WO2015062445A1 - 光谱分析系统 - Google Patents

光谱分析系统 Download PDF

Info

Publication number
WO2015062445A1
WO2015062445A1 PCT/CN2014/089330 CN2014089330W WO2015062445A1 WO 2015062445 A1 WO2015062445 A1 WO 2015062445A1 CN 2014089330 W CN2014089330 W CN 2014089330W WO 2015062445 A1 WO2015062445 A1 WO 2015062445A1
Authority
WO
WIPO (PCT)
Prior art keywords
array
photomultiplier
optical
analysis system
different wavelengths
Prior art date
Application number
PCT/CN2014/089330
Other languages
English (en)
French (fr)
Inventor
陈文聪
蒲以康
Original Assignee
清华大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 清华大学 filed Critical 清华大学
Publication of WO2015062445A1 publication Critical patent/WO2015062445A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/28Investigating the spectrum
    • G01J3/443Emission spectrometry
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/12Generating the spectrum; Monochromators
    • G01J3/18Generating the spectrum; Monochromators using diffraction elements, e.g. grating
    • G01J3/1804Plane gratings
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/021Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using plane or convex mirrors, parallel phase plates, or particular reflectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01JMEASUREMENT OF INTENSITY, VELOCITY, SPECTRAL CONTENT, POLARISATION, PHASE OR PULSE CHARACTERISTICS OF INFRARED, VISIBLE OR ULTRAVIOLET LIGHT; COLORIMETRY; RADIATION PYROMETRY
    • G01J3/00Spectrometry; Spectrophotometry; Monochromators; Measuring colours
    • G01J3/02Details
    • G01J3/0205Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows
    • G01J3/0218Optical elements not provided otherwise, e.g. optical manifolds, diffusers, windows using optical fibers

Definitions

  • the invention belongs to the field of analytical instruments, and in particular relates to a spectrum analysis system.
  • Spectrometers are general-purpose spectroscopic instruments and are widely used in plasma physics, atomic and molecular physics. Taking low temperature plasma physics as an example, to understand the behavior of various particles in plasma, the most basic method is to measure the emission lines of various particles.
  • the emission spectrum of a low temperature plasma contains many atomic molecular lines and is distributed over a wide range of wavelengths from ultraviolet to infrared.
  • emission spectrum is time-varying and may be non-periodic and non-repetitive.
  • spectral measurement is very difficult, and it is required to meet the following requirements: first, the line intensity at different wavelengths can be measured at the same time; second, the sensitivity and signal-to-noise ratio of the system are high enough to measure weak lines; The detector has fast time response capability and data acquisition capability to complete the acquisition of a large number of rapidly changing spectral signals in a short time.
  • spectrometers are mainly Cheney-Turner structures, including: entrance slits, collimating mirrors, diffraction gratings, focusing mirrors, exit slits (optional), and detectors.
  • detectors mainly include photomultiplier tubes and CCD cameras. Photomultiplier tubes are usually used in conjunction with the exit slits, collecting only a certain wavelength of light at each moment, and are therefore single-channel detectors.
  • the advantages of photomultiplier tube are high sensitivity and fast time response, especially when it is working in photon counting mode, its sensitivity is the highest among all existing optical detectors, and it can perform single photon nanoseconds for photons entering its window. Level time resolution measurement.
  • the CCD camera has a two-dimensional array, which does not require an exit slit, and can simultaneously collect optical signals at different wavelengths, so the data acquisition time required to measure a stable optical signal is short.
  • ordinary CCD cameras have poor sensitivity and time resolution. Therefore, when it is desired to measure a weak spectral signal that changes with time, an enhanced CCD camera is generally used.
  • Enhanced CCD cameras can increase the sensitivity by adding electron multipliers while controlling the electron multiplier section with electrical signals to achieve nanosecond exposure times.
  • the detection efficiency of the enhanced CCD camera is lower than that of the photomultiplier tube.
  • the exposure time of the enhanced CCD camera can reach nanoseconds, it is impossible to continuously acquire signals due to factors such as signal accumulation, CCD charge transfer speed and analog-to-digital conversion speed. It is necessary to accumulate signals in multiple cycles, so the acquisition efficiency is higher. Low and requires that the optical signal must be periodically repeated and cannot be used for the measurement of transient non-repetitive optical signals.
  • the present invention aims to solve at least one of the technical problems existing in the prior art.
  • the object of the invention is to propose a spectroscopic analysis system.
  • a spectral analysis system includes: a Cheney-Turner optical path structure for splitting a spectrum of a light source into different wavelengths of monochromatic light and then parallel Output; a photomultiplier tube array, the photomultiplier tube array comprising N photomultiplier tubes, N being a positive integer; an optical fiber array comprising N sets of optical fibers, the first ends of each set of fibers being aligned with the entrance slit a column of parallel directions is mounted on a focal plane of the Cheney-Turner optical path structure, wherein a first end of each set of optical fibers collects monochromatic light of different wavelengths, and a second end of the N sets of optical fibers and the N Photomultiplier tubes are connected one-to-one to conduct optical signals of different wavelengths to different photomultiplier tubes; multi-channel time gating counters, the multi-channel time gating counters and the N photomultiplier tubes are respectively electrically a high voltage power
  • a photomultiplier tube array is used as a detector of a spectrometer, and a spectral signal of different wavelengths on a focal plane of the spectrometer is transmitted to different photomultiplier tubes by using an optical fiber array, and a pulse output signal of the photomultiplier tube array is used.
  • Counting is performed by a multi-channel time gated counter, resulting in a system with high sensitivity at the single photon level and time resolution at the nanosecond level.
  • the present invention utilizes an optical fiber array to transmit spectral signals, reducing the effects of electromagnetic interference and X-rays.
  • the temperature control module performs cooling and temperature control on the photomultiplier tube array, which is beneficial to reduce the background signal, improve the signal to noise ratio, achieve stable operation, and improve the accuracy of the analysis result.
  • the spectral analysis system of the present invention has the advantages of high sensitivity and high time resolution, and can be used to acquire weak, fast-changing and non-repetitive spectral signals.
  • spectral analysis system may further have the following additional technical features:
  • the Cheney-Turner optical path structure specifically includes: an entrance slit, a collimating mirror, a diffraction grating, and a focusing mirror, wherein a continuous spectrum emitted by the light source passes through the incident slit Illuminating onto the collimating mirror, and then reflecting through the collimating mirror to form parallel light. After the parallel light is diffracted by the diffraction grating, the monochromatic light of different wavelengths is focused by the focusing mirror to Different locations on the same focal plane.
  • the number of fibers included in each set of fibers is the same.
  • the photomultiplier tube operates in a photon counting mode, and the multi-channel time gating counter simultaneously performs photon counting on the N photomultiplier tubes.
  • the fiber is a multimode fiber.
  • the wavelength of the optical signal collected by each photomultiplier tube can be determined by known atomic gas discharge lamp calibration.
  • the wavelength of each column of the fiber optic array at each of the first ends is adjusted to vary the wavelength of each photomultiplier tube.
  • FIG. 1 is a schematic structural view of a spectrum analysis system according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view of the first end of the fiber array, the second end of the fiber array, and the photomultiplier tube array of the spectral analysis system of FIG. 1;
  • FIG. 3 is a schematic structural view of a Cheney-Turner optical path structure.
  • the present invention aims to provide a spectral analysis system capable of obtaining spectral signal intensity at different wavelengths in a certain wavelength range at the same time, having high sensitivity at a single photon level and time resolution at a nanosecond level, and capable of continuously acquiring signals.
  • a spectral analysis system may include: a Cheney-Turner optical path structure 10, a photomultiplier tube array 20, an optical fiber array 30, a multi-channel time-gated counter 40, and a high voltage. Power source 50 and temperature control module 60.
  • the Cheney-Turner optical path structure 10 is used to split the spectrum of the light source into monochromatic light of different wavelengths and output them in parallel.
  • the photomultiplier tube array 20 includes N photomultiplier tubes, N being a positive integer.
  • the optical fiber array 30 includes N sets of optical fibers, and the first ends of the respective sets of optical fibers are arranged in a line parallel to the incident slit to be mounted on the focal plane of the Cheney-Turner optical path structure 10. Each group of fibers collects monochromatic light of different wavelengths. The second ends of the N sets of fibers are connected in one-to-one correspondence with the N photomultiplier tubes to conduct optical signals of different wavelengths to different photomultiplier tubes.
  • the multi-channel time gating counter 40 is electrically connected to the plurality of photomultiplier tubes, respectively.
  • the high voltage power source 50 is electrically connected to the photomultiplier tube array 20.
  • the DC high voltage power supply required for operation of the photomultiplier tube array 20 is provided by a high stability high voltage power supply 50.
  • the temperature control module 60 is coupled to a photomultiplier array 20 for maintaining the photomultiplier array in a low temperature environment during spectral measurements.
  • the number of photomultiplier tubes and the number of fiber arrays should be increased as needed.
  • the fiber array uses 100 columns of fibers with a diameter of 200 micrometers
  • the minimum length of the fiber array in the horizontal direction is 20 mm, which is equivalent to the pixel array size of a commonly used CCD camera, that is, a wavelength range similar to that of a CCD camera can be acquired.
  • the corresponding photomultiplier tube array is composed of 100 photomultiplier tubes.
  • the spectral analysis system works as follows: at one end of the focal plane of the light exiting the Cheney-Turner optical path 10, The fibers in the fiber array 30 are arranged in a two-dimensional square array, and each column of fibers in the direction parallel to the entrance slit collects spectral signals of the same wavelength. Each column of fibers is bundled at one end of the photomultiplier array 20 to conduct different spectral signals to different photomultiplier tubes. The signals of the plurality of photomultiplier tubes can simultaneously obtain spectral information in a certain spectral range.
  • the spectral analysis system of the above embodiment utilizes a photomultiplier tube array as a detector of the spectrometer, and uses the optical fiber array to transmit spectral signals of different wavelengths on the focal plane of the spectrometer to different photomultiplier tubes, and the pulse output signal of the photomultiplier tube array is multi-channel.
  • the time gating counter is counted so that the system has a high sensitivity at the single photon level and a time resolution at the nanosecond level.
  • the present invention utilizes an optical fiber array to transmit spectral signals, reducing the effects of electromagnetic interference and X-rays.
  • the temperature control module performs cooling and temperature control on the photomultiplier tube array, which is beneficial to reduce the background signal, improve the signal-to-noise ratio, achieve stable operation, and improve the accuracy of the analysis result.
  • the spectral analysis system of the present invention has the advantages of high sensitivity and high time resolution, and can be used to acquire weak, fast-changing and non-repetitive spectral signals.
  • the Cheney-Turner optical path structure 10 may specifically include an incident slit 11, a collimating mirror 12, a diffraction grating 13, and a focusing mirror 14.
  • the continuous spectrum emitted by the light source is irradiated onto the collimating mirror 12 through the incident slit 11, and then reflected by the collimating mirror 12 to form parallel light, which is diffracted by the diffraction grating 13, and finally passed through the focusing mirror 14 to make different wavelengths
  • the monochromatic light is focused to different locations on the same focal plane.
  • the number of fibers included in each set of fibers is the same. It should be noted that when the number of each group of fibers is different, the result of counting the multi-channel time gating counter can also be multiplied by a correction coefficient to obtain a correct spectral analysis result. However, it is preferable to adopt the same scheme of the number of fibers of each group.
  • the photomultiplier tube operates in a photon counting mode, and the multi-channel time gating counter 40 simultaneously performs photon counting on the N photomultiplier tubes. Specifically, the pulse output signal of each photomultiplier tube is counted by one channel of the multi-channel time gating counter 40.
  • the invention adopts a photomultiplier tube as a detector, and has the best sensitivity and better time resolution capability of all existing optical signal detectors, and can continuously acquire signals. When it is necessary to acquire a periodically varying spectral signal, it is only necessary to provide a periodic synchronization signal for the multi-channel time gated counter.
  • the optical signal is a transient non-repetitive signal
  • the system takes advantage of the high sensitivity and high time resolution of the photomultiplier tube, and has the multi-channel acquisition capability of the CCD camera.
  • the fiber is a multimode fiber.
  • Signal transmission using optical fibers can also reduce the effects of electromagnetic interference and X-rays, and is suitable for optical signal measurement under strong interference conditions.
  • optical signals at different wavelengths can be obtained by collecting signals from different photomultiplier tubes.
  • the wavelength of the optical signal collected by each photomultiplier tube can be determined by calibration of known atomic gas discharge lamps.
  • the wavelength of each column of the photomultiplier tube can be varied by appropriately adjusting the spacing of the fibers of each column of the fiber array at one end of the focal plane of the spectrometer.
  • first and second are used for descriptive purposes only and are not to be construed as indicating or implying a relative importance or implicitly indicating the number of technical features indicated.
  • features defining “first” and “second” may include one or more of the features either explicitly or implicitly.
  • the meaning of "a plurality” is two or more unless specifically and specifically defined otherwise.
  • the terms “installation”, “connected”, “connected”, “fixed” and the like shall be understood broadly, and may be either a fixed connection or a detachable connection, unless explicitly stated and defined otherwise. , or integrated; can be mechanical connection, or can be electrical connection; can be directly connected, or can be indirectly connected through an intermediate medium, can be the internal communication of two elements or the interaction of two elements.
  • installation can be understood on a case-by-case basis.
  • the first feature "on” or “under” the second feature may be a direct contact of the first and second features, or the first and second features may be indirectly through an intermediate medium, unless otherwise explicitly stated and defined. contact.
  • the first feature "above”, “above” and “above” the second feature may be that the first feature is directly above or above the second feature, or merely that the first feature level is higher than the second feature.
  • the first feature “below”, “below” and “below” the second feature may be that the first feature is directly below or obliquely below the second feature, or merely that the first feature level is less than the second feature.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

一种光谱分析系统,包括切尼-特纳光路结构(10),包括N个光电倍增管的光电倍增管阵列(20),光纤阵列(30),多通道时间门控计数器(40),高压电源(50)和与光电倍增管阵列(20)相连、用于在光谱测量时使其维持在恒定低温环境的温度控制模块(60),其中光纤阵列(30)包括N组光纤,各组光纤的第一端排成与入射狭缝(11)平行方向的一列安装在切尼-特纳光路结构(10)的聚焦平面上、收集不同波长单色光,N组光纤的第二端与N个光电倍增管一一对应地相连以将不同波长的光信号传导到不同的光电倍增管,N为正整数。该系统的优点在于同时具有高灵敏度和高时间分辨能力,可用于采集微弱的快速变化且不重复的光谱信号。

Description

光谱分析系统 技术领域
本发明属于分析仪器领域,具体涉及一种光谱分析系统。
背景技术
光谱仪是通用的光谱分析仪器,在等离子体物理、原子分子物理等研究领域有着广泛的运用。以低温等离子体物理研究为例,要了解等离子体中各种粒子的行为规律,最基本的方法是通过测量各种粒子的发射谱线。低温等离子体的发射光谱包含许多的原子分子谱线,并且分布在从紫外到红外的很宽的波长范围内。同时,对于非恒定状态的等离子体,其发射光谱是随时间变化的,并且可能是非周期性不重复的。为了解等离子体中复杂的物理化学过程,通常需要采集除了主要的强谱线外的许多微弱谱线。因此,光谱测量的难度很大,要求满足以下要求:第一,可以在同一时刻测量不同波长处的谱线强度;第二,系统的灵敏度和信噪比足够高以测量微弱谱线;第三,检测器具有快速的时间响应能力和数据采集能力,以便在短时间内完成大量快速变化的光谱信号的采集。
目前广泛使用的光谱仪主要为切尼-特纳结构,主要包括:入口狭缝、准直反射镜、衍射光栅、聚焦反射镜、出口狭缝(可选)和检测器。常用的检测器主要有光电倍增管和CCD相机。光电倍增管通常需要配合出口狭缝使用,每个时刻只采集某个波长的光信号,因此是单通道检测器。光电倍增管的优点是高灵敏度和快速时间响应,特别是当其工作在光子计数模式时,其灵敏度是现有所有光学检测器中最高的,可对进入其窗口的光子进行单光子纳秒量级的时间分辨测量。同时,其缺点是作为单通道检测器使用时需要通过转动光栅扫描波长,对于大波长范围内的光谱信号测量需要时间长,效率低。相比较而言,CCD相机具有二维面阵,不需要出口狭缝,可同时采集不同波长处的光信号,因此测量稳定光信号所需的数据采集时间较短。相比光电倍增管,普通的CCD相机的灵敏度和时间分辨能力较差。因此,当需要测量随时间变化的微弱光谱信号时,通常使用增强型CCD相机。增强型CCD相机通过增加电子倍增段以提高灵敏度,同时以电信号控制电子倍增段的开关可以实现纳秒级别的曝光时间。受光阴极材料和荧光板发光效率等因素的限制,增强型CCD相机的检测效率低于光电倍增管。同时,虽然增强型CCD相机的曝光时间可以达到纳秒级,但受信号累加、CCD电荷转移速度和模数转换速度等因素的限制无法连续采集信号,必须多个周期累加信号,因此采集效率较低并且要求光信号必须是周期性重复的,无法用于瞬态不重复光信号的测量。
发明内容
本发明旨在至少解决现有技术中存在的技术问题之一。
为此,本发明的目的在于提出一种光谱分析系统。
为了实现上述目的,根据本发明实施例的光谱分析系统,包括:切尼-特纳光路结构,所述切尼-特纳光路结构用于将光源的光谱分光为不同波长单色光后平行地输出;光电倍增管阵列,所述光电倍增管阵列包括N个光电倍增管,N为正整数;光纤阵列,所述光纤阵列包括N组光纤,各组光纤的第一端排成与入射狭缝平行方向的一列安装在所述切尼-特纳光路结构的聚焦平面上,其中所述各组光纤的第一端收集不同波长单色光,所述N组光纤的第二端与所述N个光电倍增管一一对应地相连以将不同波长的光信号传导到不同的光电倍增管;多通道时间门控计数器,所述多通道时间门控计数器与所述N个光电倍增管分别电性连接;高压电源,所述高压电源与所述光电倍增管阵列电性连接;和温度控制模块,所述温度控制模块与所述光电倍增管阵列相连,用于在进行光谱测量时将所述光电倍增管阵列维持在恒定的低温环境。
根据本发明实施例的光谱分析系统,利用光电倍增管阵列作为光谱仪的检测器,利用光纤阵列将光谱仪焦平面上不同波长的光谱信号传输到不同的光电倍增管,光电倍增管阵列的脉冲输出信号由多通道时间门控计数器进行计数,从而使得该系统具有单光子级别的高灵敏度和纳秒量级的时间分辨能力。同时,本发明利用光纤阵列传输光谱信号,减少了电磁干扰和X射线的影响。同时,由温度控制模块进行对光电倍增管阵列进行制冷和温度控制,有利于降低本底信号,提高信噪比,实现稳定工作,提高分析结果的准确性。相比现有的使用单个光电倍增管或CCD相机的光谱仪系统,本发明的光谱分析系统的优点在于同时具有高灵敏度和高时间分辨能力,可用于采集微弱的快速变化且不重复的光谱信号。
另外,根据本发明实施例的光谱分析系统还可以具有如下附加技术特征:
在本发明的一个实施例中,所述切尼-特纳光路结构具体包括:入射狭缝、准直反射镜、衍射光栅和聚焦反射镜,其中,光源发出的连续光谱经过所述入射狭缝照射到所述准直反射镜上,然后经过所述准直反射镜反射形成平行光,所述平行光经过所述衍射光栅衍射后,通过所述聚焦反射镜使不同波长的单色光聚焦到同一焦平面上的不同位置。
在本发明的一个实施例中,各组光纤中包括的光纤数目相同。
在本发明的一个实施例中,所述光电倍增管工作于光子计数模式,所述多通道时间门控计数器对所述N个光电倍增管同时进行光子计数。
在本发明的一个实施例中,所述光纤为多模光纤。
在本发明的一个实施例中,通过已知原子气体放电灯标定可以确定每个光电倍增管所采集的光信号的波长。
在本发明的一个实施例中,当需要采集指定波长的谱线时,通过调节光纤阵列在第一端的每列光纤间距以改变每个光电倍增管对应的波长。
本发明的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明 显,或通过本发明的实践了解到。
附图说明
本发明的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1是本发明实施例的光谱分析系统的结构示意图;
图2为图1的光谱分析系统的光纤阵列第一端、光纤阵列第二端和光电倍增管阵列的截面图;和
图3是切尼-特纳光路结构的结构示意图。
具体实施方式
下面详细描述本发明的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本发明,而不能理解为对本发明的限制。
本发明旨在提出一种在同一时刻得到一定波长范围内不同波长处的光谱信号强度,具有单光子级别的高灵敏度和纳秒级别的时间分辨能力,并且可以连续采集信号的光谱分析系统。
根据本发明实施例的光谱分析系统,如图1和图2所示,可以包括:切尼-特纳光路结构10、光电倍增管阵列20、光纤阵列30、多通道时间门控计数器40、高压电源50和温度控制模块60。切尼-特纳光路结构10用于将光源的光谱分光为不同波长单色光后平行地输出。光电倍增管阵列20包括N个光电倍增管,N为正整数。光纤阵列30包括N组光纤,各组光纤的第一端排成与入射狭缝平行方向的一列安装在切尼-特纳光路结构10的聚焦平面上。其中各组光纤收集不同波长的单色光。N组光纤的第二端与N个光电倍增管一一对应地相连将不同波长的光信号传导到不同的光电倍增管。多通道时间门控计数器40与多个光电倍增管分别电性连接。高压电源50与光电倍增管阵列20电性连接。光电倍增管阵列20工作所需的直流高压供电由高稳定高压电源50提供。温度控制模块60与光电倍增管阵列20相连,该温度控制模块60用于在进行光谱测量时维持光电倍增管阵列处于低温环境。
需要说明的是尽管图1和图2中示出了N=4的情况,但此处仅是出于示例的方便而非本发明的限制。实际工作时应根据需要增加光电倍增管数目和光纤阵列列数。例如,光纤阵列采用100列直径为200微米的光纤,则光纤阵列在水平方向下的最小长度为20毫米,与通常使用的CCD相机的像素面阵尺寸相当,即可以采集和CCD相机类似波长范围内的100个波长点的光谱信号。此时,相对应的光电倍增管阵列由100个光电倍增管组成。
该光谱分析系统的工作过程为:在靠近切尼-特纳光路10的出光的焦平面上的一端, 光纤阵列30中的光纤排列成二维方形阵列,与入射狭缝平行方向上的每列光纤收集同一波长的光谱信号。每列光纤在连接光电倍增管阵列20的一端汇成一束,将不同波长的光谱信号传导至不同的光电倍增管,由多个光电倍增管的信号可以同时得到一定光谱范围内的光谱信息。
上述实施例的光谱分析系统利用光电倍增管阵列作为光谱仪的检测器,利用光纤阵列将光谱仪焦平面上不同波长的光谱信号传输到不同的光电倍增管,光电倍增管阵列的脉冲输出信号由多通道时间门控计数器进行计数,从而使得该系统具有单光子级别的高灵敏度和纳秒量级的时间分辨能力。同时,本发明利用光纤阵列传输光谱信号,减少了电磁干扰和X射线的影响。同时,由温度控制模块对光电倍增管阵列进行制冷和温度控制,有利于降低本底信号,提高信噪比,实现稳定工作,提高分析结果准确性。相比现有的使用单个光电倍增管或CCD相机的光谱仪系统,本发明的光谱分析系统的优点在于同时具有高灵敏度和高时间分辨能力,可用于采集微弱的快速变化且不重复的光谱信号。
在本发明的一个实施例中,如图3所示,切尼-特纳光路结构10具体可以包括:入射狭缝11、准直反射镜12、衍射光栅13和聚焦反射镜14。光源发出的连续光谱经过入射狭缝11照射到准直反射镜12上,然后经过准直反射镜12反射形成平行光,该平行光经过衍射光栅13衍射后,最后通过聚焦反射镜14使不同波长的单色光聚焦到同一焦平面上的不同位置。
在本发明的一个实施例中,各组光纤中包括的光纤数目相同。需要说明的是,当各组光纤中的数目不同时,也可以通过对多通道时间门控计数器的计数结果加乘以一个修正系数以得到正确的光谱分析结果。但是优选采用各组光纤数目相同的方案。
在本发明的一个实施例中,光电倍增管工作于光子计数模式,多通道时间门控计数器40对N个光电倍增管同时进行光子计数。具体地,每个光电倍增管的脉冲输出信号由多通道时间门控计数器40的一个通道进行计数。本发明采用光电倍增管作为检测器,具有目前已有的所有光信号检测器中最优的灵敏度和较佳的时间分辨能力,可连续采集信号。当需要采集周期性变化的光谱信号时,只需为多通道时间门控计数器提供一个周期同步信号即可。当光信号为瞬态不重复信号时,需要为多通道时间门控计数器提供一个略早于光信号的触发信号并设置合适的时间门宽和采集序列长度即可。该系统发挥了光电倍增管的高灵敏度和高时间分辨能力的特点,同时具有CCD相机的多通道采集的能力。
在本发明的一个实施例中,光纤为多模光纤。利用光纤进行信号传输也可减少电磁干扰和X射线的影响,适用于强干扰条件下的光信号测量。
在本发明的一个实施例中,通过采集不同光电倍增管的信号可以得到不同波长处的光信号。通过已知原子气体放电灯标定可以确定每个光电倍增管所采集的光信号的波长。
在本发明的一个实施例中,当需要采集指定波长的谱线时,可通过适当调节光纤阵列在光谱仪焦平面一端的每列光纤间距以改变每个光电倍增管对应的波长。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个该特征。在本发明的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或“下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本发明的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,本领域的技术人员可以将本说明书中描述的不同实施例或示例进行结合和组合。
尽管上面已经示出和描述了本发明的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本发明的限制,本领域的普通技术人员在本发明的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (7)

  1. 一种光谱分析系统,其特征在于,包括:
    切尼-特纳光路结构,所述切尼-特纳光路结构用于将光源的光谱分光为不同波长单色光后平行地输出;
    光电倍增管阵列,所述光电倍增管阵列包括N个光电倍增管,N为正整数;
    光纤阵列,所述光纤阵列包括N组光纤,各组光纤的第一端排成与入射狭缝平行方向的一列安装在所述切尼-特纳光路结构的聚焦平面上,其中所述各组光纤的第一端收集不同波长单色光,所述N组光纤的第二端与所述N个光电倍增管一一对应地相连以将不同波长的光信号传导到不同的光电倍增管;
    多通道时间门控计数器,所述多通道时间门控计数器与所述N个光电倍增管分别电性连接;
    高压电源,所述高压电源与所述光电倍增管阵列电性连接;和
    温度控制模块,所述温度控制模块与所述光电倍增管阵列相连,用于在进行光谱测量时将所述光电倍增管阵列维持在恒定的低温环境。
  2. 如权利要求1所述的光谱分析系统,其特征在于,所述切尼-特纳光路结构具体包括:入射狭缝、准直反射镜、衍射光栅和聚焦反射镜,其中,光源发出的连续光谱经过所述入射狭缝照射到所述准直反射镜上,然后经过所述准直反射镜反射形成平行光,所述平行光经过所述衍射光栅衍射后,通过所述聚焦反射镜使不同波长的单色光聚焦到同一焦平面上的不同位置。
  3. 如权利要求1或2所述的光谱分析系统,其特征在于,各组光纤中包括的光纤数目相同。
  4. 如权利要求1-3中任一项所述的光谱分析系统,其特征在于,所述光电倍增管工作于光子计数模式,所述多通道时间门控计数器对所述N个光电倍增管同时进行光子计数。
  5. 如权利要求1-4中任一项所述的光谱分析系统,其特征在于,所述光纤为多模光纤。
  6. 如权利要求1-5中任一项所述的光谱分析系统,其特征在于,通过已知原子气体放电灯标定可以确定每个光电倍增管所采集的光信号的波长。
  7. 如权利要求1-6中任一项所述的光谱分析系统,其特征在于,当需要采集指定波长的谱线时,通过调节光纤阵列在第一端的每列光纤间距以改变每个光电倍增管对应的波长。
PCT/CN2014/089330 2013-10-30 2014-10-23 光谱分析系统 WO2015062445A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201310525282.2 2013-10-30
CN201310525282.2A CN103592025B (zh) 2013-10-30 2013-10-30 光谱分析系统

Publications (1)

Publication Number Publication Date
WO2015062445A1 true WO2015062445A1 (zh) 2015-05-07

Family

ID=50082256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/089330 WO2015062445A1 (zh) 2013-10-30 2014-10-23 光谱分析系统

Country Status (2)

Country Link
CN (1) CN103592025B (zh)
WO (1) WO2015062445A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109238966A (zh) * 2018-10-11 2019-01-18 浙江大学昆山创新中心 一种光纤方式入光的在线式光谱光色检测仪
CN109520944A (zh) * 2017-09-19 2019-03-26 高利通科技(深圳)有限公司 一种通用光谱分析系统
CN113686547A (zh) * 2020-05-19 2021-11-23 华域视觉科技(上海)有限公司 一种汽车led车灯色度检测系统及检测方法
CN117420083A (zh) * 2023-12-19 2024-01-19 哈尔滨工业大学 一种等离子体侵蚀痕量产物在线监测装置及方法

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592025B (zh) * 2013-10-30 2015-07-29 清华大学 光谱分析系统
CN105043930B (zh) * 2015-07-24 2017-12-12 中国电子科技集团公司第四十九研究所 采用具有微结构碱金属气室碱金属蒸汽原子密度的检测装置的检测方法
CN106550528B (zh) * 2016-10-28 2019-03-26 中国地质大学(北京) 一种用于等离子体检测的多模光纤焦平面调节装置
CN106442325B (zh) * 2016-10-28 2018-12-25 中国地质大学(北京) 一种用于等离子体检测的二维光纤阵列光谱检测系统
CN106546330A (zh) * 2016-11-01 2017-03-29 清华大学 一种光谱分析系统和光谱分析方法
CN106840399B (zh) * 2017-01-19 2018-07-06 中国科学院上海技术物理研究所 一种集成光纤的多光谱成像探测器
CN106840008B (zh) * 2017-04-07 2022-09-20 上海汇珏网络通信设备股份有限公司 一种光纤间距测量系统及测量方法
CN107014758A (zh) * 2017-05-19 2017-08-04 钱昱好 面向血液中癌细胞检测的实时光谱检测装置和方法
CN107228830A (zh) * 2017-06-05 2017-10-03 哈尔滨工业大学 一种电推力器空心阴极腐蚀产物的光学监测系统
CN109141628B (zh) * 2018-06-14 2021-03-09 上海卫星工程研究所 一种星载光纤焦平面探测器装置
CN109000795B (zh) * 2018-06-25 2024-03-12 西北核技术研究所 一种脉冲激光光谱时间分辨测量系统和测量方法
CN113923844A (zh) * 2020-07-08 2022-01-11 核工业西南物理研究院 一种快速离子温度和旋转速度的测量方法
CN111965152A (zh) * 2020-08-13 2020-11-20 公安部物证鉴定中心 一种用于刑侦现场生物斑迹检测的识别仪
CN113009292B (zh) * 2021-02-25 2021-12-28 西安交通大学 局部放电微光光谱探测器
CN113203727B (zh) * 2021-05-12 2023-04-28 华中科技大学 一种光谱测量装置和方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070188754A1 (en) * 2006-02-10 2007-08-16 Carl Zeiss Microlmaging Gmbh Laser scanning microscope with spectrally resolving radiation detection
CN101256144A (zh) * 2008-03-28 2008-09-03 清华大学 真空紫外光谱检测装置
CN101889192A (zh) * 2007-10-25 2010-11-17 纽约州立大学研究基金会 单光子光谱仪
CN202066593U (zh) * 2011-05-13 2011-12-07 卢利根 一种基于光电倍增管阵列的紫外光谱测量系统
CN102478517A (zh) * 2010-11-24 2012-05-30 上海复莱信息技术有限公司 一种二氧化硫探测器
CN103592025A (zh) * 2013-10-30 2014-02-19 清华大学 光谱分析系统

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004191244A (ja) * 2002-12-12 2004-07-08 Minolta Co Ltd 分光装置及び補正方法
WO2008022474A1 (en) * 2006-08-25 2008-02-28 Abb Research Ltd Camera-based flame detector
CN101320138B (zh) * 2008-05-16 2011-04-06 中国科学院西安光学精密机械研究所 同时获取立体和多光谱图像的方法及设备
CN202708649U (zh) * 2012-05-15 2013-01-30 李刚 一种led灯泡结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070188754A1 (en) * 2006-02-10 2007-08-16 Carl Zeiss Microlmaging Gmbh Laser scanning microscope with spectrally resolving radiation detection
CN101889192A (zh) * 2007-10-25 2010-11-17 纽约州立大学研究基金会 单光子光谱仪
CN101256144A (zh) * 2008-03-28 2008-09-03 清华大学 真空紫外光谱检测装置
CN102478517A (zh) * 2010-11-24 2012-05-30 上海复莱信息技术有限公司 一种二氧化硫探测器
CN202066593U (zh) * 2011-05-13 2011-12-07 卢利根 一种基于光电倍增管阵列的紫外光谱测量系统
CN103592025A (zh) * 2013-10-30 2014-02-19 清华大学 光谱分析系统

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109520944A (zh) * 2017-09-19 2019-03-26 高利通科技(深圳)有限公司 一种通用光谱分析系统
CN109238966A (zh) * 2018-10-11 2019-01-18 浙江大学昆山创新中心 一种光纤方式入光的在线式光谱光色检测仪
CN113686547A (zh) * 2020-05-19 2021-11-23 华域视觉科技(上海)有限公司 一种汽车led车灯色度检测系统及检测方法
CN117420083A (zh) * 2023-12-19 2024-01-19 哈尔滨工业大学 一种等离子体侵蚀痕量产物在线监测装置及方法
CN117420083B (zh) * 2023-12-19 2024-04-09 哈尔滨工业大学 一种等离子体侵蚀痕量产物在线监测装置及方法

Also Published As

Publication number Publication date
CN103592025A (zh) 2014-02-19
CN103592025B (zh) 2015-07-29

Similar Documents

Publication Publication Date Title
WO2015062445A1 (zh) 光谱分析系统
EP0498644B1 (en) High sensitive multi-wavelength spectral analyzer
Yoshinuma et al. Charge-exchange spectroscopy with pitch-controlled double-slit fiber bundle on LHD
Talmi et al. Self-scanned photodiode array: a multichannel spectrometric detector
TWI524452B (zh) 量測裝置及電漿處理裝置
CN101290246B (zh) 一种快速光谱仪及其测量方法
Alfier et al. New Thomson scattering diagnostic on RFX-mod
CN110470406B (zh) 一种热红外光谱仪杂散辐射的测量方法
CN102353450A (zh) 一种“光子计数全谱直读”光谱分析方法
JPH02267270A (ja) 放射支援化学反応蒸着方法とそれを実施する装置
CN101504314A (zh) 大气紫外辐射通量测量装置及其测量方法
CN103954359A (zh) 一种光谱测量范围及分辨率可调的变焦光谱仪
CN102565003A (zh) 使用针孔狭缝的被动多轴差分吸收光谱仪系统
US4630925A (en) Compact temporal spectral photometer
CN100529714C (zh) 用于光电图像选通快门时间标定的测量方法及装置
CN115014525A (zh) 基于像元级滤光片的定点批量采集微型光谱仪
CN105675132A (zh) 消像散光谱仪
CN102507517B (zh) 一种光子计数全谱直读荧光光谱仪
JP2005062192A (ja) 角度スペクトルを得る方法、ゴニオ分光光度計および加工中の製品を検査する方法
Agostini et al. Development and characterization of thermal helium beam diagnostic with four helium lines for RFX-mod2 experiment
CN102507464A (zh) 一种光子计数全谱直读吸收光谱仪
CN206146837U (zh) 一种用于多通道原子荧光光度计的光学和检测系统
Ma et al. Study on the relative collection efficiency of large area PMTs
Gu et al. Compact high-resolution ion Doppler spectrometer for quartz ultraviolet line emissions
WO2022116412A1 (zh) 一种点阵光谱测量装置、面阵色度测量装置及方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14858234

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14858234

Country of ref document: EP

Kind code of ref document: A1