WO2015063360A1 - Sensor inteligente de bioimpedancia para aplicaciones biomédicas - Google Patents

Sensor inteligente de bioimpedancia para aplicaciones biomédicas Download PDF

Info

Publication number
WO2015063360A1
WO2015063360A1 PCT/ES2014/070822 ES2014070822W WO2015063360A1 WO 2015063360 A1 WO2015063360 A1 WO 2015063360A1 ES 2014070822 W ES2014070822 W ES 2014070822W WO 2015063360 A1 WO2015063360 A1 WO 2015063360A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
signal
bioimpedance
subsystem
phase
Prior art date
Application number
PCT/ES2014/070822
Other languages
English (en)
French (fr)
Inventor
Laura Maria Roa Romero
Luis Javier Reina Tosina
David Naranjo Hernandez
Miguel Angel Estudillo Valderrama
Original Assignee
Universidad De Sevilla
Ciber-Bbn
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Universidad De Sevilla, Ciber-Bbn filed Critical Universidad De Sevilla
Priority to EP14858675.3A priority Critical patent/EP3066981A4/en
Publication of WO2015063360A1 publication Critical patent/WO2015063360A1/es

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/05Detecting, measuring or recording for diagnosis by means of electric currents or magnetic fields; Measuring using microwaves or radio waves 
    • A61B5/053Measuring electrical impedance or conductance of a portion of the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/72Signal processing specially adapted for physiological signals or for diagnostic purposes
    • A61B5/7228Signal modulation applied to the input signal sent to patient or subject; demodulation to recover the physiological signal
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • A61B5/0002Remote monitoring of patients using telemetry, e.g. transmission of vital signals via a communication network

Definitions

  • the present invention refers to a portable sensing device capable of performing bioimpedance measurements at multiple configurable frequencies, processing the data to obtain the module and the bioimpedance phase (or part real and imaginary bioimpedance) in each of the frequencies, and wirelessly transmit the results of the processing.
  • ICTs Information Technology and Communications
  • the bioimpedance measurement technique is based on the injection into the human body or a tissue to be measured, of an alternating electric current of very small intensity, well below the perception thresholds.
  • the electric current produces a drop in electrical voltage, the greater the greater the electrical impedance of the tissue.
  • This technique began to be applied in 1930, when Atzler and Lehman found that fluid changes in the thoracic cavity as a result of pumping blood through the heart also produced changes in thoracic impedance [1].
  • Holzer et al. They were the first to apply an alternating signal to avoid electrode polarization problems in bioimpedance measurements [2].
  • bioimpedance One of the most important applications of bioimpedance is the study of body composition, of great clinical utility in different areas: nephrology [1], [19] - [23], nutrition [24], [25], obstetrics [26 ], gastroenterology [27], in the postoperative follow-up [28], of HIV-infected patients [29], with growth hormone deficiency [30], obese [31], [32] or in critical care [33] ], [3. 4].
  • Tomasset made the first estimates of total body water from the measurement of the bioimpedance of the entire body using a fixed frequency alternating current [35].
  • bioimpedance measures have been widely used in numerous patents, which present methods and devices for both quantification of body composition, estimation of fluid volumes and anatomical location of masses (muscles, fats, water ) [36] - [44], as well as for other applications such as the estimation of blood pressure [45], [46], systolic volume [47], cardiac output [48] - [52], respiratory rate and heart rate [52] - [55], the level of blood glucose [56], [57] or tissue monitoring [47], among others.
  • the scheme used includes the following elements: a sensing stage composed of several electrodes next to the electronics responsible for the capture of the bioimpedance signal, which normally includes filtering stages, amplifiers and analog / digital converters (A / D) and digital / analog (D / A); a processor or computing element; a memory for the storage of relevant data; and, only in some cases, a communications stage for sending the processed data abroad.
  • Patent (US7945317) [58] which describes an improved multifrequency method for performing a bioimpedance analysis of a subject's body segment, suggests that a commercial solution be used for current application and voltage recording.
  • Patent (US20060122540) [60] provides a method for determining the hydration status of patients on peritoneal dialysis and hemodialysis, and describes among the modules used a device to continuously calculate the circumference of a body segment, based on a Digital Signal Processor (DSP). Although, like the previous ones, for the measurement system it is recommended to use medical instrumentation from the referenced manufacturer.
  • DSP Digital Signal Processor
  • patent (US20130046165) [61] which describes a capacitive bioimpedance sensor, includes an ad-hoc signal preprocessor, which is coupled to the sensor.
  • the sensing circuit measures the relative impedance when using one or more Wheatstone bridges.
  • the patent (US20060004300) [62] presents a method for estimating bioimpedance at multiple frequencies by means of an LFSR (Linear Feedback Shift Register) circuit, which produces a pseudo-random sequence that feeds the D / A converter.
  • LFSR Linear Feedback Shift Register
  • Patent (US7457660) [63] includes a mechanism for eliminating errors in bioimpedance measures, based on the separation of the bioimpedance value from other sources of error from measurements on two similar body sections.
  • the patent (US20050012414) [64] presents an apparatus specially designed to supply a second power supply for electronic devices of the floating type, and thus it is achieved that the apparatus satisfies the medical safety requirements for bioimpedance measurement.
  • Patent (US20040171963) [65] presents a more accurate method of estimating body composition that corrects a parameter of bioelectrical impedance, which reduces the load on the distribution of extracellular fluid. It uses an electrode exchange unit that allows configurations of up to 8 electrodes.
  • US7974691 [66] refer to Hartley et al.
  • the patent (EP2567657A1) [70] in one of its claims, includes as main contribution the grouping of a reference unit and one or more measurement units connected together in a bus that includes one or more electrical conductors.
  • the patent (US20070142733) [71] presents a method of signal separation based on a specific algorithm that is performed in part on an implantable device, in order to reduce interference.
  • the patent (US7706872) [72] describes a method for measuring electrical bioimpedance characterized by a periodic excitation signal in the form of square pulses, which is applied to the input of the object to be measured, the output of which is connected to a synchronous detector.
  • the patent highlights that the use of rectangular signals ensures that the device has a simple design and low consumption, and describes a method to increase the accuracy of bioimpedance measurements by means of a set of functional blocks.
  • the patent (US 5876353) [54] presents an impedance monitor for detecting edemas through the evaluation of the respiratory rhythm, which communicates wirelessly with a device carried on the wrist and this in turn with a fixed remote device through The telephone line.
  • Another complementary approach is to use the processing capacity and connectivity of commercial portable devices, such as a PDA (US 6790178) [75], to perform the processing of multiple physiological variables (including bioimpedance).
  • the sensors are coupled to the PDA or have the possibility of transferring the data to a memory that can then be inserted into the PDA.
  • the intelligent bioimpedance sensor proposed in this document has a series of functionalities described in the form of novel features that none of the patents reviewed meets in its entirety, thanks mainly to the modular design used that brings together 6 subsystems: sensorization, processing , communications, data storage, timing and energy.
  • the subsystem of Sensorization incorporates a procedure for optimizing the dynamic range of reading the signal values to adaptively provide the highest possible accuracy in the measurement of bioimpedance.
  • one of the modules of the processing subsystem is responsible for increasing the measurement accuracy.
  • Other innovations are an internal multiplexer that allows the hardware to be reused in a measurement scheme of the bioimpedance module, and an external multiplexer for measurement in different sections of the biological environment.
  • the processing subsystem With regard to the processing subsystem, most of the patents reviewed employ a single frequency (usually at 50 kHz). However, the patented device manages to develop a single-frequency and multi-frequency analysis on demand, by means of a set of novel approaches to the calculation of bioimpedance executed by up to 5 processing modules. This analysis is performed from several quasi-simultaneous multifrequency measurements in different body sections in the range of 1 Khz to 5 MHz, which can be extended both at low and high frequencies remotely. The number of frequencies of the signals to be processed and their values are also remotely configurable parameters, which constitutes another novel aspect in the patent. In addition, the processing subsystem allows advanced module and phase tracking capabilities at a single frequency, which no other invention presents.
  • the frequency value of the impedance to be monitored can be configured and adapted in real time remotely to adapt to the particular characteristics of the user, the application of use or in order to increase the sensitivity of the device.
  • Another advantage of the present invention referred to the sensorization subsystem, is the incorporation of a coupling module that allows the independence of the type of electrode. In this way, the possibilities of application and non-dependence with medical instrumentation shown by other patents are considerably increased.
  • the communications subsystem presented in the modular design of the patent allows the development of various functionalities. On the one hand, it is able to remotely and transparently update the user, that is, without the need for technical assistance, the processing modules in order to perform a customized measurement by adapting to the subject monitored the processing algorithms and the parameters they use. On the other hand, its connectivity capabilities are increased compared to other patents thanks to the flexibility of the communications subsystem design.
  • this subsystem allows bidirectional communication between the monitored subject and the service provider (sending data to the provider, in one direction, and sending commands and remote configurations to the user, in the other direction), both in real time as in deferred.
  • the IEEE 802.15.1 and 802.15.4 standard are detailed as an implementation option, which support numerous of the commercially available wireless communications technologies (Bluetooth, Zigbee), as well as others currently under development that dramatically reduce the consumption of communication transceivers (Bluetooth Low Energy).
  • Bluetooth Bluetooth, Zigbee
  • This advantage which is not provided by any of the previous patents, together with its connectivity benefits makes the patented device an ideal element for the development of the new health paradigms discussed previously (m-Health, e-Health).
  • the patent presented achieves several objectives thanks to the advantages of its accessible and sustainable design philosophy. Firstly, by reducing the size of the device, so that an effective portability is achieved that allows the user to be able to perform the measurement in an accessible way at any time and in any place, without the need for technical assistance. Second, the sustainability of the invention is achieved by optimizing and simplifying the measurement electronics and the number of iterations required, which result in lowering the implementation costs of the subsystems involved and the energy saving of the intelligent sensor. Specifically, in the processing subsystem there is a pre-configured protocol that defines the processing modules that can be activated, their activation sequence and their operating parameters, for autonomous operation of the intelligent sensor.
  • Said protocol can be re-configured remotely and wirelessly through commands.
  • design optimization results from a Novel transformation of the generic quadrature signal detection scheme used in other inventions, which incorporates in the patented smart sensor new modules, functionalities and interconnection schemes that make said system totally new.
  • the scheme used uses a single multiplier, which allows reducing costs compared to other devices, also avoiding errors derived from possible differences between components.
  • the "Intelligent Bioimpedance Sensor for Biomedical Applications” it is configured by means of a device that is in contact with the biological medium to be measured by means of a series of electrodes so that, through said electrodes, The device injects electric current into the biological medium at the different frequencies and measures the voltage produced by the circulation of said current based on the joint operation of the following subsystems: Sensorization subsystem: which encompasses the necessary hardware to perform bioimpedance measurements. Said subsystem generates an alternating current of known amplitude to be injected into the human body through two electrodes (distal electrodes).
  • the sensorization subsystem makes a measurement of the voltage generated by the circulation of the current in the biological medium to be measured, which can be a body section (a arm, a leg, the trunk, an arm + the trunk + a leg, or any other part of the body), although it can also be an organ or a tissue, and even a liquid with suspended biological substances.
  • the sensorization subsystem operates with these signals to generate others whose subsequent processing allows an estimation of the module and the impedance phase.
  • this subsystem integrates the hardware, software and firmware elements (program recorded in a memory, normally read, which establishes the lowest level logic that controls the electronic circuits of a device) of the intelligent bioimpedance sensor that is applied in the process of estimating the module and the bioimpedance phase (the result can also be the real and imaginary part of the bioimpedance) in each of the frequencies. These frequencies can be configured remotely by sending a command.
  • the processing subsystem is also responsible for the correct activation and configuration of the different modules of the sensorization subsystem each time a new bioimpedance measurement is performed. Thus, the energy consumption of the intelligent bioimpedance sensor is reduced, deriving the different modules from the sensorization subsystem to low consumption modes of operation when these are not necessary.
  • each measurement assumes a sequence of operations in the sensing subsystem, which are managed by the processing subsystem.
  • Bioimpedance measurements can be activated locally on the intelligent bioimpedance sensor by activating a button, they can also be activated remotely by sending a command, and even a set of temporary instants can be configured (remotely via commands). which measurements will be made 3.
  • Communications subsystem This subsystem integrates the hardware, software and firmware elements that are responsible for the development of wireless communications of the intelligent bioimpedance sensor.
  • the communications are bidirectional to allow, in one sense, the sending of the results of the processing subsystem (module and phase of the bioimpedance values at different frequencies, or real and imaginary part of the bioimpedance values), and, in the other sense, the remote configuration of the smart sensor by sending commands.
  • Data storage subsystem This subsystem is responsible for the correct storage of the data used by the intelligent bioimpedance sensor (measured values, auxiliary variables, processing results, configurations).
  • Timing subsystem which is responsible for the maintenance of a real-time timing system and the assignment to each measure of the time in which they were made for registration and subsequent monitoring. Said subsystem is also responsible for notifying the processing subsystem of the instants for carrying out operations whose timing has been preconfigured.
  • Energy subsystem which is responsible for providing the necessary supply voltages for the proper functioning of the rest of the subsystems.
  • the sensorization subsystem is broken down into the following functional modules:
  • This module generates a fixed amplitude sinusoidal voltage signal (Si) (Ai).
  • the frequency (fi) of the signal (Si) can be configured in real time to perform the frequency scanning of bioimpedance measurements.
  • the frequencies of said sweep can be configured remotely by means of a command to take any value between 1 kHz and 5 MHz, although depending on the application this range can be extended to both low and high frequencies. He The number of frequencies of the bioimpedance measurement sweep is also, therefore, a configurable parameter. It is also possible to analyze a single frequency.
  • Injection signal amplification module M 2 ).
  • Gain amplifier (A 2 ) applied on the signal (S 7 ) to generate the signal (S 2 ).
  • the function of this module is to decouple the module ⁇ Mi) from the current injection stage, also adapting the voltage levels of the sinusoidal signal to be suitable at the module input (M 3 ). Voltage-current conversion module (M 3 ).
  • Transconductance amplifier that converts the voltage signal at the output of the injection signal amplification module (S 2 ) into a current signal (S 3 ) with the same frequency ⁇ fi), which will be injected into the body section, tissue or biological medium on which the bioimpedance measurement will be performed.
  • the amplitude (A) of the injected current intensity has a constant value, preset so that the injected current complies with international safety regulations.
  • said current amplitude is independent of the impedance of the biological medium, the impedance of the electrodes and the frequency at which the measurement is made.
  • Two electrodes inject the current generated in the biological medium to be analyzed.
  • the section associated with the coupling module (M 15 ) describes in greater depth the characteristics of these electrodes.
  • the circulation of the current signal (S 3 ) over the biological medium generates a voltage signal (S B ) in a section of said medium located between two other electrodes (proximal electrodes).
  • the frequency of said signal will be the same as that of (S 7 ), but the amplitude (A B ) of the voltage produced and the offset ( ⁇ ⁇ ) with respect to the signal (S 7 ) will depend on the characteristics of the medium.
  • the module (M 4 ) is an instrumentation amplifier that amplifies with a gain (A 4 ) the voltage detected through the proximal electrodes, generating the signal (S 4 ).
  • the input impedance of the instrumentation amplifier is very high so that the voltage drop in the proximal electrodes can be considered negligible and thus obtain a real measurement of the voltage in the section of the biological medium to be measured.
  • the gain (A 5 ) of said amplifier can be set in real time in order to adaptively adapt the precision of the bioimpedance measurement system.
  • This module is to generate an internal sine voltage signal (S 6 ) with the same amplitude value ⁇ Ai) and with the same frequency ⁇ fi) as the signal ⁇ Si), but with a phase difference ( ⁇ 6 ) regarding it configurable in real time.
  • Internal signal amplification module (M 7 ) is to generate an internal sine voltage signal (S 6 ) with the same amplitude value ⁇ Ai) and with the same frequency ⁇ fi) as the signal ⁇ Si), but with a phase difference ( ⁇ 6 ) regarding it configurable in real time.
  • Gain amplifier ⁇ A 7 applied to the signal (S 6 ) to generate the signal (S 7 ).
  • the function of this module is to decouple the module (M 6 ) from the rest of the sensor subsystem, also adapting the voltage of the sinusoidal signal at more adequate levels.
  • Selection module (M s ) is to decouple the module (M 6 ) from the rest of the sensor subsystem, also adapting the voltage of the sinusoidal signal at more adequate levels.
  • This module generates the signal (S 9 ) as a result of subtracting the signal (S 5 ) from the signal (S 8 ).
  • Multiplier module (M 70 ) This module generates the signal (S 10 ) as a result of the multiplication of the signal (S 8 ) and the signal (S g ).
  • the resulting signal (S 10 ) will be formed by the sum of a sinusoidal signal with frequency (2 * fi) and a continuous level dependent on the offset between both signals and their amplitudes.
  • This module generates the signal (Su) as a result of a low signal filtering step (S 10 ) that eliminates the sinusoidal frequency component (2 * fi).
  • the filter cutoff frequency is low enough to keep the signal curl below 1% with respect to the level of continuous at all operating frequencies.
  • the gain (A 12 ) of said amplifier can be set in real time in order to adaptively adapt the precision of the bioimpedance measurement system.
  • This module is responsible for converting the analog signal (S 12 ) into digital signals with which the processing subsystem can operate.
  • the processing module (MP 2 ) of the processing subsystem will be responsible for increasing the measurement accuracy.
  • this module When this module is implemented, it allows measurements to be made in different body sections automatically. For this, electrodes will be placed in the different body sections to be measured, both for current injection and for voltage detection. This module will be responsible for conducting the current signal (S 3 ) to the injection electrodes and bypass (S 4 ) from the appropriate detection electrodes. Coupling module (M 75 )
  • the electrodes of the sensorization system both for current injection (distal electrodes) and for voltage detection (proximal electrodes) and the cables that connect said electrodes with the multiplexing module (M 14 ).
  • the module (M 15 ) will be arranged externally to the rest of the modules of the intelligent bioimpedance sensor, which will be integrated together with the rest of the subsystems within the same housing.
  • the cables will be attached to the module (M 14 ) permanently or through one or more connectors in the housing.
  • the length of the cables can be adapted to the specific application of the sensor. In addition, they will be shielded to protect the measure against external interference.
  • the electrodes may have multiple shapes and sizes.
  • the electrodes may be dry or wet electrodes, and may or may not have adhesive means for fixing them, depending on the type of application.
  • the only restrictions to consider are an impedance of the contact between the electrode and the biological medium low enough so that the voltage generated by the injected current is within the operating range of the device, and that its dimensions are such that the current density is below 1 mA / cm 2 (for applications not performed in-vivo this density may be higher).
  • the connections of the cables with the electrodes can be fixed or through connectors or metal clamps, depending on the application.
  • the cables and electrodes can also be arranged on a garment or clothing, or be part of it (electrotextiles), which will fit over the body section to be measured.
  • the smart sensor housing would be integrated in the same garment or be prepared to be attached to it, thus forming a portable device.
  • the electrodes form an integral part of the smart sensor housing itself.
  • other configurations with three or two electrodes are also possible, in which one or both injection electrodes coincide with one or more Two detection electrodes. In these other configurations, however, the impedance of the electrodes will affect the measured impedance.
  • the processing subsystem is broken down into five processing modules ⁇ MP), (MP 2 ), (MP 3 ), (MP 4 ) and (MP 5 ), which can be updated remotely through the communications subsystem.
  • Each of these modules has different functionalities or benefits, with the application of bioimpedance measurement which will define the module or modules to be used. These modules will be executed if they are active for the specific application of bioimpedance measurement.
  • a pre-configured protocol defines the processing modules that can be activated, their activation sequence and their operating parameters, for autonomous operation of the intelligent sensor. Said protocol may be re-configured wirelessly through commands.
  • the result of said processing module is the complex bioimpedance values (module and phase) obtained at each of the operating frequencies of the intelligent bioimpedance sensor.
  • the number of frequencies and their values can be configured remotely.
  • This module is novel, as a consequence of the particular processing that is needed to derive the bioimpedance values from the proposed modification of the generic quadrature signal detection system.
  • the scheme uses a single multiplier, it needs two sweeps in frequency of signal measurement.
  • the processing module (parte ⁇ part of the digital value of signal S 12 from the subsystem of sensorization. Performing some operations, it can be verified that said signal responds to the following equation:
  • a 7 , A 4 and are two known parameters, A 5 , A 12 and ⁇ 6 are configurable parameters and A B and ⁇ ⁇ are the variables that will allow us to establish the bioimpedance values. This is defined as the ratio between the voltage and the current that produces it, so that in the case of the intelligent bioimpedance sensor the impedance phase is equivalent to ⁇ ⁇ and the module can be expressed as:
  • A is also a parameter of known value.
  • Phase 1 - First pseudo-demodulation in phase In this phase the values of the gains A 5 and A 12 are configured to take the value one.
  • the module (M 8 ) is configured in position A.
  • the internal signal generation module (M 6 ) is configured so that phase cp 6 takes the value 0.
  • signal S 12 responds to the following expression:
  • a frequency scan is performed, configuring in each of them the signal generation modules (M ⁇ and internal signal (M 6 ) with their corresponding frequencies.
  • i. a ) > being able to take (N a ) also the value 1.
  • the first measurement is made after a waiting time ( ⁇ ) in order that the signal (S 12
  • phase II. a - First quadrature pseudo-demodulation: In this phase gains A 5 and A 12 keep their value at one. The module (M 8 ) remains set to position A.
  • the internal signal generation module (M 6 ) is configured so that phase ⁇ 6 takes the value ⁇ / 2.
  • signal S 12 responds to the following expression:
  • a frequency scan is performed, configuring in each of them the signal generation modules (M ⁇ and internal signal (M 6 ) with their corresponding frequencies.
  • n .a ), being able to take (N a ) also the value 1.
  • the first measurement is made after a waiting time ( ⁇ ) in order that the signal (If 2
  • Phase III a - First approach to bioimpedance values: In this phase, from the values stored in phases la and II. a the module and the impedance phase in each of the frequencies are calculated. To do this, the variables (d) and (C 2 ) defined as:
  • the impedance module can be expressed as:
  • Another novel aspect of the processing subsystem derives from the use of a second quadrature signal demodulation scheme complementary to that performed in (MP.
  • the scheme used is a novel method that allows to increase the dynamic range of the signal against noise, increasing the degree of precision in the digital signal provided by the module (M 13 ) through the adjustment of two gain stages.
  • the execution of said processing module may not be required at all or some of the frequencies if the sampling error related to the Analog-Digital conversion is kept below 1% of the detected signal.
  • the processing module (MP 2 ) decomposes in the following phases:
  • Phase lb - Second pseudo-demodulation in phase During this phase a process equivalent to that carried out during the phase of the module is carried out ( ⁇ ⁇ , but adapting the values of the gains A 5 and A 12 according to a criterion that maximizes in a context of analog-to-digital conversion, the signal (S 12 ) to noise ratio is defined as follows:
  • the signal (S 12 ) can be defined according to the following expression:
  • (A 7 ) must be pre-configured in such a way that parameter (C 3 ) is close to the maximum permissible value of the Analog-Digital conversion module (M 13 ).
  • the next step is to define a value for the gain (A 5 ) that approximates the value of the parameter (C 4 ) to parameter (C 3 ) without exceeding it, thus, the difference between (C 3 ) and (C 4 ) will have a small positive value.
  • the degree of approximation must be such that before fluctuations of the parameter (C 4 ), the difference in signals is always positive.
  • the last step is to define a value for the gain (A 12 ) so that the signal (S 12 ) is close to the maximum permissible value of the Analog-Digital conversion module (M 13 ).
  • the degree of approximation must be such that in the event of fluctuations in the signal (S 12 ), it always remains below the maximum permissible value of the Analog-Digital conversion module (M 13 ).
  • Phase II. b - Second quadrature pseudo-demodulation During this phase a process equivalent to that carried out during phase II is carried out. a, but adapting the values of the gains A 5 and A 12 according to the optimization criterion described in the lb phase that maximizes in a context of analog-digital conversion the relation of the signal (S 12 ) against the noise.
  • the impedance module can be expressed as:
  • Another novel aspect of the processing subsystem derives from the use of a third processing scheme for the estimation of bioimpedance values, which can be used in isolation or complementary to the two previous modules.
  • the scheme used in this case is a novel method based on successive approximations that provides great accuracy in the estimation of bioimpedance.
  • the technique differs from that used in the two previous processing modules, it allows a second validation of the values obtained.
  • the proposed method is based on a sequence of successive approximations to the module and the bioimpedance phase, establishing as correct values those that minimize a certain error function.
  • This error function weighs the mismatch between the detected signal and the one that would be detected if the bioimpedance had the analyzed values.
  • This error function reaches a minimum when the intelligent sensor configuration parameters generate an internal signal equivalent in module and phase to the signal at the module output (M 5 ). This circumstance results in a null value in the signal (Si 2 ) defined in [Equation 1], which is the only accessible value of the sensorization subsystem (in this scheme the module (M 8 ) is also configured in position A ).
  • the procedure of Approximation to bioimpedance values will consist of modifying the configuration parameters of the intelligent sensor until the following equality is obtained:
  • the algorithm searches through successive approximations the phase ⁇ 6 that minimizes the value of (Si 2 ). If necessary, the system will enter into an iterative process of gain gain (A 5 ) and phase search that minimizes the value of (Si 2 ). During this process, a progressive increase in gain (A 12 ) can be made to increase the accuracy in the estimation of the module and phase. Any variation of the parameters must be carried out in such a way that the value of (S 12 ) is always positive and below the maximum permissible value of the Analog-Digital conversion module (M 13 ). The algorithm will decide that it has reached the correct value when the value of (S 12 ) is below a certain threshold weighted by the value of the gain (A 5 ). In this case the impedance module can be approximated as:
  • This method of estimating the module and the impedance phase can be complementary to that carried out in the previous phases, in which case it will start from initial values for (A 5 ) and ( ⁇ 6 ) close to those that would derive from the module and the phase obtained in previous phases. It can also be done in a completely isolated way, using initial values for (A 5 ) and ( ⁇ 6 ) close to those obtained at a previous frequency as starting parameters, since bioimpedance measurements at nearby frequencies have similar values . This decreases the number of global iterations in the process.
  • Another novel aspect of the processing subsystem derives from the use of a fourth processing scheme that allows the module and the impedance phase to be monitored at a certain frequency.
  • This module can be executed when a multi-frequency bioimpedance measurement is not being performed.
  • a sampling rate will define the time between consecutive estimates of impedance.
  • Each estimate will be saved in the data storage subsystem.
  • Such data may be sent wirelessly in real time through the communications system. Deferred sending of the information is also possible when the number of stored data is sufficient, when required by a command or when the timing subsystem generates a sending event.
  • the starting data used by the modules (MP 2 ) and (MP 3 ) can be configured to take as a reference the values of the module and the impedance phase in the previous sample.
  • the sampling frequency will depend on the specific application of the bioimpedance sensor and will be a parameter configurable by means of commands. It is also possible that an algorithm recursively searches for the frequency associated with a greater sensitivity to the phenomenon that causes bioimpedance variations.
  • the processing module can be activated locally on the smart sensor by means of a push-button, remotely by sending a command, or it can be auto-activated in temporary instants pre-configured through commands.
  • Processing module for monitoring the impedance module on a single frequency (MP 5 )
  • Another novel aspect of the processing subsystem derives from the use of a fifth processing scheme that allows the impedance module to be monitored at a certain frequency.
  • the functionality of said processing module is similar to that of the module (MP 4 ), although not equivalent, since it does not provide the bioimpedance phase.
  • the modules (MP 4 ) and (MP 5 ) will not be active in the same device at the same time, and, depending on the specific application of bioimpedance measurement, it is possible that neither is activated.
  • the fundamental difference between both modules is the scheme used for the sensorization subsystem.
  • the module (M 8 ) In the processing module (MP 4 ), the module (M 8 ) is configured in position A. However, in the processing module (MP 5 ) the module (M 8 ) is configured in position B.
  • This module can be executed when a multi-frequency bioimpedance measurement is not being performed.
  • a sampling rate will define the time between consecutive impedance estimates. Each estimate will be saved in the data storage subsystem. Such data may be sent wirelessly in real time through the communications system. Deferred sending of the information is also possible when the number of stored data is sufficient, when required by a command or when the timing subsystem generates a sending event.
  • the operating frequency for monitoring will depend on the specific application of the bioimpedance sensor. It is also possible that an algorithm recursively searches for the frequency associated with a greater sensitivity to the phenomenon that causes bioimpedance variations.
  • the processing module (MP 5 ) can be activated locally on the smart sensor by means of a push-button, remotely by sending a command, or it can be auto-activated in temporary instants pre-configured through commands.
  • Figure 1 Basic architecture "Intelligent Bioimpedance Sensor for Biomedical Applications”.
  • FIG. 1 Sensorization subsystem.
  • Figure 3. Detail in the sensor subsystem of Multiplexing Module (M 14 ) and Coupling Module (M 15 ).
  • Phase II a - First quadrature pseudo-demodulation.
  • Phase III a - First approach to bioimpedance values.
  • the "Intelligent Bioimpedance Sensor for Biomedical Applications” it is used to perform a bioimpedance characterization of a body section (arm, trunk or limb) and it can be carried out so that all subsystems , except for the coupling module, they are integrated within the same housing.
  • Two 9V batteries constitute the fundamental part of the energy subsystem.
  • two regulators generate stable voltages of 5V and -5V to power the analog part of the sensorization subsystem.
  • Another 3V regulator is responsible for stabilizing the operating voltage of the digital components.
  • the processing subsystem is integrated in a microprocessor with an 8-bit arithmetic-logic unit that operates at 4 MHz.
  • the different processing modules are programmed in the Flash memory of the microprocessor, which has a capacity of 16 Mbytes.
  • the communications subsystem is supported by a transceiver that meets the specifications of the IEEE 802.15.4 standard. Another model of the device uses a transceiver based on the IEEE 802.15.1 standard.
  • To develop the data storage subsystem the 768-byte SRAM memory and the 256-byte EEPROM memory of the microprocessor are used.
  • the timing subsystem is also implemented in the microprocessor program code. An external crystal of 32.768 KHz and one of the microprocessor timers are used to manage the timing in real time.
  • the module (M ⁇ is a programmable oscillator that uses the Direct Digital Synthesizer (DDS) technique.
  • DDS Direct Digital Synthesizer
  • the DDS can generate any frequency between 25 MHz and 0.19 Hz, with a resolution of 0.19 Hz and a stability of 40 ppm
  • the frequency and phase of the generated signal are controlled through a serial data interface Sudden jumps in the signal due to digital sampling are smoothed through a low pass filter with a frequency of cut high enough not to affect the generated signals
  • Analog schemes based on operational amplifiers are used for the amplification modules and the voltage-current conversion module.
  • a maximum error of 1% in the value of the estimation of the complex bioimpedance measure is established as a design specification. In this sense, all the components used (operational amplifiers, resistors, or others) have characteristics that ensure a maximum error below 1% in the operating range of the device.
  • an instrumentation amplifier based on operational amplifiers with a common mode rejection ratio of 47 dB and an input impedance of 1 ⁇ is used. The gains of the variable gain amplifiers are set through digital potentiometers.
  • another DDS is used with the same characteristics as that used for the injection signal generation module.
  • a single 50 MHz crystal with a stability of 20 ppm is used as a temporary reference for both DDS. In this way, both devices will have exactly the same frequency and the programmed offset between the signals of both modules will remain constant over time.
  • the difference module (M 8 ) a scheme based on operational amplifiers is also used and for the module (M g ) an integrated quadrant multiplier circuit is used.
  • the module (M 10 ) is an active second order low pass filter based on operational amplifiers with a cut-off frequency of 13.8 Hz.
  • the module (M 12 ) uses several digitally controlled analog switches. These switches allow two simultaneous measurements of bioimpedance in two different sections of the biological medium to be measured (two channels).
  • Two connectors in the housing allow the connection of the measurement cables, one per channel. Each cable has at one end a connector that attaches to the housing connector. At the other end, the cable is divided into four differentiated lines, which end in turn in metal clamps for connection to the electrodes.
  • the cables and lines have a metallic mesh to protect the signal against interference.
  • the lines are electrically insulated from the protective mesh, and the mesh is electrically insulated from the outside.
  • the cables are flexible and have a length of 1.5 meters each.

Abstract

Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas capaz de realizar medidas de bioimpedancia en múltiples frecuencias configurables, procesar los datos para obtener el módulo y la fase de la bioimpedancia (o parte real e imaginaria de la bioimpedancia) en cada una de las frecuencias, y transmitir de forma inalámbrica los resultados del procesado, el cual se configura mediante un dispositivo que está en contacto con el medio biológico a medir por medio de una serie de electrodos de forma que, a través de los citados electrodos, el dispositivo inyecta corriente eléctrica dentro del medio biológico en las diferentes frecuencias y mide la tensión producida por la circulación de dicha corriente en base al funcionamiento conjunto de varios subsistemas.

Description

DESCRIPCIÓN
Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas. OBJETO DE LA INVENCIÓN
La presente invención, según se expresa en el enunciado de esta memoria descriptiva, se refiere a un dispositivo de sensorización portable capaz de realizar medidas de bioimpedancia en múltiples frecuencias configurables, procesar los datos para obtener el módulo y la fase de la bioimpedancia (o parte real e imaginaria de la bioimpedancia) en cada una de las frecuencias, y transmitir de forma inalámbrica los resultados del procesado.
Tiene su aplicación en el área de las Tecnologías de la Información y las Comunicaciones (TICs) en el contexto de la ingeniería biomédica y la tecnología médica, para el desarrollo de dispositivos electrónicos portables de monitorización continua de variables fisiológicas de las personas y de su estado de salud.
ANTECEDENTES EN EL ESTADO DE LA TÉCNICA
La técnica de medida de bioimpedancia se basa en la inyección en el cuerpo humano o en un tejido a medir, de una corriente eléctrica alterna de intensidad muy pequeña, muy por debajo de los umbrales de percepción. La corriente eléctrica produce una caída de tensión eléctrica, tanto mayor cuanto mayor sea la impedancia eléctrica del tejido. Esta técnica comenzó a aplicarse en 1930, cuando Atzler y Lehman comprobaron que los cambios de fluidos en la cavidad torácica como resultado del bombeo de la sangre por el corazón producían también cambios en la impedancia torácica [1 ]. Holzer et al. fueron los primeros en aplicar una señal alterna para evitar los problemas de polarización de electrodos en las medidas de bioimpedancia [2]. En 1966, en colaboración con el programa Apollo, se desarrolló el primer dispositivo para la monitorización de parámetros hemodinámicos, abriendo paso al desarrollo de la cardiografía de impedancia para la estimación del volumen sistólico [1 ]. Este principio es la base del cardiógrafo de impedancias, el cual también ha sido utilizado durante varias décadas para la estimación del gasto cardiaco mediante la ecuación de Kubicek [3].
A partir de entonces, la bioimpedancia ha sido aplicada en el desarrollo de nuevos instrumentos y dispositivos de diagnóstico médico. En 1978 Webster y Henderson intentaron reproducir las técnicas de tomografía de rayos X, aplicando señales eléctricas de baja frecuencia [4]. Pero no fue hasta los años 80, cuando la Universidad de Sheffield desarrolló las bases de lo que se entiende hoy por tomografía de impedancia eléctrica, a partir de la cual, midiendo los potenciales eléctricos sobre la superficie del cuerpo, se pueden obtener imágenes relacionadas con la distribución de impedancias en el interior de un cuerpo [5], [6].
Teniendo en cuenta que la impedancia de los tejidos cambia de acuerdo con el estado fisiológico de los mismos, esta técnica también ha sido utilizada para monitorizar la viabilidad de los órganos trasplantados [7], para conocer el estado de hidratación de la piel o el diagnóstico de patologías cutáneas [8], [9], e incluso como método de medida no invasiva del nivel de glucosa en sangre [10]-[12]. Además, la bioimpedancia ha sido utilizada en el laboratorio clínico como herramienta para medidas celulares (contador coulter, medidas de hematocrito o monitorización de cultivos celulares) [1 ], [13]— [17] y la detección de sustancias en Lab-on-a-Chip [18].
Una de las aplicaciones más importantes de la bioimpedancia es el estudio de la composición corporal, de gran utilidad clínica en diferentes áreas: nefrología [1 ], [19]-[23], nutrición [24], [25], obstetricia [26], gastroenterología [27], en el seguimiento del postoperatorio [28], de pacientes infectados con VIH [29], con déficit de la hormona del crecimiento [30], obesos [31 ], [32] o en cuidados críticos [33], [34]. En 1963, Tomasset realizó las primeras estimaciones del agua corporal total a partir de la medida de la bioimpedancia de todo el cuerpo utilizando una corriente alterna de frecuencia fija [35].
Desde entonces, las medidas de bioimpedancia han sido utilizadas de forma amplia en numerosas patentes, que presentan métodos y dispositivos tanto para la cuantificación de la composición corporal, la estimación de los volúmenes de líquidos y la localización anatómica de masas (músculos, grasas, agua) [36]-[44], así como para otras aplicaciones como la estimación de la presión arterial [45], [46], el volumen sistólico [47], el gasto cardíaco [48]-[52], la frecuencia respiratoria y ritmo cardíaco [52]-[55] , el nivel de glucosa en sangre [56], [57] o la monitorización de tejidos [47], entre otros.
Existen diversas patentes que explican los componentes internos que componen los dispositivos que protegen, así como su operación, para la obtención de la señal de bioimpedancia. Aquellas patentes que muestran un mayor detalle, se limitan a describir una panorámica global de los principales elementos empleados por el dispositivo patentado para llevar a cabo la medición. De forma generalizada, el esquema empleado comprende los siguientes elementos: una etapa de sensorización compuesta por varios electrodos junto a la electrónica encargada de la captación de la señal de bioimpedancia, la cual normalmente incluye etapas de filtrado, amplificadores y convertidores analógico/digitales (A/D) y digitales/analógicos (D/A); un procesador o elemento de computación; una memoria para el almacenamiento de datos relevantes; y, solo en algunos casos, una etapa de comunicaciones para el envío de los datos procesados al exterior. Sin embargo, el grado de descripción a nivel interno de estos módulos suele ser insuficiente, y en particular, el análisis de la electrónica de detección y acondicionamiento de la señal es mayoritariamente escaso. Es el caso por ejemplo, de la patente (US7917202) [40], cuya principal aportación al estado de la cuestión es un modelo refinado que incluye las contribuciones de los tejidos intracelulares para permitir una medida más precisa a dos o más frecuencias. Sin embargo, para la medición de la señal de bioimpedancia, los autores remiten a instrumentación médica especializada (del fabricante Xitron Technologies), sin entrar en más detalles. La patente (US6615077) [41 ], que incluye un método para determinar el peso seco del cuerpo de un paciente mediante medidas segméntales basadas en análisis de bioimpedancia eléctrica, también utiliza una solución del mismo fabricante para la toma de datos de bioimpedancia. De nuevo, la patente (US7945317) [58], que describe un método mejorado multifrecuencial para realizar un análisis de bioimpedancia de un segmento corporal del sujeto, sugiere que para la aplicación de la corriente y la grabación de tensión se utilice una solución comercial. Lo mismo sucede con la patente (US201 10275922) [59], que en este caso señala que el procesado de los datos puede realizarse mediante este equipamiento u on- line usando una computadora aparte. La patente (US20060122540) [60] proporciona un método para determinar el estado de hidratación de pacientes en diálisis peritoneal y hemodiálisis, y describe entre los módulos empleados un dispositivo para calcular de forma continua la circunferencia de un segmento corporal, basado en un Procesador Digital de Señal (DSP). Aunque, al igual que las anteriores, para el sistema de medida se recomienda emplear instrumentación médica del fabricante referenciado.
Por otro lado, hay un conjunto de patentes que realizan aportaciones puntuales al esquema global anteriormente planteado, para la mejora de alguno de los elementos de la electrónica del dispositivo que intervienen en el proceso de medición. Por ejemplo, la patente (US20130046165) [61 ], que describe un sensor de bioimpedancia capacitivo, incluye un pre-procesador de señal ad-hoc, que está acoplado al sensor. Además, en una de sus realizaciones preferentes, el circuito de sensado mide la impedancia relativa al emplear uno o más puentes de Wheatstone. La patente (US20060004300) [62] presenta un método para estimar la bioimpedancia a múltiples frecuencias mediante un circuito LFSR (Linear Feedback Shift Register), que produce una secuencia pseudo-aleatoria que alimenta al conversor D/A. La patente (US7457660) [63] incluye un mecanismo de eliminación de errores en las medidas de bioimpedancia, basado la separación del valor de bioimpedancia de otras fuentes de error a partir de las medidas sobre dos secciones corporales similares. La patente (US20050012414) [64] presenta un aparato especialmente diseñado para suministrar una segunda fuente de alimentación para dispositivos electrónicos de tipo flotante, y así se consigue que el aparato satisfaga los requisitos de seguridad médica para la medida de bioimpedancia. La patente (US20040171963) [65] presenta un método de estimación más precisa de la composición corporal que corrige un parámetro de la impedancia bioeléctrica, el cual reduce la carga en la distribución de fluido extracelular. Emplea para ello una unidad de intercambio de electrodos que permite utilizar configuraciones de hasta 8 electrodos. En la patente (US7974691 ) [66] refieren a Hartley et al. (US6076015) [67], que utiliza para las mediciones pulsos de microamperios de 20 microsegundos repetidos en intervalos de 50 milisegundos en los que se mide la respuesta en tensión. El circuito de impedancia de la patente (US6370424) [68] usa un pulso de corriente bifásico balanceado que evita la transferencia de carga neta a los electrodos, y así se reduce la corrosión y deposición de los electrodos para una mejor biocompatibilidad. La patente (US20100081960) [69] presenta un sensor de bioimpedancia que destaca, frente a otras aproximaciones basadas en la inyección de corriente en el tejido, por emplear métodos ópticos cuya precisión es mayor, aunque también lo es la electrónica asociada. La patente (EP2567657A1 ) [70], en una de sus reivindicaciones, incluye como principal aportación el agrupamiento de una unidad de referencia y una o más unidades de medidas conectadas juntas en un bus que incluye uno o más conductores eléctricos. Por otro lado, la patente (US20070142733) [71 ] presenta un método de separación de la señal basado en un algoritmo específico que se realiza en parte en un dispositivo implantable, con el fin de reducir interferencias. La patente (US7706872) [72] describe un método para la medida de bioimpedancia eléctrica caracterizado por una señal de excitación periódica en forma de pulsos cuadrados, que se aplica a la entrada del objeto a medir, cuya salida se conecta a un detector síncrono. En la patente se resalta que el uso de señales rectangulares asegura que el dispositivo tiene un diseño simple y bajo consumo, y describe un método para incrementar la precisión de las medidas de bioimpedancia mediante un conjunto de bloques funcionales.
Si bien se han comentado algunas de ellas, existe un conjunto más amplio de prestaciones relevantes a incluir en el diseño de los dispositivos de bioimpedancia patentados, como son su portabilidad, bajo coste, bajo consumo energético, capacidad de comunicación con el entorno, y personalización al usuario, entre otras. Así se abre paso, mediante la utilización de estos dispositivos, al desarrollo de nuevos paradigmas emergentes de atención sanitaria, como la e-Salud o la m-Salud. Sin embargo, nuevamente, pocas invenciones tienen previstas estas consideraciones. Por ejemplo, la patente (US7930021 ) [42] detalla un aparato de pequeño tamaño para la medida de la composición corporal, por medio de electrodos dispuestos en la empuñadora del aparato, que debe ser sujetado por ambas manos. La ventaja de este aparato frente a otros es su tamaño, lo cual permite que pueda ser llevado por el sujeto. En una de las reivindicaciones de la patente (US20050101875) [73], que está destinada de forma general a la monitorización de señales vitales cardíacas, se presenta un monitor/sensor preferentemente portable, de bajo coste y limitada batería, que puede ser desechable. Además, la electrónica del monitor puede incluir un enlace cableado o inalámbrico para transmitir datos. La patente (US20130046165) [61 ] anteriormente comentada también presenta un sensor capacitivo desechable de bajo coste. La patente (US6532384) [74] presenta un dispositivo portátil alimentado por baterías, con botones y una pantalla. La patente (US 7783344) [43] en una de sus implementaciones, incluye la medida de la impedancia segmental, con capacidad de transmisión inalámbrica a un aparato remoto. La patente (US 5876353) [54] presenta un monitor de impedancia para detectar edemas a través de la evaluación del ritmo respiratorio, que se comunica inalámbricamente con un dispositivo portado en la muñeca y éste a su vez con un dispositivo fijo remoto a través de la línea telefónica. Otra aproximación complementaria, consiste en utilizar la capacidad de procesamiento y conectividad de dispositivos portables comerciales, como una PDA (US 6790178) [75], para realizar el procesado de múltiples variables fisiológicas (entre ellas la bioimpedancia). En este caso, los sensores son acoplados a la PDA o tienen la posibilidad de transferir los datos a una memoria que puede luego ser insertada en la PDA. En la patente (US20120035432) [44], se analiza un interesante dispositivo que puede comunicarse con el proveedor sanitario dentro de la misma habitación o en remoto de forma inalámbrica mediante un dispositivo intermedio, estableciendo un sistema de comunicaciones bidireccional. Por otra parte, el documento (US20120035432) [44] plantea otra cuestión de diseño relevante: la personalización en las medidas de bioimpedancia para las características específicas de un paciente. Sin embargo, ninguna patente tiene la capacidad de adaptarse en tiempo real al usuario sin su intervención.
El sensor inteligente de bioimpedancia que se propone en este documento posee una serie de funcionalidades descritas en la forma de novedosas prestaciones que ninguna de las patentes revisadas reúne en su totalidad, gracias principalmente al diseño modular empleado que reúne 6 subsistemas: de sensorización, de procesado, de comunicaciones, de almacenamiento de datos, de temporización y de energía.
En primer lugar, una de las ventajas más relevantes que aporta la patente está relacionada con la mejora en la precisión de la medida de bioimpedancia, así como en la adición de capacidades avanzadas de medición, principalmente desde la perspectiva de dos subsistemas: sensorización y procesado. Por lo que respecta al subsistema de sensorización, resulta novedosa la diferencia de señales previa a la multiplicación y las posibilidades que incorporan los dos módulos de control de ganancia interna. Dichas operaciones permiten reutilizar el hardware en dos esquemas de detección diferentes y complementarios: uno que resulta en una novedosa ampliación y modificación del esquema genérico de señales en cuadratura, y otro totalmente novedoso basado en la aproximación sucesiva al valor de bioimpedancia. Además, el subsistema de sensorización incorpora un procedimiento de optimización del rango dinámico de lectura de los valores de señales para proporcionar de forma adaptativa la mayor precisión posible en la medida de la bioimpedancia. En concreto, cuando la resolución del conversor A/D es insuficiente para mantener el error de muestreo por debajo del 1 % de la señal medida, uno de los módulos del subsistema de procesado se encarga de aumentar la precisión en las medidas. Otras novedades son un multiplexor interno que permite reaprovechar el hardware en un esquema de medida del módulo de la bioimpedancia, y un multiplexor externo para la medida en diferentes secciones del medio biológico.
Por lo que respecta al subsistema de procesado, la mayoría de las patentes revisadas emplean una única frecuencia (normalmente a 50 kHz). Sin embargo, el dispositivo patentado consigue desarrollar un análisis bajo demanda tanto monofrecuencial como multifrecuencial, por medio de un conjunto de aproximaciones novedosas al cálculo de la bioimpedancia ejecutadas por hasta 5 módulos de procesado. Este análisis es realizado a partir de varias mediciones multifrecuenciales cuasi-simultáneas en diferentes secciones corporales en el rango de 1 Khz a 5MHz, que puede ser ampliado tanto a bajas como a altas frecuencias de forma remota. El número de frecuencias de las señales a procesar y los valores de las mismas son también parámetros configurables de forma remota, lo cual constituye otro aspecto novedoso en la patente. Además, el subsistema de procesamiento permite capacidades avanzadas de seguimiento de módulo y fase a una única frecuencia, que no presenta ninguna otra invención. El valor de la frecuencia de la impedancia a monitorizar puede ser a su vez configurada y adaptada en tiempo real de forma remota para adaptarse a las características particulares del usuario, la aplicación de uso o con el objeto de aumentar la sensibilidad del dispositivo. Otra ventaja de la presente invención, referida al subsistema de sensorización, consiste en la incorporación de un módulo de acoplamiento que permite la independencia del tipo de electrodo. De esta manera, se aumenta considerablemente las posibilidades de aplicación y la no dependencia con instrumentación médica que muestran otras patentes.
En segundo lugar, el subsistema de comunicaciones presentado en el diseño modular de la patente permite desarrollar diversas funcionalidades. Por un lado, es capaz de actualizar de forma remota y transparente al usuario, es decir, sin necesidad de asistencia técnica, los módulos de procesado con el fin de realizar una medida personalizada mediante la adaptación al sujeto monitorizado de los algoritmos de procesado y los parámetros que éstos utilizan. Por otro lado, sus capacidades de conectividad se ven incrementadas respecto a otras patentes gracias a la flexibilidad del diseño del subsistema de comunicaciones. Así, este subsistema permite la comunicación bidireccional entre el sujeto monitorizado y el proveedor de servicios (envío de datos hacia el proveedor, en un sentido, y envío de comandos y configuraciones remotas hacia el usuario, en el otro sentido), tanto en tiempo real como en diferido. Por ejemplo, en la realización preferente, se detalla como opción de implementación el estándar IEEE 802.15.1 y el 802.15.4, que dan soporte a numerosas de las tecnologías de comunicaciones inalámbricas disponibles comercialmente en la actualidad (Bluetooth, Zigbee), así como otras actualmente en desarrollo que consiguen reducir drásticamente el consumo de los transceptores de comunicación (Bluetooth Low Energy). Esta ventaja, que no la aporta ninguna de las patentes anteriores, junto a sus prestaciones en conectividad convierte al dispositivo patentado en un elemento ideal para el desarrollo de los nuevos paradigmas de salud comentados con anterioridad (m-Salud, e-Salud).
En tercer lugar, y de forma general a todos los subsistemas de que consta la invención, la patente presentada consigue varios objetivos gracias a las ventajas de su filosofía de diseño accesible y sostenible. En primer lugar mediante la reducción del tamaño del dispositivo, de manera que se consigue una portabilidad efectiva del mismo que permite que el usuario sea capaz de realizar la medición de forma accesible en cualquier momento y en cualquier lugar, sin la necesidad de asistencia técnica. En segundo lugar, la sostenibilidad de la invención se logra optimizando y simplificando la electrónica de medición y el número de iteraciones requeridas, que dan lugar al abaratamiento de los costes de implementación de los subsistemas implicados y al ahorro energético del sensor inteligente. En concreto, en el subsistema de procesado existe un protocolo pre- configurado que define los módulos de procesado que pueden activarse, la secuencia de activación de los mismos y sus parámetros de operación, para un funcionamiento autónomo del sensor inteligente. Dicho protocolo puede ser re-configurado remotamente y de forma inalámbrica mediante comandos. Además, existe una señal global que se encarga de la activación de los módulos del subsistema de procesado para evitar que éstos consuman energía cuando no se está realizando una medida de bioimpedancia. Por otro lado, en el subsistema de sensorización, la optimización del diseño resulta de una novedosa transformación del esquema de detección genérico de señales en cuadratura empleado en otras invenciones, que incorpora en el sensor inteligente patentado nuevos módulos, funcionalidades y esquemas de interconexión que hacen que dicho sistema sea totalmente novedoso. En particular, el esquema empleado utiliza un único multiplicador, lo cual permite reducir costes respecto de otros dispositivos, evitando además errores derivados de posibles diferencias entre componentes. Como ejemplo de los bajos costes de la invención del sensor inteligente, en la realización preferente se presenta la posibilidad de implementar el subsistema de procesado en un microprocesador básico de 8 bits que opera a 4MHz, como contrapartida a otras patentes que proponen tecnologías de mayor coste como computadoras o PDA. Así, la presente invención se alinea con el objetivo de diseño sostenible que debe perseguir la innovación tecnológica sanitaria.
Referencias citadas en Antecedentes del Estado de la Técnica.-
[1 ] L. M. Roa, D. Naranjo, L. J. Reina, A. Lara, J. A. Milán, M. A. Estudillo, and J. S. Oliva, "Applications of bioimpedance to end stage renal disease (esrd)," Studies in Computational Intelligence, vol. 404, pp. 689-769, 2013.
[2] G. Eninia and P. Ondzuls, "A portable rheograph for clinical studies." Biull. Eksp. Biol. Med, vol. 52, pp. 105-107, 1961 .
[3] W. Kubicek, J. Karnegis, R. Patterson, D. Witsoe, and R. Mattson, "Development and evaluation of an impedance cardiac output system. "Aerospace medicine, vol. 37, no. 12, pp. 1208-1212, 1966.
[4] R. Henderson and J. Webster, "An impedance camera for spatially specific measurements of the thorax," IEEE Transactions on Biomedical Engineering, vol. 25, no. 3, pp. 250-254, 1978.
[5] A. Listón, R. Bayford, and D. Holder, "The effect of layers in imaging brain function using electrical impedance tomograghy," Physiological Measurement, vol. 25, no. 1 , pp. 143-158, 2004. [6] N. Li, H. Xu, Z. Zhou, J. Xin, Z. Sun, and X. Xu, "Reconfigurable bioimpedance emulation system for electrical impedance tomography system validation," IEEE Transactions on Biomedical Circuits and Systems, vol. 7, no. 4, pp. 460^168, 2013.
[7] J. Edd and B. Rubinsky, "Assessment of the viability of transplant organs with 3d electrical impedance tomography," vol. 7 VOLS, 2005, pp. 2644-2647.
[8] P. Aberg, I. Nicancer, and S. Ollmar, "Minimally invasive electrical impedance spectroscopy of skin exemplified by skin cáncer assessments," vol. 4, 2003, pp. 321 1— 3214.
[9] M. Fiedler, L.-C. Gerhardt, S. Derler, G. Bischofberger, C. Hrny, and T. Münzer, "Assessment of biophysical skin properties at different body sites in hospitalized old patients: Results of a pilot study," Gerontology, vol. 58, no. 6, pp. 513-517, 2012.
[10] C. Amaral and B. Wolf, "Effects of glucose in blood and skin impedance spectroscopy," 2007.
[1 1 ] A. Tura, A. Maran, and G. Pacini, "Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria," Diabetes Research and Clinical Practice, vol. 77, no. 1 , pp. 16-40, 2007.
[12] R. Lumbroso, N. Naas, L. Beitel, M. Lawrence, and M. Trifiro, "Novel bioimpedance sensor for glucose recognition," 2007, pp. 41 ^13.
[13] N. Piacentini, D. Demarchi, P. Civera, and M. Knaflitz, "Blood cell counting by means of impedance measurements in a microsystem device," 2008, pp. 4824-4827.
[14] G. Pop, L. Bisschops, B. Iliev, P. Struijk, J. Hoeven, and C. Hoedemaekers, "On-line blood viscosity monitoring in vivo with a central venous catheter, using electrical impedance technique," Biosensors and Bioelectronics, vol. 41 , no. 1 , pp. 595-601 , 2013. [15] S. Zheng, M. Nandra, and Y.-C. Tai, "Human blood cell sensing with platinum black electroplated impedance sensor," 2007, pp. 520-523.
[16] D. Trebbels, D. Hradetzky, and R. Zengerle, "Capacitive on-line hematocrit sensor design based on impedance spectroscopy for use in hemodialysis machines."... Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Conference, vol. 2009, pp. 1208-121 1 , 2009.
[17] D. Dziong, P. Bagnaninchi, R. Kearney, and M. Tabrizian, "Nondestructive online in vitro monitoring of pre-osteoblast cell proliferation within microporous polymer scaffolds," IEEE Transactions on Nanobioscience, vol. 6, no. 3, pp. 249-258, 2007.
[18] V. Srinivasaraghavan, J. Strobl, and M. Agah, "Bioimpedance rise in response to histone deacetylase inhibitor is a marker of mammary cáncer cells within a mixed culture of normal breast cells," Lab on a Chip - Miniaturisation for Chemistry and Biology, vol. 12, no. 24, pp. 5168-5179, 2012.
[19] I. Laegreid, A. Bye, K. Aasarod, and M. Jordhoy, "Nutritional problems, overhydration and the association with quality of life in elderly dialysis patients," International urology and nephrology, vol. 44, no. 6, pp. 1885-1892, 2012.
[20] S. Sipahi, E. Hur, S. Demirtas, I. Kocayigit, D. Bozkurt, A. Tamer, H. Gunduz, and S. Duman, "Body composition monitor measurement technique for the detection of volume status in peritoneal dialysis patients: The effect of abdominal fullness," International Urology and Nephrology, vol. 43, no. 4, pp. 1 195-1 199, 201 1 .
[21 ] L. Liu, F. Zhu, J. G Raimann, S. Thijssen, M. Sipahioglu, G. Wystrychowski, T. Kitzier, C. Tetta, P. Wabel, P. Kotanko, and N. Levin, "Determination of fluid status in haemodialysis patients with whole body and calf bioimpedance techniques," Nephrology, vol. 17, no. 2, pp. 131 -140, 2012. [22] H.-R. Chua, L. Xiang, P.-Y. Chow, H. Xu, L. Shen, E. Lee, and B.-W. Teo, "Quantifying acute changes in volume and nutritional status during haemodialysis using bioimpedance analysis," Nephrology, vol. 17, no. 8, pp. 695-702, 2012.
[23] S. Parmentier, H. Schirutschke, B. Schmitt, J. Schewe, K. Herbrig, F. Pistrosch, and J. Passauer, influence of peritoneal dialysis solution on measurements of fluid status by bioimpedance spectroscopy," International Urology and Nephrology, vol. 45, no. 1 , pp. 229-232, 2013.
[24] S. Poloni, I. Schweigert Perry, V. D'Almeida, and I. Schwartz, "Does phase angle correlate with hyperhomocysteinemia? a study of patients with classical homocystinuria," Clinical Nutrition, vol. 32, no. 3, pp. 479-480, 2013.
[25] J. Wilson, B. Strauss, B. Fan, F. Duewer, and J. Shepherd, improved 4-compartment body-composition model for a clinically accessible measure of total body protein1 -3," American Journal of Clinical Nutrition, vol. 97, no. 3, pp. 497-504, 2013.
[26] F. Samani, R. Jabbary, and O. Mashrabi, "Study on uterine artery blood flow in myomatous uterus," Life Science Journal, vol. 9, no. 4, pp. 583-586, 2012.
[27] P. Lundin, M. Karpefors, K. Carlsson, M. Hansen, and M. Ruth, "Bioimpedance spectroscopy: A new tool to assess early esophageal changes linked to gastroesophageal reflux disease?" Diseases of the Esophagus, vol. 24, no. 7, pp. 462-469, 201 1 .
[28] V. Sharma, A. Singh, B. Kansara, and A. Karlekar, "Comparison of transthoracic electrical bioimpedance cardiac output measurement with thermodilution method in post coronary artery bypass graft patients," Annals of Cardiac Anaesthesia, vol. 14, no. 2, pp. 104-1 10, 201 1 .
[29] A. Sharma, F. Tian, M. Yin, M. Keller, M. Cohen, and P. Tien, "Association of regional body composition with bone mineral density in hiv-infected and hiv-uninfected momen: Women's interagency hiv study," Journal of Acquired Immune Deficiency Syndromes, vol. 61 , no. 4, pp. 469-476, 2012. [30] C. Di Somma, L. Angrisani, F. Rota, M. Savanelli, T. Cascella, A. Belfiore, F. Orio, G. Lombardi, A. Colao, and S. Savastano, "Gh and igf-i deficiency are associated with reduced loss of fat mass after laparoscopic-adjustable silicone gastric banding," Clinical Endocrinology, vol. 69, no. 3, pp. 393-399, 2008.
[31 ] E. Sillanpá, S. Cheng, K. Hákkinen, T. Finni, S. Walker, A. Pesóla, J. Ahtiainen, L. Stenroth, H. Selánne, and S. Sipilá, "Body composition in 18- to 88-year-old adults- comparison of multifrequency bioimpedance and dual-energy x-ray absorptiometry," Obesity, vol. In Press, 2013.
[32] L. Donini, E. Poggiogalle, S. Migliaccio, A. Aversa, and A. Pinto, "Body composition in sarcopenic obesity: systematic review of the literature," Mediterranean Journal of Nutrition and Metabolism, pp. 1 -8, 2013.
[33] P. Marik, "Noninvasive cardiac output monitors: A state-of the-art review," Journal of Cardiothoracic and Vascular Anesthesia, vol. 27, no. 1 , pp. 121 -134, 2013.
[34] M. Savalle, F. Gillaizeau, G. Maruani, E. Puymirat, F. Bellenfant, P. Houillier, J.-Y. Fagon, and C. Faisy, "Assessment of body cell mass at bedside in critically ¡II patients," American Journal of Physiology - Endocrinology and Metabolism, vol. 303, no. 3, pp. 13 E389-E396, 2012.
[35] R. Baumgartner, S. Heymsfield, S. Lichtman, J. Wang, and R. Pierson Jr., "Body composition in elderly people: Effect of criterion estimates on predictive equations," American Journal of Clinical Nutrition, vol. 53, no. 6, pp. 1345-1353, 1991 .
[36] M. Kraemer and P. Chamney, "Determining the hydration status of a patient," Patent US 7 133 716, Nov. 7, 2006.
[37] P. Chamney and P.Wabel, "Method and a device for determining the hydration and/or nutrition status of a patient," Patent US 2008/0 086 058, Apr. 10, 2008. [38] N. Levin and F. Zhu, "Bioimpedance methods and apparatus," Patent US 2007/0 027 402, Feb. 1 , 2007.
[39] J. Rosell, P. Riu, R. Pallas, J. Elvira, and R. Bragos, "Apparatus and procedure for measuring volumes and global and segmental corporal composition in human beings," Patent US 6 151 523, Nov. 21 , 2000.
[40] P. Chammney and P. Wabel, "Method and a device for determining the hydration and/or nutrition status of a patient," Patent US 7 917 202, Mar. 29, 201 1 .
[41 ] F. Zhu and N. Levin, "Device and method for monitoring and controlling physiologic parameters of a dialysis patient using segmental bioimpedance," Patent US 6 615 077, Sep. 2, 2003.
[42] T. Ashida, T. Koike, and K. Andachi, "Body composition measuring apparatus," Patent US 7 930 021 , Apr. 19, 201 1 .
[43] R. Lackey, D. Drinan, and E. C.F., "Hydration monitoring," Patent US 7 783 344, Aug. 24, 2010.
[44] R. Katra, N. Chakravarthy, and I. Libbus, "Medical device and methods of monitoring a patient with renal dysfunction," Patent US 2012/0 035 432, Feb. 9, 2012.
[45] B. Sramek, "Noninvasive continuous mean arterial blood pressure monitor," Patent US 4 807 638, Feb. 28, 1989.
[46] B. Sramek, "System for therapeutic management of hemodynamic state of patient," Patent US 5 103 828, Apr. 14, 1992.
[47] D. Berstein, "Apparatus for determination of stroke volume using the brachial artery," Patent US 7 261 697, Aug. 28, 2007. [48] B. Sramek, "Esophageal electrode array for electrical bioimpedance measurement," Patent US 4 836 214, Jun. 6, 1989.
[49] W. Reining, impedance cardiograph apparatus and method," Patent US 5 505 209, Apr. 9, 1996.
[50] A. Shmulewitz, "Apparatus and method of bioelectrical impedance analysis of blood flow," Patent US 5 782 774, Jul. 21 , 1998.
[51 ] S. Mortazavi, E. Park, G. Bornzin, J. Florio, J. Sholder, and R. Weyant, "Methods and apparatus for measuring impedance in the body," Patent US 6 044 294, Mar. 28, 2000.
[52] S. Schookin, V. Zubenko, K. Beliaev, A. Morozov, and W. Yong, "Non-invasive monitoring of hemodynamic parameters using impedance cardiography," Patent US 6 161 038,, Dec. 12, 2000.
[53] V. Vysin and B. Sramek, "Diastolic clamp for bioimpedance measuring device," Patent US 4 870 578, Sep. 26, 1989.
[54] K. Riff, impedance monitor for discerning edema through evaluation of respiratory rate," Patent US 5 876 353, Mar. 2, 1999.
[55] D. Prutchi, "Non-invasive cardiorespiratory monitor with synchronized bioimpedance sensing," Patent US 6 022 322, Feb. 8, 2000.
[56] M. Fuller, D. Deamer, M. Iverson, and A. Koshy, "Radio frequency spectral analysis for in-vitro or in-vivo environments," Patent US 5 792 668, Aug. 1 1 , 1998.
[57] S. Monfre, K. Hazen, T. Ruchti, T. Blank, and J. Henderson, "Method and apparatus using alternative site glucose determinations to calíbrate and maintain noninvasive and implantable analyzers," Patent US 6 998 247, Feb. 14, 2006. [58] N. Levin and F. Zhu, "Bioimpedance methods and apparatus," Patent US 7 945 317, May. 17, 201 1 .
[59] N. Levin and F. Zhu, "Bioimpedance methods and apparatus," Patent US 201 1 /0 275 922, Nov. 10, 201 1 .
[60] F. Zhu and N. Levin, "Device and method for the determination of dry weight by continuous measurement of resistance and calculation of circumference in a body segment using segmental bioimpedance analysis," Patent US 2006/0 122 540, Jun. 8, 2006.
[61 ] D. Cassidy and H. S. Ng, "System for a disposable capacitive bioimpedance sensor," Patent US 2013/0 046 165, Feb. 21 , 2013.
[62] J. Kennedy, "Multifrequency bioimpedance determination," Patent US 2006/0 004 300, Jan. 5, 2006.
[63] K. Smith and J. Ironstone, "Eliminating interface artifact errors in bioimpedance measurements," Patent US 7 457 660, Nov. 25, 2008.
[64] E. Gersing, "Method and apparatus for isolated transformation of a first voltage into a second voltage for measurement of electrical bioimpedances or bioconductances," Patent US 2005/0 012 414, Jan. 20, 2005.
[65] K. Takehara, "Body composition estimation method and body composition measuring apparatus," Patent US 2004/0 171 963, Sep. 2, 2004.
[66] Y. Zhang, "Method and apparatus for controlling cardiac resynchronization therapy using cardiac impedance," Patent US 7 974 691 , Jul. 5, 201 1 .
[67] J. Hartley, M. Cohen, N. Stessman, S. Reedstrom, S. Check, and J. Nelson, "Rate adaptive cardiac rhythm management device using transthoracic impedance," Patent US 6 076 015, Jun. 13, 2000. [68] David Prutchi, "Non-invasive cardiorespiratory monitor with synchronized bioimpedance sensing," Patent US 6 370 424, Jun. 12, 2001 .
[69] E. McKenna, "Bioimpedance system and sensor and technique for using the same," Patent US 2010/0 081 960, Feb. 9, 2010.
[70] O. Chételat, "Synchronization and communication bus for biopotential and bioimpedance measurement systems," Patent EP 2 567 657, Mar. 13, 2013.
[71 ] J. Hatlestad, M. Brockway, Y. Dalal, and L. Moon, "Bio-impedance sensor and sensing method," Patent US 2007/0 142 733, Jun. 21 , 2007.
[72] M. Min, A. Kink, R. Land, and T. Parve, "Method and device for measurement of electrical bioimpedance," Patent US 7 706 872, Apr. 27, 2010.
[73] H. Semler and P. Benz, "Non-invasive body composition monitor, system and method," Patent US 2005/0 101 875, May. 12, 2005.
[74] Y. Fukuda, "Bioelectrical impedance measuring method and body composition measuring apparatus," Patent US 6 532 384, Mar. 1 1 , 2003.
[75] J. Mault, N. Johnson, and J. Sanderson, "Physiological monitor and associated computation, display and communication unit," Patent US 6 790 178, Sep. 14, 2004.
EXPLICACIÓN DE LA INVENCIÓN
A modo de explicación del "Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas", el mismo se configura mediante un dispositivo que está en contacto con el medio biológico a medir por medio de una serie de electrodos de forma que, a través de los citados electrodos, el dispositivo inyecta corriente eléctrica dentro del medio biológico en las diferentes frecuencias y mide la tensión producida por la circulación de dicha corriente en base al funcionamiento conjunto de los siguientes subsistemas: Subsistema de sensorización: el cual engloba el hardware necesario para realizar las medidas de bioimpedancia. Dicho subsistema genera una corriente alterna de amplitud conocida para ser inyectada en el cuerpo humano a través de dos electrodos (electrodos distales). Por medio de otros dos electrodos situados en el camino de la corriente (electrodos proximales) el subsistema de sensorización realiza una medida de la tensión generada por la circulación de la corriente en el medio biológico a medir, el cual puede ser una sección corporal (un brazo, una pierna, el tronco, un brazo + el tronco + una pierna, o cualquier otra parte del cuerpo), aunque también puede ser un órgano o un tejido, e incluso un líquido con sustancias biológicas en suspensión. El subsistema de sensorización opera con estas señales para generar otras cuyo posterior procesado permite una estimación del módulo y la fase de la impedancia. Subsistema de procesado: dicho subsistema integra los elementos hardware, software y firmware (programa grabado en una memoria, normalmente de lectura, que establece la lógica de más bajo nivel que controla los circuitos electrónicos de un dispositivo) del sensor inteligente de bioimpedancia que se aplican en el procesado de estimación del módulo y la fase de la bioimpedancia (el resultado también puede ser la parte real e imaginaria de la bioimpedancia) en cada una de las frecuencias. Estas frecuencias pueden ser configuradas de forma remota mediante el envío de un comando. El subsistema de procesado también se encarga de la correcta activación y configuración de los diferentes módulos del subsistema de sensorización cada vez que se realice una nueva medida de bioimpedancia. Se reduce así el consumo de energía del sensor inteligente de bioimpedancia, derivando los diferentes módulos del subsistema de sensorización a modos de operación de bajo consumo cuando éstos no sean necesarios. Además, cada medida supone una secuencia de operaciones en el subsistema de sensorización, las cuales son gestionadas por el subsistema de procesado. Las medidas de bioimpedancia pueden activarse de forma local en el sensor inteligente de bioimpedancia activando un pulsador, también pueden activarse de forma remota mediante el envío de un comando, e incluso pueden configurarse (de forma remota mediante comandos) un conjunto de instantes temporales en los cuales las medidas serán realizadas. 3. Subsistema de comunicaciones: dicho subsistema integra los elementos hardware, software y firmware que se encargan del desarrollo de las comunicaciones inalámbricas del sensor inteligente de bioimpedancia. Las comunicaciones son bidireccionales para permitir, en un sentido, el envío de los resultados del subsistema de procesado (módulo y fase de los valores de bioimpedancia en diferentes frecuencias, o parte real e imaginaria de los valores de bioimpedancia), y, en el otro sentido, la configuración remota del sensor inteligente mediante el envío de comandos.
4. Subsistema de almacenamiento de datos: este subsistema se encarga del correcto almacenamiento de los datos empleados por el sensor inteligente de bioimpedancia (valores medidos, variables auxiliares, resultados del procesado, configuraciones).
5. Subsistema de temporización: el cual se encarga del mantenimiento de un sistema de temporización en tiempo real y de la asignación a cada medida del instante temporal en el que éstas fueron realizadas para su registro y posterior seguimiento. Dicho subsistema se encarga además de avisar al subsistema de procesado de los instantes para la realización de operaciones cuya temporización ha sido preconfigurada.
6. Subsistema de energía: el cual se encarga de proporcionar las tensiones de alimentación necesarias para el correcto funcionamiento del resto de subsistemas.
A) Subsistema de sensorización.-
El subsistema de sensorización se descompone en los siguientes módulos funcionales:
1 . Módulo de generación de señal de inyección (Mi)
Este módulo genera una señal (Si) de tensión senoidal de amplitud fija (Ai). La frecuencia (fi) de la señal (Si) puede ser configurada en tiempo real para realizar el barrido en frecuencia de medidas de bioimpedancia. Las frecuencias de dicho barrido pueden ser configuradas de forma remota mediante un comando para que tomen cualquier valor comprendido entre 1 kHz y 5 MHz, aunque dependiendo de la aplicación dicho rango puede ser ampliado tanto a bajas como a altas frecuencias. El número de frecuencias del barrido de medidas de bioimpedancia también es, por lo tanto, un parámetro configurable. Cabe también la posibilidad de analizar una única frecuencia. Módulo de amplificación de señal de inyección (M2).
Amplificador de ganancia (A2) aplicado sobre la señal (S7) para generar la señal (S2). La función de este módulo es desacoplar al módulo {Mi) de la etapa de inyección de corriente, adaptando además los niveles de tensión de la señal senoidal para que sean adecuados en la entrada del módulo (M3). Módulo de conversión tensión-corriente (M3).
Amplificador de transconductancia que convierte la señal de tensión a la salida del módulo de amplificación de señal de inyección(S2) en una señal de corriente (S3) con la misma frecuencia {fi), la cual será inyectada en la sección corporal, tejido o medio biológico sobre el que se realizará la medida de bioimpedancia. La amplitud (A) de la intensidad de corriente inyectada tiene un valor constante, prefijado para que la corriente inyectada cumpla con las normativas de seguridad internacionales. Además, dicha amplitud de corriente es independiente de la impedancia del medio biológico, la impedancia de los electrodos y la frecuencia en la que se realiza la medida. Dos electrodos (electrodos distales) inyectan la corriente generada en el medio biológico a analizar. El apartado asociado al módulo de acoplamiento (M15) describe con mayor profundidad las características de estos electrodos. Módulo de detección de señal (M4)
La circulación de la señal de corriente (S3) sobre el medio biológico genera una señal de tensión (SB) en una sección de dicho medio situada entre otros dos electrodos (electrodos proximales). La frecuencia de dicha señal será la misma que la de (S7), pero la amplitud (AB) de la tensión producida y el desfase (φΒ) respecto de la señal (S7) dependerán de las características del medio. El módulo (M4) es un amplificador de instrumentación que amplifica con una ganancia (A4) la tensión detectada a través de los electrodos proximales, generando la señal (S4). La impedancia de entrada del amplificador de instrumentación es muy elevada para que la caída de tensión en los electrodos proximales pueda considerarse despreciable y obtener así una medida real de la tensión en la sección del medio biológico a medir. Módulo de amplificación de señal detectada (M5)
Amplificador aplicado sobre la señal (S4) para generar la señal (S5). La ganancia (A5) de dicho amplificador puede configurarse en tiempo real con el objeto de optimizar de forma adaptativa la precisión del sistema de medida de bioimpedancia. Módulo de generación de señal de interna (M6)
La función de este módulo es generar una señal interna de tensión senoidal (S6) con el mismo valor de amplitud {Ai) y con la misma frecuencia {fi) que la señal {Si), pero con una diferencia de fase (φ6) respecto de ella configurable en tiempo real. Módulo de amplificación de la señal interna (M7)
Amplificador de ganancia {A7) aplicado sobre la señal (S6) para generar la señal (S7).La función de este módulo es desacoplar al módulo (M6) del resto del subsistema de sensorización, adaptando además la tensión de la señal senoidal a niveles más adecuados. Módulo de selección (Ms)
Multiplexor cuya salida (S8) puede configurarse para que se corresponda con la señal (S7) en la posición A o la señal (S4) en la posición B. Módulo diferencia (M9)
Este módulo genera la señal (S9) como resultado de restar la señal (S5) a la señal (S8). Módulo multiplicador (M 70) Este módulo genera la señal (S10) como resultado de la multiplicación de la señal (S8) y la señal (Sg). La señal (S10) resultante estará formada por la suma de una señal senoidal con frecuencia (2*fi) y un nivel de continua dependiente del desfase entre ambas señales y sus amplitudes. Módulo de filtrado ( )
Este módulo genera la señal (Su) como resultado de un filtrado paso de baja de la señal (S10) que elimina la componente senoidal de frecuencia (2*fi). La frecuencia de corte del filtro es lo suficientemente baja como para mantener el rizado en la señal por debajo del 1 % respecto del nivel de continua en todas las frecuencias de operación. Módulo de amplificación de la señal filtrada (M 12)
Amplificador aplicado sobre la señal (Su) para generar la señal (S12). La ganancia (A 12) de dicho amplificador puede configurarse en tiempo real con el objeto de optimizar de forma adaptativa la precisión del sistema de medida de bioimpedancia. Módulo de conversión Analógico-Digital (M 73)
Este módulo es el encargado de convertir la señal analógica (S12) en señales digitales con las que pueda operar el subsistema de procesado. Cuando la resolución del conversor Analógico-Digital sea insuficiente para mantener el error de muestreo por debajo del 1 % de la señal medida, el módulo de procesado (MP2) del subsistema de procesado se encargará de aumentar la precisión en las medidas. Módulo de multiplexado (M 14)
Cuando se implementa este módulo, permite realizar medidas en diferentes secciones corporales de forma automática. Para ello se situarán electrodos en las diferentes secciones corporales a medir, tanto para la inyección de corriente como en la detección de tensión. Este módulo se encargará de conducir la señal de corriente (S3) hasta los electrodos de inyección y derivar (S4) desde los electrodos de detección adecuados. Módulo de acoplamiento (M 75)
Formado por los electrodos del sistema de sensorización, tanto para inyección de corriente (electrodos distales) como para detección de tensión (electrodos proximales) y los cables que unen dichos electrodos con el módulo de multiplexado (M14). Normalmente el módulo (M15) estará dispuesto de forma externa al resto de módulos del sensor inteligente de bioimpedancia, los cuales se encontrarán integrados junto al resto de subsistemas dentro de una misma carcasa. Los cables estarán unidos al módulo (M14) de forma permanente o a través de uno o varios conectores en la carcasa. La longitud de los cables podrá adaptarse a la aplicación concreta del sensor. Además, estarán apantallados para proteger la medida frente a interferencias externas. Los electrodos podrán tener múltiples formas y tamaños. Podrán ser electrodos secos o húmedos, y podrán disponer o no de medios adhesivos para la fijación de los mismos, dependiendo del tipo de aplicación. La técnica de medida empleada, con una corriente inyectada de amplitud independiente de la impedancia de los electrodos, y un amplificador de instrumentación que anula los efectos de la impedancia en los electrodos de detección, permite que el sistema sea independiente de las características de los electrodos. Las únicas restricciones a considerar son una impedancia del contacto entre el electrodo y el medio biológico lo suficientemente baja como para que la tensión generada por la corriente inyectada esté dentro del rango de funcionamiento del dispositivo, y que sus dimensiones sean tales que la densidad de corriente esté por debajo de 1 mA/cm2 (para aplicaciones no realizadas in-vivo esta densidad puede ser mayor). Las conexiones de los cables con los electrodos podrán ser fijas o a través de conectores o pinzas metálicas, dependiendo de la aplicación. Para medidas in-vivo los cables y electrodos pueden también estar dispuestos sobre una prenda o indumentaria, o formar parte de ella (electrotextiles), la cual se ajustará sobre la sección corporal a medir. En este caso, la carcasa del sensor inteligente estaría integrada en la misma prenda o estaría preparada para ser acoplada a la misma, conformando así un dispositivo portable. Finalmente, otra posibilidad es que los electrodos formen parte integrante de la propia carcasa del sensor inteligente. Además de la configuración de cuatro electrodos mencionada (dos electrodos de inyección de corriente y dos electrodos de detección de tensión), también son posibles otras configuraciones con tres o dos electrodos, en las que uno o los dos electrodos de inyección coinciden con uno o los dos electrodos de detección. En estas otras configuraciones, sin embargo, la impedancia de los electrodos afectará a la impedancia medida.
B) Subsistema de procesado
El subsistema de procesado se descompone en cinco módulos de procesado {MP ), (MP2), (MP3), (MP4) y (MP5), que pueden ser actualizados de forma remota a través del subsistema de comunicaciones. Cada uno de estos módulos tiene funcionalidades o prestaciones diferentes, siendo la aplicación de medida de bioimpedancia la que definirá el módulo o los módulos a utilizar. Dichos módulos se ejecutarán si se encuentran activos para la aplicación concreta de medida de bioimpedancia. Un protocolo pre-configurado define los módulos de procesado que pueden activarse, la secuencia de activación de los mismos y sus parámetros de operación, para un funcionamiento autónomo del sensor inteligente. Dicho protocolo podrá ser re-configurado de forma inalámbrica mediante comandos.
1 . Módulo de Procesado para la estimación de los valores de bioimpedancia mediante una pseudo-demodulación de señales en cuadratura {MP ).
El resultado de dicho módulo de procesado son los valores de bioimpedancia complejos (módulo y fase) obtenidos en cada una de las frecuencias de operación del sensor inteligente de bioimpedancia. El número de frecuencias y los valores de las mismas pueden ser configurados de forma remota. Dicho módulo resulta novedoso, como consecuencia del procesado particular que se necesita para derivar los valores de bioimpedancia a partir de la modificación propuesta del sistema de detección genérico de señales en cuadratura. Además, como el esquema emplea un único multiplicador, necesita de dos barridos en frecuencia de medida de señales. El módulo de procesado (ΜΡ^ parte del valor digital de la señal S12 procedente del subsistema de sensorización. Realizando algunas operaciones, se puede comprobar que dicha señal responde a la siguiente ecuación:
A7 2 * A± 2 A7 * A-y * A3 * A4 * AB * eos (φΒ— φ6)
S12— A 12 [Ecuación 1]
En esta ecuación A7, A4 y son dos parámetros conocidos, A5, A12 y φ6 son parámetros configurables y AB y φΒ son las variables que permitirán establecer los valores de bioimpedancia. Ésta se define como el cociente entre la tensión por la corriente que la produce, de modo que en el caso del sensor inteligente de bioimpedancia la fase de la impedancia equivale a φΒ y el módulo puede expresarse como:
\Z\ =— [Ecuación 21
L J
Donde A, es también un parámetro de valor conocido.
La ejecución del módulo de procesado para la estimación de los valores de bioimpedancia se divide en las siguientes fases:
• Fase l.a - Primera pseudo-demodulación en fase: En esta fase se configuran los valores de las ganancias A5 y A12 para que tomen el valor uno. El módulo (M8) es configurado en la posición A. Además, el módulo (M6) de generación de señal interna es configurado para que la fase cp6 tome el valor 0. En este caso, la señal S12 responde a la siguiente expresión:
A7 2 * A 2 A7 * A1 * A4 * AB * eos (φΒ)
[Ecuación 31
Se realiza un barrido en frecuencia, configurando en cada una de ellas los módulos de generación de señales (M^ y de señal interna (M6) con sus correspondientes frecuencias. En cada frecuencia se almacena el valor medio de la suma de (Na) medidas de (S12|i.a)> pudiendo tomar (Na) también el valor 1 . Además, y para cada frecuencia, la primera medida es realizada tras un tiempo de espera (ΤΊ) con el objeto de que la señal (S12|i.a) alcance su valor estacionario. Entre medida y medida existe un tiempo de espera (T2).
• Fase II. a - Primera pseudo-demodulación en cuadratura: En esta fase las ganancias A5 y A12 mantienen su valor a uno. El módulo (M8) permanece configurado en la posición A. Además, el módulo (M6) de generación de señal de interna es configurado para que la fase φ6 tome el valor ττ/2. En este caso, la señal S12 responde a la siguiente expresión:
A7 2 * A1 2 A7 * Ax * A4 * AB * sin φΒ)
.a = 2 2 [Ecuación 4]
Se realiza un barrido en frecuencia, configurando en cada una de ellas los módulos de generación de señales (M^ y de señal interna (M6) con sus correspondientes frecuencias. En cada frecuencia se almacena el valor medio de la suma de (Na) medidas de (Si2|n.a), pudiendo tomar (Na) también el valor 1 . Además, y para cada frecuencia, la primera medida es realizada tras un tiempo de espera (ΤΊ) con el objeto de que la señal (Si2|n.a) alcance su valor estacionario. Entre medida y medida se establece también un retraso temporal (T2).
• Fase III. a - Primera aproximación a los valores de bioimpedancia: En esta fase, a partir de los valores almacenados en las fases l.a y II. a se calcula el módulo y la fase de la impedancia en cada una de las frecuencias. Para ello en primer lugar se calculan las variables (d) y (C2) definidas como:
Ci = [Ecuación 5]
Figure imgf000028_0001
C = [Ecuación 6]
Figure imgf000029_0001
Se puede comprobar que a partir de las expresiones de (S12|i) y (S 2|n) descritas en las fases l.a y II. a, el módulo de la impedancia puede ser expresado como:
A4 * AB
\Z\ = [Ecuación 7]
A,
En la que (AB) es igual a:
AR = [Ecuación 8]
Figure imgf000029_0002
Y la fase de la impedancia como:
φΒ = tan (— [Ecuación 9]
L1
Dichas ecuaciones son empleadas para hallar una primera aproximación a los valores de bioimpedancia. Módulo de procesado para la estimación precisa de los valores de bioimpedancia mediante una segunda pseudo-demodulación de señales en cuadratura (MP2).
Otro aspecto novedoso del subsistema de procesado deriva del empleo de un segundo esquema de demodulación de señales en cuadratura complementario al realizado en (MP . El esquema empleado es un método novedoso que permite aumentar el rango dinámico de la señal frente al ruido, incrementando el grado de precisión en la señal digital proporcionada por el módulo (M13) a través del ajuste de dos etapas de ganancia. La ejecución de dicho módulo de procesado puede no ser necesaria en todas o en algunas de las frecuencias si el error de muestreo relacionado con la conversión Analógico-Digital se mantiene por debajo del 1 % de señal detectada. El módulo de procesado (MP2) se descompone en las siguientes fases:
• Fase l.b - Segunda pseudo-demodulación en fase: Durante esta fase se realiza un proceso equivalente al realizado durante la fase l.a del módulo (ΜΡ^, pero adaptando los valores de las ganancias A5 y A12 de acuerdo a un criterio que maximiza en un contexto de conversión analógico-digital la relación señal (S12) frente al ruido. Dicho criterio de optimización se define a continuación:
Procedimiento para la optimización de la precisión del módulo (MP2):
El objetivo de este procedimiento es aumentar la precisión en la medida disminuyendo el error de muestreo causado por la conversión analógico-digital. De acuerdo con la [Ecuación 1 ], la señal (S12) puede definirse según la siguiente expresión:
S12 = A12 * [C3— C4] [Ecuación 10]
Donde (C3) está definida como:
C3 = [Ecuación 11]
Y (C4) como:
A7 * A1 * A * A * AB * eos (φΒ - φ6)
C4 = [Ecuación 12]
Atendiendo al criterio propuesto para la optimización de la precisión, (A7) debe estar pre-configurado de un modo tal que el parámetro (C3) esté próximo al máximo valor admisible del módulo de conversión Analógico-Digital (M13). El siguiente paso es definir un valor para la ganancia (A5) que aproxime el valor del parámetro (C4) al parámetro (C3) sin sobrepasarlo, de este modo, la diferencia entre (C3) y (C4) tendrá un valor positivo pequeño. El grado de aproximación debe ser tal que ante fluctuaciones del parámetro (C4), la diferencia de señales sea siempre positiva. El último paso es definir un valor para la ganancia (A12) de tal forma que la señal (S12) se aproxime al máximo valor admisible del módulo de conversión Analógico-Digital (M13). El grado de aproximación debe ser tal que ante fluctuaciones del la señal (S12), ésta siempre se mantenga por debajo del máximo valor admisible del módulo de conversión Analógico-Digital (M13).
• Fase II. b - Segunda pseudo-demodulación en cuadratura: Durante esta fase se realiza un proceso equivalente al realizado durante la fase II. a, pero adaptando los valores de las ganancias A5 y A12 de acuerdo al criterio de optimización descrito en la fase l.b que maximiza en un contexto de conversión analógico- digital la relación de la señal (S12) frente al ruido.
• Fase III. b - Segunda aproximación a los valores de bioimpedancia: En esta fase, se realiza un proceso equivalente al realizado durante la fase III. b, pero a partir de los valores almacenados en las fases l.b y II. b. Para ello en primer lugar se calculan las variables (C5) y (C6) definidas como:
A7 2 * A1 2
[Ecuación 13]
A7 * A1 * A5 * A4
[Ecuación 14]
Figure imgf000031_0001
El módulo de la impedancia puede ser expresado como:
[Ecuación 15] En la que (AB) es igual a:
[Ecuación 16]
Figure imgf000032_0001
Y la fase de la impedancia como:
[Ecuación 17]
Figure imgf000032_0002
Dichas ecuaciones son empleadas en esta segunda aproximación de mayor precisión a los valores de bioimpedancia. Módulo de procesado para la estimación de los valores de bioimpedancia mediante aproximaciones sucesivas (MP3)
Otro aspecto novedoso del subsistema de procesado deriva del empleo de un tercer esquema de procesado para la estimación de los valores de bioimpedancia, el cual puede ser empleado de forma aislada o complementaria a los dos módulos anteriores. El esquema empleado en este caso es un método novedoso basado en aproximaciones sucesivas que proporciona gran exactitud en la estimación de la bioimpedancia. Además, como la técnica difiere de la empleada en los dos módulos de procesado previos, permite realizar una segunda validación de los valores obtenidos.
El método propuesto está basado en una secuencia de aproximaciones sucesivas al módulo y la fase de la bioimpedancia, estableciendo como valores correctos aquellos que minimizan una determinada función de error. Dicha función de error pondera el desajuste existente entre la señal detectada y la que se detectaría si la bioimpedancia tuviera los valores analizados. Esta función de error alcanza un mínimo cuando los parámetros de configuración del sensor inteligente generan una señal interna equivalente en módulo y fase a la señal en la salida del módulo (M5). Esta circunstancia deriva en un valor nulo en la señal (Si2) definida en la [Ecuación 1 ], el cual es el único valor accesible del subsistema de sensorización (en este esquema el módulo (M8) también es configurado en la posición A). El procedimiento de aproximación a los valores de bioimpedancia consistirá en modificar los parámetros de configuración del sensor inteligente hasta obtener la siguiente igualdad:
512 = A12 * [C3— C4] = 0 [Ecuación 18]
En la que (C3) y (C4) toman los valores ya definidos anteriormente:
C3 = [Ecuación 19]
A7 * Aí * A3 * A4 * AB * eos (φΒ - φ6) . ,
C4 = [Ecuación 20]
Sin embargo, el proceso debe hacerse de tal forma que se asegure que se cumple en primer lugar con la igualdad de fase, ya que por cada valor de la diferencia (φΒ-φβ) existe un valor en el parámetro (A5) para el que se verifica la igualdad.
De acuerdo con el procedimiento propuesto, partiendo de un valor inicial de la ganancia (A5) en cada una de las frecuencias el algoritmo busca mediante aproximaciones sucesivas la fase φ6 que minimiza el valor de (Si2). Si es necesario, el sistema entrará en un proceso iterativo de aumento de ganancia (A5) y búsqueda de la fase que minimiza el valor de (Si2). Durante este proceso puede realizarse un aumento progresivo de la ganancia (A12) para aumentar la precisión en la estimación del módulo y la fase. Cualquier variación de los parámetros debe ser realizada de tal forma que el valor de (S12) sea siempre positivo y por debajo del máximo valor admisible del módulo de conversión Analógico-Digital (M13). El algoritmo decidirá que ha alcanzado el valor correcto cuando el valor de (S12) esté por debajo de un cierto umbral ponderado por el valor de la ganancia (A5). En este caso el módulo de la impedancia puede ser aproximado como:
AB
\Z\ =— [Ecuación 21]
En la que (AB) es igual a: Af¡ = [Ecuación 221
AS * A4
Y la fase de la impedancia como:
ΨΒ = Ψβ [Ecuación 23]
Este método de estimación del módulo y la fase de la impedancia puede ser complementario al realizado en las fases anteriores, en cuyo caso partirá de unos valores iniciales para (A5) y (φ6) próximos a los que derivarían del módulo y la fase obtenidos en fases previas. También puede realizarse de forma completamente aislada, utilizando cuando sea posible como parámetros de partida unos valores iniciales para (A5) y (φ6) próximos a los obtenidos en una frecuencia previa, ya que las medidas de bioimpedancia en frecuencias próximas tienen valores similares. De este modo se disminuye el número de iteraciones globales en el proceso.
Finalmente, los valores para el módulo y la fase de la bioimpedancia en cada medida multifrecuencia son propuestos como una función de las estimaciones proporcionadas por uno o varios de los módulos de procesado (MPi), (MP2) o (MP3). Módulo de procesado para el seguimiento de la impedancia en una única frecuencia (MP4)
Otro aspecto novedoso del subsistema de procesado deriva del empleo de un cuarto esquema de procesado que permite realizar un seguimiento del módulo y la fase de la impedancia en una determinada frecuencia. Dicho módulo podrá ejecutarse cuando no se esté realizando una medida de bioimpedancia multifrecuencia. Una tasa de muestreo definirá el tiempo entre estimaciones consecutivas de la impedancia. Cada estimación será guardada en el subsistema de almacenamiento de datos. Dichos datos podrán ser enviados de forma inalámbrica en tiempo real a través del sistema de comunicaciones. También es posible un envío diferido de la información cuando el número de datos almacenados sea suficiente, cuando sea requerido mediante un comando o cuando el subsistema de temporización genere un evento de envío. Para la estimación del módulo y la fase de la bioimpedancia podrán emplearse cualquiera de los módulos anteriores (MPi), (MP2) o (MP3), de forma aislada o complementaria, pero en una configuración especial que analice únicamente la frecuencia de operación. Además, los datos de partida que emplean los módulos (MP2) y (MP3) pueden ser configurados para que tomen como referencia los valores del módulo y la fase de la impedancia en la muestra previa. La frecuencia de muestreo dependerá de la aplicación concreta del sensor de bioimpedancia y será un parámetro configurable mediante comandos. Cabe también la posibilidad de que un algoritmo busque de forma recursiva la frecuencia asociada con una mayor sensibilidad al fenómeno que provoca las variaciones de la bioimpedancia. El módulo de procesado (MP4) puede ser activado de forma local en el sensor inteligente mediante un pulsador, de forma remota mediante el envío de un comando, o puede ser auto-activado en instantes temporales pre-configurados mediante comandos. Módulo de procesado para el seguimiento del módulo de la impedancia en una única frecuencia (MP5)
Otro aspecto novedoso del subsistema de procesado deriva del empleo de un quinto esquema de procesado que permite realizar un seguimiento del módulo de la impedancia en una determinada frecuencia. La funcionalidad de dicho módulo de procesado es similar a la del módulo (MP4), aunque no equivalente, ya que no proporciona la fase de la bioimpedancia. En este sentido, los módulos (MP4) y (MP5) no estarán activos en un mismo dispositivo al mismo tiempo, y, dependiendo de la aplicación concreta de medida de bioimpedancia, es posible que ninguno de los dos sea activado. La diferencia fundamental entre ambos módulos es el esquema empleado para el subsistema de sensorización. En el módulo de procesado (MP4), el módulo (M8) es configurado en la posición A. Sin embargo, en el módulo de procesado (MP5) el módulo (M8) es configurado en la posición B. Esta característica permite disminuir el tiempo de muestreo necesario para la toma de una medida de bioimpedancia, lo cual puede ser de utilidad en aquellos casos en los que sólo sea preciso el seguimiento del módulo de la bioimpedancia. Para realizar dichas estimaciones la ganancia (A5) del módulo (M5) es configurada a 0. En este caso, el valor del módulo de la bioimpedancia responde a la siguiente ecuación. '12
|Z| = [Ecuación 24]
* A¡2
Dicho módulo podrá ejecutarse cuando no se esté realizando una medida de bioimpedancia multifrecuencia. Una tasa de muestreo definirá el tiempo entre las estimaciones consecutivas de la impedancia. Cada estimación será guardada en el subsistema de almacenamiento de datos. Dichos datos podrán ser enviados de forma inalámbrica en tiempo real a través del sistema de comunicaciones. También es posible un envío diferido de la información cuando el número de datos almacenados sea suficiente, cuando sea requerido mediante un comando o cuando el subsistema de temporización genere un evento de envío. La frecuencia de operación para el seguimiento dependerá de la aplicación concreta del sensor de bioimpedancia. Cabe también la posibilidad de que un algoritmo busque de forma recursiva la frecuencia asociada con una mayor sensibilidad al fenómeno que provoca las variaciones de la bioimpedancia. El módulo de procesado (MP5) puede ser activado de forma local en el sensor inteligente mediante un pulsador, de forma remota mediante el envío de un comando, o puede ser auto-activado en instantes temporales pre-configurados mediante comandos.
Descripción de los dibujos
Para complementar la descripción que se está realizando y con objeto de ayudar a una mejor comprensión de las características de la invención, que apoyen un ejemplo preferente de realización práctica de la misma, se acompaña como parte integrante de dicha descripción, un juego de dibujos en donde con carácter ilustrativo y no limitativo, se ha representado lo siguiente:
Figura 1 .- Arquitectura básica "Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas".
Figura 2.- Subsistema de sensorización. Figura 3.- Detalle en subsistema de sensorización de Módulo de multiplexado (M14) y Modulo de acoplamiento (M15).
Figura 4.- Subsistema de procesado.
En las citadas figuras se pueden destacar los siguientes elementos constituyentes:
1 . Sistema que aglutina todos los subsistemas constituyentes.
2. Subsistema de sensorización
3. Subsistema de procesado.
4. Subsistema de comunicaciones.
5. Subsistema de almacenamiento de datos.
6. Subsistema de temporización.
7. Subsistema de energía.
8. Fase l.a - Primera pseudo-demodulación en fase.
9. Fase II. a - Primera pseudo-demodulación en cuadratura.
10. Fase III. a - Primera aproximación a los valores de bioimpedancia.
1 1 . Fase l.b - Segunda pseudo-demodulación en fase.
12. Fase II. b - Segunda pseudo-demodulación en cuadratura.
13. Fase III. b - Segunda aproximación a los valores de bioimpedancia.
EJEMPLO DE REALIZACIÓN PREFERENTE
En una realización preferida del "Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas", éste es empleado para realizar una caracterización de la bioimpedancia de una sección corporal (brazo, tronco o extremidad) y el mismo se puede llevar a cabo de forma que todos los subsistemas, salvo el módulo de acoplamiento, se encuentran integrados dentro de una misma carcasa. Dos baterías de 9V constituyen la parte fundamental del subsistema de energía. Formando parte del mismo subsistema, dos reguladores generan tensiones estables de 5V y -5V para alimentar la parte analógica del subsistema de sensorización. Otro regulador de 3V se encarga de estabilizar la tensión de funcionamiento de los componentes digitales. El subsistema de procesado está integrado en un microprocesador con una unidad aritmético-lógica de 8 bits que opera a 4 MHz. Los diferentes módulos de procesado están programados en la memoria Flash del microprocesador, la cual tiene una capacidad de 16 Mbytes. El subsistema de comunicaciones es soportado por un transceptor que cumple con las especificaciones del estándar IEEE 802.15.4. Otro modelo del dispositivo emplea un transceptor basado en el estándar IEEE 802.15.1 . Para desarrollar el subsistema de almacenamiento de datos se emplea la memoria SRAM de 768 bytes y la memoria EEPROM de 256 bytes del microprocesador. El subsistema de temporización está también implementado en el código de programa del microprocesador. Un cristal externo de 32.768 KHz y uno de los temporizadores del microprocesador son empleados para gestionar la temporización en tiempo real. El módulo (M^ es un oscilador programable que utiliza la técnica de Síntesis Digital Directa de frecuencias (DDS, del inglés Direct Digital Synthesizer). El DDS puede generar cualquier frecuencia comprendida entre 25 MHz y 0.19 Hz, con una resolución de 0.19 Hz y una estabilidad de 40 ppm. La frecuencia y la fase de la señal generada son controladas a través de una interfaz de datos serie. Los saltos bruscos en la señal debido al muestreo digital son suavizados a través de un filtro paso de baja con una frecuencia de corte lo suficientemente elevada como para no afectar a las señales generadas. Para los módulos de amplificación y el módulo de conversión tensión-corriente se emplean esquemas analógicos basados en amplificadores operacionales.
Se establece como especificación de diseño un error máximo del 1 % en el valor de la estimación de la medida compleja de bioimpedancia. En este sentido, todos los componentes empleados (amplificadores operacionales, resistencias, u otros) tienen características tales que aseguran un error máximo por debajo del 1 % en el rango de funcionamiento del dispositivo. Para la implementación del módulo (M4) se emplea un amplificador de instrumentación basado en amplificadores operacionales con una razón de rechazo al modo común de 47 dB y una impedancia de entrada de 1 ΜΩ. Las ganancias de los amplificadores de ganancia variable son configuradas a través de potenciómetros digitales. Para implementar el módulo (M12) se utiliza otro DDS con las mismas características que el empleado para el módulo de generación de señal de inyección. Como cualquier diferencia en las frecuencias generadas por ambos módulos, por pequeña que sea, produce una deriva continua del desfase entre ambas señales, se utiliza un único cristal de 50 MHz con una estabilidad de 20 ppm como referencia temporal para ambos DDS. De este modo, ambos dispositivos tendrán exactamente la misma frecuencia y el desfase programado entre las señales de ambos módulos permanecerá constante a lo largo del tiempo. Para el módulo diferencia (M8) se emplea también un esquema basado en amplificadores operacionales y para el módulo (Mg) se utiliza un circuito integrado multiplicador de cuatro cuadrantes. El módulo (M10) es un filtro activo paso de baja de segundo orden basado en amplificadores operacionales con una frecuencia de corte en 13.8 Hz.
Para implementar el módulo (M12) se utiliza uno de los conversores Analógico-Digital de 10 bits del microcontrolador cuya tensión máxima es configurada para proporcionar una resolución de 1 .17 mV. El módulo (M13) utiliza varios conmutadores analógicos controlados digitalmente. Dichos conmutadores permiten realizar dos medidas simultáneas de bioimpedancia en dos secciones diferentes del medio biológico a medir (dos canales). Dos conectores en la carcasa permiten la conexión de los cables de medida, uno por canal. Cada cable tiene en un extremo un conector que se acopla al conector de la carcasa. En el otro extremo el cable se divide en cuatro líneas diferenciadas, las cuales terminan a su vez en pinzas metálicas para su conexión a los electrodos. Los cables y las líneas tienen un mallado metálico para proteger la señal frente a interferencias. Las líneas están aisladas eléctricamente respecto de la malla protectora, y la malla a su vez está aislada eléctricamente del exterior. Los cables son flexibles y tienen una longitud de 1 .5 metros cada uno. Aunque el dispositivo puede adaptarse a diferentes tipos de electrodos, dependiendo de la aplicación, para las medidas de bioimpedancia sobre el cuerpo humano se emplean preferentemente electrodos circulares de ECG con anclaje de clip.
No se considera necesario hacer más extensa esta descripción para que cualquier experto en la materia comprenda el alcance de la invención y las ventajas que de la misma se derivan. Los dispositivos que la componen, soluciones técnicas adoptadas o incluso su aplicación serán susceptibles de variación siempre y cuando ello no suponga una alteración en la esencialidad del invento.

Claims

REIVINDICACIONES
1 . - Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas (1 ) caracterizado por llevarse a cabo a partir de los siguientes subsistemas: a) Un subsistema de sensorización (2) que incorpora el hardware necesario para realizar las medidas de bioimpedancia. b) Un subsistema de procesado (3), que integra los elementos hardware, software y firmware encargados de la correcta activación y configuración de los diferentes módulos del subsistema de sensorización y del procesado asociado a la estimación de los valores de bioimpedancia. c) Un subsistema de comunicaciones (4), que integra los elementos hardware, software y firmware encargados de las comunicaciones inalámbricas bidireccionales del dispositivo. d) Un subsistema de almacenamiento de datos (5), encargado del correcto almacenamiento de los datos. e) Un subsistema de temporización (6), encargado del mantenimiento de un sistema de temporización en tiempo real, de la asignación a cada medida del instante temporal en el que éstas fueron realizadas y de avisar al subsistema de procesado de los instantes de realización de operaciones. f) Un subsistema de energía (7), el cual se encarga de proporcionar las tensiones de alimentación necesarias para el correcto funcionamiento del resto de subsistemas.
2. - Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas (1 ) según reivindicación 1 , caracterizado por su subsistema de sensorización que consiste en: a) Un módulo (M^ que genera una señal (S^ de tensión senoidal de amplitud fija (A^ cuya frecuencia ( ) puede ser configurada. b) Un módulo (M2) que amplifica con una ganancia (A2) la señal (Si) para generar la señal (S2). c) Un módulo (M3) que convierte la señal de tensión (S2) en una señal de corriente (S3) de amplitud de corriente fija (A,) y con la misma frecuencia (fi), la cual es inyectada en el medio biológico a medir a través de dos electrodos (electrodos distales). d) Un módulo (M4) que amplifica con una ganancia (A4) la tensión detectada a través de otros dos electrodos (electrodos proximales), generando la señal (S4). e) Un módulo (M5) que amplifica con una ganancia configurable (A5) la señal (S4) para generar la señal (S5). f) Un módulo (M6) que genera una señal (S6) de tensión senoidal con el mismo valor de amplitud (A^ y con la misma frecuencia (fi) que la señal (Si), pero con una diferencia de fase (cp6) respecto de ella configurable. g) Un módulo (M7) que amplifica con una ganancia (A7) la señal (S6) para generar la señal (S7). h) Un módulo (M8) multiplexor cuya salida (S8) puede configurarse para que se corresponda con la señal (S7) en la posición A o la señal (S4) en la posición B. i) Un módulo diferencia (M9) que genera la señal (Sg) como resultado de restar la señal (S5) a la señal (S8). j) Un módulo (M10) que genera la señal (S10) como resultado de la multiplicación de la señal (S8) y la señal (Sg). k) Un módulo (Mu) que genera la señal (Su) como resultado de un filtrado paso de baja de la señal (S10). I) Un módulo (M12) que amplifica con una ganancia configurable (A12) la señal (Su) para generar la señal (S12). m) Un módulo (M13) encargado de convertir la señal analógica (S12) en señales digitales. n) Un módulo (M14) que permite multiplexar la corriente inyectada y la tensión detectada para estimar la bioimpedancia de diferentes secciones corporales. o) Un módulo (M15) que comprende los electrodos del sistema de sensorización, tanto para inyección de corriente (electrodos distales) como para detección de tensión (electrodos proximales) y los cables y conectores que unen dichos electrodos con el módulo (M14).
3.- Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas (1 ) según reivindicación 1 , caracterizado por su subsistema de procesado que consiste en: a) Un módulo de procesado (ΜΡ^ para la estimación de los valores de bioimpedancia mediante una pseudo-demodulación de señales en cuadratura. b) Un módulo de procesado (MP2) para aumentar la precisión de los valores de bioimpedancia mediante una segunda pseudo-demodulación de señales en cuadratura. c) Un módulo de procesado (MP3) para la estimación de los valores de bioimpedancia mediante aproximaciones sucesivas, estableciendo como valores correctos aquéllos que minimizan el desajuste entre la señal detectada y la que se detectaría si la bioimpedancia tuviera los valores analizados. d) Un módulo de procesado (MP4) para el seguimiento del módulo y la fase de la impedancia en una determinada frecuencia, en el que una tasa de muestreo definirá el tiempo entre estimaciones consecutivas, pudiendo emplear cualquiera de los módulos anteriores (ΜΡ^, (MP2) o (MP3), de forma aislada o complementaria, en una configuración especial que analice únicamente la frecuencia de operación. e) Un módulo de procesado (MP5) para el seguimiento del módulo de la impedancia en una determinada frecuencia, en el que una tasa de muestreo definirá el tiempo entre estimaciones consecutivas.
4.- Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas (1 ) según reivindicación 1 y 3, caracterizado porque su módulo de procesado (MP5) emplea para calcular el módulo de la bioimpedancia, la ecuación que se muestra a continuación estando el módulo (M8) configurado en la posición B y la ganancia (A5) configurada a 0,
[Ecuación 37]
Figure imgf000043_0001
5. - Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas (1 ) según reivindicación 1 , 3 y 4 caracterizado porque sus medidas de bioimpedancia pueden ser activadas de forma local en el sensor inteligente mediante un pulsador, de forma remota mediante el envío de un comando, o pueden ser auto-activadas en una serie de instantes temporales pre-configurados mediante comandos.
6. - Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas (1 ) según reivindicación 1 , provisto de subsistema de procesado según reivindicaciones 3, 4 y 5, caracterizado porque alternativamente los módulos de procesado (MPi), (MP2), (MP3), (MP4) y (MP5), pueden ser actualizados de forma remota a través del subsistema de comunicaciones.
7. - Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas (1 ) según reivindicación 1 , provisto de subsistema de procesado según reivindicaciones 3, 4, 5 y 6, caracterizado por el funcionamiento autónomo del sensor inteligente en base a un protocolo re-configurable mediante comandos que define los módulos de procesado que pueden activarse, la secuencia de activación de los mismos y sus parámetros de operación.
8.- Método empleado en el módulo de procesado (/WP7) comprendido en el subsistema de procesado del Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas (1 ), caracterizado porque comprende las siguientes operaciones: a) Una primera pseudo-demodulación en fase (Fase l.a) (8) en la que se almacena el valor de la señal (S12) para cada frecuencia (S72//.a) estando el subsistema de sensorización configurado para que A5 y A12 tomen el valor uno, cp6 tome el valor 0 y (M8) en la posición A. b) Una primera pseudo-demodulación en cuadratura (Fase II. a) (9) en la que se almacena el valor de la señal (S12) para cada frecuencia (S72///.a) estando el subsistema de sensorización configurado para que A5 y A12 tomen el valor uno, cp6 tome el valor ττ/2 y (M8) en la posición A.
c) Una primera aproximación a los valores de bioimpedancia (Fase III. a) (1 0) en la que a partir de los valores almacenados en las fases l.a y II. a se calcula el módulo y la fase de la impedancia para cada frecuencia utilizando las siguientes ecuaciones:
A4 * A B
Módulo = [Ecuación 25]
A
[Ecuación 26]
Figure imgf000044_0001
Siendo:
c [Ecuación 27]
[Ecuación 28]
Figure imgf000044_0002
AB = \C 2 + C¡¡2 [Ecuación 29]
9.- Método empleado en el módulo de procesado (MP2) comprendido en el subsistema de procesado del Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas (1 ) caracterizado porque comprende las siguientes operaciones: a) Una segunda pseudo-demodulación en fase (Fase l.b) (1 1 ) en la que se desarrolla un proceso equivalente al realizado durante la fase l.a de la reivindicación (8), pero adaptando los valores de las ganancias A5 y A12 de acuerdo a un criterio que maximiza la relación señal (S12) frente al ruido. b) Una segunda pseudo-demodulación en cuadratura (Fase II. b) (12) en la que se desarrolla un proceso equivalente al realizado durante la fase II. a de la reivindicación (8), pero adaptando los valores de las ganancias A5 y A12 de acuerdo a un criterio que maximiza la relación señal (Si2) frente al ruido.
c) Una segunda aproximación a los valores de bioimpedancia (Fase III. b) (13) en la que, a partir de los valores almacenados en las fases l.b y II. b, se calcula el módulo y la fase de la impedancia para cada frecuencia utilizando las siguientes ecuaciones:
Módulo =— [Ecuación 30]
A,
Fase = tan-1 (¾ [Ecuación
\C¡¡¡}
Siendo:
Cin =
Figure imgf000045_0001
[Ecuación 32] CIV = [Ecuación 33]
Figure imgf000045_0002
AB = / Q// 2 + C¡V 2 [Ecuación 34]
1 0.- Procedimiento para maximizar la relación de la señal (Si2) frente al ruido en el módulo de procesado (MP2) comprendido en el subsistema de procesado del Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas (1 ) según reivindicación 9, caracterizado porque comprende las siguientes operaciones: a) Configuración de la ganancia (A7) para que el parámetro (Cv) esté próximo al máximo valor admisible del módulo (M13), teniendo en cuenta que:
CV = [Ecuación 35]
Definir un valor para la ganancia (A5) que aproxime el valor del parámetro (CVi) al parámetro (Cv) de tal modo, que la diferencia (Cv) - (CVi) sea siempre positiva, teniendo en cuenta que:
A7 * Aí * A3 * A4 * AB * eos (φΒ - φ6)
CVj = [Ecuación 36] c) Definir un valor para la ganancia (A12) de tal forma que la señal (S12) se aproxime al máximo valor admisible del módulo de conversión Analógico-Digital (M13).
1 1 .- Procedimiento para la obtención de valores para el módulo y la fase de la bioimpedancia en cada medida multifrecuencia del Sensor Inteligente de Bioimpedancia para Aplicaciones Biomédicas (1 ) según reivindicaciones 8, 9 y 1 0, caracterizado por que los mismos son propuestos como una función de las estimaciones proporcionadas por uno o varios de los módulos de procesado (MPi), (MP2) o (MP3).
PCT/ES2014/070822 2013-11-04 2014-11-04 Sensor inteligente de bioimpedancia para aplicaciones biomédicas WO2015063360A1 (es)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP14858675.3A EP3066981A4 (en) 2013-11-04 2014-11-04 Intelligent bioimpedance sensor for biomedical applications

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES201301062A ES2537351B1 (es) 2013-11-04 2013-11-04 Sensor inteligente de bioimpedancia para aplicaciones biomédicas
ESP201301062 2013-11-04

Publications (1)

Publication Number Publication Date
WO2015063360A1 true WO2015063360A1 (es) 2015-05-07

Family

ID=53003408

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/ES2014/070822 WO2015063360A1 (es) 2013-11-04 2014-11-04 Sensor inteligente de bioimpedancia para aplicaciones biomédicas

Country Status (3)

Country Link
EP (1) EP3066981A4 (es)
ES (1) ES2537351B1 (es)
WO (1) WO2015063360A1 (es)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170035352A1 (en) * 2015-08-07 2017-02-09 Ryan James Appleby Smartphone device for body analysis
ES2682059R1 (es) * 2017-03-16 2018-09-26 Universidad De Sevilla Plataforma inteligente y método para la monitorización de la composición corporal y la valoración del estado nutricional y de hidratación de un usuario

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU182738U1 (ru) * 2018-03-12 2018-08-29 Общество с ограниченной ответственностью "Нейроботикс Трейдинг" Сухой активный электрод для нейрокомпьютерного интерфейса

Citations (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4807638A (en) 1987-10-21 1989-02-28 Bomed Medical Manufacturing, Ltd. Noninvasive continuous mean arterial blood prssure monitor
US4836214A (en) 1986-12-01 1989-06-06 Bomed Medical Manufacturing, Ltd. Esophageal electrode array for electrical bioimpedance measurement
US4870578A (en) 1987-08-19 1989-09-26 Bomed Medical Manufacturing, Ltd. Diastolic clamp for bioimpedance measuring device
US5103828A (en) 1988-07-14 1992-04-14 Bomed Medical Manufacturing, Ltd. System for therapeutic management of hemodynamic state of patient
US5505209A (en) 1994-07-07 1996-04-09 Reining International, Ltd. Impedance cardiograph apparatus and method
US5782774A (en) 1996-04-17 1998-07-21 Imagyn Medical Technologies California, Inc. Apparatus and method of bioelectrical impedance analysis of blood flow
US5792668A (en) 1993-08-06 1998-08-11 Solid State Farms, Inc. Radio frequency spectral analysis for in-vitro or in-vivo environments
US5876353A (en) 1997-01-31 1999-03-02 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US6022322A (en) 1998-02-06 2000-02-08 Intermedics Inc. Non-invasive cardiorespiratory monitor with synchronized bioimpedance sensing
US6044294A (en) 1995-12-15 2000-03-28 Pacesetter, Inc. Methods and apparatus for measuring impedance in the body
US6076015A (en) 1998-02-27 2000-06-13 Cardiac Pacemakers, Inc. Rate adaptive cardiac rhythm management device using transthoracic impedance
US6151523A (en) 1997-03-06 2000-11-21 Nte S.A. Apparatus and procedure for measuring volumes and global and segmental corporal composition in human beings
US6161038A (en) 1996-04-08 2000-12-12 Rheo-Graphic Pte Ltd. Non-invasive monitoring of hemodynamic parameters using impedance cardiography
EP1275342A2 (en) * 2001-07-10 2003-01-15 CardioDynamics International Corporation Apparatus and method for determining cardiac output in a living subject
US6532384B1 (en) 1999-09-03 2003-03-11 Tanita Corporation Bioelectrical impedence measuring method and body composition measuring apparatus
US6615077B1 (en) 2000-08-14 2003-09-02 Renal Research Institute, Llc Device and method for monitoring and controlling physiologic parameters of a dialysis patient using segmental bioimpedence
US20040171963A1 (en) 2003-02-28 2004-09-02 Tanita Corporation Body composition estimation method and body composition measuring apparatus
US6790178B1 (en) 1999-09-24 2004-09-14 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US20050012414A1 (en) 2003-07-18 2005-01-20 Osypka Medical Gmbh Method and apparatus for isolated transformation of a first voltage into a second voltage for measurement of electrical bioimpedances or bioconductances
US20050101875A1 (en) 2001-10-04 2005-05-12 Right Corporation Non-invasive body composition monitor, system and method
US20060004300A1 (en) 2002-11-22 2006-01-05 James Kennedy Multifrequency bioimpedance determination
US6998247B2 (en) 2002-03-08 2006-02-14 Sensys Medical, Inc. Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
US20060122540A1 (en) 2000-08-14 2006-06-08 Fansan Zhu Device and method for the determination of dry weight by continuous measurement of resistance and calculation of circumference in a body segment using segmental bioimpedance analysis
US7133716B2 (en) 2001-12-12 2006-11-07 Fresenius Medical Care Deutschland Gmbh Determining the hydration status of a patient
US20070027402A1 (en) 2003-09-12 2007-02-01 Renal Reserach Institute, Llc Bioimpedance methods and apparatus
US20070142733A1 (en) 2005-12-20 2007-06-21 Hatlestad John D Bio-impedance sensor and sensing method
US20070166011A1 (en) * 2003-08-28 2007-07-19 University Of Leeds Eit data processing system and method
US7261697B2 (en) 2004-06-16 2007-08-28 Bernstein Donald P Apparatus for determination of stroke volume using the brachial artery
US20080086058A1 (en) 2004-06-29 2008-04-10 Paul Chamney Method and a Device for Determining the Hydration and/or Nutrition Status of a Patient
US7457660B2 (en) 2002-11-27 2008-11-25 Z-Tech (Canada) Inc. Eliminating interface artifact errors in bioimpedance measurements
US20100081960A1 (en) 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Bioimpedance System and Sensor and Technique for Using the Same
US7706872B2 (en) 2002-12-06 2010-04-27 Tallinn Technical University Method and device for measurement of electrical bioimpedance
US20100168530A1 (en) * 2006-11-30 2010-07-01 Impedimed Limited Measurement apparatus
US7783344B2 (en) 2003-08-20 2010-08-24 Philometron, Inc. Hydration monitoring
US20100312188A1 (en) * 2008-12-15 2010-12-09 Timothy Robertson Body-Associated Receiver and Method
US7930021B2 (en) 2005-10-31 2011-04-19 Omron Healthcare Co., Ltd. Body composition measuring apparatus
US7974691B2 (en) 2005-09-21 2011-07-05 Cardiac Pacemakers, Inc. Method and apparatus for controlling cardiac resynchronization therapy using cardiac impedance
US20120035432A1 (en) 2010-08-03 2012-02-09 Rodolphe Katra Medical device and methods of monitoring a patient with renal dysfunction
US20130046165A1 (en) 2011-08-17 2013-02-21 David E. Cassidy System for a Disposable Capacitive Bioimpedance Sensor
EP2567657A1 (en) 2011-09-07 2013-03-13 CSEM Centre Suisse d'Electronique et de Microtechnique SA Synchronization and communication bus for biopotential and bioimpedance measurement systems.

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130013239A1 (en) * 2011-07-08 2013-01-10 General Electric Company System and method for excitation generation in soft-field tomography
JP6124886B2 (ja) * 2011-07-25 2017-05-10 チーター メディカル インコーポレイテッド 血流動態を監視する方法およびシステム

Patent Citations (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4836214A (en) 1986-12-01 1989-06-06 Bomed Medical Manufacturing, Ltd. Esophageal electrode array for electrical bioimpedance measurement
US4870578A (en) 1987-08-19 1989-09-26 Bomed Medical Manufacturing, Ltd. Diastolic clamp for bioimpedance measuring device
US4807638A (en) 1987-10-21 1989-02-28 Bomed Medical Manufacturing, Ltd. Noninvasive continuous mean arterial blood prssure monitor
US5103828A (en) 1988-07-14 1992-04-14 Bomed Medical Manufacturing, Ltd. System for therapeutic management of hemodynamic state of patient
US5792668A (en) 1993-08-06 1998-08-11 Solid State Farms, Inc. Radio frequency spectral analysis for in-vitro or in-vivo environments
US5505209A (en) 1994-07-07 1996-04-09 Reining International, Ltd. Impedance cardiograph apparatus and method
US6044294A (en) 1995-12-15 2000-03-28 Pacesetter, Inc. Methods and apparatus for measuring impedance in the body
US6161038A (en) 1996-04-08 2000-12-12 Rheo-Graphic Pte Ltd. Non-invasive monitoring of hemodynamic parameters using impedance cardiography
US5782774A (en) 1996-04-17 1998-07-21 Imagyn Medical Technologies California, Inc. Apparatus and method of bioelectrical impedance analysis of blood flow
US5876353A (en) 1997-01-31 1999-03-02 Medtronic, Inc. Impedance monitor for discerning edema through evaluation of respiratory rate
US6151523A (en) 1997-03-06 2000-11-21 Nte S.A. Apparatus and procedure for measuring volumes and global and segmental corporal composition in human beings
US6370424B1 (en) 1998-02-06 2002-04-09 Intermedics Inc. Non-invasive cardiorespiratory monitor with synchronized bioimpedance sensing
US6022322A (en) 1998-02-06 2000-02-08 Intermedics Inc. Non-invasive cardiorespiratory monitor with synchronized bioimpedance sensing
US6076015A (en) 1998-02-27 2000-06-13 Cardiac Pacemakers, Inc. Rate adaptive cardiac rhythm management device using transthoracic impedance
US6532384B1 (en) 1999-09-03 2003-03-11 Tanita Corporation Bioelectrical impedence measuring method and body composition measuring apparatus
US6790178B1 (en) 1999-09-24 2004-09-14 Healthetech, Inc. Physiological monitor and associated computation, display and communication unit
US6615077B1 (en) 2000-08-14 2003-09-02 Renal Research Institute, Llc Device and method for monitoring and controlling physiologic parameters of a dialysis patient using segmental bioimpedence
US20060122540A1 (en) 2000-08-14 2006-06-08 Fansan Zhu Device and method for the determination of dry weight by continuous measurement of resistance and calculation of circumference in a body segment using segmental bioimpedance analysis
EP1275342A2 (en) * 2001-07-10 2003-01-15 CardioDynamics International Corporation Apparatus and method for determining cardiac output in a living subject
US20050101875A1 (en) 2001-10-04 2005-05-12 Right Corporation Non-invasive body composition monitor, system and method
US7133716B2 (en) 2001-12-12 2006-11-07 Fresenius Medical Care Deutschland Gmbh Determining the hydration status of a patient
US6998247B2 (en) 2002-03-08 2006-02-14 Sensys Medical, Inc. Method and apparatus using alternative site glucose determinations to calibrate and maintain noninvasive and implantable analyzers
US20060004300A1 (en) 2002-11-22 2006-01-05 James Kennedy Multifrequency bioimpedance determination
US7457660B2 (en) 2002-11-27 2008-11-25 Z-Tech (Canada) Inc. Eliminating interface artifact errors in bioimpedance measurements
US7706872B2 (en) 2002-12-06 2010-04-27 Tallinn Technical University Method and device for measurement of electrical bioimpedance
US20040171963A1 (en) 2003-02-28 2004-09-02 Tanita Corporation Body composition estimation method and body composition measuring apparatus
US20050012414A1 (en) 2003-07-18 2005-01-20 Osypka Medical Gmbh Method and apparatus for isolated transformation of a first voltage into a second voltage for measurement of electrical bioimpedances or bioconductances
US7783344B2 (en) 2003-08-20 2010-08-24 Philometron, Inc. Hydration monitoring
US20070166011A1 (en) * 2003-08-28 2007-07-19 University Of Leeds Eit data processing system and method
US20110275922A1 (en) 2003-09-12 2011-11-10 Levin Nathan W Bioimpedance methods and apparatus
US20070027402A1 (en) 2003-09-12 2007-02-01 Renal Reserach Institute, Llc Bioimpedance methods and apparatus
US7945317B2 (en) 2003-09-12 2011-05-17 Renal Research Institute, Llc Bioimpedance methods and apparatus
US7261697B2 (en) 2004-06-16 2007-08-28 Bernstein Donald P Apparatus for determination of stroke volume using the brachial artery
US20080086058A1 (en) 2004-06-29 2008-04-10 Paul Chamney Method and a Device for Determining the Hydration and/or Nutrition Status of a Patient
US7917202B2 (en) 2004-06-29 2011-03-29 Fresenius Medical Care Deutschland Gmbh Method and a device for determining the hydration and/or nutrition status of a patient
US7974691B2 (en) 2005-09-21 2011-07-05 Cardiac Pacemakers, Inc. Method and apparatus for controlling cardiac resynchronization therapy using cardiac impedance
US7930021B2 (en) 2005-10-31 2011-04-19 Omron Healthcare Co., Ltd. Body composition measuring apparatus
US20070142733A1 (en) 2005-12-20 2007-06-21 Hatlestad John D Bio-impedance sensor and sensing method
US20100168530A1 (en) * 2006-11-30 2010-07-01 Impedimed Limited Measurement apparatus
US20100081960A1 (en) 2008-09-30 2010-04-01 Nellcor Puritan Bennett Llc Bioimpedance System and Sensor and Technique for Using the Same
US20100312188A1 (en) * 2008-12-15 2010-12-09 Timothy Robertson Body-Associated Receiver and Method
US20120035432A1 (en) 2010-08-03 2012-02-09 Rodolphe Katra Medical device and methods of monitoring a patient with renal dysfunction
US20130046165A1 (en) 2011-08-17 2013-02-21 David E. Cassidy System for a Disposable Capacitive Bioimpedance Sensor
EP2567657A1 (en) 2011-09-07 2013-03-13 CSEM Centre Suisse d'Electronique et de Microtechnique SA Synchronization and communication bus for biopotential and bioimpedance measurement systems.

Non-Patent Citations (36)

* Cited by examiner, † Cited by third party
Title
A. LISTON; R. BAYFORD; D. HOLDER: "The effect of layers in imaging brain function using electrical impedance tomograghy", PHYSIOLOGICAL MEASUREMENT, vol. 25, no. 1, 2004, pages 143 - 158
A. SHARMA; F. TIAN; M. YIN; M. KELLER; M. COHEN; P. TIEN: "Association of regional body composition with bone mineral density in HIV-infected and HIV-uninfected momen: Women's interagency HIV study", JOURNAL OF ACQUIRED IMMUNE DEFICIENCY SYNDROMES, vol. 61, no. 4, 2012, pages 469 - 476
A. TURA; A. MARAN; G. PACINI: "Non-invasive glucose monitoring: Assessment of technologies and devices according to quantitative criteria", DIABETES RESEARCH AND CLINICAL PRACTICE, vol. 77, no. 1, 2007, pages 16 - 40
C. AMARAL; B. WOLF: "Effects of glucose in blood and skin impedance spectroscopy", IEEE AFRICON CONFERENCE, 2007
C. DI SOMMA; L. ANGRISANI; F. ROTA; M. SAVANELLI; T. CASCELLA; A. BELFIORE; F. ORIO; G. LOMBARDI; A. COLAO; S. SAVASTANO: "Gh and igf-i deficiency are associated with reduced loss of fat mass after laparoscopic-adjustable silicone gastric banding", CLINICAL ENDOCRINOLOGY, vol. 69, no. 3, 2008, pages 393 - 399
D. DZIONG; P. BAGNANINCHI; R. KEARNEY; M. TABRIZIAN: "Nondestructive online in vitro monitoring of pre-osteoblast cell proliferation within microporous polymer scaffolds", IEEE TRANSACTIONS ON NANOBIOSCIENCE, vol. 6, no. 3, 2007, pages 249 - 258
D. TREBBELS; D. HRADETZKY; R. ZENGERLE: "Capacitive on-line hematocrit sensor design based on impedance spectroscopy for use in hemodialysis machines", ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, vol. 2009, 2009, pages 1208 - 1211
E. SIIIANPA; S. CHENG; K. HAKKINEN; T. FINNI; S. WALKER; A. PESOLA; J. AHTIAINEN; L. STENROTH; H. SE ANNE; S. SIPILA: "Body composition in 18- to 88-year-old adults-comparison of multifrequency bioimpedance and dual-energy x-ray absorptiometry", OBESITY, vol. 22, no. 1, 2014, pages 101 - 109
F. SAMANI; R. JABBARY; O. MASHRABI: "Study on uterine artery blood flow in myomatous uterus", LIFE SCIENCE JOURNAL, vol. 9, no. 4, 2012, pages 583 - 586
G. ENINIA; P. ONDZULS; A PORTABLE RHEOGRAPH FOR CLINICAL STUDIES, BIULL. EKSP. BIOL. MED., vol. 52, 1961, pages 105 - 107
G. POP; L. BISSCHOPS; B. ILIEV; P. STRUIJK; J. HOEVEN; C. HOEDEMAEKERS: "On-line blood viscosity monitoring in vivo with a central venous catheter, using electrical impedance technique", BIOSENSORS AND BIOELECTRONICS, vol. 41, no. 1, 2013, pages 595 - 601
H.-R. CHUA; L. XIANG; P.-Y. CHOW; H. XU; L. SHEN; E. LEE; B.-W. TEO: "Quantifying acute changes in volume and nutritional status during haemodialysis using bioimpedance analysis", NEPHROLOGY, vol. 17, no. 8, 2012, pages 695 - 702
J. EDD; B. RUBINSKY: "Assessment of the viability of transplant organs with 3d electrical impedance tomography", ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY, 2005
J. WILSON; B. STRAUSS; B. FAN; F. DUEWER; J. SHEPHERD: "Improved 4-compartment body-composition model for a clinically accessible measure of total body protein1-3", AMERICAN JOURNAL OF CLINICAL NUTRITION, vol. 97, no. 3, 2013, pages 497 - 504
L. DONINI; E. POGGIOGALLE; S. MIGLIACCIO; A. AVERSA; A. PINTO: "Body composition in sarcopenic obesity: systematic review of the literature", MEDITERRANEAN JOURNAL OF NUTRITION AND METABOLISM, 2013, pages 1 - 8
L. LIU; F. ZHU; J. G RAIMANN; S. THIJSSEN; M. SIPAHIOGLU; G. WYSTRYCHOWSKI; T. KITZLER; C. TETTA; P. WABEL; P. KOTANKO: "Determination of fluid status in haemodialysis patients with whole body and calf bioimpedance techniques", NEPHROLOGY, vol. 17, no. 2, 2012, pages 131 - 140
L. M. ROA; D. NARANJO; L. J. REINA; A. LARA; J. A. MILAN; M. A. ESTUDILLO; J. S. OLIVA; APPLICATIONS OF BIOIMPEDANCE TO END STAGE, STUDIES IN COMPUTATIONAL INTELLIGENCE, vol. 404, 2013, pages 689 - 769
LAEGREID, A. BYE; K. AASAROD; M. JORDHOY: "Nutritional problems, overhydration and the association with quality of life in elderly dialysis patients", INTERNATIONAL UROLOGY AND NEPHROLOGY, vol. 44, no. 6, 2012, pages 1885 - 1892
M. FIEDLER; L.-C. GERHARDT; S. DERLER; G. BISCHOFBERGER; C. HRNY; T. MUNZER: "Assessment of biophysical skin properties at different body sites in hospitalized old patients: Results of a pilot study", GERONTOLOGY, vol. 58, no. 6, 2012, pages 513 - 517
M. SAVALLE; F. GILLAIZEAU; G. MARUANI; E. PUYMIRAT; F. BELLENFANT; P. HOUILLIER; J.-Y. FAGON; C. FAISY: "Assessment of body cell mass at bedside in critically ill patients", AMERICAN JOURNAL OF PHYSIOLOGY - ENDOCRINOLOGY AND METABOLISM, vol. 303, no. 3, 2012, pages E389 - E396
N. LI; H. XU; Z. ZHOU; J. XIN; Z. SUN; X. XU: "Reconfigurable bioimpedance emulation system for electrical impedance tomography system validation", IEEE TRANSACTIONS ON BIOMEDICAL CIRCUITS AND SYSTEMS, vol. 7, no. 4, 2013, pages 460 - 468
N. PIACENTINI; D. DEMARCHI; P. CIVERA; M. KNAFLITZ: "Blood cell counting by means of impedance measurements in a microsystem device", PROCEEDINGS OF THE 30TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, 2008
P. ABERG; NICANCER; S. OLLMAR: "Minimally invasive electrical impedance spectroscopy of skin exemplified by skin cancer assessments", ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY, 2003
P. LUNDIN; M. KARPEFORS; K. CARLSSON; M. HANSEN; M. RUTH: "Bioimpedance spectroscopy: A new tool to assess early esophageal changes linked to gastroesophageal reflux disease?", DISEASES OF THE ESOPHAGUS, vol. 24, no. 7, 2011, pages 462 - 469
P. MARIK: "Noninvasive cardiac output monitors: A state-of the-art review", JOURNAL OF CARDIOTHORACIC AND VASCULAR ANESTHESIA, vol. 27, no. 1, 2013, pages 121 - 134
R. BAUMGARTNER; S. HEYMSFIELD; S. LICHTMAN; J. WANG; R. PIERSON JR.: "Body composition in elderly people: Effect of criterion estimates on predictive equations", AMERICAN JOURNAL OF CLINICAL NUTRITION, vol. 53, no. 6, 1991, pages 1345 - 1353
R. HENDERSON; J. WEBSTER: "An impedance camera for spatially specific measurements of the thorax", IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, vol. 25, no. 3, 1978, pages 250 - 254
R. LUMBROSO; N. NAAS; L. BEITEL; M. LAWRENCE; M. TRIFIRO: "Novel bioimpedance sensor for glucose recognition", CONFERENCE PROCEEDINGS OF THE INTERNATIONAL SYMPOSIUM ON SIGNALS, SYSTEMS AND ELECTRONICS, 2007
S. PARMENTIER; H. SCHIRUTSCHKE; B. SCHMITT; J. SCHEWE; K. HERBRIG; F. PISTROSCH; J. PASSAUER: "Influence of peritoneal dialysis solution on measurements of fluid status by bioimpedance spectroscopy", INTERNATIONAL UROLOGY AND NEPHROLOGY, vol. 45, no. 1, 2013, pages 229 - 232
S. POLONI; SCHWEIGERT PERRY; V. D'ALMEIDA; SCHWARTZ: "Does phase angle correlate with hyperhomocysteinemia? a study of patients with classical homocystinuria", CLINICAL NUTRITION, vol. 32, no. 3, 2013, pages 479 - 480
S. SIPAHI; E. HUR; S. DEMIRTAS; KOCAYIGIT, D. BOZKURT; A. TAMER; H. GUNDUZ; S. DUMAN: "Body composition monitor measurement technique for the detection of volume status in peritoneal dialysis patients: The effect of abdominal fullness", INTERNATIONAL UROLOGY AND NEPHROLOGY, vol. 43, no. 4, 2011, pages 1195 - 1199
S. ZHENG; M. NANDRA; Y.-C. TAI: "Human blood cell sensing with platinum black electroplated impedance sensor", PROCEEDINGS OF THE 2ND IEEE INTERNATIONAL CONFERENCE ON NANO/MICRO ENGINEERED AND MOLECULAR SYSTEMS, 2007
See also references of EP3066981A4 *
V. SHARMA; A. SINGH; B. KANSARA; A. KARLEKAR: "Comparison of transthoracic electrical bioimpedance cardiac output measurement with thermodilution method in post coronary artery bypass graft patients", ANNALS OF CARDIAC ANAESTHESIA, vol. 14, no. 2, 2011, pages 104 - 110
V. SRINIVASARAGHAVAN; J. STROBL; M. AGAH: "Bioimpedance rise in response to histone deacetylase inhibitor is a marker of mammary cancer cells within a mixed culture of normal breast cells", LAB ON A CHIP - MINIATURISATION FOR CHEMISTRY AND BIOLOGY, vol. 12, no. 24, 2012, pages 5168 - 5179
W. KUBICEK; J. KARNEGIS; R. PATTERSON; D. WITSOE; R. MATTSON: "Development and evaluation of an impedance cardiac output system", AEROSPACE MEDICINE, vol. 37, no. 12, 1966, pages 1208 - 1212

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170035352A1 (en) * 2015-08-07 2017-02-09 Ryan James Appleby Smartphone device for body analysis
US10548528B2 (en) * 2015-08-07 2020-02-04 Ryan James Appleby Smartphone device for body analysis
ES2682059R1 (es) * 2017-03-16 2018-09-26 Universidad De Sevilla Plataforma inteligente y método para la monitorización de la composición corporal y la valoración del estado nutricional y de hidratación de un usuario

Also Published As

Publication number Publication date
EP3066981A4 (en) 2017-07-19
ES2537351A1 (es) 2015-06-05
ES2537351B1 (es) 2015-12-03
EP3066981A1 (en) 2016-09-14

Similar Documents

Publication Publication Date Title
ES2398439B1 (es) Método y aparato para obtener información cardiovascular midiendo entre dos extremidades
ES2616335T3 (es) Sistema de monitorización cardiaca
US8911379B2 (en) Method and system for non-invasive measurement of cardiac parameters
Thomas et al. BioWatch—A wrist watch based signal acquisition system for physiological signals including blood pressure
US10105053B2 (en) Handheld physiological sensor
US20090264792A1 (en) Method and Apparatus to Measure Bioelectric Impedance of Patient Tissue
US10314496B2 (en) Necklace-shaped physiological monitor
US10368772B2 (en) Handheld physiological sensor
JP2022532844A (ja) パッチ式生理センサ
US11071479B2 (en) Handheld physiological sensor
WO2013017717A2 (es) Método y aparato para obtener información cardiovascular en los pies
US11166635B2 (en) ECG and bioimpedance based glucose monitoring system
US11950892B2 (en) Handheld physiological sensor
WO2015063360A1 (es) Sensor inteligente de bioimpedancia para aplicaciones biomédicas
US20170188859A1 (en) Handheld physiological sensor
WO2023152411A1 (es) Dispositivo portable y método para la estimación no invasiva del nivel de valores fisiológicos.
US20170188873A1 (en) Handheld physiological sensor
Valdastri et al. Wearable and implanted sensors platform to monitor and control left ventricular assist devices
Gascón et al. Low-Power Wireless System for Continuous Measurement of Cardiovascular Parameters on a Single Limb
Riistama et al. Minimally obtrusive measurement devices for monitoring of cardiovascular parameters—An overview
CN115916044A (zh) 水肿检测
Harder A modular point-of-care platform for real-time monitoring and transmission of physiological signals
US20170188829A1 (en) Handheld physiological sensor

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858675

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

REEP Request for entry into the european phase

Ref document number: 2014858675

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2014858675

Country of ref document: EP