexes 0 to 31, and each index corresponds to the CSI-RS pattern of Table 1.
  • indexes 10 to 19 and 26 to 31 according to Table 1 are code points that remain unused.
  • the present embodiment includes using the remaining code points to indicate the CSI-RS pattern configured in the small cell.
  • one antenna port may be used for the CSI-RS transmitted in the small cell, and two antenna ports may be used.
  • the number of antenna ports for the CSI-RS of the small cell may be previously regulated between the terminal and the base station.
  • Each parameter name described in Examples 1 to 4 and Tables 5 to 9 is a parameter name arbitrarily described for convenience of description in the present invention, and the parameter name does not change the meaning or indication of each parameter. Each parameter name may be described otherwise.
  • the base station transmits CSI-RS_DS configuration information to the terminal (S705).
  • the CSI-RS_DS configuration information may be transmitted to the terminal in the form of an RRC message.
  • the CSI-RS_DS configuration information may be selectively included in an RRC connection reconfiguration message.
  • the UE may receive the CSI-RS_DS configuration information and perform reconfiguration of the RRC connection as indicated by the CSI-RS_DS configuration information. And, based on the CSI-RS_DS configuration information, the UE can know the CSI-RS pattern configured in the small cell.
  • the small cell generates a discovery signal, that is, a CSI-RS (S710).
  • a discovery signal that is, a CSI-RS (S710).
  • the method for generating the CSI-RS by the small cell may include the following examples.
  • An example of a method of generating a CSI-RS includes: i) generating a sequence for the CSI-RS according to Equations 2 to 4, ii) from the CSI-RS sequence according to Equation 5 Obtaining a complex modulation symbol a k, l (p) , and iii) mapping the complex modulation symbol to a resource element designated according to Equation 8 below.
  • step i) the same sequence generated in Equations 2 to 4 is mapped twice to two resource elements in one physical RB on one OFDM symbol. That is, one sequence value according to one sequence index (corresponding to m in Equation 2) is repeatedly mapped twice.
  • Equation 8 for obtaining the resource element to which the CSI-RS is mapped is as follows.
  • the subcarrier k to which the CSI-RS is mapped is k '+ 12m + ⁇ -0 or -6 ⁇ in the case of a general CP, and two subcarriers k exist in one PRB. This means that there are two resource elements to which CSI-RSs are mapped on one OFDM symbol in a time-frequency resource region corresponding to one subframe on the time axis and one RB on the frequency axis.
  • the CSI-RS since the value of "l" is 2, the CSI-RS is transmitted on two OFDM symbols. That is, the CSI-RS may be transmitted using a total of four resource elements (2 OFDM symbols * 2 subcarriers).
  • the CSI-RS_DS configuration information may be applied as the CSI-RS_DS configuration information.
  • the antenna port number of the CSI-RS for discovery signal is distinguished from the antenna port for the existing CSI-RS, and for convenience, the antenna port number of the first antenna is 115 and the antenna port number of the second antenna is 116.
  • Another example of the method of generating the CSI-RS includes: i) generating a sequence for the CSI-RS according to Equation 9, Equation 3, and Equation 4 below, ii) Equation 5 Obtaining a complex modulation symbol a k, l (p) from the CSI-RS sequence, and iii) mapping the complex modulation symbol to a resource element designated according to Equation 10 below.
  • step i) sequences generated in Equations 9, 3 and 4 are mapped to two resource elements in one physical RB on one OFDM symbol.
  • Equation 9 unlike Equation 2, the maximum value of m is 2N RB maxDL-1 . Accordingly, sequences having a length doubled as compared with Equation 2 may be generated. In this case, one sequence represented by Equation 9 is mapped to each of two resource elements in one PRB on one OFDM symbol. Originally, a sequence for the CSI-RS is generated according to Equations 2 to 4, but a sequence for the CSI-RS to be used for the discovery signal is generated according to Equations 9, 3, and 4.
  • Equation 10 for obtaining the resource element to which the CSI-RS is mapped is as follows.
  • the CSI-RS since the value of "l" is 2, the CSI-RS is transmitted on two OFDM symbols. That is, the CSI-RS may be transmitted using a total of four resource elements (2 OFDM symbols * 2 subcarriers).
  • the antenna port number of the CSI-RS for the discovery signal is distinguished from the antenna port for the existing CSI-RS for convenience, and the antenna port number of the first antenna is 115 and the antenna port number of the second antenna is 116. It is not limited.
  • Equation 8 has been described as using one or two antenna ports (that is, two or less) in the CSI-RS for discovery signals, the second antenna port (p) in Equation 9 is used when only one antenna port is used. 116) may be omitted.
  • the small cell transmits the CSI-RS to the terminal using four resource elements according to the CSI-RS pattern (S715).
  • the small cell uses one or two (ie two or less) antenna ports for CSI-RS transmission, and within a time-frequency resource region consisting of one subframe on the time axis and one RB on the frequency axis. Four resource elements are used. 8 or 9 illustrates a tendency of mapping CSI-RS to four resource elements (ie, CSI-RS pattern).
  • FIG. 8 illustrates a CSI-RS pattern according to an example of the present invention. This is according to the CSI-RS configuration according to Table 1 or Table 2.
  • FIG. 8- (a) when FIG. 8- (a) is applied to frame structure type 1 (FDD) and frame structure type 2 (TDD) in a general CP, FIG. 8- (b) shows only a frame structure type in a general CP.
  • 8- (c) shows a CSI-RS pattern in case of an extended CP.
  • numbers indicated on each resource element indicate a CSI-RS configuration number.
  • a indicates transmitting the CSI-RS on the CSI-RS antenna ports ⁇ 115, 116 ⁇ .
  • A is the DMRS antenna port ⁇ 7, 8, 11, 13 ⁇ in the generic CP
  • B is the DMRS antenna port ⁇ 9, 10, 12, 14 ⁇ in the generic CP
  • E is the DMRS antenna port ⁇ 7, 8 ⁇ in the extended CP DMRS is transmitted.
  • C represents a resource element to which the CRS is mapped.
  • a control region shaded portion
  • the CSI-RS pattern of FIG. 8 may be applied even when the number of CRS antenna ports is one or two, or when the CRS is not transmitted. In addition, the CSI-RS pattern of FIG. 8 may be applied even when a control region is allocated to an OFDM symbol in the first 1 to 4 of the subframe, or when the control region is not allocated.
  • DMRS uses two code division multiplexing (CDM) groups (A: DMRS antenna ports ⁇ 7, 8, 11, 13 ⁇ , and B: DMRS antenna ports ⁇ 9, 10, 12, 14 ⁇ ). It is assumed, but the CSI-RS pattern of FIG. 8 may be applied even when using one CDM group.
  • CDM code division multiplexing
  • FIG 9 illustrates a CSI-RS pattern according to another example of the present invention. This is according to the CSI-RS configuration according to Table 11 or Table 12.
  • FIG. 9- (a) when FIG. 9- (a) is applied to frame structure type 1 (FDD) and frame structure type 2 (TDD) in a general CP, FIG. 9- (b) shows only a frame structure type in a general CP.
  • the CSI-RS pattern in the case of 2 (TDD) is shown.
  • 9- (c) shows a CSI-RS pattern in case of an extended CP.
  • numbers indicated on each resource element indicate a CSI-RS configuration number.
  • a indicates transmitting the CSI-RS on the CSI-RS antenna ports ⁇ 115, 116 ⁇ .
  • A is the DMRS antenna port ⁇ 7, 8, 11, 13 ⁇ in the generic CP
  • B is the DMRS antenna port ⁇ 9, 10, 12, 14 ⁇ in the generic CP
  • E is the DMRS antenna port ⁇ 7, 8 ⁇ in the extended CP DMRS is transmitted.
  • C represents a resource element to which the CRS is mapped.
  • a control region shadeing part
  • CSI-RS configuration index 0/1/2/3/4/5/6/7/8/9/20/21/22/23/24 / 25 is converted to 10/11/12/13/14/15/16/17 / 18/19/26/27/28/29/30/31 respectively.
  • CSI-RS configuration indices 0-9 and 20-25 represent existing CSI-RS patterns on four antenna ports, while CSI-RS configuration indices 10-19 and 26-31 are not used on existing four antenna ports.
  • the unused CSI-RS pattern is used as the CSI-RS pattern for the discovery signal. This allows you to take advantage of unused code points on four antenna ports.
  • Table 1 When considering the CSI-RS pattern configured in the small cell using the normal CP, Table 1 may be modified as shown in Table 11 below.
  • CSI-RS configuration indexes 0/1/2/3/4/5/6/7/16/17/18/19/20/21 are 8/9/10/11/12 / 13/14/15/22/23/24/25 / 26/27
  • Table 2 may be modified as shown in Table 12 below.
  • the terminal may receive the CSI-RS transmitted from the small cell based on the CSI-RS pattern configured in the small cell. Meanwhile, the terminal may discover the small cell using the CSI-RS of the small cell (S715).
  • the present invention relates to any one of the CSI-RS_DS configuration information of the first embodiment described in step S700 to the CSI-RS_DS configuration information of the fourth embodiment, any one of the CSI-RS generation methods described in step S710, and Includes all embodiments derived from any combination of the CSI-RS patterns described in S715.
  • FIG. 10 is a block diagram illustrating a terminal and a base station according to an example of the present invention.
  • the serving base station 1050 includes a transmitter 1055, a receiver 1060, and a base station processor 1070.
  • the base station processor 1070 includes a reference signal generator 1071 and an RRC controller 1072.
  • the RRC control unit 1072 generates CSI-RS_DS configuration information about the small cell as described in step S700.
  • the CSI-RS_DS configuration information indicates patterns of channel state information (CSI) -RS configured for k small cells.
  • the RRC control unit 1072 may selectively generate the CSI-RS configuration information for the serving base station 1050.
  • the generated CSI-RS_DS configuration information may include all the embodiments described throughout this specification.
  • the CSI-RS_DS configuration information includes a resource configuration list field, the resource configuration list field is a 16-bit bitmap, and the bitmap includes the CSI-RS patterns in at least one of the k small cells. It can indicate whether or not.
  • the resource configuration list field may further include physical cell IDs of the k small cells.
  • the reference signal generator 1071 generates a CSI-RS and sends it to the transmitter 1055.
  • the transmitter 1055 transmits the CSI-RS configuration information and / or the CSI-RS_DS configuration information received from the RRC control unit 1072 to the terminal 1000. In addition, the transmitter 1055 transmits the CSI-RS received from the reference signal generator 1071 to the terminal 1000. In particular, the transmitter 1055 transmits the CSI-RS to the terminal 1000 as a CSI-RS pattern determined based on the CSI-RS configuration information about the serving base station 1050.
  • the transmitter 1055 transmits CSI-RS_DS mapped to two or less antenna ports and four resource elements to the terminal 1000 based on the CSI-RS_DS configuration information.
  • the transmitter 1055 transmits the CSI-RS using a sequence, but includes a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis.
  • a sequence but includes a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis.
  • OFDM orthogonal frequency division multiplexing
  • the transmitter 1055 may include one orthogonal frequency division multiplexing (OFDM) symbol in a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis. ), Two sequence values according to two consecutive sequence indexes to two resource elements may be mapped to the CSI-RS, respectively.
  • OFDM orthogonal frequency division multiplexing
  • the receiving unit 1060 receives the CSI-RS configuration information, the CSI-RS of the small base station 1090 or the CSI-RS of the serving base station 1050, the corresponding response message (for example, CSI report ( report), etc.) or an uplink signal.
  • the terminal 1000 performing wireless communication with the base station 1050 includes a receiver 1050, an RRC controller 1010, and a transmitter 1015.
  • the receiver 1050 receives the CSI-RS configuration information, the CSI-RS_DS configuration information, and the CSI-RS from the serving base station 1050.
  • the receiver 1050 receives the CSI-RS for the discovery signal from the small base station 1090 that provides the small cell.
  • the CSI-RS for the discovery signal is generated according to any one of the CSI-RS generation methods (1) and (2) described herein as described above, and the receiver 1050 generates the CSI-RS generation method (1).
  • CSI-RS is received by a method corresponding to any one of (2).
  • the receiver 1050 is mapped to four resource elements and two or less antenna ports in a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis.
  • the CSI-RS may be received.
  • the RRC control unit 1010 interprets the CSI-RS configuration information and the CSI-RS_DS configuration information.
  • the RRC control unit 1010 performs a configuration for receiving the CSI-RS from the serving base station 1050 as indicated by the CSI-RS configuration information.
  • the RRC control unit 1010 performs a configuration for receiving the CSI-RS from the small base station 1090 as indicated by the CSI-RS_DS configuration information.
  • the RRC controller 1010 performs small cell discovery according to the CSI-RS_DS configuration information.
  • the RRC controller 1010 may control the receiver 1005 to receive the CSI-RS from the small base station 1090 according to a specific CSI-RS pattern. Or, if the CSI-RS_DS configuration information is not included in the RRC message, the RRC control unit 1010 recognizes that only the CRS is used as a discovery signal.
  • the transmitter 1015 transmits CSI-RS configuration information, CSI-RS_DS configuration information, and a message or uplink signal corresponding to receiving the CSI-RS to the base station 1050.
  • the small base station 1090 includes a reference signal generator 1093 and a transmitter 1096.
  • the reference signal generator 1093 generates the CSI-RS according to any one of the CSI-RS generation methods (1) and (2) and sends the CSI-RS to the transmitter 1096.
  • the transmitter 1096 transmits the CSI-RS received from the reference signal generator 1093 to the terminal 1000. In this case, the transmitter 1096 transmits the CSI-RS to the terminal 1000 using the CSI-RS pattern shown in FIG. 8 or 9 and the antenna ports 115 and / or 116.

Abstract

The present invention relates to an apparatus and a method for configuring a reference signal in a wireless communication system to support small cells. Disclosed in the present specification is a method for transmitting a reference signal (RS) by using a base station (BS) in a wireless communication system, comprising the steps of: generating channel state information-RS_discovery signal (CSI-RS_DS) configuration information for indicating patterns of CSI-RS configured for k number of small cells; and transmitting the CSI-RS_DS configuration information to user equipment (UE).

Description

스몰셀을 지원하는 무선 통신 시스템에서 참조 신호의 구성 장치 및 방법Apparatus and Method for Constructing Reference Signal in Wireless Communication System Supporting Small Cell
본 발명은 무선 통신에 관한 것으로서, 보다 상세하게는 스몰셀을 지원하는 무선 통신 시스템에서 참조 신호의 구성 장치 및 방법에 관한 것이다.The present invention relates to wireless communication, and more particularly, to an apparatus and method for configuring a reference signal in a wireless communication system supporting a small cell.
LTE-A(Advanced) 등 차세대 통신 시스템에서는, 고전력 노드(high-power node)에 기반한 매크로 셀(macro cell, F1)뿐만 아니라, 저전력 노드(low-power node)에 기반한 스몰셀(small cell, F2)을 통해 실내(indoor) 및 실외(outdoor)에 무선 통신 서비스를 제공하기 위한 연구가 진행 중에 있다.In next-generation communication systems such as LTE-A (Advanced), not only a macro cell (F1) based on a high-power node, but also a small cell (F2) based on a low-power node In order to provide a wireless communication service to the indoor (indoor) and outdoor (outdoor) through the ().
스몰셀은 매크로 셀의 커버리지(coverage)인 주파수 대역과, 매크로 셀의 커버리지 이외의 주파수 대역에서 모두 고려될 수 있으며, 실내 환경(정육면체 내)과 실외 환경(정육면체 밖)에서 모두 제공될 수 있다. 또한 매크로 셀과 스몰셀 사이, 및/또는 스몰셀들 사이에서는 이상적(ideal)이거나 비이상적인(non-ideal) 백홀망(backhaul network)이 지원될 수 있다. 그리고 스몰셀은 저밀도의 배치(sparse deployment) 환경 및/또는 고밀도의 배치(dense deployment) 환경에서도 모두 제공될 수 있다.The small cell may be considered both in the frequency band which is the coverage of the macro cell and in the frequency band other than the coverage of the macro cell, and may be provided in both an indoor environment (in a cube) and an outdoor environment (out of a cube). In addition, an ideal or non-ideal backhaul network may be supported between the macro cell and the small cell and / or between the small cells. In addition, the small cell may be provided in both a low density deployment environment and / or a high density deployment environment.
단말은 매크로 셀 내에 분포하는 다수의 스몰셀들 중에서, 자신에게 서비스를 제공할 수 있는 스몰셀을 발견(discover)할 수 있다. 이러한 동작을 스몰셀 발견(small cell discovery)이라고 한다. 스몰셀은 단말에 의해 발견될 수 있도록 발견 신호(discovery signal)를 단말로 전송하고, 단말은 발견 신호를 이용하여 스몰셀을 발견할 수 있다. 만약 발견 신호를 전송하기 위해 많은 자원을 할당하는 경우, 발견 신호의 검출 정확도는 증가할 수 있으나 오버헤드가 커지고 전력에 민감한 스몰셀에서 전력이 낭비될 우려도 있다. 반대로 만약 발견 신호를 전송하기 위해 적은 자원을 할당하는 경우, 오버헤드는 작아지는 장점이 있는 반면, 발견 신호의 검출 정확도는 낮아질 수 있는 단점이 있다. The terminal may discover a small cell capable of providing a service to itself among a plurality of small cells distributed in the macro cell. This operation is called small cell discovery. The small cell transmits a discovery signal to the terminal so that the small cell can be found by the terminal, and the terminal can discover the small cell using the discovery signal. If a large amount of resources are allocated to transmit a discovery signal, the detection accuracy of the discovery signal may be increased, but there is a concern that the overhead is increased and power is wasted in a power-sensitive small cell. On the contrary, if a small resource is allocated to transmit a discovery signal, the overhead is reduced, while the detection accuracy of the discovery signal may be lowered.
이러한 측면을 고려하여 발견 신호를 위해 적정 수준의 자원을 할당할 필요가 요구되고 있으며, 구체적으로 얼마만큼의 자원을 어떻게 할당할 것인지에 관한 정의가 필요한 실정이다. In consideration of this aspect, there is a need for allocating an appropriate level of resources for discovery signals, and specifically, a definition of how much resources are allocated and how to allocate them is required.
본 발명의 기술적 과제는 스몰셀을 지원하는 무선 통신 시스템에서 참조 신호의 구성 장치 및 방법을 제공함에 있다.An object of the present invention is to provide an apparatus and method for configuring a reference signal in a wireless communication system supporting a small cell.
본 발명의 다른 기술적 과제는 발견 신호로서 CSI-RS를 구성하는 장치 및 방법을 제공함에 있다.Another object of the present invention is to provide an apparatus and method for configuring a CSI-RS as a discovery signal.
본 발명의 또 다른 기술적 과제는 시간축으로 하나의 서브프레임과 주파수축으로 하나의 RB에 해당하는 시간-주파수 자원 영역 내에서 4개의 자원요소를 사용하여 CSI-RS를 전송하는 장치 및 방법을 제공함에 있다.Another technical problem of the present invention is to provide an apparatus and method for transmitting a CSI-RS using four resource elements in a time-frequency resource region corresponding to one subframe and one RB on a time axis. have.
본 발명의 일 양태에 따르면, 무선 통신 시스템에서 기지국(base station: BS)에 의한 참조 신호(reference signal: RS)의 전송방법을 제공한다. 상기 방법은 k개의 스몰셀(small cell)들에 대해 구성된 채널 상태 정보(channel state information: CSI)-RS의 패턴들을 지시하는 CSI-RS_DS(discovery signal) 구성정보를 생성하는 단계, 및 상기 CSI-RS_DS 구성정보를 단말(user equipment: UE)로 전송하는 단계를 포함한다. According to an aspect of the present invention, a method for transmitting a reference signal (RS) by a base station (BS) in a wireless communication system is provided. The method includes generating CSI-RS_DS (discovery signal) configuration information indicating patterns of channel state information (CSI) -RS configured for k small cells, and the CSI- And transmitting the RS_DS configuration information to a user equipment (UE).
본 발명의 다른 양태에 따르면, 무선 통신 시스템에서 참조 신호(reference signal: RS)를 전송하는 기지국(base station: BS)을 제공한다. 상기 기지국은 k개의 스몰셀(small cell)들에 대해 구성된 채널 상태 정보(channel state information: CSI)-RS의 패턴들을 지시하는 CSI-RS_DS(discovery signal) 구성정보를 생성하는 RRC(radio resource control) 제어부, 및 상기 CSI-RS_DS 구성정보를 단말(user equipment: UE)로 전송하는 전송부를 포함한다. According to another aspect of the present invention, there is provided a base station (BS) for transmitting a reference signal (RS) in a wireless communication system. The base station generates a radio resource control (RRC) for generating CSI-RS_DS (discovery signal) configuration information indicating patterns of channel state information (CSI) -RS configured for k small cells. A control unit and a transmission unit for transmitting the CSI-RS_DS configuration information to a user equipment (UE).
본 발명의 또 다른 양태에 따르면, 무선 통신 시스템에서 단말(user equipment: UE)에 의한 참조 신호(reference signal: RS)의 수신방법을 제공한다. 상기 방법은 k개의 스몰셀(small cell)들에 대해 구성된 채널 상태 정보(channel state information: CSI)-RS의 패턴들을 지시하는 CSI-RS_DS(discovery signal) 구성정보를 서빙 기지국(serving base station)으로부터 수신하는 단계, 및 상기 CSI-RS_DS 구성정보에 기반하여 CSI-RS를 적어도 하나의 스몰셀로부터 수신하는 단계를 포함한다. According to another aspect of the present invention, there is provided a method for receiving a reference signal (RS) by a user equipment (UE) in a wireless communication system. The method includes CSI-RS_DS (discovery signal) configuration information indicating patterns of channel state information (CSI) -RS configured for k small cells from a serving base station. And receiving the CSI-RS from at least one small cell based on the CSI-RS_DS configuration information.
본 발명의 또 다른 양태에 따르면, 무선 통신 시스템에서 참조 신호(reference signal: RS)를 수신하는 단말(user equipment: UE)을 제공한다. 상기 단말은 k개의 스몰셀(small cell)들에 구성된 채널 상태 정보(channel state information: CSI)-RS의 패턴들을 지시하는 CSI-RS_DS(discovery signal) 구성정보를 서빙 기지국(serving base station)으로부터 수신하고, 상기 CSI-RS_DS 구성정보에 기반하여 CSI-RS를 적어도 하나의 스몰셀로부터 수신하는 수신부를 포함한다. According to another aspect of the present invention, a user equipment (UE) for receiving a reference signal (RS) in a wireless communication system is provided. The terminal receives CSI-RS_DS (discovery signal) configuration information indicating patterns of channel state information (CSI) -RS configured in k small cells from a serving base station. And a receiver configured to receive the CSI-RS from at least one small cell based on the CSI-RS_DS configuration information.
여기서, 상기 CSI-RS의 생성에 사용되는 시퀀스(sequence)는 시간축으로 하나의 서브프레임과 주파수축으로 하나의 자원블록(resource block)에 해당하는 시간-주파수 자원 영역 내의 하나의 OFDM(orthogonal frequency division multiplexing) 심볼(symbol)상에서, 2개의 자원요소에 하나의 시퀀스 인덱스에 따른 하나의 시퀀스 값이 2번 반복되어 매핑될 수 있다. Here, the sequence used to generate the CSI-RS is one orthogonal frequency division in a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis. On a multiplexing symbol, one sequence value according to one sequence index may be repeatedly mapped to two resource elements.
또는, 상기 CSI-RS의 생성에 사용되는 시퀀스(sequence)는 시간축으로 하나의 서브프레임과 주파수 축으로 하나의 자원블록(resource block)에 해당하는 시간-주파수 자원 영역 내의 하나의 OFDM(orthogonal frequency division multiplexing) 심볼(symbol)상에서, 2개의 자원요소에 2개의 연속적인 시퀀스 인덱스에 따른 2개의 시퀀스 값들이 각각 매핑될 수 있다. Alternatively, a sequence used to generate the CSI-RS is one orthogonal frequency division in a time-frequency resource region corresponding to one resource frame on one subframe and one frequency block on a time axis. On a multiplexing symbol, two sequence values according to two consecutive sequence indices may be mapped to two resource elements, respectively.
CSI-RS 패턴들을 스몰 셀의 발견 신호의 전송을 위해 사용할 경우, 다수의 스몰 셀들에 대해서 서로 직교성을 가지는 발견 신호들이 전송될 수 있다. 또한 이러한 발견 신호들은 서로 직교성을 가지므로 간섭이 최소화될 수 있다. When the CSI-RS patterns are used for transmission of a discovery signal of a small cell, discovery signals having orthogonality to each other for a plurality of small cells may be transmitted. In addition, since these discovery signals are orthogonal to each other, interference can be minimized.
도 1은 고전력 노드와 저전력 노드가 배치된 통신 시스템을 도시한 도면이다. 1 is a diagram illustrating a communication system in which a high power node and a low power node are disposed.
도 2는 본 발명이 적용되는 무선통신 시스템을 나타낸 블록도이다. 2 is a block diagram showing a wireless communication system to which the present invention is applied.
도 3 및 도 4는 본 발명이 적용되는 무선 프레임의 구조를 개략적으로 나타낸 것이다. 3 and 4 schematically show the structure of a radio frame to which the present invention is applied.
도 5a 및 도 5b는 일반 CP에서 CSI-RS 안테나 포트의 개수에 따른 CSI-RS 구성과 CSI-RS 패턴의 일 예를 나타낸다.5A and 5B illustrate an example of a CSI-RS configuration and a CSI-RS pattern according to the number of CSI-RS antenna ports in a general CP.
도 6은 확장 CP에서 CSI-RS 안테나 포트의 개수에 따른 CSI-RS 구성과 CSI-RS 패턴의 일 예를 나타낸다.6 shows an example of a CSI-RS configuration and a CSI-RS pattern according to the number of CSI-RS antenna ports in an extended CP.
도 7은 본 발명의 일례에 따른 CSI-RS의 구성 및 전송 방법을 설명하는 흐름도이다.7 is a flowchart illustrating a configuration and transmission method of a CSI-RS according to an example of the present invention.
도 8은 본 발명의 일례에 따른 CSI-RS 패턴을 도시한 것이다. 이는 표 1 또는 표 2에 따른 CSI-RS 구성에 따른 것이다. 8 illustrates a CSI-RS pattern according to an example of the present invention. This is according to the CSI-RS configuration according to Table 1 or Table 2.
도 9는 본 발명의 다른 예에 따른 CSI-RS 패턴을 도시한 것이다. 이는 표 11 또는 표 12에 따른 CSI-RS 구성에 따른 것이다. 9 illustrates a CSI-RS pattern according to another example of the present invention. This is according to the CSI-RS configuration according to Table 11 or Table 12.
도 10는 본 발명의 일례에 따른 단말과 기지국을 도시한 블록도이다.10 is a block diagram illustrating a terminal and a base station according to an example of the present invention.
이하, 본 명세서에서는 일부 실시 예들을 예시적인 도면을 통해 상세하게 설명한다. 각 도면의 구성 요소들에 참조 부호를 부가함에 있어서, 동일한 구성 요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 명세서의 실시 예를 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 명세서의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.Hereinafter, some embodiments will be described in detail with reference to the accompanying drawings. In adding reference numerals to the components of each drawing, it should be noted that the same reference numerals are used as much as possible even though they are shown in different drawings. In addition, in describing the embodiments of the present specification, when it is determined that a detailed description of a related well-known configuration or function may obscure the gist of the present specification, the detailed description thereof will be omitted.
본 명세서는 통신 네트워크를 대상으로 설명하며, 통신 네트워크에서 이루어지는 작업은 해당 통신 네트워크를 관할하는 시스템(예를 들어 기지국)에서 네트워크를 제어하고 데이터를 송신하는 과정에서 이루어지거나, 해당 네트워크에 링크된 단말에서 작업이 이루어질 수 있다. The present specification describes a communication network, and the work performed in the communication network is performed in the process of controlling the network and transmitting data in a system (for example, a base station) that manages the communication network, or a terminal linked to the network. Work can be done in
도 2는 본 발명이 적용되는 무선통신 시스템을 나타낸 블록도이다. 2 is a block diagram showing a wireless communication system to which the present invention is applied.
도 2를 참조하면, 무선통신 시스템(10)은 음성, 패킷 데이터 등과 같은 다양한 통신 서비스를 제공하기 위해 널리 배치된다. 무선통신 시스템(10)은 적어도 하나의 기지국(11; Base Station, BS)을 포함한다. 각 기지국(11)은 특정한 지리적 영역 또는 주파수 영역에 대해 통신 서비스를 제공하며, 사이트(site)라고 불릴 수 있다. 사이트(site)는 섹터라 부를 수 있는 다수의 영역들(15a, 15b, 15c)로 나누어질 수 있으며, 상기 섹터는 각기 서로 다른 셀 아이디를 가질 수가 있다. Referring to FIG. 2, the wireless communication system 10 is widely deployed to provide various communication services such as voice and packet data. The wireless communication system 10 includes at least one base station (BS) 11. Each base station 11 provides a communication service for a specific geographic area or frequency area and may be called a site. The site may be divided into a plurality of regions 15a, 15b, and 15c, which may be called sectors, and the sectors may have different cell IDs.
단말(12; user equipment, UE)은 고정되거나 이동성을 가질 수 있으며, MS(mobile station), MT(mobile terminal), UT(user terminal), SS(subscriber station), 무선기기(wireless device), PDA(personal digital assistant), 무선 모뎀(wireless modem), 휴대기기(handheld device) 등 다른 용어로 불릴 수 있다. 기지국(11)은 일반적으로 단말(12)과 통신하는 지점(station)을 말하며, eNodeB (evolved-NodeB), BTS(Base Transceiver System), 액세스 포인트(Access Point), 펨토 기지국(Femto eNodeB), 가내 기지국(Home eNodeB: HeNodeB), 릴레이(relay), 원격 무선 헤드(Remote Radio Head: RRH)등 다른 용어로 불릴 수 있다. 셀(15a, 15b, 15c)은 기지국(11)이 커버하는 일부 영역을 나타내는 포괄적인 의미로 해석되어야 하며, 메가셀, 매크로셀, 마이크로셀, 피코셀, 펨토셀 등 다양한 커버리지 영역을 모두 포괄하는 의미이다.The UE 12 may be fixed or mobile and may have a mobile station (MS), a mobile terminal (MS), a mobile terminal (MT), a user terminal (UT), a subscriber station (SS), a wireless device, or a PDA. (personal digital assistant), wireless modem (wireless modem), a handheld device (handheld device) may be called other terms. The base station 11 generally refers to a station communicating with the terminal 12, and includes an evolved-nodeb (eNodeB), a base transceiver system (BTS), an access point, an femto base station, a femto eNodeB, and a household It may be called other terms such as a base station (Home eNodeB: HeNodeB), a relay, a remote radio head (RRH), and the like. Cells 15a, 15b, and 15c should be interpreted in a comprehensive sense indicating some areas covered by the base station 11, and encompass all of the various coverage areas such as megacells, macrocells, microcells, picocells, and femtocells. to be.
이하에서 하향링크(downlink)는 기지국(11)에서 단말(12)로의 통신 또는 통신 경로를 의미하며, 상향링크(uplink)는 단말(12)에서 기지국(11)으로의 통신 또는 통신 경로를 의미한다. 하향링크에서 송신기는 기지국(11)의 일부분일 수 있고, 수신기는 단말(12)의 일부분일 수 있다. 상향링크에서 송신기는 단말(12)의 일부분일 수 있고, 수신기는 기지국(11)의 일부분일 수 있다. 무선통신 시스템(10)에 적용되는 다중 접속 기법에는 제한이 없다. CDMA(Code Division Multiple Access), TDMA(Time Division Multiple Access), FDMA(Frequency Division Multiple Access), OFDMA(Orthogonal Frequency Division Multiple Access), SC-FDMA(Single Carrier-FDMA), OFDM-FDMA, OFDM-TDMA, OFDM-CDMA와 같은 다양한 다중 접속 기법을 사용할 수 있다. 이들 변조 기법들은 통신 시스템의 다중 사용자들로부터 수신된 신호들을 복조하여 통신 시스템의 용량을 증가시킨다. 상향링크 전송 및 하향링크 전송은 서로 다른 시간을 사용하여 전송되는 TDD(Time Division Duplex) 방식 또는 서로 다른 주파수를 사용하여 전송되는 FDD(Frequency Division Duplex) 방식이 사용될 수 있다.Hereinafter, downlink refers to a communication or communication path from the base station 11 to the terminal 12, and uplink refers to a communication or communication path from the terminal 12 to the base station 11. . In downlink, the transmitter may be part of the base station 11 and the receiver may be part of the terminal 12. In uplink, the transmitter may be part of the terminal 12 and the receiver may be part of the base station 11. There is no limitation on the multiple access scheme applied to the wireless communication system 10. Code Division Multiple Access (CDMA), Time Division Multiple Access (TDMA), Frequency Division Multiple Access (FDMA), Orthogonal Frequency Division Multiple Access (OFDMA), Single Carrier-FDMA (SC-FDMA), OFDM-FDMA, OFDM-TDMA For example, various multiple access schemes such as OFDM-CDMA may be used. These modulation techniques demodulate signals received from multiple users of a communication system to increase the capacity of the communication system. The uplink transmission and the downlink transmission may use a time division duplex (TDD) scheme transmitted using different times or a frequency division duplex (FDD) scheme transmitted using different frequencies.
단말과 기지국 사이의 무선 인터페이스 프로토콜(radio interface protocol)의 계층들은 통신시스템에서 널리 알려진 개방형 시스템간 상호접속 (Open System Interconnection; OSI) 모델의 하위 3개 계층을 바탕으로 제1 계층(L1), 제2 계층(L2), 제3 계층(L3)으로 구분될 수 있다. 이 중에서 제1 계층에 속하는 물리계층은 물리채널(physical channel)을 이용한 정보 전송 서비스(information transfer service)를 제공한다.The layers of the radio interface protocol between the terminal and the base station are based on the lower three layers of the Open System Interconnection (OSI) model, which is well known in the communication system. It may be divided into a second layer L2 and a third layer L3. Among them, the physical layer belonging to the first layer provides an information transfer service using a physical channel.
물리계층에서 사용되는 몇몇 물리채널들이 있다. 물리하향링크 제어채널(physical downlink control channel: 이하 PDCCH)은 하향링크 공용채널(Downlink Shared Channel: DL-SCH)의 자원 할당 및 전송 포맷, 상향링크 공용채널(Uplink Shared Channel: UL-SCH)의 자원 할당 정보, 물리하향링크 공용채널(physical downlink shared channel: PDSCH)상으로 전송되는 랜덤 액세스 응답과 같은 상위 계층 제어 메시지의 자원 할당, 임의의 단말 그룹 내 개별 단말들에 대한 전송 전력 제어(transmission power control: TPC) 명령(command)의 집합 등을 나를 수 있다. 복수의 PDCCH가 제어영역 내에서 전송될 수 있으며, 단말은 복수의 PDCCH를 모니터링할 수 있다. There are several physical channels used in the physical layer. The physical downlink control channel (PDCCH) is a resource allocation and transmission format of a downlink shared channel (DL-SCH), a resource of an uplink shared channel (UL-SCH). Resource allocation of upper layer control messages, such as allocation information, random access response transmitted on a physical downlink shared channel (PDSCH), and transmission power control for individual terminals in any terminal group : TPC) can carry a set of commands. A plurality of PDCCHs may be transmitted in the control region, and the terminal may monitor the plurality of PDCCHs.
PDCCH에 맵핑되는 물리계층의 제어정보를 하향링크 제어정보(downlink control information; 이하 DCI)라고 한다. 즉, DCI는 PDCCH을 통해 전송된다. DCI는 상향링크 또는 하향링크 자원할당필드, 상향링크 전송전력제어 명령 필드, 페이징을 위한 제어필드, 랜덤 액세스 응답(RA response)을 지시(indicate)하기 위한 제어필드 등을 포함할 수 있다. Control information of the physical layer mapped to the PDCCH is referred to as downlink control information (DCI). That is, DCI is transmitted through the PDCCH. The DCI may include an uplink or downlink resource allocation field, an uplink transmission power control command field, a control field for paging, a control field for indicating a random access response (RA response), and the like.
도 3 및 도 4는 본 발명이 적용되는 무선 프레임의 구조를 개략적으로 나타낸 것이다. 3 and 4 schematically show the structure of a radio frame to which the present invention is applied.
도 3 및 도 4를 참조하면, 무선 프레임(radio frame)은 10개의 서브프레임(subframe)을 포함한다. 하나의 서브프레임은 2개의 슬롯(slot)을 포함한다. 하나의 서브프레임을 전송하는 시간(길이)을 전송 시간 구역(Transmission Time Interval: TTI)라 한다. 예컨대, 한 서브프레임(1 subframe)의 길이는 1ms 이고, 한 슬롯(1 slot)의 길이는 0.5ms 일 수 있다. 3 and 4, a radio frame includes 10 subframes. One subframe includes two slots. The time (length) of transmitting one subframe is called a transmission time interval (TTI). For example, one subframe may have a length of 1 ms, and one slot may have a length of 0.5 ms.
한 슬롯은 시간 영역에서 복수의 심벌(symbol)들을 포함할 수 있다. 예컨대, 하향링크(DownLink, DL)에서 OFDMA(Orthogonal Frequency Division Multiple Access)를 사용하는 무선 시스템의 경우에 상기 심벌은 OFDM(Orthogonal Frequency Division Multiplexing) 심벌일 수 있다. 한편, 시간 영역의 심벌 구간(symbol period)에 대한 표현이 다중 접속 방식이나 명칭에 의해 제한되는 것은 아니다. 예를 들어, 시간 영역에 있어서 복수의 심벌은 OFDM 심벌 외에 SC-FDMA(Single Carrier-Frequency Division Multiple Access) 심벌, 심벌 구간 등일 수도 있다.One slot may include a plurality of symbols in the time domain. For example, in a wireless system using orthogonal frequency division multiple access (OFDMA) in downlink (DL), the symbol may be an orthogonal frequency division multiplexing (OFDM) symbol. Meanwhile, the representation of the symbol period in the time domain is not limited by the multiple access scheme or the name. For example, the plurality of symbols in the time domain may be a Single Carrier-Frequency Division Multiple Access (SC-FDMA) symbol, a symbol interval, or the like in addition to the OFDM symbol.
하나의 슬롯에 포함되는 OFDM 심벌의 개수는 CP(Cyclic Prefix)의 길이에 따라 달라질 수 있다. 예컨대, 일반(normal) CP인 경우에 1 슬롯은 7개의 OFDM 심벌을 포함하고, 확장(extended) CP인 경우에 1 슬롯은 6개의 OFDM 심벌을 포함할 수 있다. The number of OFDM symbols included in one slot may vary depending on the length of a cyclic prefix (CP). For example, one slot may include seven OFDM symbols in the case of a normal CP, and one slot may include six OFDM symbols in the case of an extended CP.
자원 요소(resource element: RE)는 데이터 채널의 변조 심벌 또는 제어 채널의 변조 심벌 등이 맵핑되는 가장 작은 시간-주파수 단위를 나타낸다. 자원 블록(Resource Block, RB)은 자원 할당 단위로서, 주파수 축으로 180kHz, 시간 축으로 1 슬롯(slot)에 해당하는 시간-주파수 자원을 포함한다. 한편, 자원 블록 쌍(resource block pair: PBR)은 시간 축에서 연속된 2개의 슬롯을 포함하는 자원 단위를 의미한다. A resource element (RE) represents the smallest time-frequency unit to which a modulation symbol of a data channel or a modulation symbol of a control channel is mapped. A resource block (RB) is a resource allocation unit and includes time-frequency resources corresponding to 180 kHz on the frequency axis and 1 slot on the time axis. Meanwhile, a resource block pair (PBR) refers to a resource unit including two consecutive slots on the time axis.
무선 통신 시스템에서는 데이터의 송/수신, 시스템 동기 획득, 채널 정보 피드백 등을 위하여 상향링크 채널 또는 하향링크의 채널을 추정할 필요가 있다. 급격한 채널환경의 변화에 의하여 생기는 신호의 왜곡(distortion)을 보상하여 전송 신호를 복원하는 과정을 채널추정(channel estimation)이라고 한다. 또한 단말이 속한 셀 혹은 다른 셀에 대한 채널 상태(channel state) 역시 측정할 필요가 있다. 일반적으로 채널 추정 또는 채널 상태 측정을 위해서 단말과 송수신 포인트 상호 간에 알고 있는 참조 신호(RS: Reference Signal)를 이용하게 된다.In a wireless communication system, it is necessary to estimate an uplink channel or a downlink channel for data transmission / reception, system synchronization acquisition, channel information feedback, and the like. The process of restoring a transmission signal by compensating for distortion of a signal caused by a sudden change in channel environment is called channel estimation. In addition, it is also necessary to measure the channel state (channel state) for the cell to which the terminal belongs or other cells. In general, a reference signal (RS) that is known between a terminal and a transmission / reception point is used for channel estimation or channel state measurement.
단말은 참조 신호의 정보를 알고 있기 때문에 수신된 참조 신호를 기반으로 채널을 추정하고 채널 값을 보상함으로써, 해당 채널상으로 수신되는 데이터를 정확히 얻어낼 수 있다. 기지국이 보내는 참조 신호를 p, 참조 신호가 전송 중에 겪게 되는 채널 정보를 h, 단말에서 발생하는 열 잡음을 n, 단말이 수신한 신호를 y라 하면 y = h·p + n과 같이 나타낼 수 있다. 이때 참조 신호 p는 단말이 이미 알고 있기 때문에 LS(Least Square) 방식을 이용할 경우 수학식 1과 같이 채널 정보(
Figure PCTKR2014010330-appb-I000001
)를 추정할 수 있다.
Since the terminal knows the information of the reference signal, the terminal can accurately obtain data received on the corresponding channel by estimating the channel based on the received reference signal and compensating for the channel value. If p is the reference signal transmitted by the base station, h is channel information experienced by the reference signal during transmission, n is thermal noise generated at the terminal, and y is the signal received at the terminal, it can be expressed as y = h · p + n. . In this case, since the reference signal p is already known by the terminal, when the LS (Least Square) method is used, channel information (
Figure PCTKR2014010330-appb-I000001
) Can be estimated.
수학식 1
Figure PCTKR2014010330-appb-M000001
Equation 1
Figure PCTKR2014010330-appb-M000001
여기서, 참조 신호 p를 이용하여 추정한 채널 추정값
Figure PCTKR2014010330-appb-I000002
Figure PCTKR2014010330-appb-I000003
값에 의존하게 되므로, 정확한 h값의 추정을 위해서는
Figure PCTKR2014010330-appb-I000004
을 0에 수렴시킬 필요가 있다.
Here, the channel estimate estimated using the reference signal p
Figure PCTKR2014010330-appb-I000002
Is
Figure PCTKR2014010330-appb-I000003
Depends on the value, so to get an accurate estimate of
Figure PCTKR2014010330-appb-I000004
Needs to converge to zero.
참조 신호는 일반적으로 참조 신호의 시퀀스로부터 신호를 생성하여 전송된다. 참조 신호 시퀀스는 상관(correlation) 특성이 우수한 여러 가지 시퀀스 들 중 하나 이상이 사용될 수 있다. 예를 들어, ZC(Zadoff-Chu) 시퀀스 등의 CAZAC(Constant Amplitude Zero Auto-Correlation) 시퀀스나 m-시퀀스, 골드(Gold) 시퀀스, 카사미(Kasami) 시퀀스 등의 의사잡음(pseudo-noise: PN) 시퀀스 등이 참조 신호의 시퀀스로 사용될 수가 있으며, 이외에도 시스템 상황에 따라 상관 특성이 우수한 여러 가지 다른 시퀀스들이 사용될 수도 있다. 또한 상기 참조 신호 시퀀스는 시퀀스의 길이(length)를 조절하기 위해 순환 확장(cyclic extension) 또는 절단(truncation)되어 사용될 수도 있으며, BPSK(Binary Phase Shift Keying)나 QPSK(Quadrature Phase Shift Keying) 등 다양한 형태로 변조(modulation)되어 자원요소에 맵핑될 수도 있다. The reference signal is generally transmitted by generating a signal from a sequence of reference signals. In the reference signal sequence, one or more of various sequences having excellent correlation characteristics may be used. For example, pseudo-noise (PN) such as Constant Amplitude Zero Auto-Correlation (CAZAC) sequences such as Zadoff-Chu (ZC) sequences, m-sequences, Gold sequences, and Kasami sequences. ) May be used as the sequence of the reference signal, and various other sequences having excellent correlation characteristics may be used depending on the system situation. In addition, the reference signal sequence may be used by cyclic extension or truncation to adjust the length of the sequence, and may be various forms such as binary phase shift keying (BPSK) or quadrature phase shift keying (QPSK). May be modulated and mapped to a resource element.
하향링크 참조 신호로는 셀 특정 참조 신호(CRS: Cell-specific RS), MBSFN(Multimedia Broadcast and multicast Single Frequency Network) 참조 신호, 단말 특정 참조 신호(UE-specific RS), 위치 참조 신호(PRS: Positioning RS) 및 채널 상태 정보(CSI; channel state information) 참조 신호(CSI-RS) 등이 있다.The downlink reference signal includes a cell-specific RS (CRS), a multimedia broadcast and multicast single frequency network (MBSFN) reference signal, a UE-specific RS (RS), and a position reference signal (PRS). RS and channel state information (CSI) reference signals (CSI-RS).
단말 특정 참조 신호는 셀 내 특정 단말 또는 특정 단말 그룹이 수신하는 참조 신호로, 특정 단말 또는 특정 단말 그룹의 데이터 복조(demodulation)에 주로 사용되므로 복조 참조 신호(Demodulation RS: DMRS)라 불릴 수 있다.The UE-specific reference signal is a reference signal received by a specific terminal or a specific terminal group in a cell, and is mainly used for data demodulation of a specific terminal or a specific terminal group and may be called a demodulation reference signal (DMRS).
CSI-RS는 LTE-A 단말의 PDSCH(physical downlink shared channel)에 대한 채널 추정에 사용된다. CSI-RS는 주파수 영역 또는 시간 영역에서 비교적 듬성하게(sparse) 배치된다. CSI의 추정을 통해 필요한 경우에 CQI(channel quality indicator), PMI(precoding matrix indicator) 및 RI(rank indicator) 등이 단말로부터 보고될 수 있다.The CSI-RS is used for channel estimation for the physical downlink shared channel (PDSCH) of the LTE-A terminal. The CSI-RSs are arranged relatively sparse in the frequency domain or the time domain. Channel quality indicator (CQI), precoding matrix indicator (PMI), rank indicator (RI), etc. may be reported from the UE when necessary through estimation of CSI.
CSI-RS는 1개, 2개, 4개 또는 8개의 안테나 포트를 통하여 전송될 수 있다. 이때 사용되는 안테나 포트는 각각 p=15, p=15,16, p=15,...,18 및 p=15,...,22일 수 있다. CSI-RS는 부반송파간의 주파수 간격 Δf가 15kHz인 경우에 대해서 정의된다. CSI-RS 시퀀스 rl,ns(m)은 수학식 2와 같이 정의될 수 있다.The CSI-RS may be transmitted through one, two, four or eight antenna ports. In this case, the antenna ports used may be p = 15, p = 15,16, p = 15, ..., 18 and p = 15, ..., 22, respectively. CSI-RS is defined for the case where the frequency spacing Δf between subcarriers is 15 kHz. The CSI-RS sequence r l, ns (m) may be defined as in Equation 2.
수학식 2
Figure PCTKR2014010330-appb-M000002
Equation 2
Figure PCTKR2014010330-appb-M000002
수학식 2에서 ns는 무선 프레임 내의 슬롯 번호, l은 슬롯 내의 OFDM 심볼 번호이다. 수학식 2를 참조하면, m번째 CSI-RS 시퀀스는 의사 랜덤 시퀀스(pseudo-random sequence) c(i)를 통해 각각 실수부와 허수부를 구성한 후, 정규화(normalize)하여 생성된다. c(i)는 길이-31의 골드(Gold) 시퀀스에 의해 정의될 수 있다. c(i)는 이진 의사 랜덤 시퀀스로 0 또는 1의 값을 가질 수 있다. 따라서, 수학식 2에서 보는 바와 같이 1-2·c(i)은 1 또는 -1의 값을 나타낼 수 있으며, 실수부에서는 짝수에 해당하는 2m번째 시퀀스를, 허수부에서는 홀수에 해당하는 (2m+1)번째 시퀀스를 사용한다. 길이 MPN의 출력 시퀀스 c(n) (n=0,1,...,MPN-1)은 수학식 3과 같이 정의될 수 있다. In Equation 2, n s is a slot number in a radio frame and l is an OFDM symbol number in a slot. Referring to Equation 2, the m-th CSI-RS sequence is generated by normalizing the real part and the imaginary part through a pseudo-random sequence c (i), respectively. c (i) may be defined by a Gold sequence of length-31. c (i) may have a value of 0 or 1 as a binary pseudo-random sequence. Therefore, as shown in Equation 2, 1-2 · c (i) may represent a value of 1 or -1, and the 2m-th sequence corresponding to an even number in the real part and the odd number in the imaginary part (2m Use the +1) th sequence. The output sequence c (n) of length M PN (n = 0,1, ..., M PN-1 ) may be defined as in Equation 3.
수학식 3
Figure PCTKR2014010330-appb-M000003
Equation 3
Figure PCTKR2014010330-appb-M000003
Figure PCTKR2014010330-appb-I000005
Figure PCTKR2014010330-appb-I000005
Figure PCTKR2014010330-appb-I000006
Figure PCTKR2014010330-appb-I000006
수학식 3에서 NC=1600이며, 제1 m-시퀀스 x1(i)는 x1(0)=1, x1(n)=0, (n=1,2,...,30)로 초기화될 수 있다. 제2 m-시퀀스 x2(i)의 초기화는 시퀀스가 적용되는 채널이나 신호에서 사용되는 시스템 파라미터 값에 따라 서로 다른 값으로 초기화가 될 수 있으며, 이는
Figure PCTKR2014010330-appb-I000007
로 표현될 수 있다.
In Equation 3, N C = 1600, and the first m-sequence x 1 (i) is x 1 (0) = 1, x 1 (n) = 0, (n = 1,2, ..., 30) Can be initialized to The initialization of the second m-sequence x 2 (i) may be initialized to different values depending on the system parameter values used in the channel or signal to which the sequence is applied.
Figure PCTKR2014010330-appb-I000007
It can be expressed as.
의사 랜덤 시퀀스 c(i)는 각 OFDM 심볼의 시작에서 수학식 4에 의해서 초기화될 수 있다.The pseudo random sequence c (i) may be initialized by Equation 4 at the start of each OFDM symbol.
수학식 4
Figure PCTKR2014010330-appb-M000004
Equation 4
Figure PCTKR2014010330-appb-M000004
수학식 4에서, NCP는 일반 CP에서는 1, 확장 CP에서는 0의 값을 가진다. NID CSI는 0에서 503까지의 정수 중 어느 하나의 값을 가질 수 있다. NID CSI는 상위 계층으로부터 시그널링 되는 경우 CSI-RS을 위한 가상 셀 아이디(VCID; virtual cell ID)일 수 있다. NID CSI는 상위 계층으로부터의 시그널링이 없다면 물리 셀 아이디(PCID; physical cell ID)와 같을 수 있다. In Equation 4, N CP has a value of 1 in a general CP and 0 in an extended CP. The N ID CSI may have any one of integers from 0 to 503. The N ID CSI may be a virtual cell ID (VCID) for CSI-RS when signaled from a higher layer. The N ID CSI may be equal to a physical cell ID (PCID) if there is no signaling from a higher layer.
CSI-RS의 전송을 위하여 구성된 서브프레임에서, CSI-RS 시퀀스 rl,ns(m)은 수학식 5에 따라 안테나 포트 p 상에서 참조 심볼로서 사용되는 복소 변조 심볼(complex-valued modulation symbol) ak,l (p)에 맵핑될 수 있다.In the subframe configured for transmission of the CSI-RS, the CSI-RS sequence r l, ns (m) is a complex-valued modulation symbol a k used as a reference symbol on the antenna port p according to Equation 5 , l (p) can be mapped.
수학식 5
Figure PCTKR2014010330-appb-M000005
Equation 5
Figure PCTKR2014010330-appb-M000005
수학식 5를 참조하면, ak,l (p)는 p번째 안테나 포트의 k번째 부반송파 및 l번째 OFDM 심볼에 맵핑되는 복소 변조 심볼이다. ak,l (p)는 CSI-RS 시퀀스 rl,ns(m') 및 직교 시퀀스 wl''가 곱하여져 맵핑된다.Referring to Equation 5, a k, l (p) is a complex modulation symbol mapped to the k th subcarrier and the l th OFDM symbol of the p th antenna port. a k, l (p) is mapped by multiplying the CSI-RS sequence r l, ns (m ') and the orthogonal sequence w l'' .
수학식 5의 각 파라미터는 수학식 6에 의해서 정의될 수 있다.Each parameter of Equation 5 may be defined by Equation 6.
수학식 6
Figure PCTKR2014010330-appb-M000006
Equation 6
Figure PCTKR2014010330-appb-M000006
수학식 6을 참조하면, (k',l') 및 ns에 대한 필요조건은 후술하는 표 1 및 표 2에 의해서 주어질 수 있다. Referring to Equation 6, the requirements for (k ', l') and n s can be given by Tables 1 and 2 described below.
CSI-RS 구성은 각 셀 (또는 전송 포인트(TP; transmission point))의 단말에게 CSI-RS가 전송되는 패턴을 지시하는 비영전력(non-zero transmission power) CSI-RS 구성과, 인접 셀(또는 TP)의 CSI-RS 전송에 대응되는 PDSCH 영역을 뮤팅(muting)하기 위한 영전력(zero transmission power) CSI-RS 구성으로 구분될 수 있다. 비영전력 CSI-RS를 가정하는 단말에 대하여 CSI 프로세스 당 0개 또는 1개의 CSI-RS 구성이, 영전력 CSI-RS를 가정하는 단말에 대하여 0개 또는 여러 개의 CSI RS 구성이 사용될 수 있다.The CSI-RS configuration includes a non-zero transmission power CSI-RS configuration indicating a pattern in which a CSI-RS is transmitted to a terminal of each cell (or transmission point (TP)), and a neighboring cell (or It may be classified into a zero transmission power CSI-RS configuration for muting a PDSCH region corresponding to CSI-RS transmission of TP). Zero or one CSI-RS configuration per CSI process may be used for a terminal assuming non-zero power CSI-RS, and zero or several CSI RS configurations may be used for a terminal assuming zero power CSI-RS.
해당 셀의 각 단말에게 하나 이상의 비영전력 CSI-RS 구성(이하, CSI-RS 구성)에 대한 정보가 전송될 수 있다. CSI-RS 구성에 대한 정보는, 비영전력 CSI-RS를 전송하는 안테나 포트(이하, CSI-RS 안테나 포트)의 개수가 1, 2, 4 및 8 중 어느 하나인지를 지시하는 2비트 정보와, CSI-RS 안테나 포트의 개수 별로 구성 가능한 CSI-RS 패턴을 지시하는 5비트 정보를 포함할 수 있다.Information about one or more non-zero power CSI-RS configuration (hereinafter, referred to as CSI-RS configuration) may be transmitted to each terminal of the corresponding cell. The information on the CSI-RS configuration includes 2-bit information indicating whether the number of antenna ports (hereinafter, CSI-RS antenna ports) for transmitting non-zero power CSI-RS is any one of 1, 2, 4, and 8; 5 bit information indicating a CSI-RS pattern configurable for each number of CSI-RS antenna ports may be included.
표 1은 일반 CP에서 CSI-RS 구성과 수학식 6의 (k',l'), 즉 CSI-RS 패턴의 맵핑을 나타내며, 표 2는 확장 CP에서 CSI-RS 구성과 수학식 6의 (k',l'), 즉 CSI-RS 패턴의 맵핑을 나타낸다.Table 1 shows the mapping of the CSI-RS configuration and (k ', l'), that is, the CSI-RS pattern in Equation 6, in the general CP, and Table 2 shows the CSI-RS configuration and (k) in Equation 6 in the extended CP. ', l'), that is, mapping of the CSI-RS pattern.
표 1
CSI-RS 구성 구성되는 CSI-RS의 개수
1 or 2 4 8
(k',l') ns mod 2 (k',l') ns mod 2 (k',l') ns mod 2
프레임 구조 타입 1 및 2 0 (9,5) 0 (9,5) 0 (9,5) 0
1 (11,2) 1 (11,2) 1 (11,2) 1
2 (9,2) 1 (9,2) 1 (9,2) 1
3 (7,2) 1 (7,2) 1 (7,2) 1
4 (9,5) 1 (9,5) 1 (9,5) 1
5 (8,5) 0 (8,5) 0
6 (10,2) 1 (10,2) 1
7 (8,2) 1 (8,2) 1
8 (6,2) 1 (6,2) 1
9 (8,5) 1 (8,5) 1
10 (3,5) 0
11 (2,5) 0
12 (5,2) 1
13 (4,2) 1
14 (3,2) 1
15 (2,2) 1
16 (1,2) 1
17 (0,2) 1
18 (3,5) 1
19 (2,5) 1
프레임 구조 타입 2 only 20 (11,1) 1 (11,1) 1 (11,1) 1
21 (9,1) 1 (9,1) 1 (9,1) 1
22 (7,1) 1 (7,1) 1 (7,1) 1
23 (10,1) 1 (10,1) 1
24 (8,1) 1 (8,1) 1
25 (6,1) 1 (6,1) 1
26 (5,1) 1
27 (4,1) 1
28 (3,1) 1
29 (2,1) 1
30 (1,1) 1
31 (0,1) 1
Table 1
CSI-RS configuration Number of CSI-RSs
1 or 2 4 8
(k ', l') n s mod 2 (k ', l') n s mod 2 (k ', l') n s mod 2
Frame structure type 1 and 2 0 (9,5) 0 (9,5) 0 (9,5) 0
One (11,2) One (11,2) One (11,2) One
2 (9,2) One (9,2) One (9,2) One
3 (7,2) One (7,2) One (7,2) One
4 (9,5) One (9,5) One (9,5) One
5 (8,5) 0 (8,5) 0
6 (10,2) One (10,2) One
7 (8,2) One (8,2) One
8 (6,2) One (6,2) One
9 (8,5) One (8,5) One
10 (3,5) 0
11 (2,5) 0
12 (5,2) One
13 (4,2) One
14 (3,2) One
15 (2,2) One
16 (1,2) One
17 (0,2) One
18 (3,5) One
19 (2,5) One
Frame structure type 2 only 20 (11,1) One (11,1) One (11,1) One
21 (9,1) One (9,1) One (9,1) One
22 (7,1) One (7,1) One (7,1) One
23 (10,1) One (10,1) One
24 (8,1) One (8,1) One
25 (6,1) One (6,1) One
26 (5,1) One
27 (4,1) One
28 (3,1) One
29 (2,1) One
30 (1,1) One
31 (0,1) One
표 2
CSI-RS 구성 구성되는 CSI-RS의 개수
1 or 2 4 8
(k',l') ns mod 2 (k',l') ns mod 2 (k',l') ns mod 2
프레임 구조 타입 1 및 2 0 (11,4) 0 (11,4) 0 (11,4) 0
1 (9,4) 0 (9,4) 0 (9,4) 0
2 (10,4) 1 (10,4) 1 (10,4) 1
3 (9,4) 1 (9,4) 1 (9,4) 1
4 (5,4) 0 (5,4) 0
5 (3,4) 0 (3,4) 0
6 (4,4) 1 (4,4) 1
7 (3,4) 1 (3,4) 1
8 (8,4) 0
9 (6,4) 0
10 (2,4) 0
11 (0,4) 0
12 (7,4) 1
13 (6,4) 1
14 (1,4) 1
15 (0,4) 1
프레임 구조 타입 2 only 16 (11,1) 1 (11,1) 1 (11,1) 1
17 (10,1) 1 (10,1) 1 (10,1) 1
18 (9,1) 1 (9,1) 1 (9,1) 1
19 (5,1) 1 (5,1) 1
20 (4,1) 1 (4,1) 1
21 (3,1) 1 (3,1) 1
22 (8,1) 1
23 (7,1) 1
24 (6,1) 1
25 (2,1) 1
26 (1,1) 1
27 (0,1) 1
TABLE 2
CSI-RS configuration Number of CSI-RSs
1 or 2 4 8
(k ', l') n s mod 2 (k ', l') n s mod 2 (k ', l') n s mod 2
Frame structure type 1 and 2 0 (11,4) 0 (11,4) 0 (11,4) 0
One (9,4) 0 (9,4) 0 (9,4) 0
2 (10,4) One (10,4) One (10,4) One
3 (9,4) One (9,4) One (9,4) One
4 (5,4) 0 (5,4) 0
5 (3,4) 0 (3,4) 0
6 (4,4) One (4,4) One
7 (3,4) One (3,4) One
8 (8,4) 0
9 (6,4) 0
10 (2,4) 0
11 (0,4) 0
12 (7,4) One
13 (6,4) One
14 (1,4) One
15 (0,4) One
Frame structure type 2 only 16 (11,1) One (11,1) One (11,1) One
17 (10,1) One (10,1) One (10,1) One
18 (9,1) One (9,1) One (9,1) One
19 (5,1) One (5,1) One
20 (4,1) One (4,1) One
21 (3,1) One (3,1) One
22 (8,1) One
23 (7,1) One
24 (6,1) One
25 (2,1) One
26 (1,1) One
27 (0,1) One
표 1 및 표 2에서 프레임 구조 타입 1은 FDD를 의미하며, 프레임 구조 타입 2는 TDD를 의미한다.In Table 1 and Table 2, frame structure type 1 means FDD and frame structure type 2 means TDD.
표 1을 참조하면, 일반 CP의 경우 안테나 포트의 개수가 1개 또는 2개일 때 는 총 32가지 CSI-RS 구성, 안테나 포트의 개수가 4개일 때는 총 16가지 CSI-RS 구성, 안테나 포트의 개수가 8개일 때는 총 8가지의 CSI-RS 구성이 존재한다. 표 2를 참조하면, 확장 CP의 경우 안테나 포트의 개수가 1개 또는 2개일 때는 총 28가지 CSI-RS 구성, 안테나 포토의 개수가 4개일 때는 총 14가지 CSI-RS 구성, 안테나 포트의 개수가 8개일 때는 총 7가지의 CSI-RS 구성이 존재한다.Referring to Table 1, in case of a general CP, 32 CSI-RS configurations are used when the number of antenna ports is 1 or 2, 16 CSI-RS configurations are used when the number of antenna ports is 4, and the number of antenna ports is There are eight CSI-RS configurations when there are eight. Referring to Table 2, in case of the extended CP, 28 CSI-RS configurations in total with one or two antenna ports, 14 CSI-RS configurations in total with four antenna ports, and the number of antenna ports In eight, there are a total of seven CSI-RS configurations.
표 1 및 표 2를 참조하면, CSI-RS 구성에 대하여 CSI-RS 안테나 포트 개수 별로 CSI-RS가 맵핑되는 특정한 하나의 자원 요소의 위치가 지시될 수 있다. 즉, 상기 특정한 하나의 자원 요소의 위치를 기반으로 수학식 6에 의하여 CSI-RS가 맵핑되는 나머지 자원 요소들의 위치가 결정될 수 있으며, 이에 따라 CSI-RS 안테나 포트의 개수 별로 구성 가능한 전체 CSI-RS 패턴을 알 수 있다.Referring to Tables 1 and 2, the location of one specific resource element to which the CSI-RS is mapped may be indicated for each CSI-RS antenna port with respect to the CSI-RS configuration. That is, the location of the remaining resource elements to which the CSI-RS is mapped may be determined by Equation 6 based on the location of the one specific resource element, and thus the total CSI-RS configurable for each number of CSI-RS antenna ports. The pattern can be seen.
예를 들어, CSI-RS 안테나 포트의 개수가 8개이며 CSI-RS 구성의 값이 2(=00010)인 경우, 표 1에 의하여 이에 대응되는 (k',l')=(9,2) 및 ns mod 2=1이 지시된다. 따라서, CSI-RS 전송을 위하여 구성된 서브프레임 내에서, CSI-RS가 두 번째 슬롯의 부반송파 인덱스가 9이고 OFDM 심볼 인덱스가 2인 자원 요소에 맵핑됨을 알 수 있다. 표 1에 의하여 지시되는 자원 요소는 첫 번째 CSI-RS 안테나 포트를 통해 전송되는 CSI-RS가 맵핑되는 자원 요소의 위치 중 하나일 수 있다. 첫 번째 CSI-RS 안테나 포트를 통해 전송되는 CSI-RS가 맵핑되는 나머지 자원 요소의 위치 및 나머지 CSI-RS 안테나 포트를 통해 전송되는 CSI-RS가 맵핑되는 자원 요소의 위치는 수학식 6에 의하여 표 1에 의하여 지시되는 자원 요소와 일정 간격을 두고 위치할 수 있다.For example, if the number of CSI-RS antenna ports is 8 and the value of the CSI-RS configuration is 2 (= 00010), corresponding to (k ', l') = (9,2) according to Table 1 And n s mod 2 = 1. Accordingly, it can be seen that within the subframe configured for CSI-RS transmission, the CSI-RS is mapped to a resource element having a subcarrier index of 9 and an OFDM symbol index of 2 in the second slot. The resource element indicated by Table 1 may be one of locations of resource elements to which CSI-RSs transmitted through the first CSI-RS antenna port are mapped. The positions of the remaining resource elements to which the CSI-RSs transmitted through the first CSI-RS antenna port are mapped and the positions of the resource elements to which the CSI-RSs are transmitted through the remaining CSI-RS antenna port are mapped according to Equation (6). It may be located at a predetermined distance from the resource element indicated by 1.
도 5a 및 도 5b는 일반 CP에서 CSI-RS 안테나 포트의 개수에 따른 CSI-RS 구성과 CSI-RS 패턴의 일 예를 나타낸다.5A and 5B illustrate an example of a CSI-RS configuration and a CSI-RS pattern according to the number of CSI-RS antenna ports in a general CP.
도 5a는 프레임 구조 타입 1(FDD) 및 프레임 구조 타입 2(TDD)에서 적용될 수 있는 경우이며, 도 5b는 오직 프레임 구조 타입 2(TDD)에서만 적용될 수 있는 경우의 CSI-RS 패턴을 나타낸다. 도 5a 및 도 5b에서 각 자원 요소에 표기된 숫자는 CSI-RS 구성 번호를 나타낸다.FIG. 5A is a case where it can be applied in frame structure type 1 (FDD) and frame structure type 2 (TDD), and FIG. 5B shows a CSI-RS pattern when it is applicable only in frame structure type 2 (TDD). In FIG. 5A and FIG. 5B, numerals denoted for each resource element indicate a CSI-RS configuration number.
a는 CSI-RS 안테나 포트 {15, 16}, b는 CSI-RS 안테나 포트 {17, 18}, c는 CSI-RS 안테나 포트 {19, 20}, d는 CSI-RS 안테나 포트 {19, 20} 상으로 CSI-RS를 전송하는 것을 나타낸다. A는 DMRS 안테나 포트 {7, 8, 11, 13}, B는 DMRS 안테나 포트 {9, 10, 12, 14} 상으로 DMRS를 전송하는 것을 나타낸다. C는 CRS가 맵핑되는 자원 요소를 나타낸다. 또한, 도 5에서 CRS 안테나 포트의 개수는 2개이며, 제어 영역(음영 부분)은 서브프레임의 처음 3개의 OFDM 심볼에 할당되는 것을 가정한다. a is CSI-RS antenna port {15, 16}, b is CSI-RS antenna port {17, 18}, c is CSI-RS antenna port {19, 20}, d is CSI-RS antenna port {19, 20 } This shows transmitting the CSI-RS. A denotes DMRS antenna ports {7, 8, 11, 13}, and B denotes transmission of DMRS on DMRS antenna ports {9, 10, 12, 14}. C represents a resource element to which the CRS is mapped. In addition, in FIG. 5, it is assumed that the number of CRS antenna ports is two, and the control region (shading part) is allocated to the first three OFDM symbols of the subframe.
도 5a 및 도 5b의 CSI-RS 패턴은 CRS 안테나 포트의 개수가 1개 또는 4개이거나, CRS를 전송하지 않는 경우에도 적용될 수 있다. 또한, 도 5a 및 도 5b의 CSI-RS 패턴은 제어 영역이 서브프레임의 처음 1개 내지 4개에 OFDM 심볼에 할당되거나, 제어 영역이 할당되지 않는 경우에도 적용될 수 있다. 또한, 도 5a 및 도 5b에서 DMRS는 2개의 CDM(code division multiplexing) 그룹(A: DMRS 안테나 포트 {7, 8, 11, 13}, B: DMRS 안테나 포트 {9, 10, 12, 14})을 사용하는 것을 가정하였으나, 도 5a 및 도 5b의 CSI-RS 패턴은 1개의 CDM 그룹을 사용하는 경우에도 적용될 수 있다.The CSI-RS pattern of FIGS. 5A and 5B may be applied even when the number of CRS antenna ports is one or four or when no CRS is transmitted. In addition, the CSI-RS pattern of FIGS. 5A and 5B may be applied even when a control region is allocated to an OFDM symbol in the first 1 to 4 subframes, or when the control region is not allocated. 5A and 5B, DMRS is divided into two code division multiplexing (CDM) groups (A: DMRS antenna ports {7, 8, 11, 13}, and B: DMRS antenna ports {9, 10, 12, 14}). Although assumed to use, the CSI-RS pattern of Figures 5a and 5b can be applied to the case of using one CDM group.
도 6은 확장 CP에서 CSI-RS 안테나 포트의 개수에 따른 CSI-RS 구성과 CSI-RS 패턴의 일 예를 나타낸다.6 shows an example of a CSI-RS configuration and a CSI-RS pattern according to the number of CSI-RS antenna ports in an extended CP.
도 5a 및 도 5b와 마찬가지로, 도 6에서 각 자원 요소에 표기된 숫자는 CSI-RS 구성 번호를 나타낸다. a는 CSI-RS 안테나 포트 {15, 16}, b는 CSI-RS 안테나 포트 {17, 18}, c는 CSI-RS 안테나 포트 {19, 20}, d는 CSI-RS 안테나 포트 {19, 20} 상으로 CSI-RS를 전송하는 것을 나타낸다. E는 DMRS 안테나 포트 {7, 8} 상으로 DMRS를 전송하는 것을 나타낸다. C는 CRS가 맵핑되는 자원 요소를 나타낸다. 또한, 도 6에서 CRS 안테나 포트의 개수는 2개이며, 제어 영역(음영 부분)은 서브프레임의 처음 3개의 OFDM 심볼에 할당되는 것을 가정한다.Like FIG. 5A and FIG. 5B, the numerals indicated in each resource element in FIG. 6 indicate CSI-RS configuration numbers. a is CSI-RS antenna port {15, 16}, b is CSI-RS antenna port {17, 18}, c is CSI-RS antenna port {19, 20}, d is CSI-RS antenna port {19, 20 } This shows transmitting the CSI-RS. E indicates transmitting DMRS on DMRS antenna port {7, 8}. C represents a resource element to which the CRS is mapped. In addition, in FIG. 6, it is assumed that the number of CRS antenna ports is two, and the control region (shading part) is allocated to the first three OFDM symbols of the subframe.
도 6의 CSI-RS 패턴은 CRS 안테나 포트의 개수가 1개 또는 4개이거나, CRS를 전송하지 않는 경우에도 적용될 수 있다. 또한, 도 6의 CSI-RS 패턴은 제어 영역이 서브프레임의 처음 1개 내지 4개에 OFDM 심볼에 할당되거나, 제어 영역이 할당되지 않는 경우에도 적용될 수 있다. The CSI-RS pattern of FIG. 6 may be applied even when the number of CRS antenna ports is one or four or when no CRS is transmitted. In addition, the CSI-RS pattern of FIG. 6 may be applied even when a control region is allocated to an OFDM symbol in the first 1 to 4 of the subframe, or when the control region is not allocated.
표 3은 CSI-RS가 전송되는 서브프레임 구성(subframe config)의 일 예를 나타낸다.Table 3 shows an example of a subframe configuration in which the CSI-RS is transmitted.
표 3
CSI-RS-서브프레임 구성ICSI-RS CSI-RS 주기TCSI-RS (서브프레임) CSI-RS 서브프레임 오프셋ΔCSI-RS (subframes)
0 - 4 5 ICSI-RS
5 - 14 10 ICSI-RS-1
15 - 34 20 ICSI-RS-15
35 - 74 40 ICSI-RS-35
75 - 154 80 ICSI-RS-75
TABLE 3
CSI-RS-Subframe Configuration I CSI-RS CSI-RS CycleT CSI-RS (subframe) CSI-RS subframe offset Δ CSI-RS (subframes)
0-4 5 I CSI-RS
5-14 10 I CSI-RS -1
15-34 20 I CSI-RS -15
35-74 40 I CSI-RS -35
75-154 80 I CSI-RS -75
표 3을 참조하면, CSI-RS 서브프레임 구성(ICSI-RS)에 따라 CSI-RS가 전송되는 서브프레임의 주기(CSI-RS 주기, TCSI-RS) 및 오프셋(ΔCSI-RS)이 결정될 수 있다. CSI-RS 서브프레임 구성은 비영전력 CSI-RS 및 영전력 CSI-RS에 대하여 분리되어(separately) 구성될 수 있다. 한편, CSI-RS를 전송하는 서브프레임은 수학식 7을 만족할 필요가 있다.Referring to Table 3, the period (CSI-RS period, T CSI-RS ) and offset (Δ CSI-RS ) of the subframe in which the CSI-RS is transmitted according to the CSI-RS subframe configuration (I CSI-RS ) Can be determined. The CSI-RS subframe configuration may be configured separately for the non-zero power CSI-RS and zero-power CSI-RS. On the other hand, the subframe for transmitting the CSI-RS needs to satisfy the equation (7).
수학식 7
Figure PCTKR2014010330-appb-M000007
Equation 7
Figure PCTKR2014010330-appb-M000007
영전력 CSI-RS 구성은 각 비트가 CSI-RS 안테나 포트의 개수가 4개일 때의 CSI-RS 패턴과 대응되는 16비트의 비트맵(bitmap)로 구성될 수 있다. 즉, 상위 계층에 의하여 구성되는 16비트의 비트맵에서 1로 설정된 비트에 대하여, 단말은 표 1 및 표 2에서 CSI-RS 안테나 포트의 개수가 4개인 경우에 대응되는 자원 요소를 영전력 CSI-RS로 설정할 수 있다. 보다 구체적으로 16비트의 비트맵의 MSB(most significant bit)가 표 1 및 표 2에서 CSI-RS 안테나 포트의 개수가 4개인 경우에서 첫 번째 CSI-RS 구성 인덱스에 대응된다. 16비트의 비트맵의 이어지는 비트들은 표 1 및 표 2에서 CSI-RS 안테나 포트의 개수가 4개인 경우에서 CSI-RS 구성 인덱스가 증가하는 방향으로 대응된다. 영전력 CSI-RS로 설정된 자원 요소에서는 인접 셀 또는 TP의 CSI-RS 전송에 대응되는 PDSCH를 뮤팅하여, 영전력 CSI-RS로 설정되지 않은 자원 요소에서는 PDSCH를 전송할 수 있다.The zero power CSI-RS configuration may include a 16-bit bitmap corresponding to the CSI-RS pattern when each bit has four CSI-RS antenna ports. That is, for a bit set to 1 in a 16-bit bitmap configured by a higher layer, the UE selects a resource element corresponding to the case where the number of CSI-RS antenna ports is 4 in Tables 1 and 2, and zero-power CSI-. Can be set to RS. More specifically, the most significant bit (MSB) of the 16-bit bitmap corresponds to the first CSI-RS configuration index when the number of CSI-RS antenna ports is 4 in Tables 1 and 2. Subsequent bits of the 16-bit bitmap correspond to the direction in which the CSI-RS configuration index increases when the number of CSI-RS antenna ports is 4 in Tables 1 and 2. The resource element set to the zero power CSI-RS may mute the PDSCH corresponding to the CSI-RS transmission of the neighbor cell or the TP, and transmit the PDSCH to the resource element not set to the zero power CSI-RS.
영전력 CSI-RS를 위하여 RRC 계층에서 전송되는 파라미터는 다음과 같다The parameters transmitted in the RRC layer for zero power CSI-RS are as follows.
1) 영전력 CSI-RS 구성 리스트: 표 1 또는 표 2에서 CSI-RS 안테나 포트의 개수가 4개일 때 각 CSI-RS 구성을 하나의 비트로 하여 구성되는 16비트의 비트맵1) Zero power CSI-RS configuration list: 16-bit bitmap composed of one CSI-RS configuration as one bit when the number of CSI-RS antenna ports is 4 in Table 1 or Table 2.
2) 영전력 CSI-RS 서브프레임 구성(ICSI-RS): 후술할 비영전력 CSI-RS를 위하여 전송되는 subframeConfig 파라미터와 마찬가지로, 영전력 CSI-RS를 위한 서브프레임 구성을 지시한다. 영전력 CSI-RS 서브프레임 구성은 8비트의 길이를 가지며, 영전력 CSI-RS 서브프레임 구성에 따라 영전력 CSI-RS가 전송을 위하여 사용되는 서브프레임의 주기(TCSI-RS) 및 오프셋(ΔCSI-RS)이 결정될 수 있다. 2) Zero Power CSI-RS Subframe Configuration (I CSI-RS ): Like the subframeConfig parameter transmitted for the non-zero power CSI-RS described below, it indicates a subframe configuration for the zero power CSI-RS. The zero-power CSI-RS subframe configuration has a length of 8 bits, and the period (T CSI-RS ) and offset (T CSI-RS ) of the subframe in which the zero-power CSI-RS is used for transmission according to the zero-power CSI-RS subframe configuration Δ CSI-RS ) can be determined.
단말은 매크로 셀 내에 분포하는 다수의 스몰셀들 중에서, 자신에게 서비스를 제공할 수 있는 스몰셀을 발견(discover)할 수 있다. 이러한 동작을 스몰셀 발견(small cell discovery)이라고 한다. 스몰셀은 단말에 의해 발견될 수 있도록 발견 신호(discovery signal)를 단말로 전송하고, 단말은 발견 신호를 이용하여 스몰셀을 발견할 수 있다. 만약 발견 신호를 전송하기 위해 많은 자원을 할당하는 경우, 발견 신호의 검출 정확도는 증가할 수 있으나 오버헤드가 커지고 전력에 민감한 스몰셀에서 전력이 낭비될 우려도 있다. 반대로 만약 발견 신호를 전송하기 위해 적은 자원을 할당하는 경우, 오버헤드는 작아지는 장점이 있는 반면, 발견 신호의 검출 정확도는 낮아질 수 있는 단점이 있다. 이러한 측면을 고려하여 발견 신호를 위해 적정 수준의 자원을 할당할 필요가 있고, 구체적으로 얼만큼의 자원을 어떻게 할당할 것인지에 관한 정의가 필요하며, 이에 관한 정보가 기지국에서 단말로 전송될 수 있다. The terminal may discover a small cell capable of providing a service to itself among a plurality of small cells distributed in the macro cell. This operation is called small cell discovery. The small cell transmits a discovery signal to the terminal so that the small cell can be found by the terminal, and the terminal can discover the small cell using the discovery signal. If a large amount of resources are allocated to transmit a discovery signal, the detection accuracy of the discovery signal may be increased, but there is a concern that the overhead is increased and power is wasted in a power-sensitive small cell. On the contrary, if a small resource is allocated to transmit a discovery signal, the overhead is reduced, while the detection accuracy of the discovery signal may be lowered. In consideration of this aspect, it is necessary to allocate an appropriate level of resources for the discovery signal, and in particular, a definition of how much resources are allocated is required, and information on this may be transmitted from the base station to the terminal.
본 실시 예에서, 발견 신호는 CSI-RS를 포함할 수 있다. 물론, 발견 신호로서 CRS, PSS/SSS, 변형된(modified) CRS, 변형된 PSS/SSS, CSI-RS 또는 PRS 등의 물리신호 중 하나 이상이 포함될 수도 있으나, 본 실시 예에서는 CSI-RS가 포함된 경우로 설명한다. 또한, 이하에서 CSI-RS를 발견 신호로서 본 발명의 기술적 특징을 설명하지만, CSI-RS에 기반한 기술적 특징들은 모두 다른 물리신호를 발견 신호로 사용하는 경우에도 동일하게 적용될 수 있다. In this embodiment, the discovery signal may include a CSI-RS. Of course, as the discovery signal, one or more of physical signals such as CRS, PSS / SSS, modified CRS, modified PSS / SSS, CSI-RS, or PRS may be included, but in the present embodiment, CSI-RS is included. Explain in the case of. In addition, the following describes the technical features of the present invention as a discovery signal using the CSI-RS, but the technical features based on the CSI-RS may be equally applicable to the case where all other physical signals are used as the discovery signal.
표 1 및 표 2에 따르면, 1 또는 2개의 안테나 포트를 통해서 CSI-RS를 구성할 경우 시간축으로 하나의 서브프레임과 주파수축으로 하나의 RB로 이루어진 시간-주파수 자원 영역 내에서 총 2개의 자원요소가 CSI-RS의 전송에 사용된다. 노멀 CP가 사용된 시간축으로 하나의 서브프레임과 주파수축으로 하나의 RB로 이루어진 시간-주파수 자원상에서, 직교성(orthogonality)을 가지는 최대 20개의 CSI-RS 패턴(단, 확장 CP가 사용되는 경우에는 최대 16개(FDD인 경우) 또는 28개(TDD인 경우)의 CSI-RS 패턴)이 정의될 수 있다. 이러한 CSI-RS 패턴들을 스몰 셀의 발견 신호의 전송을 위해 사용할 경우, 최대 20개의 스몰 셀들에서 서로 직교성을 가지는 발견 신호들이 전송될 수 있다. 이러한 발견 신호들은 서로 직교성을 가지므로 간섭이 최소화될 수 있다. According to Table 1 and Table 2, when configuring the CSI-RS through one or two antenna ports, a total of two resource elements in a time-frequency resource region consisting of one subframe on the time axis and one RB on the frequency axis Is used for transmission of the CSI-RS. Up to 20 CSI-RS patterns with orthogonality on a time-frequency resource consisting of one subframe on the time axis with normal CP and one RB on the frequency axis (but maximum when extended CP is used) 16 (when FDD) or 28 (when TDD) CSI-RS patterns) may be defined. When the CSI-RS patterns are used for transmission of a discovery signal of a small cell, discovery signals having orthogonality to each other may be transmitted in up to 20 small cells. Since these discovery signals are orthogonal to each other, interference can be minimized.
한편, 본 실시예는 발견 신호로서 1 또는 2개의 안테나 포트를 통해 CSI-RS를 구성함에 있어서, 시간축으로 하나의 서브프레임과 주파수축으로 하나의 RB로 이루어진 시간-주파수 자원 영역 내에서 총 4개(2개가 아닌)의 자원요소를 CSI-RS의 전송에 사용한다. 이에 따르면 노멀 CP가 사용된 하나의 서브프레임내의 시간-주파수 자원상에서, 직교성을 가지는 최대 10개의 CSI-RS 패턴(단, 확장 CP가 사용되는 경우에는 최대 8개(FDD인 경우) 또는 14개(TDD인 경우)의 CSI-RS 패턴)이 정의될 수 있다. 이러한 CSI-RS 패턴들을 스몰 셀의 발견 신호의 전송을 위해 사용할 경우, 최대 10개의 스몰 셀들에서 서로 직교성을 가지는 발견 신호들이 전송될 수 있다. Meanwhile, in the present embodiment, in configuring the CSI-RS through one or two antenna ports as a discovery signal, a total of four within a time-frequency resource region including one subframe on the time axis and one RB on the frequency axis Resource elements (not two) are used to transmit CSI-RS. According to this, on time-frequency resources in one subframe in which normal CPs are used, up to 10 CSI-RS patterns having orthogonality (except in case of extended CPs, up to 8 (in case of FDD) or 14) CSI-RS pattern) in the case of TDD) may be defined. When these CSI-RS patterns are used for transmission of a discovery signal of a small cell, discovery signals having orthogonality to each other may be transmitted in up to 10 small cells.
현재 고려되는 밀집된 스몰셀 시나리오(dense small cell scenario)에 따르면, 하나의 스몰 셀 클러스터(cluster)이 최대 10개의 스몰 셀들로 구성될 수 있다. 밀집된 스몰 셀 시나리오에 본 실시예와 같이 4개 자원요소를 이용한 최대 10개의 CSI-RS 패턴이 적용되는 경우, 하나의 스몰 셀 클러스터에 포함된 10개의 스몰 셀 모두에 대해 직교성을 가지며 간섭이 최소화된 발견 신호들이 전송될 수가 있다. 이와 같이 적정 수의 자원요소에 CSI-RS가 맵핑되어 전송되고, 상기 CSI-RS가 발견 신호로 사용될 경우, 오버헤드 부담이 줄어들고 발견 신호의 검출 정확도가 향상될 수 있다. According to the dense small cell scenario currently considered, one small cell cluster may be composed of up to 10 small cells. When a maximum of 10 CSI-RS patterns using 4 resource elements are applied to a dense small cell scenario, the orthogonality is minimized and interference is minimized for all 10 small cells included in one small cell cluster. Discovery signals may be sent. As such, when the CSI-RS is mapped and transmitted to an appropriate number of resource elements, and the CSI-RS is used as the discovery signal, the overhead burden may be reduced and the detection accuracy of the discovery signal may be improved.
이하에서는 4개의 자원요소를 발견 신호, 즉 CSI-RS의 전송에 사용하기 위한 CSI-RS의 구성 방법 및 이를 시그널링하는 방법이 개시된다. Hereinafter, a method of configuring a CSI-RS for signaling four resource elements, that is, a CSI-RS, and a method of signaling the same will be described.
도 7은 본 발명의 일례에 따른 CSI-RS의 구성 및 전송 방법을 설명하는 흐름도이다.7 is a flowchart illustrating a configuration and transmission method of a CSI-RS according to an example of the present invention.
도 7을 참조하면, 기지국은 CSI-RS_DS 구성정보를 생성한다(S700). 기지국은 단말에 서빙셀을 제공한다. CSI-RS_DS 구성정보는 발견 신호(discovery signal: DS)의 전송에 관련된 구성을 포함한다. CSI-RS_DS 구성정보는 단순히 CSI-RS 구성정보라 불릴 수도 있다. CSI-RS_DS 구성정보는 기지국에 의해 선택적으로(optional) 생성 및 전송될 수 있다. 일례로서, CSI-RS_DS 구성정보가 생성 및 전송되지 않는 경우, 발견 신호로서 CRS만이 사용될 수 있다. 다른 예로서, CSI-RS_DS 구성정보가 생성 및 전송되는 경우, 발견 신호로서 CRS와 CSI-RS_DS가 모두 사용될 수 있다. CSI-RS_DS 구성정보는 다양한 실시예를 가질 수 있다. Referring to FIG. 7, the base station generates CSI-RS_DS configuration information (S700). The base station provides a serving cell to the terminal. The CSI-RS_DS configuration information includes a configuration related to transmission of a discovery signal (DS). The CSI-RS_DS configuration information may be referred to simply as CSI-RS configuration information. The CSI-RS_DS configuration information may be selectively generated and transmitted by the base station. As an example, when CSI-RS_DS configuration information is not generated and transmitted, only CRS may be used as a discovery signal. As another example, when CSI-RS_DS configuration information is generated and transmitted, both CRS and CSI-RS_DS may be used as a discovery signal. The CSI-RS_DS configuration information may have various embodiments.
제1 실시예(first embodiment)로서, CSI-RS_DS 구성정보는 자원구성 리스트(resourceConfigList) 필드, 서브프레임 구성(subframeConfig) 필드 중 적어도 하나를 포함할 수 있다. 경우에 따라 CSI-RS_DS 구성정보는 CSI-RS_DS 구성 ID 필드를 더 포함할 수도 있다. 하기의 표 4는 CSI-RS_DS 구성정보가 CSI-RS_DS 구성 ID 필드, 자원구성 리스트 필드, 서브프레임 구성 필드를 모두 포함하는 예시이다. As a first embodiment, the CSI-RS_DS configuration information may include at least one of a resource configuration list field and a subframe configuration field. In some cases, the CSI-RS_DS configuration information may further include a CSI-RS_DS configuration ID field. Table 4 below is an example in which the CSI-RS_DS configuration information includes all of a CSI-RS_DS configuration ID field, a resource configuration list field, and a subframe configuration field.
표 4
-- ASN1START
...
CSI-RS_DS-config CSI-RS_DS-Config ----- {Optional}
...
CSI-RS_DS-Config ::= SEQUENCE {
csi-RS_DS-ConfigId CSI-RS_DS-ConfigId,
resourceConfigList BIT STRING (SIZE (Z)),
subframeConfig INTEGER (0..154),
...
}
-- ASN1STOP
Table 4
-ASN1START
...
CSI-RS_DS-config CSI-RS_DS-Config ----- {Optional}
...
CSI-RS_DS-Config :: = SEQUENCE {
csi-RS_DS-ConfigId CSI-RS_DS-ConfigId,
resourceConfigList BIT STRING (SIZE (Z)),
subframeConfig INTEGER (0..154),
...
}
-ASN1STOP
표 4를 참조하면, CSI-RS_DS 구성 ID 필드는 CoMP(Coordinated Multiple Point)가 지원되는 경우, CSI-RS를 전송하는 자원 구성을 식별하는데 사용된다. 제1 실시예는 CSI-RS_DS 구성 ID 필드가 상기 표 4에서 제외된 실시예를 포함할 수도 있다. Referring to Table 4, the CSI-RS_DS configuration ID field is used to identify a resource configuration for transmitting the CSI-RS when CoMP (Coordinated Multiple Point) is supported. The first embodiment may include an embodiment in which the CSI-RS_DS configuration ID field is excluded from Table 4 above.
자원구성 리스트 필드는 길이 Z의 비트맵으로서, k개의 스몰 셀들에서 구성된 CSI-RS 패턴들에 대한 정보를 제공한다. 자원구성 리스트 필드의 Z개의 비트 각각에는 특정 CSI-RS 패턴이 맵핑될 수 있다. 여기서, 상기 특정 CSI-RS 패턴은 4개의 안테나 포트가 사용될 때의 CSI-RS 패턴일 수 있다. 표 1을 예로 들면, 4개의 안테나 포트 기반의 CSI-RS 패턴은 노멀 CP의 서브프레임 기준으로 CSI-RS 패턴 0번~9번, 20번~25번, 이렇게 총 16가지가 될 수 있다. 이때, 자원구성 리스트 필드의 길이 Z=16인 경우(즉, 자원구성 리스트 필드가 16비트임), 상기 16개의 CSI-RS 패턴들이 상기 16비트에 1:1로 맵핑될 수 있다. The resource configuration list field is a bitmap of length Z and provides information on CSI-RS patterns configured in k small cells. A specific CSI-RS pattern may be mapped to each of the Z bits of the resource configuration list field. Here, the specific CSI-RS pattern may be a CSI-RS pattern when four antenna ports are used. For example, in Table 1, four antenna port-based CSI-RS patterns may be 16 kinds, such as CSI-RS patterns 0 to 9 and 20 to 25, based on subframes of a normal CP. In this case, when the length Z = 16 of the resource configuration list field (that is, the resource configuration list field is 16 bits), the 16 CSI-RS patterns may be mapped 1: 1 to the 16 bits.
자원구성 리스트 필드가 제공하는 정보는 다음과 같다. 만약, 자원구성 리스트 필드 내의 임의의 비트가 0이면 상기 임의의 비트에 대응하는 CSI-RS 패턴은 어느 스몰 셀에서도 구성되지 않음이 지시된다. 반대로 자원구성 리스트 필드 내의 임의의 비트가 1이면 상기 임의의 비트에 대응하는 CSI-RS 패턴이 적어도 하나의 스몰 셀에서 구성되어 있음이 지시된다. The information provided by the resource configuration list field is as follows. If any bit in the resource configuration list field is 0, it is indicated that the CSI-RS pattern corresponding to the arbitrary bit is not configured in any small cell. On the contrary, if an arbitrary bit in the resource configuration list field is 1, it is indicated that a CSI-RS pattern corresponding to the arbitrary bit is configured in at least one small cell.
제1 실시예에 따르면, CSI-RS_DS 구성정보는 CSI-RS를 전송하는 스몰 셀들의 ID 리스트 필드 및 안테나 포트의 개수 필드 중 적어도 하나를 더 포함할 수 있다. 표 5는 스몰셀 ID 리스트 필드를 더 포함하는 CSI-RS_DS 구성정보를 나타낸다. According to the first embodiment, the CSI-RS_DS configuration information may further include at least one of an ID list field of small cells transmitting the CSI-RS and a number field of antenna ports. Table 5 shows CSI-RS_DS configuration information further including a small cell ID list field.
표 5
-- ASN1START
CSI-RS_DS-Config ::= SEQUENCE {
csi-RS_DS-ConfigId CSI-RS_DS-ConfigId,
resourceConfigList BIT STRING (SIZE (Z)),
subframeConfig INTEGER (0..154),
smallcellIDlist Small_CELL_ID_list,
...
}
Small_CELL_ID_list ::= SEQUENCE (SIZE(1...maxSmallCell)) {
smallcellID PhysCellId
}
-- ASN1STOP
Table 5
-ASN1START
CSI-RS_DS-Config :: = SEQUENCE {
csi-RS_DS-ConfigId CSI-RS_DS-ConfigId,
resourceConfigList BIT STRING (SIZE (Z)),
subframeConfig INTEGER (0..154),
smallcellIDlist Small_CELL_ID_list,
...
}
Small_CELL_ID_list :: = SEQUENCE (SIZE (1 ... maxSmallCell)) {
smallcellID PhysCellId
}
-ASN1STOP
표 5를 참조하면, 스몰셀 ID 리스트(smallcellIDlist) 필드는 최대 maxSmallCell 만큼의 스몰셀 ID를 포함할 수 있다. 여기서, maxSmallCell=10일 수 있다. 스몰셀 ID 리스트 필드에 포함된 스몰셀 ID는 각 스몰셀의 물리적 ID를 식별하는 물리셀 ID(physical cell ID: PhysCellID)일 수 있다. 여기서, 스몰셀 ID는 9비트일 수 있다. Referring to Table 5, the small cell ID list field may include up to maxSmallCell as small cell IDs. Here, maxSmallCell may be 10. The small cell ID included in the small cell ID list field may be a physical cell ID (PhysCellID) identifying a physical ID of each small cell. Here, the small cell ID may be 9 bits.
표 5는 스몰셀 ID 리스트 필드가 스몰셀들의 ID만을 포함하는 것을 예시로 들었으나, 표 6과 같이 스몰셀 ID 리스트 필드가 스몰셀의 ID 이외에도 안테나 포트 개수 및/또는 P-c 필드를 더 포함할 수도 있다. In Table 5, the small cell ID list field includes only the IDs of the small cells, but as shown in Table 6, the small cell ID list field may further include the antenna port number and / or the Pc field in addition to the small cell ID. have.
표 6
-- ASN1START
CSI-RS_DS-Config ::= SEQUENCE {
csi-RS_DS-ConfigId CSI-RS_DS-ConfigId,
resourceConfigList BIT STRING (SIZE (Z)),
subframeConfig INTEGER (0..154),
smallcellIDlist Small_CELL_ID_list,
...
}
Small_CELL_ID_list ::= SEQUENCE (SIZE(1...maxSmallCell)) {
smallcellID PhysCellId,
antennaPortsCount ENUMERATED {an1, an2},
P-c INTEGER (-8..15)
}
-- ASN1STOP
Table 6
-ASN1START
CSI-RS_DS-Config :: = SEQUENCE {
csi-RS_DS-ConfigId CSI-RS_DS-ConfigId,
resourceConfigList BIT STRING (SIZE (Z)),
subframeConfig INTEGER (0..154),
smallcellIDlist Small_CELL_ID_list,
...
}
Small_CELL_ID_list :: = SEQUENCE (SIZE (1 ... maxSmallCell)) {
smallcellID PhysCellId,
antennaPortsCount ENUMERATED {an1, an2},
Pc INTEGER (-8..15)
}
-ASN1STOP
표 6을 참조하면, 스몰셀 ID 리스트 필드는 an1 또는 an2의 값을 가지는 안테나 포트의 개수(antennaPortsCount) 필드 및 P-c 필드를 포함할 수 있다. 여기서, an1는 안테나 포트 개수=1, an2는 안테나 포트 개수=2를 나타낸다(1비트 사용). 물론, 발견 신호로서의 CSI-RS의 전송을 위한 안테나 포트의 개수가 1개로 고정된 경우, 안테나 포트의 개수 필드는 표 6에서 생략될 수 있다. P-c 필드는 예시적으로 CSI-RS 전송 전력의 세기를 -8~15dB 범위로 나타낼 수 있다. 만약 모든 스몰셀들이 동일한 전력세기로 CSI-RS를 전송하는 경우, P-c 필드는 표 6에서 생략될 수 있다. Referring to Table 6, the small cell ID list field may include an antenna port count field and a P-c field of antenna ports having an1 or an2. Here, an1 represents the number of antenna ports = 1, and an2 represents the number of antenna ports = 2 (1 bit is used). Of course, when the number of antenna ports for transmitting the CSI-RS as the discovery signal is fixed to one, the number field of the antenna ports may be omitted in Table 6. For example, the P-c field may indicate the strength of the CSI-RS transmission power in a range of -8 to 15 dB. If all the small cells transmit the CSI-RS with the same power strength, the P-c field may be omitted in Table 6.
한편, 또 다른 예시로서, 스몰셀 ID 리스트 필드는 자원구성 리스트 필드에서 1로 표시된 비트에 대응하는 CSI-RS 패턴으로 구성된 스몰셀의 ID만을 포함할 수도 있다. 이에 따르면, 스몰셀 ID 리스트 필드는 표 5 또는 표 6에서와 같이 maxSmallCell 만큼의 스몰셀 ID를 포함하는 것이 아니고, 자원구성 리스트 필드에서 1로 표시된 비트에 대응하는 CSI-RS 패턴으로 구성된 스몰셀의 개수 만큼의 스몰셀 ID를 포함한다. 이때, 스몰셀 ID는 자원구성 리스트 필드에서 1로 표시된 비트에 따라 순서대로 나열될 수 있다. Meanwhile, as another example, the small cell ID list field may include only the ID of the small cell configured with the CSI-RS pattern corresponding to the bit indicated by 1 in the resource configuration list field. According to this, the small cell ID list field does not include the small cell IDs of maxSmallCell as shown in Table 5 or Table 6, but the small cell ID list field is composed of the CSI-RS pattern corresponding to the bit indicated by 1 in the resource configuration list field. It includes as many small cell IDs. In this case, the small cell IDs may be listed in order according to the bit indicated by 1 in the resource configuration list field.
제2 실시예(second embodiment)로서, CSI-RS_DS 구성정보는 k개의 스몰셀 자원구성 리스트(resourceConfigList_small) 필드, 서브프레임 구성(subframeConfig) 필드 중 적어도 하나를 포함할 수 있다. 경우에 따라 CSI-RS_DS 구성정보는 CSI-RS_DS 구성 ID 필드를 더 포함할 수도 있다. 하기의 표 7은 CSI-RS_DS 구성정보가 CSI-RS_DS 구성 ID 필드, k개의 스몰셀 자원구성 리스트 필드, 서브프레임 구성 필드를 모두 포함하는 예시이다. As a second embodiment, the CSI-RS_DS configuration information may include at least one of k small cell resource configuration list (resourceConfigList_small) fields and a subframe configuration field. In some cases, the CSI-RS_DS configuration information may further include a CSI-RS_DS configuration ID field. Table 7 below is an example in which the CSI-RS_DS configuration information includes all of the CSI-RS_DS configuration ID field, k small cell resource configuration list fields, and a subframe configuration field.
표 7
-- ASN1START
CSI-RS_DS-Config ::= SEQUENCE {
csi-RS_DS-ConfigId CSI-RS_DS-ConfigId,
resourceConfigList_small ResourceConfigList_Small
subframeConfig INTEGER (0..154),
...
}
ResourceConfigList_Small ::= SEQUENCE (SIZE(1...k)) {
smallcellID PhysCellId,
resourceConfigList BIT STRING (SIZE (Z)),
}
-- ASN1STOP
TABLE 7
-ASN1START
CSI-RS_DS-Config :: = SEQUENCE {
csi-RS_DS-ConfigId CSI-RS_DS-ConfigId,
resourceConfigList_small ResourceConfigList_Small
subframeConfig INTEGER (0..154),
...
}
ResourceConfigList_Small :: = SEQUENCE (SIZE (1 ... k)) {
smallcellID PhysCellId,
resourceConfigList BIT STRING (SIZE (Z)),
}
-ASN1STOP
표 7을 참조하면, 제2 실시예는 CSI-RS_DS 구성 ID 필드가 상기 표 7에서 제외된 실시예를 포함할 수도 있다. 스몰셀 자원구성 리스트 필드는 스몰셀의 ID 필드 및, 상기 스몰셀에 구성된 CSI-RS 패턴을 나타내는 자원구성 리스트 필드를 포함한다. 자원구성 리스트 필드는 길이 Z 비트맵이다. 이러한 스몰셀의 ID 필드/자원구성 리스트 필드의 조합은 총 k개의 스몰셀에 대해 개별적으로 정의될 수 있다. Referring to Table 7, the second embodiment may include an embodiment in which the CSI-RS_DS configuration ID field is excluded from Table 7. The small cell resource configuration list field includes an ID field of the small cell and a resource configuration list field indicating a CSI-RS pattern configured in the small cell. The resource configuration list field is a length Z bitmap. The combination of the ID field / resource list field of the small cell may be defined individually for a total of k small cells.
제2 실시예는 또한, 스몰셀 자원구성 리스트 필드에 안테나 포트의 개수 필드 및/또는 P-c 필드가 포함된 것을 더 포함할 수도 있다. 이 경우, 스몰셀 자원구성 리스트 필드는 다음의 표와 같이 표현될 수 있다.The second embodiment may further include that the number of antenna ports field and / or the P-c field are included in the small cell resource configuration list field. In this case, the small cell resource configuration list field may be expressed as shown in the following table.
표 8
-- ASN1START
CSI-RS_DS-Config ::= SEQUENCE {
csi-RS_DS-ConfigId CSI-RS_DS-ConfigId,
resourceConfigList_small ResourceConfigList_Small
subframeConfig INTEGER (0..154),
...
}
ResourceConfigList_Small ::= SEQUENCE (SIZE(1...k)) {
smallcellID PhysCellId,
resourceConfigList BIT STRING (SIZE (Z)),
antennaPortsCount ENUMERATED {an1, an2},
P-c INTEGER (-8..15)
}
-- ASN1STOP
Table 8
-ASN1START
CSI-RS_DS-Config :: = SEQUENCE {
csi-RS_DS-ConfigId CSI-RS_DS-ConfigId,
resourceConfigList_small ResourceConfigList_Small
subframeConfig INTEGER (0..154),
...
}
ResourceConfigList_Small :: = SEQUENCE (SIZE (1 ... k)) {
smallcellID PhysCellId,
resourceConfigList BIT STRING (SIZE (Z)),
antennaPortsCount ENUMERATED {an1, an2},
Pc INTEGER (-8..15)
}
-ASN1STOP
제3 실시예(third embodiment)로서, CSI-RS_DS 구성정보는 자원구성(resourceConfig) 필드, 서브프레임 구성(subframeConfig) 필드 중 적어도 하나를 포함할 수 있다. 경우에 따라 CSI-RS_DS 구성정보는 CSI-RS_DS 구성 ID 필드를 더 포함할 수도 있다. 하기의 표 9는 CSI-RS_DS 구성정보가 CSI-RS_DS 구성 ID 필드, 자원구성 필드, 서브프레임 구성 필드를 모두 포함하는 예시이다. As a third embodiment, the CSI-RS_DS configuration information may include at least one of a resourceConfig field and a subframeConfig field. In some cases, the CSI-RS_DS configuration information may further include a CSI-RS_DS configuration ID field. Table 9 below is an example in which the CSI-RS_DS configuration information includes all of the CSI-RS_DS configuration ID field, resource configuration field, and subframe configuration field.
표 9
-- ASN1START
CSI-RS_DS-Config ::= SEQUENCE {
csi-RS_DS-ConfigId CSI-RS_DS-ConfigId,
resourceConfig INTEGER (0...31),
subframeConfig INTEGER (0..154),
...
}
-- ASN1STOP
Table 9
-ASN1START
CSI-RS_DS-Config :: = SEQUENCE {
csi-RS_DS-ConfigId CSI-RS_DS-ConfigId,
resourceConfig INTEGER (0 ... 31),
subframeConfig INTEGER (0..154),
...
}
-ASN1STOP
표 9를 참조하면, CSI-RS_DS 구성 ID 필드는 발견 신호로서의 CSI-RS를 전송하는 자원 구성을 식별하는데 사용된다. 제3 실시예는 CSI-RS_DS 구성 ID 필드가 상기 표 9에서 제외된 실시예를 더 포함할 수도 있다. Referring to Table 9, the CSI-RS_DS Configuration ID field is used to identify a resource configuration for transmitting the CSI-RS as a discovery signal. The third embodiment may further include an embodiment in which the CSI-RS_DS configuration ID field is excluded from Table 9 above.
자원구성 필드는 표 1 또는 표 2에서 제공되는 32가지의 CSI-RS 패턴을 인덱스 0~31로서 지시한다. 여기서 자원구성 필드가 지시하는 CSI-RS 패턴은, 발견 신호를 전송하는 스몰셀에 구성된 CSI-RS 패턴을 의미한다. 자원구성 필드에 예를 들어 4 또는 5비트가 할당될 수 있다. 한편, CSI-RS_DS 구성정보는, 자원구성 필드에 의해 지시된 CSI-RS 패턴으로 전송되는 CSI-RS의 전력을 나타내는 P-c를 더 포함할 수도 있다. The resource configuration field indicates 32 CSI-RS patterns provided in Table 1 or Table 2 as indices 0 to 31. Here, the CSI-RS pattern indicated by the resource configuration field means a CSI-RS pattern configured in the small cell transmitting the discovery signal. For example, 4 or 5 bits may be allocated to the resource configuration field. Meanwhile, the CSI-RS_DS configuration information may further include a P-c indicating the power of the CSI-RS transmitted in the CSI-RS pattern indicated by the resource configuration field.
제4 실시예(fourth embodiment)로서, CSI-RS_DS 구성정보는 비영전력 CSI-RS 구성정보에 포함될 수 있다. 비영전력 CSI-RS 구성정보는 안테나 포트 개수(antennaPortsCount)와 자원구성(resourceConfig) 필드를 포함한다. 또한, 예를 들어 비영전력 CSI-RS 구성정보는 하기 표 10과 같이 정의될 수도 있다. As a fourth embodiment, CSI-RS_DS configuration information may be included in non-zero power CSI-RS configuration information. The non-zero power CSI-RS configuration information includes an antenna port count (antennaPortsCount) and a resource configuration (resourceConfig) field. In addition, for example, the non-zero power CSI-RS configuration information may be defined as shown in Table 10 below.
표 10
-- ASN1START
CSI-RS-ConfigNZP ::= SEQUENCE {
csi-RS-ConfigNZPId CSI-RS-ConfigNZPId,
antennaPortsCount ENUMERATED {an1, an2, an4, an8},
resourceConfig INTEGER (0..31),
subframeConfig INTEGER (0..154),
scramblingIdentity INTEGER (0..503),
qcl-CRS-Info SEQUENCE {
qcl-ScramblingIdentity INTEGER (0..503),
crs-PortsCount ENUMERATED {n1, n2, n4, spare1},
mbsfn-SubframeConfigList CHOICE {
release NULL,
setup SEQUENCE {
subframeConfigList MBSFN-SubframeConfigList
}
} OPTIONAL -- Need ON
} OPTIONAL, -- Need OR
...
}
-- ASN1STOP
Table 10
-ASN1START
CSI-RS-ConfigNZP :: = SEQUENCE {
csi-RS-ConfigNZPId CSI-RS-ConfigNZPId,
antennaPortsCount ENUMERATED {an1, an2, an4, an8},
resourceConfig INTEGER (0..31),
subframeConfig INTEGER (0..154),
scramblingIdentity INTEGER (0..503),
qcl-CRS-Info SEQUENCE {
qcl-ScramblingIdentity INTEGER (0..503),
crs-PortsCount ENUMERATED {n1, n2, n4, spare1},
mbsfn-SubframeConfigList CHOICE {
release NULL,
setup SEQUENCE {
subframeConfigList MBSFN-SubframeConfigList
}
} OPTIONAL-Need ON
} OPTIONAL,-Need OR
...
}
-ASN1STOP
표 10을 참조하면, 자원구성 필드는 인덱스 0~31을 지시하며, 각 인덱스는 표 1의 CSI-RS 패턴에 대응한다. 여기서, 안테나 포트 개수가 an4(즉, 4개)를 지시할 경우, 표 1에 따른 인덱스 10~19, 26~31은 사용되지 않고 남는 부호점(code point)이다. 본 실시예는 이렇게 남는 부호점들을 스몰셀에 구성된 CSI-RS 패턴을 지시하는 용도로 사용하는 것을 포함한다. 여기서, 스몰셀에서 전송되는 CSI-RS를 위해 1개의 안테나 포트가 사용될 수도 있고, 2개의 안테나 포트가 사용될 수도 있다. 스몰셀의 CSI-RS를 위한 안테나 포트의 개수는 단말과 기지국간에 미리 규약되어 있을 수 있다. Referring to Table 10, the resource configuration field indicates indexes 0 to 31, and each index corresponds to the CSI-RS pattern of Table 1. In this case, when the number of antenna ports indicates an4 (that is, four), indexes 10 to 19 and 26 to 31 according to Table 1 are code points that remain unused. The present embodiment includes using the remaining code points to indicate the CSI-RS pattern configured in the small cell. Here, one antenna port may be used for the CSI-RS transmitted in the small cell, and two antenna ports may be used. The number of antenna ports for the CSI-RS of the small cell may be previously regulated between the terminal and the base station.
상기 실시예 1 내지 실시예 4에서와 표 5 내지 표 9에서 기재한 각 파라미터 명은 본 발명에서 설명의 편의를 위해서 임의로 기재한 파라미터 명이며, 각 파라미터가 의미하거나 지시하는 내용의 변화가 없는 선에서 각 파라미터 명은 달리 기재될 수도 있을 것이다.Each parameter name described in Examples 1 to 4 and Tables 5 to 9 is a parameter name arbitrarily described for convenience of description in the present invention, and the parameter name does not change the meaning or indication of each parameter. Each parameter name may be described otherwise.
다시 도 7에서, 기지국은 CSI-RS_DS 구성정보를 단말로 전송한다(S705). CSI-RS_DS 구성정보는 RRC 메시지의 형식으로 단말로 전송될 수 있다. 특히, CSI-RS_DS 구성정보는 RRC 연결 재구성(RRC connection reconfiguration) 메시지 내에 선택적으로 포함될 수 있다. 단말은 CSI-RS_DS 구성정보를 수신하고, CSI-RS_DS 구성정보가 지시하는 대로 RRC 연결의 재구성을 수행할 수 있다. 그리고 CSI-RS_DS 구성정보에 기반하여, 단말은 스몰셀에 구성된 CSI-RS 패턴을 알 수 있다. 7 again, the base station transmits CSI-RS_DS configuration information to the terminal (S705). The CSI-RS_DS configuration information may be transmitted to the terminal in the form of an RRC message. In particular, the CSI-RS_DS configuration information may be selectively included in an RRC connection reconfiguration message. The UE may receive the CSI-RS_DS configuration information and perform reconfiguration of the RRC connection as indicated by the CSI-RS_DS configuration information. And, based on the CSI-RS_DS configuration information, the UE can know the CSI-RS pattern configured in the small cell.
스몰셀은 발견 신호, 즉 CSI-RS를 생성한다(S710). 구체적으로 스몰셀이 CSI-RS를 생성하는 방법은 다음의 예시들을 포함할 수 있다. The small cell generates a discovery signal, that is, a CSI-RS (S710). In detail, the method for generating the CSI-RS by the small cell may include the following examples.
(1) CSI-RS의 생성방법의 일례(an example)는, i) 수학식 2 내지 4에 따라 CSI-RS를 위한 시퀀스를 생성하는 단계, ii) 수학식 5에 따라 상기 CSI-RS 시퀀스로부터 복소 변조 심볼 ak,l (p)를 구하는 단계, 그리고 iii) 상기 복소 변조 심볼을 하기 수학식 8에 따라 지정되는 자원요소에 맵핑하는 단계를 포함한다. i)단계에 있어서, 하나의 OFDM 심볼 상에서 하나의 PRB(physical RB) 내의 2개의 자원요소에는 수학식 2 내지 4에서 생성된 동일한 시퀀스가 2번 맵핑된다. 즉 하나의 시퀀스 인덱스(수학식 2에서 m에 해당)에 따른 하나의 시퀀스 값이 2번 반복되어 맵핑된다. iii)단계에 있어서, CSI-RS가 맵핑되는 자원요소를 구하는 수학식 8은 다음과 같다.(1) An example of a method of generating a CSI-RS includes: i) generating a sequence for the CSI-RS according to Equations 2 to 4, ii) from the CSI-RS sequence according to Equation 5 Obtaining a complex modulation symbol a k, l (p) , and iii) mapping the complex modulation symbol to a resource element designated according to Equation 8 below. In step i), the same sequence generated in Equations 2 to 4 is mapped twice to two resource elements in one physical RB on one OFDM symbol. That is, one sequence value according to one sequence index (corresponding to m in Equation 2) is repeatedly mapped twice. In step iii), Equation 8 for obtaining the resource element to which the CSI-RS is mapped is as follows.
수학식 8
Figure PCTKR2014010330-appb-M000008
Equation 8
Figure PCTKR2014010330-appb-M000008
수학식 8을 참조하면, CSI-RS를 위한 안테나 포트 p={115, 116}으로 정의된다. 즉, 스몰셀의 CSI-RS를 위한 안테나 포트로서 최대 2개가 지원될 수 있다. 그리고 CSI-RS가 맵핑될 부반송파 k는 일반 CP의 경우 k'+12m+{-0 또는 -6}으로서 하나의 PRB내에 2개가 존재한다. 이에 따르면 시간축으로 하나의 서브프레임 및 주파수 축으로 하나의 RB에 해당하는 시간-주파수 자원 영역 내에서, 하나의 OFDM 심볼상에서 CSI-RS가 맵핑되는 자원요소가 2개임을 의미한다. 또한, l"의 값이 2개이므로 CSI-RS가 2개의 OFDM 심볼상에서 전송된다. 즉 CSI-RS는 총 4개의 자원요소(2 OFDM 심볼 * 2 부반송파)를 이용하여 전송될 수 있다. Referring to Equation 8, an antenna port p = {115, 116} for CSI-RS is defined. That is, up to two antenna ports for the CSI-RS of the small cell may be supported. The subcarrier k to which the CSI-RS is mapped is k '+ 12m + {-0 or -6} in the case of a general CP, and two subcarriers k exist in one PRB. This means that there are two resource elements to which CSI-RSs are mapped on one OFDM symbol in a time-frequency resource region corresponding to one subframe on the time axis and one RB on the frequency axis. In addition, since the value of "l" is 2, the CSI-RS is transmitted on two OFDM symbols. That is, the CSI-RS may be transmitted using a total of four resource elements (2 OFDM symbols * 2 subcarriers).
본 예시에서, CSI-RS_DS 구성정보로서 전술된 4가지 실시예에 따른 CSI-RS_DS 구성정보가 적용될 수 있다. 한편, 본 예시에서 발견 신호용 CSI-RS의 안테나 포트 번호에 대해서 기존 CSI-RS를 위한 안테나 포트와 구별하여 편의상 첫 번째 안테나의 안테나 포트 번호는 115, 두 번째 안테나의 안테나 포트 번호는 116으로 기술하였으나, 이에 국한된 것은 아니다. 또한, 발견 신호용 CSI-RS에서 안테나 포트 1개 또는 2개를 사용하는 것으로 수학식 8을 설명하였지만, 안테나 포트를 1개만 사용할 경우 수학식 9에서 두 번째 안테나 포트(p=116)와 관련된 기술 사항은 생략될 수 있다.In this example, the CSI-RS_DS configuration information according to the above-described four embodiments may be applied as the CSI-RS_DS configuration information. Meanwhile, in this example, the antenna port number of the CSI-RS for discovery signal is distinguished from the antenna port for the existing CSI-RS, and for convenience, the antenna port number of the first antenna is 115 and the antenna port number of the second antenna is 116. However, it is not limited thereto. In addition, although Equation 8 has been described as using one or two antenna ports in the CSI-RS for discovery signals, technical details related to the second antenna port (p = 116) in Equation 9 when only one antenna port is used. May be omitted.
(2) CSI-RS의 생성방법의 다른 예(another example)는, i) 하기 수학식 9, 수학식 3 및 수학식 4에 따라 CSI-RS를 위한 시퀀스를 생성하는 단계, ii) 수학식 5에 따라 상기 CSI-RS 시퀀스로부터 복소 변조 심볼 ak,l (p)를 구하는 단계, iii) 상기 복소 변조 심볼을 하기 수학식 10에 따라 지정되는 자원요소에 맵핑하는 단계를 포함한다. i)단계에 있어서, 하나의 OFDM 심볼 상에서 하나의 PRB(physical RB) 내의 2개의 자원요소에는 각각 수학식 9, 수학식 3 및 수학식 4에서 생성된 시퀀스가 맵핑된다. 이 때, 상기 2개의 자원요소에는 2개의 연속적인 시퀀스 인덱스(예를 들어 수학식 2에서 m=a, m=a+1처럼)에 따른 2개의 시퀀스 값들이 각각 매핑된다.(2) Another example of the method of generating the CSI-RS includes: i) generating a sequence for the CSI-RS according to Equation 9, Equation 3, and Equation 4 below, ii) Equation 5 Obtaining a complex modulation symbol a k, l (p) from the CSI-RS sequence, and iii) mapping the complex modulation symbol to a resource element designated according to Equation 10 below. In step i), sequences generated in Equations 9, 3 and 4 are mapped to two resource elements in one physical RB on one OFDM symbol. In this case, two sequence values according to two consecutive sequence indices (for example, m = a and m = a + 1 in Equation 2) are mapped to the two resource elements.
수학식 9
Figure PCTKR2014010330-appb-M000009
Equation 9
Figure PCTKR2014010330-appb-M000009
수학식 9를 참조하면, m의 최대값이 수학식 2와 달리 2NRB maxDL-1이다. 이에 따르면 수학식 2에 비해 길이가 2배로 증가된 시퀀스들이 생성될 있다. 이 경우, 하나의 OFDM 심볼상의 하나의 PRB 내에서 2개 자원요소 각각에는 수학식 9로 표현되는 하나의 시퀀스가 매핑된다. 본래 CSI-RS를 위한 시퀀스는 수학식 2 내지 4에 따라 생성되지만, 발견 신호용으로 사용될 CSI-RS를 위한 시퀀스는 수학식 9, 수학식 3 및 수학식 4에 따라 생성되는 것이다. Referring to Equation 9, unlike Equation 2, the maximum value of m is 2N RB maxDL-1 . Accordingly, sequences having a length doubled as compared with Equation 2 may be generated. In this case, one sequence represented by Equation 9 is mapped to each of two resource elements in one PRB on one OFDM symbol. Originally, a sequence for the CSI-RS is generated according to Equations 2 to 4, but a sequence for the CSI-RS to be used for the discovery signal is generated according to Equations 9, 3, and 4.
한편, iii)단계에서, CSI-RS가 맵핑되는 자원요소를 구하는 수학식 10은 다음과 같다. Meanwhile, in step iii), Equation 10 for obtaining the resource element to which the CSI-RS is mapped is as follows.
수학식 10
Figure PCTKR2014010330-appb-M000010
Equation 10
Figure PCTKR2014010330-appb-M000010
수학식 10을 참조하면, CSI-RS를 위한 안테나 포트 p={115, 116}으로 정의된다. 즉, 스몰셀의 CSI-RS를 위한 안테나 포트로서 최대 2개가 지원될 수 있다. 그리고 일반 CP의 경우 CSI-RS가 맵핑될 부반송파 k=k'+6m+{-6}으로서 하나의 PRB내에 2개가 존재한다(왜냐하면, 변수 '6m'으로 인해 하나의 PRB내에 2개의 부반송파가 할당될 수 있음). 이에 따르면 시간축으로 하나의 서브프레임 및 주파수축으로 하나의 RB에 해당하는 시간-주파수 자원 영역 내에서, 하나의 OFDM 심볼상에서 CSI-RS가 맵핑되는 자원요소가 2개임을 의미한다. 또한, l"의 값이 2개이므로 CSI-RS가 2개의 OFDM 심볼상에서 전송된다. 즉 CSI-RS는 총 4개의 자원요소(2 OFDM 심볼 * 2 부반송파)를 이용하여 전송될 수 있다. Referring to Equation 10, an antenna port p = {115, 116} for CSI-RS is defined. That is, up to two antenna ports for the CSI-RS of the small cell may be supported. In the case of a general CP, two subcarriers to be mapped to the CSI-RS exist in one PRB as k = k '+ 6m + {-6} (because of the variable' 6m ', two subcarriers may be allocated in one PRB. Can be). This means that there are two resource elements to which CSI-RSs are mapped on one OFDM symbol in a time-frequency resource region corresponding to one subframe on the time axis and one RB on the frequency axis. In addition, since the value of "l" is 2, the CSI-RS is transmitted on two OFDM symbols. That is, the CSI-RS may be transmitted using a total of four resource elements (2 OFDM symbols * 2 subcarriers).
본 예시에서 발견 신호용 CSI-RS의 안테나 포트 번호에 대해서 기존 CSI-RS를 위한 안테나 포트와 구별하여 편의상 첫 번째 안테나의 안테나 포트 번호는 115, 두 번째 안테나의 안테나 포트 번호는 116으로 기술하였으나, 이에 국한된 것은 아니다. 또한, 발견 신호용 CSI-RS에서 안테나 포트 1개 또는 2개(즉, 2개 이하)를 사용하는 것으로 수학식 8을 설명하였지만, 안테나 포트를 1개만 사용할 경우 수학식 9에서 두 번째 안테나 포트(p=116)와 관련된 기술 사항은 생략될 수 있다.In this example, the antenna port number of the CSI-RS for the discovery signal is distinguished from the antenna port for the existing CSI-RS for convenience, and the antenna port number of the first antenna is 115 and the antenna port number of the second antenna is 116. It is not limited. In addition, although Equation 8 has been described as using one or two antenna ports (that is, two or less) in the CSI-RS for discovery signals, the second antenna port (p) in Equation 9 is used when only one antenna port is used. 116) may be omitted.
다시 도 7에서, 스몰셀은 CSI-RS 패턴에 따라 CSI-RS를 4개의 자원요소를 사용하여 단말로 전송한다(S715). 스몰셀은 CSI-RS 전송을 위해 1개 또는 2개(즉, 2개 이하)의 안테나 포트를 사용하고, 시간축으로 하나의 서브프레임과 주파수축으로 하나의 RB로 이루어진 시간-주파수 자원 영역 내에서 4개의 자원요소들을 사용한다. 4개의 자원요소들에 CSI-RS가 맵핑되는 경향(즉, CSI-RS 패턴)을 도시하면 도 8 또는 도 9와 같다. 7 again, the small cell transmits the CSI-RS to the terminal using four resource elements according to the CSI-RS pattern (S715). The small cell uses one or two (ie two or less) antenna ports for CSI-RS transmission, and within a time-frequency resource region consisting of one subframe on the time axis and one RB on the frequency axis. Four resource elements are used. 8 or 9 illustrates a tendency of mapping CSI-RS to four resource elements (ie, CSI-RS pattern).
도 8은 본 발명의 일례에 따른 CSI-RS 패턴을 도시한 것이다. 이는 표 1 또는 표 2에 따른 CSI-RS 구성에 따른 것이다. 8 illustrates a CSI-RS pattern according to an example of the present invention. This is according to the CSI-RS configuration according to Table 1 or Table 2.
도 8을 참조하면, 도 8-(a)는 일반 CP에서 프레임 구조 타입 1(FDD) 및 프레임 구조 타입 2(TDD)에 적용되는 경우, 도 8-(b)는 일반 CP에서 오직 프레임 구조 타입 2(TDD)에 적용되는 경우의 CSI-RS 패턴을 나타낸다. 또한 도 8-(c)는 확장 CP 경우의 CSI-RS 패턴을 나타낸다. 도 8에서 각 자원 요소에 표기된 숫자는 CSI-RS 구성 번호를 나타낸다. a는 CSI-RS 안테나 포트 {115, 116} 상으로 CSI-RS를 전송하는 것을 나타낸다. A는 일반 CP에서 DMRS 안테나 포트 {7, 8, 11, 13}, B는 일반 CP에서 DMRS 안테나 포트 {9, 10, 12, 14}, E는 확장 CP에서 DMRS 안테나 포트 {7, 8} 상으로 DMRS를 전송하는 것을 나타낸다. C는 CRS가 맵핑되는 자원 요소를 나타낸다. 또한, 도 8에서 제어 영역(음영 부분)은 서브프레임의 처음 3개의 OFDM 심볼에 할당되는 것을 가정한다. Referring to FIG. 8, when FIG. 8- (a) is applied to frame structure type 1 (FDD) and frame structure type 2 (TDD) in a general CP, FIG. 8- (b) shows only a frame structure type in a general CP. CSI-RS pattern when applied to 2 (TDD). 8- (c) shows a CSI-RS pattern in case of an extended CP. In FIG. 8, numbers indicated on each resource element indicate a CSI-RS configuration number. a indicates transmitting the CSI-RS on the CSI-RS antenna ports {115, 116}. A is the DMRS antenna port {7, 8, 11, 13} in the generic CP, B is the DMRS antenna port {9, 10, 12, 14} in the generic CP, E is the DMRS antenna port {7, 8} in the extended CP DMRS is transmitted. C represents a resource element to which the CRS is mapped. In addition, in FIG. 8, it is assumed that a control region (shaded portion) is allocated to the first three OFDM symbols of a subframe.
도 8의 CSI-RS 패턴은 CRS 안테나 포트의 개수가 1개 또는 2개이거나, CRS를 전송하지 않는 경우에도 적용될 수 있다. 또한, 도 8의 CSI-RS 패턴은 제어 영역이 서브프레임의 처음 1개 내지 4개에 OFDM 심볼에 할당되거나, 제어 영역이 할당되지 않는 경우에도 적용될 수 있다. 또한, 도 8에서 DMRS는 2개의 CDM(code division multiplexing) 그룹(A: DMRS 안테나 포트 {7, 8, 11, 13}, B: DMRS 안테나 포트 {9, 10, 12, 14})을 사용하는 것을 가정하였으나, 도 8의 CSI-RS 패턴은 1개의 CDM 그룹을 사용하는 경우에도 적용될 수 있다.The CSI-RS pattern of FIG. 8 may be applied even when the number of CRS antenna ports is one or two, or when the CRS is not transmitted. In addition, the CSI-RS pattern of FIG. 8 may be applied even when a control region is allocated to an OFDM symbol in the first 1 to 4 of the subframe, or when the control region is not allocated. In addition, in FIG. 8, DMRS uses two code division multiplexing (CDM) groups (A: DMRS antenna ports {7, 8, 11, 13}, and B: DMRS antenna ports {9, 10, 12, 14}). It is assumed, but the CSI-RS pattern of FIG. 8 may be applied even when using one CDM group.
예를 들어, CP 타입=일반 CP, CSI-RS 안테나 포트의 개수=1개(즉, p=115), 및 CSI-RS 구성=2(=00010)인 경우, 표 1에 의하여 이에 대응되는 (k',l')=(9,2) 및 ns mod 2=1이 지시된다. 이를 수학식 8에 대입하면, CSI-RS 전송을 위하여 구성된 서브프레임 내에서, CSI-RS가 자원요소 {k,l}={{9,2}, {9,3}, {3,2}, {3,3}}에 맵핑됨을 알 수 있다. For example, if CP type = general CP, the number of CSI-RS antenna ports = 1 (that is, p = 115), and the CSI-RS configuration = 2 (= 00010), corresponding to Table 1 ( k ', l') = (9,2) and n s mod 2 = 1. Substituting this in Equation 8, within the subframe configured for CSI-RS transmission, the CSI-RS is a resource element {k, l} = {{9,2}, {9,3}, {3,2} , {3,3}}.
도 9는 본 발명의 다른 예에 따른 CSI-RS 패턴을 도시한 것이다. 이는 표 11 또는 표 12에 따른 CSI-RS 구성에 따른 것이다. 9 illustrates a CSI-RS pattern according to another example of the present invention. This is according to the CSI-RS configuration according to Table 11 or Table 12.
도 9를 참조하면, 도 9-(a)는 일반 CP에서 프레임 구조 타입 1(FDD) 및 프레임 구조 타입 2(TDD)에 적용되는 경우, 도 9-(b)는 일반 CP에서 오직 프레임 구조 타입 2(TDD)의 경우의 CSI-RS 패턴을 나타낸다. 또한 도 9-(c)는 확장 CP 경우의 CSI-RS 패턴을 나타낸다. 도 9에서 각 자원 요소에 표기된 숫자는 CSI-RS 구성 번호를 나타낸다. a는 CSI-RS 안테나 포트 {115, 116} 상으로 CSI-RS를 전송하는 것을 나타낸다. A는 일반 CP에서 DMRS 안테나 포트 {7, 8, 11, 13}, B는 일반 CP에서 DMRS 안테나 포트 {9, 10, 12, 14}, E는 확장 CP에서 DMRS 안테나 포트 {7, 8} 상으로 DMRS를 전송하는 것을 나타낸다. C는 CRS가 맵핑되는 자원 요소를 나타낸다. 또한, 도 9에서 제어 영역(음영 부분)은 서브프레임의 처음 3개의 OFDM 심볼에 할당되는 것을 가정한다. Referring to FIG. 9, when FIG. 9- (a) is applied to frame structure type 1 (FDD) and frame structure type 2 (TDD) in a general CP, FIG. 9- (b) shows only a frame structure type in a general CP. The CSI-RS pattern in the case of 2 (TDD) is shown. 9- (c) shows a CSI-RS pattern in case of an extended CP. In FIG. 9, numbers indicated on each resource element indicate a CSI-RS configuration number. a indicates transmitting the CSI-RS on the CSI-RS antenna ports {115, 116}. A is the DMRS antenna port {7, 8, 11, 13} in the generic CP, B is the DMRS antenna port {9, 10, 12, 14} in the generic CP, E is the DMRS antenna port {7, 8} in the extended CP DMRS is transmitted. C represents a resource element to which the CRS is mapped. In addition, in FIG. 9, it is assumed that a control region (shading part) is allocated to the first three OFDM symbols of a subframe.
CSI-RS 구성 인덱스를 살펴보면, 도 8과 달리 일반 CP의 경우 CSI-RS 구성 인덱스 0/1/2/3/4/5/6/7/8/9/20/21/22/23/24/25가 각각 10/11/12/13/14/15/16/17 /18/19/26/27/28/29/30/31로 변환된다. 다시 말해, CSI-RS 구성 인덱스 0~9 및 20~25는 4개 안테나 포트상의 기존 CSI-RS 패턴을 나타내고, CSI-RS 구성 인덱스 10~19 및 26~31은 기존 4개 안테나 포트 상에서 사용되지 않은 CSI-RS 패턴을 발견신호용 CSI-RS 패턴으로 사용하는 것이다. 이로써 4개 안테나 포트상에서 사용되지 않는 부호점(code point)을 활용할 수 있다. Looking at the CSI-RS configuration index, unlike in Figure 8, in the case of the general CP CSI-RS configuration index 0/1/2/3/4/5/6/7/8/9/20/21/22/23/24 / 25 is converted to 10/11/12/13/14/15/16/17 / 18/19/26/27/28/29/30/31 respectively. In other words, CSI-RS configuration indices 0-9 and 20-25 represent existing CSI-RS patterns on four antenna ports, while CSI-RS configuration indices 10-19 and 26-31 are not used on existing four antenna ports. The unused CSI-RS pattern is used as the CSI-RS pattern for the discovery signal. This allows you to take advantage of unused code points on four antenna ports.
일반 CP를 사용하는 스몰셀에 구성되는 CSI-RS 패턴까지 고려할 경우, 표 1은 하기 표 11과 같이 변형될 수 있다. When considering the CSI-RS pattern configured in the small cell using the normal CP, Table 1 may be modified as shown in Table 11 below.
표 11
CSI-RS 구성 구성되는 CSI-RS의 개수
1 or 2 4 8
(k',l') ns mod 2 (k',l') ns mod 2 (k',l') ns mod 2
프레임 구조 타입 1 및 2 0 (9,5) 0 (9,5) 0 (9,5) 0
1 (11,2) 1 (11,2) 1 (11,2) 1
2 (9,2) 1 (9,2) 1 (9,2) 1
3 (7,2) 1 (7,2) 1 (7,2) 1
4 (9,5) 1 (9,5) 1 (9,5) 1
5 (8,5) 0 (8,5) 0
6 (10,2) 1 (10,2) 1
7 (8,2) 1 (8,2) 1
8 (6,2) 1 (6,2) 1
9 (8,5) 1 (8,5) 1
10 (3,5) 0 (9,5) 0
11 (2,5) 0 (11,2) 1
12 (5,2) 1 (9,2) 1
13 (4,2) 1 (7,2) 1
14 (3,2) 1 (9,5) 1
15 (2,2) 1 (8,5) 0
16 (1,2) 1 (10,2) 1
17 (0,2) 1 (8,2) 1
18 (3,5) 1 (6,2) 1
19 (2,5) 1 (8,5) 1
프레임 구조 타입 2 only 20 (11,1) 1 (11,1) 1 (11,1) 1
21 (9,1) 1 (9,1) 1 (9,1) 1
22 (7,1) 1 (7,1) 1 (7,1) 1
23 (10,1) 1 (10,1) 1
24 (8,1) 1 (8,1) 1
25 (6,1) 1 (6,1) 1
26 (5,1) 1 (11,1) 1
27 (4,1) 1 (9,1) 1
28 (3,1) 1 (10,1) 1
29 (2,1) 1 (8,1) 1
30 (1,1) 1 (6,1) 1
31 (0,1) 1 (11,1) 1
Table 11
CSI-RS configuration Number of CSI-RSs
1 or 2 4 8
(k ', l') n s mod 2 (k ', l') n s mod 2 (k ', l') n s mod 2
Frame structure type 1 and 2 0 (9,5) 0 (9,5) 0 (9,5) 0
One (11,2) One (11,2) One (11,2) One
2 (9,2) One (9,2) One (9,2) One
3 (7,2) One (7,2) One (7,2) One
4 (9,5) One (9,5) One (9,5) One
5 (8,5) 0 (8,5) 0
6 (10,2) One (10,2) One
7 (8,2) One (8,2) One
8 (6,2) One (6,2) One
9 (8,5) One (8,5) One
10 (3,5) 0 (9,5) 0
11 (2,5) 0 (11,2) One
12 (5,2) One (9,2) One
13 (4,2) One (7,2) One
14 (3,2) One (9,5) One
15 (2,2) One (8,5) 0
16 (1,2) One (10,2) One
17 (0,2) One (8,2) One
18 (3,5) One (6,2) One
19 (2,5) One (8,5) One
Frame structure type 2 only 20 (11,1) One (11,1) One (11,1) One
21 (9,1) One (9,1) One (9,1) One
22 (7,1) One (7,1) One (7,1) One
23 (10,1) One (10,1) One
24 (8,1) One (8,1) One
25 (6,1) One (6,1) One
26 (5,1) One (11,1) One
27 (4,1) One (9,1) One
28 (3,1) One (10,1) One
29 (2,1) One (8,1) One
30 (1,1) One (6,1) One
31 (0,1) One (11,1) One
한편, 확장 CP의 경우 CSI-RS 구성 인덱스 0/1/2/3/4/5/6/7/16/17/18/19/20/21이 각각 8/9/10/11/12/13/14/15/22/23/24/25/ 26/27로 변환된다. 확장 CP를 사용하는 스몰셀에 구성되는 CSI-RS 패턴까지 고려할 경우, 표 2는 하기 표 12와 같이 변형될 수 있다. Meanwhile, for the extended CP, CSI-RS configuration indexes 0/1/2/3/4/5/6/7/16/17/18/19/20/21 are 8/9/10/11/12 / 13/14/15/22/23/24/25 / 26/27 When considering the CSI-RS pattern configured in the small cell using the extended CP, Table 2 may be modified as shown in Table 12 below.
표 12
CSI-RS 구성 구성되는 CSI-RS의 개수
1 or 2 4 8
(k',l') ns mod 2 (k',l') ns mod 2 (k',l') ns mod 2
프레임 구조 타입 1 및 2 0 (11,4) 0 (11,4) 0 (11,4) 0
1 (9,4) 0 (9,4) 0 (9,4) 0
2 (10,4) 1 (10,4) 1 (10,4) 1
3 (9,4) 1 (9,4) 1 (9,4) 1
4 (5,4) 0 (5,4) 0
5 (3,4) 0 (3,4) 0
6 (4,4) 1 (4,4) 1
7 (3,4) 1 (3,4) 1
8 (8,4) 0 (11,4) 0
9 (6,4) 0 (9,4) 0
10 (2,4) 0 (10,4) 1
11 (0,4) 0 (9,4) 1
12 (7,4) 1 (5,4) 0
13 (6,4) 1 (3,4) 0
14 (1,4) 1 (4,4) 1
15 (0,4) 1 (3,4) 1
프레임 구조 타입 2 only 16 (11,1) 1 (11,1) 1 (11,1) 1
17 (10,1) 1 (10,1) 1 (10,1) 1
18 (9,1) 1 (9,1) 1 (9,1) 1
19 (5,1) 1 (5,1) 1
20 (4,1) 1 (4,1) 1
21 (3,1) 1 (3,1) 1
22 (8,1) 1 (11,1) 1
23 (7,1) 1 (10,1) 1
24 (6,1) 1 (9,1) 1
25 (2,1) 1 (5,1) 1
26 (1,1) 1 (4,1) 1
27 (0,1) 1 (3,1) 1
Table 12
CSI-RS configuration Number of CSI-RSs
1 or 2 4 8
(k ', l') n s mod 2 (k ', l') n s mod 2 (k ', l') n s mod 2
Frame structure type 1 and 2 0 (11,4) 0 (11,4) 0 (11,4) 0
One (9,4) 0 (9,4) 0 (9,4) 0
2 (10,4) One (10,4) One (10,4) One
3 (9,4) One (9,4) One (9,4) One
4 (5,4) 0 (5,4) 0
5 (3,4) 0 (3,4) 0
6 (4,4) One (4,4) One
7 (3,4) One (3,4) One
8 (8,4) 0 (11,4) 0
9 (6,4) 0 (9,4) 0
10 (2,4) 0 (10,4) One
11 (0,4) 0 (9,4) One
12 (7,4) One (5,4) 0
13 (6,4) One (3,4) 0
14 (1,4) One (4,4) One
15 (0,4) One (3,4) One
Frame structure type 2 only 16 (11,1) One (11,1) One (11,1) One
17 (10,1) One (10,1) One (10,1) One
18 (9,1) One (9,1) One (9,1) One
19 (5,1) One (5,1) One
20 (4,1) One (4,1) One
21 (3,1) One (3,1) One
22 (8,1) One (11,1) One
23 (7,1) One (10,1) One
24 (6,1) One (9,1) One
25 (2,1) One (5,1) One
26 (1,1) One (4,1) One
27 (0,1) One (3,1) One
다시 도 7을 참조하면, 단말은 스몰셀에 구성된 CSI-RS 패턴에 기반하여, 스몰셀로부터 전송되는 CSI-RS를 수신할 수 있다. 한편, 단말은 스몰셀의 CSI-RS를 이용하여 스몰셀을 발견할 수 있다(S715). Referring back to FIG. 7, the terminal may receive the CSI-RS transmitted from the small cell based on the CSI-RS pattern configured in the small cell. Meanwhile, the terminal may discover the small cell using the CSI-RS of the small cell (S715).
본 발명은 단계 S700에서 설명된 제1 실시예의 CSI-RS_DS 구성정보 내지 제4 실시예의 CSI-RS_DS 구성정보 중 어느 하나와, 단계 S710에서 설명된 CSI-RS의 생성방법들 중 어느 하나와, 단계 S715에서 설명된 CSI-RS 패턴들 중 어느 하나의 조합으로 파생되는 모든 실시예들을 포함한다. The present invention relates to any one of the CSI-RS_DS configuration information of the first embodiment described in step S700 to the CSI-RS_DS configuration information of the fourth embodiment, any one of the CSI-RS generation methods described in step S710, and Includes all embodiments derived from any combination of the CSI-RS patterns described in S715.
도 10는 본 발명의 일례에 따른 단말과 기지국을 도시한 블록도이다.10 is a block diagram illustrating a terminal and a base station according to an example of the present invention.
도 10를 참조하면, 서빙 기지국(1050)은 전송부(1055), 수신부(1060) 및 기지국 프로세서(1070)를 포함한다. 기지국 프로세서(1070)는 참조 신호 생성부(1071) 및 RRC 제어부(1072)를 포함한다. Referring to FIG. 10, the serving base station 1050 includes a transmitter 1055, a receiver 1060, and a base station processor 1070. The base station processor 1070 includes a reference signal generator 1071 and an RRC controller 1072.
RRC 제어부(1072)는 단계 S700에서 설명된 바와 같이 스몰셀에 관한 CSI-RS_DS 구성정보를 생성한다. CSI-RS_DS 구성정보는 k개의 스몰셀(small cell)들에 대해 구성된 채널 상태 정보(channel state information: CSI)-RS의 패턴들을 지시한다. 또한 여기서, RRC 제어부(1072)는 서빙 기지국(1050)에 관한 CSI-RS 구성정보를 선택적으로 생성할 수 있다. 생성되는 CSI-RS_DS 구성정보는 본 명세서 전체에 걸쳐 설명된 모든 실시예를 포함할 수 있다. 예를 들어 CSI-RS_DS 구성정보는 자원구성 리스트 필드를 포함하고, 상기 자원구성 리스트 필드는 16비트의 비트맵이며, 상기 비트맵은 상기 CSI-RS 패턴들이 상기 k개의 스몰셀 중 적어도 하나에 구성되는지 여부를 지시할 수 있다. 한편 자원구성 리스트 필드는 상기 k개의 스몰셀들의 물리셀 ID를 더 포함할 수 있다. The RRC control unit 1072 generates CSI-RS_DS configuration information about the small cell as described in step S700. The CSI-RS_DS configuration information indicates patterns of channel state information (CSI) -RS configured for k small cells. In addition, the RRC control unit 1072 may selectively generate the CSI-RS configuration information for the serving base station 1050. The generated CSI-RS_DS configuration information may include all the embodiments described throughout this specification. For example, the CSI-RS_DS configuration information includes a resource configuration list field, the resource configuration list field is a 16-bit bitmap, and the bitmap includes the CSI-RS patterns in at least one of the k small cells. It can indicate whether or not. Meanwhile, the resource configuration list field may further include physical cell IDs of the k small cells.
참조 신호 생성부(1071)는 CSI-RS를 생성하여 전송부(1055)로 보낸다. The reference signal generator 1071 generates a CSI-RS and sends it to the transmitter 1055.
전송부(1055)는 RRC 제어부(1072)로부터 받은 CSI-RS 구성정보 및/또는 CSI-RS_DS 구성정보를 단말(1000)로 전송한다. 또한 전송부(1055)는 참조 신호 생성부(1071)로부터 받은 CSI-RS를 단말(1000)로 전송한다. 특히 전송부(1055)는 서빙 기지국(1050)에 관한 CSI-RS 구성정보에 기반하여 정해진 CSI-RS 패턴으로서 CSI-RS를 단말(1000)로 전송한다. The transmitter 1055 transmits the CSI-RS configuration information and / or the CSI-RS_DS configuration information received from the RRC control unit 1072 to the terminal 1000. In addition, the transmitter 1055 transmits the CSI-RS received from the reference signal generator 1071 to the terminal 1000. In particular, the transmitter 1055 transmits the CSI-RS to the terminal 1000 as a CSI-RS pattern determined based on the CSI-RS configuration information about the serving base station 1050.
일례로서, 전송부(1055)는 CSI-RS_DS 구성정보에 기반하여, 2개 이하의 안테나 포트 및 4개의 자원요소에 맵핑된 CSI-RS_DS를 단말(1000)로 전송한다. As an example, the transmitter 1055 transmits CSI-RS_DS mapped to two or less antenna ports and four resource elements to the terminal 1000 based on the CSI-RS_DS configuration information.
다른 예로서, 전송부(1055)는 시퀀스(sequence)를 사용하여 CSI-RS를 전송하되, 시간축으로 하나의 서브프레임과 주파수축으로 하나의 자원블록(resource block)에 해당하는 시간-주파수 자원 영역 내의 하나의 OFDM(orthogonal frequency division multiplexing) 심볼(symbol)상에서, 2개의 자원요소에 하나의 시퀀스 인덱스에 따른 하나의 시퀀스 값을 2번 반복하여 CSI-RS에 매핑할 수 있다. As another example, the transmitter 1055 transmits the CSI-RS using a sequence, but includes a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis. On one orthogonal frequency division multiplexing (OFDM) symbol, one sequence value according to one sequence index may be repeated twice on two resource elements and mapped to the CSI-RS.
또 다른 예로서, 전송부(1055)는 시간축으로 하나의 서브프레임과 주파수축으로 하나의 자원블록(resource block)에 해당하는 시간-주파수 자원 영역 내의 하나의 OFDM(orthogonal frequency division multiplexing) 심볼(symbol)상에서, 2개의 자원요소에 2개의 연속적인 시퀀스 인덱스에 따른 2개의 시퀀스 값들을 CSI-RS에 각각 매핑할 수 있다. As another example, the transmitter 1055 may include one orthogonal frequency division multiplexing (OFDM) symbol in a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis. ), Two sequence values according to two consecutive sequence indexes to two resource elements may be mapped to the CSI-RS, respectively.
수신부(1060)는 CSI-RS 구성정보, 스몰 기지국(1090)의 CSI-RS 또는 서빙 기지국(1050)의 CSI-RS를 수신한 단말(1000)로부터 그에 대응하는 응답 메시지(예를 들어 CSI 보고(report) 등) 또는 상향링크 신호를 수신한다.The receiving unit 1060 receives the CSI-RS configuration information, the CSI-RS of the small base station 1090 or the CSI-RS of the serving base station 1050, the corresponding response message (for example, CSI report ( report), etc.) or an uplink signal.
기지국(1050)과 무선 통신을 수행하는 단말(1000)은 수신부(1050), RRC 제어부(1010) 및 전송부(1015)를 포함한다. The terminal 1000 performing wireless communication with the base station 1050 includes a receiver 1050, an RRC controller 1010, and a transmitter 1015.
수신부(1050)는 CSI-RS 구성정보, CSI-RS_DS 구성정보, CSI-RS를 서빙 기지국(1050)으로부터 수신한다. 또한, 수신부(1050)는 발견 신호용 CSI-RS를 스몰셀을 제공하는 스몰 기지국(1090)으로부터 수신한다. 여기서, 발견 신호용 CSI-RS는 전술된 바와 같이 본 명세서에서 기술된 CSI-RS 생성방법(1), (2) 중 어느 하나에 따라 생성되며, 수신부(1050)는 CSI-RS 생성방법(1), (2) 중 어느 하나에 대응하는 방법에 의해 CSI-RS를 수신한다. 예를 들어 수신부(1050)는 시간축으로 하나의 서브프레임과 주파수축으로 하나의 자원블록(resource block)에 해당하는 시간-주파수 자원 영역 내에서 4개의 자원요소 및 2개 이하의 안테나 포트에 맵핑된 CSI-RS를 수신할 수 있다. The receiver 1050 receives the CSI-RS configuration information, the CSI-RS_DS configuration information, and the CSI-RS from the serving base station 1050. In addition, the receiver 1050 receives the CSI-RS for the discovery signal from the small base station 1090 that provides the small cell. Here, the CSI-RS for the discovery signal is generated according to any one of the CSI-RS generation methods (1) and (2) described herein as described above, and the receiver 1050 generates the CSI-RS generation method (1). , CSI-RS is received by a method corresponding to any one of (2). For example, the receiver 1050 is mapped to four resource elements and two or less antenna ports in a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis. The CSI-RS may be received.
RRC 제어부(1010)는 CSI-RS 구성정보와 CSI-RS_DS 구성정보를 해석한다. 그리고 RRC 제어부(1010)는 CSI-RS 구성정보가 지시하는 바에 따라 서빙 기지국(1050)으로부터 CSI-RS를 수신하기 위한 구성을 수행한다. 그리고 RRC 제어부(1010)는 CSI-RS_DS 구성정보가 지시하는 바에 따라 스몰 기지국(1090)으로부터 CSI-RS를 수신하기 위한 구성을 수행한다. The RRC control unit 1010 interprets the CSI-RS configuration information and the CSI-RS_DS configuration information. The RRC control unit 1010 performs a configuration for receiving the CSI-RS from the serving base station 1050 as indicated by the CSI-RS configuration information. The RRC control unit 1010 performs a configuration for receiving the CSI-RS from the small base station 1090 as indicated by the CSI-RS_DS configuration information.
이후, RRC 제어부(1010)는 CSI-RS_DS 구성정보에 따라 소형 셀 발견(small cell discovery)을 수행한다. 스몰셀 발견을 위해, RRC 제어부(1010)는 스몰 기지국(1090)으로부터 특정 CSI-RS 패턴에 따라 CSI-RS를 수신하도록 수신부(1005)를 제어할 수 있다. 또는, CSI-RS_DS 구성정보가 RRC 메시지 내에 포함되지 않은 경우, RRC 제어부(1010)는 CRS만이 발견 신호로 사용되는 것으로 인식한다. Thereafter, the RRC controller 1010 performs small cell discovery according to the CSI-RS_DS configuration information. For small cell discovery, the RRC controller 1010 may control the receiver 1005 to receive the CSI-RS from the small base station 1090 according to a specific CSI-RS pattern. Or, if the CSI-RS_DS configuration information is not included in the RRC message, the RRC control unit 1010 recognizes that only the CRS is used as a discovery signal.
전송부(1015)는 CSI-RS 구성정보, CSI-RS_DS 구성정보, CSI-RS를 수신한 것에 대응하는 메시지 또는 상향링크 신호를 기지국(1050)으로 전송한다. The transmitter 1015 transmits CSI-RS configuration information, CSI-RS_DS configuration information, and a message or uplink signal corresponding to receiving the CSI-RS to the base station 1050.
스몰 기지국(1090)은 참조 신호 생성부(1093) 및 전송부(1096)를 포함한다.The small base station 1090 includes a reference signal generator 1093 and a transmitter 1096.
참조 신호 생성부(1093)는 CSI-RS 생성방법(1), (2) 중 어느 하나에 따라 CSI-RS를 생성하여 전송부(1096)로 보낸다. 전송부(1096)는 참조 신호 생성부(1093)로부터 받은 CSI-RS를 단말(1000)로 전송한다. 이때, 전송부(1096)는 도 8 또는 도 9에서 도시한 CSI-RS 패턴, 그리고 안테나 포트 115 및/또는 116을 사용하여 CSI-RS를 단말(1000)로 전송한다. The reference signal generator 1093 generates the CSI-RS according to any one of the CSI-RS generation methods (1) and (2) and sends the CSI-RS to the transmitter 1096. The transmitter 1096 transmits the CSI-RS received from the reference signal generator 1093 to the terminal 1000. In this case, the transmitter 1096 transmits the CSI-RS to the terminal 1000 using the CSI-RS pattern shown in FIG. 8 or 9 and the antenna ports 115 and / or 116.
이상의 설명은 본 발명의 기술 사상을 예시적으로 설명한 것에 불과한 것으로서, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자라면 본 발명의 본질적인 특성에서 벗어나지 않는 범위에서 다양한 수정 및 변형이 가능할 것이다. 따라서, 본 발명에 개시된 실시 예들은 본 발명의 기술 사상을 한정하기 위한 것이 아니라 설명하기 위한 것이고, 이러한 실시 예에 의하여 본 발명의 기술 사상의 범위가 한정되는 것은 아니다. 본 발명의 보호 범위는 아래의 청구범위에 의하여 해석되어야 하며, 그와 동등한 범위 내에 있는 모든 기술 사상은 본 발명의 권리범위에 포함되는 것으로 해석되어야 할 것이다. The above description is merely illustrative of the technical idea of the present invention, and those skilled in the art to which the present invention pertains may make various modifications and changes without departing from the essential characteristics of the present invention. Therefore, the embodiments disclosed in the present invention are not intended to limit the technical idea of the present invention but to describe the present invention, and the scope of the technical idea of the present invention is not limited by these embodiments. The protection scope of the present invention should be interpreted by the following claims, and all technical ideas within the equivalent scope should be interpreted as being included in the scope of the present invention.

Claims (14)

  1. 무선 통신 시스템에서 기지국(base station: BS)에 의한 참조 신호(reference signal: RS)의 전송방법으로서,A method of transmitting a reference signal (RS) by a base station (BS) in a wireless communication system,
    k개의 스몰셀(small cell)들에 대해 구성된 채널 상태 정보(channel state information: CSI)-RS의 패턴들을 지시하는 CSI-RS_DS(discovery signal) 구성정보를 생성하는 단계; generating CSI-RS_DS (discovery signal) configuration information indicating patterns of channel state information (CSI) -RS configured for k small cells;
    상기 CSI-RS_DS 구성정보를 단말(user equipment: UE)로 전송하는 단계; 및Transmitting the CSI-RS_DS configuration information to a user equipment (UE); And
    상기 CSI-RS_DS 구성정보에 기반하여, 2개 이하의 안테나 포트 및 4개의 자원요소에 맵핑된 CSI-RS_DS를 상기 단말로 전송하는 단계를 포함하는, 참조 신호의 전송방법. Transmitting CSI-RS_DS mapped to two or less antenna ports and four resource elements to the terminal based on the CSI-RS_DS configuration information.
  2. 제 1 항에 있어서,The method of claim 1,
    상기 CSI-RS_DS 구성정보는 자원구성 리스트 필드를 포함하고,The CSI-RS_DS configuration information includes a resource configuration list field,
    상기 자원구성 리스트 필드는 16비트의 비트맵이며, The resource configuration list field is a 16-bit bitmap,
    상기 비트맵은 상기 CSI-RS 패턴들이 상기 k개의 스몰셀 중 적어도 하나에 구성되는지 여부를 지시함을 특징으로 하는, 참조 신호의 전송방법. And wherein the bitmap indicates whether the CSI-RS patterns are configured in at least one of the k small cells.
  3. 제 1 항에 있어서,The method of claim 1,
    상기 자원구성 리스트 필드는 상기 k개의 스몰셀들의 물리셀 ID를 더 포함함을 특징으로 하는, 참조 신호의 전송방법. The resource configuration list field further includes a physical cell ID of the k small cells.
  4. 무선 통신 시스템에서 참조 신호(reference signal: RS)를 전송하는 기지국(base station: BS)으로서,A base station (BS) for transmitting a reference signal (RS) in a wireless communication system,
    k개의 스몰셀(small cell)들에 대해 구성된 채널 상태 정보(channel state information: CSI)-RS의 패턴들을 지시하는 CSI-RS_DS(discovery signal) 구성정보를 생성하는 RRC(radio resource control) 제어부; 및a radio resource control (RRC) control unit for generating CSI-RS_DS (discovery signal) configuration information indicating patterns of channel state information (CSI) -RS configured for k small cells; And
    상기 CSI-RS_DS 구성정보를 단말(user equipment: UE)로 전송하고, 상기 CSI-RS_DS 구성정보에 기반하여 2개 이하의 안테나 포트 및 4개의 자원요소에 맵핑된 CSI-RS_DS를 상기 단말로 전송하는 전송부를 포함하는, 기지국.Transmitting the CSI-RS_DS configuration information to a user equipment (UE), and transmitting the CSI-RS_DS mapped to two or less antenna ports and four resource elements to the terminal based on the CSI-RS_DS configuration information. A base station comprising a transmission unit.
  5. 제 4 항에 있어서,The method of claim 4, wherein
    상기 CSI-RS_DS 구성정보는 상기 자원구성 리스트 필드를 포함하고,The CSI-RS_DS configuration information includes the resource configuration list field,
    상기 자원구성 리스트 필드는 16비트의 비트맵이며, The resource configuration list field is a 16-bit bitmap,
    상기 비트맵은 상기 CSI-RS 패턴들이 상기 k개의 스몰셀들 중 적어도 하나에 구성되는지 여부를 지시함을 특징으로 하는, 기지국. And wherein the bitmap indicates whether the CSI-RS patterns are configured in at least one of the k small cells.
  6. 제 4 항에 있어서,The method of claim 4, wherein
    상기 자원구성 리스트 필드는 상기 k개의 스몰셀들의 물리셀 ID를 더 포함함을 특징으로 하는, 기지국.The resource configuration list field, characterized in that further comprises a physical cell ID of the k small cells, the base station.
  7. 무선 통신 시스템에서 단말(user equipment: UE)에 의한 참조 신호(reference signal: RS)의 수신방법으로서,A method of receiving a reference signal (RS) by a user equipment (UE) in a wireless communication system,
    k개의 스몰셀(small cell)들에 대해 구성된 채널 상태 정보(channel state information: CSI)-RS의 패턴들을 지시하는 CSI-RS_DS(discovery signal) 구성정보를 서빙 기지국(serving base station)으로부터 수신하는 단계; 및Receiving CSI-RS_DS (discovery signal) configuration information indicating patterns of channel state information (CSI) -RS configured for k small cells from a serving base station ; And
    상기 CSI-RS_DS 구성정보에 기반하여 CSI-RS를 적어도 하나의 스몰셀로부터 수신하는 단계를 포함하는 참조 신호의 수신방법. Receiving the CSI-RS from at least one small cell based on the CSI-RS_DS configuration information.
  8. 제 8 항에 있어서,The method of claim 8,
    상기 CSI-RS는 시간축으로 하나의 서브프레임과 주파수축으로 하나의 자원블록(resource block)에 해당하는 시간-주파수 자원 영역 내에서 4개의 자원요소 및 2개 이하의 안테나 포트에 맵핑되어 수신되는 것을 특징으로 하는, 참조 신호의 수신방법. The CSI-RS is mapped to four resource elements and two or less antenna ports in a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis. A method of receiving a reference signal, characterized in that.
  9. 제 8 항에 있어서,The method of claim 8,
    상기 CSI-RS의 생성에 사용되는 시퀀스(sequence)는 시간축으로 하나의 서브프레임과 주파수축으로 하나의 자원블록(resource block)에 해당하는 시간-주파수 자원 영역 내의 하나의 OFDM(orthogonal frequency division multiplexing) 심볼(symbol)상에서, 2개의 자원요소에 하나의 시퀀스 인덱스에 따른 하나의 시퀀스 값이 2번 반복되어 매핑되는 것을 특징으로 하는, 참조 신호의 수신방법.The sequence used to generate the CSI-RS is one orthogonal frequency division multiplexing (OFDM) in a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis. The method for receiving a reference signal, characterized in that one sequence value according to one sequence index is repeatedly mapped to two resource elements on a symbol.
  10. 제 8 항에 있어서,The method of claim 8,
    상기 CSI-RS의 생성에 사용되는 시퀀스(sequence)는 시간축으로 하나의 서브프레임과 주파수축으로 하나의 자원블록(resource block)에 해당하는 시간-주파수 자원 영역 내의 하나의 OFDM(orthogonal frequency division multiplexing) 심볼(symbol)상에서, 2개의 자원요소에 2개의 연속적인 시퀀스 인덱스에 따른 2개의 시퀀스 값들이 각각 매핑되는 것을 특징으로 하는, 참조 신호의 수신방법.The sequence used to generate the CSI-RS is one orthogonal frequency division multiplexing (OFDM) in a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis. 2. A method of receiving a reference signal, characterized in that on a symbol, two sequence values according to two consecutive sequence indices are mapped to two resource elements, respectively.
  11. 무선 통신 시스템에서 참조 신호(reference signal: RS)를 수신하는 단말(user equipment: UE)로서,A user equipment (UE) for receiving a reference signal (RS) in a wireless communication system,
    k개의 스몰셀(small cell)들에 대해 구성된 채널 상태 정보(channel state information: CSI)-RS의 패턴들을 지시하는 CSI-RS_DS(discovery signal) 구성정보를 서빙 기지국(serving base station)으로부터 수신하고, 상기 CSI-RS_DS 구성정보에 기반하여 CSI-RS를 적어도 하나의 스몰셀로부터 수신하는 수신부를 포함하는 단말. receiving CSI-RS_DS (discovery signal) configuration information indicating patterns of channel state information (CSI) -RS configured for k small cells from a serving base station, And a receiver configured to receive the CSI-RS from at least one small cell based on the CSI-RS_DS configuration information.
  12. 제 11 항에 있어서,The method of claim 11,
    상기 CSI-RS는 시간축으로 하나의 서브프레임과 주파수축으로 하나의 자원블록(resource block)에 해당하는 시간-주파수 자원 영역 내에서 4개의 자원요소 및 2개 이하의 안테나 포트에 맵핑되어 상기 수신부에 의해 수신되는 것을 특징으로 하는, 단말. The CSI-RS is mapped to four resource elements and two or less antenna ports in a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis, and the receiving unit is mapped to the receiver. Characterized in that received by the terminal.
  13. 제 11 항에 있어서,The method of claim 11,
    상기 CSI-RS의 생성에 사용되는 시퀀스(sequence)는 시간축으로 하나의 서브프레임과 주파수축으로 하나의 자원블록(resource block)에 해당하는 시간-주파수 자원 영역 내의 하나의 OFDM(orthogonal frequency division multiplexing) 심볼(symbol)상에서, 2개의 자원요소에 하나의 시퀀스 인덱스에 따른 하나의 시퀀스 값이 2번 반복되어 매핑되는 것을 특징으로 하는, 단말.The sequence used to generate the CSI-RS is one orthogonal frequency division multiplexing (OFDM) in a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis. The terminal, characterized in that one sequence value according to one sequence index is repeatedly mapped to two resource elements.
  14. 제 11 항에 있어서,The method of claim 11,
    상기 CSI-RS의 생성에 사용되는 시퀀스(sequence)는 시간축으로 하나의 서브프레임과 주파수 축으로 하나의 자원블록(resource block)에 해당하는 시간-주파수 자원 영역 내의 하나의 OFDM(orthogonal frequency division multiplexing) 심볼(symbol)상에서, 2개의 자원요소에 2개의 연속적인 시퀀스 인덱스에 따른 2개의 시퀀스 값들이 각각 매핑되는 것을 특징으로 하는, 단말.A sequence used for generating the CSI-RS is one orthogonal frequency division multiplexing (OFDM) in a time-frequency resource region corresponding to one subframe on a time axis and one resource block on a frequency axis. On the symbol, characterized in that two sequence values according to two consecutive sequence indexes are mapped to two resource elements, respectively.
PCT/KR2014/010330 2013-11-01 2014-10-31 Apparatus and method for configuring reference signal in wireless communication system to support small cells WO2015065077A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130132350A KR102180254B1 (en) 2013-11-01 2013-11-01 Apparatus and method for configuring reference signal in wireless communication system supporting small cells
KR10-2013-0132350 2013-11-01

Publications (1)

Publication Number Publication Date
WO2015065077A1 true WO2015065077A1 (en) 2015-05-07

Family

ID=53004583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/010330 WO2015065077A1 (en) 2013-11-01 2014-10-31 Apparatus and method for configuring reference signal in wireless communication system to support small cells

Country Status (2)

Country Link
KR (1) KR102180254B1 (en)
WO (1) WO2015065077A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126926A1 (en) * 2017-01-05 2018-07-12 华为技术有限公司 Signal transmission method and apparatus

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090075886A (en) * 2006-11-01 2009-07-09 콸콤 인코포레이티드 Reference signal design for cell search in an orthogonal wireless communication system
US20120213109A1 (en) * 2011-02-22 2012-08-23 Qualcomm Incorporated Discovery reference signal design for coordinated multipoint operations in heterogeneous networks
KR20120096553A (en) * 2009-11-24 2012-08-30 콸콤 인코포레이티드 Method and apparatus for facilitating a layered cell search for long term evolution systems
US20120263145A1 (en) * 2011-04-13 2012-10-18 Interdigital Patent Holdings, Inc Method and apparatus for small cell discovery in heterogeneous networks
US20130273878A1 (en) * 2012-04-13 2013-10-17 Youn Hyoung Heo Apparatus for improved mobility in a wireless heterogeneous network

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102437987B (en) * 2010-09-29 2015-09-16 中兴通讯股份有限公司 The generation of channel state information reference signals sequence and mapping method and device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20090075886A (en) * 2006-11-01 2009-07-09 콸콤 인코포레이티드 Reference signal design for cell search in an orthogonal wireless communication system
KR20120096553A (en) * 2009-11-24 2012-08-30 콸콤 인코포레이티드 Method and apparatus for facilitating a layered cell search for long term evolution systems
US20120213109A1 (en) * 2011-02-22 2012-08-23 Qualcomm Incorporated Discovery reference signal design for coordinated multipoint operations in heterogeneous networks
US20120263145A1 (en) * 2011-04-13 2012-10-18 Interdigital Patent Holdings, Inc Method and apparatus for small cell discovery in heterogeneous networks
US20130273878A1 (en) * 2012-04-13 2013-10-17 Youn Hyoung Heo Apparatus for improved mobility in a wireless heterogeneous network

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018126926A1 (en) * 2017-01-05 2018-07-12 华为技术有限公司 Signal transmission method and apparatus
US11381363B2 (en) 2017-01-05 2022-07-05 Huawei Technologies Co., Ltd. Signal transmission method and apparatus

Also Published As

Publication number Publication date
KR102180254B1 (en) 2020-11-18
KR20150050999A (en) 2015-05-11

Similar Documents

Publication Publication Date Title
WO2013055136A2 (en) Method and apparatus for transmitting a reference signal in a wireless communication system
WO2016032293A2 (en) Method for receiving reference signal in wireless communication system and device for same
WO2016186388A1 (en) Method and apparatus for configuring relay between ue and network in device-to-device communication
WO2016032219A1 (en) Method for receiving reference signal in wireless communication system and apparatus therefor
WO2016099079A1 (en) Method for receiving reference signal in wireless communication system, and apparatus therefor
WO2015020505A1 (en) Method and device for transmitting reference signal in wireless communication system
WO2015170932A1 (en) Method and apparatus for transmitting data in d2d communication
WO2011105726A2 (en) Method and user equipment for measuring interference, and method and base station for receiving interference information
WO2014069945A1 (en) Method and apparatus for transceiving reference signal in wireless communication system
WO2014027804A1 (en) Uplink control channel, and method and apparatus for controlling transmission of sounding reference signal
WO2011055986A2 (en) A method and a base station for transmitting a csi-rs, and a method and a user equipment for receiving the csi-rs
WO2011043581A2 (en) Apparatus and method for transceiving signals in a wireless communication system
WO2013025014A2 (en) Apparatus and method for controlling uplink transmission power in wireless communication system
WO2013069954A1 (en) Apparatus and method for estimating channel
WO2017047971A1 (en) Method for transmitting and receiving demodulation reference signal, and apparatus using same
WO2016060466A1 (en) Method for measuring inter-device interference in wireless communication system supporting fdr transmission, and apparatus therefor
WO2013042982A1 (en) Method and apparatus for transmitting and receiving reference signal
WO2014098407A1 (en) Device and method for setting or transmitting resource element in multiple antenna system
WO2011129632A2 (en) Method for controlling the aperiodic transmission of a control signal, and method and apparatus for transceiving the control signal using the same
WO2014157929A2 (en) Comp support method considering nct in wireless communication system and apparatus for same
WO2018030752A1 (en) Method for signaling for phase feedback, and device for same
WO2013169050A1 (en) Method of demodulating data on new type of carrier wave
WO2017048088A1 (en) Channel estimation method in dual mobility environment, and user equipment
WO2015005739A1 (en) Method and apparatus for transmitting reference signal in wireless communication system
WO2023027560A1 (en) Beam management method and device in wireless communication system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14857440

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 19.09.2016)

122 Ep: pct application non-entry in european phase

Ref document number: 14857440

Country of ref document: EP

Kind code of ref document: A1