WO2015064496A1 - Image processing device - Google Patents

Image processing device Download PDF

Info

Publication number
WO2015064496A1
WO2015064496A1 PCT/JP2014/078336 JP2014078336W WO2015064496A1 WO 2015064496 A1 WO2015064496 A1 WO 2015064496A1 JP 2014078336 W JP2014078336 W JP 2014078336W WO 2015064496 A1 WO2015064496 A1 WO 2015064496A1
Authority
WO
WIPO (PCT)
Prior art keywords
screen
image
light
hologram
projection
Prior art date
Application number
PCT/JP2014/078336
Other languages
French (fr)
Japanese (ja)
Inventor
吉田 徹
川井 清幸
Original Assignee
アルプス電気株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by アルプス電気株式会社 filed Critical アルプス電気株式会社
Publication of WO2015064496A1 publication Critical patent/WO2015064496A1/en

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/32Systems for obtaining speckle elimination
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0101Head-up displays characterised by optical features
    • G02B27/0103Head-up displays characterised by optical features comprising holographic elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/01Head-up displays
    • G02B27/0149Head-up displays characterised by mechanical features
    • G02B2027/0154Head-up displays characterised by mechanical features with movable elements
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2249Holobject properties
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/22Processes or apparatus for obtaining an optical image from holograms
    • G03H1/2294Addressing the hologram to an active spatial light modulator
    • G03H2001/2297Addressing the hologram to an active spatial light modulator using frame sequential, e.g. for reducing speckle noise
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/14Diffuser, e.g. lens array, random phase mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2225/00Active addressable light modulator
    • G03H2225/30Modulation
    • G03H2225/32Phase only

Definitions

  • the present invention relates to an image processing apparatus that generates a hologram image on a rotary screen having a light diffusion function by phase-modulating laser light.
  • Patent Document 1 discloses a projector device provided with an image quality improvement mechanism.
  • incident light irradiated from a light source is modulated by an LCD and is provided to an optical component by a lens system.
  • the optical component gives a slight optical path difference to incident light, and is rotated by a motor.
  • the light beam modulated by the LCD is transmitted through the rotating optical component, thereby reducing the generation of speckle noise in the projected image.
  • Patent Document 1 rotates an optical component that transmits incident light to randomize a speckle noise pattern, thereby reducing superposition of speckle noise on projection light. It is. However, with this method, the following problems occur when projecting a display image.
  • a PWM drive that repeats a laser light emission period and a light emission pause period is performed to adjust the brightness of the projection light and to suppress the temperature rise of the semiconductor laser. Done.
  • the present invention solves the above-described conventional problems, and provides an image processing apparatus capable of reducing both speckle noise and flicker noise using a rotary screen having a light diffusion function. It is aimed.
  • an image processing apparatus provided with a laser light source, a screen having a light diffusion function, and a phase modulation array for phase-modulating laser light emitted from the laser light source to form a hologram image on the screen
  • the screen is rotated by a motor, and the laser light source is controlled to emit light so that a light emission period of laser light and a light emission pause period following the laser light are repeated.
  • the projection of the same hologram image is repeatedly started on the screen at the same location where the projection of the hologram image was started in the past.
  • the same hologram image is repeatedly projected in the same angular range as the hologram image was projected in the past in the light emission period.
  • the image processing apparatus projects the same hologram image to the same place where the rotating screen is irradiated in the past when the light emission period of the laser light repeated at a constant period starts. Be started.
  • the conditions for randomizing the light diffusion of the hologram image by rotating the screen can be made uniform for each emission period, so that speckle noise can be reduced and flicker noise caused by intermittent emission of laser light can also be reduced. become.
  • the present invention it is preferable that at the start of the light emission period, there are three or less places where the projection of the same hologram image is repeated on the screen.
  • N is an integer multiple of M, so that the same hologram image can be displayed on the screen.
  • the place where the projection is repeated can be limited to one place.
  • a plurality of light emission periods are included in a unit drive period, and each light emission period shares the display of hologram images of different items within the unit drive period, and the unit drive period is repeated.
  • the phase modulation array is controlled.
  • a plurality of light emission periods are included in the unit drive period, and a set of hologram images is generated in one unit drive period by changing display items in each light emission period.
  • a plurality of types of image data corresponding to each of a plurality of types of display elements constituting the hologram image are stored in a memory, and any one of the image data is read from the memory during each light emission period.
  • the operation of the phase modulation array can be controlled based on the read image data.
  • a plurality of types of image data corresponding to a plurality of types of elements are stored in a memory, and a hologram image is generated by combining the respective image data, so that various information can be obtained with a limited number of image data. It becomes possible to display, and the burden of the control operation can be further reduced.
  • the present invention can be configured as provided with a projection unit for projecting a hologram image formed on the screen.
  • the image processing apparatus of the present invention can randomize the dispersion of the light diffusion effect by the screen by rotating the screen that projects the hologram image, and can reduce the occurrence of image blur due to speckle noise.
  • the light diffusion conditions for each emission period can be made equal, and the same image can be displayed. It is possible to suppress the occurrence of flicker noise when continuing.
  • FIG. 1 An explanatory view showing a state where an image processing device of an embodiment of the invention is mounted in a vehicle
  • Explanatory drawing which shows an example of the display image by an image processing apparatus
  • 1 is an exploded perspective view of an image processing apparatus according to an embodiment of the present invention
  • the top view which shows arrangement
  • the partial perspective view which shows the structure of a phase modulation part, and was seen from the V arrow direction shown in FIG.
  • FIG. 4 is a partial perspective view showing the configuration of the hologram imaging unit, seen from the direction of arrow VIII shown in FIG.
  • Time chart showing light emission operation of laser light source A front view showing a hologram image projected on the screen, Explanatory drawing which shows the division
  • an image processing apparatus 10 As shown in FIG. 1, an image processing apparatus 10 according to an embodiment of the present invention is embedded in a dashboard 2 in front of the interior of a car 1 and used as a so-called head-up display.
  • a display image 70 shown in FIG. 2 is projected from the image processing apparatus 10 onto the display area 3 a of the windshield 3. Since the display area 3a functions as a semi-reflective surface, the display image 70 projected on the display area 3a is reflected toward the driver 5 in the display area 3a, and a virtual image 6 is formed in front of the windshield 3. To do. By viewing the virtual image 6 in front of the windshield 3, it appears to the driver 5 that various information is displayed in front of the steering wheel 4.
  • the case of the image processing apparatus 10 is separated into a lower case 11 and an upper case 12 made of synthetic resin, and the optical unit 20 is housed inside the case.
  • the optical unit 20 has an optical base 21.
  • the optical base 21 is formed by aluminum die casting.
  • the optical base 21 is supported inside the lower case 11 via an elastic member such as an elastomer or a metal spring.
  • the lower case 11 is fixed to the interior of the dashboard 2 in the passenger compartment, but since the optical base 21 is supported via an elastic member, it is possible to prevent the vehicle body vibration from directly affecting the optical unit 20. . Further, since the optical base 21 is supported by the elastic member, the influence of thermal stress on the optical base 21 due to the difference in thermal expansion coefficient between the synthetic resin case and the metal optical base 21 can be reduced.
  • the lower case 11 and the upper case 12 are positioned with respect to each other by concave and convex fitting by positioning pins 15 formed integrally with the lower case 11.
  • Female screw holes 16 are formed at a plurality of locations in the lower case 11, and fixing screws inserted through the upper case 12 are screwed into the female screw holes 16, so that the lower case 11 and the upper case 12 are fixed to each other.
  • the projection window 13 is opened in the upper case 12.
  • the projection window 13 is disposed so as to be exposed on the upper surface of the dashboard 2, and the display image 70 is projected from the projection window 13 onto the display area 3 a of the windshield 3.
  • a transparent cover plate 14 is attached to the projection window 13.
  • the cover plate 14 prevents dust from entering the case.
  • the cover plate 14 is configured with an optical filter that suppresses transmission of light having a wavelength other than the display light of the hologram image projected onto the display region 3a so that external light does not directly enter the case from the projection window 13. Is preferred.
  • the optical unit 20 As shown in FIGS. 3 and 4, in the optical unit 20, various optical components are mounted on the optical base 21. As shown in FIG. 4, the optical unit 20 is divided into a phase modulation unit 20A, a hologram imaging unit 20B, and a projection unit 20C according to the configuration of the optical components.
  • phase modulation unit 20A Phase modulation unit 20A As shown in FIG. 5, the phase modulation unit 20 ⁇ / b> A is provided with a reference base 22, and the reference base 22 is fixed on the optical base 21 by screwing.
  • the first light emitting unit 23A and the second light emitting unit 23B are arranged so as to overlap each other.
  • the first light emitting unit 23A has a first positioning block 24A
  • the second light emitting unit 23B has a second positioning block 24B.
  • the first positioning block 24A is installed on a positioning reference surface 22A formed on the reference base 22, and is fixed to the reference base 22 with a plurality of fixing screws 25A.
  • the second positioning block 24B is installed on the first positioning block 24A, and is fixed to the first positioning block 24A with a plurality of fixing screws 25B.
  • FIG. 6 shows the internal structure of the second positioning block 24B.
  • An optical path 26B is formed in the positioning block 24B.
  • a second laser unit 27B which is a laser light source, is attached to the closed side end portion (the end portion on the right side of FIG. 6) of the optical path 26B.
  • the second laser unit 27B is configured by housing a semiconductor laser chip in a case.
  • a collimating lens 28B is fixed inside the light path 26B.
  • the laser beam B0 emitted from the second laser unit 27B is divergent light, and as shown in FIG. 7, the cross-sectional shape of the laser beam B0 is elliptical or oval.
  • the major axis of the laser beam B 0 is directed in the horizontal direction (i) parallel to the upper surface of the reference base 22, and the minor axis is directed in the vertical direction (ii) perpendicular to the upper surface of the reference base 22.
  • the effective diameter (effective region) of the collimator lens 28B is rectangular, and the long side of the rectangle is oriented in the same horizontal direction (i) as the major axis direction of the cross section of the laser beam B0. Yes. Therefore, when the laser beam B0 passes through the collimating lens 28B, it is converted into a collimated beam B1 having a rectangular cross section.
  • the opening end (opening end on the left side in FIG. 6) of the light path 26B of the positioning block 24B is closed with a light transmitting cover 29B.
  • the first laser unit 27A is provided at the closed end of the internal optical path 26A (not shown in the drawing).
  • a collimating lens 28A (not shown) is accommodated in the optical path 26A, and the laser beam emitted from the first laser unit 27A has a rectangular cross section whose long side faces in the horizontal direction (i). Converted to B1.
  • a translucent cover 29A (not shown in the drawing) is provided at the opening end of the light passage 26A.
  • the phase modulation unit 20A is provided with a heat radiation cooling unit 37 that radiates heat generated from the first laser unit 27A and the second laser unit 27B.
  • the laser unit 27A of the first light emitting unit 23A and the laser unit 27B of the second light emitting unit 23B have different wavelengths of emitted laser light.
  • the wavelength of the collimated light beam B1 emitted from the first light emitting unit 23A is 642 nm and is red
  • the wavelength of the collimated light beam B1 emitted from the second light emitting unit 23B is 515 nm. It is green.
  • the collimated light beam obtained from the first light emitting unit 23A will be described with reference symbol B1r
  • the collimated light beam obtained from the second light emitting unit 23B will be described with reference character B1g.
  • the reference base 22 is integrally formed with a positioning holding portion 22B, and the phase modulation array 31 is held inside a holding frame portion 22C formed in the positioning holding portion 22B. Since the positioning reference surface 22A for positioning the first light emitting part 23A and the second light emitting part 23B and the holding frame part 22C are integrally formed on the same reference base 22, the first light emitting part 23A and The collimated light beams B1r and B1g emitted from the second light emitting units 23B can be incident on the optical surface 31a of the phase modulation array 31 at an optimal incident angle.
  • the phase modulation array 31 is LCOS (Liquid Crystal On On Silicon).
  • LCOS is a reflective panel having a liquid crystal layer and an electrode layer such as aluminum.
  • electrodes that apply an electric field to a liquid crystal layer are regularly arranged to form a plurality of pixels. The tilt angle in the thickness direction of the crystal layer in the liquid crystal layer changes due to the change in electric field strength applied to each electrode, and the phase of the reflected laser light is changed for each pixel.
  • the phase modulation unit 20A is provided with a heat radiation cooling unit 38 that radiates heat generated in the phase modulation array 31.
  • the collimated light beam B1r converted by the collimating lens 28A in the first light emitting unit 23A is given to the region below the phase modulation array 31, and the collimating lens 28B in the second light emitting unit 23B.
  • the collimated light beam B ⁇ b> 1 r converted in (1) is given to the upper region of the phase modulation array 31.
  • the region to which the collimated light beam B1r is given becomes the first conversion region M1
  • the region to which the collimated light beam B1g is given becomes the second conversion region M2.
  • the first conversion region M1 and the second conversion region M2 are also rectangular.
  • the first conversion region M1 and the second conversion region M2 are set so as not to overlap each other.
  • the phase of the collimated light beam B1r given to the first conversion region M1 is converted by passing through each of the plurality of pixels of the phase modulation array 31, and the collimated light beam B1g given to the second conversion region M2 is also The phase is converted by passing through each of the plurality of pixels.
  • the modulated light beam B ⁇ b> 2 reflected from the phase modulation array 31 becomes interference light in which lights that have passed through the respective pixels interfere with each other.
  • the interference light includes interference between light components of the red collimated light beam B1r, interference between light components of the green collimated light beam B1g, and further, light components of the collimated light beam B1r and the collimated light beam B1g. Interference.
  • a lens holder 32 is provided in the phase modulation unit 20A.
  • the lens holder 32 is positioned and fixed on the reference base 22.
  • a condenser lens (Fourier transform lens: FT lens) 33 is held on the lens holder 32.
  • the modulated light beam B2 reflected by the phase modulation array 31 passes through the condensing lens 33 and is condensed, and is Fourier-transformed by the condensing lens 33 to become a modulated light beam B3.
  • the phase modulator 20A is provided with a light transmission mirror 34 held by a mirror holder 34a.
  • the light transmission mirror 34 is a plane mirror, and the optical axis of the condenser lens 33 is incident on the reflection surface at a predetermined angle.
  • the modulated light beam B3 Fourier-transformed by the condenser lens 33 is reflected by the light transmission mirror 34, and the reflected modulated light beam B4 passes through the optical unit 20 and is sent to the hologram imaging unit 20B.
  • the hologram imaging unit 20B is provided with a first intermediate mirror 35 held by the mirror holding unit 35a and a second intermediate mirror 36 held by the mirror holding unit 36a. Yes.
  • the first intermediate mirror 35 and the second intermediate mirror 36 are plane mirrors.
  • the reflection surface of the first intermediate mirror 35 faces the reflection surface of the light transmission mirror 34 provided in the phase modulation unit 20A.
  • the reflecting surfaces of the first intermediate mirror 35 and the second intermediate mirror 36 face each other at a predetermined angle.
  • the screen 51 is arranged in the reflection direction by the reflection surface of the second intermediate mirror 36.
  • the modulated light beam B4 reflected by the light transmission mirror 34 travels in the right direction in the figure after being reflected in the first intermediate mirror 35, and the reflected modulated light beam B5 is second reflected. Are reflected by the intermediate mirror 36. Then, the modulated light beam B 6 reflected by the second intermediate mirror 36 is given to the screen 51.
  • phase modulation array 31 the phase of the red laser beam is converted for each pixel in the first conversion region M1, and the phase of the green laser beam is converted for each pixel in the second conversion region M2. Is done.
  • the light in which the interference light of the red and green laser beams is mixed is condensed by the condenser lens 33 and Fourier transformed, and the modulated light beams B3, B4, B5, and B6 pass through the optical path in the case to the screen 51.
  • the hologram image is formed on the screen 51.
  • a plurality of apertures are formed on the optical path from the condenser lens 33 to the screen 51.
  • a light shielding wall 41a is provided at the light emitting portion from the phase modulation unit 20A, and a rectangular first aperture 41 is opened in the light shielding wall 41a.
  • a light shielding wall 42a is provided at a light incident portion on the hologram imaging portion 20B, and a rectangular second aperture 42 is opened in the light shielding wall 42a.
  • a light shielding wall 43a is provided between the second intermediate mirror 36 and the screen 51, and a rectangular third aperture 43 is opened in the light shielding wall 43a.
  • the third aperture 43 is also shown in FIG.
  • the zero-order diffracted light condensed from the condenser lens 33 onto the screen 51 is shielded by the three-stage apertures 41, 42, and 43.
  • a hologram image 70h is formed on the screen 51.
  • This hologram image 70h is generated by the first-order diffracted light, and the light component of the first-order diffracted light that does not contribute to the image formation of the hologram image 70h. Is shielded from light by the apertures 41, 42, 43.
  • multi-order diffracted light such as second-order diffracted light and third-order diffracted light does not contribute to the generation of the hologram image 70 h and is shielded by the apertures 41, 42, and 43.
  • the screen 51 is disposed on the front side (light emission side) of the third aperture 43.
  • the screen 51 is a transmission type diffuser (Diffuser: diffusing plate or diffusing member) in which a large number of fine irregularities are randomly formed on the surface, and projection light including a hologram image 70 h formed on the screen 51 is projected on the screen 51. And becomes divergent projection light B7.
  • the projection light B7 passes through the fourth aperture 44 formed in the light shielding wall 42a and is given to the projection unit 20C.
  • the motor 52 is fixed to the light shielding wall 43 a in which the third aperture 43 is opened, and the disc-shaped screen 51 is used as the power of the motor 52. For example, it is always rotated at a predetermined rotational speed such as a constant rotational speed.
  • the hologram image 70h is subjected to diffraction of a large number of fine irregularities formed on the screen 51 and becomes diffused light. Since the fine unevenness varies in size and distribution, the light diffusion state in each region on the screen 51 is different. However, by rotating the screen 51, the light diffusion state can be randomized, and speckle noise that causes bleeding of the display image 70 can be reduced.
  • a monitor detection unit 53 is provided on the light shielding wall 43a.
  • the monitor detection unit 53 is provided below the third aperture 43.
  • the monitor detection unit 53 includes three detection units: a red wavelength detection unit 53a, a green wavelength detection unit 53b, and a position detection unit 53c.
  • Each of the detectors 53a, 53b, and 53c has a light receiving element such as a pin photodiode housed in a closed space, and an opening is formed on the side facing the second intermediate mirror 36.
  • the opening is covered with a wavelength filter that transmits red light
  • the green wavelength detection unit 53b the opening is covered with a wavelength filter that transmits green light.
  • Each detection unit 53a, 53b, 53c is irradiated with either the first-order diffracted light or multi-order diffracted light other than the first-order diffracted light. Based on the detection output of the position detection unit 53c, the positions of the first light emitting unit 23A, the second light emitting unit 23B, and other optical components are adjusted. Further, the emission intensity of the first laser unit 27A and the second laser unit 27B is automatically adjusted based on the detection outputs from the red wavelength detection unit 53a and the green wavelength detection unit 53b, and the phase modulation by the phase modulation array 31 is performed. Operation is also automatically controlled.
  • the projection unit 20C is provided with a first projection mirror 55 and a second projection mirror 56 facing each other.
  • the reflecting surface 55a of the first projection mirror 55 and the reflecting surface 56a of the second projection mirror 56 are concave mirrors (magnifying mirrors).
  • the projection light B 7 including the hologram image 70 h formed on the screen 51 is diverged by the screen 51 and given to the first projection mirror 55.
  • the projection light B8 obtained by enlarging the hologram image 70h by the first projection mirror 55 is given to the second projection mirror 56, and the hologram image 70h is further enlarged.
  • the projection light B9 reflected by the reflecting surface 56a of the second projection mirror 56 becomes an upward light beam, passes through the cover plate 14, and, as shown in FIG. 1, the display area of the windshield 3 3a is projected.
  • the display image 70 displays various information associated with the traveling of the vehicle, such as navigation information 71, a vehicle speed display 72, and shift lever position information 73.
  • the display image 70 is displayed with red light or green light, or is displayed with a mixed color of red light and green light.
  • the windshield 3 functions as a semi-reflective surface, it appears to the driver 5 that the display image 70 exists at the imaging position of the virtual image 6 ahead of the windshield 3.
  • the zero-order diffracted light collected by the condensing lens 33 is shielded by the apertures 41, 42, 43, and the hologram image 70 h by the first-order diffracted light imaged on the screen 51 is enlarged and displayed. It is projected onto the area 3a. Therefore, even if the inside of the cover plate 14 is looked into from the outside of the windshield 3, laser light is not directly given to human eyes, and safety can be ensured.
  • the optical base 21 of the optical unit 20 is oriented almost horizontally in a state where the image processing apparatus 10 is installed in an automobile.
  • the collimated light beams B1r and B1g emitted from the first light emitting unit 23A and the second light emitting unit 23B, the modulated light beam B2 converted by the phase modulation array 31, and the modulation through the condenser lens 33.
  • the optical axis of the light beam B3 extends horizontally so as to be parallel to the optical base 21.
  • the optical axes of the modulated light beam B4 reflected by the light transmission mirror 34, the modulated light beam B5 reflected by the first intermediate mirror 35, and the modulated light beam B6 reflected by the second intermediate mirror 36 are also represented by the optical base. 21 and extends horizontally.
  • the optical axis of the projection light B7 that has passed through the screen 51 is also horizontal, and the projection light B8 reflected by the first projection mirror 55 is given slightly upward to the second projection mirror 56, so that the second projection mirror 56
  • the projection light B ⁇ b> 9 reflected by 56 is irradiated upward toward the windshield 3.
  • the image processing apparatus 10 can be configured to be thin, and the dash It becomes easy to embed in the board 2.
  • the modulated light beam B ⁇ b> 4 from the light transmission mirror 34 to the first intermediate mirror 35 passes between the first projection mirror 55 and the second projection mirror 56, and the first The projection light B8 directed from the projection mirror 55 to the second projection mirror 56 intersects the modulated light beam B4.
  • a long optical path from the condenser lens 33 to the screen 51 can be secured, and a hologram image can be formed on the screen 51 at an appropriate magnification.
  • the image processing apparatus 10 can be made compact even if the optical path is long.
  • the direction of the light is opposite between the modulated light beam B4 directed from the light transmission mirror 34 to the first intermediate mirror 35 and the modulated light beam B6 directed from the second intermediate mirror 36 to the screen 51.
  • the direction of the projection light B7 from the screen 51 toward the first projection mirror 55 is also opposite to the direction of the modulated light beam B4.
  • the entire apparatus can also be made compact by reversing the direction of the light beam in the case.
  • FIG. 9 shows a circuit configuration of the image processing apparatus 10.
  • the image display device 10 is provided with a main control unit 61 mainly composed of a CPU and a laser / LCOS control unit 62 controlled by the main control unit 61.
  • the rotation speed of the motor driver 65 is monitored and controlled by the main control unit 61 so that the motor 52 always rotates at a predetermined rotation speed and the screen 51 can be maintained at the predetermined rotation speed.
  • a memory 63 is connected to the laser / LCOS control unit 62, and various image data are stored in the memory 63.
  • the current supplied to the laser driver 64 is controlled by the main controller 61, and the light emission intensity of the laser units 27A and 27B is controlled. Further, the laser driver 64 is controlled by the laser / LCOS control unit 62, and the duty ratio in the pulse width modulation (PWM) of the laser units 27A and 27B is controlled.
  • the phase modulation array 31 is controlled by a laser / LCOS controller 62.
  • the laser units 27A and 27B and the phase modulation array 31 are controlled by a laser / LCOS control unit 62, which is a common control unit, so that they can be driven in synchronization with each other.
  • FIG. 10 shows the emission timing of laser light from the semiconductor lasers housed in the laser units 27A and 27B.
  • the two laser units 27A and 27B are driven in synchronization by the main controller 61, the two laser units 27A and 27B emit light at the same time, and the light emission stops simultaneously.
  • FIG. 10A shows a unit drive period Td (Td1, Td2, Td3, Td4,).
  • the laser units 27A and 27B are controlled to emit light so that the unit drive period Td having the same time length is repeated.
  • the unit drive period Td of one period is further divided into a first divided drive period T1, a second divided drive period T2, and a third divided drive period T3. .
  • the first divided drive period T1 includes a light emission period Ta and a light emission suspension period Tb following the light emission period Ta.
  • the second divided drive period T2 and the third divided drive period T3 are also composed of a light emission period Ta and a light emission suspension period Tb following the light emission period Ta.
  • the laser units 27A and 27B are driven by pulse width modulation ⁇ PWM (pulse ⁇ width modulation) ⁇ , and the duty ratio ⁇ Td / (Td + Ts) ⁇ of the light emission period Ta is controlled by the control operation of the laser / LCOS control unit 62. Can be changed.
  • PWM pulse ⁇ width modulation
  • the repetition frequency of the unit drive period Td is 60 Hz. Therefore, the repetition frequency of the light emission period Ta and the light emission suspension period Tb is 180 Hz.
  • the first divided driving period T1 the second divided driving period T2, and the third divided driving period T3, display of different items of the hologram image is divided and displayed. Therefore, the repetition frequency of the first divided drive period T1 for displaying the same item is 60 Hz.
  • the repetition frequency of the second divided drive period T2 and the repetition frequency of the third divided drive period T3 are each 60 Hz.
  • a hologram image 70h is projected onto the screen 51 by the first-order diffracted light.
  • Hologram image 70h includes first item 71h for projecting navigation information 71 of display image 70 shown in FIG. 2, second item 72h for projecting vehicle speed display 72, and shift lever position information. 3rd item 73h for projecting 73 is included. Note that the first item 71h, the second item 72h, and the third item 73h shown in FIG. 2 are examples of display forms, and various other images can be displayed as necessary.
  • the phase modulation array 31 is switched and driven in synchronization with the light emission drive control of the laser units 27A and 27B.
  • a hologram image is generated by the phase modulation array 31, any one of a plurality of types of image data stored in the memory 62 is selected and read out.
  • the hologram image of the first item 71h is generated in the first divided drive period T1
  • the hologram image of the second item 72h is generated in the second divided drive period T2.
  • the hologram image of the third item 73h is generated in the third divided drive period T3.
  • a hologram image of the first item 71h is generated in the first divided drive period T1
  • a hologram of the second item 72h is generated in the second divided drive period T2.
  • An image is generated, and a hologram image of the third item 73h is generated in the third divided drive period T3.
  • the navigation information 71 and the speed of the car are displayed when the human eyes see the display image 70 displayed in the display area 3a of the windshield 3 based on the hologram image 70h. It can be seen that the display 72 and the shift lever position information 73 are displayed simultaneously.
  • the motor driver 65 is controlled by the main control unit 61, the motor 52 is driven, and the screen 51 is rotated at 3600 rpm.
  • the number of rotations per second of the screen 51 is 60, and the unit driving period Td is switched at 60 Hz. Therefore, the screen 51 rotates once within one unit driving period Td.
  • FIG. 13 the rotation angle of the screen 51 and the switching operation of the hologram image projected on the screen 51 during the respective divided drive periods T1, T2, T3 are performed.
  • an angle reference 51 a is shown on the screen 51.
  • the angle reference 51 a is for explaining the rotation angle of the screen 51, and the angle reference 51 a is not attached to the actual screen 51.
  • the hologram images of the items 71h, 72h, and 73h on the screen 51 are divided every 120 degrees while the screen 51 rotates once. And projected. To be precise, any one of the items 71h, 72h, and 73h is projected on the light emission period Ta of the laser light source within the divided drive period within an angle of 120 degrees. That is, the maximum rotation angle of the screen 51 when a hologram image of one item is projected on the screen 51 is 120 degrees.
  • the screen 51 is 120 at the maximum while the hologram image of the first item 71h is projected on the screen 51. Rotate degrees.
  • the screen 51 is 120 degrees at the maximum while the hologram image of the second item 72h is projected onto the screen 51. Rotate.
  • the screen 51 is 120 degrees at the maximum while the hologram image of the third item 73h is projected onto the screen 51. Rotate.
  • hologram images are switched in the unit drive periods Td2, Td3,.
  • the light including the display contents of the items 71h, 72h, and 73h is diffused by the fine unevenness of the screen 51 and projected light.
  • B7 is given to the projection unit 20C. Since the fine irregularities formed on the screen 51 are random, the hologram image diffusion conditions are different at each location of the screen 51. However, since the screen 51 rotates 120 degrees at the maximum while the hologram images of the items 71h, 72h, and 73h are diffused, the dispersion of the diffusion condition is randomized, and speckle noise that causes bleeding of the hologram image is generated. Reduced.
  • the first item 71h is always projected to the same position on the screen 51, and then projected to the same angular range of the screen 51. Therefore, the diffusion conditions on the screen 51 can always be made to be the same in each projection period in which the hologram image of the first item 71h is repeatedly projected. Therefore, flicker noise that causes blinking in the display of the navigation information 71 shown in FIG. 2 due to the PWM drive of the laser light can be reduced.
  • the frequency of the unit drive period Td is 60 Hz (the switching frequency of each of the divided drive periods T1, T2, and T3 is 60 Hz), and the rotation speed of the screen 51 is 7200 rpm, twice that of the above embodiment.
  • the angle reference 51b on the screen 51 is shown.
  • the screen 51 rotates 240 degrees at the maximum while the hologram image of the first item 71h is being projected. Similarly, the screen 51 rotates 240 degrees at the maximum while the second item 72h is projected and while the third item 73h is projected.
  • the rotation angle of the screen 51 when one item is projected is twice that of the above embodiment, the randomization effect of the diffusion condition by the screen can be enhanced, and speckle noise is further improved. become able to.
  • the place where the hologram image is formed and the subsequent angular area are always the same place on the screen 51. This is the same when the hologram images of the second item 72h and the third item 73h are projected.
  • the number of rotations per unit time of the screen 51 is N, and the unit of the light emission period Ta (for example, the light emission period Ta of the first divided drive period T1) for displaying the same hologram image.
  • the number of repetitions per time is M, if N is an integer multiple of M, a hologram image displaying the same item can be projected from the same location on the screen 51.
  • N is 3600 rpm or 7200 rpm
  • the number of repetitions per minute of the light emission period Ta in each divided drive period T1, T2, T3 is 3600 times.
  • the switching frequency of the unit drive period Td is 60 Hz, which is the same as that in the above embodiment, but the rotation speed of the screen 51 is 1800 rpm which is 1 ⁇ 2 of that in the above embodiment. That is, the N is 1/2 of the M.
  • any one of the hologram images of the first item 71h, the second item 72h, and the third item 73h is projected.
  • the projection start position on the screen 51 when projection of the hologram image of the first item 71h is started is the same.
  • the projection start position on the screen 51 when the projection of the hologram image of the first item 71h is started is the same. That is, at the start of the light emission period Ta, there are two places on the screen 51 where the projection of the hologram image of the first item 71h is started. This also applies to the display timing of the second item 72h and the third item 73h.
  • the projection of the same hologram image of items 71h, 72h, and 73h is always started from two places on the screen 51, the randomized diffusion condition when displaying the same hologram image is displayed.
  • the change can be limited to two patterns, and flicker noise can be improved.
  • the switching frequency of the unit drive period Td is 60 Hz, which is the same as that in the above embodiment, but the rotation speed of the screen 51 is 5400 rpm which is 3/2 of the above embodiment. That is, the N is 3/2 of the M.
  • any one of the hologram images of the first item 71h, the second item 72h, and the third item 73h is projected.
  • the projection start position on the screen 51 when the projection of the hologram image of the first item 71h is started becomes the same, and in FIG. 15D and FIG.
  • the projection start position on the screen 51 when the projection of the hologram image of the item 71h is started is the same.
  • At the start of the light emission period Ta there are two places on the screen 51 where the projection of the hologram image of the first item 71h is started. This also applies to the display timing of the second item 72h and the third item 73h.
  • the projection of the same hologram image of items 71h, 72h, and 73h is started, the projection of the hologram image is always started from two places on the screen 51. Therefore, the change of the randomized diffusion condition when displaying the same hologram image can be limited to two patterns, and flicker noise can be improved.
  • the switching frequency of the unit drive period Td is 60 Hz, which is the same as that in each of the above embodiments. That is, the N is 2/3 of the M.
  • any one of the hologram images of the first item 71h, the second item 72h, and the third item 73h is projected.
  • the projection start positions on the screen 51 when the projection of the hologram image of the first item 71h is started are different.
  • the projection start position of the hologram of the first item 71h on the screen 51 is the same. That is, when the projection of the hologram images of the items 71h, 72h, and 73h is started, the projection of the same hologram image is started from any one of the three locations on the screen 51.
  • the randomized diffusion conditions when displaying the same hologram image can be limited to three patterns, and flicker noise can be improved.
  • flicker noise can be improved by setting the number of projections of the same hologram image on the screen to be three or less when each light emission period Ta is started.
  • the place where the projection of the same hologram image is started is preferably limited to two or less places on the screen 51, and more preferably limited to one place as shown in FIG.
  • phase modulation array 31 when generating an image of the hologram 70h, image data corresponding to each hologram image is extracted from the memory 63, and the phase modulation array 31 generates collimated light beams B1r and B1g based on the extracted image data. On the other hand, phase modulation is performed.
  • FIG. 11 shows an example of a display image of the hologram image 70h.
  • the first item 71h displays the navigation information 71, and the display state changes according to the traveling state of the automobile.
  • image data corresponding to a plurality of types of arrow images having different directions to be designated is stored in the memory 63.
  • the laser / LCOS control unit 62 selects and reads out image data indicated by any arrow, and the phase modulation array 31 is driven and controlled based on the image data.
  • the second item 72h shown in FIG. 11 is for displaying the speed 72 of the automobile.
  • the hologram image is configured by combining a display element 74 that shows a round frame that does not change depending on the running state, and a display element 75 that is located inside the round frame and can be switched according to changes in the running speed. .
  • a hologram image is generated so that a round frame that is the display element 74 is always displayed.
  • image data relating to the display element 75 such as “60” and “59” is read from the memory 63 according to the change in speed, and a hologram image is generated by the phase modulation array 31.
  • a third item 73h shown in FIG. 11 is a display element for displaying the position information 73 of the shift lever.
  • Image data such as “D”, “R”, and “P” is stored in the memory 63, and the shift information is displayed.
  • One of the image data is read according to the change of the lever position, and a hologram image is generated by the phase modulation array 31.
  • the second item 72h for the speed display 72 is a combination of a display element 74 that does not always change and a display element 75 that changes every moment. There is no need to switch the image data, and the display can always be continued. Therefore, the load of the control operation by the laser / LCOS control unit 62 can be reduced.
  • the numerical display of the second item 72h, the arrow display of the first item 71h, and the position display of the third item 73h are “ ⁇ ”, “ ⁇ ”, “ ⁇ ”, “60”, “59”, and “58”. It is possible to generate image data corresponding to a predetermined character or symbol pattern such as “D”, “R”, and “P”. Therefore, the image data may be stored as image pattern data for displaying these display elements, and the load of the control operation by the laser / LCOS control unit 62 can be reduced.
  • a display image 70 by a hologram is displayed in the display area 3a of the windshield 3.
  • the luminance of this display image needs to be changed according to the environment. . It is necessary to increase the luminance of the display image 70 during running in the daytime, and it is necessary to decrease the luminance at night.
  • FIG. 17 schematically shows the relationship between the amount of current applied to the semiconductor laser and the emission intensity.
  • the supply current to the semiconductor laser is increased, the light emission intensity is initially low, but the light emission intensity increases when the supply current reaches a certain large value (I1), and then the light emission intensity increases as the supply current increases. Become. However, the increase / decrease width (I1-I2) of the current value when increasing the emission intensity is relatively narrow.
  • the duty ratio ⁇ Ta / (Ta + Tb) ⁇ of the light emission of the semiconductor laser in the laser units 27A and 27B is changed.
  • the duty ratio is controlled by the laser / LCOS controller 62.
  • FIG. 10B When FIG. 10B is compared with FIG. 10C, the duty ratio is low in FIG. 10C, the brightness of the hologram image 70h projected on the screen 51 is lowered, and the brightness of the display image 70 shown in FIG. Can be made.
  • the light emission period Ta within the divided drive periods T1, T2, and T3 is shortened.
  • the rotation angle of the screen 51 when the hologram image is projected is, for example, from the angle range of ⁇ to the angle range of ⁇ in FIG. Becomes smaller.
  • the rotation angle of the screen 51 when the hologram image is projected becomes small, the diffusion function of the screen 51 cannot be sufficiently randomized, and the generation ratio of speckle noise increases.
  • the image processing apparatus 10 after the duty ratio is lowered to some extent, the current amount Ia supplied to the semiconductor laser is decreased from Ia to Ib by the control operation of the main control unit 61, The luminance of the hologram image 70h is reduced without reducing the duty ratio, and the luminance of the display image 70 shown in FIG. 2 is reduced.
  • the light emission intensity is set by setting the current amount to Ia close to the maximum value.
  • Is set to Pa and the display image 70 is changed in luminance by changing the duty ratio ⁇ Ta / (Ta + Tb) ⁇ .
  • the current value is decreased stepwise from Ia to Ib without changing the duty ratio, and the luminance is lowered by decreasing the emission intensity to Pb.
  • the substantial dynamic range of the change in the luminance of the display image 70 can be expanded, the duty ratio can be prevented from becoming extremely low, and speckle noise caused by intermittent light emission can be reduced. Become.

Abstract

[Problem] To provide an image processing device that can reduce flicker noise when hologram images are displayed on a rotating screen having a light diffusing function. [Solution] The phase of laser light is modulated by a phase modulating array, and a hologram image is projected onto a rotating screen (51). The laser light repeats intermittent emission, but a frequency for switching a first item (71h), a second item (72h), and a third item (73h) for the hologram image is matched to the rotational speed of the screen (51). Therefore, the hologram images for the first item (71h), the second item (72h), and the third item (73h) are projected onto the same regions of the screen (51), and flicker noise caused by the intermittent emission of the laser light can be reduced.

Description

画像処理装置Image processing device
 本発明は、レーザ光を位相変調して、光拡散機能を有する回転式のスクリーン上にホログラム画像を生成する画像処理装置に関する。 The present invention relates to an image processing apparatus that generates a hologram image on a rotary screen having a light diffusion function by phase-modulating laser light.
 特許文献1に、画質改善機構を備えたプロジェクタ装置が開示されている。
 このプロジェクタ装置は、光源から照射された入射光がLCDで変調されレンズシステムで光学部品に与えられる。光学部品は入射光にわずかな光路差を与えるものであり、モータで回転駆動されている。
Patent Document 1 discloses a projector device provided with an image quality improvement mechanism.
In this projector apparatus, incident light irradiated from a light source is modulated by an LCD and is provided to an optical component by a lens system. The optical component gives a slight optical path difference to incident light, and is rotated by a motor.
 LCDで変調された光束が、回転している光学部品を透過することで、投影される画像にスペックルノイズ(speckle noise)が発生するのを低減できるようにしている。 The light beam modulated by the LCD is transmitted through the rotating optical component, thereby reducing the generation of speckle noise in the projected image.
特開2002-90881号公報JP 2002-90881 A
 特許文献1に記載されているプロジェクタ装置は、入射光が透過する光学部品を回転させて、スペックルノイズパターンをランダマイズ(randomize)し、投影光にスペックルノイズが重畳するのを低減するというものである。しかし、この方式では、表示画像を投影するにあたり次のような課題が生じる。 The projector device described in Patent Document 1 rotates an optical component that transmits incident light to randomize a speckle noise pattern, thereby reducing superposition of speckle noise on projection light. It is. However, with this method, the following problems occur when projecting a display image.
 前記入射光としてレーザ光源が使用されるときは、投影光の輝度の調節のために、また半導体レーザの温度上昇を抑制するために、レーザ光の発光期間と発光休止期間とを繰り返すPWM駆動が行われる。 When a laser light source is used as the incident light, a PWM drive that repeats a laser light emission period and a light emission pause period is performed to adjust the brightness of the projection light and to suppress the temperature rise of the semiconductor laser. Done.
 特許文献1に記載されたプロジェクタ装置にPWM駆動のレーザ光が使用されると、同じ画像を表示するための入射光が複数の発光期間にまたがって回転中の光学部品に与えられる。 When PWM-driven laser light is used in the projector device described in Patent Document 1, incident light for displaying the same image is given to the rotating optical component over a plurality of light emission periods.
 ここで、同じ画像を表示するため入射光が、繰り返される発光期間の開始時に光学部品の異なる場所に照射されると、同じ画像を表示するための投影光が、発光期間ごとに異なる条件下でランダマイズされることになる。そのため、表示画像が、発光期間の繰り返し周波数に対応して点滅するように見えたり、チラツキを生じたりするフリッカーノイズ(flicker noise)が発生しやすくなって、表示品質の低下の原因となる。 Here, when incident light is irradiated to different locations of the optical component at the start of a repeated light emission period to display the same image, the projection light for displaying the same image is different under each light emission period. It will be randomized. Therefore, flicker noise (flicker noise) that causes the display image to appear blinking or flickers corresponding to the repetition frequency of the light emission period is likely to occur, resulting in deterioration of display quality.
 本発明は上記従来の課題を解決するものであり、光拡散機能を有する回転式のスクリーンを使用して、スペックルノイズとフリッカーノイズの双方を低減できるようにした画像処理装置を提供することを目的としている。 The present invention solves the above-described conventional problems, and provides an image processing apparatus capable of reducing both speckle noise and flicker noise using a rotary screen having a light diffusion function. It is aimed.
 レーザ光源と、光拡散機能を有するスクリーンと、前記レーザ光源から発せられるレーザ光を位相変調して前記スクリーンにホログラム画像を結像させる位相変調アレイとが設けられた画像処理装置において、
 前記スクリーンは、モータによって回転させられ、前記レーザ光源は、レーザ光の発光期間とこれに続く発光休止期間とが繰り返されるように発光制御されており、
 前記発光期間の開始時に、前記スクリーン上で過去にホログラム画像の投影が開始されたのと同じ場所に、同じホログラム画像の投影が繰り返して開始されることを特徴とするものである。
In an image processing apparatus provided with a laser light source, a screen having a light diffusion function, and a phase modulation array for phase-modulating laser light emitted from the laser light source to form a hologram image on the screen,
The screen is rotated by a motor, and the laser light source is controlled to emit light so that a light emission period of laser light and a light emission pause period following the laser light are repeated.
At the start of the light emission period, the projection of the same hologram image is repeatedly started on the screen at the same location where the projection of the hologram image was started in the past.
 また、本発明は、前記発光期間では、過去にホログラム画像が投影されたのと同じ角度範囲に、同じホログラム画像が繰り返して投影されるものである。 In the present invention, the same hologram image is repeatedly projected in the same angular range as the hologram image was projected in the past in the light emission period.
 本発明の画像処理装置は、一定の周期で繰り返されるレーザ光の発光期間が始まるときに、回転しているスクリーンに対して過去に照射されたのと同じ場所に対して同じホログラム画像の投影が開始される。これにより、スクリーンの回転によってホログラム画像の光の拡散をランダマイズする条件を、発光期間ごとに揃えることができ、スペックルノイズを低減できるとともに、レーザ光の間欠発光に起因するフリッカーノイズも低減できるようになる。 The image processing apparatus according to the present invention projects the same hologram image to the same place where the rotating screen is irradiated in the past when the light emission period of the laser light repeated at a constant period starts. Be started. As a result, the conditions for randomizing the light diffusion of the hologram image by rotating the screen can be made uniform for each emission period, so that speckle noise can be reduced and flicker noise caused by intermittent emission of laser light can also be reduced. become.
 本発明は、前記発光期間の開始時に、前記スクリーン上で同じホログラム画像の投影が繰り返される場所が3か所以下であることが好ましい。 In the present invention, it is preferable that at the start of the light emission period, there are three or less places where the projection of the same hologram image is repeated on the screen.
 さらに本発明は、前記発光期間の開始時に、前記スクリーン上で同じホログラム画像の投影が繰り返される場所が1か所であることが好ましい。 Furthermore, in the present invention, it is preferable that there is one place where the projection of the same hologram image is repeated on the screen at the start of the light emission period.
 前記スクリーンの単位時間当たりの回転数をNとし、前記単位時間当たりの前記発光期間の繰り返し回数をMとしたときに、NをMの整数倍とすることで、前記スクリーン上で同じホログラム画像の投影が繰り返される場所を1か所に限定することができる。 When the number of rotations per unit time of the screen is N and the number of repetitions of the light emission period per unit time is M, N is an integer multiple of M, so that the same hologram image can be displayed on the screen. The place where the projection is repeated can be limited to one place.
 本発明は、単位駆動期間に複数の前記発光期間が含まれて、前記単位駆動期間内では、それぞれの発光期間が、異なる項目のホログラム画像の表示を分担しており、前記単位駆動期間が繰り返されるように、前記位相変調アレイが制御されていることが好ましい。 According to the present invention, a plurality of light emission periods are included in a unit drive period, and each light emission period shares the display of hologram images of different items within the unit drive period, and the unit drive period is repeated. Preferably, the phase modulation array is controlled.
 上記手段では、単位駆動期間に複数の発光期間が含まれ、それぞれの発光期間で表示項目を異ならせることにより、1つの単位駆動期間で1組のホログラム画像が生成される。1組のホログラム画像に含まれる複数の表示項目を時間分割して表示することで、同じ時刻に位相変調アレイを制御するのに必要なデータ量を少なくでき、制御部の回路負担を低減できる。 In the above means, a plurality of light emission periods are included in the unit drive period, and a set of hologram images is generated in one unit drive period by changing display items in each light emission period. By displaying a plurality of display items included in a set of hologram images in a time-division manner, the amount of data required to control the phase modulation array at the same time can be reduced, and the circuit burden on the control unit can be reduced.
 例えば、本発明は、前記ホログラム画像を構成する複数種類の表示要素のそれぞれに対応した複数種類の画像データがメモリに記憶されており、それぞれの発光期間に、いずれかの画像データがメモリから読みだされ、読み出された画像データに基づいて前記位相変調アレイの動作が制御されるものとして構成できる。 For example, in the present invention, a plurality of types of image data corresponding to each of a plurality of types of display elements constituting the hologram image are stored in a memory, and any one of the image data is read from the memory during each light emission period. However, the operation of the phase modulation array can be controlled based on the read image data.
 上記のように、複数種類の要素に対応した複数種類の画像データをメモリに記憶させ、それぞれの画像データを組み合わせてホログラム画像を生成することにより、限られた数の画像データで多様な情報を表示することが可能になり、制御動作の負担をさらに低減できる。 As described above, a plurality of types of image data corresponding to a plurality of types of elements are stored in a memory, and a hologram image is generated by combining the respective image data, so that various information can be obtained with a limited number of image data. It becomes possible to display, and the burden of the control operation can be further reduced.
 本発明は、前記スクリーンに結像されたホログラム画像を投影する投影部が設けられているものとして構成できる。 The present invention can be configured as provided with a projection unit for projecting a hologram image formed on the screen.
 本発明の画像処理装置は、ホログラム画像を投影するスクリーンを回転させることにより、スクリーンによる光の拡散効果のばらつきをランダマイズでき、スペックルノイズによる画像のにじみの発生を低減できるようになる。 The image processing apparatus of the present invention can randomize the dispersion of the light diffusion effect by the screen by rotating the screen that projects the hologram image, and can reduce the occurrence of image blur due to speckle noise.
 また、PWM駆動されるレーザ光の発光期間の開始時に、同じホログラム画像がスクリーンの同じ領域へ投影されることを繰り返すことにより、発光期間ごとの光拡散の条件を等しくでき、同じ画像の表示が継続するときにフリッカーノイズが発生するのを抑制できるようになる。 Also, by repeating the same hologram image being projected onto the same area of the screen at the start of the emission period of the laser beam driven by PWM, the light diffusion conditions for each emission period can be made equal, and the same image can be displayed. It is possible to suppress the occurrence of flicker noise when continuing.
本発明の実施の形態の画像処理装置が車両に搭載された状態を示す説明図、An explanatory view showing a state where an image processing device of an embodiment of the invention is mounted in a vehicle, 画像処理装置による表示画像の一例を示す説明図、Explanatory drawing which shows an example of the display image by an image processing apparatus, 本発明の実施の形態の画像処理装置の分解斜視図、1 is an exploded perspective view of an image processing apparatus according to an embodiment of the present invention; 本発明の実施の形態の画像処理装置の主要部品の配置を示す平面図、The top view which shows arrangement | positioning of the main components of the image processing apparatus of embodiment of this invention, 位相変調部の構成を示すものであり、図4に示すV矢視方向から見た部分斜視図、The partial perspective view which shows the structure of a phase modulation part, and was seen from the V arrow direction shown in FIG. 位相変調部の構成を示す部分拡大平面図、Partial enlarged plan view showing the configuration of the phase modulation unit, 図6のVII矢視図、VII arrow view of FIG. 6, ホログラム結像部の構成を示すものであり、図4に示すVIII矢視方向から見た部分斜視図、FIG. 4 is a partial perspective view showing the configuration of the hologram imaging unit, seen from the direction of arrow VIII shown in FIG. 本発明の実施の形態の画像処理装置の回路ブロック図、1 is a circuit block diagram of an image processing apparatus according to an embodiment of the present invention; レーザ光源の発光動作を示すタイムチャートTime chart showing light emission operation of laser light source スクリーンへ投影されているホログラム画像を示す正面図、A front view showing a hologram image projected on the screen, ホログラム画像の分割表示動作を示す説明図、Explanatory drawing which shows the division | segmentation display operation | movement of a hologram image, スクリーンの回転とホログラム画像の分割表示との関係を示す説明図、Explanatory drawing which shows the relationship between rotation of a screen and the division display of a hologram image, スクリーンの回転数を変化させた他の実施の形態における、スクリーンの回転とホログラム画像の分割表示との関係を示す説明図、Explanatory drawing which shows the relationship between rotation of a screen and the division | segmentation display of a hologram image in other embodiment which changed the rotation speed of the screen, スクリーンの回転数を変化させた他の実施の形態における、スクリーンの回転とホログラム画像の分割表示との関係を示す説明図、Explanatory drawing which shows the relationship between rotation of a screen and the division | segmentation display of a hologram image in other embodiment which changed the rotation speed of the screen, スクリーンの回転数を変化させた他の実施の形態における、スクリーンの回転とホログラム画像の分割表示との関係を示す説明図、Explanatory drawing which shows the relationship between rotation of a screen and the division | segmentation display of a hologram image in other embodiment which changed the rotation speed of the screen, 半導体レーザの発光特性を示す説明図、An explanatory view showing the emission characteristics of a semiconductor laser,
(車載構造)
 図1に示すように、本発明の実施の形態の画像処理装置10は、自動車1の車室内前方のダッシュボード2の内部に埋設されて、いわゆるヘッドアップディスプレイとして使用される。
(In-vehicle structure)
As shown in FIG. 1, an image processing apparatus 10 according to an embodiment of the present invention is embedded in a dashboard 2 in front of the interior of a car 1 and used as a so-called head-up display.
 画像処理装置10からウインドシールド3の表示領域3aに、図2に示す表示画像70が投影される。表示領域3aは半反射面として機能するため、表示領域3aに投影された表示画像70は、表示領域3aにおいて運転者5に向けて反射されるとともに、ウインドシールド3の前方に虚像6が結像する。ウインドシールド3の前方の虚像6を目視することで、運転者5には、ステアリングホイール4の上方の前方に各種の情報が表示されているように見える。 A display image 70 shown in FIG. 2 is projected from the image processing apparatus 10 onto the display area 3 a of the windshield 3. Since the display area 3a functions as a semi-reflective surface, the display image 70 projected on the display area 3a is reflected toward the driver 5 in the display area 3a, and a virtual image 6 is formed in front of the windshield 3. To do. By viewing the virtual image 6 in front of the windshield 3, it appears to the driver 5 that various information is displayed in front of the steering wheel 4.
(画像処理装置10の全体構造)
 図3に示すように、画像処理装置10のケースは、合成樹脂製の下部ケース11と上部ケース12とに分離されており、ケースの内部に光学ユニット20が収納されている。光学ユニット20は光学ベース21を有している。光学ベース21はアルミダイキャストで形成されている。光学ベース21は、下部ケース11の内部で、エラストマーや金属ばねなどの弾性部材を介して支持されている。下部ケース11は、車室内のダッシュボード2の内部に固定されるが、光学ベース21が弾性部材を介して支持されているため、車体振動が光学ユニット20に直接に影響を与えるのを防止できる。また、光学ベース21が弾性部材で支持されていることにより、合成樹脂製のケースと金属製の光学ベース21との熱膨張係数の違いによる光学ベース21への熱応力の影響を低減できる。
(Overall structure of the image processing apparatus 10)
As shown in FIG. 3, the case of the image processing apparatus 10 is separated into a lower case 11 and an upper case 12 made of synthetic resin, and the optical unit 20 is housed inside the case. The optical unit 20 has an optical base 21. The optical base 21 is formed by aluminum die casting. The optical base 21 is supported inside the lower case 11 via an elastic member such as an elastomer or a metal spring. The lower case 11 is fixed to the interior of the dashboard 2 in the passenger compartment, but since the optical base 21 is supported via an elastic member, it is possible to prevent the vehicle body vibration from directly affecting the optical unit 20. . Further, since the optical base 21 is supported by the elastic member, the influence of thermal stress on the optical base 21 due to the difference in thermal expansion coefficient between the synthetic resin case and the metal optical base 21 can be reduced.
 光学ユニット20が内部に収納された状態で、下部ケース11と上部ケース12は、下部ケース11に一体に形成された位置決めピン15による凹凸嵌合で互いに位置決めされる。下部ケース11の複数か所に雌ねじ穴16が形成されており、上部ケース12に挿通された固定ねじが雌ねじ穴16に螺着されて、下部ケース11と上部ケース12とが互いに固定される。 In the state in which the optical unit 20 is housed inside, the lower case 11 and the upper case 12 are positioned with respect to each other by concave and convex fitting by positioning pins 15 formed integrally with the lower case 11. Female screw holes 16 are formed at a plurality of locations in the lower case 11, and fixing screws inserted through the upper case 12 are screwed into the female screw holes 16, so that the lower case 11 and the upper case 12 are fixed to each other.
 上部ケース12に、投影窓13が開口している。この投影窓13がダッシュボード2の上面に露出して配置され、投影窓13からウインドシールド3の表示領域3aに表示画像70が投影される。投影窓13には透光性のカバー板14が装着されている。カバー板14によってケース内部に塵埃が侵入するのが防止されている。投影窓13からケース内部に外光が直接入り込まないように、カバー板14は、表示領域3aに投影されるホログラム画像の表示光以外の波長の光の透過を抑制する光学フィルターで構成されることが好ましい。 The projection window 13 is opened in the upper case 12. The projection window 13 is disposed so as to be exposed on the upper surface of the dashboard 2, and the display image 70 is projected from the projection window 13 onto the display area 3 a of the windshield 3. A transparent cover plate 14 is attached to the projection window 13. The cover plate 14 prevents dust from entering the case. The cover plate 14 is configured with an optical filter that suppresses transmission of light having a wavelength other than the display light of the hologram image projected onto the display region 3a so that external light does not directly enter the case from the projection window 13. Is preferred.
 図3と図4に示すように、光学ユニット20では光学ベース21上に各種光学部品が実装されている。図4に示すように、光学部品の構成により、光学ユニット20は、位相変調部20Aとホログラム結像部20Bならびに投影部20Cとに区分される。 As shown in FIGS. 3 and 4, in the optical unit 20, various optical components are mounted on the optical base 21. As shown in FIG. 4, the optical unit 20 is divided into a phase modulation unit 20A, a hologram imaging unit 20B, and a projection unit 20C according to the configuration of the optical components.
(位相変調部20A)
 図5に示すように、位相変調部20Aには、基準ベース22が設けられており、この基準ベース22が、光学ベース21の上にねじ止めにより固定されている。
(Phase modulation unit 20A)
As shown in FIG. 5, the phase modulation unit 20 </ b> A is provided with a reference base 22, and the reference base 22 is fixed on the optical base 21 by screwing.
 基準ベース22上に、第1の発光部23Aと第2の発光部23Bとが重ねて配置されている。第1の発光部23Aは第1の位置決めブロック24Aを有し、第2の発光部23Bは第2の位置決めブロック24Bを有している。第1の位置決めブロック24Aは、基準ベース22に形成された位置決め基準面22Aの上に設置され、複数の固定ねじ25Aで基準ベース22に固定されている。第2の位置決めブロック24Bは、第1の位置決めブロック24Aの上に設置され、複数の固定ねじ25Bで第1の位置決めブロック24Aに固定されている。 On the reference base 22, the first light emitting unit 23A and the second light emitting unit 23B are arranged so as to overlap each other. The first light emitting unit 23A has a first positioning block 24A, and the second light emitting unit 23B has a second positioning block 24B. The first positioning block 24A is installed on a positioning reference surface 22A formed on the reference base 22, and is fixed to the reference base 22 with a plurality of fixing screws 25A. The second positioning block 24B is installed on the first positioning block 24A, and is fixed to the first positioning block 24A with a plurality of fixing screws 25B.
 図6に、第2の位置決めブロック24Bの内部構造が示されている。位置決めブロック24Bには、内部に光通路26Bが形成されている。光通路26Bの閉鎖側端部(図6の図示右側の端部)に、レーザ光源である第2のレーザユニット27Bが取り付けられている。第2のレーザユニット27Bは、ケース内に半導体レーザチップが収納されて構成されている。光通路26Bの内部にはコリメートレンズ28Bが固定されている。 FIG. 6 shows the internal structure of the second positioning block 24B. An optical path 26B is formed in the positioning block 24B. A second laser unit 27B, which is a laser light source, is attached to the closed side end portion (the end portion on the right side of FIG. 6) of the optical path 26B. The second laser unit 27B is configured by housing a semiconductor laser chip in a case. A collimating lens 28B is fixed inside the light path 26B.
 第2のレーザユニット27Bから発せられるレーザ光束B0は発散光であり、図7に示すように、レーザ光束B0の断面形状は楕円形または長円形である。レーザ光束B0の長軸は基準ベース22の上面と平行な水平方向(i)に向けられ、短軸が基準ベース22の上面に垂直な垂直方向(ii)に向けられている。 The laser beam B0 emitted from the second laser unit 27B is divergent light, and as shown in FIG. 7, the cross-sectional shape of the laser beam B0 is elliptical or oval. The major axis of the laser beam B 0 is directed in the horizontal direction (i) parallel to the upper surface of the reference base 22, and the minor axis is directed in the vertical direction (ii) perpendicular to the upper surface of the reference base 22.
 図7に示すように、コリメートレンズ28Bの有効径(有効領域)の形状は長方形であり、長方形の長辺が、レーザ光束B0の断面の長軸方向と同じ水平方向(i)に向けられている。したがって、レーザ光束B0がコリメートレンズ28Bを通過すると、断面が長方形のコリメート光束B1に変換される。 As shown in FIG. 7, the effective diameter (effective region) of the collimator lens 28B is rectangular, and the long side of the rectangle is oriented in the same horizontal direction (i) as the major axis direction of the cross section of the laser beam B0. Yes. Therefore, when the laser beam B0 passes through the collimating lens 28B, it is converted into a collimated beam B1 having a rectangular cross section.
 図6に示すように、位置決めブロック24Bの光通路26Bの開口端(図6の図示左側の開口端)は透光カバー29Bで塞がれている。 As shown in FIG. 6, the opening end (opening end on the left side in FIG. 6) of the light path 26B of the positioning block 24B is closed with a light transmitting cover 29B.
 図5に示す第1の発光部23Aに設けられた第1の位置決めブロック24Aの内部構造は、図示されていないが、図6に示される第2の位置決めブロック24Bと実質的に同じである。第1の位置決めブロック24Aにおいても、内部の光通路26A(図に現れていない)の閉鎖端部に第1のレーザユニット27Aが装備されている。光通路26Aの内部にコリメートレンズ28A(図示せず)が収納されており、第1のレーザユニット27Aから発せられるレーザ光束が、水平方向(i)に長辺が向く長方形の断面を有するコリメート光束B1に変換される。また、光通路26Aの開口端部に透光カバー29A(図に現れていない)が設けられている。 Although the internal structure of the first positioning block 24A provided in the first light emitting unit 23A shown in FIG. 5 is not shown, it is substantially the same as the second positioning block 24B shown in FIG. Also in the first positioning block 24A, the first laser unit 27A is provided at the closed end of the internal optical path 26A (not shown in the drawing). A collimating lens 28A (not shown) is accommodated in the optical path 26A, and the laser beam emitted from the first laser unit 27A has a rectangular cross section whose long side faces in the horizontal direction (i). Converted to B1. Further, a translucent cover 29A (not shown in the drawing) is provided at the opening end of the light passage 26A.
 図3と図4に示すように、位相変調部20Aには、第1のレーザユニット27Aと第2のレーザユニット27Bから発せられる熱を放熱する放熱冷却部37が設けられている。 As shown in FIGS. 3 and 4, the phase modulation unit 20A is provided with a heat radiation cooling unit 37 that radiates heat generated from the first laser unit 27A and the second laser unit 27B.
 第1の発光部23Aのレーザユニット27Aと第2の発光部23Bのレーザユニット27Bとでは、発せられるレーザ光の波長が相違している。実施の形態の画像処理装置10では、第1の発光部23Aから発せられるコリメート光束B1の波長が642nmで赤色系であり、第2の発光部23Bから発せられるコリメート光束B1の波長が515nmであり緑色系である。 The laser unit 27A of the first light emitting unit 23A and the laser unit 27B of the second light emitting unit 23B have different wavelengths of emitted laser light. In the image processing apparatus 10 of the embodiment, the wavelength of the collimated light beam B1 emitted from the first light emitting unit 23A is 642 nm and is red, and the wavelength of the collimated light beam B1 emitted from the second light emitting unit 23B is 515 nm. It is green.
 そこで、以下においては、第1の発光部23Aから得られるコリメート光束を符号B1rで説明し、第2の発光部23Bから得られるコリメート光束を符号B1gで説明する。 Therefore, in the following, the collimated light beam obtained from the first light emitting unit 23A will be described with reference symbol B1r, and the collimated light beam obtained from the second light emitting unit 23B will be described with reference character B1g.
 図5に示すように、基準ベース22には、位置決め保持部22Bが一体に形成されており、位置決め保持部22Bに形成された保持枠部22Cの内部に位相変調アレイ31が保持されている。同じ基準ベース22に、第1の発光部23Aと第2の発光部23Bとを位置決めする位置決め基準面22Aと、保持枠部22Cとが一体に形成されているため、第1の発光部23Aと第2の発光部23Bのそれぞれから発せられるコリメート光束B1r,B1gを位相変調アレイ31の光学面31aに対して最適な入射角度で入射させることができる。 As shown in FIG. 5, the reference base 22 is integrally formed with a positioning holding portion 22B, and the phase modulation array 31 is held inside a holding frame portion 22C formed in the positioning holding portion 22B. Since the positioning reference surface 22A for positioning the first light emitting part 23A and the second light emitting part 23B and the holding frame part 22C are integrally formed on the same reference base 22, the first light emitting part 23A and The collimated light beams B1r and B1g emitted from the second light emitting units 23B can be incident on the optical surface 31a of the phase modulation array 31 at an optimal incident angle.
 位相変調アレイ31は、LCOS(Liquid Crystal On Silicon)である。LCOSは、液晶層とアルミニウムなどの電極層とを有する反射型パネルである。LCOSは、液晶層に電界を与える電極が規則的に並んで複数のピクセルが構成されている。それぞれの電極に与えられる電界強度の変化により、液晶層内の結晶の層の厚さ方向への倒れ角度が変化し、反射されるレーザ光はピクセル毎に位相が変化させられる。 The phase modulation array 31 is LCOS (Liquid Crystal On On Silicon). LCOS is a reflective panel having a liquid crystal layer and an electrode layer such as aluminum. In LCOS, electrodes that apply an electric field to a liquid crystal layer are regularly arranged to form a plurality of pixels. The tilt angle in the thickness direction of the crystal layer in the liquid crystal layer changes due to the change in electric field strength applied to each electrode, and the phase of the reflected laser light is changed for each pixel.
 図3と図4に示すように、位相変調部20Aには、位相変調アレイ31で発生する熱を放熱する放熱冷却部38が設けられている。 3 and 4, the phase modulation unit 20A is provided with a heat radiation cooling unit 38 that radiates heat generated in the phase modulation array 31.
 図5に示すように、第1の発光部23A内のコリメートレンズ28Aで変換されたコリメート光束B1rは、位相変調アレイ31の下部の領域に与えられ、第2の発光部23B内のコリメートレンズ28Bで変換されたコリメート光束B1rは、位相変調アレイ31の上部の領域に与えられる。位相変調アレイ31では、コリメート光束B1rが与えられる領域が第1の変換領域M1となり、コリメート光束B1gが与えられる領域が第2の変換領域M2となる。 As shown in FIG. 5, the collimated light beam B1r converted by the collimating lens 28A in the first light emitting unit 23A is given to the region below the phase modulation array 31, and the collimating lens 28B in the second light emitting unit 23B. The collimated light beam B <b> 1 r converted in (1) is given to the upper region of the phase modulation array 31. In the phase modulation array 31, the region to which the collimated light beam B1r is given becomes the first conversion region M1, and the region to which the collimated light beam B1g is given becomes the second conversion region M2.
 コリメート光束B1rとコリメート光束B1gは断面が長方形であるため、第1の変換領域M1と第2の変換領域M2も長方形となる。基準ベース22で、第1の発光部23Aと第2の発光部23Bとの垂直方向(ii)での相対位置が調整されることで、第1の変換領域M1と第2の変換領域M2とが互いに重複しないように設定される。 Since the cross section of the collimated light beam B1r and the collimated light beam B1g is rectangular, the first conversion region M1 and the second conversion region M2 are also rectangular. By adjusting the relative position in the vertical direction (ii) of the first light emitting unit 23A and the second light emitting unit 23B with the reference base 22, the first conversion region M1 and the second conversion region M2 Are set so as not to overlap each other.
 第1の変換領域M1に与えられたコリメート光束B1rは、位相変調アレイ31の複数のピクセルのそれぞれを通過することで位相が変換され、第2の変換領域M2に与えられたコリメート光束B1gも、複数のピクセルのそれぞれを通過することで位相が変換される。図6に示すように、位相変調アレイ31から反射される変調光束B2は、それぞれのピクセルを通過した光が互いに干渉した干渉光となる。この干渉光には、赤色系のコリメート光束B1rの光成分どうしの干渉と、緑色系であるコリメート光束B1gの光成分どうしの干渉、さらには、コリメート光束B1rの光成分とコリメート光束B1gの光成分との干渉も含まれる。 The phase of the collimated light beam B1r given to the first conversion region M1 is converted by passing through each of the plurality of pixels of the phase modulation array 31, and the collimated light beam B1g given to the second conversion region M2 is also The phase is converted by passing through each of the plurality of pixels. As shown in FIG. 6, the modulated light beam B <b> 2 reflected from the phase modulation array 31 becomes interference light in which lights that have passed through the respective pixels interfere with each other. The interference light includes interference between light components of the red collimated light beam B1r, interference between light components of the green collimated light beam B1g, and further, light components of the collimated light beam B1r and the collimated light beam B1g. Interference.
 図3に示すように、位相変調部20Aには、レンズホルダ32が設けられている。レンズホルダ32は基準ベース22上に位置決めされて固定されている。レンズホルダ32に集光レンズ(フーリエ変換レンズ:FTレンズ)33が保持されている。位相変調アレイ31で反射された変調光束B2は、集光レンズ33を透過して集光されるとともに、集光レンズ33でフーリエ変換されて変調光束B3となる。 As shown in FIG. 3, a lens holder 32 is provided in the phase modulation unit 20A. The lens holder 32 is positioned and fixed on the reference base 22. A condenser lens (Fourier transform lens: FT lens) 33 is held on the lens holder 32. The modulated light beam B2 reflected by the phase modulation array 31 passes through the condensing lens 33 and is condensed, and is Fourier-transformed by the condensing lens 33 to become a modulated light beam B3.
 図3に示すように、位相変調部20Aには、ミラー保持部34aに保持された送光ミラー34が設けられている。送光ミラー34は平面ミラーであり、その反射面に集光レンズ33の光軸が所定の角度で入射している。集光レンズ33でフーリエ変換された変調光束B3は、送光ミラー34で反射され、反射された変調光束B4が、光学ユニット20内を通過して、ホログラム結像部20Bへ送られる。 As shown in FIG. 3, the phase modulator 20A is provided with a light transmission mirror 34 held by a mirror holder 34a. The light transmission mirror 34 is a plane mirror, and the optical axis of the condenser lens 33 is incident on the reflection surface at a predetermined angle. The modulated light beam B3 Fourier-transformed by the condenser lens 33 is reflected by the light transmission mirror 34, and the reflected modulated light beam B4 passes through the optical unit 20 and is sent to the hologram imaging unit 20B.
(ホログラム結像部20B)
 図3に示すように、ホログラム結像部20Bには、ミラー保持部35aに保持された第1の中間ミラー35と、ミラー保持部36aに保持された第2の中間ミラー36とが設けられている。第1の中間ミラー35と第2の中間ミラー36は平面ミラーである。図4に示すように、第1の中間ミラー35の反射面は、位相変調部20Aに設けられた前記送光ミラー34の反射面に対向している。また、第1の中間ミラー35と第2の中間ミラー36の反射面は所定の角度で対向している。ホログラム結像部20Bでは、第2の中間ミラー36の反射面による反射方向にスクリーン51が配置されている。
(Hologram imaging unit 20B)
As shown in FIG. 3, the hologram imaging unit 20B is provided with a first intermediate mirror 35 held by the mirror holding unit 35a and a second intermediate mirror 36 held by the mirror holding unit 36a. Yes. The first intermediate mirror 35 and the second intermediate mirror 36 are plane mirrors. As shown in FIG. 4, the reflection surface of the first intermediate mirror 35 faces the reflection surface of the light transmission mirror 34 provided in the phase modulation unit 20A. Further, the reflecting surfaces of the first intermediate mirror 35 and the second intermediate mirror 36 face each other at a predetermined angle. In the hologram imaging unit 20B, the screen 51 is arranged in the reflection direction by the reflection surface of the second intermediate mirror 36.
 図4に示すように、送光ミラー34で反射された変調光束B4は、ケース内を図示右方向へ進行してから第1の中間ミラー35で反射され、反射された変調光束B5が第2の中間ミラー36で反射される。そして、第2の中間ミラー36で反射された変調光束B6がスクリーン51に与えられる。 As shown in FIG. 4, the modulated light beam B4 reflected by the light transmission mirror 34 travels in the right direction in the figure after being reflected in the first intermediate mirror 35, and the reflected modulated light beam B5 is second reflected. Are reflected by the intermediate mirror 36. Then, the modulated light beam B 6 reflected by the second intermediate mirror 36 is given to the screen 51.
 位相変調アレイ31では、第1の変換領域M1において赤色系のレーザ光の位相が個々のピクセル毎に変換され、第2の変換領域M2において緑色系のレーザ光の位相が個々のピクセル毎に変換される。赤色系と緑色系のレーザ光の干渉光が混在した光は、集光レンズ33で集光されるとともにフーリエ変換され、その変調光束B3,B4,B5,B6がケース内の光路を経てスクリーン51に与えられ、スクリーン51にホログラム画像が結像する。 In the phase modulation array 31, the phase of the red laser beam is converted for each pixel in the first conversion region M1, and the phase of the green laser beam is converted for each pixel in the second conversion region M2. Is done. The light in which the interference light of the red and green laser beams is mixed is condensed by the condenser lens 33 and Fourier transformed, and the modulated light beams B3, B4, B5, and B6 pass through the optical path in the case to the screen 51. The hologram image is formed on the screen 51.
 集光レンズ33からスクリーン51までの光路上に、複数段のアパーチャーが形成されている。図3と図4に示すように、位相変調部20Aからの光の出射部に遮光壁41aが設けられ、遮光壁41aに矩形状の第1のアパーチャー41が開口している。ホログラム結像部20Bへの光の入射部には、遮光壁42aが設けられ、遮光壁42aに矩形状の第2のアパーチャー42が開口している。第2の中間ミラー36とスクリーン51の間に遮光壁43aが設けられており、この遮光壁43aに矩形状の第3のアパーチャー43が開口している。第3のアパーチャー43は、図8にも示されている。 A plurality of apertures are formed on the optical path from the condenser lens 33 to the screen 51. As shown in FIGS. 3 and 4, a light shielding wall 41a is provided at the light emitting portion from the phase modulation unit 20A, and a rectangular first aperture 41 is opened in the light shielding wall 41a. A light shielding wall 42a is provided at a light incident portion on the hologram imaging portion 20B, and a rectangular second aperture 42 is opened in the light shielding wall 42a. A light shielding wall 43a is provided between the second intermediate mirror 36 and the screen 51, and a rectangular third aperture 43 is opened in the light shielding wall 43a. The third aperture 43 is also shown in FIG.
 この3段のアパーチャー41,42,43によって、集光レンズ33からスクリーン51に集光する0次回折光が遮光される。図11に示すように、スクリーン51にはホログラム画像70hが結像するが、このホログラム画像70hは1次回折光で生成され、しかも1次回折光のうちのホログラム画像70hの結像に寄与しない光成分は前記アパーチャー41,42,43によって遮光される。さらに、2次回折光、3次回折光などの多次の回折光も、ホログラム画像70hの生成に寄与せず、前記アパーチャー41,42,43で遮光される。 The zero-order diffracted light condensed from the condenser lens 33 onto the screen 51 is shielded by the three- stage apertures 41, 42, and 43. As shown in FIG. 11, a hologram image 70h is formed on the screen 51. This hologram image 70h is generated by the first-order diffracted light, and the light component of the first-order diffracted light that does not contribute to the image formation of the hologram image 70h. Is shielded from light by the apertures 41, 42, 43. Further, multi-order diffracted light such as second-order diffracted light and third-order diffracted light does not contribute to the generation of the hologram image 70 h and is shielded by the apertures 41, 42, and 43.
 すなわち、スクリーン51には、アパーチャー41,42,43の開口面積で制限された変調光束のみが与えられ、スクリーン51の限られた面積の範囲内にホログラム画像70hが投影される。 That is, only the modulated light beam limited by the opening areas of the apertures 41, 42, and 43 is given to the screen 51, and the hologram image 70h is projected within the limited area of the screen 51.
 図8に示すように、スクリーン51は第3のアパーチャー43の先側(出光側)に配置されている。スクリーン51は、表面に多数の微細な凹凸がランダムに形成された透過型のディフューザ(Diffuser:拡散板または拡散部材)であり、スクリーン51に結像したホログラム画像70hを含む投影光は、スクリーン51を透過して発散光の投影光B7となる。図4に示すように、投影光B7は、遮光壁42aに形成された第4のアパーチャー44を通過して投影部20Cに与えられる。 As shown in FIG. 8, the screen 51 is disposed on the front side (light emission side) of the third aperture 43. The screen 51 is a transmission type diffuser (Diffuser: diffusing plate or diffusing member) in which a large number of fine irregularities are randomly formed on the surface, and projection light including a hologram image 70 h formed on the screen 51 is projected on the screen 51. And becomes divergent projection light B7. As shown in FIG. 4, the projection light B7 passes through the fourth aperture 44 formed in the light shielding wall 42a and is given to the projection unit 20C.
 図8と図11に示すように、ホログラム結像部20Bでは、第3のアパーチャー43が開口している遮光壁43aにモータ52が固定されており、円板形状のスクリーン51がモータ52の動力で例えば常に一定の回転数などのような所定の回転数で回転させられている。ホログラム画像70hは、スクリーン51を透過する際に、このスクリーン51に形成された多数の微細な凹凸の回折を受けて拡散光となる。微細な凹凸はその大きさと分布にばらつきがあるため、スクリーン51上のそれぞれの領域での光の拡散状態が相違する。しかし、スクリーン51を回転させることで、光の拡散状態をランダマイズ(randomize)でき、表示画像70のにじみなどの原因となるスペックルノイズ(speckle noise)を低減させることができる。 As shown in FIGS. 8 and 11, in the hologram imaging unit 20 </ b> B, the motor 52 is fixed to the light shielding wall 43 a in which the third aperture 43 is opened, and the disc-shaped screen 51 is used as the power of the motor 52. For example, it is always rotated at a predetermined rotational speed such as a constant rotational speed. When transmitting through the screen 51, the hologram image 70h is subjected to diffraction of a large number of fine irregularities formed on the screen 51 and becomes diffused light. Since the fine unevenness varies in size and distribution, the light diffusion state in each region on the screen 51 is different. However, by rotating the screen 51, the light diffusion state can be randomized, and speckle noise that causes bleeding of the display image 70 can be reduced.
 図8に示すように、ホログラム結像部20Bでは、遮光壁43aにモニタ検知部53が設けられている。モニタ検知部53は第3のアパーチャー43の下側に設けられている。モニタ検知部53は、赤色波長検知部53aと緑色波長検知部53bならびに位置検知部53cの3つの検知部で構成されている。検知部53a,53b,53cのそれぞれは閉鎖空間の内部にピンフォトダイオードなどの受光素子が収納され、第2の中間ミラー36に対向する側に開口部が形成されている。赤色波長検知部53aでは、前記開口部が赤色光を透過させる波長フィルターで覆われ、緑色波長検知部53bでは、前記開口部が緑色光を透過させる波長フィルターで覆われている。 As shown in FIG. 8, in the hologram image forming unit 20B, a monitor detection unit 53 is provided on the light shielding wall 43a. The monitor detection unit 53 is provided below the third aperture 43. The monitor detection unit 53 includes three detection units: a red wavelength detection unit 53a, a green wavelength detection unit 53b, and a position detection unit 53c. Each of the detectors 53a, 53b, and 53c has a light receiving element such as a pin photodiode housed in a closed space, and an opening is formed on the side facing the second intermediate mirror 36. In the red wavelength detection unit 53a, the opening is covered with a wavelength filter that transmits red light, and in the green wavelength detection unit 53b, the opening is covered with a wavelength filter that transmits green light.
 各検知部53a,53b,53cには、1次回折光または1次回折光以外の多次回折光のいずれかが照射される。位置検知部53cの検知出力に基づいて、第1の発光部23Aと第2の発光部23Bおよびその他の各光学部品の位置調整が行われる。また、赤色波長検知部53aと緑色波長検知部53bからの検知出力に基づいて、第1のレーザユニット27Aと第2のレーザユニット27Bの発光強度が自動調整され、また位相変調アレイ31による位相変調動作も自動制御される。 Each detection unit 53a, 53b, 53c is irradiated with either the first-order diffracted light or multi-order diffracted light other than the first-order diffracted light. Based on the detection output of the position detection unit 53c, the positions of the first light emitting unit 23A, the second light emitting unit 23B, and other optical components are adjusted. Further, the emission intensity of the first laser unit 27A and the second laser unit 27B is automatically adjusted based on the detection outputs from the red wavelength detection unit 53a and the green wavelength detection unit 53b, and the phase modulation by the phase modulation array 31 is performed. Operation is also automatically controlled.
(投影部20C)
 図3と図4に示すように、投影部20Cには、第1の投影ミラー55と第2の投影ミラー56とが対向して設けられている。第1の投影ミラー55の反射面55aと第2の投影ミラー56の反射面56aは凹面鏡(拡大鏡)である。スクリーン51で結像したホログラム画像70hを含む投影光B7はスクリーン51で発散されて第1の投影ミラー55に与えられる。第1の投影ミラー55でホログラム画像70hを拡大した投影光B8は、第2の投影ミラー56に与えられてホログラム画像70hがさらに拡大される。図3に示すように、第2の投影ミラー56の反射面56aで反射された投影光B9は上向きの光束となり、カバー板14を透過し、図1に示すように、ウインドシールド3の表示領域3aに投影される。
(Projector 20C)
As shown in FIGS. 3 and 4, the projection unit 20C is provided with a first projection mirror 55 and a second projection mirror 56 facing each other. The reflecting surface 55a of the first projection mirror 55 and the reflecting surface 56a of the second projection mirror 56 are concave mirrors (magnifying mirrors). The projection light B 7 including the hologram image 70 h formed on the screen 51 is diverged by the screen 51 and given to the first projection mirror 55. The projection light B8 obtained by enlarging the hologram image 70h by the first projection mirror 55 is given to the second projection mirror 56, and the hologram image 70h is further enlarged. As shown in FIG. 3, the projection light B9 reflected by the reflecting surface 56a of the second projection mirror 56 becomes an upward light beam, passes through the cover plate 14, and, as shown in FIG. 1, the display area of the windshield 3 3a is projected.
 図2に示すように、表示画像70では、ナビゲーション情報71、自動車の速度表示72、シフトレバーのポジション情報73、など、自動車の走行に付随する各種情報が表示される。この表示画像70は、赤色光または緑色光で表示され、あるいは、赤色光と緑色光との混合色で表示される。 As shown in FIG. 2, the display image 70 displays various information associated with the traveling of the vehicle, such as navigation information 71, a vehicle speed display 72, and shift lever position information 73. The display image 70 is displayed with red light or green light, or is displayed with a mixed color of red light and green light.
 ウインドシールド3が半反射面として機能するため、運転者5には、表示画像70がウインドシールド3よりも前方の虚像6の結像位置に存在しているように見える。 Since the windshield 3 functions as a semi-reflective surface, it appears to the driver 5 that the display image 70 exists at the imaging position of the virtual image 6 ahead of the windshield 3.
 この画像処理装置10は、集光レンズ33で集光される0次回折光が、アパーチャー41,42,43で遮光され、スクリーン51に結像した1次回折光のよるホログラム画像70hが拡大されて表示領域3aに投影される。そのため、ウインドシールド3の外部からカバー板14の内部を覗き見ることがあっても、人の目にレーザ光が直接に与えられることがなく、安全性を確保できる。 In this image processing apparatus 10, the zero-order diffracted light collected by the condensing lens 33 is shielded by the apertures 41, 42, 43, and the hologram image 70 h by the first-order diffracted light imaged on the screen 51 is enlarged and displayed. It is projected onto the area 3a. Therefore, even if the inside of the cover plate 14 is looked into from the outside of the windshield 3, laser light is not directly given to human eyes, and safety can be ensured.
(光束の通過経路)
 この画像処理装置10は、自動車に設置された状態で、光学ユニット20の光学ベース21がほぼ水平に向けられる。図4に示すように、第1の発光部23Aと第2の発光部23Bから発せられるコリメート光束B1r,B1gと、位相変調アレイ31で変換された変調光束B2、ならびに集光レンズ33を経た変調光束B3の光軸は、全て光学ベース21と平行となるように水平に延びている。また、送光ミラー34で反射された変調光束B4と、第1の中間ミラー35で反射された変調光束B5、ならびに第2の中間ミラー36で反射された変調光束B6の光軸も、光学ベース21と平行で水平に延びている。スクリーン51を通過した投影光B7の光軸も水平であり、第1の投影ミラー55で反射された投影光B8がやや上向きとなって第2の投影ミラー56に与えられ、第2の投影ミラー56で反射された投影光B9がウインドシールド3に向けて上向きに照射される。
(Flux passage)
In the image processing apparatus 10, the optical base 21 of the optical unit 20 is oriented almost horizontally in a state where the image processing apparatus 10 is installed in an automobile. As shown in FIG. 4, the collimated light beams B1r and B1g emitted from the first light emitting unit 23A and the second light emitting unit 23B, the modulated light beam B2 converted by the phase modulation array 31, and the modulation through the condenser lens 33. The optical axis of the light beam B3 extends horizontally so as to be parallel to the optical base 21. The optical axes of the modulated light beam B4 reflected by the light transmission mirror 34, the modulated light beam B5 reflected by the first intermediate mirror 35, and the modulated light beam B6 reflected by the second intermediate mirror 36 are also represented by the optical base. 21 and extends horizontally. The optical axis of the projection light B7 that has passed through the screen 51 is also horizontal, and the projection light B8 reflected by the first projection mirror 55 is given slightly upward to the second projection mirror 56, so that the second projection mirror 56 The projection light B <b> 9 reflected by 56 is irradiated upward toward the windshield 3.
 投影光B8,B9以外の光成分の光束が、投影光B9の上向きの投影方向と交差してほぼ水平に向けられているため、画像処理装置10を薄型に構成することが可能になり、ダッシュボード2の内部に埋設しやすくなる。 Since the light beams of the light components other than the projection lights B8 and B9 are directed almost horizontally across the upward projection direction of the projection light B9, the image processing apparatus 10 can be configured to be thin, and the dash It becomes easy to embed in the board 2.
 図3と図4に示すように、送光ミラー34から第1の中間ミラー35に至る変調光束B4は、第1の投影ミラー55と第2の投影ミラー56との間を通過し、第1の投影ミラー55から第2の投影ミラー56に向かう投影光B8が、前記変調光束B4と交差している。投影部20Cで光を交差させることで、集光レンズ33からスクリーン51までの光路を長く確保でき、スクリーン51に適度な倍率でホログラム画像を結像させることができる。また光束を交差させることにより、光路が長くても、画像処理装置10を小型に構成することが可能になる。 As shown in FIGS. 3 and 4, the modulated light beam B <b> 4 from the light transmission mirror 34 to the first intermediate mirror 35 passes between the first projection mirror 55 and the second projection mirror 56, and the first The projection light B8 directed from the projection mirror 55 to the second projection mirror 56 intersects the modulated light beam B4. By crossing the light at the projection unit 20C, a long optical path from the condenser lens 33 to the screen 51 can be secured, and a hologram image can be formed on the screen 51 at an appropriate magnification. Further, by crossing the light beams, the image processing apparatus 10 can be made compact even if the optical path is long.
 図4に示すように、送光ミラー34から第1の中間ミラー35に向かう変調光束B4と、第2の中間ミラー36からスクリーン51に向かう変調光束B6とで、光の向きが逆である。また、スクリーン51から第1の投影ミラー55に向かう投影光B7の向きも前記変調光束B4の向きと逆である。このように、ケース内で光束の向きを逆にすることによっても、装置全体を小型に構成することができる。 As shown in FIG. 4, the direction of the light is opposite between the modulated light beam B4 directed from the light transmission mirror 34 to the first intermediate mirror 35 and the modulated light beam B6 directed from the second intermediate mirror 36 to the screen 51. In addition, the direction of the projection light B7 from the screen 51 toward the first projection mirror 55 is also opposite to the direction of the modulated light beam B4. As described above, the entire apparatus can also be made compact by reversing the direction of the light beam in the case.
(レーザユニット27A,27Bと位相変調アレイ31の駆動制御)
 図9に前記画像処理装置10の回路構成が示されている。
(Drive control of laser units 27A and 27B and phase modulation array 31)
FIG. 9 shows a circuit configuration of the image processing apparatus 10.
 画像表示装置10には、CPUを主体とする主制御部61と、前記主制御部61で制御されるレーザ・LCOS制御部62とが設けられている。主制御部61によってモータドライバ65の回転数が監視され且つ制御されて、モータ52が常に所定の回転数で回転し、スクリーン51が所定の回転数を維持できるように制御されている。 The image display device 10 is provided with a main control unit 61 mainly composed of a CPU and a laser / LCOS control unit 62 controlled by the main control unit 61. The rotation speed of the motor driver 65 is monitored and controlled by the main control unit 61 so that the motor 52 always rotates at a predetermined rotation speed and the screen 51 can be maintained at the predetermined rotation speed.
 レーザ・LCOS制御部62にはメモリ63が接続されており、メモリ63に各種の画像データが記憶されている。 A memory 63 is connected to the laser / LCOS control unit 62, and various image data are stored in the memory 63.
 前記主制御部61によってレーザドライバ64に供給される電流が制御されて、レーザユニット27A,27Bの発光強度が制御される。また、レーザ・LCOS制御部62によってレーザドライバ64が制御され、レーザユニット27A,27Bのパルス幅変調(PWM)でのデューティ比が制御される。また、位相変調アレイ31は、レーザ・LCOS制御部62で制御される。レーザユニット27A,27Bと位相変調アレイ31は、共通の制御部であるレーザ・LCOS制御部62によって、互いに同期して駆動できるように制御される。 The current supplied to the laser driver 64 is controlled by the main controller 61, and the light emission intensity of the laser units 27A and 27B is controlled. Further, the laser driver 64 is controlled by the laser / LCOS control unit 62, and the duty ratio in the pulse width modulation (PWM) of the laser units 27A and 27B is controlled. The phase modulation array 31 is controlled by a laser / LCOS controller 62. The laser units 27A and 27B and the phase modulation array 31 are controlled by a laser / LCOS control unit 62, which is a common control unit, so that they can be driven in synchronization with each other.
 図10に、レーザユニット27A,27Bに収納された半導体レーザからのレーザ光の発光タイミングが示されている。主制御部61によって、2つのレーザユニット27A,27Bが同期して駆動され、2つのレーザユニット27A,27Bが同時に発光し、同時に発光が停止する。 FIG. 10 shows the emission timing of laser light from the semiconductor lasers housed in the laser units 27A and 27B. The two laser units 27A and 27B are driven in synchronization by the main controller 61, the two laser units 27A and 27B emit light at the same time, and the light emission stops simultaneously.
 図10(A)に単位駆動期間Td(Td1,Td2,Td3,Td4,・・・)が示されている。レーザユニット27A,27Bは、同じ時間長の単位駆動期間Tdが繰り返されるように発光制御される。図10(B)に示すように、1期間の単位駆動期間Td内は、さらに、第1の分割駆動期間T1と第2の分割駆動期間T2ならびに第3の分割駆動期間T3に分割されている。 FIG. 10A shows a unit drive period Td (Td1, Td2, Td3, Td4,...). The laser units 27A and 27B are controlled to emit light so that the unit drive period Td having the same time length is repeated. As shown in FIG. 10B, the unit drive period Td of one period is further divided into a first divided drive period T1, a second divided drive period T2, and a third divided drive period T3. .
 第1の分割駆動期間T1は、発光期間Taとこれに続く発光休止期間Tbとで構成されている。第2の分割駆動期間T2と第3の分割駆動期間T3も、発光期間Taとこれに続く発光休止期間Tbとで構成されている。 The first divided drive period T1 includes a light emission period Ta and a light emission suspension period Tb following the light emission period Ta. The second divided drive period T2 and the third divided drive period T3 are also composed of a light emission period Ta and a light emission suspension period Tb following the light emission period Ta.
 レーザユニット27A,27Bは、パルス幅変調{PWM(pulse width modulation)}で駆動されており、レーザ・LCOS制御部62の制御動作によって、前記発光期間Taのデューティ比{Td/(Td+Ts)}を変化させることができる。 The laser units 27A and 27B are driven by pulse width modulation {PWM (pulse 幅 width modulation)}, and the duty ratio {Td / (Td + Ts)} of the light emission period Ta is controlled by the control operation of the laser / LCOS control unit 62. Can be changed.
 この実施の形態では、単位駆動期間Tdの繰り返し周波数が60Hzである。よって、発光期間Taと発光休止期間Tbの繰り返し周波数は、180Hzである。第1の分割駆動期間T1と第2の分割駆動期間T2および第3の分割駆動期間T3では、ホログラム画像の異なる項目の表示が分担されて表示される。したがって、同じ項目を表示する第1の分割駆動期間T1の繰り返し周波数は60Hzである。同様に、第2の分割駆動期間T2の繰り返し周波数と第3の分割駆動期間T3の繰り返し周波数も、それぞれ60Hzである。 In this embodiment, the repetition frequency of the unit drive period Td is 60 Hz. Therefore, the repetition frequency of the light emission period Ta and the light emission suspension period Tb is 180 Hz. In the first divided driving period T1, the second divided driving period T2, and the third divided driving period T3, display of different items of the hologram image is divided and displayed. Therefore, the repetition frequency of the first divided drive period T1 for displaying the same item is 60 Hz. Similarly, the repetition frequency of the second divided drive period T2 and the repetition frequency of the third divided drive period T3 are each 60 Hz.
 図11に示すように、スクリーン51には1次回折光によってホログラム画像70hが投影される。ホログラム画像70hは、図2に示す表示画像70のナビゲーション情報71を投影するための第1の項目71hと、自動車の速度表示72を投影するための第2の項目72hと、シフトレバーのポジション情報73を投影するための第3の項目73hを含んでいる。なお、図2に示す第1項目71h、第2項目72h、第3項目73hは、表示形態の一例であり、その他、必要に応じて種々の画像を表示することができる。 As shown in FIG. 11, a hologram image 70h is projected onto the screen 51 by the first-order diffracted light. Hologram image 70h includes first item 71h for projecting navigation information 71 of display image 70 shown in FIG. 2, second item 72h for projecting vehicle speed display 72, and shift lever position information. 3rd item 73h for projecting 73 is included. Note that the first item 71h, the second item 72h, and the third item 73h shown in FIG. 2 are examples of display forms, and various other images can be displayed as necessary.
 図9に示すレーザ・LCOS制御部62では、レーザユニット27A,27Bの発光駆動制御と同期して位相変調アレイ31が切替えられて駆動される。位相変調アレイ31でホログラム画像が生成されるときは、メモリ62に格納されている複数種類の画像データのいずれかが選択されて読み出される。 In the laser / LCOS control unit 62 shown in FIG. 9, the phase modulation array 31 is switched and driven in synchronization with the light emission drive control of the laser units 27A and 27B. When a hologram image is generated by the phase modulation array 31, any one of a plurality of types of image data stored in the memory 62 is selected and read out.
 位相変調アレイ31による空間位相変調によって、第1の分割駆動期間T1と第2の分割駆動期間T2ならびに第3の分割駆動期間T3の各分割駆動期間の切替え時点に同期して、生成するホログラム画像が切替えられる。すなわち位相変調アレイ31は、単位駆動期間Tdの1/3の期間に同期して、表示制御が切換えられる。 Hologram image generated by the spatial phase modulation by the phase modulation array 31 in synchronization with the switching times of the divided drive periods of the first divided drive period T1, the second divided drive period T2, and the third divided drive period T3. Is switched. That is, the display control of the phase modulation array 31 is switched in synchronization with the period of 1/3 of the unit drive period Td.
 図12に示すように、単位駆動期間Td1では、第1の分割駆動期間T1に第1の項目71hのホログラム画像が生成され、第2の分割駆動期間T2に第2の項目72hのホログラム画像が生成され、第3の分割駆動期間T3に第3の項目73hのホログラム画像が生成される。単位駆動期間Td2,Td3,Td3,・・・においても、第1の分割駆動期間T1に第1の項目71hのホログラム画像が生成され、第2の分割駆動期間T2に第2の項目72hのホログラム画像が生成され、第3の分割駆動期間T3に第3の項目73hのホログラム画像が生成される。 As shown in FIG. 12, in the unit drive period Td1, the hologram image of the first item 71h is generated in the first divided drive period T1, and the hologram image of the second item 72h is generated in the second divided drive period T2. The hologram image of the third item 73h is generated in the third divided drive period T3. Also in the unit drive periods Td2, Td3, Td3,..., A hologram image of the first item 71h is generated in the first divided drive period T1, and a hologram of the second item 72h is generated in the second divided drive period T2. An image is generated, and a hologram image of the third item 73h is generated in the third divided drive period T3.
 単位駆動期間Tdは、60Hzで切替えられるため、このホログラム画像70hに基づいてウインドシールド3の表示領域3aに表示される表示画像70を人の目が見たときに、ナビゲーション情報71と自動車の速度表示72ならびにシフトレバーのポジション情報73が同時に表示されているように見ることができる。 Since the unit drive period Td is switched at 60 Hz, the navigation information 71 and the speed of the car are displayed when the human eyes see the display image 70 displayed in the display area 3a of the windshield 3 based on the hologram image 70h. It can be seen that the display 72 and the shift lever position information 73 are displayed simultaneously.
 この画像処理装置10では、主制御部61でモータドライバ65が制御され、モータ52が駆動されて、スクリーン51が3600rpmで回転させられている。スクリーン51の1秒間の回転数は60回転であり、単位駆動期間Tdは60Hzで切替えられるため、単位駆動期間Tdの1期間内にスクリーン51が1回転する。 In this image processing apparatus 10, the motor driver 65 is controlled by the main control unit 61, the motor 52 is driven, and the screen 51 is rotated at 3600 rpm. The number of rotations per second of the screen 51 is 60, and the unit driving period Td is switched at 60 Hz. Therefore, the screen 51 rotates once within one unit driving period Td.
 図13に、スクリーン51の回転角度と、それぞれの分割駆動期間T1,T2,T3にスクリーン51に投影されるホログラム画像の切替え動作がされている。図13では、スクリーン51に角度基準51aが示されている。この角度基準51aは、スクリーン51の回転角度を説明するためのものであり、実際のスクリーン51に角度基準51aが付されているものではない。 In FIG. 13, the rotation angle of the screen 51 and the switching operation of the hologram image projected on the screen 51 during the respective divided drive periods T1, T2, T3 are performed. In FIG. 13, an angle reference 51 a is shown on the screen 51. The angle reference 51 a is for explaining the rotation angle of the screen 51, and the angle reference 51 a is not attached to the actual screen 51.
 分割駆動期間T1,T2,T3は単位駆動期間Tdの1/3であるため、スクリーン51が1回転する間に、スクリーン51に項目71h,72h,73hのそれぞれのホログラム画像が120度毎に区分されて投影される。正確には、120度の角度内において、分割駆動期間内でのレーザ光源の発光期間Taに、項目71h,72h,73hのいずれかが投影される。すなわち、スクリーン51にひとつの項目のホログラム画像が投影されているときのスクリーン51の最大回転角度は120度である。 Since the divided drive periods T1, T2, and T3 are 1/3 of the unit drive period Td, the hologram images of the items 71h, 72h, and 73h on the screen 51 are divided every 120 degrees while the screen 51 rotates once. And projected. To be precise, any one of the items 71h, 72h, and 73h is projected on the light emission period Ta of the laser light source within the divided drive period within an angle of 120 degrees. That is, the maximum rotation angle of the screen 51 when a hologram image of one item is projected on the screen 51 is 120 degrees.
 図13(A)に示すように、単位駆動期間Td1内の第1の分割駆動期間T2では、スクリーン51に第1の項目71hのホログラム画像が投影されている間に、スクリーン51が最大で120度回転する。図13(B)に示すように、単位駆動期間Td1内の第2の分割駆動期間T2では、スクリーン51に第2の項目72hのホログラム画像が投影される間に、スクリーン51が最大で120度回転する。図13(C)に示すように、単位駆動期間Td1内の第3の分割駆動期間T3では、スクリーン51に第3の項目73hのホログラム画像が投影される間に、スクリーン51が最大で120度回転する。 As shown in FIG. 13A, in the first divided drive period T2 within the unit drive period Td1, the screen 51 is 120 at the maximum while the hologram image of the first item 71h is projected on the screen 51. Rotate degrees. As shown in FIG. 13B, in the second divided drive period T2 within the unit drive period Td1, the screen 51 is 120 degrees at the maximum while the hologram image of the second item 72h is projected onto the screen 51. Rotate. As shown in FIG. 13C, in the third divided drive period T3 within the unit drive period Td1, the screen 51 is 120 degrees at the maximum while the hologram image of the third item 73h is projected onto the screen 51. Rotate.
 図13(D)(E)(F)・・・に示されるように、単位駆動期間Td2,Td3、・・・においても、同様にしてホログラム画像が切替えられる。 As shown in FIGS. 13D, 13E, 13F, hologram images are switched in the unit drive periods Td2, Td3,.
 第1の項目71hと第2の項目72hならびに第3の項目73hが投影されると、これら項目71h,72h,73hの表示内容を含んだ光がスクリーン51の微細な凹凸で拡散されて投影光B7として投影部20Cに与えられる。スクリーン51に形成された微細な凹凸はランダムであるため、スクリーン51のそれぞれの場所でホログラム画像の拡散条件が相違する。しかし、項目71h,72h,73hのホログラム画像が拡散される間に、スクリーン51が最大で120度回転するため、拡散条件のばらつきがランダマイズされ、ホログラム画像のにじみなどの原因となるスペックルノイズが低減される。 When the first item 71h, the second item 72h, and the third item 73h are projected, the light including the display contents of the items 71h, 72h, and 73h is diffused by the fine unevenness of the screen 51 and projected light. B7 is given to the projection unit 20C. Since the fine irregularities formed on the screen 51 are random, the hologram image diffusion conditions are different at each location of the screen 51. However, since the screen 51 rotates 120 degrees at the maximum while the hologram images of the items 71h, 72h, and 73h are diffused, the dispersion of the diffusion condition is randomized, and speckle noise that causes bleeding of the hologram image is generated. Reduced.
 図13(A)(D)(G)に示すように、それぞれの単位駆動期間Tdにおいて、第1の項目71hのホログラム画像がスクリーン51へ投影される開始時点(発光期間Taの開始時点)での、スクリーン51の回転位相(回転位置)はいつも同じである。そのため、図13(A)の時点でホログラム画像の投影が開始されるスクリーン51上での場所と、その後にスクリーン51が最大で120度回転する間にホログラム画像が投影されるスクリーン51上の角度領域(角度範囲)は、図13(D)(G)の時点で第1の項目71hのホログラム画像が投影されるときにおいても同じになる。 As shown in FIGS. 13A, 13D, and 13G, in each unit driving period Td, at the start time point (the start time point of the light emission period Ta) at which the hologram image of the first item 71h is projected onto the screen 51. The rotational phase (rotational position) of the screen 51 is always the same. Therefore, the position on the screen 51 where the projection of the hologram image is started at the time of FIG. 13A and the angle on the screen 51 where the hologram image is projected while the screen 51 is rotated by a maximum of 120 degrees thereafter. The region (angle range) is the same when the hologram image of the first item 71h is projected at the time of FIGS.
 単位駆動期間Td1,Td2,Td3、・・・において、第1の項目71hは、スクリーン51の常に同じ位置に対して投影が開始され、その後に、スクリーン51の同じ角度範囲に投影される。したがって、第1の項目71hのホログラム画像が繰り返して投影されるそれぞれの投影期間で、スクリーン51での拡散条件を常に同じ状態に揃えることができる。そのため、レーザ光のPWM駆動に起因して、図2に示すナビゲーション情報71の表示に点滅が発生するようなフリッカーノイズを低減できるようになる。 In the unit drive periods Td1, Td2, Td3,..., The first item 71h is always projected to the same position on the screen 51, and then projected to the same angular range of the screen 51. Therefore, the diffusion conditions on the screen 51 can always be made to be the same in each projection period in which the hologram image of the first item 71h is repeatedly projected. Therefore, flicker noise that causes blinking in the display of the navigation information 71 shown in FIG. 2 due to the PWM drive of the laser light can be reduced.
 図13(B)(E)(H)に示すように、第2の項目72hのホログラム画像の投影が開始されるときも、スクリーン51に対する投影開始場所が常に同じになり、その後にスクリーン51上で第2の項目72hのホログラム画像が投影される角度領域(角度範囲)も常に同じになる。図13(C)(F)(I)に示すように、第3の項目73hのホログラム画像を投影するときも同じである。 As shown in FIGS. 13B, 13E, and 13H, when the projection of the hologram image of the second item 72h is started, the projection start location on the screen 51 is always the same, and thereafter on the screen 51. Thus, the angle region (angle range) on which the hologram image of the second item 72h is projected is always the same. As shown in FIGS. 13C, 13F, and 13I, the same applies when projecting the hologram image of the third item 73h.
 このように、それぞれの分割駆動期間T1,T2,T3の切替え周波数(60Hz)を、スクリーン51の回転数に1対1で対応させると、スクリーン51上の常に同じ場所から同じ項目のホログラム画像の投影を開始させることが可能になる。 As described above, when the switching frequency (60 Hz) of each of the divided drive periods T1, T2, and T3 is made to correspond to the rotation speed of the screen 51 on a one-to-one basis, Projection can be started.
 図13には、単位駆動期間Tdの周波数を60Hz(それぞれの分割駆動期間T1,T2,T3の切替え周波数を60Hz)とし、スクリーン51の回転数を、前記実施の形態の2倍の7200rpmとしたときの、スクリーン51上の角度基準51bを示している。 In FIG. 13, the frequency of the unit drive period Td is 60 Hz (the switching frequency of each of the divided drive periods T1, T2, and T3 is 60 Hz), and the rotation speed of the screen 51 is 7200 rpm, twice that of the above embodiment. The angle reference 51b on the screen 51 is shown.
 スクリーン51の回転数が2倍になると、第1の項目71hのホログラム画像が投影されている間に、スクリーン51が最大で240度回転する。同様に、第2の項目72hが投影されている間と、第3の項目73hが投影されている間も、スクリーン51が最大で240度回転する。この例では、1つの項目が投影されているときのスクリーン51の回転角度が前記実施の形態の2倍になるため、スクリーンによる拡散条件のランダマイズ効果を高めることができ、スペックルノイズをさらに改善できるようになる。 When the number of rotations of the screen 51 is doubled, the screen 51 rotates 240 degrees at the maximum while the hologram image of the first item 71h is being projected. Similarly, the screen 51 rotates 240 degrees at the maximum while the second item 72h is projected and while the third item 73h is projected. In this example, since the rotation angle of the screen 51 when one item is projected is twice that of the above embodiment, the randomization effect of the diffusion condition by the screen can be enhanced, and speckle noise is further improved. become able to.
 しかも、それぞれの単位駆動期間Tdにおいて、第1の項目71hのホログラム画像の投影が開始されるときに、ホログラム画像が結像する場所ならびにその後の角度領域が、スクリーン51の常に同じ場所となる。これは第2の項目72hと第3の項目73hのホログラム画像が投影されるときも同じである。 Moreover, when the projection of the hologram image of the first item 71h is started in each unit driving period Td, the place where the hologram image is formed and the subsequent angular area are always the same place on the screen 51. This is the same when the hologram images of the second item 72h and the third item 73h are projected.
 図13に示すように、前記スクリーン51の単位時間当たりの回転数をNとし、同じホログラム画像を表示するための前記発光期間Ta(例えば第1の分割駆動期間T1の発光期間Ta)の前記単位時間当たりの繰り返し回数をMとしたときに、NをMの整数倍にすると、同じ項目を表示するホログラム画像を、スクリーン51の同じ場所から投影することができる。前記例では、Nが、3600rpmまたは7200rpmであり、それぞれの分割駆動期間T1,T2,T3での発光期間Taの1分間での繰り返し回数が3600回である。 As shown in FIG. 13, the number of rotations per unit time of the screen 51 is N, and the unit of the light emission period Ta (for example, the light emission period Ta of the first divided drive period T1) for displaying the same hologram image. When the number of repetitions per time is M, if N is an integer multiple of M, a hologram image displaying the same item can be projected from the same location on the screen 51. In the above example, N is 3600 rpm or 7200 rpm, and the number of repetitions per minute of the light emission period Ta in each divided drive period T1, T2, T3 is 3600 times.
 図14ないし図16は、他の実施の形態の駆動方法を示している。
 図14に示す例では、単位駆動期間Tdの切替え周波数は60Hzで前記実施の形態と同じであるが、スクリーン51の回転数が前記実施の形態の1/2の1800rpmである。すなわち、前記Nが前記Mの1/2である。
14 to 16 show a driving method according to another embodiment.
In the example shown in FIG. 14, the switching frequency of the unit drive period Td is 60 Hz, which is the same as that in the above embodiment, but the rotation speed of the screen 51 is 1800 rpm which is ½ of that in the above embodiment. That is, the N is 1/2 of the M.
 この例では、スクリーン51が60度回転する間に、第1の項目71h、第2の項目72h、第3の項目73hのいずれかのホログラム画像が投影される。 In this example, while the screen 51 is rotated 60 degrees, any one of the hologram images of the first item 71h, the second item 72h, and the third item 73h is projected.
 図14(A)(G)で、第1の項目71hのホログラム画像の投影が開始されるときのスクリーン51での投影開始位置が同じになる。図14(D)(J)で、第1の項目71hのホログラム画像の投影が開始されるときのスクリーン51での投影開始位置が同じになる。すなわち、発光期間Taの開始時に、第1の項目71hのホログラム画像の投影が開始される場所が、スクリーン51上で2か所となる。これは、第2の項目72hと第3の項目73hの表示タイミングにおいても同じである。 14A and 14G, the projection start position on the screen 51 when projection of the hologram image of the first item 71h is started is the same. 14D and 14J, the projection start position on the screen 51 when the projection of the hologram image of the first item 71h is started is the same. That is, at the start of the light emission period Ta, there are two places on the screen 51 where the projection of the hologram image of the first item 71h is started. This also applies to the display timing of the second item 72h and the third item 73h.
 この実施の形態では、項目71h,72h,73hの同じホログラム画像の投影が、必ずスクリーン51の2か所から開始されることになるため、同じホログラム画像を表示するときのランダマイズされた拡散条件の変化を、2パターンに限定でき、フリッカーノイズを改善できるようになる。 In this embodiment, since the projection of the same hologram image of items 71h, 72h, and 73h is always started from two places on the screen 51, the randomized diffusion condition when displaying the same hologram image is displayed. The change can be limited to two patterns, and flicker noise can be improved.
 図15に示す例は、単位駆動期間Tdの切替え周波数は60Hzで前記実施の形態と同じであるが、スクリーン51の回転数が前記実施の形態の3/2の5400rpmである。すなわち、前記Nが前記Mの3/2である。 In the example shown in FIG. 15, the switching frequency of the unit drive period Td is 60 Hz, which is the same as that in the above embodiment, but the rotation speed of the screen 51 is 5400 rpm which is 3/2 of the above embodiment. That is, the N is 3/2 of the M.
 この例では、スクリーン51が180度回転する間に、第1の項目71h、第2の項目72h、第3の項目73hのいずれかのホログラム画像が投影される。 In this example, while the screen 51 is rotated 180 degrees, any one of the hologram images of the first item 71h, the second item 72h, and the third item 73h is projected.
 図15(A)(G)で、第1の項目71hのホログラム画像の投影が開始されるときのスクリーン51での投影開始位置が同じになり、図15(D)(J)で、第1の項目71hのホログラム画像の投影が開始されるときのスクリーン51での投影開始位置が同じになる。発光期間Taの開始時に、スクリーン51上で第1の項目71hのホログラム画像の投影が開始される場所が2か所になる。これは、第2の項目72hと第3の項目73hの表示タイミングにおいても同じである。 15A and 15G, the projection start position on the screen 51 when the projection of the hologram image of the first item 71h is started becomes the same, and in FIG. 15D and FIG. The projection start position on the screen 51 when the projection of the hologram image of the item 71h is started is the same. At the start of the light emission period Ta, there are two places on the screen 51 where the projection of the hologram image of the first item 71h is started. This also applies to the display timing of the second item 72h and the third item 73h.
 この実施の形態でも、項目71h,72h,73hの同じホログラム画像の投影が開始されるときに、そのホログラム画像の投影が、必ずスクリーン51の2か所から開始されることになる。そのため、同じホログラム画像を表示するときのランダマイズされた拡散条件の変化を、2パターンに限定でき、フリッカーノイズを改善できるようになる。 Also in this embodiment, when the projection of the same hologram image of items 71h, 72h, and 73h is started, the projection of the hologram image is always started from two places on the screen 51. Therefore, the change of the randomized diffusion condition when displaying the same hologram image can be limited to two patterns, and flicker noise can be improved.
 図14と図15とから、N=(n/2)M(nは、2およびその倍数を除く整数)のとき、発光期間Taの開始時に同じホログラム画像が投影されるスクリーン51上の位置を2か所に限定することができる。 14 and 15, when N = (n / 2) M (n is an integer other than 2 and its multiples), the position on the screen 51 where the same hologram image is projected at the start of the light emission period Ta. It can be limited to two places.
 次に、図16に示す例は、単位駆動期間Tdの切替え周波数は60Hzで前記各実施の形態と同じであるが、スクリーン51の回転数が前記実施の形態の2/3の2400rpmである。すなわち、前記Nが前記Mの2/3である。 Next, in the example shown in FIG. 16, the switching frequency of the unit drive period Td is 60 Hz, which is the same as that in each of the above embodiments. That is, the N is 2/3 of the M.
 この例では、スクリーン51が80度回転する間に、第1の項目71h、第2の項目72h、第3の項目73hのいずれかのホログラム画像が投影される。 In this example, while the screen 51 rotates by 80 degrees, any one of the hologram images of the first item 71h, the second item 72h, and the third item 73h is projected.
 図16では、(A)(D)(G)において、第1の項目71hのホログラム画像の投影が開始されるときのスクリーン51での投影開始位置が異なっている。ただし、(A)と(J)において、スクリーン51に対する第1の項目71hのホログラムの投影開始位置が同じになる。すなわち、項目71h,72h,73hのホログラム画像の投影が開始されるときに、同じホログラム画像の投影が、スクリーン51上の3か所の場所のいずれかから開始されることになる。この実施の形態でも、同じホログラム画像を表示するときのランダマイズされた拡散条件を、3パターンに限定でき、フリッカーノイズを改善できるようになる。 In FIG. 16, in (A), (D), and (G), the projection start positions on the screen 51 when the projection of the hologram image of the first item 71h is started are different. However, in (A) and (J), the projection start position of the hologram of the first item 71h on the screen 51 is the same. That is, when the projection of the hologram images of the items 71h, 72h, and 73h is started, the projection of the same hologram image is started from any one of the three locations on the screen 51. Also in this embodiment, the randomized diffusion conditions when displaying the same hologram image can be limited to three patterns, and flicker noise can be improved.
 図16から、N=(n/3)M(nは、3およびその倍数を除く整数)のとき、発光期間Taの開始時に同じホログラム画像が投影されるスクリーン51上の開始位置を3か所に限定することができる。 From FIG. 16, when N = (n / 3) M (n is an integer other than 3 and multiples thereof), three start positions on the screen 51 where the same hologram image is projected at the start of the light emission period Ta are shown. It can be limited to.
 以上のように、それぞれの発光期間Taが開始されるときに、スクリーン上で同じホログラム画像の投影が開始される場所を3か所以下とすることにより、フリッカーノイズを改善できるようになる。ただし、同じホログラム画像の投影が開始される場所は、スクリーン51上の2か所以下に限定されることが好ましく、図13に示すように、1か所に限定されることがさらに好ましい。 As described above, flicker noise can be improved by setting the number of projections of the same hologram image on the screen to be three or less when each light emission period Ta is started. However, the place where the projection of the same hologram image is started is preferably limited to two or less places on the screen 51, and more preferably limited to one place as shown in FIG.
 次に、ホログラム70hの画像を生成するときは、それぞれのホログラム画像に対応する画像データがメモリ63から引き出され、位相変調アレイ31では、引き出された画像データに基づいて、コリメート光束B1r,B1gに対して位相変調が行われる。 Next, when generating an image of the hologram 70h, image data corresponding to each hologram image is extracted from the memory 63, and the phase modulation array 31 generates collimated light beams B1r and B1g based on the extracted image data. On the other hand, phase modulation is performed.
 図11は、ホログラム画像70hの表示画像の一例を示している。この例では、第1の項目71hは、ナビゲーション情報71を表示するものであり、その表示状態は自動車の走行状態に応じて変化する。第1の項目71hのホログラム画像を生成するために、指示する方角が相違する複数種類の矢印画像に相当する画像データがメモリ63に格納されている。レーザ・LCOS制御部62によって、いずれかの矢印の画像データが選択されて読み出され、その画像データに基づいて位相変調アレイ31が駆動制御される。 FIG. 11 shows an example of a display image of the hologram image 70h. In this example, the first item 71h displays the navigation information 71, and the display state changes according to the traveling state of the automobile. In order to generate the hologram image of the first item 71h, image data corresponding to a plurality of types of arrow images having different directions to be designated is stored in the memory 63. The laser / LCOS control unit 62 selects and reads out image data indicated by any arrow, and the phase modulation array 31 is driven and controlled based on the image data.
 図11に示す第2の項目72hは、自動車の速度表示72を行うものである。ホログラム画像としては、走行状態によって変化することがない丸い枠を示す表示要素74と、丸い枠の内部に位置し走行速度の変化に応じて切換えられる表示要素75とが組み合わされて構成されている。位相変調アレイ31では、常に表示要素74である丸い枠が表示されるようにホログラム画像が生成される。そして、速度の変化に応じて「60」「59」などの表示要素75に関する画像データがメモリ63から読み出されて、位相変調アレイ31によってホログラム画像が生成される。 The second item 72h shown in FIG. 11 is for displaying the speed 72 of the automobile. The hologram image is configured by combining a display element 74 that shows a round frame that does not change depending on the running state, and a display element 75 that is located inside the round frame and can be switched according to changes in the running speed. . In the phase modulation array 31, a hologram image is generated so that a round frame that is the display element 74 is always displayed. Then, image data relating to the display element 75 such as “60” and “59” is read from the memory 63 according to the change in speed, and a hologram image is generated by the phase modulation array 31.
 図11に示す第3の項目73hは、シフトレバーのポジション情報73を表示するための表示要素であり、「D」「R」「P」などの画像データがメモリ63に記憶されており、シフトレバーのポジション変更に応じて、いずれかの画像データが読み出されて、位相変調アレイ31によってホログラム画像が生成される。 A third item 73h shown in FIG. 11 is a display element for displaying the position information 73 of the shift lever. Image data such as “D”, “R”, and “P” is stored in the memory 63, and the shift information is displayed. One of the image data is read according to the change of the lever position, and a hologram image is generated by the phase modulation array 31.
 図11に示すホログラム画像70hでは、速度表示72のための第2の項目72hが、常に変化しない表示要素74と、刻々と変化する表示要素75との組み合わせであるため、表示要素74に関しては、画像データを切替える必要がなく常に表示を継続させることができる。そのため、レーザ・LCOS制御部62による制御動作の負荷を軽減することができる。また、第2の項目72hの数字表示や、第1の項目71hの矢印表示や、第3の項目73hのポジション表示は、「←」「↑」「→」「60」「59」「58」「D」「R」「P」など、予め決められた文字や記号のパターンに対応する画像データで生成することが可能である。よって、画像データとしてはこれら表示要素を表示するための画像パターンのデータとして格納すればよく、レーザ・LCOS制御部62による制御動作の負荷も軽減することができる。 In the hologram image 70h shown in FIG. 11, the second item 72h for the speed display 72 is a combination of a display element 74 that does not always change and a display element 75 that changes every moment. There is no need to switch the image data, and the display can always be continued. Therefore, the load of the control operation by the laser / LCOS control unit 62 can be reduced. In addition, the numerical display of the second item 72h, the arrow display of the first item 71h, and the position display of the third item 73h are “←”, “↑”, “→”, “60”, “59”, and “58”. It is possible to generate image data corresponding to a predetermined character or symbol pattern such as “D”, “R”, and “P”. Therefore, the image data may be stored as image pattern data for displaying these display elements, and the load of the control operation by the laser / LCOS control unit 62 can be reduced.
 この画像処理装置10では、図2に示すように、ウインドシールド3の表示領域3aにホログラムによる表示画像70が表示されるが、この表示画像の輝度は環境に応じて変化させることが必要である。昼間の走行時には表示画像70に輝度を高くすることが必要であり、夜間には輝度を低下させることが必要である。 In this image processing apparatus 10, as shown in FIG. 2, a display image 70 by a hologram is displayed in the display area 3a of the windshield 3. The luminance of this display image needs to be changed according to the environment. . It is necessary to increase the luminance of the display image 70 during running in the daytime, and it is necessary to decrease the luminance at night.
 図17に、半導体レーザに与える電流量と発光強度との関係が模式的に示されている。半導体レーザに対する供給電流を増加していくと、最初は発光強度が低いが、供給電流がある程度大きい値(I1)になると発光強度が高くなり、その後は供給電流が増加するにしたがって発光強度が高くなる。しかし、発光強度を高くするときの電流値の増減幅(I1-I2)は比較的狭い。 FIG. 17 schematically shows the relationship between the amount of current applied to the semiconductor laser and the emission intensity. When the supply current to the semiconductor laser is increased, the light emission intensity is initially low, but the light emission intensity increases when the supply current reaches a certain large value (I1), and then the light emission intensity increases as the supply current increases. Become. However, the increase / decrease width (I1-I2) of the current value when increasing the emission intensity is relatively narrow.
 そこで、表示画像の輝度を変化させるときは、レーザユニット27A,27B内の半導体レーザの発光のデューティ比{Ta/(Ta+Tb)}を変化させている。デューティ比は、レーザ・LCOS制御部62によって制御される。 Therefore, when the luminance of the display image is changed, the duty ratio {Ta / (Ta + Tb)} of the light emission of the semiconductor laser in the laser units 27A and 27B is changed. The duty ratio is controlled by the laser / LCOS controller 62.
 図10(B)と(C)とを比較すると、(C)ではデューティ比が低くなり、スクリーン51に投影されるホログラム画像70hの輝度が低くなり、図2に示す表示画像70の輝度を低下させることができる。 When FIG. 10B is compared with FIG. 10C, the duty ratio is low in FIG. 10C, the brightness of the hologram image 70h projected on the screen 51 is lowered, and the brightness of the display image 70 shown in FIG. Can be made.
 ただし、図10(B)から(C)へデューティ比を低下させると、分割駆動期間T1,T2,T3内における発光期間Taが短くなる。図10(B)から(C)に移動して、発光期間Taが短くなると、ホログラム画像が投影されているときのスクリーン51の回転角度が、例えば図11においてαの角度範囲からβの角度範囲まで小さくなる。ホログラム画像が投影しているときのスクリーン51の回転角が小さくなると、スクリーン51の拡散機能を十分にランダマイズできなくなり、スペックルノイズの発生比率が高くなる。 However, when the duty ratio is decreased from FIG. 10B to FIG. 10C, the light emission period Ta within the divided drive periods T1, T2, and T3 is shortened. When the light emission period Ta is shortened by moving from FIG. 10B to FIG. 10C, the rotation angle of the screen 51 when the hologram image is projected is, for example, from the angle range of α to the angle range of β in FIG. Becomes smaller. When the rotation angle of the screen 51 when the hologram image is projected becomes small, the diffusion function of the screen 51 cannot be sufficiently randomized, and the generation ratio of speckle noise increases.
 そこで、実施の形態の画像処理装置10では、デューティ比をある程度低くした後は、主制御部61の制御動作によって半導体レーザへ通電する電流量IaからIbに下げて、
デューティ比を下げることなく、ホログラム画像70hの輝度を低下させ、図2に示す表示画像70の輝度を低下させている。
Therefore, in the image processing apparatus 10 according to the embodiment, after the duty ratio is lowered to some extent, the current amount Ia supplied to the semiconductor laser is decreased from Ia to Ib by the control operation of the main control unit 61,
The luminance of the hologram image 70h is reduced without reducing the duty ratio, and the luminance of the display image 70 shown in FIG. 2 is reduced.
 図17に示すように、半導体レーザの発光に対して電流値を変化させることができるダイナミックレンジ(I1-I2)は狭いので、最初は、電流量を最大値に近いIaに設定して発光強度をPaに設定しておき、表示画像70に輝度の変化を、デューティ比{Ta/(Ta+Tb)}を変えることで対応する。そして、デューティ比をある程度低くした後は、デューティ比を変えることなく、電流値をIaからIbまで段階的に低下させ、発光強度をPbまで低下させて、輝度を下げていく。 As shown in FIG. 17, since the dynamic range (I1-I2) in which the current value can be changed with respect to the light emission of the semiconductor laser is narrow, first, the light emission intensity is set by setting the current amount to Ia close to the maximum value. Is set to Pa, and the display image 70 is changed in luminance by changing the duty ratio {Ta / (Ta + Tb)}. Then, after the duty ratio is lowered to some extent, the current value is decreased stepwise from Ia to Ib without changing the duty ratio, and the luminance is lowered by decreasing the emission intensity to Pb.
 この制御方法では、表示画像70の輝度の変化の実質的なダイナミックレンジを広げることができ、しかもデューティ比が極端に低くなるのを防止でき、間欠発光に起因するスペックルノイズを低減できるようになる。 In this control method, the substantial dynamic range of the change in the luminance of the display image 70 can be expanded, the duty ratio can be prevented from becoming extremely low, and speckle noise caused by intermittent light emission can be reduced. Become.
1 自動車
2 ダッシュボード
3 ウインドシールド
5 運転者
10 画像処理装置
11 下部ケース
12 上部ケース
14 カバー板
20 光学ユニット
20A 位相変調部
20B ホログラム結像部
20C 投影部
21 光学ベース
23A,23B 発光部
27A,27B レーザユニット
28A,28B コリメートレンズ
31 位相変調アレイ
33 集光レンズ
34 送光ミラー
35 第1の中間ミラー
36 第2の中間ミラー
41,42,43,44 アパーチャー
51 スクリーン
55 第1の投影ミラー
56 第2の投影ミラー
61 主制御部
62 レーザ・LCOS制御部
70 表示画像
70h ホログラム画像
71h 第1の項目
72h 第2の項目
73h 第3の項目
B0 レーザ光束
B1r,B1g コリメート光束
B1,B2,B3,B4,B5,B6 変調光束
B7,B8 投影光
Td 単位駆動期間
Ta 発光期間
Tb 発光休止期間
T1,T2,T3 分割駆動期間
Ia,Ib 電流量
DESCRIPTION OF SYMBOLS 1 Car 2 Dashboard 3 Windshield 5 Driver 10 Image processing apparatus 11 Lower case 12 Upper case 14 Cover plate 20 Optical unit 20A Phase modulation unit 20B Hologram imaging unit 20C Projection unit 21 Optical bases 23A and 23B Light emission units 27A and 27B Laser unit 28A, 28B Collimating lens 31 Phase modulation array 33 Condensing lens 34 Transmitting mirror 35 First intermediate mirror 36 Second intermediate mirror 41, 42, 43, 44 Aperture 51 Screen 55 First projection mirror 56 Second Projection mirror 61 Main controller 62 Laser / LCOS controller 70 Display image 70h Hologram image 71h First item 72h Second item 73h Third item B0 Laser beam B1r, B1g Collimated beam B1, B2, B3, B4 B5, B6 Modulated light beam B , B8 projection light Td unit driving period Ta emission period Tb emission pause period T1, T2, T3 division driving period Ia, Ib current amount

Claims (8)

  1.  レーザ光源と、光拡散機能を有するスクリーンと、前記レーザ光源から発せられるレーザ光を位相変調して前記スクリーンにホログラム画像を結像させる位相変調アレイとが設けられた画像処理装置において、
     前記スクリーンは、モータによって回転させられ、前記レーザ光源は、レーザ光の発光期間とこれに続く発光休止期間とが繰り返されるように発光制御されており、
     前記発光期間の開始時に、前記スクリーン上で過去にホログラム画像の投影が開始されたのと同じ場所に、同じホログラム画像の投影が繰り返して開始されることを特徴とする画像処理装置。
    In an image processing apparatus provided with a laser light source, a screen having a light diffusion function, and a phase modulation array for phase-modulating laser light emitted from the laser light source to form a hologram image on the screen,
    The screen is rotated by a motor, and the laser light source is controlled to emit light so that a light emission period of laser light and a light emission pause period following the laser light are repeated.
    An image processing apparatus, wherein at the start of the light emission period, the projection of the same hologram image is repeatedly started on the screen at the same location where the projection of the hologram image was started in the past.
  2.  前記発光期間では、過去にホログラム画像が投影されたのと同じ角度範囲に、同じホログラム画像が繰り返して投影される請求項1記載の画像処理装置。 The image processing apparatus according to claim 1, wherein in the light emission period, the same hologram image is repeatedly projected in the same angular range as the hologram image has been projected in the past.
  3.  前記発光期間の開始時に、前記スクリーン上で同じホログラム画像の投影が繰り返される場所が3か所以下である請求項1または2記載の画像処理装置。 The image processing apparatus according to claim 1 or 2, wherein at the start of the light emission period, there are three or less places where the projection of the same hologram image is repeated on the screen.
  4.  前記発光期間の開始時に、前記スクリーン上で同じホログラム画像の投影が繰り返される場所が1か所である請求項3記載の画像処理装置。 The image processing apparatus according to claim 3, wherein at the start of the light emission period, there is one place where the projection of the same hologram image is repeated on the screen.
  5.  前記スクリーンの単位時間当たりの回転数をNとし、前記単位時間当たりの前記発光期間の繰り返し回数をMとしたときに、NがMの整数倍である請求項4記載の画像処理装置。 5. The image processing apparatus according to claim 4, wherein N is an integer multiple of M, where N is the number of rotations per unit time of the screen and M is the number of repetitions of the light emission period per unit time.
  6.  単位駆動期間に複数の前記発光期間が含まれて、前記単位駆動期間内では、それぞれの発光期間が、異なる項目のホログラム画像の表示を分担しており、前記単位駆動期間が繰り返されるように、前記位相変調アレイが制御されている請求項1ないし5のいずれかに記載の画像処理装置。 A plurality of light emission periods are included in a unit drive period, and within the unit drive period, each light emission period shares the display of hologram images of different items, and the unit drive period is repeated, The image processing apparatus according to claim 1, wherein the phase modulation array is controlled.
  7.  前記ホログラム画像を構成する複数種類の表示要素のそれぞれに対応した複数種類の画像データがメモリに記憶されており、それぞれの発光期間に、いずれかの画像データがメモリから読みだされ、読み出された画像データに基づいて前記位相変調アレイの動作が制御される請求項1ないし6のいずれかに記載の画像処理装置。 A plurality of types of image data corresponding to each of a plurality of types of display elements constituting the hologram image are stored in the memory, and any one of the image data is read from the memory and read out during each light emission period. 7. The image processing apparatus according to claim 1, wherein an operation of the phase modulation array is controlled based on the image data.
  8.  前記スクリーンに結像されたホログラム画像を投影する投影部が設けられている請求項1ないし7のいずれかに記載の画像処理装置。 8. The image processing apparatus according to claim 1, further comprising a projection unit that projects a hologram image formed on the screen.
PCT/JP2014/078336 2013-10-31 2014-10-24 Image processing device WO2015064496A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-226786 2013-10-31
JP2013226786 2013-10-31

Publications (1)

Publication Number Publication Date
WO2015064496A1 true WO2015064496A1 (en) 2015-05-07

Family

ID=53004102

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078336 WO2015064496A1 (en) 2013-10-31 2014-10-24 Image processing device

Country Status (1)

Country Link
WO (1) WO2015064496A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074602A1 (en) * 2016-10-20 2018-04-26 大日本印刷株式会社 Display device
WO2022024965A1 (en) * 2020-07-30 2022-02-03 日本精機株式会社 Display device
US11409242B2 (en) 2017-08-02 2022-08-09 Dualitas Ltd Holographic projector
US11644793B2 (en) 2019-04-11 2023-05-09 Dualitas Ltd. Diffuser assembly

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157492A (en) * 2002-09-11 2004-06-03 Optrex Corp Image display device
JP2007233371A (en) * 2006-01-31 2007-09-13 National Institute Of Advanced Industrial & Technology Laser illumination device
JP2007334240A (en) * 2006-06-19 2007-12-27 Seiko Epson Corp Screen, rear projector, projection system, and image display device
JP2009042373A (en) * 2007-08-07 2009-02-26 Seiko Epson Corp Projector
JP2013178344A (en) * 2012-02-28 2013-09-09 Nippon Seiki Co Ltd Display apparatus for vehicle

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004157492A (en) * 2002-09-11 2004-06-03 Optrex Corp Image display device
JP2007233371A (en) * 2006-01-31 2007-09-13 National Institute Of Advanced Industrial & Technology Laser illumination device
JP2007334240A (en) * 2006-06-19 2007-12-27 Seiko Epson Corp Screen, rear projector, projection system, and image display device
JP2009042373A (en) * 2007-08-07 2009-02-26 Seiko Epson Corp Projector
JP2013178344A (en) * 2012-02-28 2013-09-09 Nippon Seiki Co Ltd Display apparatus for vehicle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018074602A1 (en) * 2016-10-20 2018-04-26 大日本印刷株式会社 Display device
US11409242B2 (en) 2017-08-02 2022-08-09 Dualitas Ltd Holographic projector
US11644793B2 (en) 2019-04-11 2023-05-09 Dualitas Ltd. Diffuser assembly
WO2022024965A1 (en) * 2020-07-30 2022-02-03 日本精機株式会社 Display device

Similar Documents

Publication Publication Date Title
JP2015087595A (en) Image processor
US20180147985A1 (en) Vehicle projection system
JP4182032B2 (en) Display optical system and image projection apparatus
US9477080B2 (en) Head-up display device
WO2015064496A1 (en) Image processing device
US9176365B2 (en) Illumination device, projection device, and projection-type image display device
JP4311382B2 (en) projector
EP2410756A2 (en) Multiple view display system using a single projector and method of operating the same
US7874680B2 (en) Projector that displays an image using laser beams
US20180024361A1 (en) Methods and devices for data projection
US8016424B2 (en) Rear projector and projection system
JP2013148901A (en) Human machine interface for automotive vehicle
US20050285027A1 (en) Scanning optical devices and systems
WO2005086766A2 (en) Optical systems for generating three-dimensional images
JP2009198637A (en) Projector
JP2015525899A (en) Apparatus and method for emitting a light beam intended to form an image, projection system and display using said apparatus
JP6381545B2 (en) Display for displaying a virtual image in the visual field of a driver, and device for generating an image for the display
JP2015087589A (en) Image processor, and assembly method thereof
JP2015064538A (en) Video display device
JP2011158543A (en) Projector device and head-up display device
JP6160116B2 (en) Lighting device and projector
JP5104063B2 (en) 3D image display device
JP2011158542A (en) Projector device and head-up display device
WO2016103869A1 (en) Image processing device
JP2015087596A (en) Image processor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP