WO2015063549A1 - A method of preparing fermentable sugars from biomass resources - Google Patents
A method of preparing fermentable sugars from biomass resources Download PDFInfo
- Publication number
- WO2015063549A1 WO2015063549A1 PCT/IB2013/060847 IB2013060847W WO2015063549A1 WO 2015063549 A1 WO2015063549 A1 WO 2015063549A1 IB 2013060847 W IB2013060847 W IB 2013060847W WO 2015063549 A1 WO2015063549 A1 WO 2015063549A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- acid
- biomass
- sugars
- pretreated
- calcium carbonate
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 76
- 239000002028 Biomass Substances 0.000 title claims abstract description 66
- 235000000346 sugar Nutrition 0.000 title claims abstract description 47
- 150000008163 sugars Chemical class 0.000 title claims abstract description 31
- VTYYLEPIZMXCLO-UHFFFAOYSA-L Calcium carbonate Chemical compound [Ca+2].[O-]C([O-])=O VTYYLEPIZMXCLO-UHFFFAOYSA-L 0.000 claims description 56
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 claims description 54
- KRKNYBCHXYNGOX-UHFFFAOYSA-N citric acid Chemical compound OC(=O)CC(O)(C(O)=O)CC(O)=O KRKNYBCHXYNGOX-UHFFFAOYSA-N 0.000 claims description 39
- 229910000019 calcium carbonate Inorganic materials 0.000 claims description 28
- 239000000203 mixture Substances 0.000 claims description 24
- 239000002002 slurry Substances 0.000 claims description 23
- 239000002253 acid Substances 0.000 claims description 21
- 230000007062 hydrolysis Effects 0.000 claims description 17
- 238000006460 hydrolysis reaction Methods 0.000 claims description 17
- CDBYLPFSWZWCQE-UHFFFAOYSA-L Sodium Carbonate Chemical compound [Na+].[Na+].[O-]C([O-])=O CDBYLPFSWZWCQE-UHFFFAOYSA-L 0.000 claims description 16
- ODINCKMPIJJUCX-UHFFFAOYSA-N Calcium oxide Chemical compound [Ca]=O ODINCKMPIJJUCX-UHFFFAOYSA-N 0.000 claims description 14
- 239000007787 solid Substances 0.000 claims description 13
- QMKYBPDZANOJGF-UHFFFAOYSA-N benzene-1,3,5-tricarboxylic acid Chemical compound OC(=O)C1=CC(C(O)=O)=CC(C(O)=O)=C1 QMKYBPDZANOJGF-UHFFFAOYSA-N 0.000 claims description 12
- 229910000029 sodium carbonate Inorganic materials 0.000 claims description 12
- KQTIIICEAUMSDG-UHFFFAOYSA-N tricarballylic acid Chemical compound OC(=O)CC(C(O)=O)CC(O)=O KQTIIICEAUMSDG-UHFFFAOYSA-N 0.000 claims description 12
- 239000000920 calcium hydroxide Substances 0.000 claims description 8
- 229910001861 calcium hydroxide Inorganic materials 0.000 claims description 8
- 239000000292 calcium oxide Substances 0.000 claims description 8
- 235000012255 calcium oxide Nutrition 0.000 claims description 8
- ODBLHEXUDAPZAU-ZAFYKAAXSA-N D-threo-isocitric acid Chemical compound OC(=O)[C@H](O)[C@@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-ZAFYKAAXSA-N 0.000 claims description 7
- ODBLHEXUDAPZAU-FONMRSAGSA-N Isocitric acid Natural products OC(=O)[C@@H](O)[C@H](C(O)=O)CC(O)=O ODBLHEXUDAPZAU-FONMRSAGSA-N 0.000 claims description 7
- AXCZMVOFGPJBDE-UHFFFAOYSA-L calcium dihydroxide Chemical compound [OH-].[OH-].[Ca+2] AXCZMVOFGPJBDE-UHFFFAOYSA-L 0.000 claims description 7
- -1 pentose sugars Chemical class 0.000 claims description 7
- ODBLHEXUDAPZAU-UHFFFAOYSA-N threo-D-isocitric acid Natural products OC(=O)C(O)C(C(O)=O)CC(O)=O ODBLHEXUDAPZAU-UHFFFAOYSA-N 0.000 claims description 7
- 239000001124 (E)-prop-1-ene-1,2,3-tricarboxylic acid Substances 0.000 claims description 6
- 229940091181 aconitic acid Drugs 0.000 claims description 6
- GTZCVFVGUGFEME-IWQZZHSRSA-N cis-aconitic acid Chemical compound OC(=O)C\C(C(O)=O)=C\C(O)=O GTZCVFVGUGFEME-IWQZZHSRSA-N 0.000 claims description 6
- 238000001914 filtration Methods 0.000 claims description 6
- VTHJTEIRLNZDEV-UHFFFAOYSA-L magnesium dihydroxide Chemical compound [OH-].[OH-].[Mg+2] VTHJTEIRLNZDEV-UHFFFAOYSA-L 0.000 claims description 6
- 239000000347 magnesium hydroxide Substances 0.000 claims description 6
- 229910001862 magnesium hydroxide Inorganic materials 0.000 claims description 6
- GTZCVFVGUGFEME-UHFFFAOYSA-N trans-aconitic acid Natural products OC(=O)CC(C(O)=O)=CC(O)=O GTZCVFVGUGFEME-UHFFFAOYSA-N 0.000 claims description 6
- 230000003472 neutralizing effect Effects 0.000 claims description 5
- 235000011116 calcium hydroxide Nutrition 0.000 claims description 4
- 239000012528 membrane Substances 0.000 claims description 3
- 235000011182 sodium carbonates Nutrition 0.000 claims description 2
- 230000008569 process Effects 0.000 description 36
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 26
- 239000000243 solution Substances 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 16
- 239000003513 alkali Substances 0.000 description 12
- 230000007071 enzymatic hydrolysis Effects 0.000 description 12
- 238000006047 enzymatic hydrolysis reaction Methods 0.000 description 12
- 239000001913 cellulose Substances 0.000 description 11
- 229920002678 cellulose Polymers 0.000 description 11
- 238000006243 chemical reaction Methods 0.000 description 11
- 238000000855 fermentation Methods 0.000 description 11
- 230000004151 fermentation Effects 0.000 description 11
- 239000007788 liquid Substances 0.000 description 11
- 239000000523 sample Substances 0.000 description 11
- 239000000463 material Substances 0.000 description 9
- 238000005272 metallurgy Methods 0.000 description 9
- 150000007524 organic acids Chemical class 0.000 description 9
- WQZGKKKJIJFFOK-GASJEMHNSA-N Glucose Natural products OC[C@H]1OC(O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-GASJEMHNSA-N 0.000 description 8
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 8
- 239000008103 glucose Substances 0.000 description 8
- 239000000413 hydrolysate Substances 0.000 description 8
- 229920005610 lignin Polymers 0.000 description 8
- 239000011541 reaction mixture Substances 0.000 description 8
- 108010059892 Cellulase Proteins 0.000 description 7
- 229910000856 hastalloy Inorganic materials 0.000 description 7
- 238000004519 manufacturing process Methods 0.000 description 7
- QTBSBXVTEAMEQO-UHFFFAOYSA-N Acetic acid Chemical compound CC(O)=O QTBSBXVTEAMEQO-UHFFFAOYSA-N 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 6
- 235000008733 Citrus aurantifolia Nutrition 0.000 description 6
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 6
- 235000011941 Tilia x europaea Nutrition 0.000 description 6
- 238000002474 experimental method Methods 0.000 description 6
- 239000004571 lime Substances 0.000 description 6
- 238000002203 pretreatment Methods 0.000 description 6
- 108010084185 Cellulases Proteins 0.000 description 5
- 102000005575 Cellulases Human genes 0.000 description 5
- 229940106157 cellulase Drugs 0.000 description 5
- 150000004676 glycans Chemical class 0.000 description 5
- 238000006386 neutralization reaction Methods 0.000 description 5
- 229920001282 polysaccharide Polymers 0.000 description 5
- 239000005017 polysaccharide Substances 0.000 description 5
- 238000002360 preparation method Methods 0.000 description 5
- 150000003839 salts Chemical class 0.000 description 5
- 239000000126 substance Substances 0.000 description 5
- SRBFZHDQGSBBOR-IOVATXLUSA-N D-xylopyranose Chemical compound O[C@@H]1COC(O)[C@H](O)[C@H]1O SRBFZHDQGSBBOR-IOVATXLUSA-N 0.000 description 4
- 240000007594 Oryza sativa Species 0.000 description 4
- 235000007164 Oryza sativa Nutrition 0.000 description 4
- UIIMBOGNXHQVGW-UHFFFAOYSA-M Sodium bicarbonate Chemical compound [Na+].OC([O-])=O UIIMBOGNXHQVGW-UHFFFAOYSA-M 0.000 description 4
- 240000008042 Zea mays Species 0.000 description 4
- 235000005824 Zea mays ssp. parviglumis Nutrition 0.000 description 4
- 235000002017 Zea mays subsp mays Nutrition 0.000 description 4
- 238000013019 agitation Methods 0.000 description 4
- 239000002585 base Substances 0.000 description 4
- 239000000872 buffer Substances 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 239000007979 citrate buffer Substances 0.000 description 4
- 235000005822 corn Nutrition 0.000 description 4
- 239000000446 fuel Substances 0.000 description 4
- 239000003112 inhibitor Substances 0.000 description 4
- 239000011344 liquid material Substances 0.000 description 4
- 244000005700 microbiome Species 0.000 description 4
- 235000005985 organic acids Nutrition 0.000 description 4
- 235000009566 rice Nutrition 0.000 description 4
- 238000005070 sampling Methods 0.000 description 4
- 239000011343 solid material Substances 0.000 description 4
- 239000012258 stirred mixture Substances 0.000 description 4
- 238000003756 stirring Methods 0.000 description 4
- 239000010902 straw Substances 0.000 description 4
- 241000196324 Embryophyta Species 0.000 description 3
- 229920002488 Hemicellulose Polymers 0.000 description 3
- 240000000111 Saccharum officinarum Species 0.000 description 3
- 235000007201 Saccharum officinarum Nutrition 0.000 description 3
- 238000005903 acid hydrolysis reaction Methods 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 239000001569 carbon dioxide Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 3
- 230000003301 hydrolyzing effect Effects 0.000 description 3
- 239000012978 lignocellulosic material Substances 0.000 description 3
- 229920000642 polymer Polymers 0.000 description 3
- 239000002023 wood Substances 0.000 description 3
- 241000609240 Ambelania acida Species 0.000 description 2
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 description 2
- KRKNYBCHXYNGOX-UHFFFAOYSA-K Citrate Chemical compound [O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O KRKNYBCHXYNGOX-UHFFFAOYSA-K 0.000 description 2
- WQZGKKKJIJFFOK-QTVWNMPRSA-N D-mannopyranose Chemical compound OC[C@H]1OC(O)[C@@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-QTVWNMPRSA-N 0.000 description 2
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 2
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 2
- 229920002472 Starch Polymers 0.000 description 2
- 241000209140 Triticum Species 0.000 description 2
- 235000021307 Triticum Nutrition 0.000 description 2
- 238000010306 acid treatment Methods 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 150000007513 acids Chemical class 0.000 description 2
- WQZGKKKJIJFFOK-PHYPRBDBSA-N alpha-D-galactose Chemical compound OC[C@H]1O[C@H](O)[C@H](O)[C@@H](O)[C@H]1O WQZGKKKJIJFFOK-PHYPRBDBSA-N 0.000 description 2
- 150000001412 amines Chemical class 0.000 description 2
- PYMYPHUHKUWMLA-UHFFFAOYSA-N arabinose Natural products OCC(O)C(O)C(O)C=O PYMYPHUHKUWMLA-UHFFFAOYSA-N 0.000 description 2
- 239000010905 bagasse Substances 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- SRBFZHDQGSBBOR-UHFFFAOYSA-N beta-D-Pyranose-Lyxose Natural products OC1COC(O)C(O)C1O SRBFZHDQGSBBOR-UHFFFAOYSA-N 0.000 description 2
- WQZGKKKJIJFFOK-VFUOTHLCSA-N beta-D-glucose Chemical compound OC[C@H]1O[C@@H](O)[C@H](O)[C@@H](O)[C@@H]1O WQZGKKKJIJFFOK-VFUOTHLCSA-N 0.000 description 2
- BRPQOXSCLDDYGP-UHFFFAOYSA-N calcium oxide Chemical compound [O-2].[Ca+2] BRPQOXSCLDDYGP-UHFFFAOYSA-N 0.000 description 2
- OSGAYBCDTDRGGQ-UHFFFAOYSA-L calcium sulfate Chemical compound [Ca+2].[O-]S([O-])(=O)=O OSGAYBCDTDRGGQ-UHFFFAOYSA-L 0.000 description 2
- 235000013339 cereals Nutrition 0.000 description 2
- 238000004821 distillation Methods 0.000 description 2
- 235000013399 edible fruits Nutrition 0.000 description 2
- 230000002255 enzymatic effect Effects 0.000 description 2
- 235000013305 food Nutrition 0.000 description 2
- HYBBIBNJHNGZAN-UHFFFAOYSA-N furfural Chemical compound O=CC1=CC=CO1 HYBBIBNJHNGZAN-UHFFFAOYSA-N 0.000 description 2
- 229930182830 galactose Natural products 0.000 description 2
- 239000010903 husk Substances 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 239000002029 lignocellulosic biomass Substances 0.000 description 2
- BDAGIHXWWSANSR-UHFFFAOYSA-N methanoic acid Natural products OC=O BDAGIHXWWSANSR-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 239000008363 phosphate buffer Substances 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 235000017557 sodium bicarbonate Nutrition 0.000 description 2
- 229910000030 sodium bicarbonate Inorganic materials 0.000 description 2
- 235000019698 starch Nutrition 0.000 description 2
- 239000010907 stover Substances 0.000 description 2
- 239000001117 sulphuric acid Substances 0.000 description 2
- 235000011149 sulphuric acid Nutrition 0.000 description 2
- QIVUCLWGARAQIO-OLIXTKCUSA-N (3s)-n-[(3s,5s,6r)-6-methyl-2-oxo-1-(2,2,2-trifluoroethyl)-5-(2,3,6-trifluorophenyl)piperidin-3-yl]-2-oxospiro[1h-pyrrolo[2,3-b]pyridine-3,6'-5,7-dihydrocyclopenta[b]pyridine]-3'-carboxamide Chemical compound C1([C@H]2[C@H](N(C(=O)[C@@H](NC(=O)C=3C=C4C[C@]5(CC4=NC=3)C3=CC=CN=C3NC5=O)C2)CC(F)(F)F)C)=C(F)C=CC(F)=C1F QIVUCLWGARAQIO-OLIXTKCUSA-N 0.000 description 1
- OSWFIVFLDKOXQC-UHFFFAOYSA-N 4-(3-methoxyphenyl)aniline Chemical compound COC1=CC=CC(C=2C=CC(N)=CC=2)=C1 OSWFIVFLDKOXQC-UHFFFAOYSA-N 0.000 description 1
- PTNLHDGQWUGONS-UHFFFAOYSA-N 4-hydroxycinnamyl alcohol Chemical compound OCC=CC1=CC=C(O)C=C1 PTNLHDGQWUGONS-UHFFFAOYSA-N 0.000 description 1
- 235000017166 Bambusa arundinacea Nutrition 0.000 description 1
- 235000017491 Bambusa tulda Nutrition 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- 241001474374 Blennius Species 0.000 description 1
- 244000025254 Cannabis sativa Species 0.000 description 1
- 229920000742 Cotton Polymers 0.000 description 1
- 241000195493 Cryptophyta Species 0.000 description 1
- 235000002918 Fraxinus excelsior Nutrition 0.000 description 1
- 241000219146 Gossypium Species 0.000 description 1
- VEXZGXHMUGYJMC-UHFFFAOYSA-N Hydrochloric acid Chemical class Cl VEXZGXHMUGYJMC-UHFFFAOYSA-N 0.000 description 1
- 241000221089 Jatropha Species 0.000 description 1
- 235000004431 Linum usitatissimum Nutrition 0.000 description 1
- 240000006240 Linum usitatissimum Species 0.000 description 1
- 240000000907 Musa textilis Species 0.000 description 1
- 244000082204 Phyllostachys viridis Species 0.000 description 1
- 235000015334 Phyllostachys viridis Nutrition 0.000 description 1
- 240000004808 Saccharomyces cerevisiae Species 0.000 description 1
- 240000006394 Sorghum bicolor Species 0.000 description 1
- 235000011684 Sorghum saccharatum Nutrition 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 229930182558 Sterol Natural products 0.000 description 1
- 239000003377 acid catalyst Substances 0.000 description 1
- 239000003929 acidic solution Substances 0.000 description 1
- 239000000654 additive Substances 0.000 description 1
- 239000002154 agricultural waste Substances 0.000 description 1
- 150000001298 alcohols Chemical class 0.000 description 1
- 150000001447 alkali salts Chemical class 0.000 description 1
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 1
- 229910021529 ammonia Inorganic materials 0.000 description 1
- 239000003674 animal food additive Substances 0.000 description 1
- 125000003118 aryl group Chemical group 0.000 description 1
- 239000002956 ash Substances 0.000 description 1
- 239000011425 bamboo Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 238000006065 biodegradation reaction Methods 0.000 description 1
- 239000006227 byproduct Substances 0.000 description 1
- 229910000020 calcium bicarbonate Inorganic materials 0.000 description 1
- 239000001175 calcium sulphate Substances 0.000 description 1
- 235000011132 calcium sulphate Nutrition 0.000 description 1
- 230000015556 catabolic process Effects 0.000 description 1
- 210000004027 cell Anatomy 0.000 description 1
- 210000002421 cell wall Anatomy 0.000 description 1
- 239000004568 cement Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 239000013078 crystal Substances 0.000 description 1
- 238000006731 degradation reaction Methods 0.000 description 1
- 235000014113 dietary fatty acids Nutrition 0.000 description 1
- 238000011143 downstream manufacturing Methods 0.000 description 1
- 239000002532 enzyme inhibitor Substances 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000004880 explosion Methods 0.000 description 1
- 239000003925 fat Substances 0.000 description 1
- 235000019197 fats Nutrition 0.000 description 1
- 239000000194 fatty acid Substances 0.000 description 1
- 229930195729 fatty acid Natural products 0.000 description 1
- 150000004665 fatty acids Chemical class 0.000 description 1
- 239000003337 fertilizer Substances 0.000 description 1
- 235000019253 formic acid Nutrition 0.000 description 1
- ZZUFCTLCJUWOSV-UHFFFAOYSA-N furosemide Chemical compound C1=C(Cl)C(S(=O)(=O)N)=CC(C(O)=O)=C1NCC1=CC=CO1 ZZUFCTLCJUWOSV-UHFFFAOYSA-N 0.000 description 1
- 125000002791 glucosyl group Chemical group C1([C@H](O)[C@@H](O)[C@H](O)[C@H](O1)CO)* 0.000 description 1
- 239000003292 glue Substances 0.000 description 1
- 239000010440 gypsum Substances 0.000 description 1
- 229910052602 gypsum Inorganic materials 0.000 description 1
- 229920000140 heteropolymer Polymers 0.000 description 1
- 235000011167 hydrochloric acid Nutrition 0.000 description 1
- 230000002209 hydrophobic effect Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-M hydroxide Chemical compound [OH-] XLYOFNOQVPJJNP-UHFFFAOYSA-M 0.000 description 1
- 238000011065 in-situ storage Methods 0.000 description 1
- 230000002779 inactivation Effects 0.000 description 1
- 150000002576 ketones Chemical class 0.000 description 1
- 244000144972 livestock Species 0.000 description 1
- 238000011068 loading method Methods 0.000 description 1
- 229920002521 macromolecule Polymers 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 239000000178 monomer Substances 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 239000000123 paper Substances 0.000 description 1
- 150000002989 phenols Chemical class 0.000 description 1
- 230000029553 photosynthesis Effects 0.000 description 1
- 238000010672 photosynthesis Methods 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 235000018102 proteins Nutrition 0.000 description 1
- 108090000623 proteins and genes Proteins 0.000 description 1
- 102000004169 proteins and genes Human genes 0.000 description 1
- 238000013138 pruning Methods 0.000 description 1
- 239000002994 raw material Substances 0.000 description 1
- 238000004064 recycling Methods 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 239000001509 sodium citrate Substances 0.000 description 1
- NLJMYIDDQXHKNR-UHFFFAOYSA-K sodium citrate Chemical compound O.O.[Na+].[Na+].[Na+].[O-]C(=O)CC(O)(CC([O-])=O)C([O-])=O NLJMYIDDQXHKNR-UHFFFAOYSA-K 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 239000008107 starch Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 150000003432 sterols Chemical class 0.000 description 1
- 235000003702 sterols Nutrition 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 235000018553 tannin Nutrition 0.000 description 1
- 229920001864 tannin Polymers 0.000 description 1
- 239000001648 tannin Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C13—SUGAR INDUSTRY
- C13K—SACCHARIDES OBTAINED FROM NATURAL SOURCES OR BY HYDROLYSIS OF NATURALLY OCCURRING DISACCHARIDES, OLIGOSACCHARIDES OR POLYSACCHARIDES
- C13K1/00—Glucose; Glucose-containing syrups
- C13K1/02—Glucose; Glucose-containing syrups obtained by saccharification of cellulosic materials
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/02—Monosaccharides
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12P—FERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
- C12P19/00—Preparation of compounds containing saccharide radicals
- C12P19/14—Preparation of compounds containing saccharide radicals produced by the action of a carbohydrase (EC 3.2.x), e.g. by alpha-amylase, e.g. by cellulase, hemicellulase
Definitions
- the present invention relates to a method of preparing fermentable sugars from biomass resources.
- Ethanol is one of the most promising alternative fuels to replace or supplement gasoline being used across the world.
- current production of ethanol is based on sugarcane, corn and other starch rich grains.
- sugarcane, corn and other starch rich grains For the ethanol industry to realize its goal of more th an 10 billion gallons production per year it needs to rely on a more sustainable and inexpensive feed stocks.
- the use of these feed stocks raised the issue of food vis-a-vis fuel and, therefore, prompts to look for the production of ethanol from the non-food materials like liginocellulosic biomass. All these biomass contains a large amount of iiginocelluiose, which could be a potential feedstock for commercial ethanol production.
- Plant cell walls are composed of lignocellulosic materials, which are represented by cellulose (linear glucose polymers), hemicellulose (highly branched heteropolymers) and lignin (crossiinked aromatic macromolecules with large molecular weight).
- cellulose linear glucose polymers
- hemicellulose highly branched heteropolymers
- lignin crossiinked aromatic macromolecules with large molecular weight.
- the bonding between the polysaccharide components (cellulose and hemicellulose) and iioii-polysaceharide components (lignin) is the main cause of mechanical and biological resistance.
- Cellulose the most abundant polysaccharide on earth, is a polymer accounting about 50% of the wood weight.
- the cellulose chain which forms fibrils consists of about 10,000 glucose units.
- the cellulosic material has a crystal domain separated from the less-ordered, amorphous domain, which allows chemical and biochemical attack.
- Cellulases can hydrolyze the cellulose polymer to monomers, and the resulting glucose is fermented into ethanol by the yeast Saccharomyces cerevisiae.
- Hemicellulose is a short (100-200 sugar units), highly-branched heteropoiymer consisting of the predominant xylose as well as glucose, mannose, galactose, arabmose and other uronic acids.
- C5 and C6 sugars are linked by 1 ,3-, 1,6- or 1 ,4-glucosidic linkages, which differentiate cellulose from lignin, and are often acetylated.
- Lignin is a 3-dimensional polyphenohc network of dimethoxylated, monomethoxylated and non- methoxylated phenyipropanoid units, derived from p-hydroxycinnamyl alcohol. Lignin is hydrophobic and highly resistant to chemical and biological degradation. Celluiosic fibrils are embedded in an amorphous matrix network of hemiceiluiose and lignin, and they serve as glues between the plant cells, providing resistance to biodegradation. Other non-structural components (phenols, tannins, fats, sterols, sugars, starches, proteins and ashes) of the plant tissue generally accounts for 5% or less of the dry weight of biomass.
- pretreatment processes such as steam explosion, mild acid treatment, strong acid treatment, ammonia treatment, alkali treatment, etc. are employed. No matter what it is, the pretreatment process should be environment-friendly and economically feasible. The pretreatment method will be selected considering process dependency and cost, as well as process yield and production parameters.
- U.S. Pat. No. 5,628,830 discloses the use of calcium carbonate to adjust the pH of an aqueous sugar solution containing xylose, glucose, mannose and galactose arising from acid hydrolysis of lignocellulosic feedstock. After pH adjustment of the aqueous sugar solution, the solution is submitted to fermentation.
- Brink's process employs full acid hydrolysis, which suffers from the disadvantage discussed above.
- Shortcoming of processing lignocellulosic feedstocks to produce glucose is the large amounts of alkali that are required to adjust the pH of the acid pretreated feedstock prior to enzymatic hydrolysis with cellulase enzymes and special metallurgy of the vessel like hastalioy, which is very expensive.
- alkali adds significant cost to the process.
- the alkali reacts with the acid to produce salt, which must be processed or disposed of.
- U.S. Pat. No. 4,425,433 discloses the use of sodium carbonate or sodium bicarbonate to neutralize an acidic feedstock slurry containing glucose, which slurry is produced by acid hydrolysis of the cellulose and hemiceiluiose components of the feedstock. After the neutralization, the acidic slurry or "wort", as referred to therein, is submitted to fermentation.
- a disadvantage of this process is that the amount of sodium carbonate and sodium bicarbonate required for the ⁇ adjustment would add significant cost to the process and produce a large amount of salt to be disposed of.
- special metallurgy of the vessel like Hastelloy is required, which is very expensive.
- U.S. Pat. No. 6,927,048 discloses a process in which calcium carbonate and an amine or an alcohol are added during the fermentation of glucose to acetic acid.
- the calcium carbonate controls the pH while the amine or alcohol complexes with the acetic acid.
- the calcium carbonate is precipitated by the addition of carbon dioxide and then recovered from the fermentation broth.
- the recovered calcium carbonate is then reused in the subsequent fermentation.
- Verser et al does not address the reduction of alkali use during the pretreatment and neutralization of a lignocellulosic feedstock.
- special metallurgy of the vessel like Hastelloy is required, which is very expensive.
- U.S. Pat. No. 6,043,392 (Holtzapple et al.) also does not address reducing alkali usage during a neutralization conducted after acid pretreatment of a lignocellulosic feedstock. Rather, Holtzapple discloses a process that involves lime (alkali) treatment of lignocellulosic feedstocks with a subsequent fermentation step to produce volatile fatty acids (VFAs), followed by a thermal conversion of the VFAs to produce ketones. Calcium carbonate may be produced during an evaporation step involving carbon dioxide addition prior to thermal conversion of the VFAs.
- the calcium carbonate is recycled to the fennentor to neutralize acids that are produced by the fermentation or is burned in a lime kiln to produce lime which may be used in the lime treatment.
- special metallurgy of the vessel like Hastelloy is required, which is very expensive.
- U.S. Pat. No. 5,693,296, also to Holtzapple discloses a process involving treating biomass with calcium oxide or hydroxide, followed by carbonating the pretreated material to form calcium carbonate or bicarbonate.
- the calcium carbonate may be heated in a lime kiln to form calcium oxide, which can be hydrated to form calcium hydroxide, which, in turn, can be used to treat the biomass.
- this process also does not address reducing chemical usage during a neutralization of an acid pretreated feedstock in the production of glucose.
- special metallurgy of the vessel like hastalloy is required, which is very expensive.
- a similar process is disclosed by Chang et al., 1998, Applied Biochemistry and Biotechnology, 74: 135- 159.
- US 2006/0188965 discloses a process involving acid pretreatment of ceilulosic biomass.
- the acid-pretreated feedstock slurry is then mixed with a lime solution to impart a pH of 10 to 1 1, followed by the addition of sulfuric acid to adjust the pH into a range of 5-7 prior to cellulose hydrolysis by cellulase.
- a fermentation of the hydrolyzed material is carried out to produce alcohol, which is then concentrated by distillation.
- Remaining liquids and/or solids from the distillation are subjected to a recycle processing step to filter fine particulates.
- the resulting material is then sent back to the acid pretreatment, along with lignocellulosic material fed to the process.
- the recycling of this material back to pretreatment does not reduce the amount of alkali used to neutralize the pretxeated cellulose.
- special metallurgy of the vessel like Hastelloy is required, which is very expensive.
- EP 2336195 relates a process of obtaining sugars and lignin from lignocellulosic biomass material.
- the process uses formic acid for the purpose of treating lignocellulose biomass.
- US20110144359 relates to a method of producing furfural from lignocellulosic biomass material.
- WO2011002832 relates to a biomass process comprising removal and/or inactivation of an enzyme inhibitors from recycled washing solution.
- WO 2010059825 relates to a process of obtaining sugar solutions from polysaccharide enriched biomass by contracting biomass with water and at least one nucelophilic base to produce a polysaccharide enriched biomass comprising a solid fraction and a liquid fraction.
- the solid fraction is separated from the lignin-containing liquid fraction with an acid solution, the acid solution comprising about 70 weight percent to about 100 weight percent sulphuric acid or an acid mixture comprising phosphoric acid and sulphuric acid.
- the present invention provides a method to prepare fermentable sugars from biomass resources, said method comprising the steps of:
- step (d) hydrolysing the biomass slurry of step (c);
- fermentable sugars can be produced with high yield via using an environment-friendly chemical e.g. tricarboxylic organic acid which includes citric acid, isocitric acid, aconitic acid, propane- 1 ,2,3 - tricarboxylic acid and trimesic acid.
- an environment-friendly chemical e.g. tricarboxylic organic acid which includes citric acid, isocitric acid, aconitic acid, propane- 1 ,2,3 - tricarboxylic acid and trimesic acid.
- carboxylic organic acids require no special metallurgy like Hastalloy, which is very expensive, for reaction vessel, which is required for acid pretreatment. This process can be done in the steel vessel.
- the present disclosure provides a method for preparing fermentable sugars from biomass, comprising: (a) pretreatment of biomass with dilute citric acid, isocitric acid, aconitic acid, propane- 1,2,3-tricarboxylic acid and trimesic acid as an individual or in mixture from 0.5-20% w/v; (b) neutralizing the pretreated biomass mixture (c) separating the pentose sugars and solid pretreated biomass; (d) hydro lyzing the pretreated biomass slurry and (e) Integration of pretreatment process with enzymatic hydrolysis to convert them into fermentable sugars.
- the biomass used as the source material in the present disclosure may include various known biological resources containing cellulose or lignocellulosic materials. Specifically, it may be rice straw, Jatropha pruning, wheat straw, corn cob, corn stover, rice husk, paper, wood, sawdust, agricultural waste, grass, sugar cane bagasse, cotton, flax, bamboo, abaca, algae, fruit skin or seaweed. More specifically, it may be wheat straw, corn stover, rice straw, sorghum stalk, rice husk, wood, sawdust, sugar cane bagasse or fruit skin.
- the biomass can be pretreated with dilute solution from 0.5-20% of citric acid, isocitric acid, aconitic acid, propane- 1,2, 3 -tricarboxylic acid and trimesic acid as an individual or in mixture thereof.
- the experiment was carried out in high pressure reactor at 130-220°C with 5-50% (w/w) biomass loading for 5-60 min resident time.
- the neutral izer used may include various acid-neutralizing neutralizers known in the art. Specifically sodium hydroxide (NaOH), calcium carbonate (CaC0 3 ), sodium carbonate (Na 2 C0 3 ), magnesium hydroxide (Mg(OH) 2 , slaked lime (Ca(OH) 2 , quicklime (CaO) or calcium carbonate (CaC0 3 may be used. More specifically, sodium hydroxide (NaOH), sodium carbonate (Na 2 C0 3 ) or calcium carbonate (CaC0 3 ) may be used.
- the resultant of the step (b), which is a mixture of liquid hydrolysate rich in pentose sugars and solid biomass rich in cellulose, may be separated using various known filtration apparatuses.
- a filter press, a centrifuge, a membrane filter or a nanofilter may be used for the separation.
- the cellulase treatment may be performed at pH 4-7 and 30-70°C for 12-48 hours. More specifically, the cellulase treatment may be performed at pH 4.8-5.5 and 48- 52°C for 24-36 hours.
- Enzymatic hydrolysis of the pretreated slurry has to be done in citrate or phosphate buffer.
- citrate buffer is commonly used. All the effective pretreatment process reported like sulfuric acid and alkali pretreatment. After pretreatment these chemicals need to be neutralized either in the separable salts like calcium sulphate if neutralized with calcium carbonate or soluble salts like sodium sulphate if neutralized with alkali and vice-versa in case of alkali pretreatment.
- these chemicals need to be neutralized either in the separable salts like calcium sulphate if neutralized with calcium carbonate or soluble salts like sodium sulphate if neutralized with alkali and vice-versa in case of alkali pretreatment.
- pretreatment is carried out in citric acid and pretreated slurry was neutralized with alkali, which provide in-situ citrate buffer and the solid stream received from the pretreatment can be directly incubated for enzymatic hydrolysis without any wash and without any separation process.
- the LCB is treated with sulfuric, nitric or hydrochloric acids at higher temperatures to open up the LCB structure for subsequent enzymatic hydrolysis.
- Enzymatic hydrolysis by cellulase enzymes works best at a pH of 5 to 5.5, however the LCB after pretreatment yields a solution with much lower pH, in range of 1-1.5. Therefore this solution needs to be neutralized with bases like calcium carbonate, sodium hydroxide etc to get a pH of about 5- 5.5.
- This basic treatment generally produces insoluble alkali salts which need to be removed by filtration before these can be taken for enzymatic hydrolysis.
- buffer- generally citrate or phosphate buffers need to be added.
- the LCB pretreatment is effected by dilute organic acids like citric acid and after completion of pre-treatment, the acidic solution is treated with sodium hydroxide to get a pH of 5.0-5.5.
- This treatment with base generates sodium citrate and the need to add buffer is avoided. It has been observed that the final concentration of citric acid buffer, after neutralization with strong base, fails between 0.5-0.1 molar which is an apt condition for enzymatic hydrolysis. Also the need to separate insoluble inorganic salts by filtration is done away with.
- Additional benefits of pretreatment catalysed with organic acids include avoidance of use of special metallurgy reactors, Hastelloy type, which are essentially used when inorganic acids are employed in pretreatment. Accordingly, the main embodiment of the present invention relates to a method to prepare fermentable sugars from biomass resources, said method comprising the steps of:
- step (d) hydro iysing the biomass slurry of step (c);
- Another embodiment of the present invention relates to a method, wherein the step (a) the dilute acid is selected from group comprising of citric acid, isocitric acid, aconitic acid, propane- 1 ,2, 3- tricarboxylic acid and trimesic acid alone or as a mixture.
- the dilute acid is selected from group comprising of citric acid, isocitric acid, aconitic acid, propane- 1 ,2, 3- tricarboxylic acid and trimesic acid alone or as a mixture.
- Another embodiment of the present invention relates to a method, wherein the step (a) the dilute acid is in the concentration of 0.5-20% w/v.
- the neutralizer is selected from the group comprising of sodium hydroxide (NaOH), calcium carbonate (CaCCK), sodium carbonate (Na 2 C0 3 ), magnesium hydroxide (Mg(OH) 2 , slaked lime (Ca(OH) 2 , quicklime (CaO) or calcium carbonate (CaC0 3 may be used. More specifically, sodium hydroxide (NaOH), sodium carbonates (Na 2 C0 3 ) or calcium carbonate (CaC0 3 ).
- Yet another embodiment of the present invention relates to a method, wherein the step (b) the neutralizer is in the concentration of 1-lOM.
- Yet another embodiment of the present invention relates to a method, wherein the step (b) the neutralizer is 5M.
- Yet another embodiment of the present invention relates to a method, wherein the step (c), the penstose sugars and solid pretreated biomass slurry is separated using various known filtration methods selected from group comprising a filter press, a centrifuge, a membrane filter or a nanofilter.
- Another embodiment of the present invention relates to a method, wherein step (d) hydrolysis of pre-treated biomass slurry is carried out using celiulase at a pH 4-7 at a temperature of 30°C- 70°C for 12-48 hours.
- Another embodiment of the present invention relates to a method, wherein the step (d) hydrolysis of pre-treated biomass slurry is carried out using celiulase at a pH 4,8-5.5 at a temperature of 48°C-52 e C for 24-36 hours.
- step (a) is carried out under high pressure of at 130°C-220°C.
- Yet another embodiment of the present invention relates to a method, wherein the step (a) the biomass concentration is in the range of 5-50% (w/w).
- Yet another embodiment of the present invention relates to a method, wherein the step (a) the pressure is in the range of 5-10 bars.
- Yet another embodiment of the present invention relates to a method, wherein the step (a) the pressure is 5.5 bar.
- Example-1 A mixture of biomass (150 g) in de-mineralized water (1200ml) was taken in the high pressure reactor equipped with agitator, temperature and pressure probe and temperature control, sampling port and re-circulating coil. The reactor was also has a port to add catalyst at high pressure and temperature. The stirred mixture was heated to 160 C (pressure 5.5bar). After the reaction temperature reached to 160°C a solution of citric acid (30g) and de-mineralized water (150g) was pumped in the reactor using pressure vessel at 8 bar. The stirring was continued for 30 min and the reaction mixture was cooled to room temperature in 15 min using chilling water circulation. The whole mixture was neutralized by 5M Sodium hydroxide solution till pH 5. Solid and liquid materials were separated using centrifuge.
- the liquid hydrolysate was tested for inhibitors and sugars.
- Solid pretreated slurry 300g on dry weight basis
- Reactor temperature was maintained at 50°C and cellulase preparation from cellulases was added at 15 FPU/g of pretreated biomass and total reaction volume was making up to lOOOg using de- mineralized water at 5 pH.
- 20g of sodium azide was added to the reactor to prevent the growth of any micro-organisms during the hydrolysis process.
- the continuous agitation of reaction mixture was carried out for 24 hours to release maximum monomelic sugars.
- the liquid sample after complete hydrolysis was subjected to DNS for sugar analysis. The data received is summarized in Table- 1.
- Example-2 A mixture of biomass (100 g) in de-mineralized water (900ml) was taken in the high pressure reactor equipped with agitator, temperature and pressure probe and temperature control, sampling port and re-circulating coil. The reactor was also has a port to add catalyst at high pressure and temperature. The stirred mixture was heated to 170 C (pressure 5.5bar). After the reaction temperature reached to 170°C a solution of citric acid (20g) and de-mineralized water (l OOg) was pumped in the reactor using pressure vessel at 8 bar. The stirring was continued for 30 min and the reaction mixture was cooled to room temperature in 15 rain using chilling water circulation. The whole mixture was neutralized by 5M Sodium hydroxide solution till pH 5. Solid and liquid materials were separated using centrifuge. The liquid hydrolysate was tested for inhibitors and sugars.
- Solid pretreated slurry (300g on dry weight basis) having pH 5 was taken in the hydrolysis reactor equipped with agitator and a temperature probe. Reactor temperature was maintained at 50 C and cellulase preparation from cellulases was added at 1 5 FPU/g of pretreated biomass and total reaction volume was making up to lOOOg using de-mineralized water at 5 pH. 20g of sodium azide was added to the reactor to prevent the growth of any micro-organisms during the hydrolysis process. The continuous agitation of reaction mixture was carried out for 24 hours to release maximum monomeric sugars. The liquid sample after complete hydrolysis was subjected to DNS for sugar analysis. The data received is summarized in Table- 1.
- Solid and liquid materials were separated using centrifuge.
- the liquid hydrolysate was tested for inhibitors and sugars.
- Solid pretreated slurry 300g on dry weight basis
- Reactor temperature was maintained at 50°C and ceilulase preparation from cellulases was added at 15 FPU/g of pretreated biomass and total reaction volume was making up to lOOOg using de- mineralized water at 5 pH.
- 20g of sodium azide was added to the reactor to prevent the growth of any micro-organisms during the hydrolysis process.
- the continuous agitation of reaction mixture was carried out for 24 hours to release maximum monomeric sugars.
- the liquid sample after complete hydrolysis was subjected to DNS for sugar analysis. The data received is summarized in Table-1.
- Example-4 A mixture of biomass (100 g) in de-mineralized water (900ml) was taken in the high pressure reactor equipped with agitator, temperature and pressure probe and temperature control, sampling port and re-circulating coil. The reactor was also has a port to add catalyst at high pressure and temperature. The stirred mixture was heated to 170 C (pressure 5.5bar). After the reaction temperature reached to 170 IJ C a solution of citric acid (lOg) and isocitric acid (20g) and de-mineralized water (lOOg) was pumped in the reactor using pressure vessel at 8 bar. The stirring was continued for 60 min and the reaction mixture was cooled to room temperature in 15 min using chilling water circulation. The whole mixture was neutralized by 5M Sodium hydroxide solution till pH 5.
- Solid and liquid materials were separated using centrifuge. The liquid hydrolysate was tested for inhibitors and sugars.
- Solid pretreated slurry 300g on dry weight basis
- having Ph 5 was taken in the hydrolysis reactor equipped with agitator and a temperature probe. Reactor temperature was maintained at 50°C and ellulose preparation from cellulases was added at 15 FPU/g of pretreated biomass and total reaction volume was making up to lOOOg using de-mineralized w r ater at 5 Ph. 20g of sodium azide was added to the reactor to prevent the growth of any micro-organisms during the hydrolysis process. The continuous agitation of reaction mixture was carried out for 24 hours to release maximum monomeric sugars.
- Example 5 (Control); Same as example 4 except that the organic acid was not used in pre- treatment. Data received was summarised in Table- 1.
- Table-1 Isihibitors and sugars in pretreatment and enzymatic hydrolysate
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Zoology (AREA)
- Engineering & Computer Science (AREA)
- Wood Science & Technology (AREA)
- General Health & Medical Sciences (AREA)
- Biochemistry (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Microbiology (AREA)
- General Chemical & Material Sciences (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Genetics & Genomics (AREA)
- Emergency Medicine (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
- Processing Of Solid Wastes (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
IN3417/MUM/2013 | 2013-10-29 | ||
IN3417MU2013 IN2013MU03417A (enrdf_load_stackoverflow) | 2013-10-29 | 2013-12-12 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2015063549A1 true WO2015063549A1 (en) | 2015-05-07 |
WO2015063549A9 WO2015063549A9 (en) | 2015-07-23 |
Family
ID=50150727
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/IB2013/060847 WO2015063549A1 (en) | 2013-10-29 | 2013-12-12 | A method of preparing fermentable sugars from biomass resources |
Country Status (2)
Country | Link |
---|---|
IN (1) | IN2013MU03417A (enrdf_load_stackoverflow) |
WO (1) | WO2015063549A1 (enrdf_load_stackoverflow) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AU2019200694A1 (en) * | 2018-02-09 | 2019-08-29 | Department Of Biotechnology | Additive composition useful for improved production of fermentable sugars from lignocellulosic biomass |
US10487347B2 (en) | 2015-12-09 | 2019-11-26 | Indian Oil Corporation Limited | Method of pretreatment for enhanced enzymatic hydrolysis |
US10612059B2 (en) | 2015-04-10 | 2020-04-07 | Comet Biorefining Inc. | Methods and compositions for the treatment of cellulosic biomass and products produced thereby |
US10633461B2 (en) | 2018-05-10 | 2020-04-28 | Comet Biorefining Inc. | Compositions comprising glucose and hemicellulose and their use |
US20210047661A1 (en) * | 2018-03-12 | 2021-02-18 | Indian Oil Corporation Limited | Sscf process for second generation ethanol production from lignocellulosic biomass and 2g residual biomass |
US12263184B2 (en) | 2019-05-10 | 2025-04-01 | Comet Biorefining Inc. | Materials and methods for producing arabinoxylan compositions |
Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2017710A (en) * | 1978-03-08 | 1979-10-10 | Purdue Research Foundation | Process for Recovering and Utilizing Cellulose Using Sulfuric Acid |
US4425433A (en) | 1979-10-23 | 1984-01-10 | Neves Alan M | Alcohol manufacturing process |
US5628830A (en) | 1979-03-23 | 1997-05-13 | The Regents Of The University Of California | Enzymatic hydrolysis of biomass material |
US5693296A (en) | 1992-08-06 | 1997-12-02 | The Texas A&M University System | Calcium hydroxide pretreatment of biomass |
US6043392A (en) | 1997-06-30 | 2000-03-28 | Texas A&M University System | Method for conversion of biomass to chemicals and fuels |
US6927048B2 (en) | 1999-03-11 | 2005-08-09 | Zea Chem, Inc. | Process for producing ethanol |
US20060188965A1 (en) | 2004-12-02 | 2006-08-24 | Wyman Charles E | Removal of minerals from cellulosic biomass |
US20070148751A1 (en) * | 2001-02-28 | 2007-06-28 | Iogen Energy Corporation | Method of processing lignocellulosic feedstock for enhanced xylose and ethanol production |
US20090176286A1 (en) * | 2005-11-23 | 2009-07-09 | O'connor Ryan P | Process for Fractionating Lignocellulosic Biomass into Liquid and Solid Products |
WO2010059825A1 (en) | 2008-11-20 | 2010-05-27 | E. I. Du Pont De Nemours And Company | Sugar production by decrystallization and hydrolysis of polysaccharide enriched biomass |
US20100240112A1 (en) * | 2007-11-09 | 2010-09-23 | Juha Anttila | Process for Preparing a Sugar Product |
WO2011002832A1 (en) | 2009-06-30 | 2011-01-06 | Novozymes A/S | Biomass hydrolysis process |
US20110144359A1 (en) | 2009-12-16 | 2011-06-16 | Heide Evert Van Der | Method for producing furfural from lignocellulosic biomass material |
EP2336195A1 (en) | 2009-12-16 | 2011-06-22 | Shell Internationale Research Maatschappij B.V. | Process for Treatment of Lignocellulosic Biomass Material |
WO2011149956A2 (en) * | 2010-05-24 | 2011-12-01 | Qteros, Inc. | Methods for producing chemical products from fermentation byproducts |
US20120045545A1 (en) * | 2009-11-04 | 2012-02-23 | Abengoa Bioenergy New Technologies, Inc. | High efficiency ethanol process and high protein feed co-product |
-
2013
- 2013-12-12 WO PCT/IB2013/060847 patent/WO2015063549A1/en active Application Filing
- 2013-12-12 IN IN3417MU2013 patent/IN2013MU03417A/en unknown
Patent Citations (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2017710A (en) * | 1978-03-08 | 1979-10-10 | Purdue Research Foundation | Process for Recovering and Utilizing Cellulose Using Sulfuric Acid |
US5628830A (en) | 1979-03-23 | 1997-05-13 | The Regents Of The University Of California | Enzymatic hydrolysis of biomass material |
US4425433A (en) | 1979-10-23 | 1984-01-10 | Neves Alan M | Alcohol manufacturing process |
US5693296A (en) | 1992-08-06 | 1997-12-02 | The Texas A&M University System | Calcium hydroxide pretreatment of biomass |
US6043392A (en) | 1997-06-30 | 2000-03-28 | Texas A&M University System | Method for conversion of biomass to chemicals and fuels |
US6927048B2 (en) | 1999-03-11 | 2005-08-09 | Zea Chem, Inc. | Process for producing ethanol |
US20070148751A1 (en) * | 2001-02-28 | 2007-06-28 | Iogen Energy Corporation | Method of processing lignocellulosic feedstock for enhanced xylose and ethanol production |
US20060188965A1 (en) | 2004-12-02 | 2006-08-24 | Wyman Charles E | Removal of minerals from cellulosic biomass |
US20090176286A1 (en) * | 2005-11-23 | 2009-07-09 | O'connor Ryan P | Process for Fractionating Lignocellulosic Biomass into Liquid and Solid Products |
US20100240112A1 (en) * | 2007-11-09 | 2010-09-23 | Juha Anttila | Process for Preparing a Sugar Product |
WO2010059825A1 (en) | 2008-11-20 | 2010-05-27 | E. I. Du Pont De Nemours And Company | Sugar production by decrystallization and hydrolysis of polysaccharide enriched biomass |
WO2011002832A1 (en) | 2009-06-30 | 2011-01-06 | Novozymes A/S | Biomass hydrolysis process |
US20120045545A1 (en) * | 2009-11-04 | 2012-02-23 | Abengoa Bioenergy New Technologies, Inc. | High efficiency ethanol process and high protein feed co-product |
US20110144359A1 (en) | 2009-12-16 | 2011-06-16 | Heide Evert Van Der | Method for producing furfural from lignocellulosic biomass material |
EP2336195A1 (en) | 2009-12-16 | 2011-06-22 | Shell Internationale Research Maatschappij B.V. | Process for Treatment of Lignocellulosic Biomass Material |
WO2011149956A2 (en) * | 2010-05-24 | 2011-12-01 | Qteros, Inc. | Methods for producing chemical products from fermentation byproducts |
Non-Patent Citations (1)
Title |
---|
CHANG ET AL., APPLIED BIOCHEMISTRY AND BIOTECHNOLOGY, vol. 74, 1998, pages 135 - 159 |
Cited By (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10612059B2 (en) | 2015-04-10 | 2020-04-07 | Comet Biorefining Inc. | Methods and compositions for the treatment of cellulosic biomass and products produced thereby |
US11692211B2 (en) | 2015-04-10 | 2023-07-04 | Comet Biorefining Inc. | Methods and compositions for the treatment of cellulosic biomass and products produced thereby |
US10487347B2 (en) | 2015-12-09 | 2019-11-26 | Indian Oil Corporation Limited | Method of pretreatment for enhanced enzymatic hydrolysis |
AU2019200694A1 (en) * | 2018-02-09 | 2019-08-29 | Department Of Biotechnology | Additive composition useful for improved production of fermentable sugars from lignocellulosic biomass |
AU2019200694B2 (en) * | 2018-02-09 | 2019-10-10 | Department Of Biotechnology | Additive composition useful for improved production of fermentable sugars from lignocellulosic biomass |
US20210047661A1 (en) * | 2018-03-12 | 2021-02-18 | Indian Oil Corporation Limited | Sscf process for second generation ethanol production from lignocellulosic biomass and 2g residual biomass |
US10633461B2 (en) | 2018-05-10 | 2020-04-28 | Comet Biorefining Inc. | Compositions comprising glucose and hemicellulose and their use |
US11525016B2 (en) | 2018-05-10 | 2022-12-13 | Comet Biorefining Inc. | Compositions comprising glucose and hemicellulose and their use |
US12269903B2 (en) | 2018-05-10 | 2025-04-08 | Comet Biorefining Inc. | Compositions comprising glucose and hemicellulose and their use |
US12263184B2 (en) | 2019-05-10 | 2025-04-01 | Comet Biorefining Inc. | Materials and methods for producing arabinoxylan compositions |
Also Published As
Publication number | Publication date |
---|---|
WO2015063549A9 (en) | 2015-07-23 |
IN2013MU03417A (enrdf_load_stackoverflow) | 2015-07-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Singh et al. | Acid and alkaline pretreatment of lignocellulosic biomass to produce ethanol as biofuel | |
EP2582820B1 (en) | Enzymatic hydrolysis of cellulose | |
EP3174988B1 (en) | Method for the preparation of lactic acid | |
Zhang et al. | Alkaline hydrogen peroxide pretreatment combined with bio-additives to boost high-solids enzymatic hydrolysis of sugarcane bagasse for succinic acid processing | |
CA2956387C (en) | Preparation of lactic acid and/or a lactate salt from lignocellulosic material by separate saccharification and fermentation steps | |
US20130143285A1 (en) | Method for dilute acid pretreatment of lignocellulosic feedstocks | |
WO2015063549A1 (en) | A method of preparing fermentable sugars from biomass resources | |
Das et al. | Pretreatment Methods of Ligno-Cellulosic Biomass: A Review. | |
WO2011063484A1 (pt) | Processo de tratamento de biomassa vegetal | |
US20130071900A1 (en) | Process for processing a lignocellulosic material | |
WO2016016234A1 (en) | Method of pre-treatment of lignocellulosic materials | |
Wang et al. | Alkaline pretreatment of coastal bermudagrass for bioethanol production | |
CN110699387B (zh) | 一种使用生物可降解有机酸催化剂的木质纤维素预处理方法 | |
Harun et al. | Oil palm biomass zero-waste conversion to bio-succinic acid | |
WO2012155238A1 (en) | Method of fermenting a sugar stream to produce an alcohol stream | |
CN114075579A (zh) | 利用木质纤维素制备有机肥和生物液体燃料的方法 | |
Díaz Villanueva et al. | Bioethanol Production from Steam-Exploded Barley Straw by Co-Fermentation with Escherichia coli SL100 | |
Díaz et al. | Bioethanol Production from Steam-Exploded Barley Straw by Co-Fermentation with Escherichia coli SL100. Agronomy 2022, 12, 874 | |
Díaz Villanueva et al. | Sequential Acid/Alkali Pretreatment for an Olive Tree Pruning Biorefinery | |
Díaz et al. | Sequential Acid/Alkali Pretreatment for an Olive Tree Pruning Biorefinery. Agronomy 2023, 13, 2682 | |
KEMKA et al. | PRETREATMENT PROCEDURES ON LIGNOCELLULOSIC BIOMASS MATERIAL FOR BIOGAS PRODUCTION: A REVIEW. | |
WO2015019362A1 (en) | Preparation of ethanol from lignocellulosic materials | |
WO2013090786A1 (en) | System and method for separating carbohydrate and lignin in hydrolysate of biomass |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 13830217 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 13830217 Country of ref document: EP Kind code of ref document: A1 |