WO2015064493A1 - Light control film, roll of light control film, and display device - Google Patents

Light control film, roll of light control film, and display device Download PDF

Info

Publication number
WO2015064493A1
WO2015064493A1 PCT/JP2014/078327 JP2014078327W WO2015064493A1 WO 2015064493 A1 WO2015064493 A1 WO 2015064493A1 JP 2014078327 W JP2014078327 W JP 2014078327W WO 2015064493 A1 WO2015064493 A1 WO 2015064493A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
control film
light control
face
liquid crystal
Prior art date
Application number
PCT/JP2014/078327
Other languages
French (fr)
Japanese (ja)
Inventor
英臣 由井
前田 強
康 浅岡
昇平 勝田
Original Assignee
シャープ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by シャープ株式会社 filed Critical シャープ株式会社
Publication of WO2015064493A1 publication Critical patent/WO2015064493A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133504Diffusing, scattering, diffracting elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers

Definitions

  • the present invention relates to a light control film, a roll of light control film, and a display device.
  • This application claims priority based on Japanese Patent Application No. 2013-223369 filed in Japan on October 28, 2013, the contents of which are incorporated herein by reference.
  • Liquid crystal display devices are widely used as displays for portable electronic devices such as cellular phones, televisions, personal computers, and the like.
  • a liquid crystal display device is excellent in visibility from the front, but has a narrow viewing angle. Therefore, various devices have been made to widen the viewing angle.
  • a configuration has been proposed in which a member for controlling the diffusion angle of light emitted from a display body such as a liquid crystal panel (hereinafter referred to as a light diffusion member) is provided on the viewing side of the display body.
  • Patent Document 1 discloses a light control film in which a light diffusion layer is provided with a groove having a V-shaped cross section, and a light absorption layer is provided in a part of the groove.
  • a transparent sheet made of polyethylene terephthalate (PET) or the like is disposed on the light incident side and light emission side of the light diffusion layer. A part of the light incident perpendicular to the light diffusion layer is totally reflected on the wall surface of the groove and then emitted. Thereby, the light emitted from the light control film is diffused.
  • PET polyethylene terephthalate
  • the display device has a relatively narrow azimuth angle direction (hereinafter sometimes referred to as a viewing angle improvement direction) and light. If the azimuth angle direction in which the control film has a relatively strong diffusivity (hereinafter sometimes referred to as a strong diffusion direction) does not generally match, the effect of improving the viewing angle characteristics by the light control film will be weakened. .
  • One aspect of the present invention has been made in view of the above-mentioned problems of the prior art, and is a light control film that can sufficiently exhibit the effect of improving viewing angle characteristics when combined with a display device.
  • One object of the present invention is to provide an original roll of a control film and a display device.
  • the light control film according to an aspect of the present invention includes a light-transmitting base material, a light diffusion portion provided in a first region on one surface of the base material, and the first region of the one surface excluding the first region.
  • a light shielding layer provided in two regions, and a hollow portion adjacent to the light diffusing portion, the light diffusing portion facing the one surface of the substrate, and the light emitting end surface.
  • a structure having anisotropy in light scattering characteristics is provided, and an index indicating the direction of anisotropy of the light scattering characteristics by the light diffusion portion is provided.
  • the planar shape of the light diffusion part or the light shielding layer viewed from the normal direction of the one surface of the base material may have a biaxial symmetry.
  • the index may be configured by unevenness provided on the base material.
  • the indicator is constituted by a convex portion provided at the first end portion of the base material and a concave portion provided at the second end portion opposite to the first end portion,
  • the second end portion may be formed with a recess having a shape obtained by inverting the shape of the first end portion.
  • the index may be provided at two corners that are diagonal to the base material forming a rectangle.
  • the light control film may be configured such that a protective film is provided on the one surface side of the base material via the light diffusion portion, and the indicator is provided on the protective film.
  • An original fabric roll of a light control film which is one embodiment of the present invention is an original fabric roll of a light control film formed by winding a long light control film, and the light control film is a base having light permeability.
  • a material, a light diffusing portion provided in a first region on one surface of the base material, a light shielding layer provided in a second region of the one surface excluding the first region, and the light diffusing portion adjacent to each other A light emitting end surface that is in contact with the one surface of the substrate, and a light incident end surface that is opposed to the light emitting end surface and has an area larger than the area of the light emitting end surface;
  • a reflection surface that is in contact with the light emission end surface and the light incident end surface and reflects light incident from the light incident end surface, and has a configuration having anisotropy in the light scattering characteristics, and the light diffusion
  • An indicator indicating the direction of anisotropy of the light scattering characteristics by the part is provided. To have.
  • a display device is provided with a display body, a light control member that is provided on a viewing side of the display body, scatters and emits light incident from the display body, and the light control member includes: It consists of said light control film, The parameter
  • the display device may have a configuration in which an azimuth angle direction in which the luminance viewing angle of the display body is relatively narrow and an azimuth angle direction in which the light control film has a relatively strong diffusivity substantially coincide.
  • a light control film an original roll of light control film, and a display device that can sufficiently exhibit the effect of improving viewing angle characteristics when combined with a display device. It is.
  • FIG. 4 is a diagram for explaining the operation of the liquid crystal panel, and showing a state when no voltage is applied to the liquid crystal panel (between the pixel electrode and the counter electrode shown in FIG. 3) (when no voltage is applied). It is a figure for demonstrating operation
  • the light control film has a relatively strong diffusivity in the azimuth direction Vs, the transmission axis of the polarizing plate (the transmission axis P1 of the first polarizing plate, the transmission of the second polarizing plate).
  • the top view which shows schematic structure of the light control film in 2nd Embodiment.
  • the schematic block diagram which shows an example of the manufacturing apparatus used for manufacture of the light control film in 2nd Embodiment.
  • the 1st figure which shows the process of cut
  • the 2nd figure which shows the process of cut
  • the 1st figure which shows schematic structure of the protective film which has a mark.
  • the 2nd figure which shows schematic structure of the protective film which has a mark.
  • Sectional drawing which shows schematic structure of the light-diffusion film in 4th Embodiment.
  • the perspective view which shows the light control film cut out from the original fabric roll.
  • FIG. 1 is a perspective view of the liquid crystal display device of the present embodiment as viewed obliquely from above (viewing side).
  • FIG. 2 is a cross-sectional view of the liquid crystal display device.
  • a liquid crystal display device (display device) 1 of the present embodiment includes a liquid crystal panel (display body) 2, a light control member 3 (light control film 6), and a backlight 4 (illumination). Device).
  • the liquid crystal panel 2 includes a liquid crystal cell 13, a first polarizing plate 5, a second polarizing plate 7, a first retardation film 8A, and a second retardation film 8B.
  • the light control member 3 of the present embodiment is composed of a light control film 6 described later.
  • the liquid crystal panel 2 is schematically illustrated as a single plate, but the detailed structure thereof will be described later.
  • the observer sees the display from the upper side of the liquid crystal display device 1 in FIG. 1 where the light control member 3 is arranged.
  • the side on which the light control member 3 is disposed is referred to as a viewing side
  • the side on which the backlight 4 is disposed is referred to as a back side.
  • the x axis is defined as the horizontal direction of the screen of the liquid crystal display device 1
  • the y axis is defined as the vertical direction of the screen of the liquid crystal display device 1
  • the z axis is defined as the thickness direction of the liquid crystal display device 1.
  • the light emitted from the backlight 4 is modulated by the liquid crystal panel 2, and a predetermined image, character, or the like is displayed by the modulated light. Further, when the light emitted from the liquid crystal panel 2 passes through the light control member 3, the emitted light enters a scattering state. Thereby, the observer can visually recognize the display with a wide viewing angle.
  • liquid crystal panel 2 an active matrix transmissive liquid crystal panel will be described as an example.
  • a liquid crystal panel applicable to the present invention is not limited to an active matrix transmissive liquid crystal panel.
  • the liquid crystal panel applicable to the present invention may be, for example, a transflective type (transmission / reflection type) liquid crystal panel.
  • a simple matrix type liquid crystal panel in which each pixel does not include a switching thin film transistor hereinafter abbreviated as TFT may be used.
  • FIG. 3 is a longitudinal sectional view of the liquid crystal panel 2.
  • the liquid crystal cell 13 includes a TFT substrate 9, a color filter substrate 10, and a liquid crystal layer 11.
  • the TFT substrate 9 functions as a switching element substrate.
  • the color filter substrate 10 is disposed to face the TFT substrate 9.
  • the liquid crystal layer 11 is sandwiched between the TFT substrate 9 and the color filter substrate 10.
  • the liquid crystal layer 11 is enclosed in a space surrounded by the TFT substrate 9, the color filter substrate 10, and a frame-shaped seal member (not shown).
  • the sealing member bonds the TFT substrate 9 and the color filter substrate 10 at a predetermined interval.
  • the liquid crystal panel 2 of the present embodiment performs display in, for example, a TN (Twisted Nematic) mode.
  • a liquid crystal having a positive dielectric anisotropy is used for the liquid crystal layer 11.
  • a spacer 12 is disposed between the TFT substrate 9 and the color filter substrate 10. The spacer 12 is spherical or columnar. The spacer 12 keeps the distance between the TFT substrate 9 and the color filter substrate 10 constant.
  • the display mode of the liquid crystal panel 2 of the present invention is not limited to the above TN mode.
  • a VA Very Alignment
  • STN Super Twisted Nematic
  • IPS Intelligent Nematic
  • FFS Fringe Field Switching
  • a plurality of pixels are arranged in a matrix on the TFT substrate 9.
  • a pixel is a minimum unit area of display.
  • a plurality of source bus lines are formed on the TFT substrate 9 so as to extend in parallel to each other.
  • a plurality of gate bus lines are formed on the TFT substrate 9 so as to extend in parallel to each other.
  • the plurality of gate bus lines are orthogonal to the plurality of source bus lines.
  • On the TFT substrate 9, a plurality of source bus lines and a plurality of gate bus lines are formed in a lattice pattern.
  • a rectangular area defined by adjacent source bus lines and adjacent gate bus lines is one pixel.
  • the source bus line is connected to the source electrode 17 of the TFT 19.
  • the gate bus line is connected to the gate electrode 16 of the TFT 19.
  • a TFT 19 having a semiconductor layer 15, a gate electrode 16, a source electrode 17, a drain electrode 18, etc. is formed on the surface of the transparent substrate 14 constituting the TFT substrate 9 on the liquid crystal layer 11 side.
  • the transparent substrate 14 for example, a glass substrate can be used.
  • a semiconductor layer 15 is formed on the transparent substrate 14.
  • Examples of the material of the semiconductor layer 15 include semiconductors such as CGS (Continuous Grain Silicon), LPS (Low-temperature Poly-Silicon), ⁇ -Si (Amorphous Silicon). Material is used.
  • a gate insulating film 20 is formed on the transparent substrate 14 so as to cover the semiconductor layer 15.
  • a material of the gate insulating film 20 for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
  • a gate electrode 16 is formed on the gate insulating film 20 so as to face the semiconductor layer 15.
  • a laminated film of W (tungsten) / TaN (tantalum nitride), Mo (molybdenum), Ti (titanium), Al (aluminum), or the like is used.
  • a first interlayer insulating film 21 is formed on the gate insulating film 20 so as to cover the gate electrode 16.
  • a material of the first interlayer insulating film 21 for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
  • a source electrode 17 and a drain electrode 18 are formed on the first interlayer insulating film 21.
  • a contact hole 22 and a contact hole 23 are formed in the first interlayer insulating film 21 and the gate insulating film 20 so as to penetrate the first interlayer insulating film 21 and the gate insulating film 20.
  • the source electrode 17 is connected to the source region of the semiconductor layer 15 through the contact hole 22.
  • the drain electrode 18 is connected to the drain region of the semiconductor layer 15 through the contact hole 23.
  • a second interlayer insulating film 24 is formed on the first interlayer insulating film 21 so as to cover the source electrode 17 and the drain electrode 18.
  • the same material as the first interlayer insulating film 21 described above or an organic insulating material is used.
  • a pixel electrode 25 is formed on the second interlayer insulating film 24.
  • a contact hole 26 is formed through the second interlayer insulating film 24 in the second interlayer insulating film 24.
  • the pixel electrode 25 is connected to the drain electrode 18 through the contact hole 26.
  • the pixel electrode 25 is connected to the drain region of the semiconductor layer 15 using the drain electrode 18 as a relay electrode.
  • a transparent conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is used.
  • the image signal supplied to the source electrode 17 through the source bus line passes through the semiconductor layer 15 and the drain electrode 18 to form a pixel electrode. 25.
  • An alignment film 27 is formed on the entire surface of the second interlayer insulating film 24 so as to cover the pixel electrode 25.
  • the alignment film 27 has an alignment regulating force that horizontally aligns the liquid crystal molecules constituting the liquid crystal layer 11.
  • the form of the TFT 19 may be the top gate type TFT shown in FIG. 3 or the bottom gate type TFT.
  • a black matrix 30, a color filter 31, a planarizing layer 32, a counter electrode 33, and an alignment film 34 are sequentially formed on the surface of the transparent substrate 29 constituting the color filter substrate 10 on the liquid crystal layer 11 side.
  • the black matrix 30 has a function of blocking light transmission in the inter-pixel region.
  • the black matrix 30 is formed of, for example, a metal such as Cr (chromium) or a Cr / Cr oxide multilayer film, or a photoresist in which carbon particles are dispersed in a photosensitive resin.
  • the color filter 31 contains pigments of red (R), green (G), and blue (B) colors.
  • One color filter 31 of R, G, or B is arranged to face one pixel electrode 25 on the TFT substrate 9. Note that the color filter 31 may have a multicolor configuration of three or more colors of R, G, and B.
  • the planarization layer 32 is composed of an insulating film that covers the black matrix 30 and the color filter 31.
  • the planarizing layer 32 has a function of smoothing and leveling a step formed by the black matrix 30 and the color filter 31.
  • a counter electrode 33 is formed on the planarization layer 32.
  • a transparent conductive material similar to that of the pixel electrode 25 is used.
  • An alignment film 34 is formed on the entire surface of the counter electrode 33.
  • the alignment film 34 has an alignment regulating force that horizontally aligns the liquid crystal molecules constituting the liquid crystal layer 11.
  • orientation control direction of the orientation film 27 of the TFT substrate 9 is indicated by an arrow H1 (hereinafter referred to as orientation control direction H1).
  • orientation control direction H1 an alignment control direction of the alignment film 34 of the color filter substrate 10 is indicated by an arrow H2 (hereinafter referred to as an alignment control direction H2).
  • the alignment film 27 is subjected to an alignment process such as rubbing so that the alignment control direction H1 is a 135 ° -315 ° direction.
  • the alignment film 34 is subjected to an alignment process such as rubbing so that the alignment control direction H2 is 45 ° to 225 °.
  • the backlight 4 includes a light source 36 such as a light emitting diode or a cold cathode tube, and a light guide plate 37 that guides light emitted from the light source 36 to the liquid crystal panel 2.
  • the light guide plate 37 has an emission surface that emits light toward the liquid crystal panel 2 and a back surface that faces the emission surface, and a plurality of prisms are formed on the back surface (not shown).
  • the back prism has two inclined surfaces (not shown) inclined at predetermined angles different from each other with respect to the emission surface, and the light emitted from the backlight 4 has a high intensity in the normal direction of the display surface and is high. Has directivity.
  • the backlight 4 may be an edge light type in which the light source 36 is disposed on the end face of the light guide plate 37 as described above, or may be a direct type in which the light source is disposed directly under the light guide.
  • a backlight having a directivity by controlling the light emitting direction that is, a so-called directional backlight.
  • a first polarizing plate 5 is provided between the backlight 4 and the liquid crystal cell 13.
  • the first polarizing plate 5 functions as a polarizer.
  • the angle is represented counterclockwise with reference to the positive direction of the x-axis direction.
  • the transmission axis P1 of the first polarizing plate 5 is set in the 135 ° -315 ° direction.
  • a second polarizing plate 7 is provided on the liquid crystal cell 13 side of the light control member 3, that is, between the liquid crystal cell 13 and the light control film 6.
  • the second polarizing plate 7 functions as a polarizer.
  • the transmission axis P2 of the second polarizing plate 7 is arranged so as to be orthogonal to the transmission axis P1 of the first polarizing plate 5.
  • the transmission axis P2 of the second polarizing plate 7 is set in the 45 ° -225 ° direction.
  • the transmission axis P1 of the first polarizing plate 5 and the transmission axis P2 of the second polarizing plate 7 are arranged in crossed Nicols.
  • a first retardation film 8 ⁇ / b> A is provided between the first polarizing plate 5 and the liquid crystal cell 13.
  • the slow axis K1 of the first retardation film 8A is disposed so as to be orthogonal to the transmission axis P1 of the first polarizing plate 5.
  • the slow axis K1 of the first retardation film 8A is set in the 45 ° -225 ° direction.
  • a second retardation film 8 ⁇ / b> B is provided between the second polarizing plate 7 and the liquid crystal cell 13.
  • the slow axis K2 of the second retardation film 8B is disposed so as to be orthogonal to the transmission axis P2 of the second polarizing plate 7.
  • the slow axis K2 of the second retardation film 8B is set in the 135 ° -315 ° direction.
  • FIG. 4 is a perspective view of the light control film 6 as viewed from the viewing side.
  • the light control film 6 includes a base material 39, a plurality of light shielding layers 40, and a light diffusion portion 41, as shown in FIG.
  • the light diffusion portion 41 and the plurality of light shielding layers 40 are formed on the first surface (one surface) 39 a of the base material 39.
  • the light diffusion portion 41 is formed in a region (first region) other than the region (second region) where the light shielding layer 40 is formed in the first surface 39a.
  • the light control film 6 is placed on the second polarizing plate 7 in such a posture that the side where the light diffusing portion 41 is provided faces the second polarizing plate 7 and the base 39 side faces the viewing side. Is arranged.
  • the light control film 6 is fixed to the second polarizing plate 7 through the adhesive layer 43.
  • the base material 39 examples include transparent resin base materials such as triacetyl cellulose (TAC) film, polyethylene terephthalate (PET), polycarbonate (PC), polyethylene naphthalate (PEN), and polyethersulfone (PES) film.
  • TAC triacetyl cellulose
  • PET polyethylene terephthalate
  • PC polycarbonate
  • PEN polyethylene naphthalate
  • PES polyethersulfone
  • the base material 39 becomes a base when the material for the light shielding layer 40 and the light diffusion portion 41 is applied later in the manufacturing process.
  • the base material 39 needs to have heat resistance and mechanical strength in a heat treatment step during the manufacturing process. Therefore, as the base material 39, a glass base material or the like may be used in addition to the resin base material. However, it is preferable that the thickness of the base material 39 is as thin as possible without impairing heat resistance and mechanical strength.
  • the total light transmittance of the base material 39 is preferably 90% or more as defined in JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
  • a transparent resin substrate having a thickness of 100 ⁇ m is used as an example.
  • the light shielding layer 40 is randomly arranged as viewed from the normal direction of the main surface of the base material 39.
  • the light shielding layer 40 is made of an organic material having light absorption and photosensitivity such as black resist and black ink.
  • a metal film such as Cr (chromium) or a Cr / Cr oxide multilayer film may be used.
  • the organic material which comprises the light shielding layer 40 may contain the ultraviolet absorber which absorbs an ultraviolet-ray.
  • the light diffusing section 41 is made of an organic material having optical transparency and photosensitivity such as acrylic resin and epoxy resin. Further, the total light transmittance of the light diffusing portion 41 is preferably 90% or more in accordance with JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
  • the light diffusing section 41 has a light exit end face 41a, a light incident end face 41b, and a reflecting face 41c.
  • the light emission end surface 41 a is a surface in contact with the base material 39.
  • the light incident end surface 41b is a surface facing the light emitting end surface 41a.
  • the reflection surface 41 c is a tapered side surface of the light diffusion portion 41.
  • the reflection surface 41c is a surface that reflects light incident from the light incident end surface 41b.
  • the area of the light incident end face 41b is larger than the area of the light exit end face 41a.
  • the light diffusion part 41 is a part that contributes to the transmission of light in the light control film 6. That is, the light incident on the light diffusing unit 41 is totally reflected by the reflection surface 41 c of the light diffusing unit 41, and is guided and emitted while being substantially confined inside the light diffusing unit 41.
  • the light control film 6 is arranged so that the base material 39 faces the viewing side. Therefore, of the two opposing surfaces of the light diffusing portion 41, the surface with the smaller area becomes the light emission end surface 41a. On the other hand, the surface with the larger area becomes the light incident end surface 41b.
  • the inclination angle of the reflection surface 41c of the light diffusion portion 41 (the angle formed between the light incident end surface 41b and the reflection surface 41c) is preferably 75 ° or more and 85 ° or less. In the present embodiment, the inclination angle of the reflection surface 41c of the light diffusion portion 41 is 75 °. However, the inclination angle of the reflection surface 41c of the light diffusion portion 41 is not particularly limited as long as it is an angle capable of sufficiently diffusing incident light when light is emitted from the light control film 6. In the present embodiment, the inclination angle of the reflection surface 41c of the light diffusing unit 41 is constant.
  • the height from the light incident end surface 41 b to the light emitting end surface 41 a of the light diffusion portion 41 is set to be larger than the layer thickness of the light shielding layer 40.
  • the layer thickness of the light shielding layer 40 is about 150 nm as an example.
  • the height from the light incident end surface 41b of the light diffusion portion 41 to the light emitting end surface 41a is about 20 ⁇ m.
  • a portion surrounded by the reflection surface 41 c of the light diffusion portion 41 and the light shielding layer 40 is a hollow portion 42.
  • air exists in the hollow portion 42 (outside the light diffusion portion 41). Therefore, if the light diffusion portion 41 is formed of, for example, a transparent acrylic resin, the reflection surface 41c of the light diffusion portion 41 becomes an interface between the transparent acrylic resin and air.
  • the hollow portion 42 may be filled with another low refractive index material. However, the difference in the refractive index at the interface between the inside and the outside of the light diffusing portion 41 is maximized when air is present rather than when any low refractive index material is present outside.
  • the critical angle is the smallest in the configuration of the present embodiment, and the incident angle range in which the light is totally reflected by the reflection surface 41c of the light diffusion portion 41 is the widest. As a result, light loss is further suppressed, and high luminance can be obtained.
  • the presence of a low refractive index material indicates that the periphery of the light diffusion portion 41 is in a low refractive index state so that light can be totally reflected.
  • the hollow portion 42 includes a state in which an inert gas such as nitrogen is filled instead of air.
  • the inside of the hollow portion 42 may be in a vacuum state or a reduced pressure state than the atmosphere.
  • the refractive index of the base material 39 and the refractive index of the light diffusion portion 41 are substantially equal.
  • the reason is as follows. For example, consider a case where the refractive index of the base material 39 and the refractive index of the light diffusion portion 41 are greatly different. In this case, when light incident from the light incident end surface 41 b exits from the light diffusion portion 41, unnecessary light refraction or reflection may occur at the interface between the light diffusion portion 41 and the base material 39. In this case, there is a possibility that problems such as failure to obtain a desired viewing angle and a decrease in the amount of emitted light may occur.
  • FIG. 5 is a schematic diagram of the light control film 6.
  • the upper left side is a plan view of the light control film 6.
  • the lower left side is a cross-sectional view along the line AA in the plan view of the upper left side.
  • the upper right stage is a cross-sectional view along the line BB in the plan view of the upper left stage.
  • a plurality of light shielding layers 40 are provided scattered on the first surface 39 a of the base material 39.
  • the planar shape of the light shielding layer 40 as viewed from the normal direction of the substrate 39 is an elongated ellipse.
  • the light shielding layer 40 has a major axis and a minor axis.
  • the long axis is the longest axis in the planar shape of the light shielding layer 40 viewed from the normal direction of the substrate 39.
  • the short axis is the shortest axis in the planar shape of the light shielding layer 40 as viewed from the normal direction of the substrate 39.
  • the ratio of the length of the short axis to the length of the long axis in each light shielding layer 40 is approximately equal.
  • the part corresponding to the lower part of the light shielding layer 40 is an elliptic frustum-shaped hollow part 42.
  • the light control film 6 has a plurality of hollow portions 42.
  • a light diffusing portion 41 is continuously provided in a portion other than the plurality of hollow portions 42.
  • the major axis direction of the ellipse forming the planar shape of each light shielding layer 40 (hereinafter sometimes referred to as the major axis direction of the light shielding layer 40) is substantially aligned in the X direction.
  • the minor axis direction of the ellipse forming the planar shape of each light shielding layer 40 (hereinafter, sometimes referred to as the minor axis direction of the light shielding layer 40) is generally aligned in the Y direction.
  • the ratio of the reflection surface 41c along the X direction out of the reflection surface 41c of the light diffusion portion 41 is the proportion of the reflection surface 41c along the Y direction. More than. Therefore, the light Ly reflected by the reflecting surface 41c along the X direction and diffused in the Y direction is larger than the light Lx reflected by the reflecting surface 41c along the Y direction and diffused in the X direction.
  • the azimuth angle direction Vs with the strongest diffusibility of the light control film 6 is the Y direction which is the minor axis direction of the light shielding layer 40.
  • the polar angle direction is arbitrary. The definition of polar angle and azimuth will be described later.
  • the ratio of the reflective surface along the X direction in the reflective surface 41c of the light diffusing portion 41 is equal to the ratio of the reflective surface along the Y direction.
  • the light reflected by the reflecting surface along the X direction and diffused in the Y direction is equal to the light reflected by the reflecting surface along the Y direction and diffused in the X direction. That is, when viewed from the normal direction of the base material 39, the light is reflected isotropically from the reflecting surface 41c. Therefore, there is no azimuthal direction in which the light diffusing portion 41 has the strongest diffusibility.
  • FIG. 6 is a plan view schematically showing a schematic configuration of the light control film.
  • the plurality of light shielding layers 40 are regularly arranged with the same size.
  • the light control film 6 is provided with a mark (index) 50 indicating the azimuth angle direction Vs where the light control film 6 is relatively diffusive.
  • the planar shape of the light control film 6 is a rectangle that is long in the left-right direction (horizontally long), and the marks 50 are respectively provided at two corners that are diagonal to the base material 39 that forms the rectangle.
  • the direction along the short side of the base material 39 provided with the mark 50 is the azimuth angle direction Vs in which the light control film 6 has relatively strong diffusibility.
  • the light control film 6 When the user handles the light control film 6 alone, when the user looks at the light control film 6 from the front, the light control film 6 is oriented so that the mark 50 comes to the lower left and upper right of the user.
  • the vertical direction is the azimuth angle direction Vs that has relatively strong diffusibility in the light control film 6.
  • the strong diffusion direction Vs can be easily determined from the appearance.
  • the mark 50 is formed by intersecting two linear portions 51 and 52 having the same length, but the lengths of the linear portions 51 and 52 may be different.
  • the mark 50 is made of the same material as the light shielding layer 40 and is patterned simultaneously in the same process as the light shielding layer 40. For example, you may form the length of the linear part along the strong diffusion direction Vs of the light control film 6 longer than the other linear part.
  • FIGS. 7A to 7E are diagrams showing other embodiments of mark positions and shapes.
  • the marks 50 are not limited to those described above, and dots, arrows, characters, etc. as shown in FIGS. 7A to 7E may be used. Further, the positions to be arranged may be provided not only on the diagonal but also on all four corners, or on only one corner. In addition, marks 50 having different shapes may be mixed. Further, the mark 50 may be formed in a separate process from the light shielding layer 40 using a material different from that of the light shielding layer 40.
  • the arrow itself indicates directionality, when using the arrow indicating the strong diffusion direction Vs of the light control film 6 as the mark 50, it is not always necessary to form a plurality on the base material 39. As shown in FIG. 7D, only one may be provided on the base material 39.
  • the vertical direction of the character is defined by its specifications, when the character is used as the mark 50, it is described so that the vertical direction of the character is aligned with the direction along the strong diffusion direction Vs of the light control film 6. Thereby, by adjusting the direction of the light control film 6 so that the user can read the character that is the mark 50 in a normal state, the vertical direction thereof becomes the strong diffusion direction Vs. Therefore, even when characters are used as the marks 50, it is not necessary to provide a plurality of characters on the base material 39.
  • the light control film 6 When aligning the light control film 6 with respect to the liquid crystal panel 2, the light control film 6 is oriented so that the mark 50 is located at the lower left or upper right of the liquid crystal panel 2. Thereby, the azimuth angle direction Vs with relatively strong diffusibility of the light control film 6 can be matched with the azimuth angle direction in which the luminance viewing angle of the liquid crystal panel 2 is relatively narrow. In a state where the light control film 6 is bonded to the liquid crystal panel 2, each of the marks 50 is positioned outside the display area 44 of the liquid crystal panel 2 and does not deteriorate the display quality.
  • the azimuth angle direction Vs where the diffusibility of the light control film 6 is relatively strong and the short side of the base material 39 are substantially parallel.
  • FIGS. 8A and 8B are diagrams for explaining the operation of the liquid crystal panel 2.
  • 8A is a diagram showing a state when no voltage is applied to the liquid crystal panel 2 (between the pixel electrode 25 and the counter electrode 33 shown in FIG. 3) (when no voltage is applied).
  • FIG. 8B is a diagram illustrating a state when a certain voltage is applied to the liquid crystal panel 2 (when a voltage is applied).
  • the symbol M is a liquid crystal molecule constituting the liquid crystal layer 11.
  • the liquid crystal molecules M are twisted by 90 ° between the alignment film 27 and the alignment film 34 as shown in FIG. 8A.
  • the polarization plane of linearly polarized light transmitted through the first polarizing plate 5 having the transmission axis P1 in the 135 ° to 315 ° direction is rotated by 90 ° due to the optical rotation of the liquid crystal layer 11.
  • the linearly polarized light transmitted through the first polarizing plate 5 is transmitted through the second polarizing plate 7 having the transmission axis P2 in the 45 ° -225 ° direction.
  • white display is obtained when no voltage is applied.
  • the liquid crystal molecules M rise between the alignment film 27 and the alignment film 34 in the direction along the electric field.
  • the polarization plane of the linearly polarized light transmitted through the first polarizing plate 5 having the transmission axis P1 in the 135 ° to 315 ° direction does not rotate. Therefore, the linearly polarized light transmitted through the first polarizing plate 5 does not pass through the second polarizing plate 7 having the transmission axis P2 in the 45 ° -225 ° direction. As a result, black is displayed when a voltage is applied.
  • FIG. 9 is a diagram for explaining the definition of the polar angle and the azimuth angle.
  • the angle formed by the observer's line-of-sight direction F with reference to the normal direction E of the screen of the liquid crystal display device 1 is defined as a polar angle ⁇ .
  • the angle formed by the direction of the line segment G when the line-of-sight direction F of the observer is projected on the screen with reference to the positive direction (0 ° direction) of the x-axis is defined as an azimuth angle ⁇ .
  • FIG. 10 is a front view of the liquid crystal display device 1.
  • the horizontal direction (x-axis direction) is the azimuth angle ⁇ : 0 ° -180 ° direction.
  • the direction of the azimuth angle ⁇ : 0 ° -180 ° is the left-right direction.
  • the direction of azimuth ⁇ : 0 ° -180 ° is a direction along an axis horizontal to the ground.
  • the vertical direction (y-axis direction) is the azimuth angle ⁇ : 90 ° -270 ° direction.
  • the direction of the azimuth angle ⁇ : 90 ° -270 ° is the vertical direction.
  • the direction of azimuth angle ⁇ : 90 ° -270 ° is a direction along an axis perpendicular to the ground.
  • FIG. 11 is a front view of the liquid crystal display device 1 according to the present embodiment, in which the light control film 6 has a relatively strong azimuthal direction Vs and the transmission axis of the polarizing plate (the transmission axis of the first polarizing plate 5). It is a figure which shows the arrangement
  • the plurality of light shielding layers 40 are regularly arranged with the same size.
  • the size of the second polarizing plate 7 is drawn larger than that of the light control film 6.
  • the front shape of the liquid crystal display device 1 is a rectangle that is long in the left-right direction (horizontally long).
  • the short side direction is the vertical direction of the liquid crystal display device 1.
  • the azimuth angle ⁇ : 90 ° -270 ° direction of the screen substantially coincides with the azimuth angle direction Vs where the light control film 6 disposed on the liquid crystal panel has a relatively strong diffusivity.
  • the light control film 6 is attached to the second polarizing plate 7 of the liquid crystal panel 2 through the adhesive layer 43. Positioning of the light control film 6 with respect to the liquid crystal panel 2 (second polarizing plate 7) is performed based on the mark 50.
  • the light control film 6 is positioned so that the pair of marks 50 are positioned substantially at the lower left or upper right corner of the liquid crystal panel 2, and the light control film 6 has a relatively strong azimuthal direction Vs and a liquid crystal panel.
  • the two short sides are bonded in a substantially parallel state (matched). Note that the azimuth angle direction Vs, in which the light control film 6 has a relatively strong diffusivity, and the short side of the liquid crystal panel 2 do not need to be completely coincident (become parallel), but may be substantially parallel. .
  • the azimuth angle direction Vs in which the light control film 6 is relatively diffusive and the transmission axis P2 of the second polarizing plate 7 form an angle of approximately 45 degrees. Further, the azimuth angle direction Vs where the light control film 6 is relatively diffusive and the transmission axis P1 of the first polarizing plate 5 form an angle of approximately 45 degrees. Thereby, the diffusion strength in the vertical direction is increased in the liquid crystal display device 1, and the visibility in the vertical direction is further improved.
  • the liquid crystal panel 2 of the present embodiment is in the TN mode, and when the viewer visually recognizes the director direction of the liquid crystal molecules during driving, the luminance is decreased and the gradation is inverted. Therefore, in the present embodiment, when the light control film 6 is bonded to the liquid crystal panel 2 with the azimuth angle direction (the vertical direction in the liquid crystal display device 1) having a relatively narrow luminance viewing angle as the viewing angle improving direction in the liquid crystal panel 2. Based on the mark 50, the light control film 6 is provided so that the azimuth angle direction Vs having relatively strong diffusibility matches the viewing angle improvement direction. Thereby, the viewing angle characteristic of the liquid crystal display device 1 can be improved efficiently.
  • the light control film 6 is provided with a mark 50 indicating the azimuth angle direction Vs having relatively strong diffusibility.
  • the mark 50 indicating the strong diffusion direction Vs on the light control film 6 itself the strong diffusion direction Vs of the light control film 6 can be easily determined from the appearance.
  • the light control film 6 When the light control film 6 is bonded to the liquid crystal panel 2, if the light control film 6 and the liquid crystal panel 2 are aligned based on the mark 50 formed simultaneously with the light shielding layer 40, the direction of strong diffusion of the light control film 6 Vs and the viewing angle improvement direction of the liquid crystal panel 2 can be easily matched approximately. Thereby, the viewing angle characteristic of the liquid crystal display device 1 can be improved efficiently.
  • the marks 50 are provided on the diagonals of the light control film 6, respectively. For this reason, even if the direction of the light control film 6 is rotated in a plane at the time of manufacture, if the alignment with the second polarizing plate 7 is performed based on the mark 50, the strong diffusion direction of the light control film 6 and the liquid crystal The viewing angle improvement direction of the panel 2 can be matched.
  • making the viewing angle improvement direction of the liquid crystal panel 2 substantially coincide with the strong diffusion direction of the light control film 6 may be simply referred to as making the azimuth directions coincide.
  • FIG. 12 is a graph showing the luminance distribution in the polar angle direction of the liquid crystal display device.
  • the horizontal axis represents the polar angle ⁇ [°] indicating the angle of line of sight when the liquid crystal display device is viewed from the front (normal direction) as “0 °”.
  • (Normal direction) is “0 °”
  • the upper side is represented by plus
  • the lower side is represented by minus.
  • the vertical axis is a direction along an axis perpendicular to the ground (azimuth angle ⁇ : 90 ° -270 ° direction), and is a normalized luminance in which the display luminance in the front direction is expressed as “1”.
  • the luminance distribution when the light control film is installed with the azimuth direction matched on the viewing side of the liquid crystal panel the luminance distribution when the light control film is installed without matching the azimuth direction on the viewing side of the liquid crystal panel, The luminance distribution when the light control film is not installed on the liquid crystal panel is shown.
  • the effect of improving the viewing angle characteristics can be sufficiently exhibited. That is, since the normalized luminance value increases by matching the strong diffusion direction of the light control film with the viewing angle improvement direction of the liquid crystal panel, the viewer's viewpoint is tilted so that the polar angle becomes large (liquid crystal Visibility in the case of viewing the display device from below can be improved efficiently.
  • FIG. 13 is a plan view showing a schematic configuration of the light control film in the second embodiment.
  • the light control film 80 of the present embodiment has a mark 81 configured by the uneven shape of the base material 39.
  • the mark 81 includes a convex portion 82 provided at the first end portion 39A of the base material 39 and a concave portion 83 provided at the second end portion 39B opposite to the first end portion 39A.
  • the concave portion 83 has a shape obtained by inverting the shape of the convex portion 82 provided in the first end portion 39A.
  • the lengths of the end side 82a of the convex portion 82 and the end side 83a of the concave portion 83 are equal to each other, and the lengths of the end side 82b of the convex portion 82 and the end side 83b of the concave portion 83 are also equal to each other.
  • the short axes of the plurality of light shielding layers 40 formed on the base 39 are substantially parallel to the short sides (first end 39A and second end 39B) of the base 39. That is, the strong diffusion direction Vs of the light control film 80 is along the first end 39 ⁇ / b> A and the second end 39 ⁇ / b> B of the base material 39.
  • the convex portion 82 and the concave portion 83 constituting the mark 81 are formed on the first end portion 39A and the second end portion 39B, respectively, along the strong diffusion direction Vs of the light control film 80.
  • the direction along the first end portion 39A and the second end portion 39B in the uneven shape is the azimuth angle direction Vs where the diffusibility of the light control film 80 is relatively strong. Therefore, the mark 81 functions as indicating the azimuth angle direction Vs where the light control film 80 has relatively strong diffusibility.
  • the light control film 80 when the user handles the light control film 80 alone, the light control film 80 is oriented so that the convex portion 82 is on the left side and the concave portion 83 is on the right side when the light control film 80 is viewed from the front.
  • the vertical direction is the strong diffusion direction Vs. As described above, the strong diffusion direction Vs can be easily determined from the appearance by the mark 81 using the outer shape of the light control film 80.
  • the azimuth angle direction Vs where the light control film 80 has a relatively strong diffusivity and the viewing angle improvement direction of the liquid crystal panel 2 are reliably matched. And the effect of improving the viewing angle characteristics can be sufficiently exhibited.
  • FIG. 14 is a plan view showing a case where a light control film is arranged on the viewing side of the liquid crystal panel.
  • the mark 81 is positioned outside the display area 44 of the liquid crystal panel 2 in a state where the light control film 80 is bonded to the second polarizing plate 7. Thereby, the mark 81 does not deteriorate the display quality. Since the mark 81 is hidden by the exterior (not shown) of the liquid crystal display device, it is not visually recognized by the viewer.
  • FIG. 15 is a schematic configuration diagram illustrating an example of a manufacturing apparatus used for manufacturing the light control film 80.
  • FIG. 16A and FIG. 16B are diagrams illustrating a process of obtaining a plurality of light control films by cutting an original roll. In FIG. 16B, illustration of the light shielding layer and the light diffusion portion is omitted.
  • the manufacturing apparatus 60 shown in FIG. 15 conveys the long base material 59 by roll-to-roll, and performs various processes in the meantime.
  • the manufacturing apparatus 60 uses a printing method for forming the light shielding layer 40.
  • the manufacturing apparatus 60 is provided with a feed roller 61 for feeding the substrate 59 at one end, and a winding roller 62 for winding the substrate 59 at the other end.
  • the base material 59 is configured to move from the delivery roller 61 side toward the take-up roller 62 side.
  • a negative photosensitive resin layer forming device 66 composed of a printing device 63, a bar coating device 64 and a first drying device 65, from the delivery roller 61 side toward the take-up roller 62 side, development A device 67 and a second drying device 68 are sequentially arranged.
  • an exposure device 69 is arranged between the negative photosensitive resin layer forming device 66 and the developing device 67 arranged in the transport direction of the base material 59.
  • the printing device 63 is for printing a plurality of light shielding layers 40 made of black resin on the substrate 59.
  • the bar coater 64 has a light-transmissive negative type. This is for applying the photosensitive resin 57.
  • the first drying device 65 dries the negative photosensitive resin 57 after application.
  • the coating film 58 is used.
  • the exposure device 69 is for exposing the coating film 58 of the negative photosensitive resin 57 from the base material 59 side.
  • the exposure device 69 includes a light source 70 as shown in FIG.
  • the negative photosensitive resin layer forming device 66 is exemplified by the bar coating device 64 and the first drying device 65, but is not limited to this.
  • a laminating apparatus for laminating the dry film resist on the substrate 59 is used as the negative photosensitive resin layer forming apparatus 66.
  • an original fabric roll 77 having a plurality of light shielding layers 40 and light diffusion portions 41 on a base material 59 is manufactured.
  • the raw fabric roll 77 is cut by a cutter 78 at a portion indicated by an arrow in the drawing to form a light control film 80.
  • the cutter 78 has a bent shape near the center.
  • the portion of the mark 81 complements the adjacent light control film 80.
  • the shape of the mark 81 in the light control film 80 coincide with the end portion of the adjacent light control film 80, the number of times the raw roll 77 is cut is reduced. Moreover, the raw fabric roll 77 can be used without waste.
  • FIG. 17 is a perspective view when a plurality of light control films are used in a large liquid crystal panel.
  • FIG. 17 by arranging two light control films 80 side by side on a large liquid crystal panel 2, it can be used as a large light control film.
  • the mark 81 represented by the outer shape of the light control film 80 is not limited to that described above.
  • a mark 81 is formed by a triangular notch 84 formed in the first end 39A of the base 39 and a triangular protrusion 85 formed in the second end 39B. May be configured.
  • the notch portion 84 and the protruding portion 85 have shapes that are inverted from each other.
  • the base 39 of the light control film 80 is made of a transparent resin base, the shape thereof can be partially changed to be the mark 81.
  • the base material which comprises the 2nd polarizing plate 7 is a glass base material, it is difficult to change a part of external shape. Therefore, it is easier to provide the mark 81 on the light control film 80 side.
  • FIG. 19 is a cross-sectional view showing a schematic configuration of the light control film in the third embodiment.
  • 20A and 20B are diagrams illustrating a schematic configuration of a protective film having a mark.
  • a protective film 86 for protecting the light diffusion portion 41 is provided on the light control film 6.
  • the protective film 86 is temporarily used until the light control film 6 is bonded onto the liquid crystal panel 2.
  • the protective film 86 is peeled off from the light control film 6 (light diffusion portion 41), and then the light diffusion portion 41 is attached to the liquid crystal panel 2. Bonding is performed so as to be in contact with the second polarizing plate 7.
  • the protective film 86 is bonded to the light control film 6 through an adhesive layer (not shown), but the adhesive layer is also peeled off from the light diffusion portion 41 simultaneously with the peeling of the protective film 86.
  • the light control film 6 is bonded via the adhesive layer 43 (FIG. 2) formed on the outer surface of the second polarizing plate 7 after the protective film 86 is peeled off.
  • a mark (index) 87 indicating the azimuth angle direction Vs having the strongest diffusibility of the light control film 6 is printed on the outer surface 86b opposite to the light control film 6.
  • an arrow or a character such as an item having directivity is used, and an arrow or a character is marked along the strong diffusion direction Vs of the light control film 6. Therefore, the strong diffusion direction Vs can be easily determined from the appearance.
  • the mark 87 attached to the protective film 86 a figure or the like may be used in addition to an arrow or a character.
  • the number and size of the marks 87 are not limited to those shown in the drawings, but may be any that can be easily recognized from the appearance.
  • the light control film 6 is protected by the protective film 86 until it is bonded to the liquid crystal panel 2 during the manufacturing process, dust and scratches on the surface of the light diffusion portion 41 are prevented. be able to. Thereby, bonding of the light control film 6 and the liquid crystal panel 2 can be performed satisfactorily. Further, by forming the mark 87 indicating the strong diffusion direction Vs of the light control film 6 on the protective film 86 side, the light control film 6 itself can be manufactured by an existing manufacturing method. When the light control film 6 is bonded to the liquid crystal panel 2, the strong diffusion direction Vs can be easily determined from the mark 87 of the protective film 86.
  • FIG. 21 is a cross-sectional view showing a schematic configuration of a light diffusion film in the fourth embodiment.
  • a protective film 86 is provided on the light control film 6 via an adhesive layer 88.
  • the protective film 86 is peeled off from the light control film 6 and then bonded so that the adhesive layer 88 is in contact with the second polarizing plate 7 of the liquid crystal panel 2.
  • the adhesive layer 88 remains on the light diffusion portion 41 of the light control film 6.
  • the protective film 86 may be peeled off immediately before the light control film 6 is bonded to the liquid crystal panel 2, so that the adhesive layer 43 need not be formed on the second polarizing plate 7 side of the liquid crystal panel 2. In the manufacturing process, the light control film 6 and the liquid crystal panel 2 can be easily handled.
  • FIG. 22 is a view showing an original fabric roll provided with a protective film.
  • an original fabric roll 89 in the present embodiment is provided with a long protective film 90 on a base material 59 via a light diffusion portion and a plurality of light shielding layers (all not shown). Yes.
  • a plurality of marks 87 indicating the strong diffusion direction Vs of the light diffusion part are formed on the protective film 90.
  • the plurality of marks 87 are provided at regular intervals in the longitudinal direction and the short direction of the original fabric roll 89 and are continuously present on the entire surface of the protective film 90.
  • FIG. 23 is a diagram illustrating a light diffusion film forming region in the raw fabric roll.
  • FIG. 24 is a perspective view showing the light control film cut out from the raw roll. According to the original fabric roll 89 of the present embodiment, as shown in FIGS. 23 and 24, even if the light control film 6 is cut out in an arbitrary size according to the size of the liquid crystal panel 2, it is provided on the protective film 86. The strong diffusion direction Vs in the light diffusion portion 41 can be confirmed by the mark 87.
  • the mark 87 of the protective film 90 provided in the fabric roll 89 not only the arrow shown in FIG. 22, but characters as shown in FIG. 25 may be used.
  • a character has directionality and has a vertical direction. Therefore, by making the vertical direction of the character coincide with the strong diffusion direction Vs of the light control film 6, the strong diffusion direction Vs of the light control film 6 can be determined when the character is read from any direction. Can do.
  • One embodiment of the present invention can be used for a light control film, a roll of light control film, and a display device.
  • SYMBOLS 1 Liquid crystal display device (display apparatus), 2 ... Liquid crystal panel (display body), 3 ... Light control member, 6,80 ... Light control film, E ... Normal direction, 39 ... Base material of light control film, 59 ... Raw material roll base material, 39a ... first surface (one surface), 39A ... first end, 39B ... second end, 40 ... light shielding layer, 41 ... light diffusion portion, 41a ... light emission end surface, 41b ... light Incident end face, 41c ... reflective surface, 42 ... hollow part, 44 ... display area, 50, 87 ... mark (index), 77, 89 ... raw roll, 82 ... convex part, 83 ... concave part, 86, 90 ... protective film , Vs ... Azimuth direction

Abstract

A light control film (6) in one mode of this invention comprises the following: a light-transmitting substrate (39); a light-diffusing section (41) provided in a first region of one surface of said light-transmitting substrate (39); a light-blocking layer (40) provided in a second region of said surface, said second region being the non-first-region part of said surface; and a hollow section adjacent to the light-diffusing section (41). The light-diffusing section (41), which forms a structure that has anisotropic light-scattering characteristics, has the following: a light-output end face that contacts the abovementioned surface of the light-transmitting substrate (39); a light-input end face that faces and has a larger surface area than said light-output end face; and a reflective surface that contacts the light-output end face and the light-input end face and reflects light inputted via the light-input end face. A mark (50) that indicates the direction of the anisotropy of the light-scattering characteristics of the light-diffusing section (41) is provided.

Description

光制御フィルム、光制御フィルムの原反ロール、表示装置Light control film, film roll of light control film, display device
 本発明は、光制御フィルム、光制御フィルムの原反ロール、表示装置に関するものである。
 本願は、2013年10月28日に、日本に出願された特願2013-223369号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a light control film, a roll of light control film, and a display device.
This application claims priority based on Japanese Patent Application No. 2013-223369 filed in Japan on October 28, 2013, the contents of which are incorporated herein by reference.
 携帯電話機等をはじめとする携帯型電子機器、テレビジョン、パーソナルコンピューター等のディスプレイとして、液晶表示装置が広く用いられている。一般に、液晶表示装置は、正面からの視認性に優れる反面、視野角が狭い。そのため、視野角を広げるための様々な工夫がなされている。その一つとして、液晶パネル等の表示体から射出される光の拡散角度を制御するための部材(以下、光拡散部材と称する)を表示体の視認側に備える構成が提案されている。 Liquid crystal display devices are widely used as displays for portable electronic devices such as cellular phones, televisions, personal computers, and the like. In general, a liquid crystal display device is excellent in visibility from the front, but has a narrow viewing angle. Therefore, various devices have been made to widen the viewing angle. As one of them, a configuration has been proposed in which a member for controlling the diffusion angle of light emitted from a display body such as a liquid crystal panel (hereinafter referred to as a light diffusion member) is provided on the viewing side of the display body.
 例えば、下記の特許文献1には、光拡散層に断面がV字状の溝が設けられ、溝の一部に光吸収層が設けられた光制御フィルムが開示されている。光制御フィルムにおいて、光拡散層の光入射側および光射出側にはポリエチレンテレフタレート(PET)等からなる透明なシートが配置されている。光拡散層に対して垂直に入射した光の一部は、溝の壁面で全反射した後、射出される。これにより、光制御フィルムから射出される光は拡散される。 For example, Patent Document 1 below discloses a light control film in which a light diffusion layer is provided with a groove having a V-shaped cross section, and a light absorption layer is provided in a part of the groove. In the light control film, a transparent sheet made of polyethylene terephthalate (PET) or the like is disposed on the light incident side and light emission side of the light diffusion layer. A part of the light incident perpendicular to the light diffusion layer is totally reflected on the wall surface of the groove and then emitted. Thereby, the light emitted from the light control film is diffused.
特開2000-352608号公報JP 2000-352608 A
 しかしながら、上記の光制御フィルムを表示装置の光射出側に配置した場合、表示装置の輝度視野角が相対的に狭い方位角方向(以下、視野角改善方向と言うことがある。)と、光制御フィルムの拡散性が相対的に強い方位角方向(以下、強拡散方向と言うことがある。)と、が概ね一致しなければ、光制御フィルムによる視野角特性を改善する効果が弱まってしまう。 However, when the light control film is arranged on the light emission side of the display device, the display device has a relatively narrow azimuth angle direction (hereinafter sometimes referred to as a viewing angle improvement direction) and light. If the azimuth angle direction in which the control film has a relatively strong diffusivity (hereinafter sometimes referred to as a strong diffusion direction) does not generally match, the effect of improving the viewing angle characteristics by the light control film will be weakened. .
 本発明の一つの態様は、上記従来技術の問題点に鑑み成されたものであって、表示装置と組み合わせたときに視野角特性の改善効果を十分に発揮することのできる光制御フィルム、光制御フィルムの原反ロール、表示装置を提供することを目的の一つとしている。 One aspect of the present invention has been made in view of the above-mentioned problems of the prior art, and is a light control film that can sufficiently exhibit the effect of improving viewing angle characteristics when combined with a display device. One object of the present invention is to provide an original roll of a control film and a display device.
 上記の目的を達成するために、本発明は以下の手段を採用した。
 本発明の一態様における光制御フィルムは、光透過性を有する基材と、前記基材の一面における第1領域に設けられた光拡散部と、前記一面のうち前記第1領域を除いた第2領域に設けられた遮光層と、前記光拡散部に隣り合う中空部と、を備え、前記光拡散部が、前記基材の前記一面に接する光射出端面と、前記光射出端面に対向し前記光射出端面の面積よりも大きい面積を有する光入射端面と、前記光射出端面と前記光入射端面とに接し、前記光入射端面から入射した光を反射する反射面と、を有し、前記光の散乱特性に異方性を持つ構成をなし、前記光拡散部による前記光の散乱特性の異方性の方向を示す指標が設けられている。
In order to achieve the above object, the present invention employs the following means.
The light control film according to an aspect of the present invention includes a light-transmitting base material, a light diffusion portion provided in a first region on one surface of the base material, and the first region of the one surface excluding the first region. A light shielding layer provided in two regions, and a hollow portion adjacent to the light diffusing portion, the light diffusing portion facing the one surface of the substrate, and the light emitting end surface. A light incident end surface having an area larger than an area of the light emitting end surface, a reflecting surface in contact with the light emitting end surface and the light incident end surface, and reflecting light incident from the light incident end surface, A structure having anisotropy in light scattering characteristics is provided, and an index indicating the direction of anisotropy of the light scattering characteristics by the light diffusion portion is provided.
 光制御フィルムでは、前記基材の前記一面の法線方向から見た前記光拡散部あるいは前記遮光層の平面的な形状が、2軸対称性を有する構成としてもよい。 In the light control film, the planar shape of the light diffusion part or the light shielding layer viewed from the normal direction of the one surface of the base material may have a biaxial symmetry.
 光制御フィルムでは、前記指標は、前記基材に設けられた凹凸によって構成されている構成としてもよい。 In the light control film, the index may be configured by unevenness provided on the base material.
 光制御フィルムでは、前記指標は、前記基材の第1端部に設けられた凸部と、前記第1端部とは反対側の第2端部に設けられた凹部と、によって構成され、前記第2端部には、前記第1端部の形状を反転させた形状の凹部が形成されている構成としてもよい。 In the light control film, the indicator is constituted by a convex portion provided at the first end portion of the base material and a concave portion provided at the second end portion opposite to the first end portion, The second end portion may be formed with a recess having a shape obtained by inverting the shape of the first end portion.
 光制御フィルムでは、前記指標は、矩形をなす前記基材の対角である2つの角部にそれぞれ設けられている構成としてもよい。 In the light control film, the index may be provided at two corners that are diagonal to the base material forming a rectangle.
 光制御フィルムでは、前記基材の前記一面側には、前記光拡散部を介して保護フィルムが設けられており、前記保護フィルムに前記指標が設けられている構成としてもよい。 The light control film may be configured such that a protective film is provided on the one surface side of the base material via the light diffusion portion, and the indicator is provided on the protective film.
 本発明の一態様である光制御フィルムの原反ロールは、長尺の光制御フィルムを巻回してなる光制御フィルムの原反ロールであって、前記光制御フィルムは、光透過性を有する基材と、前記基材の一面における第1領域に設けられた光拡散部と、前記一面のうち前記第1領域を除いた第2領域に設けられた遮光層と、前記光拡散部に隣り合う中空部と、を備え、前記光拡散部が、前記基材の前記一面に接する光射出端面と、前記光射出端面に対向し前記光射出端面の面積よりも大きい面積を有する光入射端面と、前記光射出端面と前記光入射端面とに接し、前記光入射端面から入射した光を反射する反射面と、を有し、前記光の散乱特性に異方性を持つ構成をなし、前記光拡散部による前記光の散乱特性の異方性の方向を示す指標が設けられている。 An original fabric roll of a light control film which is one embodiment of the present invention is an original fabric roll of a light control film formed by winding a long light control film, and the light control film is a base having light permeability. A material, a light diffusing portion provided in a first region on one surface of the base material, a light shielding layer provided in a second region of the one surface excluding the first region, and the light diffusing portion adjacent to each other A light emitting end surface that is in contact with the one surface of the substrate, and a light incident end surface that is opposed to the light emitting end surface and has an area larger than the area of the light emitting end surface; A reflection surface that is in contact with the light emission end surface and the light incident end surface and reflects light incident from the light incident end surface, and has a configuration having anisotropy in the light scattering characteristics, and the light diffusion An indicator indicating the direction of anisotropy of the light scattering characteristics by the part is provided. To have.
 本発明の一形態である表示装置は、表示体と、前記表示体の視認側に設けられ、前記表示体から入射される光を散乱させて射出させる光制御部材と、前記光制御部材が、上記の光制御フィルムで構成されており、前記光制御フィルムの光の散乱特性の異方性の方向を示す指標が、前記表示体における表示領域以外の領域に設けられている。 A display device according to one embodiment of the present invention is provided with a display body, a light control member that is provided on a viewing side of the display body, scatters and emits light incident from the display body, and the light control member includes: It consists of said light control film, The parameter | index which shows the direction of the anisotropy of the light scattering characteristic of the said light control film is provided in areas other than the display area in the said display body.
 表示装置では、前記表示体の輝度視野角が相対的に狭い方位角方向と、前記光制御フィルムの拡散性が相対的に強い方位角方向と、が概ね一致している構成としてもよい。 The display device may have a configuration in which an azimuth angle direction in which the luminance viewing angle of the display body is relatively narrow and an azimuth angle direction in which the light control film has a relatively strong diffusivity substantially coincide.
 本発明の一態様によれば、表示装置と組み合わせたときに視野角特性の改善効果を十分に発揮することのできる光制御フィルム、光制御フィルムの原反ロール、表示装置を提供することが可能である。 According to one embodiment of the present invention, it is possible to provide a light control film, an original roll of light control film, and a display device that can sufficiently exhibit the effect of improving viewing angle characteristics when combined with a display device. It is.
実施形態の液晶表示装置を斜め上方(視認側)から見た斜視図。The perspective view which looked at the liquid crystal display device of an embodiment from the slanting upper part (viewing side). 液晶表示装置の断面図。Sectional drawing of a liquid crystal display device. 液晶パネルの縦断面図。The longitudinal cross-sectional view of a liquid crystal panel. 光制御部材(光制御フィルム)を視認側から見た斜視図。The perspective view which looked at the light control member (light control film) from the visual recognition side. 光制御部材(光制御フィルム)の模式図。The schematic diagram of a light control member (light control film). 光制御フィルムの概略構成を模式的に示す平面図。The top view which shows typically schematic structure of a light control film. マークの位置、形状の他の実施形態を示す第1の図。The 1st figure which shows other embodiment of the position of a mark, and a shape. マークの位置、形状の他の実施形態を示す第2の図。The 2nd figure which shows other embodiment of the position of a mark, and a shape. マークの位置、形状の他の実施形態を示す第3の図。The 3rd figure which shows other embodiment of the position of a mark, and a shape. マークの位置、形状の他の実施形態を示す第4の図。The 4th figure which shows other embodiment of the position of a mark, and a shape. マークの位置、形状の他の実施形態を示す第5の図。The 5th figure which shows other embodiment of the position of a mark, and a shape. 液晶パネルの動作を説明するための図であって、液晶パネル(図3に示す画素電極と対向電極との間)に電圧が印加されていないとき(電圧無印加時)の状態を示す図。FIG. 4 is a diagram for explaining the operation of the liquid crystal panel, and showing a state when no voltage is applied to the liquid crystal panel (between the pixel electrode and the counter electrode shown in FIG. 3) (when no voltage is applied). 液晶パネルの動作を説明するための図であって、液晶パネルに一定の電圧を印加したとき(電圧印加時)の状態を示す図。It is a figure for demonstrating operation | movement of a liquid crystal panel, Comprising: The figure which shows a state when a fixed voltage is applied to a liquid crystal panel (at the time of voltage application). 極角と方位角の定義を説明するための図。The figure for demonstrating the definition of a polar angle and an azimuth. 液晶表示装置の正面図。The front view of a liquid crystal display device. 実施形態に係る液晶表示装置の正面図における、光制御フィルムの拡散性が相対的に強い方位角方向Vsと、偏光板の透過軸(第1偏光板の透過軸P1、第2偏光板の透過軸P2)との配置関係を示す図。In the front view of the liquid crystal display device according to the embodiment, the light control film has a relatively strong diffusivity in the azimuth direction Vs, the transmission axis of the polarizing plate (the transmission axis P1 of the first polarizing plate, the transmission of the second polarizing plate). The figure which shows the arrangement | positioning relationship with the axis | shaft P2). 液晶表示装置の極角方向における輝度分布を示すグラフ。The graph which shows the luminance distribution in the polar angle direction of a liquid crystal display device. 第2実施形態における光制御フィルムの概略構成を示す平面図。The top view which shows schematic structure of the light control film in 2nd Embodiment. 第2実施形態において液晶パネルの視認側に光制御フィルムを配置した場合を示す平面図。The top view which shows the case where the light control film is arrange | positioned at the visual recognition side of a liquid crystal panel in 2nd Embodiment. 第2実施形態における光制御フィルムの製造に用いられる製造装置の一例を示す概略構成図。The schematic block diagram which shows an example of the manufacturing apparatus used for manufacture of the light control film in 2nd Embodiment. 原反ロールを切断して複数の光制御フィルムを得る工程を示す第1の図。The 1st figure which shows the process of cut | disconnecting a raw fabric roll and obtaining a some light control film. 原反ロールを切断して複数の光制御フィルムを得る工程を示す第2の図。The 2nd figure which shows the process of cut | disconnecting an original fabric roll and obtaining a some light control film. 大型の液晶パネルに複数の光制御フィルムを利用する場合の斜視図。The perspective view in the case of utilizing a some light control film for a large sized liquid crystal panel. 第2実施形態における光制御フィルムの他の実施形態を示す図。The figure which shows other embodiment of the light control film in 2nd Embodiment. 第3実施形態における光制御フィルムの概略構成を示す断面図。Sectional drawing which shows schematic structure of the light control film in 3rd Embodiment. マークを有する保護フィルムの概略構成を示す第1の図。The 1st figure which shows schematic structure of the protective film which has a mark. マークを有する保護フィルムの概略構成を示す第2の図。The 2nd figure which shows schematic structure of the protective film which has a mark. 第4実施形態における光拡散フィルムの概略構成を示す断面図。Sectional drawing which shows schematic structure of the light-diffusion film in 4th Embodiment. 第5実施形態における保護フィルムを備えた原反ロールを示す図。The figure which shows the original fabric roll provided with the protective film in 5th Embodiment. 原反ロールにおける光拡散フィルムの形成領域を示す図。The figure which shows the formation area of the light-diffusion film in an original fabric roll. 原反ロールから切り出された光制御フィルムを示す斜視図。The perspective view which shows the light control film cut out from the original fabric roll. 原反ロールに付すマークの他の実施形態を示す図。The figure which shows other embodiment of the mark attached | subjected to an original fabric roll.
[第1実施形態]
 以下、本発明の第1実施形態について図を用いて説明する。
 本実施形態では、表示装置として、透過型の液晶パネル(表示体)を備えた液晶表示装置の例を挙げて説明する。
 なお、以下の全ての図面においては、各構成要素を見やすくするため、構成要素によって寸法の縮尺を異ならせて示すことがある。
[First Embodiment]
Hereinafter, a first embodiment of the present invention will be described with reference to the drawings.
In the present embodiment, an example of a liquid crystal display device including a transmissive liquid crystal panel (display body) will be described as a display device.
In all of the following drawings, in order to make each component easy to see, the scale of the size may be changed depending on the component.
 図1は本実施形態の液晶表示装置を斜め上方(視認側)から見た斜視図である。図2は液晶表示装置の断面図である。
 本実施形態の液晶表示装置(表示装置)1は、図1及び図2に示すように、液晶パネル(表示体)2と、光制御部材3(光制御フィルム6)と、バックライト4(照明装置)と、を備えている。液晶パネル2は、液晶セル13と、第1偏光板5と、第2偏光板7と、第1位相差フィルム8Aと、第2位相差フィルム8Bと、を備えている。本実施形態の光制御部材3は、後述する光制御フィルム6から成る。
 図1では、液晶パネル2を模式的に1枚の板状に図示しているが、その詳細な構造については後述する。
FIG. 1 is a perspective view of the liquid crystal display device of the present embodiment as viewed obliquely from above (viewing side). FIG. 2 is a cross-sectional view of the liquid crystal display device.
As shown in FIGS. 1 and 2, a liquid crystal display device (display device) 1 of the present embodiment includes a liquid crystal panel (display body) 2, a light control member 3 (light control film 6), and a backlight 4 (illumination). Device). The liquid crystal panel 2 includes a liquid crystal cell 13, a first polarizing plate 5, a second polarizing plate 7, a first retardation film 8A, and a second retardation film 8B. The light control member 3 of the present embodiment is composed of a light control film 6 described later.
In FIG. 1, the liquid crystal panel 2 is schematically illustrated as a single plate, but the detailed structure thereof will be described later.
 観察者は、光制御部材3が配置された図1における液晶表示装置1の上側から表示を見ることになる。以下の説明では、光制御部材3が配置された側を視認側と称し、バックライト4が配置された側を背面側と称する。また、以下の説明において、x軸は液晶表示装置1の画面の水平方向、y軸は液晶表示装置1の画面の垂直方向、z軸は液晶表示装置1の厚さ方向、と定義する。 The observer sees the display from the upper side of the liquid crystal display device 1 in FIG. 1 where the light control member 3 is arranged. In the following description, the side on which the light control member 3 is disposed is referred to as a viewing side, and the side on which the backlight 4 is disposed is referred to as a back side. In the following description, the x axis is defined as the horizontal direction of the screen of the liquid crystal display device 1, the y axis is defined as the vertical direction of the screen of the liquid crystal display device 1, and the z axis is defined as the thickness direction of the liquid crystal display device 1.
 本実施形態の液晶表示装置1においては、バックライト4から射出された光を液晶パネル2で変調し、変調した光によって所定の画像や文字等を表示する。また、液晶パネル2から射出された光が光制御部材3を透過すると、射出光が散乱状態となる。これにより、観察者は広い視野角を持って表示を視認できる。 In the liquid crystal display device 1 of the present embodiment, the light emitted from the backlight 4 is modulated by the liquid crystal panel 2, and a predetermined image, character, or the like is displayed by the modulated light. Further, when the light emitted from the liquid crystal panel 2 passes through the light control member 3, the emitted light enters a scattering state. Thereby, the observer can visually recognize the display with a wide viewing angle.
 以下、液晶パネル2の具体的な構成について説明する。
 ここでは、アクティブマトリクス方式の透過型液晶パネルを一例に挙げて説明する。ただし、本発明に適用可能な液晶パネルはアクティブマトリクス方式の透過型液晶パネルに限るものではない。本発明に適用可能な液晶パネルは、例えば半透過型(透過・反射兼用型)液晶パネルであっても良い。さらには、各画素がスイッチング用薄膜トランジスタ(Thin Film Transistor, 以下、TFTと略記する)を備えていない単純マトリクス方式の液晶パネルであっても良い。
Hereinafter, a specific configuration of the liquid crystal panel 2 will be described.
Here, an active matrix transmissive liquid crystal panel will be described as an example. However, a liquid crystal panel applicable to the present invention is not limited to an active matrix transmissive liquid crystal panel. The liquid crystal panel applicable to the present invention may be, for example, a transflective type (transmission / reflection type) liquid crystal panel. Further, a simple matrix type liquid crystal panel in which each pixel does not include a switching thin film transistor (hereinafter abbreviated as TFT) may be used.
 図3は、液晶パネル2の縦断面図である。
 図3に示すように、液晶セル13は、TFT基板9と、カラーフィルター基板10と、液晶層11と、を有している。TFT基板9は、スイッチング素子基板として機能する。
カラーフィルター基板10は、TFT基板9に対向して配置されている。液晶層11は、TFT基板9とカラーフィルター基板10との間に挟持されている。
FIG. 3 is a longitudinal sectional view of the liquid crystal panel 2.
As shown in FIG. 3, the liquid crystal cell 13 includes a TFT substrate 9, a color filter substrate 10, and a liquid crystal layer 11. The TFT substrate 9 functions as a switching element substrate.
The color filter substrate 10 is disposed to face the TFT substrate 9. The liquid crystal layer 11 is sandwiched between the TFT substrate 9 and the color filter substrate 10.
 液晶層11は、TFT基板9と、カラーフィルター基板10と、枠状のシール部材(図示せず)と、によって囲まれた空間内に封入されている。シール部材は、TFT基板9とカラーフィルター基板10とを所定の間隔をおいて貼り合わせる。 The liquid crystal layer 11 is enclosed in a space surrounded by the TFT substrate 9, the color filter substrate 10, and a frame-shaped seal member (not shown). The sealing member bonds the TFT substrate 9 and the color filter substrate 10 at a predetermined interval.
 本実施形態の液晶パネル2は、例えばTN(Twisted Nematic)モードで表示を行う。
液晶層11には誘電率異方性が正の液晶が用いられる。TFT基板9とカラーフィルター基板10との間には、スペーサー12が配置されている。スペーサー12は球状或いは柱状である。スペーサー12は、TFT基板9とカラーフィルター基板10との間の間隔を一定に保持する。
The liquid crystal panel 2 of the present embodiment performs display in, for example, a TN (Twisted Nematic) mode.
A liquid crystal having a positive dielectric anisotropy is used for the liquid crystal layer 11. A spacer 12 is disposed between the TFT substrate 9 and the color filter substrate 10. The spacer 12 is spherical or columnar. The spacer 12 keeps the distance between the TFT substrate 9 and the color filter substrate 10 constant.
 本発明の液晶パネル2の表示モードは上記のTNモードに限らない。例えば、VA(Vertical Alignment, 垂直配向)モード、STN(Super Twisted Nematic)モード、IPS(In-Plane Switching)モード、FFS(Fringe Field Switching)モード等を用いてもよい。 The display mode of the liquid crystal panel 2 of the present invention is not limited to the above TN mode. For example, a VA (Vertical Alignment) mode, an STN (Super Twisted Nematic) mode, an IPS (In-Plane Switching) mode, an FFS (Fringe Field Switching) mode, or the like may be used.
 図示はしないが、TFT基板9には、複数の画素がマトリクス状に配置されている。画素は、表示の最小単位領域である。TFT基板9には、複数のソースバスラインが、互いに平行に延在するように形成されている。TFT基板9には、複数のゲートバスラインが、互いに平行に延在するように形成されている。複数のゲートバスラインは、複数のソースバスラインと直交している。TFT基板9上には、複数のソースバスラインと複数のゲートバスラインとが格子状に形成されている。隣接するソースバスラインと隣接するゲートバスラインとによって区画された矩形状の領域が一つの画素となる。ソースバスラインは、TFT19のソース電極17に接続されている。ゲートバスラインは、TFT19のゲート電極16に接続されている。 Although not shown, a plurality of pixels are arranged in a matrix on the TFT substrate 9. A pixel is a minimum unit area of display. A plurality of source bus lines are formed on the TFT substrate 9 so as to extend in parallel to each other. A plurality of gate bus lines are formed on the TFT substrate 9 so as to extend in parallel to each other. The plurality of gate bus lines are orthogonal to the plurality of source bus lines. On the TFT substrate 9, a plurality of source bus lines and a plurality of gate bus lines are formed in a lattice pattern. A rectangular area defined by adjacent source bus lines and adjacent gate bus lines is one pixel. The source bus line is connected to the source electrode 17 of the TFT 19. The gate bus line is connected to the gate electrode 16 of the TFT 19.
 TFT基板9を構成する透明基板14の液晶層11側の面には、半導体層15、ゲート電極16、ソース電極17、ドレイン電極18等を有するTFT19が形成されている。
透明基板14としては、例えばガラス基板を用いることができる。
A TFT 19 having a semiconductor layer 15, a gate electrode 16, a source electrode 17, a drain electrode 18, etc. is formed on the surface of the transparent substrate 14 constituting the TFT substrate 9 on the liquid crystal layer 11 side.
As the transparent substrate 14, for example, a glass substrate can be used.
 透明基板14上には、半導体層15が形成されている。半導体層15の材料としては、例えばCGS(Continuous Grain Silicon:連続粒界シリコン)、LPS(Low-temperature Poly-Silicon:低温多結晶シリコン)、α-Si(Amorphous Silicon:非結晶シリコン)等の半導体材料が用いられる。 A semiconductor layer 15 is formed on the transparent substrate 14. Examples of the material of the semiconductor layer 15 include semiconductors such as CGS (Continuous Grain Silicon), LPS (Low-temperature Poly-Silicon), α-Si (Amorphous Silicon). Material is used.
 透明基板14上には、半導体層15を覆うようにゲート絶縁膜20が形成されている。
ゲート絶縁膜20の材料としては、例えばシリコン酸化膜、シリコン窒化膜、もしくはこれらの積層膜等が用いられる。
A gate insulating film 20 is formed on the transparent substrate 14 so as to cover the semiconductor layer 15.
As a material of the gate insulating film 20, for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
 ゲート絶縁膜20上には、半導体層15と対向するようにゲート電極16が形成されている。ゲート電極16の材料としては、例えばW(タングステン)/TaN(窒化タンタル)の積層膜、Mo(モリブデン)、Ti(チタン)、Al(アルミニウム)等が用いられる。 A gate electrode 16 is formed on the gate insulating film 20 so as to face the semiconductor layer 15. As the material of the gate electrode 16, for example, a laminated film of W (tungsten) / TaN (tantalum nitride), Mo (molybdenum), Ti (titanium), Al (aluminum), or the like is used.
 ゲート絶縁膜20上には、ゲート電極16を覆うように第1層間絶縁膜21が形成されている。第1層間絶縁膜21の材料としては、例えばシリコン酸化膜、シリコン窒化膜、もしくはこれらの積層膜等が用いられる。 A first interlayer insulating film 21 is formed on the gate insulating film 20 so as to cover the gate electrode 16. As a material of the first interlayer insulating film 21, for example, a silicon oxide film, a silicon nitride film, or a laminated film thereof is used.
 第1層間絶縁膜21上には、ソース電極17およびドレイン電極18が形成されている。第1層間絶縁膜21とゲート絶縁膜20とには、コンタクトホール22およびコンタクトホール23が、第1層間絶縁膜21とゲート絶縁膜20とを貫通して形成されている。
ソース電極17は、コンタクトホール22を介して半導体層15のソース領域に接続されている。ドレイン電極18は、コンタクトホール23を介して半導体層15のドレイン領域に接続されている。ソース電極17およびドレイン電極18の材料としては、上述のゲート電極16と同様の導電性材料が用いられる。
A source electrode 17 and a drain electrode 18 are formed on the first interlayer insulating film 21. A contact hole 22 and a contact hole 23 are formed in the first interlayer insulating film 21 and the gate insulating film 20 so as to penetrate the first interlayer insulating film 21 and the gate insulating film 20.
The source electrode 17 is connected to the source region of the semiconductor layer 15 through the contact hole 22. The drain electrode 18 is connected to the drain region of the semiconductor layer 15 through the contact hole 23. As a material for the source electrode 17 and the drain electrode 18, the same conductive material as that for the gate electrode 16 is used.
 第1層間絶縁膜21上には、ソース電極17およびドレイン電極18を覆うように第2層間絶縁膜24が形成されている。第2層間絶縁膜24の材料としては、上述の第1層間絶縁膜21と同様の材料、もしくは有機絶縁性材料が用いられる。 A second interlayer insulating film 24 is formed on the first interlayer insulating film 21 so as to cover the source electrode 17 and the drain electrode 18. As the material of the second interlayer insulating film 24, the same material as the first interlayer insulating film 21 described above or an organic insulating material is used.
 第2層間絶縁膜24上には、画素電極25が形成されている。第2層間絶縁膜24には、コンタクトホール26が第2層間絶縁膜24を貫通して形成されている。画素電極25は、コンタクトホール26を介してドレイン電極18に接続されている。画素電極25は、ドレイン電極18を中継用電極として半導体層15のドレイン領域に接続されている。
 画素電極25の材料としては、例えばITO(Indium Tin Oxide、インジウム錫酸化物)、IZO(Indium Zinc Oxide、インジウム亜鉛酸化物)等の透明導電性材料が用いられる。
A pixel electrode 25 is formed on the second interlayer insulating film 24. A contact hole 26 is formed through the second interlayer insulating film 24 in the second interlayer insulating film 24. The pixel electrode 25 is connected to the drain electrode 18 through the contact hole 26. The pixel electrode 25 is connected to the drain region of the semiconductor layer 15 using the drain electrode 18 as a relay electrode.
As the material of the pixel electrode 25, for example, a transparent conductive material such as ITO (Indium Tin Oxide) or IZO (Indium Zinc Oxide) is used.
 この構成により、ゲートバスラインを通じて走査信号が供給され、TFT19がオン状態となったときに、ソースバスラインを通じてソース電極17に供給された画像信号が、半導体層15、ドレイン電極18を経て画素電極25に供給される。また、画素電極25を覆うように第2層間絶縁膜24上の全面に配向膜27が形成されている。この配向膜27は、液晶層11を構成する液晶分子を水平配向させる配向規制力を有している。なお、TFT19の形態としては、図3に示したトップゲート型TFTであっても良いし、ボトムゲート型TFTであっても良い。 With this configuration, when the scanning signal is supplied through the gate bus line and the TFT 19 is turned on, the image signal supplied to the source electrode 17 through the source bus line passes through the semiconductor layer 15 and the drain electrode 18 to form a pixel electrode. 25. An alignment film 27 is formed on the entire surface of the second interlayer insulating film 24 so as to cover the pixel electrode 25. The alignment film 27 has an alignment regulating force that horizontally aligns the liquid crystal molecules constituting the liquid crystal layer 11. The form of the TFT 19 may be the top gate type TFT shown in FIG. 3 or the bottom gate type TFT.
 一方、カラーフィルター基板10を構成する透明基板29の液晶層11側の面には、ブラックマトリクス30、カラーフィルター31、平坦化層32、対向電極33、配向膜34が順次形成されている。 On the other hand, a black matrix 30, a color filter 31, a planarizing layer 32, a counter electrode 33, and an alignment film 34 are sequentially formed on the surface of the transparent substrate 29 constituting the color filter substrate 10 on the liquid crystal layer 11 side.
 ブラックマトリクス30は、画素間領域において光の透過を遮断する機能を有する。ブラックマトリクス30は、例えば、Cr(クロム)やCr/酸化Crの多層膜等の金属、もしくはカーボン粒子を感光性樹脂に分散させたフォトレジストで形成されている。 The black matrix 30 has a function of blocking light transmission in the inter-pixel region. The black matrix 30 is formed of, for example, a metal such as Cr (chromium) or a Cr / Cr oxide multilayer film, or a photoresist in which carbon particles are dispersed in a photosensitive resin.
 カラーフィルター31には、赤色(R)、緑色(G)、青色(B)の各色の色素が含まれている。TFT基板9上の一つの画素電極25に、R,G,Bのいずれか一つのカラーフィルター31が対向して配置されている。なお、カラーフィルター31は、R、G、Bの3色以上の多色構成としても良い。 The color filter 31 contains pigments of red (R), green (G), and blue (B) colors. One color filter 31 of R, G, or B is arranged to face one pixel electrode 25 on the TFT substrate 9. Note that the color filter 31 may have a multicolor configuration of three or more colors of R, G, and B.
 平坦化層32は、ブラックマトリクス30およびカラーフィルター31を覆う絶縁膜で構成されている。平坦化層32は、ブラックマトリクス30およびカラーフィルター31によってできる段差を緩和して平坦化する機能を有している。 The planarization layer 32 is composed of an insulating film that covers the black matrix 30 and the color filter 31. The planarizing layer 32 has a function of smoothing and leveling a step formed by the black matrix 30 and the color filter 31.
 平坦化層32上には対向電極33が形成されている。対向電極33の材料としては、画素電極25と同様の透明導電性材料が用いられる。 A counter electrode 33 is formed on the planarization layer 32. As the material of the counter electrode 33, a transparent conductive material similar to that of the pixel electrode 25 is used.
 対向電極33上の全面に配向膜34が形成されている。この配向膜34は、液晶層11を構成する液晶分子を水平配向させる配向規制力を有している。 An alignment film 34 is formed on the entire surface of the counter electrode 33. The alignment film 34 has an alignment regulating force that horizontally aligns the liquid crystal molecules constituting the liquid crystal layer 11.
 図1に戻り、TFT基板9の配向膜27の配向制御方向を矢印H1(以下、配向制御方向H1と称す)で示す。一方、カラーフィルター基板10の配向膜34の配向制御方向を矢印H2(以下、配向制御方向H2と称す)で示す。 Returning to FIG. 1, the orientation control direction of the orientation film 27 of the TFT substrate 9 is indicated by an arrow H1 (hereinafter referred to as orientation control direction H1). On the other hand, an alignment control direction of the alignment film 34 of the color filter substrate 10 is indicated by an arrow H2 (hereinafter referred to as an alignment control direction H2).
 配向膜27には、配向制御方向H1が135°-315°方向となるように、ラビング等の配向処理がなされている。一方、配向膜34には、配向制御方向H2が45°-225°方向となるように、ラビング等の配向処理がなされている。 The alignment film 27 is subjected to an alignment process such as rubbing so that the alignment control direction H1 is a 135 ° -315 ° direction. On the other hand, the alignment film 34 is subjected to an alignment process such as rubbing so that the alignment control direction H2 is 45 ° to 225 °.
 バックライト4は、発光ダイオード、冷陰極管等の光源36と、光源36から出射した光を液晶パネル2に導く導光板37から成る。導光板37は、液晶パネル2に向けて光を出射する出射面と、出射面に対向する裏面とを有し、裏面には複数のプリズムが形成されている(不図示)。裏面のプリズムは、出射面に対して互いに異なる所定の角度で傾斜した2つの傾斜面を有し(不図示)、バックライト4から出射する光は、表示面法線方向における強度が強く、高い指向性を有している。 The backlight 4 includes a light source 36 such as a light emitting diode or a cold cathode tube, and a light guide plate 37 that guides light emitted from the light source 36 to the liquid crystal panel 2. The light guide plate 37 has an emission surface that emits light toward the liquid crystal panel 2 and a back surface that faces the emission surface, and a plurality of prisms are formed on the back surface (not shown). The back prism has two inclined surfaces (not shown) inclined at predetermined angles different from each other with respect to the emission surface, and the light emitted from the backlight 4 has a high intensity in the normal direction of the display surface and is high. Has directivity.
 なお、バックライト4は、このように光源36が導光板37の端面に配置されたエッジライト型でも良いし、光源が導光体の直下に配置された直下型でも良い。
 本実施形態で用いるバックライト4には、光の出射方向を制御して指向性を持たせたバックライト、いわゆる指向性バックライトを用いることが望ましい。光制御フィルム6の光拡散部41に対してコリメートまたは略コリメートした光を入射させるような指向性バックライトを用いることでボヤケを少なくし、さらに光の利用効率を高めることができる。
The backlight 4 may be an edge light type in which the light source 36 is disposed on the end face of the light guide plate 37 as described above, or may be a direct type in which the light source is disposed directly under the light guide.
As the backlight 4 used in the present embodiment, it is desirable to use a backlight having a directivity by controlling the light emitting direction, that is, a so-called directional backlight. By using a directional backlight that allows collimated or substantially collimated light to enter the light diffusing portion 41 of the light control film 6, blurring can be reduced and the light utilization efficiency can be further increased.
 バックライト4と液晶セル13との間には、第1偏光板5が設けられている。第1偏光板5は、偏光子として機能する。ここで、x軸方向の正方向を基準として反時計回りに角度を表す。すると、第1偏光板5の透過軸P1は135°-315°方向に設定されている。 A first polarizing plate 5 is provided between the backlight 4 and the liquid crystal cell 13. The first polarizing plate 5 functions as a polarizer. Here, the angle is represented counterclockwise with reference to the positive direction of the x-axis direction. Then, the transmission axis P1 of the first polarizing plate 5 is set in the 135 ° -315 ° direction.
 光制御部材3の液晶セル13の側、つまり液晶セル13と光制御フィルム6との間には、第2偏光板7が設けられている。第2偏光板7は、偏光子として機能する。第2偏光板7の透過軸P2は、第1偏光板5の透過軸P1と直交するように配置されている。第2偏光板7の透過軸P2は、45°-225°方向に設定されている。第1偏光板5の透過軸P1と第2偏光板7の透過軸P2とは、クロスニコルの配置となっている。 A second polarizing plate 7 is provided on the liquid crystal cell 13 side of the light control member 3, that is, between the liquid crystal cell 13 and the light control film 6. The second polarizing plate 7 functions as a polarizer. The transmission axis P2 of the second polarizing plate 7 is arranged so as to be orthogonal to the transmission axis P1 of the first polarizing plate 5. The transmission axis P2 of the second polarizing plate 7 is set in the 45 ° -225 ° direction. The transmission axis P1 of the first polarizing plate 5 and the transmission axis P2 of the second polarizing plate 7 are arranged in crossed Nicols.
 第1偏光板5と液晶セル13との間には、第1位相差フィルム8Aが設けられている。
第1位相差フィルム8Aの遅相軸K1は、第1偏光板5の透過軸P1と直交するように配置されている。第1位相差フィルム8Aの遅相軸K1は、45°-225°方向に設定されている。
A first retardation film 8 </ b> A is provided between the first polarizing plate 5 and the liquid crystal cell 13.
The slow axis K1 of the first retardation film 8A is disposed so as to be orthogonal to the transmission axis P1 of the first polarizing plate 5. The slow axis K1 of the first retardation film 8A is set in the 45 ° -225 ° direction.
 第2偏光板7と液晶セル13との間には、第2位相差フィルム8Bが設けられている。
第2位相差フィルム8Bの遅相軸K2は、第2偏光板7の透過軸P2と直交するように配置されている。第2位相差フィルム8Bの遅相軸K2は、135°-315°方向に設定されている。
A second retardation film 8 </ b> B is provided between the second polarizing plate 7 and the liquid crystal cell 13.
The slow axis K2 of the second retardation film 8B is disposed so as to be orthogonal to the transmission axis P2 of the second polarizing plate 7. The slow axis K2 of the second retardation film 8B is set in the 135 ° -315 ° direction.
 次に、光制御部材3を構成する光制御フィルム6について詳細に説明する。
 図4は、光制御フィルム6を視認側から見た斜視図である。
Next, the light control film 6 constituting the light control member 3 will be described in detail.
FIG. 4 is a perspective view of the light control film 6 as viewed from the viewing side.
 光制御フィルム6は、図4に示すように、基材39と、複数の遮光層40と、光拡散部41と、を備えている。光拡散部41と複数の遮光層40とは、基材39の第1面(一面)39aに形成されている。光拡散部41は、第1面39aのうち遮光層40が形成された領域(第2領域)以外の領域(第1領域)に形成されている。 The light control film 6 includes a base material 39, a plurality of light shielding layers 40, and a light diffusion portion 41, as shown in FIG. The light diffusion portion 41 and the plurality of light shielding layers 40 are formed on the first surface (one surface) 39 a of the base material 39. The light diffusion portion 41 is formed in a region (first region) other than the region (second region) where the light shielding layer 40 is formed in the first surface 39a.
 光制御フィルム6は、図2に示すように、光拡散部41が設けられた側を第2偏光板7に向け、基材39の側を視認側に向けた姿勢で第2偏光板7上に配置されている。光制御フィルム6は、接着剤層43を介して第2偏光板7に固定されている。 As shown in FIG. 2, the light control film 6 is placed on the second polarizing plate 7 in such a posture that the side where the light diffusing portion 41 is provided faces the second polarizing plate 7 and the base 39 side faces the viewing side. Is arranged. The light control film 6 is fixed to the second polarizing plate 7 through the adhesive layer 43.
 基材39には、例えばトリアセチルセルロース(TAC)フィルム、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)、ポリエチレンナフタレート(PEN)、ポリエーテルサルホン(PES)フィルム等の透明樹脂製の基材が好ましく用いられる。基材39は、製造プロセスにおいて、後で遮光層40や光拡散部41の材料を塗布する際の下地となる。基材39は、製造プロセス中の熱処理工程における耐熱性と機械的強度とを備える必要がある。したがって、基材39には、樹脂製の基材の他、ガラス製の基材等を用いても良い。ただし、基材39の厚さは耐熱性や機械的強度を損なわない程度に薄い方が好ましい。その理由は、基材39の厚さが厚くなる程、表示のボヤケが生じる虞があるからである。また、基材39の全光線透過率は、JIS K7361-1の規定で90%以上が好ましい。全光線透過率が90%以上であると、十分な透明性が得られる。
本実施形態では、一例として厚さが100μmの透明樹脂製基材を用いる。
Examples of the base material 39 include transparent resin base materials such as triacetyl cellulose (TAC) film, polyethylene terephthalate (PET), polycarbonate (PC), polyethylene naphthalate (PEN), and polyethersulfone (PES) film. Preferably used. The base material 39 becomes a base when the material for the light shielding layer 40 and the light diffusion portion 41 is applied later in the manufacturing process. The base material 39 needs to have heat resistance and mechanical strength in a heat treatment step during the manufacturing process. Therefore, as the base material 39, a glass base material or the like may be used in addition to the resin base material. However, it is preferable that the thickness of the base material 39 is as thin as possible without impairing heat resistance and mechanical strength. The reason is that as the thickness of the base material 39 is increased, there is a possibility that display blur may occur. Further, the total light transmittance of the base material 39 is preferably 90% or more as defined in JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
In this embodiment, a transparent resin substrate having a thickness of 100 μm is used as an example.
 遮光層40は、基材39の主面の法線方向から見てランダムに配置されている。遮光層40は、一例として、ブラックレジスト、黒色インク等の光吸収性および感光性を有する有機材料で構成されている。その他、Cr(クロム)やCr/酸化Crの多層膜等の金属膜を用いても良い。また、遮光層40を構成する有機材料は、紫外線を吸収する紫外線吸収物質を含んでいてもよい。 The light shielding layer 40 is randomly arranged as viewed from the normal direction of the main surface of the base material 39. As an example, the light shielding layer 40 is made of an organic material having light absorption and photosensitivity such as black resist and black ink. In addition, a metal film such as Cr (chromium) or a Cr / Cr oxide multilayer film may be used. Moreover, the organic material which comprises the light shielding layer 40 may contain the ultraviolet absorber which absorbs an ultraviolet-ray.
 光拡散部41は、例えばアクリル樹脂やエポキシ樹脂等の光透過性および感光性を有する有機材料で構成されている。また、光拡散部41の全光線透過率は、JIS K7361-1の規定で90%以上が好ましい。全光線透過率が90%以上であると、十分な透明性が得られる。 The light diffusing section 41 is made of an organic material having optical transparency and photosensitivity such as acrylic resin and epoxy resin. Further, the total light transmittance of the light diffusing portion 41 is preferably 90% or more in accordance with JIS K7361-1. When the total light transmittance is 90% or more, sufficient transparency can be obtained.
 光拡散部41は、図2に示すように、光射出端面41aと、光入射端面41bと、反射面41cと、を有する。光射出端面41aは、基材39に接する面である。光入射端面41bは、光射出端面41aと対向する面である。反射面41cは、光拡散部41のテーパ状の側面である。反射面41cは、光入射端面41bから入射した光を反射する面である。光入射端面41bの面積は、光射出端面41aの面積よりも大きい。 As shown in FIG. 2, the light diffusing section 41 has a light exit end face 41a, a light incident end face 41b, and a reflecting face 41c. The light emission end surface 41 a is a surface in contact with the base material 39. The light incident end surface 41b is a surface facing the light emitting end surface 41a. The reflection surface 41 c is a tapered side surface of the light diffusion portion 41. The reflection surface 41c is a surface that reflects light incident from the light incident end surface 41b. The area of the light incident end face 41b is larger than the area of the light exit end face 41a.
 光拡散部41は、光制御フィルム6において光の透過に寄与する部分である。すなわち、光拡散部41に入射した光は、光拡散部41の反射面41cで全反射しつつ、光拡散部41の内部に略閉じこめられた状態で導光し、射出される。 The light diffusion part 41 is a part that contributes to the transmission of light in the light control film 6. That is, the light incident on the light diffusing unit 41 is totally reflected by the reflection surface 41 c of the light diffusing unit 41, and is guided and emitted while being substantially confined inside the light diffusing unit 41.
 光制御フィルム6は、基材39が視認側に向くように配置されている。そのため、光拡散部41の2つの対向面のうち、面積の小さい方の面が光射出端面41aとなる。一方、面積の大きい方の面が光入射端面41bとなる。 The light control film 6 is arranged so that the base material 39 faces the viewing side. Therefore, of the two opposing surfaces of the light diffusing portion 41, the surface with the smaller area becomes the light emission end surface 41a. On the other hand, the surface with the larger area becomes the light incident end surface 41b.
 光拡散部41の反射面41cの傾斜角度(光入射端面41bと反射面41cとのなす角度)は、75°以上85°以下が好ましい。本実施形態では、光拡散部41の反射面41cの傾斜角度が75°である。ただし、光拡散部41の反射面41cの傾斜角度は、光制御フィルム6から光が射出する際に、入射光を十分に拡散することが可能な角度であれば、特に限定されない。本実施形態において、光拡散部41の反射面41cの傾斜角度は一定になっている。 The inclination angle of the reflection surface 41c of the light diffusion portion 41 (the angle formed between the light incident end surface 41b and the reflection surface 41c) is preferably 75 ° or more and 85 ° or less. In the present embodiment, the inclination angle of the reflection surface 41c of the light diffusion portion 41 is 75 °. However, the inclination angle of the reflection surface 41c of the light diffusion portion 41 is not particularly limited as long as it is an angle capable of sufficiently diffusing incident light when light is emitted from the light control film 6. In the present embodiment, the inclination angle of the reflection surface 41c of the light diffusing unit 41 is constant.
 光拡散部41の光入射端面41bから光射出端面41aまでの高さは、遮光層40の層厚よりも大きく設定されている。本実施形態の場合、遮光層40の層厚は一例として150nm程度である。光拡散部41の光入射端面41bから光射出端面41aまでの高さは一例として20μm程度である。 The height from the light incident end surface 41 b to the light emitting end surface 41 a of the light diffusion portion 41 is set to be larger than the layer thickness of the light shielding layer 40. In the case of this embodiment, the layer thickness of the light shielding layer 40 is about 150 nm as an example. As an example, the height from the light incident end surface 41b of the light diffusion portion 41 to the light emitting end surface 41a is about 20 μm.
 光拡散部41の反射面41cと遮光層40とにより囲まれた部分は、中空部42となっている。本実施形態の場合、中空部42(光拡散部41の外部)には空気が存在している。そのため、光拡散部41を例えば透明アクリル樹脂で形成したとすると、光拡散部41の反射面41cは透明アクリル樹脂と空気との界面となる。ここで、中空部42を他の低屈折率材料で充填しても良い。しかしながら、光拡散部41の内部と外部との界面の屈折率差は、外部にいかなる低屈折率材料が存在する場合よりも空気が存在する場合が最大となる。したがって、スネルの法則より、本実施形態の構成においては臨界角が最も小さくなり、光拡散部41の反射面41cで光が全反射する入射角範囲が最も広くなる。その結果、光の損失がより抑えられ、高い輝度を得ることができる。 A portion surrounded by the reflection surface 41 c of the light diffusion portion 41 and the light shielding layer 40 is a hollow portion 42. In the present embodiment, air exists in the hollow portion 42 (outside the light diffusion portion 41). Therefore, if the light diffusion portion 41 is formed of, for example, a transparent acrylic resin, the reflection surface 41c of the light diffusion portion 41 becomes an interface between the transparent acrylic resin and air. Here, the hollow portion 42 may be filled with another low refractive index material. However, the difference in the refractive index at the interface between the inside and the outside of the light diffusing portion 41 is maximized when air is present rather than when any low refractive index material is present outside. Therefore, according to Snell's law, the critical angle is the smallest in the configuration of the present embodiment, and the incident angle range in which the light is totally reflected by the reflection surface 41c of the light diffusion portion 41 is the widest. As a result, light loss is further suppressed, and high luminance can be obtained.
 なお、本実施形態において、低屈折率材料が存在するとは、光を全反射可能にするため、光拡散部41の周囲を低屈折率状態とすることを示している。そのため、中空部42には、空気に代えて、窒素等の不活性ガスが充填されている状態も含むものとする。もしくは、中空部42の内部が真空状態や大気よりも減圧状態であっても良い。 In the present embodiment, the presence of a low refractive index material indicates that the periphery of the light diffusion portion 41 is in a low refractive index state so that light can be totally reflected. For this reason, the hollow portion 42 includes a state in which an inert gas such as nitrogen is filled instead of air. Alternatively, the inside of the hollow portion 42 may be in a vacuum state or a reduced pressure state than the atmosphere.
 また、基材39の屈折率と光拡散部41の屈折率とは略同等であることが望ましい。その理由は、以下による。例えば、基材39の屈折率と光拡散部41の屈折率とが大きく異なる場合を考える。この場合、光入射端面41bから入射した光が光拡散部41から射出する際に、光拡散部41と基材39との界面で不要な光の屈折や反射が生じることがある。この場合、所望の視野角が得られない、射出光の光量が減少する、等の不具合が生じる虞があるからである。 Further, it is desirable that the refractive index of the base material 39 and the refractive index of the light diffusion portion 41 are substantially equal. The reason is as follows. For example, consider a case where the refractive index of the base material 39 and the refractive index of the light diffusion portion 41 are greatly different. In this case, when light incident from the light incident end surface 41 b exits from the light diffusion portion 41, unnecessary light refraction or reflection may occur at the interface between the light diffusion portion 41 and the base material 39. In this case, there is a possibility that problems such as failure to obtain a desired viewing angle and a decrease in the amount of emitted light may occur.
 図5は、光制御フィルム6の模式図である。図5において、左側上段は光制御フィルム6の平面図である。左側下段は、左側上段の平面図のA-A線に沿った断面図である。右側上段は、左側上段の平面図のB-B線に沿った断面図である。 FIG. 5 is a schematic diagram of the light control film 6. In FIG. 5, the upper left side is a plan view of the light control film 6. The lower left side is a cross-sectional view along the line AA in the plan view of the upper left side. The upper right stage is a cross-sectional view along the line BB in the plan view of the upper left stage.
 本実施形態の光制御フィルム6は、図5の左側上段に示すように、複数の遮光層40が、基材39の第1面39aに点在して設けられている。基材39の法線方向から見た遮光層40の平面形状は細長い楕円形である。遮光層40は、長軸と短軸とを有している。ここで、長軸とは、基材39の法線方向から見た遮光層40の平面形状において最も長さの長い軸とする。短軸とは、基材39の法線方向から見た遮光層40の平面形状において最も長さの短い軸とする。本実施形態の光制御フィルム6では、それぞれの遮光層40において長軸の長さに対する短軸の長さの比が概ね等しい。 In the light control film 6 of the present embodiment, as shown in the upper left part of FIG. 5, a plurality of light shielding layers 40 are provided scattered on the first surface 39 a of the base material 39. The planar shape of the light shielding layer 40 as viewed from the normal direction of the substrate 39 is an elongated ellipse. The light shielding layer 40 has a major axis and a minor axis. Here, the long axis is the longest axis in the planar shape of the light shielding layer 40 viewed from the normal direction of the substrate 39. The short axis is the shortest axis in the planar shape of the light shielding layer 40 as viewed from the normal direction of the substrate 39. In the light control film 6 of the present embodiment, the ratio of the length of the short axis to the length of the long axis in each light shielding layer 40 is approximately equal.
 図5の左側下段、右側上段に示すように、遮光層40の下方に相当する部分が楕円錐台状の中空部42となる。光制御フィルム6は複数の中空部42を有している。複数の中空部42以外の部分には、光拡散部41が連なって設けられている。 As shown in the lower left side and the upper right side of FIG. 5, the part corresponding to the lower part of the light shielding layer 40 is an elliptic frustum-shaped hollow part 42. The light control film 6 has a plurality of hollow portions 42. A light diffusing portion 41 is continuously provided in a portion other than the plurality of hollow portions 42.
 本実施形態の光制御フィルム6では、それぞれの遮光層40の平面形状をなす楕円の長軸方向(以下、遮光層40の長軸方向と称することがある)が概ねX方向に揃っている。
それぞれの遮光層40の平面形状をなす楕円の短軸方向(以下、遮光層40の短軸方向と称することがある)が概ねY方向に揃っている。このことから、光拡散部41の反射面41cの向きを考えると、光拡散部41の反射面41cのうち、X方向に沿った反射面41cの割合はY方向に沿った反射面41cの割合よりも多い。そのため、X方向に沿った反射面41cで反射してY方向に拡散する光Lyは、Y方向に沿った反射面41cで反射してX方向に拡散する光Lxよりも多くなる。
In the light control film 6 of the present embodiment, the major axis direction of the ellipse forming the planar shape of each light shielding layer 40 (hereinafter sometimes referred to as the major axis direction of the light shielding layer 40) is substantially aligned in the X direction.
The minor axis direction of the ellipse forming the planar shape of each light shielding layer 40 (hereinafter, sometimes referred to as the minor axis direction of the light shielding layer 40) is generally aligned in the Y direction. From this, when considering the direction of the reflection surface 41c of the light diffusion portion 41, the ratio of the reflection surface 41c along the X direction out of the reflection surface 41c of the light diffusion portion 41 is the proportion of the reflection surface 41c along the Y direction. More than. Therefore, the light Ly reflected by the reflecting surface 41c along the X direction and diffused in the Y direction is larger than the light Lx reflected by the reflecting surface 41c along the Y direction and diffused in the X direction.
 したがって、光制御フィルム6の拡散性が最も強い方位角方向Vsは、遮光層40の短軸方向であるY方向となる。極角方向は任意とする。なお、極角と方位角の定義については後述する。 Therefore, the azimuth angle direction Vs with the strongest diffusibility of the light control film 6 is the Y direction which is the minor axis direction of the light shielding layer 40. The polar angle direction is arbitrary. The definition of polar angle and azimuth will be described later.
 ただし、遮光層40の平面形状が円形の場合には、光拡散部41の反射面41cのうち、X方向に沿った反射面の割合はY方向に沿った反射面の割合と等しい。そのため、X方向に沿った反射面で反射してY方向に拡散する光は、Y方向に沿った反射面で反射してX方向に拡散する光と等しくなる。つまり、基材39の法線方向から見て、反射面41cからは光が等方的に反射されることとなる。したがって、光拡散部41の拡散性が最も強い方位角方向は存在しない。 However, when the planar shape of the light shielding layer 40 is circular, the ratio of the reflective surface along the X direction in the reflective surface 41c of the light diffusing portion 41 is equal to the ratio of the reflective surface along the Y direction. For this reason, the light reflected by the reflecting surface along the X direction and diffused in the Y direction is equal to the light reflected by the reflecting surface along the Y direction and diffused in the X direction. That is, when viewed from the normal direction of the base material 39, the light is reflected isotropically from the reflecting surface 41c. Therefore, there is no azimuthal direction in which the light diffusing portion 41 has the strongest diffusibility.
 図6は、光制御フィルムの概略構成を模式的に示す平面図である。なお、図6においては、便宜上、複数の遮光層40がそれぞれ同じサイズで規則的に配置されている。
 光制御フィルム6には、図6に示すように光制御フィルム6の拡散性が相対的に強い方位角方向Vsを示すマーク(指標)50が設けられている。光制御フィルム6の平面形状は左右方向に長い(横長の)長方形であり、矩形をなす基材39の対角である2つの角部にマーク50がそれぞれ設けられている。本実施形態においては、マーク50を設けた基材39の短辺に沿う方向が光制御フィルム6の拡散性が相対的に強い方位角方向Vsである。
FIG. 6 is a plan view schematically showing a schematic configuration of the light control film. In FIG. 6, for the sake of convenience, the plurality of light shielding layers 40 are regularly arranged with the same size.
As shown in FIG. 6, the light control film 6 is provided with a mark (index) 50 indicating the azimuth angle direction Vs where the light control film 6 is relatively diffusive. The planar shape of the light control film 6 is a rectangle that is long in the left-right direction (horizontally long), and the marks 50 are respectively provided at two corners that are diagonal to the base material 39 that forms the rectangle. In the present embodiment, the direction along the short side of the base material 39 provided with the mark 50 is the azimuth angle direction Vs in which the light control film 6 has relatively strong diffusibility.
 ユーザーが光制御フィルム6を単体で取り扱う場合、ユーザーが光制御フィルム6を正面から見たときに、ユーザーの左下及び右上にマーク50がくるように光制御フィルム6の向きを整えることで、その上下方向が、光制御フィルム6において拡散性が相対的に強い方位角方向Vsとなる。このように、光制御フィルム6自体に強拡散方向Vsを示すマーク50を設けておくことにより、外観から強拡散方向Vsを容易に判断することができる。 When the user handles the light control film 6 alone, when the user looks at the light control film 6 from the front, the light control film 6 is oriented so that the mark 50 comes to the lower left and upper right of the user. The vertical direction is the azimuth angle direction Vs that has relatively strong diffusibility in the light control film 6. Thus, by providing the light control film 6 with the mark 50 indicating the strong diffusion direction Vs, the strong diffusion direction Vs can be easily determined from the appearance.
 本実施形態におけるマーク50は、長さの等しい2本の線状部51,52を交差させてなるが、線状部51,52の長さが異なっていてもよい。マーク50は、遮光層40と同じ材料からなり、遮光層40と同じ工程で同時にパターン形成される。例えば、光制御フィルム6の強拡散方向Vsに沿う線状部の長さを他方の線状部よりも長く形成してもよい。 In the present embodiment, the mark 50 is formed by intersecting two linear portions 51 and 52 having the same length, but the lengths of the linear portions 51 and 52 may be different. The mark 50 is made of the same material as the light shielding layer 40 and is patterned simultaneously in the same process as the light shielding layer 40. For example, you may form the length of the linear part along the strong diffusion direction Vs of the light control film 6 longer than the other linear part.
 図7A~図7Eは、マークの位置、形状の他の実施形態を示す図である。
 マーク50は上記したものに限らず、図7A~図7Eに示すようなドット、矢印、文字などを用いてもよい。また、配置する位置も、対角だけではなく4つの角の全てに設けてもよいし、一つの角にのみ設けてもよい。また、異なる形状のマーク50が混在していてもよい。また、マーク50を、遮光層40とは異なる材料を用いて遮光層40とは別工程で形成してもよい。
7A to 7E are diagrams showing other embodiments of mark positions and shapes.
The marks 50 are not limited to those described above, and dots, arrows, characters, etc. as shown in FIGS. 7A to 7E may be used. Further, the positions to be arranged may be provided not only on the diagonal but also on all four corners, or on only one corner. In addition, marks 50 having different shapes may be mixed. Further, the mark 50 may be formed in a separate process from the light shielding layer 40 using a material different from that of the light shielding layer 40.
 また、矢印はそれ自体で方向性を示唆するものであるため、光制御フィルム6の強拡散方向Vsを示す矢印をマーク50として利用する場合は、必ずしも基材39上に複数形成する必要はなく、図7Dに示すように基材39上に一つだけ設けてもよい。 In addition, since the arrow itself indicates directionality, when using the arrow indicating the strong diffusion direction Vs of the light control film 6 as the mark 50, it is not always necessary to form a plurality on the base material 39. As shown in FIG. 7D, only one may be provided on the base material 39.
 また、文字はその仕様から上下方向が規定されるため、文字をマーク50として利用する場合は、光制御フィルム6の強拡散方向Vsに沿う方向に文字の上下方向が揃うように記載する。これにより、ユーザーがマーク50である文字を通常の状態で読み取れるように光制御フィルム6の向きを整えることで、自ずとその上下方向が強拡散方向Vsとなる。よって、文字をマーク50として利用する場合も、基材39上に複数設ける必要がなくなる。 In addition, since the vertical direction of the character is defined by its specifications, when the character is used as the mark 50, it is described so that the vertical direction of the character is aligned with the direction along the strong diffusion direction Vs of the light control film 6. Thereby, by adjusting the direction of the light control film 6 so that the user can read the character that is the mark 50 in a normal state, the vertical direction thereof becomes the strong diffusion direction Vs. Therefore, even when characters are used as the marks 50, it is not necessary to provide a plurality of characters on the base material 39.
 光制御フィルム6を液晶パネル2に対してアライメントする際には、マーク50が液晶パネル2の左下あるいは右上となるように光制御フィルム6の向きを揃える。これにより、光制御フィルム6の拡散性が相対的に強い方位角方向Vsを、液晶パネル2の輝度視野角が相対的に狭い方位角方向に一致させることができる。
 液晶パネル2に光制御フィルム6が貼り合わされた状態において、マーク50の各々は液晶パネル2の表示領域44よりも外側に位置し、表示の品質を低下させることはない。
When aligning the light control film 6 with respect to the liquid crystal panel 2, the light control film 6 is oriented so that the mark 50 is located at the lower left or upper right of the liquid crystal panel 2. Thereby, the azimuth angle direction Vs with relatively strong diffusibility of the light control film 6 can be matched with the azimuth angle direction in which the luminance viewing angle of the liquid crystal panel 2 is relatively narrow.
In a state where the light control film 6 is bonded to the liquid crystal panel 2, each of the marks 50 is positioned outside the display area 44 of the liquid crystal panel 2 and does not deteriorate the display quality.
 なお、光制御フィルム6の拡散性が相対的に強い方位角方向Vsと、基材39の短辺とは概ね平行となっている。 In addition, the azimuth angle direction Vs where the diffusibility of the light control film 6 is relatively strong and the short side of the base material 39 are substantially parallel.
 図8A、図8Bは、液晶パネル2の動作を説明するための図である。
 図8Aは、液晶パネル2(図3に示す画素電極25と対向電極33との間)に電圧が印加されていないとき(電圧無印加時)の状態を示す図である。図8Bは、液晶パネル2に一定の電圧を印加したとき(電圧印加時)の状態を示す図である。なお、図8A、図8Bにおいて、符号Mは、液晶層11を構成する液晶分子である。
8A and 8B are diagrams for explaining the operation of the liquid crystal panel 2.
8A is a diagram showing a state when no voltage is applied to the liquid crystal panel 2 (between the pixel electrode 25 and the counter electrode 33 shown in FIG. 3) (when no voltage is applied). FIG. 8B is a diagram illustrating a state when a certain voltage is applied to the liquid crystal panel 2 (when a voltage is applied). In FIG. 8A and FIG. 8B, the symbol M is a liquid crystal molecule constituting the liquid crystal layer 11.
 電圧無印加時には、図8Aに示すように、液晶分子Mは、配向膜27と配向膜34との間で、90°ツイストした状態となる。このとき、135°-315°方向の透過軸P1を有する第1偏光板5を透過した直線偏光の偏光面が、液晶層11の持つ旋光性により90°回転する。これにより、第1偏光板5を透過した直線偏光が、45°-225°方向の透過軸P2を有する第2偏光板7を透過する。その結果、電圧無印加時には白表示となる。 When no voltage is applied, the liquid crystal molecules M are twisted by 90 ° between the alignment film 27 and the alignment film 34 as shown in FIG. 8A. At this time, the polarization plane of linearly polarized light transmitted through the first polarizing plate 5 having the transmission axis P1 in the 135 ° to 315 ° direction is rotated by 90 ° due to the optical rotation of the liquid crystal layer 11. Thereby, the linearly polarized light transmitted through the first polarizing plate 5 is transmitted through the second polarizing plate 7 having the transmission axis P2 in the 45 ° -225 ° direction. As a result, white display is obtained when no voltage is applied.
 電圧印加時には、図8Bに示すように、液晶分子Mは、配向膜27と配向膜34との間で、電界に沿った方向に立ち上がった状態となる。このとき、135°-315°方向の透過軸P1を有する第1偏光板5を透過した直線偏光の偏光面は回転しない。そのため、第1偏光板5を透過した直線偏光は、45°-225°方向の透過軸P2を有する第2偏光板7を透過しない。その結果、電圧印加時には黒表示となる。 At the time of voltage application, as shown in FIG. 8B, the liquid crystal molecules M rise between the alignment film 27 and the alignment film 34 in the direction along the electric field. At this time, the polarization plane of the linearly polarized light transmitted through the first polarizing plate 5 having the transmission axis P1 in the 135 ° to 315 ° direction does not rotate. Therefore, the linearly polarized light transmitted through the first polarizing plate 5 does not pass through the second polarizing plate 7 having the transmission axis P2 in the 45 ° -225 ° direction. As a result, black is displayed when a voltage is applied.
 以上のように、画素毎に電圧の印加/無印加を制御することにより白表示と黒表示とを切り替え、画像を表示することができる。 As described above, by controlling application / non-application of voltage for each pixel, it is possible to switch between white display and black display and display an image.
 図9は、極角と方位角の定義を説明するための図である。
 ここで、図9に示すように、液晶表示装置1の画面の法線方向Eを基準とした観察者の視線方向Fのなす角度を極角θとする。x軸の正方向(0°方向)を基準とした観察者の視線方向Fを画面上に射影したときの線分Gの方向のなす角度を方位角φとする。
FIG. 9 is a diagram for explaining the definition of the polar angle and the azimuth angle.
Here, as shown in FIG. 9, the angle formed by the observer's line-of-sight direction F with reference to the normal direction E of the screen of the liquid crystal display device 1 is defined as a polar angle θ. The angle formed by the direction of the line segment G when the line-of-sight direction F of the observer is projected on the screen with reference to the positive direction (0 ° direction) of the x-axis is defined as an azimuth angle φ.
 図10は、液晶表示装置1の正面図である。
 図10に示すように、液晶表示装置1の画面において、水平方向(x軸方向)を方位角φ:0°-180°方向とする。方位角φ:0°-180°方向は、端的にいうと左右方向である。具体的には、方位角φ:0°-180°方向は、地面に対して水平な軸に沿った方向である。垂直方向(y軸方向)を方位角φ:90°-270°方向とする。方位角φ:90°-270°方向は、端的にいうと上下方向である。具体的には、方位角φ:90°-270°方向は、地面に対して垂直な軸に沿った方向である。
FIG. 10 is a front view of the liquid crystal display device 1.
As shown in FIG. 10, on the screen of the liquid crystal display device 1, the horizontal direction (x-axis direction) is the azimuth angle φ: 0 ° -180 ° direction. The direction of the azimuth angle φ: 0 ° -180 ° is the left-right direction. Specifically, the direction of azimuth φ: 0 ° -180 ° is a direction along an axis horizontal to the ground. The vertical direction (y-axis direction) is the azimuth angle φ: 90 ° -270 ° direction. The direction of the azimuth angle φ: 90 ° -270 ° is the vertical direction. Specifically, the direction of azimuth angle φ: 90 ° -270 ° is a direction along an axis perpendicular to the ground.
 図11は、本実施形態に係る液晶表示装置1の正面図における、光制御フィルム6の拡散性が相対的に強い方位角方向Vsと、偏光板の透過軸(第1偏光板5の透過軸P1、第2偏光板7の透過軸P2)との配置関係を示す図である。なお、図11においては、便宜上、複数の遮光層40がそれぞれ同じサイズで規則的に配置されている。また、便宜上、第2偏光板7のサイズが光制御フィルム6よりも大きく描かれている。 FIG. 11 is a front view of the liquid crystal display device 1 according to the present embodiment, in which the light control film 6 has a relatively strong azimuthal direction Vs and the transmission axis of the polarizing plate (the transmission axis of the first polarizing plate 5). It is a figure which shows the arrangement | positioning relationship with P1, and the transmission axis P2 of the 2nd polarizing plate 7. In FIG. 11, for the sake of convenience, the plurality of light shielding layers 40 are regularly arranged with the same size. For convenience, the size of the second polarizing plate 7 is drawn larger than that of the light control film 6.
 図11に示すように、液晶表示装置1の正面形状は、左右方向に長い(横長の)長方形である。短辺方向が液晶表示装置1の上下方向となる。本実施形態では、画面の方位角φ:90°-270°方向と、液晶パネル上に配置された光制御フィルム6の拡散性が相対的に強い方位角方向Vsと、が概ね一致する。 As shown in FIG. 11, the front shape of the liquid crystal display device 1 is a rectangle that is long in the left-right direction (horizontally long). The short side direction is the vertical direction of the liquid crystal display device 1. In the present embodiment, the azimuth angle φ: 90 ° -270 ° direction of the screen substantially coincides with the azimuth angle direction Vs where the light control film 6 disposed on the liquid crystal panel has a relatively strong diffusivity.
 光制御フィルム6は、接着剤層43を介して液晶パネル2の第2偏光板7に貼り付けられる。光制御フィルム6の液晶パネル2(第2偏光板7)に対する位置決めはマーク50に基づいて行われる。光制御フィルム6は、一対のマーク50が液晶パネル2の左下あるいは右上の角部に概ね位置するように位置決めされ、光制御フィルム6の拡散性が相対的に強い方位角方向Vsと、液晶パネル2の短辺(いずれか一辺)とを概ね平行(一致させている)とした状態で貼り合わされている。なお、光制御フィルム6の拡散性が相対的に強い方位角方向Vsと、液晶パネル2の短辺とは、完全に一致する(平行となる)必要はなく、概ね平行となっていればよい。 The light control film 6 is attached to the second polarizing plate 7 of the liquid crystal panel 2 through the adhesive layer 43. Positioning of the light control film 6 with respect to the liquid crystal panel 2 (second polarizing plate 7) is performed based on the mark 50. The light control film 6 is positioned so that the pair of marks 50 are positioned substantially at the lower left or upper right corner of the liquid crystal panel 2, and the light control film 6 has a relatively strong azimuthal direction Vs and a liquid crystal panel. The two short sides (any one side) are bonded in a substantially parallel state (matched). Note that the azimuth angle direction Vs, in which the light control film 6 has a relatively strong diffusivity, and the short side of the liquid crystal panel 2 do not need to be completely coincident (become parallel), but may be substantially parallel. .
 光制御フィルム6の拡散性が相対的に強い方位角方向Vsと、第2偏光板7の透過軸P2とは、概ね45度の角度を成す。また、光制御フィルム6の拡散性が相対的に強い方位角方向Vsと、第1偏光板5の透過軸P1と、は概ね45度の角度を成す。これにより、液晶表示装置1において上下方向の拡散強度が大きくなり、上下方向の視認性がより改善される。 The azimuth angle direction Vs in which the light control film 6 is relatively diffusive and the transmission axis P2 of the second polarizing plate 7 form an angle of approximately 45 degrees. Further, the azimuth angle direction Vs where the light control film 6 is relatively diffusive and the transmission axis P1 of the first polarizing plate 5 form an angle of approximately 45 degrees. Thereby, the diffusion strength in the vertical direction is increased in the liquid crystal display device 1, and the visibility in the vertical direction is further improved.
 上述したように、本実施形態の液晶パネル2はTNモードであり、駆動時に視認者が液晶分子のダイレクタ方向を視認する方向で輝度の低下や階調の反転が生じる。そこで本実施形態では、液晶パネル2において輝度視野角が相対的に狭い方位角方向(液晶表示装置1における上下方向)を視野角改善方向とし、光制御フィルム6を液晶パネル2に貼り合せる際に、マーク50に基づいて、光制御フィルム6の拡散性が相対的に強い方位角方向Vsを上記視野角改善方向に一致させるように設ける。これにより、液晶表示装置1の視野角特性を効率よく向上させることができる。 As described above, the liquid crystal panel 2 of the present embodiment is in the TN mode, and when the viewer visually recognizes the director direction of the liquid crystal molecules during driving, the luminance is decreased and the gradation is inverted. Therefore, in the present embodiment, when the light control film 6 is bonded to the liquid crystal panel 2 with the azimuth angle direction (the vertical direction in the liquid crystal display device 1) having a relatively narrow luminance viewing angle as the viewing angle improving direction in the liquid crystal panel 2. Based on the mark 50, the light control film 6 is provided so that the azimuth angle direction Vs having relatively strong diffusibility matches the viewing angle improvement direction. Thereby, the viewing angle characteristic of the liquid crystal display device 1 can be improved efficiently.
 本実施形態では、光制御フィルム6に拡散性が相対的に強い方位角方向Vsを示すマーク50が設けられている。このように、光制御フィルム6自体に強拡散方向Vsを示すマーク50を設けたことで、光制御フィルム6の強拡散方向Vsを外観から容易に判断することが可能となる。 In this embodiment, the light control film 6 is provided with a mark 50 indicating the azimuth angle direction Vs having relatively strong diffusibility. Thus, by providing the mark 50 indicating the strong diffusion direction Vs on the light control film 6 itself, the strong diffusion direction Vs of the light control film 6 can be easily determined from the appearance.
 光制御フィルム6を液晶パネル2に貼り合せる際には、遮光層40と同時に形成したマーク50に基づいて光制御フィルム6と液晶パネル2とのアライメントを行えば、光制御フィルム6の強拡散方向Vsと、液晶パネル2の視野角改善方向と、を概ね一致させることが容易に行える。これにより、液晶表示装置1の視野角特性を効率よく向上させることができる。  When the light control film 6 is bonded to the liquid crystal panel 2, if the light control film 6 and the liquid crystal panel 2 are aligned based on the mark 50 formed simultaneously with the light shielding layer 40, the direction of strong diffusion of the light control film 6 Vs and the viewing angle improvement direction of the liquid crystal panel 2 can be easily matched approximately. Thereby, the viewing angle characteristic of the liquid crystal display device 1 can be improved efficiently. *
 マーク50は光制御フィルム6の対角にそれぞれ設けられている。このため、製造時に光制御フィルム6の向きが平面内で回転してしまった場合でも、マーク50に基づいて第2偏光板7とのアライメントを行えば、光制御フィルム6の強拡散方向と液晶パネル2の視野角改善方向とを一致させることができる。 The marks 50 are provided on the diagonals of the light control film 6, respectively. For this reason, even if the direction of the light control film 6 is rotated in a plane at the time of manufacture, if the alignment with the second polarizing plate 7 is performed based on the mark 50, the strong diffusion direction of the light control film 6 and the liquid crystal The viewing angle improvement direction of the panel 2 can be matched.
 次に、光制御フィルム6の視野角改善効果について説明する。 
 以下の説明において、液晶パネル2の視野角改善方向と、光制御フィルム6の強拡散方向とを概ね一致させることを、単に、方位方向を一致させると言うことがある。
Next, the viewing angle improvement effect of the light control film 6 will be described.
In the following description, making the viewing angle improvement direction of the liquid crystal panel 2 substantially coincide with the strong diffusion direction of the light control film 6 may be simply referred to as making the azimuth directions coincide.
 図12は、液晶表示装置の極角方向における輝度分布を示すグラフである。図12において、横軸は液晶表示装置を真正面(法線方向)から見た場合を「0°」とした際の視線の角度を示す極角θ[°]であり、液晶表示装置の真正面(法線方向)を「0°」として、上側をプラス、下側をマイナスで表す。縦軸は、地面に対して垂直な軸に沿った方向(方位角φ:90°-270°方向)であり、真正面方向における表示輝度を「1」として表した規格化輝度である。 FIG. 12 is a graph showing the luminance distribution in the polar angle direction of the liquid crystal display device. In FIG. 12, the horizontal axis represents the polar angle θ [°] indicating the angle of line of sight when the liquid crystal display device is viewed from the front (normal direction) as “0 °”. (Normal direction) is “0 °”, the upper side is represented by plus and the lower side is represented by minus. The vertical axis is a direction along an axis perpendicular to the ground (azimuth angle φ: 90 ° -270 ° direction), and is a normalized luminance in which the display luminance in the front direction is expressed as “1”.
 ここでは、液晶パネルの視認側に方位方向を一致させて光制御フィルムを設置した場合の輝度分布、液晶パネルの視認側に方位方向を一致させずに光制御フィルムを設置した場合の輝度分布、液晶パネルに光制御フィルムを設置しない場合の輝度分布をそれぞれ示す。 Here, the luminance distribution when the light control film is installed with the azimuth direction matched on the viewing side of the liquid crystal panel, the luminance distribution when the light control film is installed without matching the azimuth direction on the viewing side of the liquid crystal panel, The luminance distribution when the light control film is not installed on the liquid crystal panel is shown.
 図12によれば、液晶パネルの視認側に方位方向を一致させて光制御フィルムを設置した場合、液晶パネルで階調反転が確認された視野角改善方向の極角θ=-30°以下において、光制御フィルムによって輝度が向上していることがわかる。特に、極角θ=-45°付近において輝度の上昇が顕著に表れている。 According to FIG. 12, when the light control film is installed with the azimuth direction coincided with the viewing side of the liquid crystal panel, the polar angle θ in the viewing angle improvement direction in which the gradation inversion is confirmed on the liquid crystal panel is equal to or less than −30 °. It can be seen that the brightness is improved by the light control film. In particular, the increase in luminance appears remarkably in the vicinity of the polar angle θ = −45 °.
 図12に示すように、液晶パネルの視野角改善方向と光制御フィルムの強拡散方向とが不一致の場合、視野角改善方向の極角θ=-45°における規格化輝度値は、0.08である。これに対し、液晶パネルの視野角改善方向と光制御フィルムの強拡散方向とを一致させた場合には、視野角改善方向の極角θ=-45°における規格化輝度値が0.17に向上している。 As shown in FIG. 12, when the viewing angle improvement direction of the liquid crystal panel does not match the strong diffusion direction of the light control film, the normalized luminance value at the polar angle θ = −45 ° in the viewing angle improvement direction is 0.08. It is. On the other hand, when the viewing angle improvement direction of the liquid crystal panel and the strong diffusion direction of the light control film are matched, the normalized luminance value at the polar angle θ = −45 ° in the viewing angle improvement direction is 0.17. It has improved.
 このように、光制御フィルム6を液晶パネル2と組み合わせたときに、視野角特性の改善効果を十分に発揮することができる。すなわち、液晶パネルの視野角改善方向に対して、光制御フィルムの強拡散方向を一致させることにより規格化輝度値が高まるため、視認者の視点を極角が大きくなるように傾けた場合(液晶表示装置を下側から見る場合)の視認性を効率よく改善することができる。  Thus, when the light control film 6 is combined with the liquid crystal panel 2, the effect of improving the viewing angle characteristics can be sufficiently exhibited. That is, since the normalized luminance value increases by matching the strong diffusion direction of the light control film with the viewing angle improvement direction of the liquid crystal panel, the viewer's viewpoint is tilted so that the polar angle becomes large (liquid crystal Visibility in the case of viewing the display device from below can be improved efficiently. *
[第2実施形態]
 以下、本発明の第2実施形態について説明する。
 なお、本実施形態において第1実施形態と共通する構成要素については、同じ符号を付し、詳細な説明は省略する。
 本実施形態では、液晶表示装置の基本構成の説明は省略し、光制御部材を構成する光制御フィルムについて主に説明する。
[Second Embodiment]
Hereinafter, a second embodiment of the present invention will be described.
In addition, in this embodiment, the same code | symbol is attached | subjected about the component which is common in 1st Embodiment, and detailed description is abbreviate | omitted.
In the present embodiment, description of the basic configuration of the liquid crystal display device is omitted, and the light control film constituting the light control member will be mainly described.
 図13は、第2実施形態における光制御フィルムの概略構成を示す平面図である。
 図13に示すように、本実施形態の光制御フィルム80は、基材39の凹凸形状によって構成されるマーク81を有している。マーク81は、基材39の第1端部39Aに設けられた凸部82と、第1端部39Aと反対側の第2端部39Bに設けられた凹部83とによって構成される。凹部83は、第1端部39Aに設けられた凸部82の形状を反転させた形状とされている。凸部82の端辺82aと凹部83の端辺83aとの長さは互いに等しく、凸部82の端辺82bと凹部83の端辺83bとの長さも互いに等しい。
FIG. 13 is a plan view showing a schematic configuration of the light control film in the second embodiment.
As shown in FIG. 13, the light control film 80 of the present embodiment has a mark 81 configured by the uneven shape of the base material 39. The mark 81 includes a convex portion 82 provided at the first end portion 39A of the base material 39 and a concave portion 83 provided at the second end portion 39B opposite to the first end portion 39A. The concave portion 83 has a shape obtained by inverting the shape of the convex portion 82 provided in the first end portion 39A. The lengths of the end side 82a of the convex portion 82 and the end side 83a of the concave portion 83 are equal to each other, and the lengths of the end side 82b of the convex portion 82 and the end side 83b of the concave portion 83 are also equal to each other.
 基材39上に形成された複数の遮光層40の短軸は、基材39の短辺(第1端部39A及び第2端部39B)に概ね平行である。すなわち、光制御フィルム80の強拡散方向Vsが基材39の第1端部39A及び第2端部39Bに沿っている。 The short axes of the plurality of light shielding layers 40 formed on the base 39 are substantially parallel to the short sides (first end 39A and second end 39B) of the base 39. That is, the strong diffusion direction Vs of the light control film 80 is along the first end 39 </ b> A and the second end 39 </ b> B of the base material 39.
 マーク81を構成する凸部82と凹部83とは、光制御フィルム80の強拡散方向Vsに沿う第1端部39A及び第2端部39Bにそれぞれ形成される。凹凸形状とされた第1端部39A及び第2端部39Bに沿う方向が、光制御フィルム80の拡散性が相対的に強い方位角方向Vsである。よって、マーク81は、光制御フィルム80の拡散性が相対的に強い方位角方向Vsを示すものとして機能する。 The convex portion 82 and the concave portion 83 constituting the mark 81 are formed on the first end portion 39A and the second end portion 39B, respectively, along the strong diffusion direction Vs of the light control film 80. The direction along the first end portion 39A and the second end portion 39B in the uneven shape is the azimuth angle direction Vs where the diffusibility of the light control film 80 is relatively strong. Therefore, the mark 81 functions as indicating the azimuth angle direction Vs where the light control film 80 has relatively strong diffusibility.
 すなわち、ユーザーが光制御フィルム80を単体で取り扱う場合、光制御フィルム80を正面から見たときに、左側に凸部82、右側に凹部83がくるように光制御フィルム80の向きを整えることで、上下方向が強拡散方向Vsとなる。このように、光制御フィルム80の外形を利用したマーク81により、外観から強拡散方向Vsを容易に判断することができる。 That is, when the user handles the light control film 80 alone, the light control film 80 is oriented so that the convex portion 82 is on the left side and the concave portion 83 is on the right side when the light control film 80 is viewed from the front. The vertical direction is the strong diffusion direction Vs. As described above, the strong diffusion direction Vs can be easily determined from the appearance by the mark 81 using the outer shape of the light control film 80.
 よって、液晶パネル2に対して光制御フィルム80を貼り合せる際に、光制御フィルム80の拡散性が相対的に強い方位角方向Vsと、液晶パネル2の視野角改善方向とを確実に一致させることができ、視野角特性の改善効果を十分に発揮することができる。 Therefore, when the light control film 80 is bonded to the liquid crystal panel 2, the azimuth angle direction Vs where the light control film 80 has a relatively strong diffusivity and the viewing angle improvement direction of the liquid crystal panel 2 are reliably matched. And the effect of improving the viewing angle characteristics can be sufficiently exhibited.
 図14は、液晶パネルの視認側に光制御フィルムを配置した場合を示す平面図である。
 図14に示すように、第2偏光板7に対して光制御フィルム80が貼り合わされた状態において、マーク81は液晶パネル2の表示領域44よりも外側に位置する。これによりマーク81が表示の品質を低下させることはない。マーク81は、液晶表示装置の外装(不図示)によって隠れるため、視認者により外部から視認されることはない。
FIG. 14 is a plan view showing a case where a light control film is arranged on the viewing side of the liquid crystal panel.
As shown in FIG. 14, the mark 81 is positioned outside the display area 44 of the liquid crystal panel 2 in a state where the light control film 80 is bonded to the second polarizing plate 7. Thereby, the mark 81 does not deteriorate the display quality. Since the mark 81 is hidden by the exterior (not shown) of the liquid crystal display device, it is not visually recognized by the viewer.
(光制御フィルムの製造装置)
 図15は、光制御フィルム80の製造に用いられる製造装置の一例を示す概略構成図である。図16A、図16Bは、原反ロールを切断して複数の光制御フィルムを得る工程を示す図である。なお、図16Bにおいては遮光層及び光拡散部の図示を省略している。
(Light control film manufacturing equipment)
FIG. 15 is a schematic configuration diagram illustrating an example of a manufacturing apparatus used for manufacturing the light control film 80. FIG. 16A and FIG. 16B are diagrams illustrating a process of obtaining a plurality of light control films by cutting an original roll. In FIG. 16B, illustration of the light shielding layer and the light diffusion portion is omitted.
 図15に示す製造装置60は、長尺の基材59をロール・トゥー・ロールで搬送し、その間に各種の処理を行うものである。また、製造装置60は、遮光層40の形成に印刷法を用いている。 The manufacturing apparatus 60 shown in FIG. 15 conveys the long base material 59 by roll-to-roll, and performs various processes in the meantime. The manufacturing apparatus 60 uses a printing method for forming the light shielding layer 40.
 製造装置60は、図15に示すように、一端に基材59を送り出す送出ローラー61が設けられ、他端には基材59を巻き取る巻取ローラー62が設けられている。
 基材59は、送出ローラー61側から巻取ローラー62側に向けて移動する構成となっている。基材59の上方には、送出ローラー61側から巻取ローラー62側に向けて印刷装置63、バーコート装置64と第1乾燥装置65から構成されるネガ型感光性樹脂層形成装置66、現像装置67、第2乾燥装置68が順次配置されている。基材59の下方には、基材59の搬送方向に並ぶネガ型感光性樹脂層形成装置66と現像装置67との間に露光装置69が配置されている。
As shown in FIG. 15, the manufacturing apparatus 60 is provided with a feed roller 61 for feeding the substrate 59 at one end, and a winding roller 62 for winding the substrate 59 at the other end.
The base material 59 is configured to move from the delivery roller 61 side toward the take-up roller 62 side. Above the substrate 59, a negative photosensitive resin layer forming device 66 composed of a printing device 63, a bar coating device 64 and a first drying device 65, from the delivery roller 61 side toward the take-up roller 62 side, development A device 67 and a second drying device 68 are sequentially arranged. Below the base material 59, an exposure device 69 is arranged between the negative photosensitive resin layer forming device 66 and the developing device 67 arranged in the transport direction of the base material 59.
 印刷装置63は、基材59上に黒色樹脂からなる複数の遮光層40を印刷するためのものである。
 バーコート装置64は、光透過性を有するネガ型感光性樹脂57を用いて上記光拡散部(図2:光拡散部41)を形成する場合、遮光層40上に光透過性を有するネガ型感光性樹脂57を塗布するためのものである。
 第1乾燥装置65は、光透過性を有するネガ型感光性樹脂57を用いて光拡散部(図2:光拡散部41)を形成する場合、塗布後のネガ型感光性樹脂57を乾燥させて塗膜58とするためのものである。
The printing device 63 is for printing a plurality of light shielding layers 40 made of black resin on the substrate 59.
When the light diffusing portion (FIG. 2: light diffusing portion 41) is formed using the light-sensitive negative photosensitive resin 57, the bar coater 64 has a light-transmissive negative type. This is for applying the photosensitive resin 57.
When forming the light diffusion part (FIG. 2: light diffusion part 41) using the negative photosensitive resin 57 having light transmittance, the first drying device 65 dries the negative photosensitive resin 57 after application. The coating film 58 is used.
 露光装置69は、基材59側からネガ型感光性樹脂57の塗膜58の露光を行うためのものである。露光装置69は、図15に示すように、光源70を備えている。 The exposure device 69 is for exposing the coating film 58 of the negative photosensitive resin 57 from the base material 59 side. The exposure device 69 includes a light source 70 as shown in FIG.
 なお、本実施形態では、ネガ型感光性樹脂層形成装置66として、バーコート装置64と第1乾燥装置65から構成されるものを例示したが、これに限定されるものではない。
本実施形態にあっては、ドライフィルムレジストを用いて光拡散部を形成する場合、ネガ型感光性樹脂層形成装置66として、基材59にドライフィルムレジストをラミネートするラミネート装置が用いられる。
In the present embodiment, the negative photosensitive resin layer forming device 66 is exemplified by the bar coating device 64 and the first drying device 65, but is not limited to this.
In the present embodiment, when the light diffusing portion is formed using a dry film resist, a laminating apparatus for laminating the dry film resist on the substrate 59 is used as the negative photosensitive resin layer forming apparatus 66.
 光制御フィルム80を製造する際には、まず上述した製造装置60を用いて、基材59上に複数の遮光層40と光拡散部41とを有した原反ロール77を作製する。 When manufacturing the light control film 80, first, using the manufacturing apparatus 60 described above, an original fabric roll 77 having a plurality of light shielding layers 40 and light diffusion portions 41 on a base material 59 is manufactured.
 その後、図16A、図16Bに示すように、図中の矢印で示す部分においてカッター78により原反ロール77を切断し、光制御フィルム80を形成する。カッター78は、その中央付近において屈曲した形状とされている。カッター78により原反ロール77を切断することで、基材39の第1端部39A及び第2端部39Bのそれぞれに凸部82または凹部83を有した光制御フィルム80が形成される。このように、長尺の原反ロール77を個片化することによって複数の光制御フィルム80を得る。 Thereafter, as shown in FIGS. 16A and 16B, the raw fabric roll 77 is cut by a cutter 78 at a portion indicated by an arrow in the drawing to form a light control film 80. The cutter 78 has a bent shape near the center. By cutting the raw roll 77 with the cutter 78, the light control film 80 having the convex portion 82 or the concave portion 83 on each of the first end portion 39A and the second end portion 39B of the base material 39 is formed. In this way, the plurality of light control films 80 are obtained by separating the long original fabric rolls 77 into individual pieces.
 本実施形態の光制御フィルム80は上述した方法により作成されるため、光制御フィルム80を複数並べた際にマーク81の部分が隣り合う光制御フィルム80と補完し合う形状となっている。光制御フィルム80におけるマーク81の形状を、隣り合う光制御フィルム80の端部と合致する形状にすることで、原反ロール77を切断する回数が少なくなる。また、原反ロール77を無駄なく利用することができる。 Since the light control film 80 of the present embodiment is produced by the above-described method, when a plurality of light control films 80 are arranged, the portion of the mark 81 complements the adjacent light control film 80. By making the shape of the mark 81 in the light control film 80 coincide with the end portion of the adjacent light control film 80, the number of times the raw roll 77 is cut is reduced. Moreover, the raw fabric roll 77 can be used without waste.
 本実施形態によれば、複数の光制御フィルム80を組み合わせて大判の光制御フィルムとして使用することもできる。
 図17は、大型の液晶パネルに複数の光制御フィルムを利用する場合の斜視図である。
 例えば、図17に示すように、大型の液晶パネル2に対して2枚の光制御フィルム80を並べて配置することで、大判の光制御フィルムとして使用することができる。
According to the present embodiment, a plurality of light control films 80 can be combined and used as a large light control film.
FIG. 17 is a perspective view when a plurality of light control films are used in a large liquid crystal panel.
For example, as shown in FIG. 17, by arranging two light control films 80 side by side on a large liquid crystal panel 2, it can be used as a large light control film.
 なお、光制御フィルム80の外形によって表されるマーク81としては、上述したものに限らない。例えば、図18に示すように、基材39の第1端部39Aに形成された三角形状の切欠部84と、第2端部39Bに形成された三角形状の突出部85と、によってマーク81を構成してもよい。切欠部84と突出部85とは互いに反転した形状となっている。
 なお、基材39の短辺方向一端側だけでなく、両端にマーク81をそれぞれ形成してもよい。
The mark 81 represented by the outer shape of the light control film 80 is not limited to that described above. For example, as shown in FIG. 18, a mark 81 is formed by a triangular notch 84 formed in the first end 39A of the base 39 and a triangular protrusion 85 formed in the second end 39B. May be configured. The notch portion 84 and the protruding portion 85 have shapes that are inverted from each other.
In addition, you may form the mark 81 not only at the short side direction one end side of the base material 39 but at both ends.
 本実施形態において、光制御フィルム80の基材39は透明樹脂性の基材より構成されるため、その形状を一部変更してマーク81とすることができる。一方、第2偏光板7を構成する基材はガラス基材であるため外形の一部を変更することは難しい。よって、光制御フィルム80側にマーク81を設ける方が簡単に行える。 In the present embodiment, since the base 39 of the light control film 80 is made of a transparent resin base, the shape thereof can be partially changed to be the mark 81. On the other hand, since the base material which comprises the 2nd polarizing plate 7 is a glass base material, it is difficult to change a part of external shape. Therefore, it is easier to provide the mark 81 on the light control film 80 side.
[第3実施形態]
 以下、本発明の第3実施形態について説明する。
 なお、本実施形態において上記実施形態と共通する構成要素については、同じ符号を付し、詳細な説明は省略する。
[Third Embodiment]
Hereinafter, a third embodiment of the present invention will be described.
In addition, in this embodiment, about the component which is common in the said embodiment, the same code | symbol is attached | subjected and detailed description is abbreviate | omitted.
 図19は、第3実施形態における光制御フィルムの概略構成を示す断面図である。
 図20A、図20Bは、マークを有する保護フィルムの概略構成を示す図である。
 本実施形態では、図19に示すように、光制御フィルム6上に、光拡散部41を保護するための保護フィルム86が設けられている。保護フィルム86は、光制御フィルム6が液晶パネル2上に貼り合わされるまで一時的に利用される。保護フィルム86を有した光制御フィルム6を液晶パネル2に貼り合せる際には、保護フィルム86を光制御フィルム6(光拡散部41)上から剥離した後、光拡散部41が液晶パネル2の第2偏光板7と接するように貼り合せる。
FIG. 19 is a cross-sectional view showing a schematic configuration of the light control film in the third embodiment.
20A and 20B are diagrams illustrating a schematic configuration of a protective film having a mark.
In the present embodiment, as shown in FIG. 19, a protective film 86 for protecting the light diffusion portion 41 is provided on the light control film 6. The protective film 86 is temporarily used until the light control film 6 is bonded onto the liquid crystal panel 2. When the light control film 6 having the protective film 86 is bonded to the liquid crystal panel 2, the protective film 86 is peeled off from the light control film 6 (light diffusion portion 41), and then the light diffusion portion 41 is attached to the liquid crystal panel 2. Bonding is performed so as to be in contact with the second polarizing plate 7.
 保護フィルム86は、不図示の接着層を介して光制御フィルム6に貼り合わされるが、保護フィルム86の剥離と同時に接着層も光拡散部41から剥離する。光制御フィルム6は、保護フィルム86が剥離された後、第2偏光板7の外面に形成された接着剤層43(図2)を介して貼り合わされる。 The protective film 86 is bonded to the light control film 6 through an adhesive layer (not shown), but the adhesive layer is also peeled off from the light diffusion portion 41 simultaneously with the peeling of the protective film 86. The light control film 6 is bonded via the adhesive layer 43 (FIG. 2) formed on the outer surface of the second polarizing plate 7 after the protective film 86 is peeled off.
 本実施形態の保護フィルム86には、光制御フィルム6とは反対側の外面86bに、光制御フィルム6の拡散性が最も強い方位角方向Vsを示すマーク(指標)87が印刷されている。マーク87として、矢印や文字など、それら自体が方向性を有するものを利用し、光制御フィルム6の強拡散方向Vsに沿って矢印や文字を印すことで、光制御フィルム6の向きに関わらず、強拡散方向Vsを外観から容易に判断することができる。 In the protective film 86 of this embodiment, a mark (index) 87 indicating the azimuth angle direction Vs having the strongest diffusibility of the light control film 6 is printed on the outer surface 86b opposite to the light control film 6. As the mark 87, an arrow or a character such as an item having directivity is used, and an arrow or a character is marked along the strong diffusion direction Vs of the light control film 6. Therefore, the strong diffusion direction Vs can be easily determined from the appearance.
 保護フィルム86に付すマーク87としては、矢印や文字以外に図形などを利用してもよい。マーク87の数や大きさも図示したものに限らず、外観から容易に認識できるものであればよい。 As the mark 87 attached to the protective film 86, a figure or the like may be used in addition to an arrow or a character. The number and size of the marks 87 are not limited to those shown in the drawings, but may be any that can be easily recognized from the appearance.
 本実施形態の構成によれば、製造工程中、液晶パネル2に貼り合わせるまで光制御フィルム6が保護フィルム86によって保護されるため、光拡散部41の表面に埃や傷がつくのを防止することができる。これにより、光制御フィルム6と液晶パネル2との貼り合せを良好に行える。また、保護フィルム86側に光制御フィルム6の強拡散方向Vsを示すマーク87を形成しておくことにより、光制御フィルム6自体は既存の製造方法で製造することができる。光制御フィルム6を液晶パネル2に貼り合せる際には、保護フィルム86のマーク87から強拡散方向Vsを容易に判定することができる。 According to the configuration of the present embodiment, since the light control film 6 is protected by the protective film 86 until it is bonded to the liquid crystal panel 2 during the manufacturing process, dust and scratches on the surface of the light diffusion portion 41 are prevented. be able to. Thereby, bonding of the light control film 6 and the liquid crystal panel 2 can be performed satisfactorily. Further, by forming the mark 87 indicating the strong diffusion direction Vs of the light control film 6 on the protective film 86 side, the light control film 6 itself can be manufactured by an existing manufacturing method. When the light control film 6 is bonded to the liquid crystal panel 2, the strong diffusion direction Vs can be easily determined from the mark 87 of the protective film 86.
[第4実施形態]
 以下、本発明の第4実施形態について述べる。
 図21は、第4実施形態における光拡散フィルムの概略構成を示す断面図である。
 本実施形態では、図21に示すように、光制御フィルム6上に接着剤層88を介して保護フィルム86が設けられている。光制御フィルム6を液晶パネル2に貼り合せる際には、保護フィルム86を光制御フィルム6上から剥離した後、接着剤層88が液晶パネル2の第2偏光板7と接するように貼り合せる。このとき、保護フィルム86のみが剥離され、接着剤層88は光制御フィルム6の光拡散部41上に残る。
[Fourth Embodiment]
The fourth embodiment of the present invention will be described below.
FIG. 21 is a cross-sectional view showing a schematic configuration of a light diffusion film in the fourth embodiment.
In the present embodiment, as shown in FIG. 21, a protective film 86 is provided on the light control film 6 via an adhesive layer 88. When the light control film 6 is bonded to the liquid crystal panel 2, the protective film 86 is peeled off from the light control film 6 and then bonded so that the adhesive layer 88 is in contact with the second polarizing plate 7 of the liquid crystal panel 2. At this time, only the protective film 86 is peeled off, and the adhesive layer 88 remains on the light diffusion portion 41 of the light control film 6.
 この構成によれば、光制御フィルム6を液晶パネル2に貼り合せる直前に保護フィルム86を剥離すればよいので、液晶パネル2の第2偏光板7側に接着剤層43を形成しなくて済み、製造工程中において光制御フィルム6及び液晶パネル2の取扱いが容易になる。 According to this configuration, the protective film 86 may be peeled off immediately before the light control film 6 is bonded to the liquid crystal panel 2, so that the adhesive layer 43 need not be formed on the second polarizing plate 7 side of the liquid crystal panel 2. In the manufacturing process, the light control film 6 and the liquid crystal panel 2 can be easily handled.
[第5実施形態]
 以下、本発明の第5実施形態について述べる。
 図22は、保護フィルムを備えた原反ロールを示す図である。
 図22に示すように、本実施形態における原反ロール89は、基材59上に光拡散部と複数の遮光層(いずれも不図示)とを介して長尺の保護フィルム90が設けられている。
保護フィルム90には、光拡散部の強拡散方向Vsを示すマーク87が複数形成されている。複数のマーク87は、原反ロール89の長手方向及び短手方向にそれぞれ一定の間隔で設けられ、保護フィルム90の全面に連続的に存在する。
[Fifth Embodiment]
The fifth embodiment of the present invention will be described below.
FIG. 22 is a view showing an original fabric roll provided with a protective film.
As shown in FIG. 22, an original fabric roll 89 in the present embodiment is provided with a long protective film 90 on a base material 59 via a light diffusion portion and a plurality of light shielding layers (all not shown). Yes.
A plurality of marks 87 indicating the strong diffusion direction Vs of the light diffusion part are formed on the protective film 90. The plurality of marks 87 are provided at regular intervals in the longitudinal direction and the short direction of the original fabric roll 89 and are continuously present on the entire surface of the protective film 90.
 図23は、原反ロールにおける光拡散フィルムの形成領域を示す図である。
 図24は、原反ロールから切り出された光制御フィルムを示す斜視図である。
 本実施形態の原反ロール89によれば、図23及び図24に示すように、液晶パネル2のサイズに応じて光制御フィルム6を任意の大きさで切り出したとしても、保護フィルム86に設けられたマーク87により光拡散部41における強拡散方向Vsを確認することができる。
FIG. 23 is a diagram illustrating a light diffusion film forming region in the raw fabric roll.
FIG. 24 is a perspective view showing the light control film cut out from the raw roll.
According to the original fabric roll 89 of the present embodiment, as shown in FIGS. 23 and 24, even if the light control film 6 is cut out in an arbitrary size according to the size of the liquid crystal panel 2, it is provided on the protective film 86. The strong diffusion direction Vs in the light diffusion portion 41 can be confirmed by the mark 87.
 なお、原反ロール89に設ける保護フィルム90のマーク87としては、図22に示した矢印に限らず、図25に示すような文字を利用してもよい。文字は方向性を有するもので上下方向が存在する。よって、文字の上下方向を、光制御フィルム6の強拡散方向Vsと一致させておくことで、いずれの方向から文字を読んだ場合にも、光制御フィルム6の強拡散方向Vsを判断することができる。 In addition, as the mark 87 of the protective film 90 provided in the fabric roll 89, not only the arrow shown in FIG. 22, but characters as shown in FIG. 25 may be used. A character has directionality and has a vertical direction. Therefore, by making the vertical direction of the character coincide with the strong diffusion direction Vs of the light control film 6, the strong diffusion direction Vs of the light control film 6 can be determined when the character is read from any direction. Can do.
 以上、添付図面を参照しながら本発明に係る好適な各実施形態について説明したが、本発明は係る例に限定されないことは言うまでもない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 The preferred embodiments according to the present invention have been described above with reference to the accompanying drawings, but it goes without saying that the present invention is not limited to such examples. It is obvious for those skilled in the art that various changes or modifications can be conceived within the scope of the technical idea described in the claims. It is understood that it belongs to.
 本発明の一態様は、光制御フィルム、光制御フィルムの原反ロール、表示装置に利用することができる。 One embodiment of the present invention can be used for a light control film, a roll of light control film, and a display device.
1…液晶表示装置(表示装置)、2…液晶パネル(表示体)、3…光制御部材、6,80…光制御フィルム、E…法線方向、39…光制御フィルムの基材、59…原反ロールの基材、39a…第1面(一面)、39A…第1端部、39B…第2端部、40…遮光層、41…光拡散部、41a…光射出端面、41b…光入射端面、41c…反射面、42…中空部、44…表示領域、50,87…マーク(指標)、77,89…原反ロール、82…凸部、83…凹部、86,90…保護フィルム、Vs…方位角方向 DESCRIPTION OF SYMBOLS 1 ... Liquid crystal display device (display apparatus), 2 ... Liquid crystal panel (display body), 3 ... Light control member, 6,80 ... Light control film, E ... Normal direction, 39 ... Base material of light control film, 59 ... Raw material roll base material, 39a ... first surface (one surface), 39A ... first end, 39B ... second end, 40 ... light shielding layer, 41 ... light diffusion portion, 41a ... light emission end surface, 41b ... light Incident end face, 41c ... reflective surface, 42 ... hollow part, 44 ... display area, 50, 87 ... mark (index), 77, 89 ... raw roll, 82 ... convex part, 83 ... concave part, 86, 90 ... protective film , Vs ... Azimuth direction

Claims (9)

  1.  光透過性を有する基材と、
     前記基材の一面における第1領域に設けられた光拡散部と、
     前記一面のうち前記第1領域を除いた第2領域に設けられた遮光層と、
     前記光拡散部に隣り合う中空部と、を備え、
     前記光拡散部が、前記基材の前記一面に接する光射出端面と、前記光射出端面に対向し前記光射出端面の面積よりも大きい面積を有する光入射端面と、前記光射出端面と前記光入射端面とに接し、前記光入射端面から入射した光を反射する反射面と、を有し、前記光の散乱特性に異方性を持つ構成をなし、
     前記光拡散部による前記光の散乱特性の異方性の方向を示す指標が設けられている光制御フィルム。
    A substrate having optical transparency;
    A light diffusion portion provided in a first region on one surface of the substrate;
    A light shielding layer provided in a second region of the one surface excluding the first region;
    A hollow part adjacent to the light diffusion part,
    The light diffusing portion has a light emitting end face that is in contact with the one surface of the base material, a light incident end face that is opposed to the light emitting end face and has an area larger than the area of the light emitting end face, the light emitting end face, and the light A reflection surface that is in contact with the incident end face and reflects light incident from the light incident end face, and has a configuration having anisotropy in the light scattering characteristics;
    The light control film in which the parameter | index which shows the direction of the anisotropy of the said light scattering characteristic by the said light-diffusion part is provided.
  2.  前記基材の前記一面の法線方向から見た前記光拡散部あるいは前記遮光層の平面的な形状が、2軸対称性を有する請求項1に記載の光制御フィルム。 2. The light control film according to claim 1, wherein a planar shape of the light diffusion portion or the light shielding layer viewed from the normal direction of the one surface of the base material has biaxial symmetry.
  3.  前記指標は、前記基材に設けられた凹凸によって構成されている請求項1または2に記載の光制御フィルム。 The light control film according to claim 1 or 2, wherein the index is constituted by unevenness provided on the base material.
  4.  前記指標は、前記基材の第1端部に設けられた凸部と、前記第1端部とは反対側の第2端部に設けられた凹部と、によって構成され、
     前記第2端部には、前記第1端部の形状を反転させた形状の凹部が形成されている請求項1から3のいずれか一項に記載の光制御フィルム。
    The indicator is constituted by a convex portion provided at a first end portion of the base material and a concave portion provided at a second end portion opposite to the first end portion,
    The light control film according to any one of claims 1 to 3, wherein a concave portion having a shape obtained by inverting the shape of the first end portion is formed at the second end portion.
  5.  前記指標は、矩形をなす前記基材の対角である2つの角部にそれぞれ設けられている請求項1から4のいずれか一項に記載の光制御フィルム。 The light control film according to any one of claims 1 to 4, wherein the index is provided at each of two corner portions that are diagonal to the base material forming a rectangle.
  6.  前記基材の前記一面側には、前記光拡散部を介して保護フィルムが設けられており、
     前記保護フィルムに前記指標が設けられている請求項1から5のいずれか一項に記載の光制御フィルム。
    A protective film is provided on the one surface side of the base material via the light diffusion portion,
    The light control film according to claim 1, wherein the index is provided on the protective film.
  7.  長尺の光制御フィルムを巻回してなる光制御フィルムの原反ロールであって、
     前記光制御フィルムは、光透過性を有する基材と、
     前記基材の一面における第1領域に設けられた光拡散部と、
     前記一面のうち前記第1領域を除いた第2領域に設けられた遮光層と、
     前記光拡散部に隣り合う中空部と、を備え、
     前記光拡散部が、前記基材の前記一面に接する光射出端面と、前記光射出端面に対向し前記光射出端面の面積よりも大きい面積を有する光入射端面と、前記光射出端面と前記光入射端面とに接し、前記光入射端面から入射した光を反射する反射面と、を有し、前記光の散乱特性に異方性を持つ構成をなし、
     前記光拡散部による前記光の散乱特性の異方性の方向を示す指標が設けられている光制御フィルムの原反ロール。
    A roll of light control film formed by winding a long light control film,
    The light control film includes a base material having light permeability,
    A light diffusion portion provided in a first region on one surface of the substrate;
    A light shielding layer provided in a second region of the one surface excluding the first region;
    A hollow part adjacent to the light diffusion part,
    The light diffusing portion has a light emitting end face that is in contact with the one surface of the base material, a light incident end face that is opposed to the light emitting end face and has an area larger than the area of the light emitting end face, the light emitting end face, and the light A reflection surface that is in contact with the incident end face and reflects light incident from the light incident end face, and has a configuration having anisotropy in the light scattering characteristics;
    An original fabric roll of a light control film provided with an index indicating the direction of anisotropy of the light scattering property by the light diffusion portion.
  8.  表示体と、
     前記表示体の視認側に設けられ、前記表示体から入射される光を散乱させて射出させる光制御部材と、
     前記光制御部材が、請求項1から6までのいずれか一項に記載の光制御フィルムで構成されており、
     前記光制御フィルムの光の散乱特性の異方性の方向を示す指標が、前記表示体における表示領域以外の領域に設けられている表示装置。
    A display,
    A light control member that is provided on the viewing side of the display body and scatters and emits light incident from the display body;
    The light control member is composed of the light control film according to any one of claims 1 to 6,
    The display apparatus in which the parameter | index which shows the direction of anisotropy of the light scattering characteristic of the said light control film is provided in areas other than the display area in the said display body.
  9.  前記表示体の輝度視野角が相対的に狭い方位角方向と、前記光制御フィルムの拡散性が相対的に強い方位角方向と、が概ね一致している請求項8に記載の表示装置。 The display device according to claim 8, wherein an azimuth angle direction in which the luminance viewing angle of the display body is relatively narrow and an azimuth angle direction in which the light control film has a relatively strong diffusivity substantially coincide with each other.
PCT/JP2014/078327 2013-10-28 2014-10-24 Light control film, roll of light control film, and display device WO2015064493A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013223369 2013-10-28
JP2013-223369 2013-10-28

Publications (1)

Publication Number Publication Date
WO2015064493A1 true WO2015064493A1 (en) 2015-05-07

Family

ID=53004099

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/078327 WO2015064493A1 (en) 2013-10-28 2014-10-24 Light control film, roll of light control film, and display device

Country Status (1)

Country Link
WO (1) WO2015064493A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589570A (en) * 2017-09-25 2018-01-16 京东方科技集团股份有限公司 A kind of diaphragm and its alignment method, display module

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007213951A (en) * 2006-02-09 2007-08-23 Fujifilm Corp Planar lighting system
JP2009113448A (en) * 2007-11-09 2009-05-28 Toppan Printing Co Ltd Protective film and member
JP2013026109A (en) * 2011-07-25 2013-02-04 Seiko Epson Corp Lighting system, liquid crystal display device and electronic equipment
JP2013083784A (en) * 2011-10-07 2013-05-09 V Technology Co Ltd Sticking method for polarizing film
WO2013157431A1 (en) * 2012-04-18 2013-10-24 シャープ株式会社 Light control member, method for manufacturing same, and display device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007213951A (en) * 2006-02-09 2007-08-23 Fujifilm Corp Planar lighting system
JP2009113448A (en) * 2007-11-09 2009-05-28 Toppan Printing Co Ltd Protective film and member
JP2013026109A (en) * 2011-07-25 2013-02-04 Seiko Epson Corp Lighting system, liquid crystal display device and electronic equipment
JP2013083784A (en) * 2011-10-07 2013-05-09 V Technology Co Ltd Sticking method for polarizing film
WO2013157431A1 (en) * 2012-04-18 2013-10-24 シャープ株式会社 Light control member, method for manufacturing same, and display device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107589570A (en) * 2017-09-25 2018-01-16 京东方科技集团股份有限公司 A kind of diaphragm and its alignment method, display module

Similar Documents

Publication Publication Date Title
US10288781B2 (en) Display device and light-diffusing member
JP6136059B2 (en) Liquid crystal display device, light control film, display device
US10401672B2 (en) Display device
US10191322B2 (en) Display and electronic unit
WO2015186737A1 (en) Light control member, method for producing light control member, apparatus for producing light control member, and display device
US20150109562A1 (en) Liquid crystal display device and electronic device
JP6212825B2 (en) Light diffusing member with polarizing plate, method for producing light diffusing member with polarizing plate, and display device
JP6167429B2 (en) Liquid crystal display device and method of manufacturing liquid crystal display device
US20160370512A1 (en) Light diffusing member and display device
US10018755B2 (en) Light diffusion member and display device
WO2014084261A1 (en) Light control film and display device
JP6465868B2 (en) Liquid crystal display
US10338426B2 (en) Light diffusion member, base material for light diffusion member production, display device using same and method for producing light diffusion member
US10036837B2 (en) Mother substrate, light-control member, method for manufacturing light-control member, and display device
CN113552736A (en) Electronic control visual angle switcher and display device
WO2015064493A1 (en) Light control film, roll of light control film, and display device
JP3760656B2 (en) Liquid crystal device and electronic device
WO2015005284A1 (en) Light diffusing member and display device
JP2015206917A (en) Liquid crystal display
JP2017219618A (en) Liquid crystal display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858265

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP