WO2015061996A1 - 一种频谱分配方法及频谱分配装置 - Google Patents

一种频谱分配方法及频谱分配装置 Download PDF

Info

Publication number
WO2015061996A1
WO2015061996A1 PCT/CN2013/086255 CN2013086255W WO2015061996A1 WO 2015061996 A1 WO2015061996 A1 WO 2015061996A1 CN 2013086255 W CN2013086255 W CN 2013086255W WO 2015061996 A1 WO2015061996 A1 WO 2015061996A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
spectrum allocation
performance index
target performance
gbr service
Prior art date
Application number
PCT/CN2013/086255
Other languages
English (en)
French (fr)
Inventor
庄宏成
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201380079469.2A priority Critical patent/CN105519158B/zh
Priority to PCT/CN2013/086255 priority patent/WO2015061996A1/zh
Priority to EP13896220.4A priority patent/EP3046355B1/en
Priority to ES13896220T priority patent/ES2728733T3/es
Publication of WO2015061996A1 publication Critical patent/WO2015061996A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/02Resource partitioning among network components, e.g. reuse partitioning
    • H04W16/10Dynamic resource partitioning

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a spectrum allocation method and a spectrum allocation device. Background technique
  • SON self-organization network
  • OPEX operating costs
  • the use of spectrum is basically based on the spectrum planning of the network planning/deployment phase, which is basically unchanged during the operation and maintenance phase, such as spectrum multiplexing of GSM and UMTS networks.
  • Static spectrum reuse is not suitable for increasingly dynamic networks.
  • the usual method is to use partial frequency reuse (FFR) or soft frequency reuse (SFR) technology to the cell edge. Users, assign orthogonal bands.
  • FFR/SFR adjusts the frequency band allocation of the cell edge based on interference, and can not fully reflect the performance of the network.
  • the SFR frequency band allocation is coarser.
  • the frequency band is usually divided into three, up to six, and there are not many options, so the degree of freedom Limited, can not adapt to the rapid changes in network services.
  • the prior art solution is to use dynamic FFR, that is, after frequency band division, sub-bands used by edge users of neighboring cells are orthogonal, but due to imbalance of services of each cell, more cells of edge users need more Bandwidth, at this time, the sub-bands of the neighboring cells with smaller load can be used.
  • the borrowed sub-bands are generally used by neighboring cell edge users, or can be used by neighboring cell center users.
  • the present invention provides a spectrum allocation method and a spectrum allocation apparatus for solving the technical problem that the allocation of the spectrum in the operation and maintenance phase is basically unchanged in the prior art, and the change of the performance index of the cell cannot be adaptive.
  • a first aspect of the present application provides a matching allocation method, including: determining a cell cluster, where the cell cluster includes at least one first cell whose current performance indicator is lower than a preset threshold, and a neighboring cell of the first cell; a target performance indicator of each spectrum allocation scheme corresponding to the cell cluster; determining, according to the target performance indicator of each spectrum allocation scheme, a first spectrum allocation scheme in each of the spectrum allocation schemes; according to the first spectrum
  • the allocation scheme allocates a spectrum for each cell in the cluster of cells.
  • the cell cluster includes one of the first cells; and determining, by using the following steps, each spectrum allocation scheme corresponding to the cell cluster: dividing the system bandwidth into N An aliquot, where N is an integer greater than 2; determining a neighbor cell with the lowest current performance indicator of the first cell; determining i bandwidth for the edge region of the first cell, and using N - i bandwidth for a central area of the first cell, where i is less than or equal to N - 2 and greater than or equal to 1; determining j bandwidth for an edge region of a neighbor cell with the current performance indicator being the worst, N - j bandwidth a central area of the neighboring cell with the current performance indicator being the worst, where j is greater than or equal to 1, less than or equal to N - i - 1 ; determining k bandwidth for the first cell and the current performance indicator The edge area of the common neighboring cell of the worst neighboring cell, the N-th serving bandwidth is used for the central area of the common neighboring
  • the cell cluster includes at least two of the first cells;
  • Each spectrum allocation scheme corresponding to the cell cluster dividing the system bandwidth into 3M equal parts, where M is a positive integer; determining a set of cell spectrum allocations; determining, for each cell in the cell cluster, the spectrum allocation of the cell One element in the set is used for the edge area, and the remainder of the system bandwidth is used for the center area.
  • the set of spectrum allocations of the cells is determined by the formula 3 ⁇ (M ⁇ «).
  • the service requirement determines a target performance indicator of each of the spectrum allocation schemes corresponding to the cell cluster; the service requirement is specifically a guaranteed bit rate GBR service requirement and/or a non-guaranteed bit rate non-GBR service requirement.
  • the determining, by using the target performance indicator of each spectrum allocation scheme corresponding to the cell cluster specifically includes: Determining an estimated load of the central area and the edge area of each of the cells according to a service requirement of the central area and the edge area of each cell and the spectrum allocation scheme; based on a central area and an edge of each of the cells And an estimated load of the area, determining a target performance indicator of each cell, and using the target performance indicator of each cell as a target performance indicator of the spectrum allocation solution.
  • the estimated load of the central area and the edge area of each cell is determined by using the following formula: W unit G c G cr
  • the determining, by the estimated load of the central area and the edge area of each of the cells, the target performance indicator of each of the cells specifically including :
  • the service demand of the cell includes the GBR service requirement, obtain an estimated load of the GBR service based on the estimated load of the central area and the edge area of each cell; and obtain the estimated load based on the GBR service
  • the GBR service target performance indicator, and the GBR service target performance indicator is used as the target performance indicator of the cell;
  • the service requirement of the cell includes the non-GBR service requirement, obtain a non-GBR service target performance indicator based on the GBR service estimated load and the foregoing, and use the non-GBR service target performance indicator as a The target performance indicator of the cell;
  • the service demand of the cell includes the GBR service requirement and the non-GBR service requirement, obtain an estimated load of the GBR service based on the estimated load of the central area and the edge area of the cell, and estimate the load based on the GBR service.
  • the target performance indicator according to the determined each spectrum allocation scheme And selecting a spectrum allocation scheme in each of the spectrum allocation schemes, specifically: The optimal spectrum allocation scheme corresponding to the target performance indicator is used as the selected spectrum allocation scheme.
  • the method before the allocating a spectrum to each cell in the cell cluster according to the selected spectrum allocation scheme, the method further includes: determining The optimal target performance index is better than the target performance determined when the spectrum was previously allocated.
  • the determining the cell cluster specifically includes: determining the first cell; The first cell and the neighboring cell of the first cell form a cell cluster.
  • the determining the cell cluster specifically includes: determining the first cell; The first cell and the neighboring cell of the first cell are formed into a cell group; when the cell group has no neighboring cell group, the cell group is determined as one cell cluster; when the cell group has a neighboring cell group And determining, by the cell group and the neighboring cell group of the cell group, a cell cluster.
  • a second aspect of the present application provides a spectrum allocation apparatus, including: a first determining module, configured to determine a cell cluster, where the cell cluster includes at least one first cell whose current performance indicator is lower than a preset threshold, and the first a neighboring cell of the cell; a second determining module, configured to determine a target performance indicator of each spectrum allocation scheme corresponding to the cell cluster; a third determining module, configured to: according to the target performance indicator of each spectrum allocation scheme, Determining, in each of the spectrum allocation schemes, a first spectrum allocation scheme; and an allocation module, configured to allocate a frequency phrase to each cell in the cell cluster according to the first spectrum allocation scheme.
  • the cell cluster includes one of the first cells
  • the spectrum allocation apparatus further includes: a first dividing module, configured to use system bandwidth Divided into N equal parts, where N is an integer greater than 2; a fourth determining module, configured to determine a neighboring cell with the lowest current performance indicator of the first cell; and a fifth determining module, configured to determine i bandwidth
  • the N - i share bandwidth is used for the central region of the first cell, where i is less than or equal to N - 2 and is greater than or equal to 1;
  • determining j bandwidth for the current The edge region of the neighboring cell with the worst performance index, the N-j bandwidth is used for the central region of the neighboring cell with the worst performance index, where j is greater than or equal to 1, less than or equal to N - i - 1 ;
  • the k-band bandwidth is used for the edge region of the common neighboring cell of the first cell and the neighboring cell with the lowest current
  • the apparatus further includes: the cell cluster includes at least two of the first cells;
  • the allocating device further includes: a second dividing module, configured to divide the system bandwidth into 3M equal parts, where M is a positive integer; a sixth determining module, configured to determine a set of cell spectrum allocation; and a seventh determining module, configured to target For each cell in the cell cluster, one element in the set of spectrum allocations of the cell is determined for the edge region, and the remaining portion of the system bandwidth is used for the central region.
  • the sixth determining module is specifically configured to determine a set of spectrum allocations of the cells by using Equation 3 (-n).
  • the second determining module is specifically configured to:
  • the service requirement of each cell in the cell cluster determines a target performance indicator of each of the spectrum allocation schemes corresponding to the cell cluster; the service requirement is specifically a guaranteed bit rate GBR service requirement and/or a non-guaranteed bit rate non- GBR business needs.
  • the second determining module is specifically configured to: according to a spectrum allocation scheme, according to a central area and an edge of each cell The service requirements of the area and the spectrum allocation scheme, determining each of the cells An estimated load of the central area and the edge area; determining a target performance indicator of each of the cells based on an estimated load of the central area and the edge area of each of the cells, and using the target performance indicator of each of the cells as the Target performance indicators for the spectrum allocation scheme.
  • the second determining module is specifically configured to determine an estimated load of a central area and an edge area of each cell by using the following formula :
  • L is a coefficient related to service demand and noise of sub-region r of cell c;
  • the second determining module is specifically configured to: for a cell, if the service requirement of the cell includes the GBR service requirement, Determining the estimated load of the central area and the edge area of each cell, obtaining a GBR service estimation load; obtaining a GBR service target performance indicator based on the GBR service estimation load, and using the GBR service target performance indicator as the target of the cell Performance;
  • the service requirement of the cell includes the non-GBR service requirement, obtain a non-GBR service target performance indicator based on the GBR service estimated load and the foregoing, and use the non-GBR service target performance indicator as a The target performance indicator of the cell;
  • the service requirement of the cell includes the GBR service requirement and the non-GBR service Requiring, based on the estimated load of the central area and the edge area of the cell, obtaining a GBR service estimation load, obtaining a GBR service target performance indicator based on the GBR service estimation load; obtaining, based on the GBR service estimated load and the y3 ⁇ 4
  • the non-GBR service target performance indicator determines a target performance indicator of the cell according to the GBR service estimated load and the non-GBR service target performance indicator.
  • the third determining module is specifically used to The optimal spectrum allocation scheme corresponding to the target performance indicator is used as the selected spectrum allocation scheme.
  • the method further includes: an eighth determining module, configured to determine that the optimal target performance indicator is better than a target determined when the spectrum was previously allocated. Performance.
  • the first determining module is specifically configured to: Determining a first cell; forming a cell cluster by the first cell and a neighboring cell of the first cell.
  • the first determining module is specifically used to Determining the first cell; forming the first cell and the neighboring cell of the first cell into a cell group, and when the cell group has no neighboring cell group, determining the cell group as a cell cluster; When a group has a neighboring cell group, the cell group and the neighboring cell group of the cell group are determined as one cell cluster.
  • the third aspect of the present application further provides a spectrum allocation apparatus, including: a first processor, configured to determine a cell cluster, where the cell cluster includes at least one first cell whose current performance indicator is lower than a preset threshold, and the first a neighboring cell of the cell; determining a target performance indicator of each spectrum allocation scheme corresponding to the cell cluster; determining, according to the target performance indicator of each spectrum allocation scheme, a first spectrum allocation scheme in each of the spectrum allocation schemes a spectrum divider for dividing the first spectrum according to the first spectrum The allocation scheme allocates a spectrum for each cell in the cluster of cells.
  • the method further includes: a second processor, configured to divide a system bandwidth into N equal parts when the first cell is included in the cell cluster, where N is an integer greater than 2; determining a neighboring cell with the current performance indicator of the first cell being the worst; determining i bandwidth for the edge region of the first cell, and using N-i bandwidth for the first a central area of the cell, where i is less than or equal to N - 2 and greater than or equal to 1; determining that j bandwidth is used for an edge region of a neighbor cell with the current performance indicator being the worst, and N - j bandwidth is used for the The central area of the neighboring cell with the worst performance indicator, where j is greater than or equal to 1, less than or equal to N - i - 1 ; determining k bandwidth for the first cell and the neighbor with the current performance indicator being the worst An edge region of a common neighboring cell of the cell, where the Nth-kth bandwidth is used for a central area of the common
  • the method further includes: a third processor, configured to include at least two in the cell cluster When the first cell is used, the system bandwidth is divided into 3M equal parts, where M is a positive integer; determining a set of cell spectrum allocations; and determining, for each cell in the cell cluster, a set of spectrum allocations of the cells One element is used for the edge area, and the remainder of the system bandwidth is used for the center area.
  • a third processor configured to include at least two in the cell cluster When the first cell is used, the system bandwidth is divided into 3M equal parts, where M is a positive integer; determining a set of cell spectrum allocations; and determining, for each cell in the cell cluster, a set of spectrum allocations of the cells One element is used for the edge area, and the remainder of the system bandwidth is used for the center area.
  • the third processor determines the set of spectrum allocations of the cell by using a formula 3 ⁇ (M ⁇ «).
  • the first processor is specifically configured to be used according to The service requirement of each cell in the cell cluster determines each of the spectrums corresponding to the cell cluster The target performance indicator of the allocation scheme; the service requirement is a guaranteed bit rate GBR service requirement and/or a non-guaranteed bit rate non-GBR service requirement.
  • the first processor is specifically configured to: according to a spectrum allocation scheme, according to service requirements of a central area and an edge area of each cell And determining, by the spectrum allocation scheme, an estimated load of a central area and an edge area of each of the cells; determining, according to an estimated load of the central area and the edge area of each of the cells, a target performance indicator of each of the cells, And the target performance indicator of each cell is used as a target performance indicator of the spectrum allocation scheme.
  • the first processor is specifically configured to determine an estimated load of a central area and an edge area of each cell by using the following formula:
  • L is a coefficient related to service demand and noise of sub-region r of cell c;
  • the first processor is specifically configured to: if a cell needs to include the GBR service in a service requirement of the cell Determining, obtaining an estimated load of the GBR service based on an estimated load of the central area and the edge area of each of the cells; obtaining a GBR service target based on the estimated load of the GBR service An indicator, and the GBR service target performance indicator is used as a target performance indicator of the cell; if the non-GBR service requirement is included in the service requirement of the cell, based on the GBR service estimated load and the obtained, a non-GBR service target performance indicator, and the non-GBR service target performance indicator is used as a target performance indicator of the cell;
  • the service demand of the cell includes the GBR service requirement and the non-GBR service requirement, obtain an estimated load of the GBR service based on the estimated load of the central area and the edge area of the cell, and estimate the load based on the GBR service.
  • the first processor is specifically configured to:
  • the spectrum allocation scheme corresponding to the target performance indicator is used as the selected spectrum allocation scheme.
  • the first processor is further configured to determine that the optimal target performance indicator is better than a previous allocated spectrum The target performance indicator determined at the time.
  • the first processor is specifically used to Determining the first cell; forming the first cell and the neighboring cell of the first cell into a cell cluster.
  • the first processor is specifically used And determining, by the first cell, a neighboring cell of the first cell and a neighboring cell of the first cell, where the cell group has no neighboring cell group, determining the cell group as a cell cluster; When the cell group has a neighboring cell group, the cell group and the neighboring cell group of the cell group are determined as one cell cluster.
  • a concept of a cell cluster is proposed, and a cell cluster is determined, and the cell cluster includes at least one first cell whose current performance index is lower than a preset threshold and a neighboring cell of the first cell, and then a cell cluster, determining a target performance indicator of each spectrum scheme corresponding to the cell cluster, and determining a first spectrum allocation scheme in each spectrum allocation scheme according to the determined target performance indicator of each spectrum allocation scheme, and according to the first
  • the spectrum allocation scheme allocates frequency words to each cell in the cell cluster. Therefore, in the embodiment of the present application, the spectrum allocation is performed for the cell cluster, so that the cell whose current performance index is lower than the preset threshold and its neighboring cell, that is, the cell with poor performance index is used.
  • each cell cluster corresponds to multiple frequency allocation schemes, so the target performance of each spectrum allocation scheme is determined.
  • the indicator is then selected according to the determined target performance indicator of each spectrum allocation scheme, and the spectrum allocation scheme is selected in each spectrum allocation scheme, and then allocated. Therefore, in the embodiment of the present application, the spectrum allocation scheme can be dynamically adjusted according to the change of the performance index. It also avoids the problem of dynamically adjusting the spectrum, such as the interference caused by dynamic FFR mentioned in the background.
  • FIG. 1 is a flowchart of a method for controlling an electronic device according to Embodiment 1 of the present application;
  • FIG. 2 is a schematic diagram of cell clustering in an embodiment of the present application.
  • FIG. 3a-3d are schematic diagrams showing a process of determining a spectrum allocation scheme according to an embodiment of the present invention
  • FIG. 4a to FIG. 4c are schematic diagrams showing a process of determining a spectrum score in another embodiment of the present application
  • Flow chart of the particle swarm algorithm in the example
  • FIG. 6 is a functional block diagram of a spectrum allocation apparatus in Embodiment 2 of the present application.
  • FIG. 7 is a conceptual diagram of an example of hardware implementation of a spectrum allocation apparatus in Embodiment 3 of the present application.
  • the embodiment of the present application provides a spectrum allocation method and a spectrum allocation apparatus, which are used to solve the technical problem that the allocation of the spectrum in the operation and maintenance phase is basically unchanged and the change of the performance index cannot be adaptive in the prior art.
  • the technical solution in the embodiment of the present application is to solve the above technical problem.
  • the general idea is as follows: In the embodiment of the present application, a concept of a cell cluster is proposed, and a cell cluster is determined, and at least one current performance indicator in the cell cluster is lower than a pre-predetermined Setting a first cell of the threshold and a neighboring cell of the first cell, and then, for each such cell cluster, determining a target performance indicator of each spectrum plan corresponding to the cell cluster, and then determining a target performance indicator of each spectrum allocation plan according to the determined And determining, in each spectrum allocation scheme, a first spectrum allocation scheme, and assigning a frequency phrase to each cell in the cell cluster according to the first spectrum allocation scheme.
  • the spectrum allocation is performed for the cell cluster, so that the cell whose current performance index is lower than the preset threshold and its neighboring cell, that is, the cell with poor performance index is used.
  • the poor performance index indicates that the service demand is large and the network load is heavy, so the frequency domain needs to be re-allocated.
  • each cell cluster corresponds to multiple frequency allocation schemes, so the target performance of each spectrum allocation scheme is determined.
  • the indicator is then selected according to the determined target performance indicator of each spectrum allocation scheme, and the spectrum allocation scheme is selected in each spectrum allocation scheme, and then allocated. Therefore, in the embodiment of the present application, the spectrum allocation scheme can be dynamically adjusted according to the change of the performance index. In addition, it can avoid the problems caused by dynamic adjustment of the spectrum, such as the interference problem caused by the dynamic FFR mentioned in the background art.
  • the spectrum allocation device is, for example, a functional entity, which may be a separate physical device, or may be integrated into an existing network element, such as a base station, a base station controller, or a network management system.
  • a base station can refer to one or more of the access networks that are on the air interface.
  • the base station can be used to convert the received air frame to the IP packet as a router between the wireless terminal and the rest of the access network, wherein the remainder of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in CDMA, or may be a base station (NodeB) in WCDMA, or may be an evolved base station in LTE (NodeB or eNB or e-NodeB, evolutional Node B) This application is not limited.
  • This embodiment provides a spectrum allocation method.
  • a flowchart of the spectrum allocation method includes:
  • Step 101 Determine a cell cluster, where the cell cluster includes at least one first cell whose current performance indicator is lower than a preset threshold, and a neighboring cell of the first cell.
  • Step 102 Determine a target performance indicator of each spectrum allocation scheme corresponding to the cell cluster.
  • Step 103 Determine, according to a target performance indicator of each spectrum allocation scheme, a first spectrum allocation scheme in each spectrum allocation scheme.
  • Step 104 Allocate a spectrum for each cell in the cell cluster according to the first spectrum allocation scheme.
  • step 101 different implementation manners may be implemented in the specific implementation, which will be described in detail below.
  • the cell cluster is determined according to the following steps: determining the first cell; forming the first cell and the neighboring cell of the first cell into a cell group, and when the cell group has no neighboring cell group, determining the cell group as a cell Cluster; When a cell group has a neighboring cell group, the cell group and the neighboring cell group of the cell group are determined as one cell cluster.
  • the cell group has a neighboring cell group, and the edge cell indicating one cell group is the same as or adjacent to the edge cell of another cell group.
  • the determined first cell is the cell I, then the neighboring cell J of the cell I, the neighboring cell K, and other first-layer neighboring cells adjacent to the cell I and the cell I form a cell group, as shown in FIG. 2 It is a cell group.
  • it is not limited to the first layer neighboring cell, and may be a two-layer neighboring cell.
  • the cell cluster is determined according to the following steps: determining the first cell; and forming the first cell with the neighboring cell of the first cell into a cell cluster. Different from the foregoing embodiment, in this embodiment, it is not determined whether the cell group has an adjacent group.
  • the determining the first 'area may be implemented by: receiving the current performance indicator reported by each cell (hereinafter referred to as the current KPI); determining that the current KPI is lower than the preset threshold based on the current KPI reported The first cell.
  • the current KPI may be periodically counted and/or reported by each cell.
  • the statistics may be counted and/or reported after a certain trigger condition is met, for example, when a trigger command is sent to each cell.
  • the current KPI may include, but is not limited to, cell load, cell drop rate, cell blocking rate, cell throughput, and cell coverage.
  • the grouping is dynamic, the sub-band granularity within the group is arbitrary, and the degree of freedom is larger, so the optimization performance for spectrum allocation is better.
  • the cell center is shown.
  • the ratio of the sub-bandwidth used by the user to the system bandwidth, ⁇ 2 ... ⁇ represents the ratio of the sub-bandwidth used by the cell edge user to the system bandwidth
  • FIG. 3a shows the sub-bandwidth used by the central user of each cell and the sub-user used by the edge user.
  • the sum of the bandwidths is equal to the system bandwidth; the sum of the sub-bandwidths used by the edge users of the neighboring cells is equal to the system bandwidth.
  • Step 201 The system bandwidth is divided into N equal parts, where N is an integer greater than 2;
  • Step 202 determining a neighboring cell with the lowest current performance indicator of the first cell;
  • Step 203 Determine that the i-band bandwidth is used for the edge region of the first cell, and the N-i bandwidth is used for the central region of the first cell, where i is less than or equal to N - 2, and is greater than or equal to 1, and i is an integer;
  • Step 204 Determine that the j-band bandwidth is used for the edge region of the neighboring cell with the worst performance indicator, and the N-j bandwidth is used for the central region of the neighbor cell with the worst performance index, where j is greater than or equal to 1, less than or Equal to N - i - 1 , j is an integer;
  • Step 206 Determine that the neighboring cell of the first cell except the current performance indicator is the worst, and the spectrum used by the neighboring cell other than the common neighboring cell of the first cell and the neighboring cell with the lowest performance index is the worst.
  • the neighboring cell, or the neighboring cell with the worst performance indicator uses the same spectrum as the first neighboring cell and the neighboring cell of the neighboring cell with the worst performance indicator.
  • the i-partwidth in step 203 is i-shared bandwidth in order; the j-share bandwidth in step 204 is the continuous j-share bandwidth after the i-th part; the k-partwidth in step 205 is the i-th bandwidth +j shares of consecutive k shares of bandwidth.
  • the bandwidth used by the edge cells in the neighboring cells is different, so that the same-frequency interference between the cells can be avoided.
  • the i-band bandwidth, the j-band bandwidth, and the k-band bandwidth may also be discontinuous. Other methods can also be used to avoid co-channel interference.
  • the size of the collection is 2 .
  • N is equal to 8
  • the system bandwidth is divided into 8 equal parts, because the system bandwidth can be continuous or discrete, so the N equal parts can be divided, and the bandwidth of each aliquot can also be continuous. It can be discrete, but the effective bandwidth of each aliquot is the same.
  • the first octave bandwidth is continuous bandwidth, 724MHz-750MHz
  • the effective bandwidth is 26MHz
  • the second aliquot bandwidth is discrete, 751MHz respectively.
  • -760MHz, 770MHz-786MHz the effective bandwidth is also
  • step 202 is performed to determine the neighboring cell with the lowest current performance indicator in the neighboring cell of the first cell (hereinafter referred to as the first cell I) (hereinafter referred to as cell J); further, the common neighboring cell of the first cell I and the cell J This is called cell ⁇ , as shown in Figure 3c.
  • the allocated bandwidth is determined for each cell, that is, step 203 is performed, determining that the first cell I sequentially selects consecutive i bandwidths for the edge region of the first cell I, and the bandwidth of the first cell I is used for the first cell I.
  • the central area where i takes N-2 to 1 in turn, and the unit of change is 1 each time; in this embodiment, the description is continued by taking N equal to 8 as an example.
  • i takes 6
  • the first cell I can be selected.
  • Six consecutive bandwidths, for example, the first to sixth portions are used for the edge region of the first cell I, and two bandwidths, that is, the seventh and eighth bandwidths are used for the central region of the first cell I.
  • the first cell I can select 5 consecutive bandwidths, for example, the first to the fifth for the edge region of the first cell I, and take 3 bandwidths, that is, the sixth to the eighth The bandwidth is used for the central area of the first cell I. And so on, until the i loop gets 1 .
  • step 204 is performed, that is, it is determined that the continuous j bandwidth after the cell J selects the i th is used for the edge region of the cell J, and the Nj bandwidth is used for the central region of the cell J, where j is taken 1 to N-i- 1, the unit of change is 1 each time; continue to use the above example as an example.
  • the cell J can select the continuous 1 bandwidth after the 6th.
  • the edge region of the cell J that is, the seventh bandwidth is used for the edge region, and the remaining seven bandwidths are used for the central region of the cell J.
  • j can take values of 1 and 2.
  • cell J can select the continuous 1 bandwidth after the 5th and the next for the edge area of the cell J, that is, the 6th bandwidth.
  • the remaining 7 bandwidths are used for the central region of the cell J;
  • the cell J can select the 2 consecutive bandwidths after the 5th segment for the edge region of the cell J, ie, The 6 and 7th bandwidths are used for the edge area, and the remaining 6 bandwidths are used for the center area of the cell J.
  • j can take the value 1.
  • k can take the value 1
  • the cell 1 selects the continuous 1 bandwidth after the 7th packet for the edge region of the cell, that is, the 8th bandwidth is used for the edge region of the cell, and the remaining 7 bandwidths are used for the cell.
  • the cell 2 selects the second 2 consecutive bandwidths after the 6th, and is used for the edge region of the cell K. That is, the 7th and 8th bandwidths are used for the edge area of the cell K, and the remaining 6 parts are used for the edge area of the cell K.
  • j 2
  • k 1
  • the cell 1 selects the contiguous 1 bandwidth after the 7th is used for the edge region of the cell K, that is, the 8th bandwidth is used for the edge region of the cell K, and the rest 7 bandwidths are used for the central area of the cell K.
  • the spectrum used by the neighboring cell other than the cell J and the cell K of the first cell I is the same as that used by the cell J or the cell K, that is, the allocation scheme is the same as the cell J or the cell K.
  • the spectrum used by other neighboring cells adjacent to the cell J is the same as the frequency used by the cell K, and the neighboring cell adjacent to the cell K uses the same frequency spectrum as that used by the cell J.
  • FIG. 3d shows the edge region of each cell.
  • the spectrum allocation scheme F2 5, 1, 2 indicates: Cell I uses the bandwidth from 1st to 5th, for the edge region (as shown in the shaded part of Figure 3c) ), cell J uses the sixth bandwidth for the edge region, cell K uses the bandwidth from the seventh to the eighth for the edge region, and the other neighbors of cell I use the sixth bandwidth or the seventh to eighth Bandwidth is used for the edge area.
  • the value of N can be determined according to the actual situation.
  • the larger the value of N the finer the granularity of spectrum allocation, and the greater the degree of freedom.
  • the bandwidth of each sub-band is usually subcarrier. Bandwidth, so the maximum value of N is the number of subcarriers per cell.
  • the cell cluster when the cell cluster includes at least two first cells, that is, the service demand is large, the interference between the cells is relatively large, the network load is heavy, and the cell that needs to re-allocate the spectrum is increased.
  • the coarse-grained spectrum allocation is required. Please refer to Figure 4a to determine each spectrum allocation scheme corresponding to the cell cluster by the following steps:
  • Step 301 Divide the system bandwidth into 3M equal parts, where M is a positive integer;
  • Step 302 Determine a set of cell spectrum allocations;
  • Step 303 For each cell in the cell cluster, determine one element in the set of cell spectrum allocations for the edge area, and the remaining part of the system bandwidth is used for the center area.
  • step 301 it is also assumed that the system bandwidth is W, the system bandwidth used by each cell is the same, and then the system bandwidth is divided into 3M equal parts, wherein the coefficient 3 can make the sub-band used by the neighboring cell as positive as possible. Therefore, other coefficient values may be used here, as long as the sub-bands used by the neighboring cells can be made as orthogonal as possible, so that interference between the edge regions can be avoided.
  • step 302 is performed to determine a set of cell spectrum allocations.
  • the size of the set of cell frequency allocation is determined by the formula S ⁇ Af - M). Taking M equal to 2 as an example, the system bandwidth is divided into 6 equal parts, and the set of cell spectrum allocation is 9 kinds. Element (Fig. 4b), and if M is 3, the system bandwidth is divided into 9 equal parts, and the set of cell spectrum allocation has 18 elements.
  • the set of spectrum allocation of the cell can also be determined by other methods, and the value of M can also be determined according to actual needs.
  • the value of M usually refers to the size of the cell cluster, that is, the cell in the cell cluster. The number, when the number of cells is large, the value of M should not be too large. Generally, the value of M is 4.
  • step 303 is performed, that is, for each cell in the cell cluster, one element in the set of cell spectrum allocation is determined for the edge region, and the remaining portion of the system bandwidth is used for the central region, for example, as shown in FIG. 4b, spectrum allocation Scheme F2 indicates that cell 1 chooses to use the second bandwidth as the spectrum of the edge region, and the other five bandwidths are used for the central region; F6 (3, 4) indicates that cell 1 uses the third and fourth bandwidth as the spectrum of the edge region, The remaining 4 bandwidths are used for the central area. For cell 2 and cell 3, such an allocation scheme is equally applicable.
  • Step 102 is specifically: determining, according to the service requirement of each cell in the cell cluster, a target performance indicator of each spectrum allocation scheme corresponding to the cell cluster; wherein, the service requirement is specifically a guaranteed bit rate GBR industry.
  • the service requirement is specifically a guaranteed bit rate GBR industry.
  • bit rate non-GBR service requirements There is a need and/or no guarantee of bit rate non-GBR service requirements.
  • business needs can also be other business needs.
  • the method of the embodiment further includes: acquiring the service requirement of each cell in the cell cluster, for example, the base station periodically reporting.
  • the service requirement is basically determined.
  • the request information includes the required guaranteed bit rate.
  • the location information of the user it can be determined which pixel (pixel) the user is in, so based on
  • a pixel whose signal-to-noise ratio is greater than a certain threshold belongs to a central region, otherwise it is an edge region; for example, a pixel whose received signal strength is greater than a certain threshold belongs to the center. Area, otherwise edge area.
  • non-GBR services there are many ways to obtain non-GBR service requirements. For example, based on scheduler information, such as the throughput of scheduled non-GBR services, non-GBR services can be obtained for each sub-area of each cell.
  • the demand in combination with the GBR service requirements, obtains the total service demand of each sub-area of each cell, ⁇ ⁇ , ⁇ 0 ⁇ '", where s represents the type of service, such as a GBR service or a non-GBR service.
  • Step 102 specifically includes: determining, for a spectrum allocation scheme, an estimated load of a central area and an edge area of each cell according to a service requirement and a spectrum allocation scheme of a central area and an edge area of each cell; and a central area based on each cell And the estimated load of the edge region, determining the target performance indicator of each cell, and using the target performance indicator of each cell as the target performance indicator of the spectrum allocation scheme.
  • N w three parameters, N w , are introduced for the sub-region r of the cell c. H ,
  • G - is the coefficient related to the service demand of the sub-region r of the cell c
  • is the coefficient related to the service demand and noise of the sub-region r of the cell c
  • and is related to the service demand and the interference of the sub-region r of the cell c Coefficient
  • is the data rate required for the service s of the pixel P
  • is the number of active users of the service s of the pixel P
  • represents the traffic of the service s of the pixel P.
  • ⁇ and ⁇ ' are the transmission powers of the sub-regions r and r, respectively, and g w and the channel gains of the sub-region r and the associated base station to the pixel p, respectively, which can be obtained, for example, according to the transmission power and the reception power.
  • K ch , ⁇ and ⁇ are the coefficients corresponding to scheduling, bandwidth and signal to noise ratio, respectively.
  • the estimated load of the GBR service and the non-GBR service in the sub-area is: Per
  • ⁇ 7W is the bandwidth of each subband
  • is the subband set of the cell dice region r
  • the target performance indicator of each cell is determined based on the estimated load of each cell, including:
  • the estimated load of the GBR service is obtained based on the estimated load of the central area and the edge area of each cell; and the GBR service target performance indicator is obtained based on the estimated load of the GBR service.
  • GBR business target performance The indicator serves as the target performance indicator of the cell.
  • the sub-area of the cell C is obtained based on the estimated load of the central area and the edge area of the cell.
  • the estimated GBR traffic of the sub-area r can obtain the target KPI of the GBR service, such as call dropout and blocking rate: Where C ' r P is the number of users of the GBR service in the sub-area r of the cell c.
  • the non-GBR service target performance indicator is obtained based on the estimated load of the GBR service estimation load and the sub-region r of the cell c, and the non-GBR service target performance is obtained.
  • the indicator serves as the target performance indicator of the cell.
  • the target performance indicator is, for example, throughput
  • the throughput THP C , r can be calculated by the following formula:
  • the spectral efficiency of the pixel p is, depending on the signal to noise ratio).
  • the signal-to-noise ratio cr ' d ' rd ' pd ' r J is affected by the interference of the central area and the edge area of the neighboring cell, and the interference depends on the frequency band allocation of the central area and the edge area of the cell, ie spectrum allocation Band allocation in the scenario.
  • 'P Gr P is the user of the non- GBR service of the sub-region r of the cell c rpnGBR réelle _ ⁇ .avg I avg
  • the estimated load of the GBR service is obtained based on the estimated load of the central area and the edge area of the cell, and the GBR service target performance is obtained based on the estimated load of the GBR service.
  • the indicator is based on the GBR service estimated load sum, obtains the non-GBR service target performance indicator, and determines the target performance indicator of the cell according to the GBR service estimated load and the non-GBR service target performance indicator.
  • the GBR service target performance indicator and the non-GBR service target performance indicator are similar to those described in the foregoing two aspects, so no further details are described.
  • the following describes the estimated load and non-GBR service target performance according to the GBR service.
  • the indicator determines the implementation process of the target performance indicator of the cell.
  • the joint target performance indicator that is, the joint KPI
  • KPI w thp ⁇ THP c n ; o + w cdbr ⁇ (l - CDBR r ) ww
  • ⁇ and 1 ⁇ are the weights of throughput and dropped call blocking rate, respectively, determined by the operational strategy; ⁇ is the normalized throughput.
  • step 103 is next performed, that is, the first spectrum allocation scheme is determined in each spectrum allocation scheme according to the target performance indicator of each spectrum allocation scheme.
  • the spectrum allocation scheme corresponding to the optimal target performance indicator may be specifically used as the selected frequency allocation scheme.
  • the optimal target performance may be a single KPI optimal, such as call dropout and blocking rate CDBR optimal, or throughput THP optimal, or combined KPI optimal.
  • the optimal spectrum allocation scheme is obtained in two steps in this embodiment: First, based on multi-objective optimization Obtaining a multi-KPI optimal spectrum allocation set, that is, a Pareto Set; Then, based on the operation strategy, selecting a joint KPI optimal spectrum allocation scheme from the spectrum allocation set.
  • an enhanced particle swarm algorithm can be used.
  • fitness is a plurality of KPIs, including but not limited to CDBR of GBR service, THP of non-GBR service, average load, average SINR and so on.
  • a multi-KPI optimal spectrum allocation set can be determined.
  • the optimal KPI optimal spectrum allocation scheme is selected from the spectrum allocation set.
  • the network has many KPIs, and the operators have different tendencies, which determines the operation strategy.
  • the TBR of the CDBR and non-GBR services of the GBR service is more important than the average load and the average SINR.
  • the CDBR of the GBR service is more important than the THP of the non-GBR service. Therefore, based on the weights of these KPIs, the joint KPI optimal spectrum allocation scheme can be selected from the spectrum allocation Pareto Set. For example, if you want to obtain a joint KPI optimal spectrum allocation scheme for CDBR and THP, assign each spectrum allocation in the Pareto Set to the spectrum and calculate its joint KPI:
  • KPI t w ⁇ - CDBR ) + ⁇ HPR, where w cdbr and w ihp are the weights of CDBR and ⁇ , respectively, and THPR is the normalized throughput.
  • the spectrum allocation scheme corresponding to the minimum ⁇ is the selected spectrum allocation scheme.
  • the above method can also be applied to the case where a cell cluster includes a first cell.
  • the method further comprises: determining that the optimal target performance indicator is better than the target performance indicator determined when the spectrum was previously allocated. Step 104 is only implemented if this condition is met, which ensures that the implemented spectrum allocation scheme can bring benefits.
  • step 104 is performed next, according to the first spectrum allocation scheme, each small cell cluster The area is assigned a frequency.
  • the spectrum allocation is performed for the cell cluster, so that the current performance indicator is lower than the preset threshold and the neighboring cell, that is, the performance index is compared. If the poor performance of the cell indicates that the service demand is large and the network load is heavy, the spectrum needs to be redistributed.
  • each cell cluster corresponds to multiple spectrum allocation schemes, so the service of each cell is combined.
  • Dynamically adjusting the spectrum allocation scheme according to the performance index can avoid the problem caused by dynamically adjusting the spectrum, such as the interference problem caused by the dynamic FFR mentioned in the background art.
  • the apparatus includes: a first determining module 401, configured to determine a cell cluster, where the cell cluster includes at least one current performance indicator lower than a preset. a first cell of the threshold and a neighboring cell of the first cell; a second determining module 402, configured to determine a target performance indicator of each spectrum allocation scheme corresponding to the cell cluster; and a third determining module 403, configured to allocate a scheme according to each spectrum
  • the target performance indicator, the first spectrum allocation scheme is determined in each spectrum allocation scheme; the allocation module 404 is configured to allocate a frequency phrase to each cell in the cell cluster according to the first spectrum allocation scheme.
  • the first determining module 401 is specifically configured to: determine a first cell; and form a cell cluster by the first cell and the neighboring cell of the first cell.
  • the first determining module 401 is specifically configured to: determine a first cell; form a first cell and a neighboring cell of the first cell into a cell group, and when the cell group has no neighboring cell group, determine the cell group When a cell group has a neighboring cell group, the cell group and the neighboring cell group of the cell group are determined as one cell cluster.
  • the device further includes: a first dividing module, configured to divide the system bandwidth into N equal parts, where N is an integer greater than 2; and a fourth determining module, configured to determine a neighboring cell with the worst performance indicator of a cell; a fifth determining module, configured to determine the i-band Wide for the edge region of the first cell, N - i share bandwidth for the central region of the first cell, where i is less than or equal to N - 2, and greater than or equal to 1; determining j bandwidth for the current performance index is the worst The edge area of the neighboring cell, the N-j bandwidth is used for the central area of the neighboring cell with the worst performance index, where j is greater than or equal to 1, less than or equal to N _ i _ l ; An area and an edge area of a common neighboring cell of the neighboring cell with the worst performance indicator, the N-k bandwidth is used for the central area of the common neighboring cell of the first cell and the neighboring cell with the worst performance index
  • the apparatus further includes: a second dividing module, configured to divide the system bandwidth into 3M equal parts, where M is a positive integer; and a sixth determining module, configured to determine the cell a set of spectrum allocations; a seventh determining module, configured to determine, for each cell in the cell cluster, an element in the set of cell spectrum allocations for the edge region, and the remaining portion of the system bandwidth is used for the central region.
  • a second dividing module configured to divide the system bandwidth into 3M equal parts, where M is a positive integer
  • a sixth determining module configured to determine the cell a set of spectrum allocations
  • a seventh determining module configured to determine, for each cell in the cell cluster, an element in the set of cell spectrum allocations for the edge region, and the remaining portion of the system bandwidth is used for the central region.
  • the sixth determining module is specifically configured to determine a set of cell spectrum allocations by using Equation 3 ⁇ (M- «).
  • the second determining module 402 is specifically configured to: determine, according to the service requirement of each cell in the cell cluster, a target performance indicator of each spectrum allocation scheme corresponding to the cell cluster; the service requirement is specifically a guaranteed bit rate GBR service. Demand and/or non-guaranteed bit rate non-GBR service requirements.
  • the second determining module 402 is specifically configured to: determine, according to a spectrum allocation scheme, a central area and an edge area of each cell according to a service requirement and a spectrum allocation scheme of a central area and an edge area of each cell. Estimated load; based on the estimated load of the central area and the edge area of each cell, the target performance indicator of each cell is determined, and the target performance indicator of each cell is used as the target performance indicator of the spectrum allocation scheme.
  • the second determining module 402 is specifically configured to determine the middle of each cell by using the following formula: Estimated load for heart and edge regions:
  • the function f is ⁇ 1 + 1/ ;
  • ⁇ '' ⁇ / is the bandwidth of each sub-bandwidth; W is the system bandwidth, and N is the number of equal parts of the system bandwidth;
  • the second determining module 402 is specifically configured to: obtain, for a cell, a GBR service estimation load based on an estimated load of a central area and an edge area of each cell, if the service demand of the cell includes a GBR service requirement; Estimate the load, obtain the performance target of the GBR service target, and use the GBR service target performance indicator as the target performance indicator of the cell;
  • the GBR service estimation load and c , r are used to obtain the non-GBR service target performance indicator, and the non-GBR service target performance indicator is used as the target performance indicator of the cell;
  • the service demand of the cell includes the GBR service requirement and the non-GBR service requirement
  • the estimated load of the central area and the edge area of the cell is obtained
  • the estimated load of the GBR service is obtained
  • the GBR service target performance indicator is obtained based on the estimated load of the GBR service
  • the service estimation load sum, r obtains the non-GBR service target performance indicator, and determines the target performance indicator of the cell according to the GBR service estimated load and the non-GBR service target performance indicator.
  • the third determining module 403 is specifically configured to use an optimal target performance indicator.
  • the corresponding frequency allocation scheme is selected as the frequency allocation scheme.
  • the apparatus further includes: an eighth determining module, configured to determine that the optimal target performance indicator is better than the target performance indicator determined when the spectrum was previously allocated.
  • the spectrum allocation apparatus of the present embodiment is applicable to the implementation method of the spectrum allocation apparatus in this embodiment by using the foregoing detailed description of the method for spectrum allocation. Therefore, for the sake of brevity of the description, Detailed.
  • the present embodiment provides a spectrum allocation apparatus.
  • a conceptual diagram of an example of hardware implementation of a spectrum allocation apparatus the spectrum allocation apparatus includes:
  • the first processor 501 is configured to determine a cell cluster, where the cell cluster includes at least one first cell with a current performance indicator lower than a preset threshold and a neighboring cell of the first cell; determining target performance of each spectrum allocation scheme corresponding to the cell cluster An indicator; a first spectrum allocation scheme is determined in each spectrum allocation scheme according to a target performance indicator of each spectrum allocation scheme; and a spectrum allocator 504 is configured to allocate a spectrum to each cell in the cell cluster according to the first spectrum allocation scheme. .
  • bus 500 can include any number of interconnected buses and bridges, and bus 500 will include one or more processors and memories represented by first processor 501.
  • the various circuits of the memory represented by 502 are linked together.
  • the bus 500 can also link various other circuits such as peripherals, voltage regulators, and power management circuits, which are well known in the art and, therefore, will not be further described herein.
  • the bus interface 505 provides an interface between the bus 500 and the receiver 503, and/or the transmitter. Receiver 503 and transmitter may be the same component, i.e., a transceiver, providing means for communicating with various other devices on a transmission medium.
  • Bus interface 505 also provides an interface to spectrum splitter 504.
  • the first processor 501 is responsible for managing the bus 500 and the usual processing, and the memory 502 can be used to store data used by the processor 501 when performing operations.
  • the receiver 503 receives the data through the antenna and processes the data, and the information modulated on the carrier is restored, and the receiver is received.
  • the information recovered by the device 503 is provided to the receiving frame processor, which parses each frame, the receiving processor decodes the frame, and provides the successfully decoded control signal to the first processor 501, if some frames are not received by the frame
  • the processor successfully decodes, and the first processor 501 can also use the ACK and/or NACK protocols to support retransmission requests for those frames.
  • the first processor 501 can provide various functions including timing, peripheral interfaces, voltage regulation, power management, and other control functions.
  • Memory 502 can be used to store data and software for the base station.
  • the first processor 501 is further configured to: determine a first cell; and form a cell cluster by the first cell and the neighboring cell of the first cell.
  • the first processor 501 is further configured to: determine the first cell; form a cell group of the first cell and the neighboring cell of the first cell, and when the cell group has no neighboring cell group, the cell group It is determined as one cell cluster; when the cell group has a neighboring cell group, the cell group and the neighboring cell group of the cell group are determined as one cell cluster.
  • the apparatus further includes: a third processor, configured to divide the system bandwidth into 3M equal parts, where M is a positive integer; determining a set of cell spectrum allocation; For each cell in the cluster, determine an element in the set of cell spectrum allocations for the edge The edge area, the remainder of the system bandwidth is used for the central area.
  • a third processor configured to divide the system bandwidth into 3M equal parts, where M is a positive integer; determining a set of cell spectrum allocation; For each cell in the cluster, determine an element in the set of cell spectrum allocations for the edge The edge area, the remainder of the system bandwidth is used for the central area.
  • the third processor specifically determines a set of cell spectrum allocations by using Equation 3 ⁇ (M - «).
  • the first processor 501 is specifically configured to: determine, according to the service requirement of each cell in the cell cluster, a target performance indicator of each spectrum allocation scheme corresponding to the cell cluster; the service requirement is specifically a guaranteed bit rate GBR service. Demand and/or non-guaranteed bit rate non-GBR service requirements.
  • the first processor 501 is specifically configured to determine, according to a spectrum allocation scheme, a central area and an edge area of each cell according to a service requirement and a spectrum allocation scheme of a central area and an edge area of each cell. Estimated load; based on the estimated load of the central area and the edge area of each cell, the target performance indicator of each cell is determined, and the target performance indicator of each cell is used as the target performance indicator of the spectrum allocation scheme.
  • the first processor 501 is specifically configured to determine an estimated load of a central area and an edge area of each cell by using the following formula:
  • L is a coefficient related to service demand and noise of sub-region r of cell c;
  • the first processor 501 is specifically configured to: for a cell, if the service requirement of the cell includes the GBR service requirement, based on the estimated load of the central area and the edge area of each cell, Obtaining the GBR service estimation load; obtaining the GBR service target performance indicator based on the GBR service estimation load, and using the GBR service target performance indicator as the target performance indicator of the cell;
  • the GBR service estimation load and c , r are used to obtain the non-GBR service target performance indicator, and the non-GBR service target performance indicator is used as the target performance indicator of the cell;
  • the service demand of the cell includes the GBR service requirement and the non-GBR service requirement
  • the estimated load of the central area and the edge area of the cell is obtained
  • the estimated load of the GBR service is obtained
  • the GBR service target performance indicator is obtained based on the estimated load of the GBR service
  • the service estimation load and c , r obtain the performance index of the non-GBR service target, and determine the target performance indicator of the cell according to the GBR service estimated load and the non-GBR service target performance indicator.
  • the first processor 501 is specifically configured to use the frequency allocation scheme corresponding to the optimal target performance indicator as the selected frequency allocation scheme.
  • the first processor 501 is specifically configured to determine that the optimal target performance indicator is better than the target performance indicator determined when the spectrum was previously allocated.
  • the first processor 501, the second processor, and the third processor may be the same or the same.
  • the spectrum allocation apparatus of the present embodiment is applicable to the implementation method of the spectrum allocation apparatus in this embodiment by using the foregoing detailed description of the method for spectrum allocation. Therefore, for the sake of brevity of the description, Detailed.
  • a concept of a cell cluster is proposed, and a cell cluster is determined, and the cell cluster includes at least one first cell whose current performance index is lower than a preset threshold and a neighboring cell of the first cell, and then Cell cluster, determining target performance indicators of each spectrum scheme corresponding to the cell cluster, and then according to the determined target performance indicators of each spectrum allocation scheme, in each spectrum allocator
  • a first spectrum allocation scheme is determined in the case, and a frequency phrase is allocated to each cell in the cell cluster according to the first spectrum allocation scheme. Therefore, in the embodiment of the present application, the spectrum allocation is performed for the cell cluster, so that the cell whose current performance index is lower than the preset threshold and its neighboring cell, that is, the cell with poor performance index is used.
  • each cell cluster corresponds to multiple frequency allocation schemes, so the target performance of each spectrum allocation scheme is determined.
  • the indicator is then selected according to the determined target performance indicator of each spectrum allocation scheme, and the spectrum allocation scheme is selected in each spectrum allocation scheme, and then allocated. Therefore, in the embodiment of the present application, the spectrum allocation scheme can be dynamically adjusted according to the change of the performance index. In addition, it can avoid the problems caused by dynamic adjustment of the spectrum, such as the interference problem caused by the dynamic FFR mentioned in the background art.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the application can take the form of an entirely hardware embodiment, an entirely software embodiment, or a combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer-usable storage media (including but not limited to disk storage and optical storage, etc.) including computer usable program code.
  • the present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowcharts and/or block diagrams, and combinations of flow and/or blocks in the flowcharts and/or block diagrams can be implemented by computer program instructions.
  • the computer program instructions can be provided to a first processor 501 of a general purpose computer, special purpose computer, embedded processor or other programmable data processing device to produce a machine such that the first processor is passed through a computer or other programmable data processing device
  • the instructions executed by 501 generate means for implementing the functions specified in one or more flows of the flowchart or in a block or blocks of the flowchart.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本申请提供一种频谱分配方法及频谱分配装置,该方法包括:确定小区簇,所述小区簇包括至少一个当前性能指标低于预设门限的第一小区以及所述第一小区的邻小区;确定所述小区簇对应的每个频谱分配方案的目标性能指标;根据所述每个频谱分配方案的目标性能指标,在所述每个频谱分配方案中确定第一频谱分配方案;根据所述第一频谱分配方案为所述小区簇中的每个小区分配频谱。

Description

一种频譜分配方法及频譜分配装置
技术领域
本申请涉及通信技术领域, 尤其涉及一种频谱分配方法及频谱分配装置。 背景技术
随着用户数据速率需求的不断增大, 基站小型化的发展趋势日益明显, 因而, 移动通信网络日益动态化, 运营商要维护的网元数量在急剧增长, 所 需投入的维护成本也越来越大。 另外, 用户应用的高度移动性, 导致了网络 业务的变化日益频繁。 自组织网络( self-organization network; SON )技术的 提出, 就是希望通过在移动通信网络的规划、 部署、 运维阶段实现尽可能的 自动化, 来适应网络的变化以及达到节省运营成本 (OPEX)的目的。
在现有的蜂窝网络中, 频谱的使用基本基于网络规划 /部署阶段的频谱规 划, 在运维阶段基本不变, 如 GSM、 UMTS网络的频谱复用。 静态的频谱复 用, 不适合日益动态化的网络。 在 LTE网络, 由于频语可以完全复用, 在频谱 使用时, 需要考虑小区之间的干扰, 通常的做法是采用部分频率复用 (FFR ) 或软频率复用 (SFR )技术, 对小区边缘的用户, 分配正交的频带。 FFR/SFR 基于干扰调整小区边缘的频带的分配, 不能完全反映网络的性能, 另外, SFR 频带分配的粒度较粗, 频带通常划分为 3份, 最多为 6份, 可选项不多, 所以 自由度有限, 不能适应网络业务的快速变化。
现有技术的解决方案是使用动态的 FFR, 即频带划分后,相邻小区的边缘 用户使用的子带是正交的, 但由于各小区业务的不平衡, 边缘用户多的小区 需要更多的带宽, 这时候可以使用负载较小的相邻小区的子带, 借用的子带 一般是相邻小区边缘用户所使用的, 也可以是相邻小区中心用户所使用的。
然而, 本申请人在实现本申请实施例中的技术方案的过程中发现, 现有 技术虽然可以在一定程度上调整小区边缘的频带的分配, 但是借用子带后, 子带的正交性被破坏, 所以会对小区中心的用户带来干扰。 发明内容
本申请提供一种频谱分配方法及频谱分配装置, 用以解决现有技术中存 在的在运维阶段频谱的分配基本不变, 无法自适应小区性能指标的变化的技 术问题。
本申请第一方面提供了一种匹配分配方法, 包括: 确定小区簇, 所述小 区簇包括至少一个当前性能指标低于预设门限的第一小区以及所述第一小区 的邻小区; 确定所述小区簇对应的每个频谱分配方案的目标性能指标; 根据 所述每个频谱分配方案的目标性能指标, 在所述每个频谱分配方案中确定第 一频谱分配方案; 根据所述第一频谱分配方案为所述小区簇中的每个小区分 配频谱。
结合第一方面, 在第一种可能的实现方式中, 所述小区簇中包括一个所 述第一小区; 通过以下步骤确定所述小区簇对应的每个频谱分配方案: 将系 统带宽划分为 N等份, 其中, N为大于 2的整数; 确定所述第一小区的当前 性能指标最差的邻小区; 确定 i份带宽用于所述第一小区的边缘区域, N - i 份带宽用于所述第一小区的中心区域, 其中, i 小于或等于 N - 2, 且大于或 等于 1 ; 确定 j份带宽用于所述当前性能指标最差的邻小区的边缘区域, N - j 份带宽用于所述当前性能指标最差的邻小区的中心区域, 其中, j 大于或等于 1 , 小于或等于 N - i - 1 ; 确定 k份带宽用于所述第一小区和所述当前性能指 标最差的邻小区的共同邻小区的边缘区域,第 N - k份带宽用于所述第一小区 和所述当前性能指标最差的邻小区的共同邻小区的中心区域, 其中, k=N _ i -j; 确定所述第一小区的除所述当前性能指标最差的邻小区, 和所述第一小 区和所述当前性能指标最差的邻小区的共同邻小区外的其他邻小区使用的频 谱与所述当前性能指标最差的邻小区, 或所述第一小区和所述当前性能指标 最差的邻小区的共同邻小区使用的频谱相同。
结合第一方面或第一方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 所述小区簇中包括至少两个所述第一小区; 通过以下步骤确定所 述小区簇对应的每个频谱分配方案: 将系统带宽划分为 3M 等份, 其中, M 为正整数; 确定小区频谱分配的集合; 针对所述小区簇中每个小区, 确定所 述小区频谱分配的集合中的一个元素用于边缘区域, 所述系统带宽的剩余部 分用于中心区域。
结合第一方面的第二种可能的实现方式, 在第三种可能的实现方式中, 具体通过公式 3∑(M - «)确定所述小区频谱分配的集合。 结合第一方面、 第一方面的第一种可能的实现方式至第三种可能的实现 方式中的任意一种, 在第四种可能实现的方式中, 根据所述小区簇中每个小 区的业务需求确定所述小区簇对应的所述每个频谱分配方案的目标性能指 标; 所述业务需求具体为保证比特率 GBR 业务需求和 /或不保证比特率 non-GBR业务需求。
结合第一方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所述确定所述小区簇对应的每个频谱分配方案的目标性能指标, 具体包括: 针对一个频谱分配方案, 根据所述每个小区的中心区域和边缘区域的业务需 求和所述频谱分配方案, 确定所述每个小区的中心区域和边缘区域的估计负 载; 基于所述每个小区的中心区域和边缘区域的估计负载, 确定所述每个小 区的目标性能指标, 并将所述每个小区的目标性能指标作为所述频谱分配方 案的目标性能指标。
结合第五种可能的实现方式, 在第六种可能的实现方式中, 具体通过以 下公式确定所述每个小区的中心区域和边缘区域的估计负载: Wunit Gc Gc r
其中, 为小区 c的子区域 r的估计负载, r=l,2分别表示所述中心区域 =^7 为每份子带宽的带宽; w为系统带宽, Ν为所述系统带宽划分 的等份数;
为小区 c的子区域 r的与业务需求有关的系数;
为小区 c的子区域 r的与业务需求、 噪声有关的系数;
为小区 c的子区域 r的与业务需求、 干扰有关的系数。
结合第六种可能的实现方式, 在第七种可能的实现方式中, 所述基于所 述每个小区的中心区域和边缘区域的估计负载, 确定所述每个小区的目标性 能指标, 具体包括:
针对一个小区, 若所述小区的业务需求中包括所述 GBR业务需求, 基于 所述每个小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计负载; 基于所述 GBR业务估计负载, 获得 GBR业务目标性能指标, 并将所述 GBR 业务目标性能指标作为所述小区的目标性能指标;
若所述小区的业务需求中包括所述 non-GBR业务需求, 基于所述 GBR 业务估计负载和所述 , 获得 non-GBR 业务目标性能指标, 并将所述 non-GBR业务目标性能指标作为所述小区的目标性能指标;
若所述小区的业务需求中包括所述 GBR业务需求和所述 non-GBR业务 需求, 基于所述小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计 负载, 基于所述 GBR业务估计负载, 获得 GBR业务目标性能指标; 基于所 述 GBR业务估计负载和所述 y¾,r , 获得 non-GBR业务目标性能指标, 根据 所述 GBR业务估计负载和 non-GBR业务目标性能指标确定所述小区的目标 性能指标。
结合第一方面、 第一种可能的实现方式至第七种可能的实现方式中的任 意一种, 在第八种可能的实现方式中, 所述根据确定的每个频谱分配方案的 目标性能指标, 在所述每个频谱分配方案中选择频谱分配方案, 具体包括: 将最优的所述目标性能指标对应的频谱分配方案作为所述选择的频谱分配方 案。
结合第八种可能的实现方式, 在第九种可能的实现方式中, 在所述按照 所述选择的所述频谱分配方案为所述小区簇中的每个小区分配频谱之前, 还 包括: 确定所述最优的所述目标性能指标优于前次分配频谱时确定的目标性 肯¾才旨才示。
结合第一方面、 第一种可能的实现方式至第九种可能的实现方式中的任 意一种, 在第十种可能的实现方式中, 所述确定小区簇具体包括: 确定第一 小区; 将所述第一小区与所述第一小区的邻小区组成小区簇。
结合第一方面、 第一种可能的实现方式至第九种可能的实现方式中的任 意一种, 在第十一种可能的实现方式中, 所述确定小区簇具体包括: 确定第 一小区; 将所述第一小区与所述第一小区的邻小区组成一小区组; 所述小区 组没有邻小区组时, 将所述小区组确定为一个小区簇; 所述小区组有邻小区 组时, 将所述小区组以及所述小区组的邻小区组确定为一个小区簇。
本申请第二方面提供一种频谱分配装置, 包括: 第一确定模块, 用于确 定小区簇, 所述小区簇中包括至少一个当前性能指标低于预设门限的第一小 区以及所述第一小区的邻小区; 第二确定模块, 用于确定所述小区簇对应的 每个频谱分配方案的目标性能指标; 第三确定模块, 用于根据所述每个频谱 分配方案的目标性能指标, 在所述每个频谱分配方案中确定第一频谱分配方 案; 分配模块, 用于根据所述第一频谱分配方案为所述小区簇中的每个小区 分配频语。
结合第二方面, 在第二方面的第一种可能的实现方式中, 所述小区簇中 包括一个所述第一小区; 所述频谱分配装置还包括: 第一划分模块, 用于将 系统带宽划分为 N等份, 其中, N为大于 2的整数; 第四确定模块, 用于确 定所述第一小区的当前性能指标最差的邻小区; 第五确定模块, 用于确定 i 份带宽用于所述第一小区的边缘区域, N - i份带宽用于所述第一小区的中心 区域, 其中, i小于或等于 N - 2, 且大于等于 1 ; 确定 j份带宽用于所述当前 性能指标最差的邻小区的边缘区域, N - j份带宽用于所述当前性能指标最差 的邻小区的中心区域, 其中, j 大于或等于 1 , 小于或等于 N - i - 1 ; 确定 k 份带宽用于所述第一小区和所述当前性能指标最差的邻小区的共同邻小区的 边缘区域, N - k份带宽用于所述第一小区和所述当前性能指标最差的邻小区 的共同邻小区的中心区域, 其中, k=N - i - j ; 确定所述第一小区的除所述当 前性能指标最差的邻小区, 和所述第一小区和所述当前性能指标最差的邻小 区的共同邻小区外的其他邻小区使用的频谱与所述当前性能指标最差的邻小 区, 或所述第一小区和所述当前性能指标最差的邻小区的共同邻小区使用的 频谱相同。
结合第二方面或第二方面的第一种可能的实现方式, 在第二种可能的实 现方式中, 该装置还包括: 所述小区簇中包括至少两个所述第一小区; 所述 频谱分配装置还包括:第二划分模块,用于将系统带宽划分为 3M等份,其中, M为正整数; 第六确定模块, 用于确定小区频谱分配的集合; 第七确定模块, 用于针对所述小区簇中每个小区, 确定所述小区频谱分配的集合中的一个元 素用于边缘区域, 所述系统带宽的剩余部分用于中心区域。
结合第二方面的第二种可能的实现方式, 在第三种可能的实现方式中,
M-1
所述第六确定模块具体用于通过公式 3∑( - n)确定所述小区频谱分配的集 合。
结合第二方面、 第二方面的第一种可能的实现方式至第三种可能的实现 方式中的任意一种, 在第四种可能的实现方式中, 第二确定模块具体用于: 根据所述小区簇中每个小区的业务需求确定所述小区簇对应的所述每个频谱 分配方案的目标性能指标; 所述业务需求具体为保证比特率 GBR业务需求和 /或不保证比特率 non-GBR业务需求。
结合第二方面的第四种可能的实现方式, 在第五种可能的实现方式中, 所述第二确定模块具体用于: 针对一个频谱分配方案, 根据所述每个小区的 中心区域和边缘区域的业务需求和所述频谱分配方案, 确定所述每个小区的 中心区域和边缘区域的估计负载; 基于所述每个小区的中心区域和边缘区域 的估计负载, 确定所述每个小区的目标性能指标, 并将所述每个小区的目标 性能指标作为所述频谱分配方案的目标性能指标。
结合第二方面的第五种可能的实现方式, 在第六种可能的实现方式中, 所述第二确定模块具体用于通过以下公式确定所述每个小区的中心区域和边 缘区域的估计负载:
Figure imgf000008_0001
其中, A 为小区 c的子区域 r的估计负载, r=l,2分别表示所述中心区域 和所述边缘区域; 为所述小区 c的子区域 r的子带宽集合; 函数 f为 ¥1 + 1» ;
=^7 为每份子带宽的带宽; w为系统带宽, N为所述系统带宽划分 的等份数;
为小区 c的子区域 r的与业务需求有关的系数;
L为小区 c的子区域 r的与业务需求、 噪声有关的系数;
为小区 c的子区域 r的与业务需求、 干扰有关的系数。
结合第六种可能的实现方式, 在第七种可能的实现方式中, 所述第二确 定模块具体用于: 针对一个小区, 若所述小区的业务需求中包括所述 GBR业 务需求, 基于所述每个小区的中心区域和边缘区域的估计负载, 获得 GBR业 务估计负载; 基于所述 GBR业务估计负载, 获得 GBR业务目标性能指标, 并将所述 GBR业务目标性能指标作为所述小区的目标性能指标;
若所述小区的业务需求中包括所述 non-GBR业务需求, 基于所述 GBR 业务估计负载和所述 , 获得 non-GBR 业务目标性能指标, 并将所述 non-GBR业务目标性能指标作为所述小区的目标性能指标;
若所述小区的业务需求中包括所述 GBR业务需求和所述 non-GBR业务 需求, 基于所述小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计 负载, 基于所述 GBR业务估计负载, 获得 GBR业务目标性能指标; 基于所 述 GBR业务估计负载和所述 y¾ , 获得 non-GBR业务目标性能指标, 根据 所述 GBR业务估计负载和 non-GBR业务目标性能指标确定所述小区的目标 性能指标。
结合第二方面、 第二方面的第二种可能的实现方式至第七种可能的实现 方式中的任意一种, 在第八种可能的实现方式中, 所述第三确定模块具体用 于将最优的所述目标性能指标对应的频谱分配方案作为所述选择的频谱分配 方案。
结合第八种可能的实现方式, 在第九种可能的实现方式中, 还包括: 第 八确定模块, 用于确定所述最优的所述目标性能指标优于前次分配频谱时确 定的目标性能指标。
结合第二方面、 第二方面的第一种可能的实现方式至第九种可能的实现 方式中的任意一种, 在第十种可能的实现方式中, 所述第一确定模块具体用 于: 确定第一小区; 将所述第一小区与所述第一小区的邻小区组成小区簇。
结合第二方面、 第二方面的第一种可能的实现方式至第九种可能的实现 方式中的任意一种, 在第十一种可能的实现方式中, 所述第一确定模块具体 用于: 确定第一小区; 将所述第一小区与所述第一小区的邻小区组成一小区 组, 所述小区组没有邻小区组时, 将所述小区组确定为一个小区簇; 所述小 区组有邻小区组时, 将所述小区组以及所述小区组的邻小区组确定为一个小 区簇。
本申请第三方面还提供一种频谱分配装置, 包括: 第一处理器, 用于确 定小区簇, 所述小区簇包括至少一个当前性能指标低于预设门限的第一小区 以及所述第一小区的邻小区; 确定所述小区簇对应的每个频谱分配方案的目 标性能指标; 根据所述每个频谱分配方案的目标性能指标, 在所述每个频谱 分配方案中确定第一频谱分配方案; 频谱分配器, 用于根据所述第一频谱分 配方案为所述小区簇中的每个小区分配频谱。
结合第三方面, 在第一种可能的实现方式中, 还包括: 第二处理器, 用 于在所述小区簇中包括一个所述第一小区时, 将系统带宽划分为 N等份, 其 中, N为大于 2的整数; 确定所述第一小区的当前性能指标最差的邻小区; 确定 i份带宽用于所述第一小区的边缘区域, N - i份带宽用于所述第一小区 的中心区域, 其中, i 小于或等于 N - 2 , 且大于或等于 1 ; 确定 j份带宽用于 所述当前性能指标最差的邻小区的边缘区域, N - j份带宽用于所述当前性能 指标最差的邻小区的中心区域, 其中, j 大于或等于 1 , 小于或等于 N - i - 1 ; 确定 k份带宽用于所述第一小区和所述当前性能指标最差的邻小区的共同邻 小区的边缘区域,第 N - k份带宽用于所述第一小区和所述当前性能指标最差 的邻小区的共同邻小区的中心区域, 其中, k=N - i - j; 确定所述第一小区的 除所述当前性能指标最差的邻小区, 和所述第一小区和所述当前性能指标最 差的邻小区的共同邻小区外的其他邻小区使用的频谱与所述当前性能指标最 差的邻小区, 或所述第一小区和所述当前性能指标最差的邻小区的共同邻小 区使用的频语相同。
结合第三方面或第三方面的第一种可能的实现方式, 在第三方面的第二 种可能的实现方式中, 还包括: 第三处理器, 用于在所述小区簇中包括至少 两个所述第一小区时, 将系统带宽划分为 3M等份, 其中, M为正整数; 确 定小区频谱分配的集合; 针对所述小区簇中每个小区, 确定所述小区频谱分 配的集合中的一个元素用于边缘区域, 所述系统带宽的剩余部分用于中心区 域。
结合第二种可能的实现方式, 在第三种可能的实现方式中, 所述第三处 理器具体通过公式 3∑(M- «)确定所述小区频谱分配的集合。 结合第三方面、 第三方面的第一种可能的实现方式至第三种可能的实现 方式中的任意一种, 在第四种可能的实现方式中, 所述第一处理器具体用于 根据所述小区簇中每个小区的业务需求确定所述小区簇对应的所述每个频谱 分配方案的目标性能指标;所述业务需求为保证比特率 GBR业务需求和 /或不 保证比特率 non-GBR业务需求。
结合第四种可能的实现方式, 在第五种可能的实现方式中, 所述第一处 理器具体用于: 针对一个频谱分配方案, 根据所述每个小区的中心区域和边 缘区域的业务需求和所述频谱分配方案, 确定所述每个小区的中心区域和边 缘区域的估计负载; 基于所述每个小区的中心区域和边缘区域的估计负载, 确定所述每个小区的目标性能指标, 并将所述每个小区的目标性能指标作为 所述频谱分配方案的目标性能指标。
结合第五种可能的实现方式, 在第六种可能的实现方式中, 所述第一处 理器具体用于通过以下公式确定所述每个小区的中心区域和边缘区域的估计 负载:
Figure imgf000011_0001
其中, 为小区 c的子区域 r的估计负载, r=l,2分别表示所述中心区域 和所述边缘区域;
为所述小区 c的子区域 r的子带宽集合; 函数 f为 +
= ^7 为每份子带宽的带宽; w为系统带宽, N为所述系统带宽划分 的等份数;
为小区 c的子区域 r的与业务需求有关的系数;
L为小区 c的子区域 r的与业务需求、 噪声有关的系数;
为小区 c的子区域 r的与业务需求、 干扰有关的系数。
结合第三方面的第六种可能的实现方式, 在第七种可能的实现方式中, 所述第一处理器具体用于: 针对一个小区, 若所述小区的业务需求中包括所 述 GBR业务需求, 基于所述每个小区的中心区域和边缘区域的估计负载, 获 得 GBR业务估计负载; 基于所述 GBR业务估计负载, 获得 GBR业务目标性 能指标, 并将所述 GBR业务目标性能指标作为所述小区的目标性能指标; 若所述小区的业务需求中包括所述 non-GBR业务需求, 基于所述 GBR 业务估计负载和所述 , 获得 non-GBR 业务目标性能指标, 并将所述 non-GBR业务目标性能指标作为所述小区的目标性能指标;
若所述小区的业务需求中包括所述 GBR业务需求和所述 non-GBR业务 需求, 基于所述小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计 负载, 基于所述 GBR业务估计负载, 获得 GBR业务目标性能指标; 基于所 述 GBR业务估计负载和所述 , 获得 non-GBR业务目标性能指标, 根据 所述 GBR业务估计负载和 non-GBR业务目标性能指标确定所述小区的目标 性能指标。
结合第三方面、 第三方面的第一种可能的实现方式至第七种可能的实现 方式, 在第八种可能的实现方式中, 所述第一处理器具体用于将最优的所述 目标性能指标对应的频谱分配方案作为所述选择的频谱分配方案。
结合第三方面的第八种可能的实现方式, 在第九种可能的实现方式中, 所述第一处理器具体还用于确定所述最优的所述目标性能指标优于前次分配 频谱时确定的目标性能指标。
结合第三方面、 第三方面的第一种可能的实现方式至第九种可能的实现 方式中的任意一种, 在第十种可能的实现方式中, 所述第一处理器具体还用 于: 确定第一小区; 将所述第一小区与所述第一小区的邻小区组成小区簇。
结合第三方面、 第三方面的第一种可能的实现方式至第九种可能的实现 方式中的任意一种, 在第十一种可能的实现方式中, 所述第一处理器具体还 用于: 确定第一小区; 将所述第一小区与所述第一小区的邻小区组成一小区 组, 所述小区组没有邻小区组时, 将所述小区组确定为一个小区簇; 所述小 区组有邻小区组时, 将所述小区组以及所述小区组的邻小区组确定为一个小 区簇。
本申请实施例中提供的一个或多个技术方案, 至少具有如下技术效果或 优点:
本申请实施例中, 提出了小区簇的概念, 并确定小区簇, 而小区簇中包 括至少一个当前性能指标低于预设门限的第一小区以及第一小区的邻小区, 然后针对每一个这样的小区簇, 确定小区簇对应的每个频谱方案的目标性能 指标, 再根据确定的每个频谱分配方案的目标性能指标, 在每个频谱分配方 案中确定第一频谱分配方案, 并根据第一频谱分配方案为小区簇中的每个小 区分配频语。 因此, 在本申请实施例中, 首先因为针对小区簇进行频谱分配, 所以针对的是当前性能指标低于预设门限的小区及其邻小区, 也就是说是针 对性能指标较差的小区进行的, 而性能指标较差就说明业务需求较大, 网络 负载较重, 所以需要重新分配频语; 其次, 每个小区簇对应多个频语分配方 案, 因此就确定每个频谱分配方案的目标性能指标, 然后根据确定的每个频 谱分配方案的目标性能指标, 在每个频谱分配方案中选择频谱分配方案, 然 后分配, 所以本申请实施例中, 既能根据性能指标的变化动态调整频谱分配 方案, 又能避免动态调整频谱带来的问题, 例如背景技术中所提及的动态 FFR 所带来的干扰问题。 附图说明
图 1为本申请实施例一中的控制电子设备的方法流程图;
图 2为本申请一实施例中的小区分簇的示意图;
图 3a-图 3d为本申请一实施例中的频谱分配方案的确定过程示意图; 图 4a-图 4c为本申请另一实施例中的频谱分啊的确定过程示意图; 图 5为本申请一实施例中的粒子群算法流程图;
图 6为本申请实施例二中的频谱分配装置的功能框图;
图 7为本申请实施例三中的频谱分配装置的硬件实现的实例概念图。 具体实施方式 本申请实施例提供一种频谱分配方法及频谱分配装置, 用以解决现有技 术中存在的在运维阶段频谱的分配基本不变, 无法自适应性能指标的变化的 的技术问题。
本申请实施例中的技术方案为解决上述的技术问题, 总体思路如下: 本申请实施例中, 提出了小区簇的概念, 并确定小区簇, 而小区簇中包 括至少一个当前性能指标低于预设门限的第一小区以及第一小区的邻小区, 然后针对每一个这样的小区簇, 确定小区簇对应的每个频谱方案的目标性能 指标, 再根据确定的每个频谱分配方案的目标性能指标, 在每个频谱分配方 案中确定第一频谱分配方案, 并根据第一频谱分配方案为小区簇中的每个小 区分配频语。 因此, 在本申请实施例中, 首先因为针对小区簇进行频谱分配, 所以针对的是当前性能指标低于预设门限的小区及其邻小区, 也就是说是针 对性能指标较差的小区进行的, 而性能指标较差就说明业务需求较大, 网络 负载较重, 所以需要重新分配频语; 其次, 每个小区簇对应多个频语分配方 案, 因此就确定每个频谱分配方案的目标性能指标, 然后根据确定的每个频 谱分配方案的目标性能指标, 在每个频谱分配方案中选择频谱分配方案, 然 后分配, 所以本申请实施例中, 既能根据性能指标的变化动态调整频谱分配 方案,又能避免动态调整频谱带来的问题,例如背景技术中所提及的动态 FFR 所带来的干扰问题。
为使本申请实施例的目的、 技术方案和优点更加清楚, 下面将结合本申 请实施例中的附图, 对本申请实施例中的技术方案进行清楚、 完整地描述, 显然, 所描述的实施例是本申请一部分实施例, 而不是全部的实施例。 基于 本申请中的实施例, 本领域普通技术人员在没有作出创造性劳动前提下所获 得的所有其他实施例, 都属于本申请保护的范围。
本文中结合频谱分配装置和 /或基站来描述各种方面。
频谱分配装置例如是一个功能实体, 可以是一个单独的物理设备, 也可 以集成在现有的网元中, 例如基站、 基站控制器、 网络管理系统。
基站 (例如, 接入点)可以是指接入网中在空中接口上通过一个或多个 扇区与无线终端通信的设备。 基站可用于将收到的空中帧与 IP分组进行相互 转换, 作为无线终端与接入网的其余部分之间的路由器, 其中接入网的其余 部分可包括网际协议(IP )网络。基站还可协调对空中接口的属性管理。例如, 基站可以是 CDMA 中的基站 (BTS , Base Transceiver Station ), 也可以是 WCDMA中的基站( NodeB ), 还可以是 LTE中的演进型基站( NodeB或 eNB 或 e-NodeB , evolutional Node B ), 本申请并不限定。
另外, 本文中术语 "和 /或", 仅仅是一种描述关联对象的关联关系, 表示 可以存在三种关系, 例如, A和 /或 B, 可以表示: 单独存在 A, 同时存在 A 和 B, 单独存在 B这三种情况。 另外, 本文中字符 "/" , 一般表示前后关联对 象是一种 "或" 的关系。
下面结合附图对本申请优选的实施方式进行详细说明。
实施例一
本实施例提供一种频谱分配方法, 请参考图 1 所示, 为该频谱分配方法 的流程图, 该方法包括:
步骤 101 : 确定小区簇, 小区簇包括至少一个当前性能指标低于预设门限 的第一小区以及第一小区的邻小区;
步骤 102: 确定小区簇对应的每个频谱分配方案的目标性能指标; 步骤 103: 根据每个频谱分配方案的目标性能指标, 在每个频谱分配方案 中确定第一频谱分配方案;
步骤 104: 根据第一频谱分配方案为小区簇中的每个小区分配频谱。
其中, 步骤 101 在具体实施时, 可以有不同的实现方式, 以下将分别详 细介绍。
在一实施例中, 根据以下步骤确定小区簇: 确定第一小区; 将第一小区 与第一小区的邻小区组成一小区组, 小区组没有邻小区组时, 将该小区组确 定为一个小区簇; 小区组有邻小区组时, 将小区组以及小区组的邻小区组确 定为一个小区簇。 在本实施例中, 小区组有邻小区组, 表示一个小区组的边 缘小区与另外一个小区组的边缘小区相同或者相邻。 例如如图 2 所示, 殳设 确定出的第一小区为小区 I, 那么就将小区 I的邻小区 J、 邻小区 K, 和其他 与小区 I相邻的第一层邻小区与小区 I组成一个小区组, 图 2所示即为一个小 区组。 当然在其他实施例中, 也不限于第一层邻小区, 可以是两层邻小区。
在另一实施例中, 根据以下步骤确定小区簇: 确定第一小区; 将第一小 区与第一小区的邻小区组成小区簇。 与前述实施例不同的是, 在本实施例中, 不判断小区组是否有相邻组。
在上述两个实施例中, 确定第一' 区, 具体可以通过以下步骤实现: 接 收各小区上报的当前性能指标(后称当前 KPI ); 基于上报的当前 KPI, 确定 当前 KPI低于预设门限的第一小区。
其中, 当前 KPI可以是各小区周期性统计和 /或上报的, 当然也可以是在 满足一定的触发条件之后才统计和 /或上报,例如有触发指令发送给各小区时。 而当前 KPI可以包括但不限于小区负载、 小区掉话率、 小区阻塞率、 小区吞 吐量和小区覆盖率。
由以上描述可以看出, 分组是动态的, 组内的子带粒度可随意, 自由度 更大, 因此对频谱分配的优化性能更好。
接下来, 将详细介绍根据小区簇内包含的第一小区的数量不同, 如何确 定小区簇对应的每个频谱分配方案。
在第一实施方式中, 当小区簇包括一个第一小区时, 4叚设系统带宽为 W, 每个小区使用的系统带宽相同, 那么请参考图 3a所示, 在图 3a中, 表示小 区中心用户使用的子带宽占系统带宽的比例, β2... ^表示小区边缘用户使 用的子带宽占系统带宽的比例, 图 3a表示每个小区的中心用户使用的子带宽 和边缘用户使用的子带宽的和等于系统带宽; 相邻小区的边缘用户使用的子 带宽的和等于系统带宽。
接下来再请参考图 3b和图 3c,通过以下步骤确定小区簇对应的每个频谱 分配方案:
步骤 201 : 将系统带宽划分为 N等份, 其中, N为大于 2的整数; 步骤 202: 确定第一小区的当前性能指标最差的邻小区; 步骤 203: 确定 i份带宽用于第一小区的边缘区域, N - i份带宽用于第一 小区的中心区域, 其中, i小于或等于 N - 2, 且大于或等于 1 , i为整数; 步骤 204: 确定 j份带宽用于当前性能指标最差的邻小区的边缘区域, N - j份带宽用于当前性能指标最差的邻小区的中心区域, 其中, j 大于或等于 1 , 小于或等于 N - i - 1 , j为整数;
步骤 205:确定 k份带宽用于第一小区和当前性能指标最差的邻小区的共 同邻小区的边缘区域, N - k份带宽用于第一小区和当前性能指标最差的邻小 区的共同邻小区的中心区域, 其中, k=N - i - j ;
步骤 206: 确定第一小区的除当前性能指标最差的邻小区, 和第一小区和 当前性能指标最差的邻小区的共同邻小区外的其他邻小区使用的频谱与当前 性能指标最差的邻小区, 或当前性能指标最差的邻小区, 和第一小区和当前 性能指标最差的邻小区的共同邻小区使用的频谱相同。
在实际运用中, 步骤 203中的 i份带宽为按照顺序连续的 i份带宽; 步骤 204中的 j份带宽为第 i份以后的连续的 j份带宽; 步骤 205中的 k份带宽为 第 i+j份以后的连续的 k份带宽。 如此, 相邻小区之间的边缘小区所用的带宽 不同, 所以可以避免小区之间的同频干扰, 当然, 在其他实施例中, i份带宽、 j份带宽和 k份带宽也可以是不连续的,也可以采用其他的方式避免同频干扰。
以下以连续带宽的分配方式为例进行说明, 在这种情况下, 频谱分配方
(N - 2XN - 1)
案的集合的大小为 2 。
这里假设 N等于 8 , 即将系统带宽分为 8等份, 因为系统带宽可以是连 续的, 也可以是离散的, 所以划分出的 N等份, 每个等份的带宽也可以是连 续的, 也可以是离散的, 但是每个等份的有效带宽是相同的, 例如第一等份 带宽为连续的带宽, 为 724MHz-750MHz, 有效带宽为 26MHz, 第二等份带 宽为离散的, 分别为 751MHz-760MHz, 770MHz-786MHz, 有效带宽同样为
26MHz。 (Ν-2)(Ν-ί)
进一步, 可以通过公式 2 计算出频谱分配方案的集合的大小为
21, 也就是说共有 21种频谱分配方案。 然后执行步骤 202, 即确定第一小区 (下称第一小区 I)邻小区中当前性能指标最差的邻小区(下称小区 J); 进一 步, 将第一小区 I和小区 J的共同邻小区称为小区 Κ, 如图 3c所示。
然后为每个小区确定分配的带宽, 即执行步骤 203, 确定第一小区 I按顺 序选择连续的 i份带宽用于第一小区 I的边缘区域 ,Ν-i份带宽用于第一小区 I的中心区域, 其中, i依次取 N- 2至 1, 每次变化单位为 1; 在本实施例中, 继续以 N等于 8为例进行说明, 首先 i取 6, 那么第一小区 I就可以选择连续 的 6份带宽,例如第 1份到第 6份用于第一小区 I的边缘区域,而取 2份带宽, 即第 7份和第 8份带宽用于第一小区 I的中心区域。 然后 i取 5, 那么第一小 区 I就可以选择连续的 5份带宽,例如第 1份到第 5份用于第一小区 I的边缘 区域, 而取 3份带宽, 即第 6份至第 8份带宽用于第一小区 I的中心区域。依 此类推, 直到 i循环取到 1为止。
而对于小区 J, 执行步骤 204, 即确定小区 J选择第 i份以后的连续的 j 份带宽用于小区 J的边缘区域, N-j份带宽用于小区 J的中心区域, 其中, j 依次取 1至 N- i- 1, 每次变化单位为 1; 继续以前述例子为例说明, 首先当 i取 6时, j可以取值 1, 那么小区 J就可以选择第 6份以后的连续的 1份带宽 用于小区 J的边缘区域, 即第 7份带宽用于边缘区域,其余的 7份带宽用于小 区 J的中心区域。 然后 i取 5时, j可取值为 1和 2, 当 j取 1时, 那么小区 J 就可以选择第 5份以后的连续的 1份带宽用于小区 J的边缘区域,即第 6份带 宽用于边缘区域, 其余的 7份带宽用于小区 J的中心区域; 当 j取 2时, 那么 小区 J就可以选择第 5份以后的连续的 2份带宽用于小区 J的边缘区域,即第 6份和第 7份带宽用于边缘区域, 其余的 6份带宽用于小区 J的中心区域。
对于小区 K, 执行步骤 205, 即确定小区 K选择第 i+j份以后的连续的 k 份带宽用于小区 K的边缘区域, N-k份带宽用于小区 K的中心区域, 其中, k=N-i-j„ 继续以前述例子为例进行说明, 首先当 i取 6时, j可以取值 1, 那么 k就可以取值 1 , 那么小区 K选择第 7份以后的连续的 1份带宽用于小 区 Κ的边缘区域, 即第 8份带宽用于小区 Κ的边缘区域, 其余 7份带宽用于 小区 Κ的中心区域。 然后当 i取 5时, j可取值为 1和 2, 那么 j为 1时, k 可取值 2, 那么小区 K选择第 6份以后的连续的 2份带宽用于小区 K的边缘 区域, 即第 7份和第 8份带宽用于小区 K的边缘区域, 其余 6份带宽用于小 区 K的边缘区域。 当 j取值为 2时, k取值为 1 , 那么小区 K选择第 7份以后 的连续的 1份带宽用于小区 K的边缘区域, 即第 8份带宽用于小区 K的边缘 区域, 其余 7份带宽用于小区 K的中心区域。
对于第一小区 I的除小区 J和小区 K外的其他邻小区使用的频谱与小区 J 或小区 K使用的频谱相同, 即分配方案与小区 J或小区 K相同。 具体来说, 例如与小区 J相邻的其他邻小区使用的频谱与小区 K使用的频语相同, 与小 区 K相邻的邻小区使用的频谱与小区 J使用的频语相同。
按照上述的描述过程, 当 i和 j两级循环完成之后, 就会获得如图 3d所 示的频谱分配方案表, 共有 21种分配方案, 其中, 图 3d示出的是每个小区 的边缘区域的带宽分配情况, 请一并参考图 3c, 如频谱分配方案 F2 ( 5 , 1 , 2 )表示: 小区 I使用从第 1到第 5份带宽, 用于边缘区域(如图 3c中的阴影 部分), 小区 J使用第 6份带宽用于边缘区域, 小区 K使用从第 7份到第 8份 带宽用于边缘区域,小区 I的其他邻区使用第 6份带宽或第 7份到第 8份带宽 用于边缘区域。
在上述实施例中, N 的取值可根据实际情况来确定, N值越大, 频谱分 配的粒度越细, 自由度更大, 当然, 通常情况下, 每个子带的带宽最小为子 载波的带宽, 所以 N最大取值为每个小区的子载波的数量。
在第二实施方式中, 当小区簇包括至少两个第一小区时, 即业务需求较 大, 这时小区之间的干扰比较大, 网络负载较重, 需要重新进行频谱分配的 小区增多, 这时需要进行粗粒度的频谱分配, 请参考图 4a所示, 通过以下步 骤确定小区簇对应的每个频谱分配方案:
步骤 301 : 将系统带宽划分为 3M等份, 其中, M为正整数; 步骤 302: 确定小区频谱分配的集合;
步骤 303: 针对小区簇中每个小区, 确定小区频谱分配的集合中的一个元 素用于边缘区域, 系统带宽的剩余部分用于中心区域。
其中, 在步骤 301 中, 同样假设系统带宽为 W, 每个小区使用的系统带 宽相同, 然后将系统带宽划分为 3M等份, 其中, 系数 3可以使得相邻小区所 用的子带尽可能的正交, 所以这里还可以是其他的系数值, 只要能够使得相 邻小区所用的子带尽可能的正交即可, 如此可以避免边缘区域之间的干扰。
然后执行步骤 302 , 即确定小区频谱分配的集合。 在一实施例中, 通过公 式 S^^Af - M)确定小区频语分配的集合的大小, 以 M等于 2为例, 系统带宽被 分为了 6等份, 而小区频谱分配的集合有 9种元素 (图 4b ), 而如果 M为 3 时, 系统带宽被划分为 9等份, 而小区频谱分配的集合就有 18种元素。 当然, 在实际运用中, 还可以通过其他方法确定小区频谱分配的集合, 而 M的取值 也可根据实际需要确定, M 的取值通常主要参考小区簇的大小, 即小区簇内 的小区的数目, 小区数目较大时, M的取值不宜太大, 通常情况下, M取值 为 4比较合适。
M=3时, 小区频语分配的集合请参考图 4c所示。
接下来执行步骤 303 , 即针对小区簇中每个小区, 确定小区频谱分配的集 合中的一个元素用于边缘区域, 系统带宽的剩余部分用于中心区域, 例如请 参考图 4b所示, 频谱分配方案 F2 表示小区 1选择使用第 2份带宽作为边缘 区域的频谱, 其他 5份带宽用于中心区域; F6 ( 3 , 4 )表示小区 1使用第 3 份和第 4份带宽作为边缘区域的频谱, 剩余 4份带宽用于中心区域。 而对于 小区 2和小区 3 , 这样的分配方案同样适用。
以上介绍了小区簇和小区簇对应的每个频谱分配方案, 接下来将具体介 绍图 1中频谱分配方法的具体实施过程。
步骤 102具体为根据小区簇中每个小区的业务需求确定小区簇对应的每 个频谱分配方案的目标性能指标; 其中, 业务需求具体为保证比特率 GBR业 务需求和 /或不保证比特率 non-GBR业务需求。 当然, 业务需求还可以是其他 的业务需求。
在步骤 102之前, 本实施例的方法还包括: 获取小区簇中每个小区的业 务需求, 例如是基站周期性上报的。
对于 GBR业务, 其业务需求基本上是确定的, 用户请求 GBR业务时, 请求信息中会包括所需的保证比特率, 根据该用户的位置信息, 可以确定用 户在哪个像素(pixel ), 所以基于用户的业务请求, 可以获得每个小区中每个 像素的 GBR业务需求, 从而可以获得每个小区的各子区域(中心区域和边缘 区域) 的 GBR业务需求, 即 ^ , r = l,2分别表示中心区域和边缘区域。 其 中, 在实际运用中, 中心区域和边缘区域的划分方法有多种, 例如信噪比大 于一定门限的像素属于中心区域, 否则为边缘区域; 再例如, 接收信号强度 大于一定门限的像素属于中心区域, 否则为边缘区域。
对于 non-GBR业务, non-GBR业务需求的获取方式也有多种, 例如基于 调度器的信息, 比如所调度的 non-GBR业务的吞吐量, 可以获得每个小区各 子区域的 non-GBR业务需求, 从而结合 GBR业务需求, 获得每个小区各子 区域总的业务需求 ,^ ^^^,^0^'」,其中, s表示业务的种类,例如是 GBR 业务或 non-GBR业务。
步骤 102具体包括: 针对一个频谱分配方案, 根据每个小区的中心区域 和边缘区域的业务需求和频谱分配方案, 确定每个小区的中心区域和边缘区 域的估计负载; 基于每个小区的中心区域和边缘区域的估计负载, 确定每个 小区的目标性能指标, 并将每个小区的目标性能指标作为频谱分配方案的目 标性能指标。
具体来说,例如假设对小区 c的子区域 r引入三个参数, Nw 。H ,
G-为小区 c的子区域 r的与业务需求有关的系数; Ν 为小区 c的子区域 r的 与业务需求、 噪声有关的系数; 为小区 c的子区域 r的与业务需求、 干扰 有关的系数; 为小区 r的相邻小区 d的子区域, 那么,
Figure imgf000022_0001
D T
其中, ^为像素 P的业务 s所需的数据速率, ^为像素 P的业务 s的 激活用户数, ^^ ^表示像素 P的业务 s的业务量。 ^和^ '分别为子区域 r 和 r'的发射功率, gw和 分别为子区域 r和 所属基站到像素 p 的信道增 益, 例如可以根据发送功率和接收功率获得。 Kch, ^^和^ 分别为对应 调度, 带宽和信噪比的系数。
则子区域 的 GBR业务和 non-GBR业务的估计负载为: Per
Figure imgf000022_0002
其中 = ^7W为每份子带的带宽, ^^为小区 々子区域 r的子带集合,
/(x) = l0g(2)
函数 f为 M1 + 1A)。 进一步,可以获得 GBR业务和 non-GBR业务的真实负载, - = χήη^^)ο 在具体实施过程中, 基于每个小区的估计负载, 确定每个小区的目标性 能指标, 具体包括:
一方面, 针对一个小区, 若小区的业务需求中包括 GBR业务需求, 基于 每个小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计负载; 基于 GBR业务估计负载, 获得 GBR业务目标性能指标, 并将 GBR业务目标性能 指标作为小区的目标性能指标。
首先, 基于小区的中心区域和边缘区域的估计负载, 获得小区 C 的子区
-^GBR ^GBR _ ~ 域 r的 GBR业务的估计负载 A, , 具体例如是通过公式 = ,^^获得, 其中 , c,r : DGBR r I DnGBR r + DGBR r) 然后基于小区 c的子区域 r的 GBR业务估计负载,可以获得 GBR业务的 目标 KPI , 如呼叫掉话及阻塞率为:
Figure imgf000023_0001
其中, C'r P 为小区 c的子区域 r的 GBR业务的用户数。
另一方面, 若小区的业务需求中包括 non-GBR业务需求, 基于 GBR业 务估计负载和小区 c的子区域 r的估计负载 ,获得 non-GBR业务目标性能 指标, 并将 non-GBR业务目标性能指标作为小区的目标性能指标。
在本实施例中, 目标性能指标例如为吞吐量, 那么可以通过以下公式计 算吞吐 THPC, r:
Figure imgf000023_0002
中, 像素 p的频谱效率为 , 取 决于信噪比 )。
(〜、 _ Pc,rSc,p
ΥλΡ) = Pnmse +∑∑Pd r,gd p min [ceffpd r„l)
而信噪比 cr' d'r d'p d'r J , 信噪比受邻小区的中 心区域和边缘区域的干扰影响, 而干扰取决于小区的中心区域和边缘区域的 频带分配情况, 即频谱分配方案中的频带分配情况。 ^ - j^- nGBR― ^ rj-inGBR
其中, ' PGr P 为小区 c的子区域 r的 non-GBR 业务的用户 rpnGBR „ _ ^.avg I avg
数, 为像素 P的 non-GBR业务的用户数。 ff - I , 为小区 c的 子区域 r的平均带宽利用率, 可以基于调度器的统计获得。
同样, 可以获得小区簇的其他网络性能指标, 如总负载, 总 SINR等。 总
Figure imgf000024_0001
总 SINR:
再一方面, 若小区的业务需求中包括 GBR业务需求和 non-GBR业务需 求, 基于小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计负载, 基于 GBR业务估计负载, 获得 GBR业务目标性能指标; 基于 GBR业务估计 负载和 , 获得 non-GBR业务目标性能指标, 根据 GBR业务估计负载和 non-GBR业务目标性能指标确定小区的目标性能指标。
在本实施例中, GBR业务目标性能指标和 non-GBR业务目标性能指标类 似于前述两个方面中所描述的, 所以不再赘述, 下面将描述根据 GBR业务估 计负载和 non-GBR业务目标性能指标确定小区的目标性能指标的实施过程。
联合目标性能指标, 即联合 KPI可以是负载相关的 KPI和 /或 SINR相关 的 KPI的加权求和, 比如吞吐量和 CDBR的加权求和, 可以通过下述公式实 现:
KPI = wthp∑∑THPc n;o + wcdbr∑(l - CDBRr) w w
r CdbV r , 其中 ^ 和1^^分别为吞吐量和 掉话阻塞率的权重, 由运营策略确定; ^^为归一化的吞吐量。
当在步骤 102中计算出目标性能指标之后,接下来执行步骤 103 , 即根据 每个频谱分配方案的目标性能指标, 在每个频谱分配方案中确定第一频谱分 配方案。
在具体实施过程中, 具体可以是将最优的目标性能指标对应的频谱分配 方案作为选择的频语分配方案。 其中, 最优的目标性能可以是单个 KPI 最优, 例如呼叫掉话及阻塞率 CDBR最优, 也可以是吞吐量 THP最优, 也可以是联合 KPI最优。
进一步, 针对于小区簇中包括至少两个第一小区的情况, 因为簇的规模 较大, 为了保证网络性能, 本实施例中通过两步获取最优的频谱分配方案: 首先,基于多目标优化, 获取多 KPI最优的频谱分配集合, 即 Pareto Set; 然后, 基于运营策略, 从频谱分配集合中选取联合 KPI最优的频谱分配 方案。
具体来说, 基于多目标优化, 可以采用增强的粒子群算法, 如图 5所示, fitness即为多个 KPI,包括但不限于 GBR业务的 CDBR, non-GBR业务的 THP, 平均负载, 平均 SINR等。 通过图 5所示的粒子群算法, 可以确定出多 KPI 最优的频谱分配集合。
然后, 基于运营策略, 从频谱分配集合中选取联合 KPI最优的频谱分配 方案, 网络有许多 KPI,运营商对此有不同的倾向,这决定了运营策略。 比如, GBR业务的 CDBR和 non-GBR业务的 THP相对于平均负载和平均 SINR更 为重要, GBR业务的 CDBR比 non-GBR业务的 THP更为重要。 因此, 可以 基于这些 KPI的权重,从频谱分配 Pareto Set中选取联合 KPI最优的频谱分配 方案。 例如, 如果要获取 CDBR和 THP的联合 KPI最优的频谱分配方案, 则 对频谱分配 Pareto Set中的每个频谱分配, 计算其联合 KPI:
KPI t = w^ - CDBR) + ^HPR,其中, wcdbr和 wihp分别为 CDBRΤΗρ 的权重, THPR为归一化的吞吐量。
那么最小 ΚΡΙ 对应的频谱分配方案即为选择的频谱分配方案。
当然, 上述这种方法也可以应用于小区簇中包括一个第一小区的情况。 在进一步的实施例中, 在步骤 104之前, 还包括: 确定最优的目标性能 指标优于前次分配频谱时确定的目标性能指标。 只有满足这个条件, 才会执 行步骤 104, 这样可以保证实施的频谱分配方案能带来好处。
然后就接下来执行步骤 104,根据第一频谱分配方案为小区簇中的每个小 区分配频语。
由以上描述可以看出, 在本申请实施例中, 首先因为针对小区簇进行频 谱分配, 所以针对的是当前性能指标低于预设门限的小区及其邻小区, 也就 是说是针对性能指标较差的小区进行的, 而性能指标较差就说明业务需求较 大, 网络负载较重, 所以需要重新分配频谱; 其次, 每个小区簇对应多个频 谱分配方案, 因此就结合每个小区的业务需求确定每个频谱分配方案的目标 性能指标, 然后根据确定的每个频谱分配方案的目标性能指标, 在每个频谱 分配方案中选择频谱分配方案, 然后分配, 所以本申请实施例中, 既能根据 性能指标动态调整频谱分配方案, 又能避免动态调整频谱带来的问题, 例如 背景技术中所提及的动态 FFR所带来的干扰问题。
实施例二
本申请一实施例中还提供一种频谱分配装置, 请参考图 6所示, 该装置 包括: 第一确定模块 401 , 用于确定小区簇, 小区簇中包括至少一个当前性能 指标低于预设门限的第一小区以及第一小区的邻小区; 第二确定模块 402 , 用 于确定小区簇对应的每个频谱分配方案的目标性能指标; 第三确定模块 403 , 用于根据每个频谱分配方案的目标性能指标, 在每个频谱分配方案中确定第 一频谱分配方案; 分配模块 404, 用于根据第一频谱分配方案为小区簇中的每 个小区分配频语。
在一实施例中, 第一确定模块 401 具体用于: 确定第一小区; 将第一小 区与第一小区的邻小区组成小区簇。
在另一实施例中, 第一确定模块 401 具体用于: 确定第一小区; 将第一 小区与第一小区的邻小区组成一小区组, 小区组没有邻小区组时, 将该小区 组确定为一个小区簇; 小区组有邻小区组时, 将小区组以及小区组的邻小区 组确定为一个小区簇。
当小区簇中包括一个第一小区时, 该装置还包括: 第一划分模块, 用于 将系统带宽划分为 N等份, 其中, N为大于 2的整数; 第四确定模块, 用于 确定第一小区的当前性能指标最差的邻小区; 第五确定模块, 用于确定 i份带 宽用于第一小区的边缘区域, N - i份带宽用于第一小区的中心区域, 其中, i 小于或等于 N - 2, 且大于等于 1 ; 确定 j份带宽用于当前性能指标最差的邻 小区的边缘区域, N - j份带宽用于当前性能指标最差的邻小区的中心区域, 其中, j大于或等于 1 , 小于或等于 N _ i _ l ; 确定 k份带宽用于第一小区和 当前性能指标最差的邻小区的共同邻小区的边缘区域, N - k份带宽用于第一 小区和当前性能指标最差的邻小区的共同邻小区的中心区域, 其中, k=N _ i - j ; 确定第一小区的除当前性能指标最差的邻小区, 和第一小区和当前性能 指标最差的邻小区的共同邻小区外的其他邻小区使用的频谱与当前性能指标 最差的邻小区, 或第一小区和当前性能指标最差的邻小区的共同邻小区使用 的频谱相同。
当小区簇中包括至少两个第一小区时, 该装置还包括: 第二划分模块, 用于将系统带宽划分为 3M等份, 其中, M为正整数; 第六确定模块, 用于 确定小区频谱分配的集合; 第七确定模块, 用于针对小区簇中每个小区, 确 定小区频谱分配的集合中的一个元素用于边缘区域, 系统带宽的剩余部分用 于中心区域。
-1
进一步,第六确定模块具体用于通过公式 3∑(M- «)确定小区频谱分配的 集合。
在以上各实施例中, 第二确定模块 402具体用于: 根据小区簇中每个小 区的业务需求确定小区簇对应的每个频谱分配方案的目标性能指标; 业务需 求具体为保证比特率 GBR业务需求和 /或不保证比特率 non-GBR业务需求。
在进一步的实施例中, 第二确定模块 402具体用于: 针对一个频谱分配 方案, 根据每个小区的中心区域和边缘区域的业务需求和频谱分配方案, 确 定每个小区的中心区域和边缘区域的估计负载; 基于每个小区的中心区域和 边缘区域的估计负载, 确定每个小区的目标性能指标, 并将每个小区的目标 性能指标作为频谱分配方案的目标性能指标。
再进一步, 第二确定模块 402具体用于通过以下公式确定每个小区的中 心区域和边缘区域的估计负载:
Figure imgf000028_0001
其中, 为小区 c的子区域 r的估计负载, r=l,2分别表示中心区域和边 缘区域; ,为小区 c的子区域 r的子带宽集合; /(x) = lQg(2)
函数 f为 ¥1 + 1/ ;
^'' = ^/ 为每份子带宽的带宽; W为系统带宽, N为系统带宽划分的等 份数;
为小区 c的子区域 r的与业务需求有关的系数;
L为小区 c的子区域 r的与业务需求、 噪声有关的系数; 为小区 c的子区域 r的与业务需求、 干扰有关的系数。 更进一步, 第二确定模块 402具体用于: 针对一个小区, 若小区的业务 需求中包括 GBR业务需求,基于每个小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计负载; 基于 GBR业务估计负载, 获得 GBR业务目标性能 指标, 并将 GBR业务目标性能指标作为小区的目标性能指标;
若小区的业务需求中包括 non-GBR业务需求, 基于 GBR业务估计负载 和 c,r , 获得 non-GBR业务目标性能指标, 并将 non-GBR业务目标性能指标 作为小区的目标性能指标;
若小区的业务需求中包括 GBR业务需求和 non-GBR业务需求, 基于小 区的中心区域和边缘区域的估计负载, 获得 GBR业务估计负载, 基于 GBR 业务估计负载,获得 GBR业务目标性能指标;基于 GBR业务估计负载和 ,r , 获得 non-GBR业务目标性能指标, 根据 GBR业务估计负载和 non-GBR业务 目标性能指标确定小区的目标性能指标。
在以上各实施例中, 第三确定模块 403 具体用于将最优的目标性能指标 对应的频语分配方案作为选择的频语分配方案。
进一步, 该装置还包括: 第八确定模块, 用于确定最优的目标性能指标 优于前次分配频谱时确定的目标性能指标。 适用于本实施例的频谱分配装置, 通过前述对频谱分配的方法的详细描述, 本领域技术人员可以清楚的知道本实施例中频谱分配装置的实施方法, 所以 为了说明书的简洁, 在此不再详述。
实施例三
本实施例提供一种频谱分配装置, 请参考图 7所示, 为频谱分配装置的 硬件实现示例的概念图, 该频谱分配装置包括:
第一处理器 501 , 用于确定小区簇, 小区簇包括至少一个当前性能指标低 于预设门限的第一小区以及第一小区的邻小区; 确定小区簇对应的每个频谱 分配方案的目标性能指标; 根据每个频谱分配方案的目标性能指标, 在每个 频谱分配方案中确定第一频谱分配方案; 频谱分配器 504, 用于根据第一频谱 分配方案为小区簇中的每个小区分配频谱。
其中, 在图 7中, 总线架构 (用总线 500来代表), 总线 500可以包括任 意数量的互联的总线和桥, 总线 500将包括由第一处理器 501代表的一个或 多个处理器和存储器 502代表的存储器的各种电路链接在一起。 总线 500还 可以将诸如外围设备、 稳压器和功率管理电路等之类的各种其他电路链接在 一起, 这些都是本领域所公知的, 因此, 本文不再对其进行进一步描述。 总 线接口 505在总线 500和接收器 503、和 /或发送器之间提供接口。接收器 503 和发送器可以是同一个元件, 即收发机, 提供用于在传输介质上与各种其他 装置通信的单元。 总线接口 505还为频谱分配器 504提供接口。
第一处理器 501 负责管理总线 500和通常的处理, 而存储器 502可以被 用于存储处理器 501在执行操作时所使用的数据。
当频谱分配装置集成在基站或基站控制器或网管系统中时, 接收器 503 还通过天线接收数据并对数据进行处理已恢复调制到载波上的信息, 将接收 器 503 恢复的信息提供给接收帧处理器, 其对每个帧进行解析, 接收处理器 对帧进行解码, 并将成功解码的控制信号提供给第一处理器 501 , 如果一些帧 未能由接收处理器成功进行解码, 则第一处理器 501还可以使用 ACK和 /或 NACK协议来支持对那些帧的重传请求。
第一处理器 501 可以提供各种功能, 包括定时, 外围接口, 电压调节、 电源管理以及其他控制功能。 存储器 502可以用于存储基站的数据和软件。
在一实施例中, 第一处理器 501 具体还用于: 确定第一小区; 将第一小 区与第一小区的邻小区组成小区簇。
在另一实施例中, 第一处理器 501 具体还用于: 确定第一小区; 将第一 小区与第一小区的邻小区组成一小区组, 小区组没有邻小区组时, 将该小区 组确定为一个小区簇; 小区组有邻小区组时, 将小区组以及小区组的邻小区 组确定为一个小区簇。
当小区簇中包括一个第一小区时, 该装置还包括: 第二处理器, 用于将 系统带宽划分为 N等份, 其中, N为大于 2的整数; 确定第一小区的当前性 能指标最差的邻小区; 确定 i份带宽用于第一小区的边缘区域, N - i份带宽 用于第一小区的中心区域, 其中, i 小于或等于 N - 2, 且大于或等于 1 ; 确 定 j份带宽用于当前性能指标最差的邻小区的边缘区域, N -j份带宽用于当 前性能指标最差的邻小区的中心区域, 其中, j 大于或等于 1 , 小于或等于 N - i - 1 ;确定 k份带宽用于第一小区和当前性能指标最差的邻小区的共同邻小 区的边缘区域,第 N - k份带宽用于第一小区和当前性能指标最差的邻小区的 共同邻小区的中心区域, 其中, k=N - i - j; 确定第一小区的除当前性能指标 最差的邻小区, 和第一小区和当前性能指标最差的邻小区的共同邻小区外的 其他邻小区使用的频谱与当前性能指标最差的邻小区, 或第一小区和当前性 能指标最差的邻小区的共同邻小区使用的频语相同。
在小区簇中包括至少两个第一小区时, 该装置还包括: 第三处理器, 用 于将系统带宽划分为 3M等份, 其中, M为正整数; 确定小区频谱分配的集 合; 针对小区簇中每个小区, 确定小区频谱分配的集合中的一个元素用于边 缘区域, 系统带宽的剩余部分用于中心区域。
进一步, 第三处理器具体通过公式 3∑(M - «)确定小区频谱分配的集合。 在以上各实施例中, 第一处理器 501 具体用于: 根据小区簇中每个小区 的业务需求确定小区簇对应的每个频谱分配方案的目标性能指标; 业务需求 具体为保证比特率 GBR业务需求和 /或不保证比特率 non-GBR业务需求。
在进一步的实施例中, 第一处理器 501 具体用于: 针对一个频谱分配方 案, 根据每个小区的中心区域和边缘区域的业务需求和频谱分配方案, 确定 每个小区的中心区域和边缘区域的估计负载; 基于每个小区的中心区域和边 缘区域的估计负载, 确定每个小区的目标性能指标, 并将每个小区的目标性 能指标作为频谱分配方案的目标性能指标。
再进一步, 第一处理器 501 具体用于通过以下公式确定每个小区的中心 区域和边缘区域的估计负载:
Figure imgf000031_0001
其中, 为小区 c的子区域 r的估计负载, r=l,2分别表示中心区域和边 缘区域;
^^为小区 c的子区域 r的子带宽集合; 函数 f为
Figure imgf000031_0002
=^7 为每份子带宽的带宽; w为系统带宽, N为系统带宽划分的等 份数;
为小区 c的子区域 r的与业务需求有关的系数;
L为小区 c的子区域 r的与业务需求、 噪声有关的系数;
为小区 c的子区域 r的与业务需求、 干扰有关的系数。
更进一步, 第一处理器 501 具体用于: 针对一个小区, 若小区的业务需 求中包括 GBR业务需求, 基于每个小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计负载; 基于 GBR业务估计负载, 获得 GBR业务目标性能 指标, 并将 GBR业务目标性能指标作为小区的目标性能指标;
若小区的业务需求中包括 non-GBR业务需求, 基于 GBR业务估计负载 和 c,r , 获得 non-GBR业务目标性能指标, 并将 non-GBR业务目标性能指标 作为小区的目标性能指标;
若小区的业务需求中包括 GBR业务需求和 non-GBR业务需求, 基于小 区的中心区域和边缘区域的估计负载, 获得 GBR业务估计负载, 基于 GBR 业务估计负载,获得 GBR业务目标性能指标;基于 GBR业务估计负载和 c,r , 获得 non-GBR业务目标性能指标, 根据 GBR业务估计负载和 non-GBR业务 目标性能指标确定小区的目标性能指标。
在具体实施过程中, 第一处理器 501 具体用于将最优的目标性能指标对 应的频语分配方案作为选择的频语分配方案。
进一步, 第一处理器 501 具体还用于确定最优的目标性能指标优于前次 分配频谱时确定的目标性能指标。
其中, 在以上各实施例中, 第一处理器 501、 第二处理器和第三处理器可 以是单独的还可以是同一个。 适用于本实施例的频谱分配装置, 通过前述对频谱分配的方法的详细描述, 本领域技术人员可以清楚的知道本实施例中频谱分配装置的实施方法, 所以 为了说明书的简洁, 在此不再详述。
本申请实施例中提供的一个或多个技术方案, 至少具有如下技术效果或 优点:
本申请实施例中, 提出了小区簇的概念, 并确定小区簇, 而小区簇中包 括至少一个当前性能指标低于预设门限的第一小区以及第一小区的邻小区, 然后针对每一个这样的小区簇, 确定小区簇对应的每个频谱方案的目标性能 指标, 再根据确定的每个频谱分配方案的目标性能指标, 在每个频谱分配方 案中确定第一频谱分配方案, 并根据第一频谱分配方案为小区簇中的每个小 区分配频语。 因此, 在本申请实施例中, 首先因为针对小区簇进行频谱分配, 所以针对的是当前性能指标低于预设门限的小区及其邻小区, 也就是说是针 对性能指标较差的小区进行的, 而性能指标较差就说明业务需求较大, 网络 负载较重, 所以需要重新分配频语; 其次, 每个小区簇对应多个频语分配方 案, 因此就确定每个频谱分配方案的目标性能指标, 然后根据确定的每个频 谱分配方案的目标性能指标, 在每个频谱分配方案中选择频谱分配方案, 然 后分配, 所以本申请实施例中, 既能根据性能指标的变化动态调整频谱分配 方案,又能避免动态调整频谱带来的问题,例如背景技术中所提及的动态 FFR 所带来的干扰问题。
本领域内的技术人员应明白, 本申请的实施例可提供为方法、 系统、 或 计算机程序产品。 因此, 本申请可采用完全硬件实施例、 完全软件实施例、 或结合软件和硬件方面的实施例的形式。 而且, 本申请可采用在一个或多个 其中包含有计算机可用程序代码的计算机可用存储介质 (包括但不限于磁盘 存储器和光学存储器等 )上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、 设备(系统)、 和计算机程序产 品的流程图和 /或方框图来描述的。 应理解可由计算机程序指令实现流程图 和 /或方框图中的每一流程和 /或方框、 以及流程图和 /或方框图中的流程 和 /或方框的结合。 可提供这些计算机程序指令到通用计算机、 专用计算机、 嵌入式处理机或其他可编程数据处理设备的第一处理器 501以产生一个机器, 使得通过计算机或其他可编程数据处理设备的第一处理器 501 执行的指令产 生用于实现在流程图一个流程或多个流程和 /或方框图一个方框或多个方框 中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中, 使得存储在该计算机可读存储器 中的指令产生包括指令装置的制造品, 该指令装置实现在流程图一个流程或 多个流程和 /或方框图一个方框或多个方框中指定的功能。 这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上, 使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的 处理, 从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图 一个流程或多个流程和 /或方框图一个方框或多个方框中指定的功能的步 骤。
显然, 本领域的技术人员可以对本申请进行各种改动和变型而不脱离本 申请的精神和范围。 这样, 倘若本申请的这些修改和变型属于本申请权利要 求及其等同技术的范围之内, 则本申请也意图包含这些改动和变型在内。

Claims

权 利 要 求
1、 一种频语分配方法, 其特征在于, 包括:
确定小区簇, 所述小区簇包括至少一个当前性能指标低于预设门限的第 一小区以及所述第一小区的邻小区;
确定所述小区簇对应的每个频谱分配方案的目标性能指标;
根据所述每个频谱分配方案的目标性能指标, 在所述每个频谱分配方案 中确定第一频谱分配方案;
根据所述第一频谱分配方案为所述小区簇中的每个小区分配频谱。
2、 如权利要求 1所述的频谱分配方法, 其特征在于, 所述小区簇中包括 一个所述第一小区;
通过以下步骤确定所述小区簇对应的每个频谱分配方案:
将系统带宽划分为 N等份, 其中, N为大于 2的整数;
确定所述第一小区的当前性能指标最差的邻小区;
确定 i份带宽用于所述第一小区的边缘区域, N - i份带宽用于所述第一 小区的中心区域, 其中, i 小于或等于 N - 2, 且大于或等于 1 ;
确定 j份带宽用于所述当前性能指标最差的邻小区的边缘区域, N -j份 带宽用于所述当前性能指标最差的邻小区的中心区域,其中, j 大于或等于 1 , 小于或等于 N _ i _ 1 ;
确定 k份带宽用于所述第一小区和所述当前性能指标最差的邻小区的共 同邻小区的边缘区域,第 N - k份带宽用于所述第一小区和所述当前性能指标 最差的邻小区的共同邻小区的中心区域, 其中, k=N _ i _ j;
确定所述第一小区的除所述当前性能指标最差的邻小区, 和所述第一小 区和所述当前性能指标最差的邻小区的共同邻小区外的其他邻小区使用的频 谱与所述当前性能指标最差的邻小区, 或所述第一小区和所述当前性能指标 最差的邻小区的共同邻小区使用的频谱相同。
3、 如权利要求 1或 2所述的频谱分配方法, 其特征在于, 所述小区簇中 包括至少两个所述第一小区;
通过以下步骤确定所述小区簇对应的每个频谱分配方案:
将系统带宽划分为 3M等份, 其中, M为正整数;
确定小区频谱分配的集合;
针对所述小区簇中每个小区, 确定所述小区频谱分配的集合中的一个元 素用于边缘区域, 所述系统带宽的剩余部分用于中心区域。
4、 如权利要求 3 所述的频谱分配方法, 其特征在于, 具体通过公式
3∑(M- «)确定所述小区频谱分配的集合。
5、 如权利要求 1-4任一项所述的频谱分配方法, 其特征在于, 根据所述 小区簇中每个小区的业务需求确定所述小区簇对应的所述每个频谱分配方案 的目标性能指标;所述业务需求具体为保证比特率 GBR业务需求和 /或不保证 比特率 non-GBR业务需求。
6、 如权利要求 5所述的频谱分配方法, 其特征在于, 所述确定所述小区 簇对应的每个频谱分配方案的目标性能指标, 具体包括:
针对一个频谱分配方案, 根据所述每个小区的中心区域和边缘区域的业 务需求和所述频谱分配方案, 确定所述每个小区的中心区域和边缘区域的估 计负载;
基于所述每个小区的中心区域和边缘区域的估计负载, 确定所述每个小 区的目标性能指标, 并将所述每个小区的目标性能指标作为所述频谱分配方 案的目标性能指标。
7、 如权利要求 6所述的频谱分配方法, 其特征在于, 具体通过以下公式 确定所述每个小区的中心区域和边缘区域的估计负载:
Figure imgf000036_0001
其中, 为小区 c的子区域 r的估计负载, r=l,2分别表示所述中心区域 和所述边缘区域; 为所述小区 c的子区域 r的子带宽集合; 函数 f为
Figure imgf000037_0001
=^7 为每份子带宽的带宽; w为系统带宽, N为所述系统带宽划分 的等份数;
为小区 c的子区域 r的与业务需求有关的系数;
为小区 c的子区域 r的与业务需求、 噪声有关的系数;
为小区 c的子区域 r的与业务需求、 干扰有关的系数。
8、 如权利要求 7所述的频谱分配方法, 其特征在于, 所述基于所述每个 小区的中心区域和边缘区域的估计负载, 确定所述每个小区的目标性能指标, 具体包括:
针对一个小区, 若所述小区的业务需求中包括所述 GBR业务需求, 基于 所述每个小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计负载; 基于所述 GBR业务估计负载, 获得 GBR业务目标性能指标, 并将所述 GBR 业务目标性能指标作为所述小区的目标性能指标;
若所述小区的业务需求中包括所述 non-GBR业务需求, 基于所述 GBR 业务估计负载和所述 , 获得 non-GBR 业务目标性能指标, 并将所述 non-GBR业务目标性能指标作为所述小区的目标性能指标;
若所述小区的业务需求中包括所述 GBR业务需求和所述 non-GBR业务 需求, 基于所述小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计 负载, 基于所述 GBR业务估计负载, 获得 GBR业务目标性能指标; 基于所 述 GBR业务估计负载和所述 y¾,r , 获得 non-GBR业务目标性能指标, 根据 所述 GBR业务估计负载和 non-GBR业务目标性能指标确定所述小区的目标 性能指标。
9、 如权利要求 1-8任一项所述的频谱分配方法, 其特征在于, 所述根据 确定的每个频谱分配方案的目标性能指标, 在所述每个频谱分配方案中选择 频谱分配方案, 具体包括:
将最优的所述目标性能指标对应的频谱分配方案作为所述选择的频谱分 配方案。
10、 如权利要求 9 所述的频谱分配方法, 其特征在于, 在所述按照所述 选择的所述频谱分配方案为所述小区簇中的每个小区分配频谱之前, 还包括: 确定所述最优的所述目标性能指标优于前次分配频谱时确定的目标性能 指标。
11、 如权利要求 1-10任一项所述的频谱分配方法, 其特征在于, 所述确 定小区簇具体包括:
确定第一小区;
将所述第一小区与所述第一小区的邻小区组成小区簇。
12、 如权利要求 1-10任一项所述的频语分配方法, 其特征在于, 所述确 定小区簇具体包括:
确定第一小区;
将所述第一小区与所述第一小区的邻小区组成一小区组;
所述小区组没有邻小区组时, 将所述小区组确定为一个小区簇; 所述小区组有邻小区组时, 将所述小区组以及所述小区组的邻小区组确 定为一个小区簇。
13、 一种频谱分配装置, 其特征在于, 包括:
第一确定模块, 用于确定小区簇, 所述小区簇中包括至少一个当前性能 指标低于预设门限的第一小区以及所述第一小区的邻小区;
第二确定模块, 用于确定所述小区簇对应的每个频谱分配方案的目标性 肯¾才旨才示;
第三确定模块, 用于根据所述每个频谱分配方案的目标性能指标, 在所 述每个频谱分配方案中确定第一频谱分配方案;
分配模块, 用于根据所述第一频谱分配方案为所述小区簇中的每个小区 分配频语。
14、 如权利要求 13所述的频谱分配装置, 其特征在于, 所述小区簇中包 括一个所述第一小区; 所述频谱分配装置还包括:
第一划分模块, 用于将系统带宽划分为 N等份, 其中, N为大于 2的整 数;
第四确定模块, 用于确定所述第一小区的当前性能指标最差的邻小区; 第五确定模块, 用于确定 i份带宽用于所述第一小区的边缘区域, N - i 份带宽用于所述第一小区的中心区域, 其中, i小于或等于 N - 2 , 且大于等 于 1 ; 确定 j 份带宽用于所述当前性能指标最差的邻小区的边缘区域, N - j 份带宽用于所述当前性能指标最差的邻小区的中心区域, 其中, j大于或等于 1 , 小于或等于 N - i - 1 ; 确定 k份带宽用于所述第一小区和所述当前性能指 标最差的邻小区的共同邻小区的边缘区域, N - k份带宽用于所述第一小区和 所述当前性能指标最差的邻小区的共同邻小区的中心区域,其中, k=N - i _ j; 确定所述第一小区的除所述当前性能指标最差的邻小区, 和所述第一小区和 所述当前性能指标最差的邻小区的共同邻小区外的其他邻小区使用的频谱与 所述当前性能指标最差的邻小区, 或所述第一小区和所述当前性能指标最差 的邻小区的共同邻小区使用的频语相同。
15、 如权利要求 13或 14所述的频谱分配装置, 其特征在于, 所述小区 簇中包括至少两个所述第一小区; 所述频谱分配装置还包括:
第二划分模块, 用于将系统带宽划分为 3M等份, 其中, M为正整数; 第六确定模块, 用于确定小区频谱分配的集合;
第七确定模块, 用于针对所述小区簇中每个小区, 确定所述小区频谱分 配的集合中的一个元素用于边缘区域, 所述系统带宽的剩余部分用于中心区 域。
16、 如权利要求 15所述的频谱分配装置, 其特征在于, 所述第六确定模 块具体用于通过公式 3∑(M - «)确定所述小区频谱分配的集合。
17、 如权利要求 13-16任一项所述的频谱分配装置, 其特征在于, 第二确 定模块具体用于: 根据所述小区簇中每个小区的业务需求确定所述小区簇对 应的所述每个频谱分配方案的目标性能指标; 所述业务需求具体为保证比特 率 GBR业务需求和 /或不保证比特率 non-GBR业务需求。
18、 如权利要求 17所述的频谱分配装置, 其特征在于, 所述第二确定模 块具体用于: 针对一个频谱分配方案, 根据所述每个小区的中心区域和边缘 区域的业务需求和所述频谱分配方案, 确定所述每个小区的中心区域和边缘 区域的估计负载; 基于所述每个小区的中心区域和边缘区域的估计负载, 确 定所述每个小区的目标性能指标, 并将所述每个小区的目标性能指标作为所 述频谱分配方案的目标性能指标。
19、 如权利要求 18所述的频谱分配装置, 其特征在于, 所述第二确定模 块具体用于通过以下公式确定所述每个小区的中心区域和边缘区域的估计负 载:
Figure imgf000040_0001
其中, 为小区 c的子区域 r的估计负载, r=l,2分别表示所述中心区域 和所述边缘区域;
为所述小区 c的子区域 r的子带宽集合; 函数 f为
Figure imgf000040_0002
=^7 为每份子带宽的带宽; w为系统带宽, Ν为所述系统带宽划分 的等份数;
为小区 c的子区域 r的与业务需求有关的系数;
L为小区 c的子区域 r的与业务需求、 噪声有关的系数;
为小区 c的子区域 r的与业务需求、 干扰有关的系数。
20、 如权利要求 19所述的频谱分配装置, 其特征在于, 所述第二确定模 块具体用于: 针对一个小区, 若所述小区的业务需求中包括所述 GBR业务需 求, 基于所述每个小区的中心区域和边缘区域的估计负载, 获得 GBR业务估 计负载; 基于所述 GBR业务估计负载, 获得 GBR业务目标性能指标, 并将 所述 GBR业务目标性能指标作为所述小区的目标性能指标;
若所述小区的业务需求中包括所述 non-GBR业务需求, 基于所述 GBR 业务估计负载和所述 , 获得 non-GBR 业务目标性能指标, 并将所述 non-GBR业务目标性能指标作为所述小区的目标性能指标;
若所述小区的业务需求中包括所述 GBR业务需求和所述 non-GBR业务 需求, 基于所述小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计 负载, 基于所述 GBR业务估计负载, 获得 GBR业务目标性能指标; 基于所 述 GBR业务估计负载和所述 , 获得 non-GBR业务目标性能指标, 根据 所述 GBR业务估计负载和 non-GBR业务目标性能指标确定所述小区的目标 性能指标。
21、 如权利要求 13-20任一项所述的频谱分配装置, 其特征在于, 所述第 三确定模块具体用于将最优的所述目标性能指标对应的频谱分配方案作为所 述选择的频谱分配方案。
22、 如权利要求 21所述的频谱分配装置, 其特征在于, 还包括: 第八确定模块, 用于确定所述最优的所述目标性能指标优于前次分配频 谱时确定的目标性能指标。
23、 如权利要求 13-22任一项所述的频谱分配装置, 其特征在于, 所述第 一确定模块具体用于: 确定第一小区; 将所述第一小区与所述第一小区的邻 小区组成小区援。
24、 如权利要求 13-22任一项所述的频谱分配装置, 其特征在于, 所述第 一确定模块具体用于: 确定第一小区; 将所述第一小区与所述第一小区的邻 小区组成一小区组, 所述小区组没有邻小区组时, 将所述小区组确定为一个 小区簇; 所述小区组有邻小区组时, 将所述小区组以及所述小区组的邻小区 组确定为一个小区簇。
25、 一种频谱分配装置, 其特征在于, 包括: 第一处理器, 用于确定小区簇, 所述小区簇包括至少一个当前性能指标 低于预设门限的第一小区以及所述第一小区的邻小区; 确定所述小区簇对应 的每个频谱分配方案的目标性能指标; 根据所述每个频谱分配方案的目标性 能指标, 在所述每个频谱分配方案中确定第一频谱分配方案;
频谱分配器, 用于根据所述第一频谱分配方案为所述小区簇中的每个小 区分配频语。
26、 如权利 25所述的频谱分配装置, 其特征在于, 还包括:
第二处理器, 用于在所述小区簇中包括一个所述第一小区时, 将系统带 宽划分为 N等份, 其中, N为大于 2的整数; 确定所述第一小区的当前性能 指标最差的邻小区; 确定 i份带宽用于所述第一小区的边缘区域, N - i份带 宽用于所述第一小区的中心区域, 其中, i 小于或等于 N - 2, 且大于或等于 1; 确定 j份带宽用于所述当前性能指标最差的邻小区的边缘区域, N -j份带 宽用于所述当前性能指标最差的邻小区的中心区域, 其中, j 大于或等于 1 , 小于或等于 N _ i - 1 ;确定 k份带宽用于所述第一小区和所述当前性能指标最 差的邻小区的共同邻小区的边缘区域,第 N - k份带宽用于所述第一小区和所 述当前性能指标最差的邻小区的共同邻小区的中心区域, 其中, k=N _ i _ j; 确定所述第一小区的除所述当前性能指标最差的邻小区, 和所述第一小区和 所述当前性能指标最差的邻小区的共同邻小区外的其他邻小区使用的频谱与 所述当前性能指标最差的邻小区, 或所述第一小区和所述当前性能指标最差 的邻小区的共同邻小区使用的频语相同。
27、 如权利要求 25或 26所述的频谱分配装置, 其特征在于, 还包括: 第三处理器, 用于在所述小区簇中包括至少两个所述第一小区时, 将系 统带宽划分为 3M等份, 其中, M为正整数; 确定小区频谱分配的集合; 针 对所述小区簇中每个小区, 确定所述小区频谱分配的集合中的一个元素用于 边缘区域, 所述系统带宽的剩余部分用于中心区域。
28、 如权利要求 27所述的频谱分配装置, 其特征在于, 所述第三处理器 -l
具体通过公式 3∑(M - «)确定所述小区频谱分配的集合。
29、 如权利要求 25-28任一项所述的频谱分配装置, 其特征在于, 所述第 一处理器具体用于根据所述小区簇中每个小区的业务需求确定所述小区簇对 应的所述每个频谱分配方案的目标性能指标; 所述业务需求为保证比特率 GBR业务需求和 /或不保证比特率 non-GBR业务需求。
30、 如权利要求 29所述的频谱分配装置, 其特征在于, 所述第一处理器 具体用于: 针对一个频谱分配方案, 根据所述每个小区的中心区域和边缘区 域的业务需求和所述频谱分配方案, 确定所述每个小区的中心区域和边缘区 域的估计负载; 基于所述每个小区的中心区域和边缘区域的估计负载, 确定 所述每个小区的目标性能指标, 并将所述每个小区的目标性能指标作为所述 频谱分配方案的目标性能指标。
31、 如权利要求 30所述的频谱分配装置, 其特征在于, 所述第一处理器 具体用于通过以下公式确定所述每个小区的中心区域和边缘区域的估计负 载:
~ Gr r Nr r Hr r, mind ,l)
=∑(^-f(^ + Σ r d" ));
Wunit Gc r deic Gc r
其中, 为小区 c的子区域 r的估计负载, r=l,2分别表示所述中心区域 和所述边缘区域;
为所述小区 c的子区域 r的子带宽集合;
/(x) = l0g(2)
函数 f为 ¥1 + 1/ ;
= ^7 为每份子带宽的带宽; w为系统带宽, N为所述系统带宽划 i 的等份数;
为小区 c的子区域 r的与业务需求有关的系数;
L为小区 c的子区域 r的与业务需求、 噪声有关的系数;
为小区 c的子区域 r的与业务需求、 干扰有关的系数。
32、 如权利要求 31所述的频谱分配装置, 其特征在于, 所述第一处理器 具体用于:针对一个小区,若所述小区的业务需求中包括所述 GBR业务需求, 基于所述每个小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计负 载; 基于所述 GBR业务估计负载, 获得 GBR业务目标性能指标, 并将所述 GBR业务目标性能指标作为所述小区的目标性能指标;
若所述小区的业务需求中包括所述 non-GBR业务需求, 基于所述 GBR 业务估计负载和所述 , 获得 non-GBR 业务目标性能指标, 并将所述 non-GBR业务目标性能指标作为所述小区的目标性能指标;
若所述小区的业务需求中包括所述 GBR业务需求和所述 non-GBR业务 需求, 基于所述小区的中心区域和边缘区域的估计负载, 获得 GBR业务估计 负载, 基于所述 GBR业务估计负载, 获得 GBR业务目标性能指标; 基于所 述 GBR业务估计负载和所述 , 获得 non-GBR业务目标性能指标, 根据 所述 GBR业务估计负载和 non-GBR业务目标性能指标确定所述小区的目标 性能指标。
33、 如权利要求 25-32任一项所述的频谱分配装置, 其特征在于, 所述第 一处理器具体用于将最优的所述目标性能指标对应的频谱分配方案作为所述 选择的频谱分配方案。
34、 如权利要求 33所述的频谱分配装置, 其特征在于, 所述第一处理器 具体还用于确定所述最优的所述目标性能指标优于前次分配频谱时确定的目 标性能指标。
35、 如权利要求 25-34任一项所述的频谱分配装置, 其特征在于, 所述第 一处理器具体还用于: 确定第一小区; 将所述第一小区与所述第一小区的邻 小区组成小区援。
36、 如权利要求 25-34任一项所述的频谱分配装置, 其特征在于, 所述第 一处理器具体还用于: 确定第一小区; 将所述第一小区与所述第一小区的邻 小区组成一小区组, 所述小区组没有邻小区组时, 将所述小区组确定为一个 小区簇; 所述小区组有邻小区组时, 将所述小区组以及所述小区组的邻小区 组确定为一个小区簇。
PCT/CN2013/086255 2013-10-30 2013-10-30 一种频谱分配方法及频谱分配装置 WO2015061996A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201380079469.2A CN105519158B (zh) 2013-10-30 2013-10-30 一种频谱分配方法及频谱分配装置
PCT/CN2013/086255 WO2015061996A1 (zh) 2013-10-30 2013-10-30 一种频谱分配方法及频谱分配装置
EP13896220.4A EP3046355B1 (en) 2013-10-30 2013-10-30 Spectrum allocation method and spectrum allocation apparatus
ES13896220T ES2728733T3 (es) 2013-10-30 2013-10-30 Método de asignación de espectro y equipo para asignación de espectro

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2013/086255 WO2015061996A1 (zh) 2013-10-30 2013-10-30 一种频谱分配方法及频谱分配装置

Publications (1)

Publication Number Publication Date
WO2015061996A1 true WO2015061996A1 (zh) 2015-05-07

Family

ID=53003124

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2013/086255 WO2015061996A1 (zh) 2013-10-30 2013-10-30 一种频谱分配方法及频谱分配装置

Country Status (4)

Country Link
EP (1) EP3046355B1 (zh)
CN (1) CN105519158B (zh)
ES (1) ES2728733T3 (zh)
WO (1) WO2015061996A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992962A (zh) * 2005-12-28 2007-07-04 上海原动力通信科技有限公司 基于3g系统演进网络架构的小区间干扰协调方法
CN102118759A (zh) * 2011-03-02 2011-07-06 北京邮电大学 协同多点传输系统基于服务质量的下行传输频率规划方法
CN102958057A (zh) * 2011-08-25 2013-03-06 华为技术有限公司 一种动态频谱优化方法、装置及系统
US20130072246A1 (en) * 2010-05-28 2013-03-21 Nec Corporation Wireless resource setting method, wireless communication system, wireless base station, and program
WO2013124435A1 (en) * 2012-02-22 2013-08-29 Telefonaktiebolaget L M Ericsson (Publ) Self-organizing network function interaction

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8224960B2 (en) * 2005-03-16 2012-07-17 Alcatel Lucent Method of flexible frequency allocation

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1992962A (zh) * 2005-12-28 2007-07-04 上海原动力通信科技有限公司 基于3g系统演进网络架构的小区间干扰协调方法
US20130072246A1 (en) * 2010-05-28 2013-03-21 Nec Corporation Wireless resource setting method, wireless communication system, wireless base station, and program
CN102118759A (zh) * 2011-03-02 2011-07-06 北京邮电大学 协同多点传输系统基于服务质量的下行传输频率规划方法
CN102958057A (zh) * 2011-08-25 2013-03-06 华为技术有限公司 一种动态频谱优化方法、装置及系统
WO2013124435A1 (en) * 2012-02-22 2013-08-29 Telefonaktiebolaget L M Ericsson (Publ) Self-organizing network function interaction

Also Published As

Publication number Publication date
EP3046355A1 (en) 2016-07-20
EP3046355B1 (en) 2019-04-03
CN105519158B (zh) 2019-05-24
EP3046355A4 (en) 2016-09-28
ES2728733T3 (es) 2019-10-28
CN105519158A (zh) 2016-04-20

Similar Documents

Publication Publication Date Title
RU2474980C2 (ru) Способ и устройство для повторного использования частот в системе связи с множеством несущих
KR100977425B1 (ko) Ofdma 역방향 링크 스케쥴링
JP4620149B2 (ja) 無線通信システムのアップリンク送信を制御するための方法および装置
JP5491349B2 (ja) セルラー通信システムにおけるセル間干渉の制御のためにリソース割り当てをスケジューリングする方法及び装置とその基地局
JP5265727B2 (ja) 通信システムの送信を制御する装置および方法
RU2391798C2 (ru) Использование сообщений использования ресурсов в мас с множеством несущих для достижения равноправности
JP5425812B2 (ja) スループットに基づくリソース利用メッセージの適応型送信
JP5335816B2 (ja) リソース利用メッセージの適応型送信
US20150029950A1 (en) Uplink transmission scheduling for wireless communication networks
WO2010048491A1 (en) Adaptive semi-static interference avoidance in cellular networks
WO2013109888A1 (en) Systems and method for uplink resource allocation
US9014015B2 (en) Method and apparatus for resource utilization management in a multi-carrier communications system
WO2014114163A1 (zh) 无线通信系统中的设备和方法
Panno et al. An enhanced joint scheduling scheme for GBR and non-GBR services in 5G RAN
CN111107629B (zh) 一种5g通信方法及系统
US11452113B2 (en) Method and base station for CSG aware scheduling in wireless network
WO2012006887A1 (zh) 正交频分复用系统中资源分配方法与装置
CN111556574A (zh) 无线局域网工作的管理方法和管理装置、接入控制器
WO2015061996A1 (zh) 一种频谱分配方法及频谱分配装置
EP2995107A1 (en) Method for scheduling radio resources
KR100582902B1 (ko) 이동통신 시스템의 전력 할당 장치 및 전력 할당 방법
CN109996301B (zh) 整网信道资源的智能调度方法及接入控制器和服务器
Nandagopal et al. Fair scheduling in wireless packet data networks
CN115843108A (zh) 资源调度方法、设备、装置与存储介质
Burchardt et al. Uplink interference protection and fair scheduling for power efficient OFDMA networks

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13896220

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2013896220

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2013896220

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE