CN202066593U - 一种基于光电倍增管阵列的紫外光谱测量系统 - Google Patents

一种基于光电倍增管阵列的紫外光谱测量系统 Download PDF

Info

Publication number
CN202066593U
CN202066593U CN2011201518503U CN201120151850U CN202066593U CN 202066593 U CN202066593 U CN 202066593U CN 2011201518503 U CN2011201518503 U CN 2011201518503U CN 201120151850 U CN201120151850 U CN 201120151850U CN 202066593 U CN202066593 U CN 202066593U
Authority
CN
China
Prior art keywords
photomultiplier tube
tube array
measuring system
ultraviolet spectrum
analog
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CN2011201518503U
Other languages
English (en)
Inventor
卢利根
张保洲
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to CN2011201518503U priority Critical patent/CN202066593U/zh
Application granted granted Critical
Publication of CN202066593U publication Critical patent/CN202066593U/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Spectrometry And Color Measurement (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

本实用新型涉及一种基于光电倍增管阵列的紫外光谱测量系统,由异形光纤、光纤连接器、入射狭缝、分光光路、光电倍增管阵列、模拟开关、高压模块、信号放大电路、多路复用器、模数转换器、控制器和计算机组成。它将新出现的多阳极光电倍增管线性阵列作为探测器应用于紫外光谱测量,对每一通道进行单独信号放大,由控制器控制多路复用器连通信号放大电路的输出和模数转换器的输入,逐通道进行采样和转换,完成光谱信号采集。该系统既保持了传统光电倍增管灵敏度高和响应时间短的优点,又实现了同CCD等阵列探测器件一样能够同时获取全光谱信息的测量方式,具有瞬态灵敏度高的特点,可以根据需要实现对微弱且快速变化紫外辐射的快速测量。

Description

一种基于光电倍增管阵列的紫外光谱测量系统
技术领域
本实用新型属于光谱测量技术领域,涉及一种新的以光电倍增管线性阵列作为探测器件的紫外光谱测量系统,既保持了传统光电倍增管灵敏度高和响应时间短的优点,又实现了同CCD等阵列探测器件一样能够同时获取全光谱信息的测量方式。
背景技术
目前,光谱测量通常采用电荷耦合器件(CCD)和光电二极管阵列(PDA)作为探测器件。这类探测器件测量速度快,最短时间为毫秒量级,也可累积光照,积分时间最长可达几十分钟,可探测微弱的信号,具有动态范围大的特点。其中,PDA线性好,但整体灵敏度较低,因此需要较强的光强输入。而CCD自问世以来,便以其像元尺寸小、灵敏度高、动态范围大及光谱响应宽等众多优点在光谱测量中得到了广泛的应用。
然而,对于紫外光谱测量,普通线性CCD阵列与PDA在400~350nm的光谱响应很低,对低于350nm的紫外辐射基本无响应。实际应用中,通常采用紫外增强型CCD或PDA,即通过镀膜技术提高并向短波方向拓宽其紫外光谱响应。即便如此,紫外增强型CCD或PDA的峰值响应波长仍多在可见光甚至是近红外波段,其紫外波段光谱响应要比可见、近红外区的低得多,因而往往造成光谱测量结果在可见光和近红外区有较高的信噪比,而在紫外波段的信噪比却很差。而且,CCD和PDA都是硅器件,其宽光谱响应加之紫外和可见光、近红外波段的灵敏度差异,使得紫外光谱测量结果容易受带外杂光的影响。为了减少带外杂光的影响,常常要加透紫外滤光片,又对有效光信号造成损失,降低了仪器的灵敏度。
光电倍增管(PMT)具有灵敏度高和响应时间短的特点,且在紫外波段仍具有很高的灵敏度。然而由于传统的光电倍增管都是单元器件而且体积较大,在光谱测量上主要是采用光谱扫描法。近年来日本滨松公司(Hamamatsu)继生产出超小体积光电倍增管后,又开发出多阳极光电倍增管(Multi-anode Photomultiplier Tube),目前已有8、16和32线阵。它们具有高响应速度、高灵敏度和低串扰的特点,既保持了传统光电倍增管灵敏度高和响应时间短的优点,又实现了简单的阵列结构。
由此,基于这种光电倍增管阵列可实现一种新的、灵敏度高及响应快的紫外光谱测量系统,改变传统光电倍增管通常只能以光谱扫描法测量光谱的现状。
实用新型内容
本实用新型提出一种基于光电倍增管阵列的紫外光谱测量系统,采用32通道多阳极光电倍增管线性阵列作为探测器,通过设计分光光路和信号放大与采集电路,完成系统的构建。该系统单次测量时间仅为6毫秒,同时具有很高的紫外灵敏度,能够实现对弱紫外辐射(尤其是微弱且快速变化的紫外辐射)进行快速测量。
本实用新型采用如下技术方案:
一种基于光电倍增管阵列的紫外光谱测量系统,包括异形光纤(1)、光纤连接器(2)、入射狭缝(3)、分光光路(4)、光电倍增管阵列(5)、模拟开关(6)、高压模块(7)、信号放大电路(8)、多路复用器(9)、模数转换器(10)、控制器(11)和计算机(12)。待测光信号由异形光纤(1)导入入射狭缝(3),入射狭缝(3)位于光纤连接器(2)后部,待测光经入射狭缝(3)进入分光光路(4),光电倍增管阵列(5)置于分光光路(4)的光谱焦面上,高压模块(7)为光电倍增管阵列(5)提供高压,高压的大小由控制器(11)通过模拟开关(6)选择不同的控制电压(0~5V)来决定,分光光路(4)将待测光色散并顺序成像于光电倍增管阵列(5)的光敏面上,光电倍增管阵列(5)的阳极输出引脚与信号放大电路(8)的输入端相连,由信号放大电路(8)完成I-V变换和信号放大,多路复用器(9)在控制器(11)的控制下按一定顺序将信号放大电路(8)的输出与模数转换器(10)的输入端连通,同时控制器(11)控制模数转换器(10)进行采样转换,并接收转换的数据,传送至计算机(12),完成光谱信号采集。
本实用新型使用光纤、光纤连接器和入射狭缝将待测光信号引入分光光路,有效地避免环境杂散光进入系统内。由于是进行紫外光谱测量,所述异形光纤采用石英光纤,其在紫外波段仍有较高的紫外通过率。异形光纤实际上是由众多细小石英光纤组成的光纤束,两端采用异形端面设计,入射端面将细光纤排列成为圆形(直径2.5mm),而出射端面则排列成矩形(1mm×5mm)。这样的设计一方面可以获得大直径尺寸的石英光纤,提高待测光信号的输入强度;另一方面可以更好地与狭缝耦合,使光谱焦面呈矩形,充分利用谱面高度来提高信号强度,进而提高系统的灵敏度。
本实用新型中,所述的光电倍增管阵列为日本滨松公司(Hamamatsu)的32通道多阳极光电倍增管线性阵列,它采用金属通道倍增极结构,空间结构紧密,具备高响应速度、高灵敏度和低串扰等特性。按照阴极材料划分,该系列光电倍增管线性阵列可分为双碱阴极和多碱阴极两类,其中双碱阴极的光电倍增管阵列光谱响应范围较窄,长波端在500nm之后光谱响应快速下降,对650nm之后的可见光和近红外都无响应;而在紫外波段280~400nm则具有很高的灵敏度。因此,与光谱响应长波端能够达到近红外区的CCD和PDA相比,双碱阴极光电倍增管阵列在探测器层面上即能屏蔽可见光和近红外,更好地起到抑制带外杂光的效果。本实用新型即采用这种双碱阴极光电倍增管线性阵列作为光电探测器件。
本实用新型所涉及的高压模块是一种专门为光电倍增管设计的、小型紧凑的高压模块。其输出电压控制方式通常有电压控制和电阻控制两种方式。电压控制方式一般在控制电压输入端接入某一恒定的直流电压(通常为0~5V),通过改变控制电压的值,来获得不同的高压输出;电阻控制方式则通常在三个电阻控制端接入一个电位器,调节电位器便可获得不同的高压输出。本实用新型采用电压控制方式,通过控制器和模拟开关选择三个不同的控制电压,获得三个不同的高压输出,而对应的增益随着高压的增大以10倍递增,并在光谱响应绝对定标中分别在三个高压下对系统单独定标,进一步保证各量程之间的10倍关系,由此拓宽光电倍增管阵列的测量范围。
本实用新型所述的多路复用器采用两级联接方式,将信号放大电路的32路输出分为4组,各组分别接至4个8选1的二级开关,然后连接一个4选1的一级开关,再与模数转换器的输入相连。这种联接方式可以有效降低多路模拟开关的输出总电容,使电路的时间常数减小,提高开关速度。同时,这种联接方式还可以使多路模拟开关的总关断漏电流变小,减小关断漏电流造成的误差。
本实用新型实现了一种基于光电倍增管阵列的紫外光谱测量系统,与现有技术相比具有明显的优点和有益效果:
1.将光电倍增管阵列作为探测器应用于光谱(尤其是紫外光谱)测量领域,改变传统光电倍增管通常只能以光谱扫描法测量光谱的现状,实现了像CCD等阵列器件一样能同时获取全光谱信号的光谱测量方式。
2.保持了传统光电倍增管灵敏度高和响应时间短的特点,具有瞬态高灵敏度,可以根据需要实现对微弱且快速变化紫外辐射的快速测量;而CCD和PDA对微弱且快速变化光信号则必须通过延长积分时间来提高灵敏度,因而无法探测微弱光随时间变化的细节。
3.采用的光电倍增管阵列具有特殊的光谱响应:紫外光谱响应高,且光谱响应范围较窄,与通常光谱响应范围较宽且峰值响应波长在可见光或近红外区的CCD和PDA相比,该系统能够从探测器层面上屏蔽可见光和近红外对探测紫外光谱的影响,更好地起到抑制带外杂光的效果。
附图说明
图1是本实用新型的结构示意图。
其中,1为异形光纤,2是光纤连接器,3是入射狭缝,4是分光光路,5是光电倍增管阵列,6是模拟开关,7是高压模块,8是信号放大电路,9是多路复用器,10是模数转换器,11是控制器,12是计算机。
图2是异形光纤的端面示意图。
其中,13是入射端面,14是出射端面。
图3是多阳极光电倍增管线性阵列的顶视图。
其中,15是32通道的光敏面,16是光电倍增管阵列的金属外壳。
图4是多路复用器两级联接方式示意图。
具体实施方式
下面结合附图具体说明本实用新型所涉及的紫外光谱测量系统。
如图1所示,本实用新型所涉及的基于光电倍增管阵列的紫外光谱测量系统由异形光纤1、光纤连接器2、入射狭缝3、分光光路4、光电倍增管阵列5、模拟开关6、高压模块7、信号放大电路8、多路复用器9、模数转换器10、控制器11和计算机12组成。待测光信号由异形光纤1传至光纤连接器2,入射狭缝3位于光纤连接器2后部,狭缝宽度10μm~3mm连续可调。所采用的异形光纤为石英光纤束,如图2所示,入射端面将光纤束排列成圆形(直径2.5mm),出射端面排列成矩形(1mm×5mm),以提高光纤和入射狭缝的耦合效率,充分利用谱面高度来提高信号强度。光信号经由入射狭缝3进入分光光路4,分光光路4采用C-T水平对称式光路设计,主要技术参数如下:工作波长范围为280~400nm,焦距200mm,相对孔径为f/4,光栅常数1200线/mm,闪耀波长为300nm。分光光路4将光信号色散并顺序成像于光电倍增管阵列5的光敏面上,如图3所示。光电倍增管阵列5采用日本滨松公司(Hamamatsu)的32通道多阳极光电倍增管线性阵列,阴极材料为双碱阴极。为了给光电倍增管阵列5提供负高压供电,高压模块7采用北京滨松的CC153小型高压模块,通过电压控制方式,由控制器(11)控制模拟开关(6)选择高压输出,使光电倍增管阵列可依次工作在三个高压上,而其增益以10倍递增,并在光谱响应绝对定标中分别在三个高压下对系统单独定标,进一步保证各量程之间的10倍关系,以此拓宽光电倍增管阵列的测量范围。光电倍增管阵列5的32通道阳极输出与32路信号放大电路8相连,完成I-V变换和电压放大;放大后的32路电压输出经过多路复用器9与模数转换器10的输入端相连。多路复用器9采用两级联接方式,如图4所示。控制器11控制多路复用器9的开启顺序,逐通道将32路电压输出与模数转换器10的输入端连通,同时控制模数转换器10进行采样和转换,接收转换数据,传送至计算机12,完成32通道光谱信号采集。

Claims (4)

1.一种基于光电倍增管阵列的紫外光谱测量系统,其特征在于:包括异形光纤(1)、光纤连接器(2)、入射狭缝(3)、分光光路(4)、光电倍增管阵列(5)、模拟开关(6)、高压模块(7)、信号放大电路(8)、多路复用器(9)、模数转换器(10)、控制器(11)和计算机(12);待测光信号由异形光纤(1)和光纤连接器(2)接入入射狭缝(3),入射狭缝(3)位于光纤连接器(2)后部,光信号由入射狭缝(3)进入分光光路(4),光电倍增管阵列(5)置于分光光路(4)的光谱焦面上,控制器(11)通过模拟开关(6)控制高压模块(7)为光电倍增管阵列(5)提供不同的高压,分光光路(4)将光信号色散并顺序成像于光电倍增管阵列(5)的光敏面上,光电倍增管阵列(5)的输出与信号放大电路(8)的输入相连,控制器(11)控制多路复用器(9)的开启顺序,将放大的电压信号逐通道与模数转换器(10)的输入相连,同时控制器(11)控制模数转换器(10)进行采样和转换,接收转换的数据并传送至计算机(12),实现光谱信号的采集。
2.根据权利要求1所述的基于光电倍增管阵列的紫外光谱测量系统,其特征在于:所述的光电倍增管阵列(5)是阴极材料为双碱的多阳极光电倍增管线性阵列,倍增系统为金属通道型。
3.根据权利要求1所述的基于光电倍增管阵列的紫外光谱测量系统,其特征在于:所述的异形光纤(1)由石英光纤束组成,入射端面将光纤束排列成圆形,出射端面排列成矩形。
4.根据权利要求1所述的基于光电倍增管阵列的紫外光谱测量系统,其特征在于:所述的高压模块(6)可在外部信号控制下输出不同的高压,控制方式为电压控制方式或电阻控制方式。
CN2011201518503U 2011-05-13 2011-05-13 一种基于光电倍增管阵列的紫外光谱测量系统 Expired - Fee Related CN202066593U (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN2011201518503U CN202066593U (zh) 2011-05-13 2011-05-13 一种基于光电倍增管阵列的紫外光谱测量系统

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN2011201518503U CN202066593U (zh) 2011-05-13 2011-05-13 一种基于光电倍增管阵列的紫外光谱测量系统

Publications (1)

Publication Number Publication Date
CN202066593U true CN202066593U (zh) 2011-12-07

Family

ID=45060454

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2011201518503U Expired - Fee Related CN202066593U (zh) 2011-05-13 2011-05-13 一种基于光电倍增管阵列的紫外光谱测量系统

Country Status (1)

Country Link
CN (1) CN202066593U (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664679A (zh) * 2012-04-10 2012-09-12 长春理工大学 无线激光通信装置中的阵列光电探测器
WO2015062445A1 (zh) * 2013-10-30 2015-05-07 清华大学 光谱分析系统
CN105676725A (zh) * 2016-01-04 2016-06-15 钢研纳克检测技术有限公司 一种用于火花光谱仪的信号采集控制系统
CN109974863A (zh) * 2019-03-01 2019-07-05 电子科技大学 一种应用于紫外焦平面探测器的积分电路
CN111800111A (zh) * 2019-12-24 2020-10-20 新绎健康科技有限公司 一种用于对微光探测器的光电倍增管进行快速开关的方法及系统
CN113009292A (zh) * 2021-02-25 2021-06-22 西安交通大学 局部放电微光光谱探测器
CN114324709A (zh) * 2021-12-29 2022-04-12 杭州谱育科技发展有限公司 基于单通道的硫和磷检测装置及方法
CN114509396A (zh) * 2022-04-20 2022-05-17 中国海洋大学 一种海洋浮游生物发光测量和识别装置
CN115128332A (zh) * 2022-06-13 2022-09-30 国网江苏省电力有限公司苏州供电分公司 一种基于光信号检测的雷电探测辅助装置和方法

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102664679A (zh) * 2012-04-10 2012-09-12 长春理工大学 无线激光通信装置中的阵列光电探测器
CN102664679B (zh) * 2012-04-10 2015-03-18 长春理工大学 无线激光通信装置中的阵列光电探测器
WO2015062445A1 (zh) * 2013-10-30 2015-05-07 清华大学 光谱分析系统
CN105676725A (zh) * 2016-01-04 2016-06-15 钢研纳克检测技术有限公司 一种用于火花光谱仪的信号采集控制系统
CN105676725B (zh) * 2016-01-04 2018-10-12 钢研纳克检测技术股份有限公司 一种用于火花光谱仪的信号采集控制系统
CN109974863A (zh) * 2019-03-01 2019-07-05 电子科技大学 一种应用于紫外焦平面探测器的积分电路
CN111800111A (zh) * 2019-12-24 2020-10-20 新绎健康科技有限公司 一种用于对微光探测器的光电倍增管进行快速开关的方法及系统
CN111800111B (zh) * 2019-12-24 2024-03-08 新绎健康科技有限公司 一种用于对微光探测器的光电倍增管进行快速开关的方法及系统
CN113009292A (zh) * 2021-02-25 2021-06-22 西安交通大学 局部放电微光光谱探测器
CN113009292B (zh) * 2021-02-25 2021-12-28 西安交通大学 局部放电微光光谱探测器
CN114324709A (zh) * 2021-12-29 2022-04-12 杭州谱育科技发展有限公司 基于单通道的硫和磷检测装置及方法
CN114509396A (zh) * 2022-04-20 2022-05-17 中国海洋大学 一种海洋浮游生物发光测量和识别装置
CN115128332A (zh) * 2022-06-13 2022-09-30 国网江苏省电力有限公司苏州供电分公司 一种基于光信号检测的雷电探测辅助装置和方法

Similar Documents

Publication Publication Date Title
CN202066593U (zh) 一种基于光电倍增管阵列的紫外光谱测量系统
CN102890177B (zh) 一种跨阻放大器的信号强度检测电路
CN103471726B (zh) 飞焦级纳秒脉冲激光能量探测装置
CN205596018U (zh) 假负载电路
CN103389451A (zh) 一种雪崩光电二极管的测试方法及测试装置
CN102680091B (zh) 一种太赫兹波的高速探测方法及装置
CN207181230U (zh) 一种用于激光粒度分析的信号采集电路
CN103323106A (zh) 一种光功率测试系统
CN108120501A (zh) 一种宽量程微弱光照度测量装置
CN112285497A (zh) 一种气体绝缘设备局部放电探测装置和气体绝缘设备
CN102141631A (zh) 一种高灵敏度、宽带氢或氘alpha谱线强度测量方法和系统
CN102419187B (zh) 一种大容量并行光纤光栅传感分析仪
CN106525232A (zh) 多通道光检测装置
CN109600122A (zh) 可变跨阻放大器电流-电压转换电路
Zhou et al. Transient measurement of light-emitting diode characteristic parameters for production lines
CN108111230A (zh) 一种复用光通信光接收组件mon管脚的电路
CN212435671U (zh) 多通道高压同步隔离强驱动能力高速光电探测器组件
CN105606213B (zh) 一种激光微脉冲峰值功率测试装置
CN107846248A (zh) 一种用于微波光子系统的超宽带多通道光电一体化探测器
CN202026306U (zh) 一种光电流监控电路
CN110501073A (zh) 基于单光电二极管的光谱检测方法及装置
CN106341189A (zh) 光模块
CN109387764A (zh) 一种高灵敏度高抗干扰的光电二极管检测器
CN114152338B (zh) 光检测装置及系统
CN104819736B (zh) 一种高功率大带宽光电探测器

Legal Events

Date Code Title Description
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20111207

Termination date: 20200513