WO2015064545A1 - Ophthalmologic observation device and ophthalmologic observation program - Google Patents

Ophthalmologic observation device and ophthalmologic observation program Download PDF

Info

Publication number
WO2015064545A1
WO2015064545A1 PCT/JP2014/078528 JP2014078528W WO2015064545A1 WO 2015064545 A1 WO2015064545 A1 WO 2015064545A1 JP 2014078528 W JP2014078528 W JP 2014078528W WO 2015064545 A1 WO2015064545 A1 WO 2015064545A1
Authority
WO
WIPO (PCT)
Prior art keywords
measurement data
measurement
oct
data
layer thickness
Prior art date
Application number
PCT/JP2014/078528
Other languages
French (fr)
Japanese (ja)
Inventor
愛 山川
倫全 佐竹
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to JP2015544989A priority Critical patent/JP6424831B2/en
Priority to CN201480060016.XA priority patent/CN105682538B/en
Publication of WO2015064545A1 publication Critical patent/WO2015064545A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/12Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for looking at the eye fundus, e.g. ophthalmoscopes
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/102Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for optical coherence tomography [OCT]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/14Arrangements specially adapted for eye photography

Definitions

  • the present disclosure relates to an ophthalmic observation apparatus and an ophthalmic observation program for observing the state of the fundus.
  • OCT Optical Coherence Tomography
  • OCT is fundus information acquired by scanning low-coherent light on the fundus, and constructs a cross-sectional image based on the fundus information in the cross-sectional direction at each scanning position.
  • the size of the imaging range on the fundus of OCT can be determined by the scanning angle (scanning range) of measurement light scanned on the fundus and the axial length of the eye to be examined.
  • Patent Document 1 proposes an apparatus that obtains an actual measurement value of the photographing range on the fundus using a scan angle of measurement light scanned on the fundus and a measurement value of the axial length of the eye to be examined. Has been.
  • follow-up observation may be performed by acquiring images of the same part of the same eye at different times, and comparing the acquired images and the processing results for the images with images with different acquisition times. is there.
  • the optical characteristics of the eye to be examined exemplified by the axial length, may change with time between examinations.
  • evaluation of the fundus is not performed by taking into account the temporal change in the optical characteristics of the eye to be examined, and no apparatus for that is proposed.
  • the present disclosure is intended to provide an ophthalmologic observation apparatus and an ophthalmologic observation program that allow a user to satisfactorily observe the progress of the fundus in view of the above circumstances.
  • the ophthalmic observation apparatus converts an imaging range related to the OCT data of the fundus of the subject eye acquired by the optical coherent tomography device into an actual distance by using measurement data relating to optical characteristics of the subject eye and analyzes Analysis processing means for obtaining a result, selection processing of measurement data used for conversion of the actual distance based on the order of the acquisition timing of the OCT data and the measurement timing of the measurement data stored in advance in the measurement data storage unit Measurement data setting means, and the analysis processing means obtains an analysis result by converting the actual data using the measurement data selected by the measurement data setting means.
  • the ophthalmologic observation apparatus converts an imaging range related to imaging result data of the fundus of the subject eye acquired by the ophthalmologic imaging apparatus into an actual distance by using measurement data relating to optical characteristics of the eye to be inspected, and analyzes Select the measurement data to be used for the actual distance conversion based on the analysis processing means for obtaining a result, the acquisition timing of the imaging result data, and the measurement data stored in advance in the measurement data storage unit.
  • Measurement data setting means for processing, and the analysis processing means converts the actual distance using the measurement data selected by the measurement data setting means to obtain an analysis result.
  • the ophthalmic observation program is executed by the processor of the ophthalmic observation apparatus, so that the imaging range regarding the OCT data of the fundus of the eye to be inspected acquired by the optical coherent tomography device is obtained.
  • an analysis processing step that obtains an analysis result by converting an actual distance using measurement data relating to characteristics, based on the context of the acquisition timing of the OCT data and the measurement timing of the measurement data stored in advance in the measurement data storage unit
  • An ophthalmic observation program for causing an ophthalmic observation apparatus to perform a measurement data setting step for selecting and processing measurement data used for the actual distance conversion, wherein the measurement selected by the measurement data setting step in the analysis processing step Using the data, convert the actual distance to obtain the analysis result.
  • the user can satisfactorily observe the fundus.
  • generated based on the tomographic image of the eye to be examined which has an axial length longer than a reference length is shown.
  • standard size in the fundus extracted from the map image of FIG. 3A is shown.
  • It is a figure of the display screen which shows an example in the case of outputting the two-dimensional image regarding each inspection date in a specific period.
  • the ophthalmologic observation apparatus 1 mainly includes a CPU 2 and a storage unit 3. Moreover, in this embodiment, the ophthalmic observation apparatus 1 has the input part 4 and the monitor 5 (display part 5). Each unit is electrically connected to the CPU 2 via a bus or the like. In this embodiment, the ophthalmologic observation apparatus 1 receives at least one of the OCT data of the eye fundus to be examined obtained by the OCT apparatus 6 (Optical Coherence Tomography) and the result of the analysis process on the OCT data. Acquired via a network and an external memory (for example, a storage unit of the OCT apparatus 6), etc., and processes the acquired data.
  • OCT apparatus 6 Optical Coherence Tomography
  • OCT data examples include OCT data (tomographic image data), three-dimensional OCT data, blood flow measurement image, polarization characteristic image, and the like in a certain scanning line.
  • the ophthalmic observation apparatus 1 may be a general-purpose computer, for example. As described above, in the present embodiment, the ophthalmic observation apparatus 1 and the OCT apparatus 6 are separate apparatuses, but the present invention is not necessarily limited thereto.
  • the ophthalmologic observation apparatus 1 may be an ophthalmologic imaging apparatus including an OCT optical system.
  • the CPU 2 mainly processes OCT data obtained using an optical system provided in the apparatus.
  • the CPU 2 is a processor that performs calculation and control of the entire ophthalmic observation apparatus 1.
  • the storage unit 3 stores various programs executed by the CPU 2.
  • the storage unit 3 stores, for example, a program that causes the ophthalmic observation apparatus 1 to execute each step of the flowchart of FIG.
  • the storage unit 3 includes, for example, a RAM, a ROM, an HDD, and a flash memory.
  • the storage unit 3 may store distribution information in advance.
  • the distribution information is information generated by analysis processing on OCT data, and is information indicating a two-dimensional distribution related to internal information of the fundus.
  • Examples of the distribution information include a layer thickness map, a blood flow map, a polarization characteristic map, and an analysis chart.
  • This layer thickness map may be a map image (for example, a retina thickness map image) showing a two-dimensional thickness distribution of the fundus.
  • the distribution information may be generated by analysis processing executed in the ophthalmic observation apparatus 1. Alternatively, it may be generated by an analysis process executed by a processing apparatus included in an external apparatus such as the OCT apparatus 6.
  • the storage unit 3 may store in advance layer thickness maps at a plurality of inspection periods.
  • the inspection time is associated with the layer thickness map.
  • the inspection time here refers to the time (for example, year, month, day, time, etc.) when the tomographic image based on the layer thickness map was acquired by the OCT apparatus.
  • the data of the layer thickness map may have a data structure including a time stamp indicating the inspection time.
  • the layer thickness map may be stored in association with the subject to be observed (and the eye to be examined).
  • the storage unit 3 stores, for example, imaging result information relating to the imaging result of the OCT apparatus 6 such as a tomographic image for obtaining a layer thickness map, a tomographic image, and an analysis result of the layer thickness map. May be. Further, the storage unit 3 may store a scanning pattern, a scanning position, and the like at the time of tomographic image acquisition. These data are appropriately converted into image data by the CPU 2 and presented to the user via the display unit 5. Note that the tomographic image or the like may be generated by either the ophthalmic observation apparatus 1 or the OCT apparatus 6.
  • the storage unit 3 may store measurement data related to the optical characteristics of the eye to be examined. For example, measurement data for each subject to be observed may be stored in the storage unit 3 at each measurement time.
  • the measurement data includes, for example, measurement results for at least one of the axial length, refractive power, and corneal curvature of the eye to be examined.
  • description will be made assuming that the measurement data of the axial length is stored in the storage unit 3.
  • inspection apparatus can be used for measurement data.
  • the measurement data in the storage unit 3 may be a value input by the user (user) to the ophthalmic observation apparatus 1.
  • the measurement data may be data transferred from an inspection device connected to the ophthalmic observation apparatus 1 via a network or the like.
  • the layer thickness map and the measurement data are stored in the storage unit 3 of the ophthalmic observation apparatus 1. That is, the ophthalmic observation apparatus 1 is provided with a map storage unit and a measurement data storage unit.
  • the map storage unit and the measurement data storage unit are not necessarily included in the ophthalmologic observation apparatus 1.
  • at least one of a map storage unit and a measurement data storage unit may be prepared in a storage unit of the OCT apparatus, a storage unit provided in an external server, and the like.
  • the storage unit 3 may store a normal eye database, for example, as shown in the present embodiment.
  • the normal eye database may be, for example, a database in which the layer thickness (for example, retinal thickness) of normal eyes related to retinal diseases is stored based on the examination results of a large number of patient eyes.
  • the layer thickness distribution of a large number of patient eyes in a fixed region of the fundus for example, a region at a fixed position of the fundus and having a fixed size in terms of actual distance
  • the normal eye database may store a layer thickness distribution for each position in a fixed region of the fundus.
  • the normal eye database does not necessarily store layer thickness data for each patient eye.
  • a function or the like may be stored instead of the layer thickness data for each patient eye.
  • the normal eye database may be formed without specifying a disease, and of course, may be formed for each specific disease.
  • a database for example, a long eye axis database relating to an eye having an axial length longer than a reference axial length (for example, about 24 mm) may be constructed.
  • the input unit 4 is a configuration for the user (user) of the ophthalmologic observation apparatus 1 to input various information.
  • the input unit 4 includes, for example, a keyboard, a mouse, and a touch panel.
  • the display unit 5 is a display, and is an example of an output unit that outputs a tomographic image obtained by the OCT apparatus 6, a layer thickness map based on the tomographic image, and the like.
  • the output unit may be a printer that prints a layer thickness map or the like.
  • the OCT apparatus 6 is an imaging apparatus that obtains a tomographic image of the fundus of the eye to be examined. Based on the tomographic image, the OCT apparatus 6 acquires a layer thickness map and various analysis results. In addition, about the function which acquires a layer thickness map, an analysis result, etc. based on a tomographic image, the structure which controls the OCT apparatus 6 may produce
  • the controller for example, CPU 2 of the ophthalmologic observation apparatus 1
  • the OCT apparatus 6 divides the light emitted from the light source into measurement light and reference light.
  • the OCT apparatus 6 guides the divided measurement light to the fundus of the eye to be examined and guides the divided reference light to the reference optical system. Thereafter, interference light obtained by combining the measurement light reflected by the fundus and the reference light is received by the detector (light receiving element).
  • the detector detects an interference state between the measurement light and the reference light.
  • the spectral intensity of the interference light is detected by a detector, and a depth profile in a predetermined range is obtained by Fourier transform on the spectral intensity data. Examples of the Fourier domain OCT include Spectral-DomainOCT (SD-OCT) and Swept-sourceOCT (SS-OCT). Further, the OCT apparatus 6 may be Time-DomainOCT (TD-OCT).
  • SD-OCT Spectral-DomainOCT
  • SS-OCT Swept-sourceOCT
  • TD-OCT Time-DomainOCT
  • the OCT apparatus 6 may be provided with a front observation optical system for obtaining a front image of the fundus.
  • a front observation optical system a scanning confocal optical system and a fundus camera optical system can be considered.
  • the OCT apparatus 6 may have a configuration in which a fundus front image is acquired based on an interference signal acquired by the OCT apparatus 6.
  • the OCT apparatus 6 obtains a tomographic image of the fundus based on the output signal from the detector. Then, for example, the acquired tomographic image is subjected to image processing, whereby the retinal thickness of the fundus is measured.
  • the retinal thickness for example, the thickness of each layer of the retina (specifically, the thickness of the optic nerve fiber layer (NFL), the thickness from the inner boundary membrane (ILM) to the retinal pigment epithelium layer (RPE), etc.) is acquired.
  • Two-dimensional retinal thickness information (for example, a layer thickness map) using the retinal thickness at each position on the fundus obtained from images with different scan positions on the fundus is obtained from the OCT apparatus 6 or the ophthalmologic observation apparatus 1 (hereinafter referred to as the ophthalmic observation apparatus 1). , Abbreviated as this device 1).
  • two-dimensional network thickness information is followed up using a layer thickness map.
  • the layer thickness map acquired (or generated) by the apparatus 1 is stored in the storage unit 3 by the CPU 2.
  • the storage unit 3 stores image information (fundus tomographic image, front image, etc.) obtained by the OCT apparatus 6, analysis charts calculated based on thickness information, various parameters, and the like.
  • the thickness of the choroid may be measured by processing the acquired tomographic image.
  • two-dimensional choroid thickness information may be observed.
  • the retinal thickness information generated as a result of the inspection is sent to the CPU 2 and then stored in the storage unit 3.
  • the retinal thickness information stored in the storage unit 3 is stored in association with the time axis for, for example, follow-up observation.
  • the retinal thickness information as a function of time indicates a change in the retinal thickness over time.
  • the observation display process shown in FIG. 2 is an example of a process for generating and outputting layer thickness information at an actual distance as information on the state of the fundus in an area on the fundus at an actual distance.
  • display based on the layer thickness information at the actual distance of the fundus of the eye to be examined is performed on the display unit 5.
  • the user observes the fundus, for example.
  • the layer thickness map used for the follow-up observation is selected by the CPU 2 from the layer thickness maps stored in the storage unit 3 (S1).
  • the CPU 2 selects one or a plurality of layer thickness maps designated in advance by the user via the input unit 4.
  • the CPU 2 acquires one or a plurality of layer thickness maps selected by the process of S1 (S2).
  • the selected layer thickness map is stored in the work area of the apparatus 1 (for example, the RAM of the storage unit 3), thereby acquiring the layer thickness map.
  • CPU2 acquires the information (inspection time information) which shows the inspection time concerning the acquired layer thickness map at this time with a layer thickness map.
  • the layer thickness map acquired by the process of S2 is described as being stored in advance in the storage unit 3, but is not necessarily limited thereto.
  • a layer thickness map for each inspection time may be generated from a tomographic image for each inspection time stored in advance in the storage unit 3 or the like.
  • the layer thickness map is acquired by storing the generated layer thickness map in the work area of the apparatus 1.
  • the CPU 2 sets the measurement data of the axial length corresponding to each layer thickness map (for example, the axial length) for each layer thickness map acquired by the processing of S2 (S3).
  • the CPU 2 acquires measurement time information indicating the measurement time of each measurement data from the measurement data storage unit (for example, the storage unit 3).
  • CPU2 selects the measurement data matched with each layer thickness map based on the information acquired by the process of S2 and S3, and measurement time information.
  • the measurement data associated with each layer thickness map is based on the longitudinal relationship between the acquisition time of the tomographic image (that is, the inspection time) related to the layer thickness map and the measurement time of each measurement data. Determined.
  • At least one of the measurement data measured at the same time as the inspection time for the layer thickness map and the measurement data for which the measurement time is around the inspection time for the layer thickness map is used.
  • Measurement data corresponding to the thickness map is set by the CPU 2.
  • the measurement data may be associated with the layer thickness map.
  • both may be treated as being measured at the same time.
  • both dates are the same, if part of the time is the same, both are treated as being measured at the same time.
  • measurement data obtained in a predetermined period for example, several hours, several days, several weeks, etc.
  • measurement data measured at the same time as the inspection period for the layer thickness map there may be two or more measurement data measured at the same time as the inspection period for the layer thickness map.
  • measurement data measured closer to the inspection time related to the layer thickness map, an average value of two or more measurement data, and the like may be associated with the layer thickness map by the CPU 2.
  • the user may select which measurement data is associated with the layer thickness map.
  • an estimated value based on the measurement data measured before and after the inspection time May be set as measurement data corresponding to the layer thickness map.
  • measurement data at a measurement time closest to the inspection time related to the layer thickness map may be used among the measurement data stored in advance in the measurement data storage unit.
  • measurement data that would have been obtained in the actual measurement data if it was measured at the same time as the inspection time related to the layer thickness map can be calculated.
  • the obtained estimated value is associated with the layer thickness map.
  • the measurement data associated with the layer thickness map by the CPU 2 may be limited to the measurement data measured before the inspection time related to the layer thickness map.
  • a value obtained using two or more measurement data stored in advance in the storage unit (measurement data storage unit) 3 may be used as the estimated value.
  • the estimated value of measurement data should be interpolated (for example, linear interpolation) using at least one measurement data that is earlier than the inspection time and one that is later than the inspection time. May be required.
  • the interpolation process is performed so as to approximate the measurement data when measured at the same time as the inspection time.
  • an empirical formula or the like regarding the temporal change of the axial length may be used. Since this estimated value reflects a temporal change in the measurement data, a more appropriate measurement data value is associated with the layer thickness map.
  • the estimated value of the measurement data may be obtained using two or more measurement data whose measurement time is before (or after) the inspection time.
  • the CPU 2 performs an analysis process of the layer thickness map (an example of distribution information) using the measurement data selected by the process of S2 (S4). More specifically, in the present embodiment, the CPU 2 converts the layer thickness map into an actual distance using the measurement data, and obtains an analysis result regarding the layer thickness map. For example, as an analysis result, layer thickness information at the actual distance of the fundus is generated for each layer thickness map.
  • the layer thickness information at the actual distance of the fundus may be, for example, an analysis map (for example, a map image) at the actual distance of the fundus, a two-dimensional analysis chart, or the like.
  • the analysis map may be, for example, a color map that two-dimensionally represents the distribution of analysis results on the fundus of the eye to be examined (see, for example, the layer thickness map 100a in FIG. 4).
  • the map image 100a is a color map showing a two-dimensional distribution of the layer thickness on the fundus of the eye to be examined, and may be color-coded according to the layer thickness.
  • the thickness map may be a map indicating the thickness of the retinal layer.
  • the comparison map may be a map showing a comparison result between the thickness of the retinal layer of the eye to be examined and the thickness of the retinal layer of the normal eye stored in the normal eye database.
  • the deviation map may be a map showing, as a standard deviation, a deviation between the thickness of the retinal layer of the subject eye and the thickness of the retinal layer of the normal eye stored in the normal eye database.
  • the difference map may be an inspection time comparison thickness map indicating a difference in thickness from each inspection time (for example, inspection date).
  • Analysis chart images 100b and 100c indicate layer thicknesses in sections (regions) obtained by dividing the fundus.
  • the analysis chart is created, for example, by dividing a two-dimensional distribution of the layer thickness in the fundus into regions and obtaining analysis values for each region.
  • the analysis chart may be set in consideration of the imaging range on the fundus.
  • a plurality of sections may be set in an area corresponding to a reference distance (for example, 9 mm) from the imaging center in the imaging range on the fundus.
  • a section corresponding to a first distance from the center for example, within a range of 1 mm from the center
  • a section corresponding to a second distance from the first distance for example, an area of 1 mm to 4 mm with respect to the center
  • the section is divided into sections corresponding to the third distance (for example, an area of 4 mm to 9 mm with respect to the center).
  • the analysis chart shows an analysis value for each preset section, for example.
  • an analysis value for example, a basic statistic of an analysis result is obtained for each preset section.
  • the basic statistic may be a representative value (average value, median value, mode value, maximum value, minimum value, etc.), spread degree (dispersion, standard deviation, variation coefficient, etc.), and the like.
  • the analysis result at each position in the section is included in the analysis result for each section, so that a stable analysis value can be obtained.
  • the analysis chart is displayed together with the layer thickness map.
  • GCHART retinal thickness map 100a
  • S / I chart a macular map
  • ETDRS chart etc.
  • the layer thickness is a nipple map
  • an analysis chart in addition to the GCHART, S / I chart, and ETDRS chart, an overall chart, an upper and lower chart (2 divisions), a TSNIT chart (4 divisions), a ClockHour chart (12 Etc.) are selectively displayed.
  • the analysis chart may be provided with a numerical display area for displaying the layer thickness in the predetermined area with a numerical value.
  • the numerical display area for example, the total average retinal thickness, the retinal thickness at the fovea, the average retinal thickness (for example, 1, 2, 3 mm) within a predetermined area centered on the fovea are displayed.
  • the analysis chart may show a comparison result at an actual distance between the layer thickness map and the normal eye database.
  • the imaging range of the OCT apparatus 6 by the actual distance on the fundus is a size according to the optical characteristics of the eye to be examined such as the axial length.
  • the imaging range on the fundus is the reference size on the fundus. (For example, 9 mm square). Since the photographing range on the fundus corresponds to the actual measurement range of the layer thickness map, the layer thickness map indicates a layer thickness distribution at a reference size (for example, 9 mm square).
  • the layer thickness map has a wider range than the reference size.
  • the layer thickness distribution in (for example, 9.6 mm square) is shown.
  • the range on the fundus where the distribution of the layer thickness is different between two or more layer thickness maps with different examination periods May end up. For this reason, for example, it is difficult to distinguish whether a difference between a plurality of layer thickness maps is due to a change in layer thickness or a change in imaging range.
  • the CPU 2 generates layer thickness information at the actual distance of the fundus using the layer thickness map and the axial length of the eye to be examined.
  • the measurement data of the axial length associated with the layer thickness map in the process of S3 indicates the axial length longer than the reference length, thereby the layer thickness map Is considered to correspond to an area wider than the reference size (see FIG. 3A)
  • the CPU 2 uses the data area indicating the reference size (for example, 9 mm square) on the layer thickness map as measurement data. It may be extracted according to the value of (see FIG. 3B).
  • the reference size range information extracted from the layer thickness map may be stored in advance in the storage unit 3 or the like in association with the measurement data.
  • the CPU 2 may calculate the reference size range using the value of the measurement data. After extracting a partial region of the layer thickness map according to the measurement data, the CPU 2 may change the size of the partial region of the layer thickness map according to the reference size region. In this way, a layer thickness map based on the actual distance is generated.
  • the layer thickness map may be treated as an area having a size corresponding to the value of the measurement data.
  • the CPU 2 may change the size of the layer thickness map according to the region of the reference size, assuming that the layer thickness map has information about a part of the region of the reference size. In this way, a layer thickness map based on the actual distance calculated using the measurement data is generated.
  • the CPU 2 may generate a two-dimensional analysis chart, a comparison result with the normal eye database, and the like from the layer thickness map.
  • layer thickness information in a certain range of the fundus based on the actual distance is obtained regardless of the imaging range at each examination time. As a result, it is possible to perform follow-up observation in which it is easy to grasp the change in the layer thickness at each inspection time.
  • the CPU 2 may acquire (or generate) the time-dependent change information regarding the time-dependent change of the analysis parameter based on two or more layer thickness maps having different inspection times.
  • temporal change information regarding the temporal change of the layer thickness (an example of an analysis parameter) may be acquired.
  • the time change information may be, for example, data related to the time series graph 150 shown in FIG.
  • the CPU 2 may acquire a regression line by performing regression analysis on layer thickness information at an actual distance for each inspection time, and may generate a trend graph based on the regression line.
  • the points plotted on the graph corresponding to each inspection time may be, for example, representative values (for example, median value, average value, maximum value, etc.) of the layer thickness distribution of the layer thickness map at the actual distance. Further, for example, it may be a value indicated by a specific section of each analysis chart.
  • time series graph 150 may be a plot of measurement data related to the optical characteristics of the eye to be examined (in this embodiment, measurement data of the axial length). In this case, by checking the time series graph 150 by the user, for example, it becomes easy for the user to examine the causal relationship between the change in the layer thickness and the elongation of the axial length.
  • concept of time-dependent change information includes the above-described inspection time comparison thickness map.
  • the CPU 2 outputs an analysis result by the process of S4 (S5).
  • the CPU 2 performs display output on the display unit 5.
  • an image 100 for example, map image 100a, analysis chart images 100b, 100c, etc.
  • CPU2 may arrange and display each image 100 in order of a time series. Further, for example, information about the image 100 such as an inspection time, a measurement data acquisition time, and a value based on the measurement data may be displayed together. Further, the CPU 2 may display the time series graph 150 on the display unit 5.
  • the apparatus 1 can easily obtain the analysis result of the layer thickness map that can be easily compared in different inspection periods. Therefore, according to the present apparatus 1, it is easy for the user to observe the fundus.
  • analysis processing is performed on each of two or more layer thickness maps having different inspection timings, and time-dependent change information regarding a time-dependent change in layer thickness (an example of an analysis parameter) is acquired (generated).
  • the acquired temporal change information is displayed on the display unit 5.
  • the inspection time for the layer thickness map acquired by the process of S2 and the measurement data measured at the same time are not stored in advance in the measurement data storage unit, An estimated value based on measurement data measured before and after the time can be set as measurement data corresponding to the layer thickness map.
  • the present apparatus even if the measurement data measured at the same time as the examination time is not stored in the storage unit (measurement data storage unit) 3 in advance, a good analysis result is easily obtained.
  • this indication is not limited to the said embodiment, A various deformation
  • layer thickness information at an actual distance is generated from each layer thickness map each time display for observation is performed.
  • the layer thickness information based on the actual distance once generated is stored in the storage unit 3 or the like by the CPU 2, and the next time the display for observation is performed, the CPU 2 stores the layer thickness stored in the storage unit 3. You may make it perform display control of an image map, an analysis chart, etc. using thickness information.
  • the CPU 2 performs the process of S2 on the newly acquired layer thickness map. Similarly to the above, measurement data used for actual distance conversion is selected and layer thickness information is acquired.
  • the layer thickness map is described as an example, but the present invention is not limited to this.
  • the CPU 2 uses the actual distance conversion based on the front-to-back relationship between the acquisition time of the tomographic image related to the analysis chart and the measurement time of the measurement data.
  • Measurement data may be set.
  • the measurement data may be set, for example, for the distribution information that is the source of the analysis chart.
  • a fundus layer thickness graph converted into an actual distance (for example, a graph in which the vertical axis indicates the layer thickness and the horizontal axis indicates the position on the scanning line according to the actual distance) is generated.
  • the CPU 2 may set the measurement data used for the actual distance conversion for the tomographic image based on the order relationship between the acquisition time of the tomographic image according to the graph and the measurement time of the measurement data.
  • the layer thickness graph may indicate the layer thicknesses of a plurality of tomographic images having different acquisition times at the same time.
  • the CPU 2 determines the measurement data used for the actual distance conversion on the basis of the relationship between the acquisition time of the tomographic image for the scale measurement and the measurement time of the measurement data. Alternatively, it may be set for a tomographic image.
  • a specific scale measurement method after the measurement data is set refer to, for example, Japanese Patent Application Laid-Open No. 2011-11052 by the present applicant.
  • the actual distance conversion process can be applied when the imaging range related to the OCT data of the fundus of the eye to be examined is converted into the actual distance.
  • the OCT data may be blood flow measurement data and polarization characteristic data in addition to the tomographic image data on the scanning line. That is, this embodiment is applicable also to the data acquired by OCT, such as Doppler OCT and polarization-sensitive OCT.
  • the OCT data may be 3D OCT data.
  • the three-dimensional OCT data is acquired by, for example, a raster scan.
  • the raster scan is a pattern in which the measurement light scans on the fundus in a rectangular shape.
  • the measurement light is rastered in a preset scanning area (for example, a rectangular area).
  • OCT data for each scanning line in the scanning area (for example, a rectangular area) is acquired.
  • the three-dimensional OCT data is formed based on the OCT data obtained at each scanning line.
  • the OCT data in the three-dimensional OCT data may be at least one of tomographic image data, blood flow data, and polarization characteristic data. Further, the three-dimensional OCT data may be an OCT front image generated based on the three-dimensional OCT data.
  • the actual distance conversion process can also be applied to a case where an imaging range related to imaging result data acquired by an ophthalmologic imaging apparatus such as a fundus camera or a scanning laser opthalmoscope is converted into an actual distance.
  • an ophthalmologic imaging apparatus such as a fundus camera or a scanning laser opthalmoscope
  • the present invention can also be applied to obtaining an analysis result converted into an actual distance for a front image of a fundus obtained with a fundus camera or an SLO device. That is, the CPU of the ophthalmologic observation apparatus may set measurement data used for actual distance conversion based on the front-rear relationship between the acquisition timing of the front image and the measurement timing of the measurement data stored in the measurement storage unit.
  • Ophthalmic observation device 1 Ophthalmic observation device 2 CPU 3 Storage unit 6 OCT device

Abstract

The purpose of the present invention is to provide an ophthalmologic observation device and ophthalmologic observation program with which a user can favorably perform observations of a fundus over time. The ophthalmologic observation device (1) obtains analysis results by converting the imaging area related to OCT data acquired by an OCT unit (6) to actual distances using measurement data relating to optical characteristics of the eye being tested (S4). When doing so, the measurement data to be used for the conversion to actual distances is selected beforehand by the CPU (2) on the basis of the chronological relationship of the time that the OCT data was acquired and the measurement times for the measurement data previously stored in the measurement data storage unit (S3). As a result, in the processing of (S4), analysis results converted to actual distances using the measurement data selected by the processing in (S3) are obtained.

Description

眼科観察装置および眼科観察プログラムOphthalmic observation apparatus and ophthalmic observation program
 本開示は、眼底の状態を観察するための眼科観察装置および眼科観察プログラムに関する。 The present disclosure relates to an ophthalmic observation apparatus and an ophthalmic observation program for observing the state of the fundus.
 眼底に関する画像を撮影するデバイスとして、OCT(Optical Coherence Tomography)が眼科分野において広く用いられている。 OCT (Optical Coherence Tomography) is widely used in the ophthalmic field as a device for taking images of the fundus.
 OCTは、低コヒーレント光を眼底上で走査して取得される眼底の情報であって,各走査位置の断面方向における眼底の情報に基づいて断面画像を構築する。OCTの眼底上における撮影範囲の大きさは、眼底上で走査される測定光の走査角度(走査範囲)と、被検眼の眼軸長によって定めることができる。例えば、特許文献1では、眼底上で走査される測定光の走査角度と、被検眼の眼軸長の測定値とを用いて、眼底上における撮影範囲の大きさの実測値を得る装置が提案されている。 OCT is fundus information acquired by scanning low-coherent light on the fundus, and constructs a cross-sectional image based on the fundus information in the cross-sectional direction at each scanning position. The size of the imaging range on the fundus of OCT can be determined by the scanning angle (scanning range) of measurement light scanned on the fundus and the axial length of the eye to be examined. For example, Patent Document 1 proposes an apparatus that obtains an actual measurement value of the photographing range on the fundus using a scan angle of measurement light scanned on the fundus and a measurement value of the axial length of the eye to be examined. Has been.
特開2011-11052号公報JP 2011-11052 A
 眼科分野の臨床において、同一被検眼の同一部位における画像を異なる時期において取得し、取得した画像およびその画像に対する処理結果を、取得時期の異なる画像等と比較することによって経過観察が行われる場合がある。ところで、眼軸長に例示される被検眼の光学的な特性には、検査と検査の間に経時的な変化が生じる場合がある。しかしながら、眼底の経過観察において、被検眼の光学的な特性の経時的な変化を考量して眼底の評価を行うことは、行われておらず、そのための装置も提案されていない。 In clinical practice in the ophthalmic field, follow-up observation may be performed by acquiring images of the same part of the same eye at different times, and comparing the acquired images and the processing results for the images with images with different acquisition times. is there. By the way, the optical characteristics of the eye to be examined, exemplified by the axial length, may change with time between examinations. However, in the follow-up observation of the fundus, evaluation of the fundus is not performed by taking into account the temporal change in the optical characteristics of the eye to be examined, and no apparatus for that is proposed.
 本開示は、上記事情等に鑑み、ユーザが眼底の経過観察を良好に行うことができる眼科観察装置および眼科観察プログラムを提供することを目的とする。 The present disclosure is intended to provide an ophthalmologic observation apparatus and an ophthalmologic observation program that allow a user to satisfactorily observe the progress of the fundus in view of the above circumstances.
 本開示の第一態様に係る眼科観察装置は、光コヒーレントトモグラフィーデバイスによって取得された被検眼眼底のOCTデータに関する撮影範囲を、被検眼の光学的な特性に関する測定データを用いて実距離換算し解析結果を得る解析処理手段と、前記OCTデータの取得時期と、測定データ記憶部に予め記憶された前記測定データの測定時期との前後関係に基づいて、前記実距離換算に用いる測定データを選択処理する測定データ設定手段と、を備え、前記解析処理手段は、前記測定データ設定手段によって選択された前記測定データを用いて、実距離換算して解析結果を得る。 The ophthalmic observation apparatus according to the first aspect of the present disclosure converts an imaging range related to the OCT data of the fundus of the subject eye acquired by the optical coherent tomography device into an actual distance by using measurement data relating to optical characteristics of the subject eye and analyzes Analysis processing means for obtaining a result, selection processing of measurement data used for conversion of the actual distance based on the order of the acquisition timing of the OCT data and the measurement timing of the measurement data stored in advance in the measurement data storage unit Measurement data setting means, and the analysis processing means obtains an analysis result by converting the actual data using the measurement data selected by the measurement data setting means.
 本開示の第二態様に係る眼科観察装置は、眼科撮影装置によって取得された被検眼眼底の撮影結果データに関する撮影範囲を、被検眼の光学的な特性に関する測定データを用いて実距離換算し解析結果を得る解析処理手段と、前記撮影結果データの取得時期と、測定データ記憶部に予め記憶された前記測定データの測定時期との前後関係に基づいて、前記実距離換算に用いる測定データを選択処理する測定データ設定手段と、を備え、前記解析処理手段は、前記測定データ設定手段によって選択された前記測定データを用いて、実距離換算して解析結果を得る。 The ophthalmologic observation apparatus according to the second aspect of the present disclosure converts an imaging range related to imaging result data of the fundus of the subject eye acquired by the ophthalmologic imaging apparatus into an actual distance by using measurement data relating to optical characteristics of the eye to be inspected, and analyzes Select the measurement data to be used for the actual distance conversion based on the analysis processing means for obtaining a result, the acquisition timing of the imaging result data, and the measurement data stored in advance in the measurement data storage unit. Measurement data setting means for processing, and the analysis processing means converts the actual distance using the measurement data selected by the measurement data setting means to obtain an analysis result.
 本開示の第三態様に係る眼科観察プログラムは、眼科観察装置のプロセッサで実行されることによって、光コヒーレントトモグラフィーデバイスによって取得された被検眼眼底のOCTデータに関する撮影範囲を、被検眼の光学的な特性に関する測定データを用いて実距離換算し解析結果を得る解析処理ステップと、前記OCTデータの取得時期と、測定データ記憶部に予め記憶された前記測定データの測定時期との前後関係に基づいて、前記実距離換算に用いる測定データを選択処理する測定データ設定ステップと、を眼科観察装置に実行させる眼科観察プログラムであって、前記解析処理ステップにおいて、前記測定データ設定ステップによって選択された前記測定データを用いて、実距離換算して解析結果を得る。 The ophthalmic observation program according to the third aspect of the present disclosure is executed by the processor of the ophthalmic observation apparatus, so that the imaging range regarding the OCT data of the fundus of the eye to be inspected acquired by the optical coherent tomography device is obtained. Based on an analysis processing step that obtains an analysis result by converting an actual distance using measurement data relating to characteristics, based on the context of the acquisition timing of the OCT data and the measurement timing of the measurement data stored in advance in the measurement data storage unit An ophthalmic observation program for causing an ophthalmic observation apparatus to perform a measurement data setting step for selecting and processing measurement data used for the actual distance conversion, wherein the measurement selected by the measurement data setting step in the analysis processing step Using the data, convert the actual distance to obtain the analysis result.
 本開示によれば、ユーザが眼底の経過観察を良好に行うことができる。 According to the present disclosure, the user can satisfactorily observe the fundus.
眼科観察装置の概略構成を示すブロック図である。It is a block diagram which shows schematic structure of an ophthalmic observation apparatus. CPUによって実行される観察表示処理を示すフローチャートである。It is a flowchart which shows the observation display process performed by CPU. 基準長より長い眼軸長を持つ被検眼の断層画像に基づいて生成されたマップ画像を示す。The map image produced | generated based on the tomographic image of the eye to be examined which has an axial length longer than a reference length is shown. 図3Aのマップ画像から抽出された眼底における基準サイズの領域についてのマップ画像を示す。The map image about the area | region of the reference | standard size in the fundus extracted from the map image of FIG. 3A is shown. 特定の期間における各検査日に関する二次元画像の出力する場合の一例を示す表示画面の図である。It is a figure of the display screen which shows an example in the case of outputting the two-dimensional image regarding each inspection date in a specific period.
 以下、図面を参照して本開示の典型的な実施形態を説明する。まず、図1を参照して、本実施形態の眼科観察装置1の概略構成について説明する。 Hereinafter, exemplary embodiments of the present disclosure will be described with reference to the drawings. First, a schematic configuration of the ophthalmic observation apparatus 1 according to the present embodiment will be described with reference to FIG.
 眼科観察装置1は、CPU2、および記憶部3を主に備えている。また、本実施形態において、眼科観察装置1は、入力部4、およびモニタ5(表示部5)を有している。各部は、バス等を介してCPU2と電気的に接続される。また、本実施形態において、眼科観察装置1は、OCT装置6(Optical Coherence Tomography、光干渉断層計)で得られる被検眼眼底のOCTデータ、及び、OCTデータに対する解析処理の結果の少なくとも一方を、ネットワークおよび外部メモリ(例えば、OCT装置6の記憶部)等を介して取得し、取得されたデータを処理する。OCTデータとしては、例えば、ある走査ラインにおけるOCTデータ(断層画像データ)、3次元OCTデータ、血流計測画像、および、偏光特性画像等が例示される。眼科観察装置1は、例えば、汎用コンピュータの構成であってもよい。なお、上記の通り、本実施形態では、眼科観察装置1とOCT装置6とは別の装置であるが、必ずしもこれに限定されない。例えば、眼科観察装置1は、OCTの光学系を備えた眼科撮影装置であってもよい。この場合、CPU2は、装置に備え付けの光学系を用いて得られるOCTデータ等を、主に処理する。 The ophthalmologic observation apparatus 1 mainly includes a CPU 2 and a storage unit 3. Moreover, in this embodiment, the ophthalmic observation apparatus 1 has the input part 4 and the monitor 5 (display part 5). Each unit is electrically connected to the CPU 2 via a bus or the like. In this embodiment, the ophthalmologic observation apparatus 1 receives at least one of the OCT data of the eye fundus to be examined obtained by the OCT apparatus 6 (Optical Coherence Tomography) and the result of the analysis process on the OCT data. Acquired via a network and an external memory (for example, a storage unit of the OCT apparatus 6), etc., and processes the acquired data. Examples of the OCT data include OCT data (tomographic image data), three-dimensional OCT data, blood flow measurement image, polarization characteristic image, and the like in a certain scanning line. The ophthalmic observation apparatus 1 may be a general-purpose computer, for example. As described above, in the present embodiment, the ophthalmic observation apparatus 1 and the OCT apparatus 6 are separate apparatuses, but the present invention is not necessarily limited thereto. For example, the ophthalmologic observation apparatus 1 may be an ophthalmologic imaging apparatus including an OCT optical system. In this case, the CPU 2 mainly processes OCT data obtained using an optical system provided in the apparatus.
 CPU2は、眼科観察装置1全体の演算および制御を行うプロセッサである。 The CPU 2 is a processor that performs calculation and control of the entire ophthalmic observation apparatus 1.
 記憶部3は、CPU2によって実行される各種プログラムを記憶する。記憶部3には、例えば、図2のフローチャートの各ステップを眼科観察装置1に実行させるプログラムが記憶されている。記憶部3は、例えば、RAM、ROM、HDD、および、フラッシュメモリ等から構成される。 The storage unit 3 stores various programs executed by the CPU 2. The storage unit 3 stores, for example, a program that causes the ophthalmic observation apparatus 1 to execute each step of the flowchart of FIG. The storage unit 3 includes, for example, a RAM, a ROM, an HDD, and a flash memory.
 本実施形態において、記憶部3には、分布情報が予め記憶されていてもよい。本実施形態において、分布情報は、OCTデータに対する解析処理によって生成される情報であって、眼底の内部情報に関する二次元的な分布を示す情報である。分布情報としては、例えば、層厚マップ、血流マップ、偏光特性マップ、解析チャート等が例示される。本実施形態では、一例として、分布情報として層厚マップが適用された場合について説明する。この層厚マップは、眼底の二次元的な厚み分布を示すマップ画像(例えば、網膜の厚みマップ画像)であってもよい。なお、分布情報は、眼科観察装置1において実行された解析処理によって生成されてもよい。また、OCT装置6等の外部装置が持つ処理装置にて実行された解析処理によって生成されてもよい。 In the present embodiment, the storage unit 3 may store distribution information in advance. In the present embodiment, the distribution information is information generated by analysis processing on OCT data, and is information indicating a two-dimensional distribution related to internal information of the fundus. Examples of the distribution information include a layer thickness map, a blood flow map, a polarization characteristic map, and an analysis chart. In the present embodiment, as an example, a case where a layer thickness map is applied as distribution information will be described. This layer thickness map may be a map image (for example, a retina thickness map image) showing a two-dimensional thickness distribution of the fundus. The distribution information may be generated by analysis processing executed in the ophthalmic observation apparatus 1. Alternatively, it may be generated by an analysis process executed by a processing apparatus included in an external apparatus such as the OCT apparatus 6.
 また、記憶部3には、複数の検査時期における層厚マップが予め記憶されていてもよい。本実施形態において、層厚マップには、検査時期が対応付けられている。ここでいう検査時期とは、層厚マップの基とされた断層画像がOCT装置によって取得された時期(例えば、年、月、日、時刻等)をいう。例えば、層厚マップのデータは、検査時期を示すタイムスタンプを含むデータ構造であってもよい。また、層厚マップは、経過観察対象の被検者(更には被検眼)と対応付けられて記憶されていてもよい。 Further, the storage unit 3 may store in advance layer thickness maps at a plurality of inspection periods. In the present embodiment, the inspection time is associated with the layer thickness map. The inspection time here refers to the time (for example, year, month, day, time, etc.) when the tomographic image based on the layer thickness map was acquired by the OCT apparatus. For example, the data of the layer thickness map may have a data structure including a time stamp indicating the inspection time. In addition, the layer thickness map may be stored in association with the subject to be observed (and the eye to be examined).
 また、記憶部3には、層厚マップの他、例えば、層厚マップを得る基の断層画像、断層画像および層厚マップの解析結果、等のOCT装置6の撮影結果に関する撮影結果情報が記憶されていても良い。また、記憶部3には、断層画像取得時の走査パターン、走査位置等が記憶されてもよい。これらのデータは、適宜、CPU2によって画像データに変換され、表示部5を介してユーザに提示される。なお、断層画像等は、眼科観察装置1とOCT装置6との何れによって生成されてもよい。 In addition to the layer thickness map, the storage unit 3 stores, for example, imaging result information relating to the imaging result of the OCT apparatus 6 such as a tomographic image for obtaining a layer thickness map, a tomographic image, and an analysis result of the layer thickness map. May be. Further, the storage unit 3 may store a scanning pattern, a scanning position, and the like at the time of tomographic image acquisition. These data are appropriately converted into image data by the CPU 2 and presented to the user via the display unit 5. Note that the tomographic image or the like may be generated by either the ophthalmic observation apparatus 1 or the OCT apparatus 6.
 記憶部3には、被検眼の光学的な特性に関する測定データが記憶されてもよい。例えば、経過観察対象の被検者毎の測定データであって、測定時期毎の測定データが、記憶部3に記憶されてもよい。測定データとしては、例えば、被検眼の眼軸長、屈折力、および角膜曲率のうち少なくとも一種類についての測定結果を含む。以下、本実施形態では、眼軸長の測定データが記憶部3に記憶されるものとして説明する。なお、測定データは、OCT装置6、又は、他の検査機器によって測定された値を用いることができる。記憶部3の測定データは、眼科観察装置1に対してユーザ(使用者)が入力した値であってもよい。また、測定データは、眼科観察装置1とネットワーク等で接続された検査機器から転送されたデータでもよい。 The storage unit 3 may store measurement data related to the optical characteristics of the eye to be examined. For example, measurement data for each subject to be observed may be stored in the storage unit 3 at each measurement time. The measurement data includes, for example, measurement results for at least one of the axial length, refractive power, and corneal curvature of the eye to be examined. Hereinafter, in the present embodiment, description will be made assuming that the measurement data of the axial length is stored in the storage unit 3. In addition, the value measured by the OCT apparatus 6 or another test | inspection apparatus can be used for measurement data. The measurement data in the storage unit 3 may be a value input by the user (user) to the ophthalmic observation apparatus 1. The measurement data may be data transferred from an inspection device connected to the ophthalmic observation apparatus 1 via a network or the like.
 上記の通り、本実施形態では、眼科観察装置1の記憶部3に、層厚マップおよび測定データが記憶される。つまり、眼科観察装置1に、マップ記憶部、および、測定データ記憶部が設けられている。しかし、マップ記憶部、および測定データ記憶部は、必ずしも眼科観察装置1が有していなくてもよい。例えば、OCT装置の記憶部、および外部のサーバーに設けられた記憶部等に、マップ記憶部、および測定データ記憶部の少なくとも一方が用意されていてもよい。 As described above, in the present embodiment, the layer thickness map and the measurement data are stored in the storage unit 3 of the ophthalmic observation apparatus 1. That is, the ophthalmic observation apparatus 1 is provided with a map storage unit and a measurement data storage unit. However, the map storage unit and the measurement data storage unit are not necessarily included in the ophthalmologic observation apparatus 1. For example, at least one of a map storage unit and a measurement data storage unit may be prepared in a storage unit of the OCT apparatus, a storage unit provided in an external server, and the like.
 記憶部3には、本実施形態で示すように、例えば、正常眼データベースが格納されてもよい。正常眼データベースは、例えば、多数の患者眼の検査結果を基に、網膜疾患に関する正常眼の層厚(例えば、網膜厚)が記憶されたデータベースであってもよい。例えば、眼底の一定領域(例えば、眼底の一定位置にあり、実距離換算で一定の大きさを持つ領域)における多数の患者眼の層厚分布が記憶されてもよい。このとき、正常眼データベースには、眼底の一定領域における位置毎の層厚分布が記憶されてもよい。なお、正常眼データベースには、必ずしも患者眼毎の層厚データが記憶されていなくてもよい。例えば、患者眼毎の層厚データに代えて、多数の患者眼の層厚データに基づく層厚分布を規定するための代表値(例えば、分布の中央値、平均値、および、母集団の数%が含まれる層厚の閾値等)、及び関数等が記憶されてもよい。なお、正常眼データベースは、疾患が特定されずに形成されていてもよく、また、もちろん、特定の疾患毎に形成されてもよい。また、基準とする眼軸長(例えば、約24mm)よりも長い眼軸長の眼に関するデータベース(例えば、長眼軸データベース)が構築されてもよい。 The storage unit 3 may store a normal eye database, for example, as shown in the present embodiment. The normal eye database may be, for example, a database in which the layer thickness (for example, retinal thickness) of normal eyes related to retinal diseases is stored based on the examination results of a large number of patient eyes. For example, the layer thickness distribution of a large number of patient eyes in a fixed region of the fundus (for example, a region at a fixed position of the fundus and having a fixed size in terms of actual distance) may be stored. At this time, the normal eye database may store a layer thickness distribution for each position in a fixed region of the fundus. The normal eye database does not necessarily store layer thickness data for each patient eye. For example, instead of the layer thickness data for each patient eye, representative values for defining the layer thickness distribution based on the layer thickness data of a large number of patient eyes (for example, the median value of the distribution, the average value, and the number of populations) And a function or the like may be stored. The normal eye database may be formed without specifying a disease, and of course, may be formed for each specific disease. In addition, a database (for example, a long eye axis database) relating to an eye having an axial length longer than a reference axial length (for example, about 24 mm) may be constructed.
 入力部4は、眼科観察装置1のユーザ(使用者)が、各種情報の入力を行うための構成である。入力部4は、例えば、キーボード、マウス、及び、タッチパネル等から構成される。 The input unit 4 is a configuration for the user (user) of the ophthalmologic observation apparatus 1 to input various information. The input unit 4 includes, for example, a keyboard, a mouse, and a touch panel.
 表示部5は、ディスプレイであり、OCT装置6によって得られた断層画像、断層画像に基づく層厚マップ等を出力する出力部の一例である。出力部は、層厚マップ等の印刷を行うプリンタであってもよい。 The display unit 5 is a display, and is an example of an output unit that outputs a tomographic image obtained by the OCT apparatus 6, a layer thickness map based on the tomographic image, and the like. The output unit may be a printer that prints a layer thickness map or the like.
 OCT装置6は、被検眼眼底の断層画像を得る撮像装置である。OCT装置6によって断層画像に基づいて層厚マップ等、および各種の解析結果が取得される。なお、断層画像に基づいて層厚マップ、および解析結果等を得る機能について、OCT装置6を制御する制御部が、層厚マップ等を生成する構成であってもよいし、他の装置(例えば、眼科観察装置1)の制御部(例えば、CPU2)が、OCT装置6によって得られた断層画像に基づいて層厚マップ等を生成する構成であってもよい。 The OCT apparatus 6 is an imaging apparatus that obtains a tomographic image of the fundus of the eye to be examined. Based on the tomographic image, the OCT apparatus 6 acquires a layer thickness map and various analysis results. In addition, about the function which acquires a layer thickness map, an analysis result, etc. based on a tomographic image, the structure which controls the OCT apparatus 6 may produce | generate a layer thickness map etc., and other apparatuses (for example, The controller (for example, CPU 2) of the ophthalmologic observation apparatus 1) may generate a layer thickness map or the like based on the tomographic image obtained by the OCT apparatus 6.
 OCT装置6は、光源から出射された光を測定光と参照光に分割する。OCT装置6は、分割された測定光を被検眼眼底に導き、分割された参照光を参照光学系に導く。その後、眼底によって反射された測定光と参照光との合成による干渉光が、検出器(受光素子)によって受光される。検出器は、測定光と参照光との干渉状態を検出する。フーリエドメインOCTの場合では、干渉光のスペクトル強度が検出器によって検出され、スペクトル強度データに対するフーリエ変換によって所定範囲における深さプロファイルが取得される。フーリエドメインOCTとしては、Spectral-DomainOCT(SD-OCT)、Swept-sourceOCT(SS-OCT)が挙げられる。また、OCT装置6としては、Time-DomainOCT(TD-OCT)であってもよい。 The OCT apparatus 6 divides the light emitted from the light source into measurement light and reference light. The OCT apparatus 6 guides the divided measurement light to the fundus of the eye to be examined and guides the divided reference light to the reference optical system. Thereafter, interference light obtained by combining the measurement light reflected by the fundus and the reference light is received by the detector (light receiving element). The detector detects an interference state between the measurement light and the reference light. In the case of Fourier domain OCT, the spectral intensity of the interference light is detected by a detector, and a depth profile in a predetermined range is obtained by Fourier transform on the spectral intensity data. Examples of the Fourier domain OCT include Spectral-DomainOCT (SD-OCT) and Swept-sourceOCT (SS-OCT). Further, the OCT apparatus 6 may be Time-DomainOCT (TD-OCT).
 OCT装置6には、眼底の正面画像を得るための正面観察光学系が設けられてもよい。正面観察光学系としては、走査型共焦点光学系、眼底カメラ光学系が考えられる。また、OCT装置6は、OCT装置6によって取得される干渉信号に基づいて眼底正面像が取得される構成であってもよい。 The OCT apparatus 6 may be provided with a front observation optical system for obtaining a front image of the fundus. As the front observation optical system, a scanning confocal optical system and a fundus camera optical system can be considered. Further, the OCT apparatus 6 may have a configuration in which a fundus front image is acquired based on an interference signal acquired by the OCT apparatus 6.
 本実施形態において、OCT装置6は、検出器からの出力信号に基づいて眼底の断層画像を得る。そして、例えば、取得された断層画像が画像処理されることによって、眼底の網膜厚が測定される。網膜厚として、例えば、網膜の各層の厚み(具体的には、視神経線維層(NFL)の厚み、内境界膜(ILM)から網膜色素上皮層(RPE)までの厚み等)が取得される。眼底上のスキャン位置が異なる画像から得られる眼底上の各位置における網膜厚を用いて二次元的な網膜厚情報(例えば、層厚マップ)が、OCT装置6、又は、眼科観察装置1(以下、本装置1と省略する)によって生成される。 In the present embodiment, the OCT apparatus 6 obtains a tomographic image of the fundus based on the output signal from the detector. Then, for example, the acquired tomographic image is subjected to image processing, whereby the retinal thickness of the fundus is measured. As the retinal thickness, for example, the thickness of each layer of the retina (specifically, the thickness of the optic nerve fiber layer (NFL), the thickness from the inner boundary membrane (ILM) to the retinal pigment epithelium layer (RPE), etc.) is acquired. Two-dimensional retinal thickness information (for example, a layer thickness map) using the retinal thickness at each position on the fundus obtained from images with different scan positions on the fundus is obtained from the OCT apparatus 6 or the ophthalmologic observation apparatus 1 (hereinafter referred to as the ophthalmic observation apparatus 1). , Abbreviated as this device 1).
 本実施形態では、層厚マップを用いて二次元的な網膜厚情報が経過観察される。本装置1によって取得(又は、生成)される層厚マップは、CPU2によって記憶部3に記憶される。その他、記憶部3には、OCT装置6によって得られた画像情報(眼底の断層画像、正面画像等)、厚み情報に基づいて算出された解析チャート、各種パラメータなどが記憶される。 In this embodiment, two-dimensional network thickness information is followed up using a layer thickness map. The layer thickness map acquired (or generated) by the apparatus 1 is stored in the storage unit 3 by the CPU 2. In addition, the storage unit 3 stores image information (fundus tomographic image, front image, etc.) obtained by the OCT apparatus 6, analysis charts calculated based on thickness information, various parameters, and the like.
 なお、取得された断層画像を処理することにより、脈絡膜の厚みが測定されてもよい。もちろん、二次元的な脈絡膜厚情報(厚みマップ)が経過観察されてもよい。 In addition, the thickness of the choroid may be measured by processing the acquired tomographic image. Of course, two-dimensional choroid thickness information (thickness map) may be observed.
 OCT装置6によって定期的に検査が行われると、検査の結果として生成された網膜厚情報は、CPU2に送られた後、記憶部3に記憶される。記憶部3に記憶された網膜厚情報は、例えば、経過観察のため、時間軸に関連付けて記憶される。時間を関数とする網膜厚情報は、網膜厚の経時的変化を示す。 When the inspection is periodically performed by the OCT apparatus 6, the retinal thickness information generated as a result of the inspection is sent to the CPU 2 and then stored in the storage unit 3. The retinal thickness information stored in the storage unit 3 is stored in association with the time axis for, for example, follow-up observation. The retinal thickness information as a function of time indicates a change in the retinal thickness over time.
 次に、以上のような構成を持つ装置の動作を、図2のフローチャートを参照して説明する。 Next, the operation of the apparatus having the above configuration will be described with reference to the flowchart of FIG.
 図2に示す観察表示処理は、実距離による眼底上の領域における眼底の状態に関する情報として、実距離における層厚情報を生成し、出力する処理の一例である。観察表示処理の結果として、被検眼眼底の実距離における層厚情報に基づく表示が、表示部5において行われる。この表示を確認することによって、ユーザは、例えば、眼底の経過観察を行う。 The observation display process shown in FIG. 2 is an example of a process for generating and outputting layer thickness information at an actual distance as information on the state of the fundus in an area on the fundus at an actual distance. As a result of the observation display process, display based on the layer thickness information at the actual distance of the fundus of the eye to be examined is performed on the display unit 5. By confirming this display, the user observes the fundus, for example.
 観察表示処理では、はじめに、記憶部3に記憶される層厚マップの中で、経過観察に使用する層厚マップが、CPU2によって選択される(S1)。本実施形態では、CPU2は、入力部4を介してユーザによって予め指定された一又は複数の層厚マップを選択する。 In the observation display process, first, the layer thickness map used for the follow-up observation is selected by the CPU 2 from the layer thickness maps stored in the storage unit 3 (S1). In the present embodiment, the CPU 2 selects one or a plurality of layer thickness maps designated in advance by the user via the input unit 4.
 次に、CPU2は、S1の処理によって選択された一又は複数の層厚マップを取得する(S2)。S2の処理では、例えば、選択された層厚マップが本装置1の作業領域(例えば、記憶部3のRAM)に記憶されることで、層厚マップが取得される。本実施形態では、このとき、CPU2は、取得される層厚マップにかかる検査時期を示す情報(検査時期情報)を、層厚マップと共に取得する。なお、本実施形態では、S2の処理によって取得される層厚マップは、記憶部3に予め記憶されているものとして説明するが、必ずしもこれに限定されるものではない。例えば、本装置1が層厚情報を生成する際に、記憶部3等にて予め記憶される検査時期毎の断層画像から検査時期毎の層厚マップが生成されてもよい。この場合は、生成された層厚マップが本装置1の作業領域に記憶されることによって、層厚マップが取得される。 Next, the CPU 2 acquires one or a plurality of layer thickness maps selected by the process of S1 (S2). In the process of S2, for example, the selected layer thickness map is stored in the work area of the apparatus 1 (for example, the RAM of the storage unit 3), thereby acquiring the layer thickness map. In this embodiment, CPU2 acquires the information (inspection time information) which shows the inspection time concerning the acquired layer thickness map at this time with a layer thickness map. In the present embodiment, the layer thickness map acquired by the process of S2 is described as being stored in advance in the storage unit 3, but is not necessarily limited thereto. For example, when the apparatus 1 generates layer thickness information, a layer thickness map for each inspection time may be generated from a tomographic image for each inspection time stored in advance in the storage unit 3 or the like. In this case, the layer thickness map is acquired by storing the generated layer thickness map in the work area of the apparatus 1.
 次に、CPU2は、それぞれの層厚マップと対応する眼軸長の測定データ(例えば、眼軸長)を、S2の処理によって取得された層厚マップ毎に設定する(S3)。本実施形態では、まず、CPU2は、測定データ記憶部(例えば、記憶部3)から各測定データの測定時期が示される測定時期情報を取得する。CPU2は、S2およびS3の処理で取得された情報、および測定時期情報に基づいて、それぞれの層厚マップに対応付けられる測定データを選択する。本実施形態において、それぞれの層厚マップに対応付けられる測定データは、層厚マップにかかる断層画像の取得時期(即ち、検査時期)と各々の測定データの測定時期との前後関係に基づいてそれぞれ定められる。すなわち、本実施形態では、層厚マップにかかる検査時期と同時期に測定された測定データ、および層厚マップにかかる検査時期とは測定時期が前後する測定データの少なくとも1つが用いられて、層厚マップと対応する測定データが、CPU2によって設定される。 Next, the CPU 2 sets the measurement data of the axial length corresponding to each layer thickness map (for example, the axial length) for each layer thickness map acquired by the processing of S2 (S3). In the present embodiment, first, the CPU 2 acquires measurement time information indicating the measurement time of each measurement data from the measurement data storage unit (for example, the storage unit 3). CPU2 selects the measurement data matched with each layer thickness map based on the information acquired by the process of S2 and S3, and measurement time information. In the present embodiment, the measurement data associated with each layer thickness map is based on the longitudinal relationship between the acquisition time of the tomographic image (that is, the inspection time) related to the layer thickness map and the measurement time of each measurement data. Determined. That is, in the present embodiment, at least one of the measurement data measured at the same time as the inspection time for the layer thickness map and the measurement data for which the measurement time is around the inspection time for the layer thickness map is used. Measurement data corresponding to the thickness map is set by the CPU 2.
 例えば、層厚マップにかかる検査時期と同時期に測定された測定データがあれば、その測定データが層厚マップに対応付けられてもよい。このとき、測定データにかかる測定時期と層厚マップにかかる検査時期との年および月が互いに一致する場合に、両者が同時期に測定されたものとして扱われてもよい。また、測定時期と検査時期との年が一致する場合、両者の日までが互いに一致する場合、時刻の一部までが互いに一致する場合に、両者が同時期に測定されたものとして扱われてもよい。また、検査時期の前後所定期間(例えば、数時間、数日、数週間等)に得られた測定データが、測定時期が検査時期と同時期の測定データとして扱われてもよい。 For example, if there is measurement data measured at the same time as the inspection time on the layer thickness map, the measurement data may be associated with the layer thickness map. At this time, when the year and month of the measurement time concerning the measurement data and the inspection time concerning the layer thickness map coincide with each other, both may be treated as being measured at the same time. In addition, if the year of the measurement time and the inspection time are the same, if both dates are the same, if part of the time is the same, both are treated as being measured at the same time. Also good. In addition, measurement data obtained in a predetermined period (for example, several hours, several days, several weeks, etc.) before and after the inspection time may be handled as measurement data at the same time as the inspection time.
 なお、層厚マップにかかる検査時期と同時期に測定された測定データが、2つ以上ある場合も考えられる。この場合、例えば、層厚マップにかかる検査時期のより近くで測定された測定データ、および、2以上の測定データの平均値等が、CPU2によって層厚マップと対応付けられても良い。もちろん、いずれの測定データが層厚マップと対応付けられるかは、ユーザに選択されてもよい。 Note that there may be two or more measurement data measured at the same time as the inspection period for the layer thickness map. In this case, for example, measurement data measured closer to the inspection time related to the layer thickness map, an average value of two or more measurement data, and the like may be associated with the layer thickness map by the CPU 2. Of course, the user may select which measurement data is associated with the layer thickness map.
 また、層厚マップにかかる検査時期と同時期に測定された測定データが記憶部(測定データ記憶部)3に予め記憶されていなければ、検査時期の前後に測定された測定データに基づく推定値が、その層厚マップと対応する測定データとして設定されてもよい。 In addition, if measurement data measured at the same time as the inspection time concerning the layer thickness map is not stored in the storage unit (measurement data storage unit) 3 in advance, an estimated value based on the measurement data measured before and after the inspection time May be set as measurement data corresponding to the layer thickness map.
 例えば、推定値には、測定データ記憶部に予め記憶されている測定データの中で、層厚マップにかかる検査時期と最も近い測定時期の測定データが用いられてもよい。この場合、推定値としては、実際の測定データの中で、層厚マップにかかる検査時期と同時期に測定されていれば得られたであろう測定データが、算出されうる。得られた推定値は、層厚マップに対応付けられる。なお、このとき、CPU2によって、層厚マップに対応付けられる測定データは、層厚マップにかかる検査時期以前に測定された測定データに限られていてもよい。 For example, as the estimated value, measurement data at a measurement time closest to the inspection time related to the layer thickness map may be used among the measurement data stored in advance in the measurement data storage unit. In this case, as the estimated value, measurement data that would have been obtained in the actual measurement data if it was measured at the same time as the inspection time related to the layer thickness map can be calculated. The obtained estimated value is associated with the layer thickness map. At this time, the measurement data associated with the layer thickness map by the CPU 2 may be limited to the measurement data measured before the inspection time related to the layer thickness map.
 例えば、推定値には、記憶部(測定データ記憶部)3に予め記憶される2以上の測定データを用いて求められた値が使用されてもよい。例えば、測定データの推定値は、検査時期に対し測定時期が前の測定データと、検査時期に対し測定時期が後の測定データとを少なくとも一つずつ用いて補間(例えば、直線補間)することによって求められてもよい。なお、補間処理は、仮に、検査時期と同時期に測定した場合の測定データに近似するように行われているのが好ましい。例えば、眼軸長の経時的変化に関する経験式等が用いられても良い。この推定値には、測定データの時間的変化が反映されるので、より妥当性の高い測定データの値が層厚マップに対して対応付けられる。なお、測定データの推定値は、検査時期に対し測定時期が前(または後)の測定データ2つ以上を用いて求められてもよい。 For example, a value obtained using two or more measurement data stored in advance in the storage unit (measurement data storage unit) 3 may be used as the estimated value. For example, the estimated value of measurement data should be interpolated (for example, linear interpolation) using at least one measurement data that is earlier than the inspection time and one that is later than the inspection time. May be required. In addition, it is preferable that the interpolation process is performed so as to approximate the measurement data when measured at the same time as the inspection time. For example, an empirical formula or the like regarding the temporal change of the axial length may be used. Since this estimated value reflects a temporal change in the measurement data, a more appropriate measurement data value is associated with the layer thickness map. In addition, the estimated value of the measurement data may be obtained using two or more measurement data whose measurement time is before (or after) the inspection time.
 次に、CPU2は、S2の処理によって選択された測定データを用いて層厚マップ(分布情報の一例)の解析処理を行う(S4)。より詳細には、本実施形態において、CPU2は、測定データを用いて層厚マップを実距離換算し、層厚マップに関する解析結果を得る。例えば、解析結果として、眼底の実距離における層厚情報が、層厚マップ毎に生成される。眼底の実距離における層厚情報としては、例えば、眼底の実距離における解析マップ(例えば、マップ画像)、二次元解析チャート等であってもよい。 Next, the CPU 2 performs an analysis process of the layer thickness map (an example of distribution information) using the measurement data selected by the process of S2 (S4). More specifically, in the present embodiment, the CPU 2 converts the layer thickness map into an actual distance using the measurement data, and obtains an analysis result regarding the layer thickness map. For example, as an analysis result, layer thickness information at the actual distance of the fundus is generated for each layer thickness map. The layer thickness information at the actual distance of the fundus may be, for example, an analysis map (for example, a map image) at the actual distance of the fundus, a two-dimensional analysis chart, or the like.
 解析マップは、例えば、被検眼眼底上の解析結果の分布を二次元的に表現するカラーマップであってもよい(例えば、図4の層厚マップ100a参照)。マップ画像100aは、被検眼眼底における層厚の二次元的な分布を示すカラーマップであり、層厚に応じて色分けされてもよい。 The analysis map may be, for example, a color map that two-dimensionally represents the distribution of analysis results on the fundus of the eye to be examined (see, for example, the layer thickness map 100a in FIG. 4). The map image 100a is a color map showing a two-dimensional distribution of the layer thickness on the fundus of the eye to be examined, and may be color-coded according to the layer thickness.
 マップ画像100aとしては、例えば、厚みマップ、比較マップ、デビエーションマップ、差分マップの少なくとものいずれかが用いられてもよい。厚みマップは、網膜層の厚み量を示すマップであってもよい。比較マップは、被検眼の網膜層の厚みと正常眼データベースに記憶された正常眼の網膜層の厚みとの比較結果を示すマップであってもよい。デビエーションマップは、被検眼の網膜層の厚みと正常眼データベースに記憶された正常眼の網膜層の厚みとのずれを標準偏差にて示すマップであってもよい。差分マップは、各検査時期(例えば、検査日)との厚みの差分を示す検査時期比較厚みマップであってもよい。 As the map image 100a, for example, at least one of a thickness map, a comparison map, a deviation map, and a difference map may be used. The thickness map may be a map indicating the thickness of the retinal layer. The comparison map may be a map showing a comparison result between the thickness of the retinal layer of the eye to be examined and the thickness of the retinal layer of the normal eye stored in the normal eye database. The deviation map may be a map showing, as a standard deviation, a deviation between the thickness of the retinal layer of the subject eye and the thickness of the retinal layer of the normal eye stored in the normal eye database. The difference map may be an inspection time comparison thickness map indicating a difference in thickness from each inspection time (for example, inspection date).
 解析チャート画像100b、100cは、眼底を分割したセクション(領域)における層厚を示す。解析チャートは、例えば、眼底における層厚の二次元的な分布を領域毎に分割し、領域毎の解析値を得ることによって作成される。 Analysis chart images 100b and 100c indicate layer thicknesses in sections (regions) obtained by dividing the fundus. The analysis chart is created, for example, by dividing a two-dimensional distribution of the layer thickness in the fundus into regions and obtaining analysis values for each region.
 解析チャートは、眼底上での撮影範囲を考慮して設定されてもよい。例えば、眼底上の撮影範囲において撮影中心から基準距離(例えば、9mm)に対応する領域において、複数のセクションが設定されてもよい。例えば、中心から第1距離(例えば、中心から1mm範囲内)に対応するセクション、第1距離から第2距離(例えば、中心に対し、1mm~4mmの領域)に対応するセクション、第2距離から第3距離に対応するセクション(例えば、中心に対し、4mm~9mmの領域)とに分割される。 The analysis chart may be set in consideration of the imaging range on the fundus. For example, a plurality of sections may be set in an area corresponding to a reference distance (for example, 9 mm) from the imaging center in the imaging range on the fundus. For example, a section corresponding to a first distance from the center (for example, within a range of 1 mm from the center), a section corresponding to a second distance from the first distance (for example, an area of 1 mm to 4 mm with respect to the center), from a second distance The section is divided into sections corresponding to the third distance (for example, an area of 4 mm to 9 mm with respect to the center).
 解析チャートは、例えば、予め設定されたセクション毎に解析値を示す。解析値として、例えば、予め設定されたセクション毎に解析結果の基本統計量が求められる。基本統計量しては、代表値(平均値、中央値、最頻値、最大値、最小値、など)、散布度(分散、標準偏差、変動係数など)などであってもよい。セクション内での各位置での解析結果がセクション毎の解析結果に含まれることで、安定した解析値が得られる。 The analysis chart shows an analysis value for each preset section, for example. As an analysis value, for example, a basic statistic of an analysis result is obtained for each preset section. The basic statistic may be a representative value (average value, median value, mode value, maximum value, minimum value, etc.), spread degree (dispersion, standard deviation, variation coefficient, etc.), and the like. The analysis result at each position in the section is included in the analysis result for each section, so that a stable analysis value can be obtained.
 より詳細には、解析チャートは、層厚マップと共に表示される。網膜厚マップ100aが黄斑マップの場合、GCHART、S/Iチャート、ETDRSチャート等が選択的に表示される。なお、層厚が乳頭マップの場合は、解析チャートとして、GCHART、S/Iチャート、ETDRSチャートの他にも、全体チャート、上下チャート(2分割)、TSNITチャート(4分割)、ClockHourチャート(12分割)等が選択的に表示される。 More specifically, the analysis chart is displayed together with the layer thickness map. When the retinal thickness map 100a is a macular map, GCHART, S / I chart, ETDRS chart, etc. are selectively displayed. When the layer thickness is a nipple map, as an analysis chart, in addition to the GCHART, S / I chart, and ETDRS chart, an overall chart, an upper and lower chart (2 divisions), a TSNIT chart (4 divisions), a ClockHour chart (12 Etc.) are selectively displayed.
 また、解析チャートには、所定領域での層厚を数値にて表示する数値表示領域が付されてもよい。数値表示領域には、例えば、全体の平均網膜厚、中心窩での網膜厚、中心窩を中心とする所定エリア内での平均網膜厚(例えば、1、2、3mm)等が表示される。また、解析チャートには、層厚マップと正常眼データベースとの実距離における対比結果が示されてもよい。 Further, the analysis chart may be provided with a numerical display area for displaying the layer thickness in the predetermined area with a numerical value. In the numerical display area, for example, the total average retinal thickness, the retinal thickness at the fovea, the average retinal thickness (for example, 1, 2, 3 mm) within a predetermined area centered on the fovea are displayed. Further, the analysis chart may show a comparison result at an actual distance between the layer thickness map and the normal eye database.
 ところで、眼底上の実距離によるOCT装置6の撮影範囲は、眼軸長等の被検眼の光学的な特性に応じたサイズとなる。例えば、眼軸長が基準の長さ(例えば、約24mm)を持つ眼が、OCT装置6によって一定の走査画角にて撮影された場合、眼底上の撮影範囲は、眼底上での基準サイズ(例えば、9mm四方)となる。眼底上の撮影範囲は、層厚マップの実際の計測範囲に対応するので、層厚マップとしては、基準サイズ(例えば、9mm四方)における層厚分布を示す。 By the way, the imaging range of the OCT apparatus 6 by the actual distance on the fundus is a size according to the optical characteristics of the eye to be examined such as the axial length. For example, when an eye having an axial length that is a reference length (for example, about 24 mm) is imaged by the OCT apparatus 6 at a constant scanning angle of view, the imaging range on the fundus is the reference size on the fundus. (For example, 9 mm square). Since the photographing range on the fundus corresponds to the actual measurement range of the layer thickness map, the layer thickness map indicates a layer thickness distribution at a reference size (for example, 9 mm square).
 一方、基準長よりも長い眼軸長(例えば、約26mm)を持つ眼が、OCT装置6によって同一の走査画角にて撮影された場合、層厚マップは、前述の基準サイズよりも広い範囲(例えば、9.6mm四方)における層厚分布を示す。 On the other hand, when an eye having an axial length longer than the reference length (for example, about 26 mm) is photographed by the OCT apparatus 6 at the same scanning angle of view, the layer thickness map has a wider range than the reference size. The layer thickness distribution in (for example, 9.6 mm square) is shown.
 被検眼の光学的な特性が検査時期間で経時的に変化している場合、検査時期が互いに異なる2つ以上の層厚マップの間で、層厚の分布が示される眼底上の範囲が異なってしまう場合がある。このため、例えば、複数の層厚マップ間の差異が層厚の変化によるのか、それとも撮影範囲の変化によるのかを区別することは、難しい。 When the optical characteristics of the eye to be examined change over time during the examination period, the range on the fundus where the distribution of the layer thickness is different between two or more layer thickness maps with different examination periods May end up. For this reason, for example, it is difficult to distinguish whether a difference between a plurality of layer thickness maps is due to a change in layer thickness or a change in imaging range.
 これに対し、CPU2は、層厚マップと被検眼の眼軸長とを用いて眼底の実距離における層厚情報を生成する。実距離による層厚マップを生成する具体例として、例えば、S3の処理において層厚マップと対応付けられた眼軸長の測定データが基準長よりも長い眼軸長を示すことによって、層厚マップが基準サイズよりも広い領域に対応していると考えられる場合は(図3(a)参照)、CPU2は、層厚マップ上で基準サイズ(例えば、9mm四方)を示すデータ領域を、測定データの値に応じて抽出してもよい(図3(b)参照)。 On the other hand, the CPU 2 generates layer thickness information at the actual distance of the fundus using the layer thickness map and the axial length of the eye to be examined. As a specific example of generating the layer thickness map based on the actual distance, for example, the measurement data of the axial length associated with the layer thickness map in the process of S3 indicates the axial length longer than the reference length, thereby the layer thickness map Is considered to correspond to an area wider than the reference size (see FIG. 3A), the CPU 2 uses the data area indicating the reference size (for example, 9 mm square) on the layer thickness map as measurement data. It may be extracted according to the value of (see FIG. 3B).
 なお、層厚マップから抽出する基準サイズの範囲情報は、予め記憶部3等に測定データと対応付けて記憶していてもよい。もちろん、CPU2が、測定データの値を用いて基準サイズの範囲を算出してもよい。測定データに応じて層厚マップの一部の領域を抽出した後、CPU2は、層厚マップの一部の領域のサイズを基準サイズの領域に合わせて変更してもよい。このようにして、実距離による層厚マップが生成される。 The reference size range information extracted from the layer thickness map may be stored in advance in the storage unit 3 or the like in association with the measurement data. Of course, the CPU 2 may calculate the reference size range using the value of the measurement data. After extracting a partial region of the layer thickness map according to the measurement data, the CPU 2 may change the size of the partial region of the layer thickness map according to the reference size region. In this way, a layer thickness map based on the actual distance is generated.
 また、例えば、S3の処理において層厚マップと対応付けられた眼軸長の測定データが基準長よりも短く、層厚マップが基準サイズよりも狭い領域に対応していると考えられる場合は、層厚マップが、測定データの値に応じた大きさの領域を示すものとして扱われてもよい。このとき、例えば、層厚マップが基準サイズの領域の一部についての情報を持つものとして、CPU2は、層厚マップのサイズを基準サイズの領域に合わせて変更してもよい。このようにして、測定データを用いて算出された実距離による層厚マップが生成される。なお、実距離による層厚マップが得られた後に、その層厚マップから二次元解析チャート、正常眼データベースとの対比結果等を、CPU2が生成してもよい。このように、S4の処理の結果として、検査時期毎の撮影範囲にかかわらず、実距離による眼底の一定範囲における層厚情報が得られる。その結果として、検査時期毎の層厚の変化を把握しやすい経過観察が可能となる。 Also, for example, in the case where it is considered that the measurement data of the axial length associated with the layer thickness map in the process of S3 is shorter than the reference length and the layer thickness map corresponds to an area narrower than the reference size, The layer thickness map may be treated as an area having a size corresponding to the value of the measurement data. At this time, for example, the CPU 2 may change the size of the layer thickness map according to the region of the reference size, assuming that the layer thickness map has information about a part of the region of the reference size. In this way, a layer thickness map based on the actual distance calculated using the measurement data is generated. After the layer thickness map based on the actual distance is obtained, the CPU 2 may generate a two-dimensional analysis chart, a comparison result with the normal eye database, and the like from the layer thickness map. As described above, as a result of the process of S4, layer thickness information in a certain range of the fundus based on the actual distance is obtained regardless of the imaging range at each examination time. As a result, it is possible to perform follow-up observation in which it is easy to grasp the change in the layer thickness at each inspection time.
 また、S4の処理において、CPU2は、検査時期が互いに異なる二以上の層厚マップに基づいて、解析パラメータの経時変化に関する経時変化情報を取得(又は生成)してもよい。例えば、層厚(解析パラメータの一例)の経時変化に関する経時変化情報が取得されてもよい。経時変化情報としては、例えば、図4に示す時系列グラフ150に関するデータであってもよい。例えば、CPU2は、検査時期毎の実距離における層厚情報を回帰分析することによって回帰直線を取得すると共に、回帰直線によるトレンドグラフを生成してもよい。各検査時期と対応してグラフ上にプロットされる点は、例えば、実距離における層厚マップの層厚分布の代表値(例えば、中央値、平均値、最大値等)であってもよい。また、例えば、各解析チャートの特定のセクションによって示される値であってもよい。 Further, in the process of S4, the CPU 2 may acquire (or generate) the time-dependent change information regarding the time-dependent change of the analysis parameter based on two or more layer thickness maps having different inspection times. For example, temporal change information regarding the temporal change of the layer thickness (an example of an analysis parameter) may be acquired. The time change information may be, for example, data related to the time series graph 150 shown in FIG. For example, the CPU 2 may acquire a regression line by performing regression analysis on layer thickness information at an actual distance for each inspection time, and may generate a trend graph based on the regression line. The points plotted on the graph corresponding to each inspection time may be, for example, representative values (for example, median value, average value, maximum value, etc.) of the layer thickness distribution of the layer thickness map at the actual distance. Further, for example, it may be a value indicated by a specific section of each analysis chart.
 なお、時系列グラフ150は、被検眼の光学的な特性に関する測定データ(本実施形態では、眼軸長の測定データ)がプロットされたものであってもよい。この場合、ユーザが時系列グラフ150を確認することによって、例えば、層厚の変化と、眼軸長の伸びとの因果関係を、ユーザが調べることが容易になる。なお、経時変化情報の概念には、前述の検査時期比較厚みマップも含まれる。 Note that the time series graph 150 may be a plot of measurement data related to the optical characteristics of the eye to be examined (in this embodiment, measurement data of the axial length). In this case, by checking the time series graph 150 by the user, for example, it becomes easy for the user to examine the causal relationship between the change in the layer thickness and the elongation of the axial length. Note that the concept of time-dependent change information includes the above-described inspection time comparison thickness map.
 次に、CPU2は、S4の処理による解析結果を出力する(S5)。本実施形態では、CPU2は、表示部5に対する表示出力を行う。その結果、表示部5では、例えば、図4に示す表示が行われる。図4に示すように、S4の処理によって層厚マップ毎に生成された層厚情報に関する画像100(例えば、マップ画像100a、解析チャート画像100b,100c等)が表示部5において表示されてもよい。また、複数の層厚情報に関する画像100が表示される場合、CPU2は、各々の画像100を時系列順に並べて表示してもよい。更に、例えば、検査時期、測定データの取得時期、測定データに基づく値等、画像100に関する情報が、あわせて表示されてもよい。また、CPU2は、時系列グラフ150を、表示部5に表示させてもよい。 Next, the CPU 2 outputs an analysis result by the process of S4 (S5). In the present embodiment, the CPU 2 performs display output on the display unit 5. As a result, for example, the display shown in FIG. As shown in FIG. 4, an image 100 (for example, map image 100a, analysis chart images 100b, 100c, etc.) relating to the layer thickness information generated for each layer thickness map by the process of S4 may be displayed on the display unit 5. . Moreover, when the image 100 regarding several layer thickness information is displayed, CPU2 may arrange and display each image 100 in order of a time series. Further, for example, information about the image 100 such as an inspection time, a measurement data acquisition time, and a value based on the measurement data may be displayed together. Further, the CPU 2 may display the time series graph 150 on the display unit 5.
 以上説明したように、本実施形態では、各々の層厚マップ(分布情報の一例)に対し、被検眼の光学的な特性に関する測定データが、測定データ設定手段(測定データ設定ユニット)によって、層厚マップ毎に自動的に設定される。その結果として、本装置1では、異なる検査時期間での比較が容易な層厚マップの解析結果が、簡単に得られる。よって、本装置1によれば、眼底の経過観察をユーザが行いやすい。 As described above, in the present embodiment, for each layer thickness map (an example of distribution information), measurement data regarding the optical characteristics of the eye to be examined is measured by the measurement data setting means (measurement data setting unit). It is automatically set for each thickness map. As a result, the apparatus 1 can easily obtain the analysis result of the layer thickness map that can be easily compared in different inspection periods. Therefore, according to the present apparatus 1, it is easy for the user to observe the fundus.
 また、本実施形態では、検査時期が互いに異なる二以上の層厚マップの各々に対して解析処理を行い、層厚(解析パラメータの一例)の経時変化に関する経時変化情報を取得(生成)する。取得された経時変化情報は、表示部5で表示される。その結果として、ユーザは、経時変化情報を確認することによって、良好に経過観察を行うことができる。 Further, in the present embodiment, analysis processing is performed on each of two or more layer thickness maps having different inspection timings, and time-dependent change information regarding a time-dependent change in layer thickness (an example of an analysis parameter) is acquired (generated). The acquired temporal change information is displayed on the display unit 5. As a result, the user can perform follow-up observation satisfactorily by confirming the temporal change information.
 また、本実施形態では、S2の処理によって取得された層厚マップにかかる検査時期と、同時期に測定された測定データが測定データ記憶部に予め記憶されていなければ、前述したように、検査時期の前後に測定された測定データに基づく推定値が、その層厚マップと対応する測定データとして設定され得る。その結果として、本装置1では、検査時期と同時期に測定された測定データが記憶部(測定データ記憶部)3に予め記憶されていなくても、良好な解析結果が得られやすい。 In the present embodiment, as described above, if the inspection time for the layer thickness map acquired by the process of S2 and the measurement data measured at the same time are not stored in advance in the measurement data storage unit, An estimated value based on measurement data measured before and after the time can be set as measurement data corresponding to the layer thickness map. As a result, in the present apparatus 1, even if the measurement data measured at the same time as the examination time is not stored in the storage unit (measurement data storage unit) 3 in advance, a good analysis result is easily obtained.
 以上、実施形態に基づいて説明を行ったが、本開示は、上記実施形態に限定されることなく、様々な変形が可能である。例えば、上記実施形態では、観察のための表示を行う都度、各々の層厚マップから、実距離における層厚情報を生成する場合について説明した。しかし、必ずしもこれに限定されるものではない。例えば、一度生成された実距離による層厚情報については、CPU2が記憶部3等に記憶し、次回以降、観察のための表示を行う場合には、CPU2が、記憶部3に記憶された層厚情報を用いて、画像マップ、解析チャート等の表示制御を行うようにしても良い。この場合、観察表示処理において、CPU2は、OCT装置6で得られた断層画像に基づく新たな層厚マップが取得された場合に、新たに取得された層厚マップに対して、上記S2の処理と同様に、実距離換算に用いる測定データを選択処理し、層厚情報を取得する。 As mentioned above, although it demonstrated based on embodiment, this indication is not limited to the said embodiment, A various deformation | transformation is possible. For example, in the above-described embodiment, a case has been described in which layer thickness information at an actual distance is generated from each layer thickness map each time display for observation is performed. However, it is not necessarily limited to this. For example, the layer thickness information based on the actual distance once generated is stored in the storage unit 3 or the like by the CPU 2, and the next time the display for observation is performed, the CPU 2 stores the layer thickness stored in the storage unit 3. You may make it perform display control of an image map, an analysis chart, etc. using thickness information. In this case, in the observation display process, when a new layer thickness map based on the tomographic image obtained by the OCT apparatus 6 is acquired, the CPU 2 performs the process of S2 on the newly acquired layer thickness map. Similarly to the above, measurement data used for actual distance conversion is selected and layer thickness information is acquired.
 なお、上記説明においては、層厚マップを例として説明したが、これに限定されない。測定データを用いて実距離による眼底の解析チャートを生成する場合において、CPU2は、解析チャートにかかる断層画像の取得時期と、測定データの測定時期との前後関係に基づいて、実距離換算に用いる測定データを設定するようにしてもよい。このとき、測定データは、例えば、解析チャートの元とされた分布情報に対して設定されてもよい。 In the above description, the layer thickness map is described as an example, but the present invention is not limited to this. When generating the fundus analysis chart based on the actual distance using the measurement data, the CPU 2 uses the actual distance conversion based on the front-to-back relationship between the acquisition time of the tomographic image related to the analysis chart and the measurement time of the measurement data. Measurement data may be set. At this time, the measurement data may be set, for example, for the distribution information that is the source of the analysis chart.
 また、測定データを用いて、実距離換算された眼底の層厚グラフ(例えば、縦軸に、層厚を示し、横軸に、実距離による走査ライン上の位置を示したグラフ)を生成する場合において、CPU2は、グラフにかかる断層画像の取得時期と、測定データの測定時期との前後関係に基づいて、実距離換算に用いる測定データを断層画像に対して設定するようにしてもよい。なお、層厚グラフは、取得時期の異なる複数の断層画像の層厚が、同時に示されるものであってもよい。 Also, using the measurement data, a fundus layer thickness graph converted into an actual distance (for example, a graph in which the vertical axis indicates the layer thickness and the horizontal axis indicates the position on the scanning line according to the actual distance) is generated. In this case, the CPU 2 may set the measurement data used for the actual distance conversion for the tomographic image based on the order relationship between the acquisition time of the tomographic image according to the graph and the measurement time of the measurement data. Note that the layer thickness graph may indicate the layer thicknesses of a plurality of tomographic images having different acquisition times at the same time.
 実距離換算にて断層画像に対するスケール計測を行う場合において、CPU2は、スケール計測を行う断層画像の取得時期と、測定データの測定時期との前後関係に基づいて、実距離換算に用いる測定データを、断層画像に対して設定するようにしてもよい。なお、測定データが設定された後の具体的なスケール計測の手法については、例えば、本出願人による特開2011―11052号公報を参考にされたい。 When the scale measurement is performed on the tomographic image by the actual distance conversion, the CPU 2 determines the measurement data used for the actual distance conversion on the basis of the relationship between the acquisition time of the tomographic image for the scale measurement and the measurement time of the measurement data. Alternatively, it may be set for a tomographic image. For a specific scale measurement method after the measurement data is set, refer to, for example, Japanese Patent Application Laid-Open No. 2011-11052 by the present applicant.
 なお、上記実距離換算処理は、被検眼眼底のOCTデータに関する撮影範囲を実距離換算する場合に適用できる。例えば、OCTデータは、走査ラインでの断層画像データの他、血流計測データ、偏光特性データであってもよい。つまり、本実施形態は、ドップラーOCT、偏光感受OCT等のOCTによって取得されたデータに対しても適用可能である。 Note that the actual distance conversion process can be applied when the imaging range related to the OCT data of the fundus of the eye to be examined is converted into the actual distance. For example, the OCT data may be blood flow measurement data and polarization characteristic data in addition to the tomographic image data on the scanning line. That is, this embodiment is applicable also to the data acquired by OCT, such as Doppler OCT and polarization-sensitive OCT.
 OCTデータは、3次元OCTデータであってもよい。3次元OCTデータは、例えば、ラスタースキャンによって取得される。ラスタースキャンは、眼底上を測定光が矩形状に走査するパターンである。ラスタースキャンでは、例えば、予め設定された走査領域(例えば、矩形領域)において測定光がラスターされる。その結果として、走査領域(例えば、矩形領域)内における各走査ラインでのOCTデータが取得される。3次元OCTデータは、各走査ラインにて得られたOCTデータに基づいて形成される。3次元OCTデータにおけるOCTデータは、断層画像データ、血流データ、偏光特性データの少なくともいずれかであってもよい。また、3次元OCTデータは、3次元OCTデータに基づいて生成されるOCT正面画像であってもよい。 The OCT data may be 3D OCT data. The three-dimensional OCT data is acquired by, for example, a raster scan. The raster scan is a pattern in which the measurement light scans on the fundus in a rectangular shape. In the raster scan, for example, the measurement light is rastered in a preset scanning area (for example, a rectangular area). As a result, OCT data for each scanning line in the scanning area (for example, a rectangular area) is acquired. The three-dimensional OCT data is formed based on the OCT data obtained at each scanning line. The OCT data in the three-dimensional OCT data may be at least one of tomographic image data, blood flow data, and polarization characteristic data. Further, the three-dimensional OCT data may be an OCT front image generated based on the three-dimensional OCT data.
 また、上記実距離換算処理は、眼底カメラ、走査型レーザー検眼鏡(Scanning Laser Opthalmoscope)等の眼科撮影装置で取得された撮影結果データに関する撮影範囲を実距離換算する場合も適用できる。例えば、眼底カメラ、SLO装置で得られた眼底の正面画像についての実距離換算された解析結果を得る場合にも適用できる。即ち、正面画像の取得時期と測定記憶部に記憶される測定データの測定時期との前後関係に基づいて、実距離換算に使用する測定データを眼科観察装置のCPUが設定しても良い。 The actual distance conversion process can also be applied to a case where an imaging range related to imaging result data acquired by an ophthalmologic imaging apparatus such as a fundus camera or a scanning laser opthalmoscope is converted into an actual distance. For example, the present invention can also be applied to obtaining an analysis result converted into an actual distance for a front image of a fundus obtained with a fundus camera or an SLO device. That is, the CPU of the ophthalmologic observation apparatus may set measurement data used for actual distance conversion based on the front-rear relationship between the acquisition timing of the front image and the measurement timing of the measurement data stored in the measurement storage unit.
1   眼科観察装置
2   CPU
3   記憶部
6   OCT装置
1 Ophthalmic observation device 2 CPU
3 Storage unit 6 OCT device

Claims (10)

  1.  光コヒーレンストモグラフィーデバイスによって取得された被検眼眼底のOCTデータに関する撮影範囲を、被検眼の光学的な特性に関する測定データを用いて実距離換算し解析結果を得る解析処理手段と、
     前記OCTデータの取得時期と、測定データ記憶部に予め記憶された前記測定データの測定時期との前後関係に基づいて、前記実距離換算に用いる測定データを選択処理する測定データ設定手段と、を備え、
     前記解析処理手段は、前記測定データ設定手段によって選択された前記測定データを用いて、実距離換算して解析結果を得ることを特徴とする眼科観察装置。
    Analysis processing means for obtaining an analysis result by converting an imaging range related to OCT data of the fundus of the eye to be examined acquired by the optical coherence tomography device using actual measurement data regarding optical characteristics of the eye to be examined;
    Measurement data setting means for selecting and processing the measurement data used for the actual distance conversion based on the anteroposterior relationship between the acquisition timing of the OCT data and the measurement timing of the measurement data stored in advance in the measurement data storage unit; Prepared,
    The ophthalmic observation apparatus characterized in that the analysis processing means obtains an analysis result by converting the actual data using the measurement data selected by the measurement data setting means.
  2.  光コヒーレントトモグラフィーデバイスによって取得される被検眼眼底のOCTデータに対する解析処理によって生成され、眼底の内部情報に関する二次元的な分布を示す分布情報を、前記分布情報の元となる前記OCTデータの取得時期と共に取得する分布情報取得手段を備え、
     前記測定データ設定手段は、前記分布情報の元となる前記OCTデータの取得時期と、測定データ記憶部に予め記憶された前記測定データの測定時期との前後関係に基づいて、前記実距離換算に用いる測定データを選択し、
     前記解析処理手段は、前記測定データ設定手段によって選択された前記測定データを用いて、前記分布情報を実距離換算して前記解析結果を得ることを特徴とする請求項1の眼科観察装置。
    Time of acquisition of the OCT data, which is generated by analysis processing on the OCT data of the fundus of the subject to be acquired acquired by the optical coherent tomography device, and shows the two-dimensional distribution regarding the internal information of the fundus Distribution information acquisition means to acquire with,
    The measurement data setting means is configured to convert the actual distance based on a longitudinal relationship between the acquisition timing of the OCT data that is the source of the distribution information and the measurement timing of the measurement data stored in advance in a measurement data storage unit. Select the measurement data to be used
    The ophthalmic observation apparatus according to claim 1, wherein the analysis processing unit obtains the analysis result by converting the distribution information into an actual distance using the measurement data selected by the measurement data setting unit.
  3.  測定データ設定手段は、OCTデータの取得時期が互いに異なる二以上の分布情報に対してそれぞれ前記選択処理を行い、
     前記解析処理手段は、前記測定データ設定手段によって設定された各測定データを用いて、前記分布情報をそれぞれ実距離換算して解析処理を行い、さらに、前記解析パラメータの経時変化に関する経時変化情報を取得することを特徴とする請求項2記載の眼科観察装置。
    The measurement data setting means performs the selection process for each of two or more distribution information having different OCT data acquisition times,
    The analysis processing means uses each measurement data set by the measurement data setting means to perform an analysis process by converting the distribution information into an actual distance, and further provides time-dependent change information regarding a change with time of the analysis parameter. The ophthalmic observation apparatus according to claim 2, wherein the ophthalmic observation apparatus is acquired.
  4.  前記測定データ設定手段は、新たなOCTデータが取得された場合に、前記OCTデータの取得時期と、測定データ記憶部に予め記憶された前記測定データの測定時期との前後関係に基づいて、前記実距離換算に用いる測定データを選択処理することを特徴とする請求項1から3のいずれかに記載の眼科観察装置。 The measurement data setting means, when new OCT data is acquired, based on the context between the acquisition timing of the OCT data and the measurement timing of the measurement data stored in advance in the measurement data storage unit, The ophthalmic observation apparatus according to claim 1, wherein measurement data used for actual distance conversion is selected.
  5.  前記測定データ設定手段は、前記OCTデータの取得時期と最も近い測定時期の測定データを選択処理することを特徴とする請求項1から4の何れかに記載の眼科観察装置。 The ophthalmic observation apparatus according to any one of claims 1 to 4, wherein the measurement data setting means selects and processes measurement data at a measurement time closest to the acquisition time of the OCT data.
  6.  前記測定データ設定手段によって選択される測定データは、OCTデータの取得時期以前の測定データであることを特徴とする請求項5記載の眼科観察装置。 The ophthalmic observation apparatus according to claim 5, wherein the measurement data selected by the measurement data setting means is measurement data before the acquisition time of OCT data.
  7.  前記測定データ設定手段は、OCTデータの取得時期と同時期の測定データが前記測定データ記憶部に無く、且つ、測定時期が異なる2以上の測定データが前記測定データ記憶部に記憶されている場合に、前記2以上の測定データから得られる測定データの推定値を用いて、同時期の測定データがない前記OCTデータに対応する解析結果を得ることを特徴とする請求項1から4の何れかに記載の眼科観察装置。 When the measurement data setting means has no measurement data at the same time as the OCT data acquisition time in the measurement data storage unit and two or more measurement data having different measurement times are stored in the measurement data storage unit The analysis result corresponding to the OCT data having no measurement data of the same period is obtained using an estimated value of the measurement data obtained from the two or more measurement data. The ophthalmologic observation apparatus described in 1.
  8.  前記測定データ設定手段は、前記測定データの推定値を、OCTデータの取得時期に対し測定時期が前の測定データと、前記取得時期に対し後の測定データとを少なくとも一つずつ用いて補間することを特徴とする請求項7記載の眼科観察装置。 The measurement data setting means interpolates the estimated value of the measurement data by using at least one of the measurement data whose measurement time is before the acquisition time of the OCT data and the measurement data after the acquisition time. The ophthalmologic observation apparatus according to claim 7.
  9.  眼科撮影装置によって取得された被検眼眼底の撮影結果データに関する撮影範囲を、被検眼の光学的な特性に関する測定データを用いて実距離換算し解析結果を得る解析処理手段と、
     前記撮影結果データの取得時期と、測定データ記憶部に予め記憶された前記測定データの測定時期との前後関係に基づいて、前記実距離換算に用いる測定データを選択処理する測定データ設定手段と、を備え、
     前記解析処理手段は、前記測定データ設定手段によって選択された前記測定データを用いて、実距離換算して解析結果を得ることを特徴とする眼科観察装置。
    An analysis processing means that obtains an analysis result by converting an imaging range related to imaging result data of the fundus of the subject acquired by the ophthalmologic imaging apparatus into an actual distance using measurement data related to optical characteristics of the eye to be examined;
    Measurement data setting means for selecting and processing the measurement data used for the actual distance conversion based on the context of the acquisition timing of the imaging result data and the measurement timing of the measurement data stored in advance in the measurement data storage unit; With
    The ophthalmic observation apparatus characterized in that the analysis processing means obtains an analysis result by converting the actual data using the measurement data selected by the measurement data setting means.
  10.  眼科観察装置のプロセッサで実行されることによって、
     光コヒーレントトモグラフィーデバイスによって取得された被検眼眼底のOCTデータに関する撮影範囲を、被検眼の光学的な特性に関する測定データを用いて実距離換算し解析結果を得る解析処理ステップと、
     前記OCTデータの取得時期と、測定データ記憶部に予め記憶された前記測定データの測定時期との前後関係に基づいて、前記実距離換算に用いる測定データを選択処理する測定データ設定ステップと、を眼科観察装置に実行させる眼科観察プログラムであって、
     前記解析処理ステップにおいて、前記測定データ設定ステップによって選択された前記測定データを用いて、実距離換算して解析結果を得ることを特徴とする眼科観察プログラム。
    By being executed by the processor of the ophthalmic observation device,
    An analysis processing step that obtains an analysis result by converting an imaging range related to OCT data of the fundus of the eye to be examined acquired by the optical coherent tomography device into an actual distance using measurement data related to optical characteristics of the eye to be examined;
    A measurement data setting step for selecting and processing the measurement data used for the actual distance conversion based on the context of the acquisition timing of the OCT data and the measurement timing of the measurement data stored in advance in the measurement data storage unit; An ophthalmic observation program to be executed by an ophthalmic observation apparatus,
    An ophthalmic observation program characterized in that in the analysis processing step, an analysis result is obtained by converting an actual distance using the measurement data selected in the measurement data setting step.
PCT/JP2014/078528 2013-10-29 2014-10-27 Ophthalmologic observation device and ophthalmologic observation program WO2015064545A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2015544989A JP6424831B2 (en) 2013-10-29 2014-10-27 Ophthalmic observation program
CN201480060016.XA CN105682538B (en) 2013-10-29 2014-10-27 Ophthalmology observes device and the storage medium of ophthalmology observation program

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013224611 2013-10-29
JP2013-224611 2013-10-29

Publications (1)

Publication Number Publication Date
WO2015064545A1 true WO2015064545A1 (en) 2015-05-07

Family

ID=53004148

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078528 WO2015064545A1 (en) 2013-10-29 2014-10-27 Ophthalmologic observation device and ophthalmologic observation program

Country Status (3)

Country Link
JP (1) JP6424831B2 (en)
CN (1) CN105682538B (en)
WO (1) WO2015064545A1 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019058491A (en) * 2017-09-27 2019-04-18 株式会社トプコン Ophthalmological device
JP2019154718A (en) * 2018-03-12 2019-09-19 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP2019154716A (en) * 2018-03-12 2019-09-19 キヤノン株式会社 Image processing apparatus, image processing method, and program
JPWO2020250272A1 (en) * 2019-06-10 2020-12-17
JP2021527546A (en) * 2019-07-11 2021-10-14 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー Identifying changes in refractive error of the eye
JP2022033290A (en) * 2018-02-26 2022-02-28 キヤノン株式会社 Information processing device, information processing method, and program
JP2022069583A (en) * 2017-03-14 2022-05-11 株式会社トプコン Tear film thickness measurement apparatus and method
WO2023140064A1 (en) * 2022-01-24 2023-07-27 株式会社ニデック Ophthalmological information processing device and ophthalmological information processing program

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6883463B2 (en) 2017-04-26 2021-06-09 株式会社トプコン Ophthalmic equipment

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206684A (en) * 2007-02-26 2008-09-11 Topcon Corp Fundus oculi observation device, fundus oculi image processing device and program
JP2013085583A (en) * 2011-10-14 2013-05-13 Tokyo Medical & Dental Univ Fundus image analysis device, fundus image analysis method and program

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1334691A4 (en) * 2000-10-18 2009-01-07 Topcon Corp Optical characteristics measuring device
JP4864515B2 (en) * 2006-04-07 2012-02-01 株式会社トプコン Fundus observation device
JP5601612B2 (en) * 2009-06-02 2014-10-08 株式会社ニデック Ophthalmic imaging equipment
JP5374598B2 (en) * 2012-01-26 2013-12-25 キヤノン株式会社 Optical tomography system

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008206684A (en) * 2007-02-26 2008-09-11 Topcon Corp Fundus oculi observation device, fundus oculi image processing device and program
JP2013085583A (en) * 2011-10-14 2013-05-13 Tokyo Medical & Dental Univ Fundus image analysis device, fundus image analysis method and program

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7246540B2 (en) 2017-03-14 2023-03-27 株式会社トプコン Apparatus and method for measuring tear film thickness
JP2022069582A (en) * 2017-03-14 2022-05-11 株式会社トプコン Tear film thickness measurement apparatus and method
JP2022069583A (en) * 2017-03-14 2022-05-11 株式会社トプコン Tear film thickness measurement apparatus and method
JP7246541B2 (en) 2017-03-14 2023-03-27 株式会社トプコン Apparatus and method for measuring tear film thickness
JP2019058491A (en) * 2017-09-27 2019-04-18 株式会社トプコン Ophthalmological device
JP2022040372A (en) * 2017-09-27 2022-03-10 株式会社トプコン Ophthalmologic apparatus
JP7297952B2 (en) 2018-02-26 2023-06-26 キヤノン株式会社 Information processing device, information processing method and program
JP2022033290A (en) * 2018-02-26 2022-02-28 キヤノン株式会社 Information processing device, information processing method, and program
JP2019154716A (en) * 2018-03-12 2019-09-19 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP2019154718A (en) * 2018-03-12 2019-09-19 キヤノン株式会社 Image processing apparatus, image processing method, and program
JP7195745B2 (en) 2018-03-12 2022-12-26 キヤノン株式会社 Image processing device, image processing method and program
JP7106304B2 (en) 2018-03-12 2022-07-26 キヤノン株式会社 Image processing device, image processing method and program
JPWO2020250272A1 (en) * 2019-06-10 2020-12-17
JP7444314B2 (en) 2019-06-10 2024-03-06 株式会社ニコン Measuring device
JP7276444B2 (en) 2019-06-10 2023-05-18 株式会社ニコン Measuring device
JP7017667B2 (en) 2019-07-11 2022-02-08 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー Identifying changes in refractive error of the eye
JP2021527546A (en) * 2019-07-11 2021-10-14 カール ツァイス ヴィジョン インターナショナル ゲーエムベーハー Identifying changes in refractive error of the eye
WO2023140064A1 (en) * 2022-01-24 2023-07-27 株式会社ニデック Ophthalmological information processing device and ophthalmological information processing program

Also Published As

Publication number Publication date
JP6424831B2 (en) 2018-11-21
CN105682538B (en) 2018-07-03
JPWO2015064545A1 (en) 2017-03-09
CN105682538A (en) 2016-06-15

Similar Documents

Publication Publication Date Title
WO2015064545A1 (en) Ophthalmologic observation device and ophthalmologic observation program
JP6241040B2 (en) Ophthalmic analysis apparatus and ophthalmic analysis program
US10674909B2 (en) Ophthalmic analysis apparatus and ophthalmic analysis method
JP6188297B2 (en) Image processing apparatus, image processing method, and program
JP6236761B2 (en) Ophthalmic analysis apparatus and ophthalmic analysis program
JP5767014B2 (en) Ophthalmic observation system and image processing method
JP6627342B2 (en) OCT motion contrast data analysis device, OCT motion contrast data analysis program.
JP6481250B2 (en) Fundus analysis apparatus and fundus analysis program
JP2012125490A (en) Ophthalmologic apparatus and control method therefor
US20130194543A1 (en) Image processing apparatus, image processing apparatus control method, ophthalmologic apparatus, ophthalmologic apparatus control method, ophthalmologic system, and storage medium
EP2992812A1 (en) Image processing apparatus and control method of image processing apparatus
JP2018019771A (en) Optical coherence tomography device and optical coherence tomography control program
JP6367530B2 (en) Tomographic imaging apparatus and tomographic image generation control method
JP6229255B2 (en) Ophthalmic analysis apparatus and ophthalmic analysis program
JP6569701B2 (en) Ophthalmic analysis apparatus and ophthalmic analysis program
JP2019177032A (en) Ophthalmologic image processing device and ophthalmologic image processing program
JP6375760B2 (en) Optical coherence tomography apparatus and fundus image processing program
JP2019088382A (en) Image processing device, ophthalmologic imaging device, image processing method, and program
JP2014018251A (en) Ophthalmological photographing apparatus and ophthalmological photographing program
JP6064317B2 (en) Fundus analysis apparatus and program
JP6429448B2 (en) Ophthalmic apparatus, comparison method and program
JP6852371B2 (en) Regarding ophthalmic information processing equipment and ophthalmic information processing programs.
JP2016194459A (en) Oct signal processing device, and oct signal processing program
JP6489193B2 (en) Ophthalmic analysis apparatus and ophthalmic analysis program
JP7262929B2 (en) Image processing device, image processing method and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14859259

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015544989

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14859259

Country of ref document: EP

Kind code of ref document: A1