WO2015060091A1 - Method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like article, and electronic device - Google Patents

Method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like article, and electronic device Download PDF

Info

Publication number
WO2015060091A1
WO2015060091A1 PCT/JP2014/076443 JP2014076443W WO2015060091A1 WO 2015060091 A1 WO2015060091 A1 WO 2015060091A1 JP 2014076443 W JP2014076443 W JP 2014076443W WO 2015060091 A1 WO2015060091 A1 WO 2015060091A1
Authority
WO
WIPO (PCT)
Prior art keywords
meth
sensitive adhesive
conductive pressure
parts
mass
Prior art date
Application number
PCT/JP2014/076443
Other languages
French (fr)
Japanese (ja)
Inventor
明子 北川
拓朗 熊本
豊和 武藤
Original Assignee
日本ゼオン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本ゼオン株式会社 filed Critical 日本ゼオン株式会社
Publication of WO2015060091A1 publication Critical patent/WO2015060091A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J9/00Adhesives characterised by their physical nature or the effects produced, e.g. glue sticks
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J133/00Adhesives based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Adhesives based on derivatives of such polymers
    • C09J133/04Homopolymers or copolymers of esters
    • C09J133/06Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
    • C09J133/08Homopolymers or copolymers of acrylic acid esters
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3737Organic materials with or without a thermoconductive filler
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/318Applications of adhesives in processes or use of adhesives in the form of films or foils for the production of liquid crystal displays
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/302Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive being pressure-sensitive, i.e. tacky at temperatures inferior to 30°C
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2433/00Presence of (meth)acrylic polymer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00

Definitions

  • the present invention relates to a method for producing a thermally conductive pressure-sensitive adhesive composition, a method for producing a thermally conductive pressure-sensitive adhesive sheet-like molded article, and a thermally conductive pressure-sensitive adhesive composition or a thermally conductive pressure-sensitive adhesive sheet-like molded article.
  • the present invention relates to an electronic device having a body.
  • thermo conductive pressure-sensitive adhesive composition a composition having a pressure-sensitive adhesive property in addition to thermal conductivity
  • sheet a composition having a pressure-sensitive adhesive property in addition to thermal conductivity
  • thermo conductive pressure-sensitive adhesive sheet a composition having a pressure-sensitive adhesive property in addition to thermal conductivity
  • thermoally conductive pressure-sensitive adhesive sheet-like molded product a composition having a pressure-sensitive adhesive property in addition to thermal conductivity
  • the heat conductive pressure-sensitive adhesive composition and the heat conductive pressure-sensitive adhesive sheet-like molded body are mainly intended to transfer heat from the heat generating body to the heat radiating body, and therefore it is preferable to improve the heat conductivity.
  • the heat conductive pressure-sensitive adhesive composition and the heat conductive pressure-sensitive adhesive sheet-like molded article have fillers corresponding to the functions to be provided in order to provide other functions other than the heat conductivity depending on the use. May be added.
  • Patent Document 1 below discloses a heat conductive pressure-sensitive adhesive sheet-like molded body to which expanded graphite powder, polar group-modified halogenated hydrocarbon fiber, or the like is added.
  • a thermally conductive pressure-sensitive adhesive sheet-like molded body having a good balance of thermal conductivity, flame retardancy, insulation and flexibility can be obtained.
  • a polar group-modified halogenated hydrocarbon fiber by adding a polar group-modified halogenated hydrocarbon fiber, functions such as flame retardancy of a heat conductive pressure-sensitive adhesive sheet-like molded body are improved.
  • an object of the present invention is to provide a heat conductive pressure-sensitive adhesive composition having improved flame retardancy and good productivity and a method for producing a heat conductive pressure-sensitive adhesive sheet-like molded product. Moreover, the electronic device provided with the heat conductive pressure-sensitive-adhesive composition obtained by these manufacturing methods or a heat conductive pressure-sensitive-adhesive sheet-like molded object is provided.
  • the polar group-modified halogenated hydrocarbon fiber (C) is 0.3 parts by mass or more and 3.5 parts by mass or less
  • the polyhydric alcohol polymer fatty acid ester (D) is 2 parts by mass.
  • 1st mixing process which produces the 1st mixed composition containing 13 mass parts or less above, (meth) acrylic acid ester polymer (A1) and (meth) acrylic acid ester monomer (alpha) are included.
  • a second mixed composition containing 100 parts by weight of the (meth) acrylic resin composition (A), 50 parts by weight or more and 1000 parts by weight or less of the thermally conductive filler (B), and the first mixed composition.
  • a heat-sensitive pressure-sensitive adhesive comprising: a second mixing step for producing a polymer; and a polymerization step for performing a polymerization reaction of at least the (meth) acrylic acid ester monomer ( ⁇ 1) in the second mixed composition. It is a manufacturing method of a composition (F).
  • the “polar group-modified halogenated hydrocarbon fiber” means a fiber made of a halogenated hydrocarbon having a polar group in the structure. Specific examples of the polar group-modified halogenated hydrocarbon fiber (C) will be described later.
  • “(Meth) acryl” means “acryl and / or methacryl”.
  • the “thermally conductive filler” is added to improve the thermal conductivity of the thermally conductive pressure-sensitive adhesive composition (F) and the thermally conductive pressure-sensitive adhesive sheet-like molded body (G) described later. It means a filler whose own thermal conductivity is 0.3 W / m ⁇ K or more.
  • the “polymerization reaction of (meth) acrylate monomer ( ⁇ 1)” means a polymerization reaction for obtaining a polymer containing a structural unit derived from (meth) acrylate monomer ( ⁇ 1).
  • the polar group-modified halogenated hydrocarbon fiber (C) is 0.3 parts by mass or more and 3.5 parts by mass or less
  • the polyhydric alcohol polymer fatty acid ester (D) is 2 parts by mass.
  • 1st mixing process which produces the 1st mixed composition containing 13 mass parts or less above, (meth) acrylic acid ester polymer (A1) and (meth) acrylic acid ester monomer (alpha) are included.
  • a second mixed composition containing 100 parts by weight of the (meth) acrylic resin composition (A), 50 parts by weight or more and 1000 parts by weight or less of the thermally conductive filler (B), and the first mixed composition.
  • the second mixing step for preparing the resin composition, and after forming the second mixed composition into a sheet shape, or while forming the second mixed composition into a sheet shape, at least a (meth) acrylate monomer ( ⁇ 1) polymerization reaction, molding process and weight at least a (meth) acrylate monomer ( ⁇ 1) polymerization reaction, molding process and weight
  • the third aspect of the present invention is the heat conduction obtained by the method for producing the heat generating element and the heat conductive pressure-sensitive adhesive composition (F) according to the first aspect of the present invention bonded to the heat generating element.
  • the manufacturing method of the heat-sensitive pressure-sensitive adhesive composition (F) or the heat-generating pressure-sensitive adhesive sheet-like molded body (G) according to the second aspect of the present invention bonded to the heat-generating body. It is an electronic device provided with the obtained heat conductive pressure-sensitive-adhesive sheet-like molded object (G).
  • the viscosity of the heat conductive pressure-sensitive adhesive composition and the composition that is a precursor of the heat conductive pressure-sensitive adhesive sheet-like molded product May increase excessively, resulting in decreased productivity or difficulty in production.
  • the present inventors do not mix all the substances constituting the heat conductive pressure-sensitive adhesive composition and the heat conductive pressure-sensitive adhesive sheet-like molded article at the same time, but by preparing the composition through a predetermined stage. It has been found that an excessive increase in the viscosity of the composition can be suppressed even when the amount of the polar group-modified halogenated hydrocarbon fiber is increased. The present invention is based on this finding. This will be described in detail below.
  • the method for producing the thermally conductive pressure sensitive adhesive composition (F) of the present invention comprises a polar group-modified halogenated hydrocarbon fiber (C), polyhydric alcohol heavy 1st mixing process which produces the 1st mixed composition containing fatty acid ester (D) of a coalescence, (meth) acrylic acid ester polymer (A1), and (meth) acrylic acid ester monomer ( ⁇ 1)
  • a second mixing step of producing a second mixed composition comprising a (meth) acrylic resin composition (A) containing a thermal conductive filler (B) and a first mixed composition;
  • the second mixed composition includes at least a polymerization step for performing a polymerization reaction of the (meth) acrylic acid ester monomer ( ⁇ 1).
  • the polar group-modified halogenated hydrocarbon fiber (C) that can be used in the present invention is a fiber in which a polar group-modified halogenated hydrocarbon is in the form of a fiber. Since it is a halogenated hydrocarbon having a polar group and needs to be fibrous, it is usually a solid, preferably a polymer compound.
  • the polar group may be only one kind or a plurality of different polar groups.
  • polar group examples include (meth) acryl group, hydroxyl group, carbonyl group, carboxyl group, epoxy group, glycidyl group, amino group, amide group, imide group, cyano group, and the like. (Meth) acrylic groups are preferred.
  • halogen atom contained in the structure of the polar group-modified halogenated hydrocarbon constituting the polar group-modified halogenated hydrocarbon fiber (C) include a fluorine atom, a chlorine atom, and a bromine atom. Of these, a fluorine atom is preferred.
  • the halogenated hydrocarbons excluding the polar group part constituting the polar group-modified halogenated hydrocarbon fiber (C) are bonded to all the carbon atoms constituting the halogenated hydrocarbon excluding the polar group part.
  • the halogen atoms are preferably 50 mol% or more, more preferably 70 mol% or more, and even more preferably 90 mol% or more. 100 mol% is particularly preferable.
  • polar group-modified halogenated hydrocarbon fiber (C) (meth) acryl group-modified halogenated hydrocarbon fiber
  • polar group-modified polytetrafluoroethylene fiber hereinafter referred to as polytetrafluoroethylene, (May be abbreviated as “PTFE”)
  • acrylic group-modified PTFE fibers for example, “methabrene A-3000” manufactured by Mitsubishi Rayon Co., Ltd.
  • the amount of the polar group-modified halogenated hydrocarbon fiber (C) used in the first mixing step is 0.3 parts by mass with 100 parts by mass of the (meth) acrylic resin composition (A) used in the second mixing step. It is preferably 3.5 parts by mass or less, preferably 0.5 parts by mass or more and 3 parts by mass or less, and more preferably 0.5 parts by mass or more and 2 parts by mass or less.
  • the amount of the polar group-modified halogenated hydrocarbon fiber (C) is not less than the lower limit of the above range, the heat conductive pressure-sensitive adhesive composition (F) can be provided with sufficient flame retardancy.
  • the amount of the polar group-modified halogenated hydrocarbon fiber (C) is not more than the upper limit of the above range, it is possible to suppress an excessive increase in the viscosity of the second mixed composition described in detail later.
  • the inventors previously prepared a first mixed composition containing the polar group-modified halogenated hydrocarbon fiber (C) and the fatty acid ester (D) of a polyhydric alcohol polymer in the first mixing step. Later, a polar group-modified halogen functioning as a flame retardant is produced by preparing a second mixed composition comprising the first mixed composition with another substance contained in the heat conductive pressure-sensitive adhesive composition (F). Even if the use amount of the activated hydrocarbon fiber (C) is increased from the conventional amount, an excessive increase in the viscosity of the second mixed composition is suppressed, and the productivity of the heat conductive pressure-sensitive adhesive composition (F) is improved. I found out that That is, it has been found that the productivity of the heat conductive pressure-sensitive adhesive composition (F) having high flame retardancy can be improved.
  • fatty acid ester (D) of the polyhydric alcohol polymer used in the present invention examples include polyglycerin fatty acid ester, polysorbitan fatty acid ester, and polypropylene glycol fatty acid ester. Of these, polyglycerol fatty acid esters are more preferable.
  • polyglycerin fatty acid ester examples include polyglycerin condensed ricinoleic acid ester, polyglycerin ricinoleic acid ester, polyglycerin oleic acid ester, polyglycerin stearic acid ester, and the like. Among them, polyglycerin condensed ricinoleic acid ester is particularly preferable.
  • polysorbitan fatty acid ester include polysorbitan condensed ricinoleic acid ester, polysorbitan ricinoleic acid ester, polysorbitan oleic acid ester, polysorbitan stearic acid ester, and the like.
  • polypropylene glycol fatty acid ester examples include polypropylene glycol condensed ricinoleic acid ester, polypropylene glycol ricinoleic acid ester, polypropylene glycol oleic acid ester, and polypropylene glycol stearic acid ester.
  • ricinoleic acid is a compound having both a carboxyl group and a hydroxyl group
  • a compound obtained by the esterification reaction between the carboxyl group possessed by ricinoleic acid and the hydroxyl group possessed by ricinoleic acid, which is a separate molecule is referred to as “condensed ricinolein”.
  • acid a compound obtained by the esterification reaction between the carboxyl group possessed by ricinoleic acid and the hydroxyl group possessed by ricinoleic acid, which is a separate molecule
  • the polyglycerin condensed ricinoleic acid ester is obtained by an esterification reaction between a carboxyl group in condensed ricinoleic acid and a hydroxyl group in a compound having a hydroxyl group.
  • fatty acid ester (D) of the polyhydric alcohol polymer those having a number average molecular weight of 1,000 or more and 10,000 or less are preferable.
  • the fatty acid ester (D) of the polyhydric alcohol polymer is preferably liquid at a temperature of 10 ° C. or higher and 40 ° C. or lower.
  • the amount of the fatty acid ester (D) of the polyhydric alcohol polymer used in the first mixing step is 2 parts by mass or more and 13 parts by mass with the (meth) acrylic resin composition (A) used in the second mixing step being 100 parts by mass. 3 parts by mass or more, preferably 10 parts by mass or less, and more preferably 4 parts by mass or more and 10 parts by mass or less.
  • the amount of the fatty acid ester (D) of the polyhydric alcohol polymer is set to be equal to or less than the upper limit of the above range, the cohesive force of the second mixed composition is lowered and the heat conductive pressure-sensitive adhesive composition (F). It is possible to prevent the molding of the material from becoming difficult.
  • a 2nd mixing process is a process of producing the 2nd mixed composition containing a (meth) acrylic resin composition (A), a heat conductive filler (B), and the said 1st mixed composition. is there.
  • the (meth) acrylic resin composition (A) and the heat conductive filler (B) used in the second mixing step will be described below.
  • the (meth) acrylic resin composition (A) used in the second mixing step contains a (meth) acrylic acid ester polymer (A1) and a (meth) acrylic acid ester monomer ( ⁇ 1), which will be described later. It may contain a multifunctional monomer.
  • the polymerization reaction of a (meth) acrylic acid ester monomer ((alpha) 1) is performed at least. By performing the polymerization reaction, the polymer containing the structural unit derived from the (meth) acrylate monomer ( ⁇ 1) is mixed and / or partially bonded to the component of the (meth) acrylate polymer (A1). .
  • the mixing ratio of the (meth) acrylic acid ester polymer (A1) and the (meth) acrylic acid ester monomer ( ⁇ 1) is (meth) acrylic acid with the (meth) acrylic resin composition (A) being 100% by mass.
  • the ester polymer (A1) is preferably 20% by mass or more and 80% by mass or less, and the (meth) acrylic acid ester monomer ( ⁇ 1) is preferably 20% by mass or more and 80% by mass or less. More preferably, the coalescence (A1) is 30% by mass or more and 69.5% by mass or less, and the (meth) acrylic acid ester monomer ( ⁇ 1) is 30% by mass or more and 69.5% by mass or less. It becomes easy to shape
  • the (meth) acrylic acid ester polymer (A1) that can be used in the present invention is not particularly limited, but the (meth) acrylic acid ester monomer that forms a homopolymer having a glass transition temperature of ⁇ 20 ° C. or lower. It is preferable to contain the unit (a1) and the monomer unit (a2) having an organic acid group.
  • the (meth) acrylate monomer (a1m) that gives the unit (a1) of the (meth) acrylate monomer is not particularly limited.
  • ethyl acrylate the glass transition temperature of the homopolymer is -24 ° C
  • n-propyl acrylate (-37 ° C)
  • n-butyl acrylate (-54 ° C)
  • sec-butyl acrylate (-22 ° C)
  • n-octyl acrylate -65 ° C
  • 2-ethylhexyl acrylate -50 ° C
  • n-octyl methacrylate (-25 ° C)
  • a (meth) acrylic acid alkyl ester that forms a homopolymer having a glass transition temperature of ⁇ 20 ° C.
  • n-decyl methacrylate (-49 ° C.); 2-methoxyethyl acrylate
  • the glass transition temperature is ⁇ 50 ° C.), 3-methoxypropyl acrylate (-75 ° C.), 3-methoxybutyl acrylate (-56 ° C.), ethoxymethyl acrylate ( ⁇ 50 ° C.), etc.
  • (meth) acrylic acid alkoxyalkyl esters that form a homopolymer of 20 ° C. or lower. Among them, (meth) acrylic acid alkyl ester forming a homopolymer having a glass transition temperature of ⁇ 20 ° C.
  • (meth) acrylic acid alkoxyalkyl ester forming a homopolymer having a glass transition temperature of ⁇ 20 ° C. or lower (meth) acrylic acid alkyl ester forming a homopolymer having a glass transition temperature of ⁇ 20 ° C. or lower is more preferable, and 2-ethylhexyl acrylate is more preferable.
  • acrylic acid ester monomers (a1m) may be used alone or in combination of two or more.
  • the monomer unit (a1) derived therefrom is preferably 80% by mass or more and 99.9% by mass in the (meth) acrylic acid ester polymer (A1).
  • it is used for polymerization in such an amount that it is more preferably 85 mass% or more and 99.5 mass% or less.
  • the amount of the (meth) acrylic acid ester monomer (a1m) is within the above range, the viscosity of the polymerization system at the time of polymerization can be easily maintained within an appropriate range.
  • the monomer (a2m) that gives the monomer unit (a2) having an organic acid group is not particularly limited, but representative examples thereof include organic acid groups such as a carboxyl group, an acid anhydride group, and a sulfonic acid group.
  • monomers containing sulfenic acid groups, sulfinic acid groups, phosphoric acid groups, and the like can also be used.
  • the monomer having a carboxyl group include, for example, ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, and ⁇ , ⁇ such as itaconic acid, maleic acid, and fumaric acid.
  • ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid partial esters such as monomethyl itaconate, monobutyl maleate and monopropyl fumarate can be exemplified.
  • the monomer having a sulfonic acid group examples include allyl sulfonic acid, methallyl sulfonic acid, vinyl sulfonic acid, styrene sulfonic acid, ⁇ , ⁇ -unsaturated sulfonic acid such as acrylamide-2-methylpropane sulfonic acid, And salts thereof.
  • the monomer (a2m) among the monomers having an organic acid group exemplified above, a monomer having a carboxyl group is more preferable, and an ⁇ , ⁇ -ethylenically unsaturated monocarboxylic acid is more preferable. (Meth) acrylic acid is particularly preferred. These monomers are industrially inexpensive and can be easily obtained, have good copolymerizability with other monomer components, and are preferable in terms of productivity. In addition, a monomer (a2m) may be used individually by 1 type, and may use 2 or more types together.
  • the monomer unit (a2) derived from the monomer unit (a2) is preferably 0.1% by mass or more and 20% by mass or less in the (meth) acrylic acid ester polymer (A1). More preferably, it is used for the polymerization in such an amount that it is 0.5 to 15% by mass.
  • the usage-amount of the monomer (a2m) which has an organic acid group exists in the said range, it will become easy to maintain the viscosity of the polymerization system at the time of superposition
  • the monomer unit (a2) having an organic acid group is introduced into the (meth) acrylic acid ester polymer (A1) by polymerization of the monomer (a2m) having an organic acid group as described above. It is convenient and preferable. However, after producing the (meth) acrylic acid ester polymer (A1), an organic acid group may be introduced by a known polymer reaction.
  • the (meth) acrylic acid ester polymer (A1) may contain a monomer unit (a3) derived from a monomer (a3m) having a functional group other than an organic acid group.
  • the functional group other than the organic acid group include a hydroxyl group, an amino group, an amide group, an epoxy group, and a mercapto group.
  • Examples of the monomer having a hydroxyl group include (meth) acrylic acid hydroxyalkyl esters such as (meth) acrylic acid 2-hydroxyethyl and (meth) acrylic acid 3-hydroxypropyl.
  • Examples of the monomer having an amino group include N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, and aminostyrene.
  • Examples of monomers having an amide group include ⁇ , ⁇ -ethylenically unsaturated carboxylic acid amide monomers such as acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, and N, N-dimethylacrylamide. Can be mentioned.
  • Examples of the monomer having an epoxy group include glycidyl (meth) acrylate and allyl glycidyl ether.
  • the monomer (a3m) having a functional group other than the organic acid group one type may be used alone, or two or more types may be used in combination.
  • the monomer unit (a3) derived therefrom is 10% by mass or less in the (meth) acrylate polymer (A1). It is preferable to use it for polymerization in such an amount.
  • the monomer (a3m) of 10% by mass or less it becomes easy to keep the viscosity of the polymerization system during polymerization in an appropriate range.
  • the (meth) acrylic acid ester polymer (A1) has a (meth) acrylic acid ester monomer unit (a1) that forms a homopolymer having a glass transition temperature of ⁇ 20 ° C. or lower, and an organic acid group.
  • a monomer derived from the monomer (a4m) copolymerizable with the above-described monomer may be contained.
  • the monomer (a4m) is not particularly limited, and specific examples thereof include (meth) acrylate monomers other than the (meth) acrylate monomer (a1m), ⁇ , ⁇ -ethylenic monomers. Saturated polyvalent carboxylic acid complete ester, alkenyl aromatic monomer, vinyl cyanide monomer, carboxylic acid unsaturated alcohol ester, olefin monomer and the like can be mentioned.
  • the (meth) acrylate monomer other than the (meth) acrylate monomer (a1m) include methyl acrylate (homopolymer having a glass transition temperature of 10 ° C.), methyl methacrylate. (105 ° C.), ethyl methacrylate (63 ° C.), n-propyl methacrylate (25 ° C.), n-butyl methacrylate (20 ° C.), and the like.
  • ⁇ , ⁇ -ethylenically unsaturated polyvalent carboxylic acid complete ester examples include dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaconate and the like.
  • alkenyl aromatic monomer examples include styrene, ⁇ -methylstyrene, methyl ⁇ -methylstyrene, vinyltoluene and the like.
  • vinyl cyanide monomer examples include acrylonitrile, methacrylonitrile, ⁇ -chloroacrylonitrile, ⁇ -ethylacrylonitrile and the like.
  • carboxylic acid unsaturated alcohol ester monomer examples include vinyl acetate.
  • olefin monomer examples include ethylene, propylene, butene, pentene and the like.
  • the monomer (a4m) one type may be used alone, or two or more types may be used in combination.
  • the amount of the monomer unit (a4) derived therefrom is preferably 10% by mass or less, more preferably 5% by mass or less in the (meth) acrylate polymer (A1). It is subjected to polymerization in such an amount.
  • the (meth) acrylic acid ester polymer (A1) has the above-mentioned (meth) acrylic acid ester monomer (a1m) that forms a homopolymer having a glass transition temperature of ⁇ 20 ° C. or lower, and an organic acid group.
  • Monomer (a2m) a monomer containing a functional group other than an organic acid group (a3m) used as necessary, and a monomer copolymerizable with these monomers used as needed It can be particularly suitably obtained by copolymerizing the monomer (a4m).
  • the polymerization method for obtaining the (meth) acrylic acid ester polymer (A1) is not particularly limited, and may be any of solution polymerization, emulsion polymerization, suspension polymerization, bulk polymerization, and the like, or any other method. .
  • solution polymerization is preferable, and among them, solution polymerization using a carboxylic acid ester such as ethyl acetate or ethyl lactate or an aromatic solvent such as benzene, toluene or xylene is more preferable.
  • the monomer may be added in portions to the polymerization reaction vessel, but it is preferable to add the whole amount at once.
  • the method for initiating the polymerization is not particularly limited, but it is preferable to use a thermal polymerization initiator as the polymerization initiator.
  • the thermal polymerization initiator is not particularly limited, and for example, a peroxide polymerization initiator or an azo compound polymerization initiator can be used.
  • Peroxide polymerization initiators include hydroperoxides such as t-butyl hydroperoxide, peroxides such as benzoyl peroxide and cyclohexanone peroxide, and persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate. Can be mentioned. These peroxides can also be used as a redox catalyst in appropriate combination with a reducing agent.
  • the usage-amount of a polymerization initiator is not specifically limited, It is preferable that it is the range of 0.01 to 50 mass parts with respect to 100 mass parts of monomers.
  • polymerization conditions (polymerization temperature, pressure, stirring conditions, etc.) of these monomers are not particularly limited.
  • the obtained polymer is separated from the polymerization medium if necessary.
  • the separation method is not particularly limited.
  • the (meth) acrylic acid ester polymer (A1) can be obtained by placing the polymerization solution under reduced pressure and distilling off the polymerization solvent.
  • the weight average molecular weight (Mw) of the (meth) acrylic acid ester polymer (A1) is measured by gel permeation chromatography (GPC method) and may be in the range of 1,000 to 1,000,000 in terms of standard polystyrene. Preferably, it is in the range of 100,000 or more and 500,000 or less.
  • the weight average molecular weight of the (meth) acrylic acid ester polymer (A1) can be controlled by appropriately adjusting the amount of the polymerization initiator used in the polymerization and the amount of the chain transfer agent.
  • the (meth) acrylate monomer ( ⁇ 1) is not particularly limited as long as it contains the (meth) acrylate monomer, but forms a homopolymer having a glass transition temperature of ⁇ 20 ° C. or lower. It is preferable to contain the (meth) acrylic acid ester monomer (a5m).
  • a (meth) acrylate monomer (a5m) that forms a homopolymer having a glass transition temperature of ⁇ 20 ° C. or lower, it is used for the synthesis of a (meth) acrylate polymer (A1) (meth) )
  • a (meth) acrylic acid ester monomer (a5m) may be used individually by 1 type, and may use 2 or more types together.
  • the ratio of the (meth) acrylate monomer (a5m) in the (meth) acrylate monomer ( ⁇ 1) is preferably 50% by mass to 100% by mass, more preferably 75% by mass to 100% by mass. It is as follows. By making the ratio of the (meth) acrylic acid ester monomer (a5m) in the (meth) acrylic acid ester monomer ( ⁇ 1) in the above range, the heat conductive pressure-sensitive adhesive having excellent pressure-sensitive adhesiveness and flexibility.
  • the agent composition (F) can be easily obtained.
  • the (meth) acrylic acid ester monomer ( ⁇ 1) is a (meth) acrylic acid ester monomer (a5m) that forms a homopolymer having a glass transition temperature of ⁇ 20 ° C. or lower. It is good also as a mixture of the monomer (a6m) which has a polymerizable organic acid group.
  • Examples of the monomer (a6m) include monomers having an organic acid group similar to those exemplified as the monomer (a2m) used for the synthesis of the (meth) acrylic acid ester polymer (A1). be able to.
  • a monomer (a6m) may be used individually by 1 type, and may use 2 or more types together.
  • the ratio of the monomer (a6m) in the (meth) acrylic acid ester monomer ( ⁇ 1) is preferably 30% by mass or less, and more preferably 10% by mass or less.
  • the (meth) acrylic acid ester monomer ( ⁇ 1) in addition to the (meth) acrylic acid ester monomer (a5m) and the monomer (a6m) having an organic acid group that can be optionally copolymerized, It is good also as a mixture containing the monomer (a7m) copolymerizable with these.
  • Examples of the monomer (a7m) include the monomer (a3m) used for the synthesis of the (meth) acrylic acid ester polymer (A1) and the same amount as those exemplified as the monomer (a4m).
  • the body can be mentioned.
  • a monomer (a7m) may be used individually by 1 type, and may use 2 or more types together.
  • the ratio of the monomer (a7m) in the (meth) acrylic acid ester monomer ( ⁇ 1) is preferably 20% by mass or less, and more preferably 15% by mass or less.
  • a polyfunctional monomer in the present invention, can also be used in the (meth) acrylic resin composition (A). Usually, at the time of polymerization such as radical thermal polymerization, a certain degree of crosslinking reaction proceeds without using a polyfunctional monomer. However, a polyfunctional monomer may be used in order to form a desired amount of a crosslinked structure more reliably.
  • the polyfunctional monomer that can be used in the present invention one that can be copolymerized with the monomer contained in the (meth) acrylic acid ester monomer ( ⁇ 1) is used.
  • the polyfunctional monomer has a plurality of polymerizable unsaturated bonds, and preferably has the unsaturated bond at the terminal.
  • intramolecular and / or intermolecular crosslinking is introduced into the copolymer, and the heat conductive pressure sensitive adhesive composition (F) is aggregated as a pressure sensitive adhesive. You can increase your power.
  • polyfunctional monomer examples include 1,6-hexanediol di (meth) acrylate, 1,2-ethylene glycol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, polyethylene glycol di (Meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane Multifunctional (meth) acrylates such as tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 2,4-bis (trick Other substituted triazines, such as Romechiru) -6
  • monoethylenically unsaturated aromatic ketones such as 4-acryloxy benzophenone can be used.
  • polyfunctional (meth) acrylate is preferable, and pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate are more preferable.
  • a polyfunctional monomer may be used individually by 1 type, and may use 2 or more types together.
  • the amount of the polyfunctional monomer used is preferably 10% by mass or less, based on the (meth) acrylic resin composition (A) as 100% by mass, and is 0.5% by mass or more and 5% by mass or less. Is more preferable.
  • ⁇ Polymerization initiator> When obtaining the heat conductive pressure sensitive adhesive composition (F), the components contained in the (meth) acrylic resin composition (A) are polymerized as described above. In order to accelerate the polymerization reaction, it is preferable to use a polymerization initiator.
  • the polymerization initiator include a photopolymerization initiator, an azo thermal polymerization initiator, and an organic peroxide thermal polymerization initiator. However, it is preferable to use an organic peroxide thermal polymerization initiator from the viewpoint of imparting strong adhesive force to the obtained heat conductive pressure-sensitive adhesive composition (F).
  • acylphosphine oxide compounds are preferred.
  • Preferred examples of the acylphosphine oxide compound that is a photopolymerization initiator include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
  • azo-based thermal polymerization initiator 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylbutyronitrile) ) And the like.
  • organic peroxide thermal polymerization initiator examples include hydroperoxides such as t-butyl hydroperoxide, benzoyl peroxide, cyclohexanone peroxide, 1,6-bis (t-butylperoxycarbonyloxy) hexane, 1,1-bis ( and a peroxide such as t-butylperoxy) -3,3,5-trimethylcyclohexanone.
  • hydroperoxides such as t-butyl hydroperoxide, benzoyl peroxide, cyclohexanone peroxide, 1,6-bis (t-butylperoxycarbonyloxy) hexane, 1,1-bis ( and a peroxide such as t-butylperoxy) -3,3,5-trimethylcyclohexanone.
  • organic peroxide thermal polymerization initiators those having a 1-minute half-life temperature of 100 ° C. or more and 170 ° C. or less are preferable.
  • the amount of the polymerization initiator used is preferably 0.01 parts by mass or more and 10 parts by mass or less, and 0.1 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin composition (A). More preferably, it is 0.3 to 2 parts by mass.
  • the polymerization conversion rate of the (meth) acrylic acid ester monomer ( ⁇ 1) is preferably 95% by mass or more. If the polymerization conversion rate of the (meth) acrylic acid ester monomer ( ⁇ 1) is 95% by mass or more, it becomes easy to prevent the monomer odor from remaining in the heat conductive pressure-sensitive adhesive composition (F). Moreover, by making the usage-amount of a polymerization initiator into the said range, superposition
  • the thermally conductive filler (B) the thermal conductivity of the thermally conductive pressure-sensitive adhesive composition (F) can be improved by adding it, and its own thermal conductivity is 0.3 W / m ⁇ K or more.
  • thermally conductive filler (B) examples include aluminum hydroxide, gallium hydroxide, indium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide and other metal hydroxides; aluminum oxide ( Alumina), magnesium oxide, silica (silicon oxide), metal oxides such as zinc oxide; metal carbonates such as calcium carbonate and aluminum carbonate; metal nitrides such as boron nitride and aluminum nitride; zinc borate hydrate; kaolin Clay; calcium aluminate hydrate; dosonite; carbon-containing conductive fillers such as expanded graphite powder, artificial graphite, carbon black, and carbon fiber; Among these, metal hydroxides, metal oxides, and carbon-containing conductive fillers are preferable, metal hydroxides and carbon-containing conductive fillers are more preferable, and aluminum hydroxide and expanded graphite powder are more preferable.
  • a heat conductive filler (B) may be used individually by 1 type, and may use 2 or more
  • the expanded graphite powder that can be used as the thermally conductive filler (B) will be described.
  • the expanded graphite powder has high thermal conductivity, and by adding the expanded graphite powder, the thermally conductive pressure-sensitive adhesive composition (F) and the thermally conductive pressure-sensitive adhesive sheet-like molded body (G).
  • the thermal conductivity of can be improved.
  • by adding the expanded graphite powder it is possible to suppress melting even when the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) are heated. Flammability can be improved.
  • the expanded graphite powder is preferably added in the second mixing step.
  • Expanded graphite powder is obtained by expanding and then pulverizing graphite.
  • a method comprising a step of heat-treating acid-treated graphite at 500 ° C. or more and 1200 ° C. or less to expand it to 100 ml / g or more and 300 ml / g or less and then crushing it.
  • the graphite is treated with a strong acid, then sintered in an alkali, and then again treated with a strong acid at a temperature of 500 ° C. to 1200 ° C. to remove the acid and 100 ml / g to 300 ml / g.
  • a product obtained by a method including a step of expanding and then crushing is particularly preferably 800 ° C. or higher and 1000 ° C. or lower.
  • the amount of the thermally conductive filler (B) used in the second mixing step is 50 parts by mass or more and 1000 parts by mass or less, and 100 parts by mass or more with respect to 100 parts by mass of the (meth) acrylic resin composition (A). It is preferably 900 parts by mass or less, more preferably 150 parts by mass or more and 800 parts by mass or less, and further preferably 150 parts by mass or more and 300 parts by mass or less.
  • the heat conductive pressure-sensitive adhesive composition (F) it becomes difficult to mold the heat conductive pressure-sensitive adhesive composition (F), or even if it can be molded, the hardness of the heat conductive pressure-sensitive adhesive composition (F) increases and the shape followability (to the adherend) ) Can be prevented.
  • the effect of improving the thermal conductivity of the heat conductive pressure-sensitive adhesive composition (F) is easily exhibited by setting the content of the heat conductive filler (B) to the above lower limit or more.
  • the amount of the carbon-containing conductive filler used in the second mixing step is based on 100 parts by mass of the (meth) acrylic resin composition (A). 50 parts by mass or less, preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more and 15 parts by mass or less, and further preferably 3 parts by mass or more and 10 parts by mass or less. .
  • the average particle diameter of the whole filler used as the thermally conductive filler (B) is preferably 0.5 ⁇ m or more and 15 ⁇ m or less, and more preferably 0.8 ⁇ m or more and 12 ⁇ m or less. Further, BET specific surface area of the entire filler used as the thermally conductive filler (B) is preferably from 0.3 m 2 / g or more 10m 2 / g, 0.5m 2 / g or more 5 m 2 / g or less It is more preferable that Even if the content of the heat conductive filler (B) is increased by adjusting the average particle diameter and BET specific surface area of the whole filler used as the heat conductive filler (B) within the above range, the viscosity of the mixed composition is appropriate.
  • the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) are less likely to become brittle, and the strength can be further suppressed from decreasing. .
  • the “average particle diameter” means that measured by the method described below. That is, a laser type particle size measuring machine (manufactured by Seishin Enterprise Co., Ltd.) is used, and measurement is performed by a microsorting control method (a method in which the measurement target particles are allowed to pass only in the measurement region and the measurement reliability is improved). According to this measurement method, when the measurement target particles 0.01 g to 0.02 g are flowed into the cell, the measurement target particles flowing in the measurement region are irradiated with the semiconductor laser light having a wavelength of 670 nm. By measuring the scattering and diffraction of laser light with a measuring instrument, the average particle size and particle size distribution are calculated from the diffraction principle of Franhofer.
  • the “BET specific surface area” means that measured by the following method. First, a mixed gas of nitrogen and helium is introduced into a BET specific surface area measuring apparatus, and a sample cell containing a sample (an object to be measured for BET specific surface area) is immersed in liquid nitrogen to adsorb nitrogen gas to the sample surface. After reaching adsorption equilibrium, the sample cell is placed in a water bath and warmed to room temperature, and nitrogen adhering to the sample is desorbed. Since the mixing ratio of the gas before and after passing through the sample cell changes during the adsorption and desorption of nitrogen gas, this change is detected by a thermal conductivity detector (TCD) using a gas with a constant mixing ratio of nitrogen and helium as a control.
  • TCD thermal conductivity detector
  • the adsorption amount and desorption amount of nitrogen gas are obtained.
  • a unit amount of nitrogen gas is introduced into the apparatus for calibration, and the surface area value corresponding to the value detected by TCD is obtained to obtain the surface area of the sample.
  • the BET specific surface area can be determined by dividing the determined surface area by the mass of the sample.
  • the polymerization step is a step of performing a polymerization reaction of at least the (meth) acrylic acid ester monomer ( ⁇ 1) in the second mixed composition.
  • heat for the heating, for example, hot air, an electric heater, infrared rays, or the like can be used.
  • the heating temperature at this time is preferably a temperature at which the polymerization initiator is efficiently decomposed and the polymerization of the (meth) acrylate monomer ( ⁇ 1) proceeds.
  • the specific preferable temperature range varies depending on the type of polymerization initiator used, but is preferably 100 ° C. or higher and 200 ° C. or lower, and more preferably 120 ° C. or higher and 180 ° C. or lower.
  • the first mixing step and the second mixing step are performed separately, whereby the polar group-modified halogenated hydrocarbon fiber ( Even if the addition amount of C) is slightly increased from the conventional amount, the viscosity of the second mixed composition can be suppressed from excessively increasing, and therefore the productivity of the heat conductive pressure-sensitive adhesive composition (F) is improved. It can suppress that it falls. Therefore, the productivity of the heat conductive pressure-sensitive adhesive composition (F) having high flame retardancy can be improved.
  • the thermally conductive pressure-sensitive adhesive composition (F) of the present invention includes the above-described method for producing the thermally conductive pressure-sensitive adhesive composition (F) of the present invention in addition to the substances described above.
  • Various known additives can be added as long as the effect of is improved or not hindered.
  • Known additives include, for example, flame retardants such as phosphate esters; foaming agents (including foaming aids); glass fibers; external crosslinking agents; pigments; other fillers other than thermally conductive fillers; , Hydroquinone-based and hindered amine-based antioxidants; acrylic polymer particle-based thickeners; and the like.
  • the manufacturing method of the heat conductive pressure-sensitive-adhesive sheet-like molded object (G) of this invention contains the fatty acid ester (C) of a polyhydric alcohol polymer, and a polar group modified
  • molding step and the polymerization step in the method for producing the heat conductive pressure-sensitive adhesive sheet-shaped body (G) of the present invention will be described.
  • at least the (meth) acrylic acid ester monomer ( ⁇ 1) is formed after the second mixed composition is molded into a sheet shape or while the second mixed composition is molded into a sheet shape.
  • This is a step of performing a polymerization reaction.
  • heating is preferably performed when the polymerization reaction is performed.
  • heating for example, hot air, an electric heater, infrared rays, or the like can be used.
  • the heating temperature at this time is preferably a temperature at which the polymerization initiator is efficiently decomposed and the polymerization of the (meth) acrylate monomer ( ⁇ 1) proceeds.
  • the specific preferable temperature range varies depending on the type of polymerization initiator used, but is preferably 100 ° C. or higher and 200 ° C. or lower, and more preferably 120 ° C. or higher and 180 ° C. or lower.
  • the method for molding the second mixed composition into a sheet is not particularly limited.
  • a suitable method for example, a method in which the second mixed composition is applied on a process paper such as a release-treated polyester film and formed into a sheet shape, or between two process papers subjected to a release process A method of forming a sheet by pressing between the rolls with the second mixed composition in between, and extruding the second mixed composition using an extruder, and controlling the thickness through a die at that time The method etc. which shape
  • the process paper is not particularly limited, for example, a release-treated polyethylene terephthalate film or a release-treated polyethylene naphthalate film can be used. Among these, a polyethylene terephthalate film subjected to a release treatment is preferable.
  • the heat conductive pressure-sensitive adhesive sheet-like molded body (G) can reduce the thermal resistance in the thickness direction by reducing the thickness.
  • the upper limit of the thickness of the heat conductive pressure-sensitive adhesive sheet-like molded body (G) is preferably about 2 mm.
  • the lower limit of the thickness of the heat conductive pressure-sensitive adhesive sheet-like molded product (G) is preferably 0.1 mm.
  • the heat conductive pressure-sensitive adhesive sheet-like molded body (G) can be molded on one side or both sides of the substrate.
  • the material which comprises the said base material is not specifically limited.
  • Specific examples of the substrate include metals having excellent thermal conductivity such as aluminum, copper, stainless steel, and beryllium copper, and polymers having excellent thermal conductivity such as foils of alloys and thermally conductive silicone.
  • polyimide As a plastic film, polyimide; polyester such as polyethylene terephthalate and polyethylene naphthalate; fluorine resin such as polytetrafluoroethylene; polyetherketone; polyethersulfone; polymethylpentene; polyetherimide; polysulfone; polyphenylene sulfide; Polyesterimide; polyamide; and the like.
  • the first mixing step and the second mixing step are performed separately, whereby the polar group-modified halogenated hydrocarbon is obtained. Even if the addition amount of the fiber (C) is slightly increased from the conventional amount, the viscosity of the second mixed composition can be suppressed from being excessively increased, so that the thermally conductive pressure-sensitive adhesive sheet-like molded product (G) It can suppress that productivity of this falls. Therefore, the productivity of the heat conductive pressure-sensitive adhesive sheet-like molded body (G) having high flame retardancy can be improved.
  • the heat-conductive pressure-sensitive adhesive sheet-like molded product (G) obtained by the production method (2) has high heat conductivity and pressure-sensitive adhesive properties, and therefore is interposed between the heating element and the heat radiating body. Therefore, it can be used for applications such as efficiently conducting heat conduction from the heat generating element to the heat radiating element.
  • the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) are attached to an electronic component that is a heating element provided in an electronic device, and are part of the electronic component. Can be used.
  • the usage example of a heat conductive pressure-sensitive-adhesive composition (F) and a heat conductive pressure-sensitive-adhesive sheet-like molded object (G) is demonstrated, referring FIG.
  • FIG. 1 is a diagram for explaining an example of use of a heat conductive pressure-sensitive adhesive sheet-like molded body (G).
  • FIG. 1A is a perspective view schematically showing a part of an electronic device such as a personal computer.
  • FIG. 1A shows a substrate 1, an electronic component 2 that is a heating element installed on the substrate 1, a heat sink 3 that is a radiator, and a thermally conductive pressure-sensitive adhesive disposed between the electronic component 2 and the heat sink 3.
  • the sheet-like molded article (G) 4 is shown.
  • a heat conductive pressure-sensitive adhesive sheet-like molded body (G) 4 is sandwiched and fixed between the electronic component 2 and the heat sink 3, thereby forming a heat conductive pressure-sensitive adhesive sheet-like mold.
  • the heat conductive pressure-sensitive adhesive sheet-like molded body (G) 4 is bonded to the electronic component 2 and the heat sink 3. And since the heat conductive pressure-sensitive-adhesive sheet-like molded object (G) 4 has high heat conductivity, the heat
  • FIG. 1B schematically shows a state in which the NPN transistor 12a and the PNP transistor 12b, which are heating elements, are attached to the heat sink 13, which is a radiator, through the heat conductive pressure-sensitive adhesive sheet-like molded bodies (G) 14, 14.
  • FIG. 1B by attaching the NPN transistor 12a and the PNP transistor 12b to the heat sink 13 via the heat conductive pressure-sensitive adhesive sheet-like molded bodies (G) 14 and 14, the heat conductive feeling is obtained.
  • one heat conductive pressure-sensitive adhesive sheet-like molded body (G) 14 is bonded to the NPN transistor 12a and the heat sink 13, and the other heat
  • the conductive pressure-sensitive adhesive sheet-like molded body (G) 14 is bonded to the PNP transistor 12 b and the heat sink 13.
  • the heat conductive pressure-sensitive-adhesive sheet-like molded object (G) 14 has high heat conductivity, the heat
  • both the NPN transistor 12a and the PNP transistor 12b are attached to one heat sink 13 via the heat conductive pressure-sensitive adhesive sheet-like molded bodies (G) 14 and 14 having high heat conductivity.
  • the temperature difference between the NPN transistor 12a and the PNP transistor 12b can be suppressed.
  • FIG. 1C is a cross-sectional view schematically showing a state in which two transistors 22 and 22 that are heating elements are fixed via a heat conductive pressure-sensitive adhesive sheet-like molded body (G) 24.
  • two heat generating elements 22 and 22 are fixed via a heat conductive pressure-sensitive adhesive sheet-like molded body (G) 24, thereby forming a heat conductive pressure-sensitive adhesive sheet. Due to the pressure-sensitive adhesive property of the molded body (G) 24, the thermally conductive pressure-sensitive adhesive sheet-shaped molded body (G) 24 is bonded to the two heating elements 22 and 22.
  • the heat conductive pressure-sensitive-adhesive sheet-like molded object (G) 24 has high heat conductivity, if one temperature of two heat generating bodies 22 and 22 becomes high compared with the other, from one side. Since heat can be quickly transmitted to the other side, it is possible to suppress the occurrence of a temperature difference between the two heating elements 22 and 22.
  • the heat conductive pressure-sensitive-adhesive sheet-like molded object (G) was used in the example shown in FIG. 1, it replaces with a heat conductive pressure-sensitive-adhesive sheet-like molded object (G), and a heat conductive pressure-sensitive-adhesive composition.
  • a thing (F) can also be used similarly.
  • the heat sink is used as the heat radiating body.
  • a housing of an electronic component or the like can be used as the heat radiating body.
  • other usage examples of the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) of the present invention will be described.
  • the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) of the present invention can be used as a part of an electronic component provided in an electronic device.
  • the electronic device and electronic component include electroluminescence (EL), a component around a heat generating part in a device having a light emitting diode (LED) light source, a component around a power device such as an automobile, a fuel cell, a solar cell, and a battery.
  • EL electroluminescence
  • LED light emitting diode
  • Devices and parts having heat generating parts such as mobile phones, personal digital assistants (PDAs), notebook computers, liquid crystal panels, surface conduction electron-emitting device displays (SED), plasma display panels (PDP), or integrated circuits (ICs) Can be mentioned.
  • PDAs personal digital assistants
  • SED surface conduction electron-emitting device displays
  • PDP plasma display panels
  • ICs integrated circuits
  • an LED light source is exemplified below. Examples of usage can be mentioned.
  • LED light source is directly attached to the LED light source; sandwiched between the LED light source and a heat dissipation material (heat sink, fan, Peltier element, heat pipe, graphite sheet, etc.); , Heat pipe, graphite sheet, etc.); used as a housing surrounding the LED light source; pasted on a housing surrounding the LED light source; filling a gap between the LED light source and the housing;
  • heat dissipation material heat sink, fan, Peltier element, heat pipe, graphite sheet, etc.
  • Examples of LED light source applications include backlight devices for display devices having transmissive liquid crystal panels (TVs, mobile phones, PCs, notebook PCs, PDAs, etc.); vehicle lamps; industrial lighting; commercial lighting; Lighting; and the like.
  • LED light source examples include the following. That is, PDP panel; IC heating part; Cold cathode tube (CCFL); Organic EL light source; Inorganic EL light source; High luminance light emitting LED light source; High luminance light emitting organic EL light source; And so on.
  • examples of the method of using the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded product (G) of the present invention include affixing to the housing of the apparatus.
  • affixing to the housing of the apparatus.
  • a device provided in an automobile or the like it is affixed inside a casing provided in the automobile; affixed outside the casing provided in the automobile; a heat generating part (inside the casing provided in the automobile) Connecting the car navigation / fuel cell / heat exchanger) and the housing; affixing to a heat sink connected to the heat generating part (car navigation / fuel cell / heat exchanger) in the housing of the automobile; Etc.
  • the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) of the present invention can be used in the same manner.
  • personal computers homes; TVs; mobile phones; vending machines; refrigerators; solar cells; surface-conduction electron-emitting device displays (SEDs); organic EL displays; inorganic EL displays; Organic EL display; laptop computer; PDA; fuel cell; semiconductor device; rice cooker; washing machine; laundry dryer; optical semiconductor device combining optical semiconductor elements and phosphors; Is mentioned.
  • the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded product (G) of the present invention are not limited to the above-described usage methods, and may be used in other methods depending on the application. Is also possible.
  • used for heat uniformity of carpets and warm mats, etc . used as LED light source / heat source sealant; used as solar cell sealant; used as solar cell backsheet Used between the backsheet of the solar cell and the roof; used inside the heat insulating layer inside the vending machine; used inside the housing of the organic EL lighting with a desiccant or a hygroscopic agent; organic EL lighting Use with desiccant and hygroscopic agent on the heat conductive layer inside the housing of the LED; Use with desiccant and hygroscopic agent on the heat conductive layer and heat dissipation layer inside the housing of the organic EL lighting Used for heat conduction layer inside the housing of organic EL lighting, epoxy heat dissipation layer, and on top of it with desiccant and moisture absorbent; cooling equipment, clothing, towels, sheets, etc.
  • Viscosity measurement using a B-type viscometer is performed according to the following procedure.
  • (1) Weigh 300 ml of the measurement object in a room temperature environment and place it in a 500 ml container.
  • Stirring rotor No. Select one from 1, 2, 3, 4, 5, 6, and 7 and attach to the viscometer.
  • (3) The container containing the measurement object is placed on the viscometer, and the rotor is submerged in the measurement object in the container. At this time, the dent which becomes the mark of the rotor is submerged so as to be exactly at the liquid interface to be measured.
  • the rotation speed is selected from 20, 10, 4, and 2.
  • (5) Turn on the stirring switch and read the value after 1 minute.
  • the value obtained by multiplying the read numerical value by the coefficient A is the viscosity [mPa ⁇ s].
  • the coefficient A is the selected rotor No. as shown in Table 1 below. And the number of revolutions.
  • the first mixing step was performed as follows. That is, 1 part of acrylic modified PTFE fiber (trade name “Membrane A-3000”, manufactured by Mitsubishi Rayon Co., Ltd.) and a fatty acid ester of a polyhydric alcohol polymer (Tirabazole H-818, manufactured by Taiyo Chemical Co., Ltd., number average molecular weight: 4000) 5 parts were weighed with an electronic balance, and these were mixed with a spatula for 1 minute while stirring to obtain a first mixed composition.
  • acrylic modified PTFE fiber trade name “Membrane A-3000”, manufactured by Mitsubishi Rayon Co., Ltd.
  • a fatty acid ester of a polyhydric alcohol polymer Teirabazole H-818, manufactured by Taiyo Chemical Co., Ltd., number average molecular weight: 4000
  • the weight average molecular weight (Mw) of the (meth) acrylic acid ester polymer (A1-1) was 270,000, and the weight average molecular weight (Mw) / number average molecular weight (Mn) was 3.1.
  • the weight average molecular weight (Mw) and the number average molecular weight (Mn) were determined in terms of standard polystyrene by gel permeation chromatography using tetrahydrofuran as an eluent.
  • a thermostatic bath manufactured by Toki Sangyo Co., Ltd., Viscomate 150III
  • a Hobart mixer manufactured by Kodaira Manufacturing Co., Ltd., ACM-5LVT type, capacity: 5 L
  • the temperature control of the Hobart container was set at 23 ° C.
  • the rotation speed scale was set to 5, and the mixture was stirred for 10 minutes.
  • the second mixed composition was hung on a release PET film having a thickness of 75 ⁇ m, and another release PET film having a thickness of 75 ⁇ m was further covered on the second mixed composition.
  • the laminate, in which the second mixed composition was sandwiched between the release PET films, was passed between two rolls adjusted to a distance of 650 ⁇ m, and the second mixed composition was formed into a sheet. Thereafter, the laminate was put into an oven and heated at 150 ° C. for 15 minutes to perform a polymerization step.
  • the (meth) acrylic acid ester monomer and the polyfunctional monomer are polymerized, and at the same time, the polyfunctional monomer as a cross-linking agent allows the (meth) acrylic acid ester polymer ( A1-1) and a polymer containing a structural unit derived from a (meth) acrylic acid ester monomer are crosslinked to form a thermally conductive pressure-sensitive adhesive sheet-like molded product (hereinafter simply referred to as “sheet”) (G1). )
  • sheet thermally conductive pressure-sensitive adhesive sheet-like molded product
  • the polymerization conversion rate of all monomers was calculated from the amount of residual monomers in the sheet (G1) and found to be 99.9%.
  • Examples 2 to 5 and Comparative Examples 1 to 6 The sheets (G2 to G5) according to Examples 2 to 5 and the sheets according to Comparative Examples 1 to 6 (Similar to Example 1) except that the composition of each substance was changed as shown in Tables 2 and 3. GC1 to GC6) were produced. Tables 2 and 3 show the amount of each substance in parts by mass. In Comparative Example 3, a titanate coupling agent (manufactured by Ajinomoto Finetech Co., Ltd., Preneact TTS, isopropyl triisostearoyl titanate) was used instead of the fatty acid ester of the polyhydric alcohol polymer. Tables 2 and 3 show the presence or absence of the first mixing step.
  • a titanate coupling agent manufactured by Ajinomoto Finetech Co., Ltd., Preneact TTS, isopropyl triisostearoyl titanate
  • the first mixing step is performed in the same manner as in Example 1.
  • the first mixing step is not performed, and the polar group is formed in a step corresponding to the second mixing step.
  • the mixed composition obtained by mixing the modified halogenated hydrocarbon fiber and the fatty acid ester of the polyhydric alcohol polymer was formed into a sheet and subjected to the polymerization step.
  • the sheets (G1 to G5) according to the examples all had low viscosity of the second mixed composition and high flame retardancy. That is, productivity was good and flame retardancy was high.
  • the sheet (GC1) according to Comparative Example 1 in which the addition amount of the polar group-modified halogenated hydrocarbon fiber exceeded the range specified in the present invention the viscosity of the second mixed composition was high and the productivity was poor. It was.
  • regulated by this invention has the high viscosity of 2nd mixed composition (productivity is bad).
  • the sheet (GC3) according to Comparative Example 3 using a titanate coupling agent in place of the fatty acid ester of the polyhydric alcohol polymer also has a high viscosity of the second mixed composition (productivity is poor), and flame retardancy. The sex was inferior.
  • the sheet (GC4) according to Comparative Example 4 in which the first mixing step was not performed has a high viscosity of the second mixed composition despite the fact that the amount of each substance is the same as Example 1. (Productivity was bad) and flame retardancy was poor.
  • the sheet (GC5) according to Comparative Example 5 in which the addition amount of the polar group-modified halogenated hydrocarbon fiber was less than the range specified in the present invention was inferior in flame retardancy.
  • the sheet (GC6) according to Comparative Example 6 in which the addition amount of the fatty acid ester of the polyhydric alcohol polymer exceeded the range defined in the present invention was inferior in flame retardancy.

Abstract

A method for producing a thermally conductive pressure-sensitive adhesive composition (F) which comprises: a first mixing step of producing a first mixed composition which includes 0.3 to 3.5 parts by mass of a polar group modified halogenated hydrocarbon fiber (C) and 2 to 13 parts by mass of a fatty acid ester of a polyalcohol copolymer (D); a second mixing step of producing a second mixed composition which includes 100 parts by mass of a (meth)acrylic resin composition (A) comprising a (meth)acrylic ester polymer (A1) and a (meth)acrylic ester monomer (α1), 50 to 1000 parts by mass of a thermally conductive filler (B), and the first mixed composition; and a polymerization step of conducting a polymerization reaction of at least the (meth)acrylic ester monomer (α1) in the second mixed composition.

Description

熱伝導性感圧接着剤組成物の製造方法、熱伝導性感圧接着性シート状成形体の製造方法、及び電子機器Method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like molded article, and electronic device
 本発明は、熱伝導性感圧接着剤組成物の製造方法、熱伝導性感圧接着性シート状成形体の製造方法、及び、熱伝導性感圧接着剤組成物又は熱伝導性感圧接着性シート状成形体を備えた電子機器に関する。 The present invention relates to a method for producing a thermally conductive pressure-sensitive adhesive composition, a method for producing a thermally conductive pressure-sensitive adhesive sheet-like molded article, and a thermally conductive pressure-sensitive adhesive composition or a thermally conductive pressure-sensitive adhesive sheet-like molded article. The present invention relates to an electronic device having a body.
 近年、プラズマディスプレイパネル(PDP)、集積回路(IC)チップ等のような電子部品は、その高性能化に伴って発熱量が増大している。その結果、温度上昇による機能障害対策を講じる必要が生じている。一般的には、金属製のヒートシンク、放熱板、放熱フィン等の放熱体を電子部品等に備えられる発熱体に取り付けることによって放熱させる方法が採られている。発熱体から放熱体への熱伝導を効率よく行うためには、熱伝導性が高いシート状の部材(熱伝導性シート)が使用されている。一般的に、発熱体と放熱体とを固定する用途においては、熱伝導性に加えて感圧接着性も備えた組成物(以下、「熱伝導性感圧接着剤組成物」という。)やシート状の部材(以下、「熱伝導性感圧接着性シート状成形体」という。)が必要とされている。 In recent years, electronic parts such as a plasma display panel (PDP), an integrated circuit (IC) chip and the like have increased in calorific value as their performance has increased. As a result, it is necessary to take countermeasures against functional failures due to temperature rise. In general, a method of dissipating heat by attaching a heat sink such as a metal heat sink, a heat radiating plate, or a heat radiating fin to a heat generator provided in an electronic component or the like is employed. In order to efficiently conduct heat conduction from the heat generator to the heat radiating member, a sheet-like member (heat conductive sheet) having high heat conductivity is used. In general, in applications where a heating element and a radiator are fixed, a composition having a pressure-sensitive adhesive property in addition to thermal conductivity (hereinafter referred to as a “thermal conductive pressure-sensitive adhesive composition”) or sheet. Member (hereinafter referred to as “thermally conductive pressure-sensitive adhesive sheet-like molded product”) is required.
 熱伝導性感圧接着剤組成物及び熱伝導性感圧接着性シート状成形体は、発熱体から放熱体へと熱を伝えることが主な目的であるため、熱伝導性を向上させることが好ましい。また、熱伝導性感圧接着剤組成物及び熱伝導性感圧接着性シート状成形体は、その用途に応じて熱伝導性以外の他の機能を備えさせるために、備えさせたい機能に応じたフィラーを添加することがあった。例えば、下記特許文献1には、膨張化黒鉛粉や極性基変性ハロゲン化炭化水素繊維等を添加した熱伝導性感圧接着性シート状成形体について開示されている。 The heat conductive pressure-sensitive adhesive composition and the heat conductive pressure-sensitive adhesive sheet-like molded body are mainly intended to transfer heat from the heat generating body to the heat radiating body, and therefore it is preferable to improve the heat conductivity. In addition, the heat conductive pressure-sensitive adhesive composition and the heat conductive pressure-sensitive adhesive sheet-like molded article have fillers corresponding to the functions to be provided in order to provide other functions other than the heat conductivity depending on the use. May be added. For example, Patent Document 1 below discloses a heat conductive pressure-sensitive adhesive sheet-like molded body to which expanded graphite powder, polar group-modified halogenated hydrocarbon fiber, or the like is added.
特開2011-246590号公報JP 2011-246590 A
 特許文献1に開示された技術によれば、熱伝導性、難燃性、絶縁性及び柔軟性をバランス良く備えた熱伝導性感圧接着性シート状成形体が得られる。特許文献1に開示された技術によれば、極性基変性ハロゲン化炭化水素繊維を添加することによって、熱伝導性感圧接着性シート状成形体の難燃性等の機能を向上させている。 According to the technique disclosed in Patent Document 1, a thermally conductive pressure-sensitive adhesive sheet-like molded body having a good balance of thermal conductivity, flame retardancy, insulation and flexibility can be obtained. According to the technique disclosed in Patent Document 1, by adding a polar group-modified halogenated hydrocarbon fiber, functions such as flame retardancy of a heat conductive pressure-sensitive adhesive sheet-like molded body are improved.
 しかしながら、熱伝導性感圧接着性シート状成形体の難燃性をより向上させるために極性基変性ハロゲン化炭化水素繊維の添加量を増大させようと考えた場合、成形前の組成物の粘度が過度に上昇し、生産性が悪くなる、又は成形できなくなるという問題があった。 However, when it is considered to increase the addition amount of the polar group-modified halogenated hydrocarbon fiber in order to further improve the flame retardancy of the heat conductive pressure-sensitive adhesive sheet-like molded product, the viscosity of the composition before molding is There has been a problem that the temperature is excessively increased, the productivity is deteriorated, or the molding cannot be performed.
 そこで本発明は、難燃性が向上され、且つ生産性が良好な熱伝導性感圧接着剤組成物及び熱伝導性感圧接着性シート状成形体の製造方法を提供することを課題とする。また、これらの製造方法によって得られる熱伝導性感圧接着剤組成物又は熱伝導性感圧接着性シート状成形体を備えた電子機器を提供する。 Therefore, an object of the present invention is to provide a heat conductive pressure-sensitive adhesive composition having improved flame retardancy and good productivity and a method for producing a heat conductive pressure-sensitive adhesive sheet-like molded product. Moreover, the electronic device provided with the heat conductive pressure-sensitive-adhesive composition obtained by these manufacturing methods or a heat conductive pressure-sensitive-adhesive sheet-like molded object is provided.
 本発明の第1の態様は、極性基変性ハロゲン化炭化水素繊維(C)を0.3質量部以上3.5質量部以下と、多価アルコール重合体の脂肪酸エステル(D)を2質量部以上13質量部以下と、を含む第1の混合組成物を作製する第1の混合工程、(メタ)アクリル酸エステル重合体(A1)および(メタ)アクリル酸エステル単量体(α1)を含む(メタ)アクリル樹脂組成物(A)を100質量部と、熱伝導性フィラー(B)を50質量部以上1000質量部以下と、第1の混合組成物と、を含む第2の混合組成物を作製する第2の混合工程、並びに、第2の混合組成物中において、少なくとも(メタ)アクリル酸エステル単量体(α1)の重合反応を行う重合工程、を含む、熱伝導性感圧接着剤組成物(F)の製造方法である。 In the first aspect of the present invention, the polar group-modified halogenated hydrocarbon fiber (C) is 0.3 parts by mass or more and 3.5 parts by mass or less, and the polyhydric alcohol polymer fatty acid ester (D) is 2 parts by mass. 1st mixing process which produces the 1st mixed composition containing 13 mass parts or less above, (meth) acrylic acid ester polymer (A1) and (meth) acrylic acid ester monomer (alpha) are included. A second mixed composition containing 100 parts by weight of the (meth) acrylic resin composition (A), 50 parts by weight or more and 1000 parts by weight or less of the thermally conductive filler (B), and the first mixed composition. A heat-sensitive pressure-sensitive adhesive comprising: a second mixing step for producing a polymer; and a polymerization step for performing a polymerization reaction of at least the (meth) acrylic acid ester monomer (α1) in the second mixed composition. It is a manufacturing method of a composition (F).
 本明細書中において「極性基変性ハロゲン化炭化水素繊維」とは、構造中に極性基を有するハロゲン化炭化水素を繊維状にしたものを意味する。極性基変性ハロゲン化炭化水素繊維(C)の具体例については後述する。また、「(メタ)アクリル」とは、「アクリル、及び/又は、メタクリル」を意味する。また、「熱伝導性フィラー」とは、添加することによって熱伝導性感圧接着剤組成物(F)や後に説明する熱伝導性感圧接着性シート状成形体(G)の熱伝導性を向上させることができ、自身の熱伝導率が0.3W/m・K以上であるフィラーを意味する。また、「(メタ)アクリル酸エステル単量体(α1)の重合反応」とは、(メタ)アクリル酸エステル単量体(α1)由来の構造単位を含む重合体を得る重合反応を意味する。 In the present specification, the “polar group-modified halogenated hydrocarbon fiber” means a fiber made of a halogenated hydrocarbon having a polar group in the structure. Specific examples of the polar group-modified halogenated hydrocarbon fiber (C) will be described later. “(Meth) acryl” means “acryl and / or methacryl”. The “thermally conductive filler” is added to improve the thermal conductivity of the thermally conductive pressure-sensitive adhesive composition (F) and the thermally conductive pressure-sensitive adhesive sheet-like molded body (G) described later. It means a filler whose own thermal conductivity is 0.3 W / m · K or more. The “polymerization reaction of (meth) acrylate monomer (α1)” means a polymerization reaction for obtaining a polymer containing a structural unit derived from (meth) acrylate monomer (α1).
 本発明の第2の態様は、極性基変性ハロゲン化炭化水素繊維(C)を0.3質量部以上3.5質量部以下と、多価アルコール重合体の脂肪酸エステル(D)を2質量部以上13質量部以下と、を含む第1の混合組成物を作製する第1の混合工程、(メタ)アクリル酸エステル重合体(A1)および(メタ)アクリル酸エステル単量体(α1)を含む(メタ)アクリル樹脂組成物(A)を100質量部と、熱伝導性フィラー(B)を50質量部以上1000質量部以下と、第1の混合組成物と、を含む第2の混合組成物を作製する第2の混合工程、並びに、第2の混合組成物をシート状に成形した後、又は第2の混合組成物をシート状に成形しながら、少なくとも(メタ)アクリル酸エステル単量体(α1)の重合反応を行う、成形工程及び重合工程、を含む、熱伝導性感圧接着性シート状成形体(G)の製造方法である。 In the second aspect of the present invention, the polar group-modified halogenated hydrocarbon fiber (C) is 0.3 parts by mass or more and 3.5 parts by mass or less, and the polyhydric alcohol polymer fatty acid ester (D) is 2 parts by mass. 1st mixing process which produces the 1st mixed composition containing 13 mass parts or less above, (meth) acrylic acid ester polymer (A1) and (meth) acrylic acid ester monomer (alpha) are included. A second mixed composition containing 100 parts by weight of the (meth) acrylic resin composition (A), 50 parts by weight or more and 1000 parts by weight or less of the thermally conductive filler (B), and the first mixed composition. The second mixing step for preparing the resin composition, and after forming the second mixed composition into a sheet shape, or while forming the second mixed composition into a sheet shape, at least a (meth) acrylate monomer (Α1) polymerization reaction, molding process and weight The manufacturing method of a heat conductive pressure-sensitive-adhesive sheet-like molded object (G) including a joint process.
 本発明の第3の態様は、発熱体及び該発熱体に貼合された上記本発明の第1の態様にかかる熱伝導性感圧接着剤組成物(F)の製造方法によって得られた熱伝導性感圧接着剤組成物(F)、又は、発熱体及び該発熱体に貼合された上記本発明の第2の態様にかかる熱伝導性感圧接着性シート状成形体(G)の製造方法によって得られた熱伝導性感圧接着性シート状成形体(G)、を備えた電子機器である。 The third aspect of the present invention is the heat conduction obtained by the method for producing the heat generating element and the heat conductive pressure-sensitive adhesive composition (F) according to the first aspect of the present invention bonded to the heat generating element. By the manufacturing method of the heat-sensitive pressure-sensitive adhesive composition (F) or the heat-generating pressure-sensitive adhesive sheet-like molded body (G) according to the second aspect of the present invention bonded to the heat-generating body. It is an electronic device provided with the obtained heat conductive pressure-sensitive-adhesive sheet-like molded object (G).
 本発明によれば、難燃性が向上され、生産性が良好な熱伝導性感圧接着剤組成物及び熱伝導性感圧接着性シート状成形体を得ることができる。 According to the present invention, it is possible to obtain a heat conductive pressure-sensitive adhesive composition and a heat conductive pressure-sensitive adhesive sheet-like molded article having improved flame retardancy and good productivity.
熱伝導性感圧接着性シート状成形体(G)の使用例を概略的に示した図である。It is the figure which showed roughly the usage example of the heat conductive pressure-sensitive-adhesive sheet-like molded object (G).
 熱伝導性感圧接着剤組成物及び熱伝導性感圧接着性シート状成形体に難燃性を備えさせるには、難燃性を向上させられるフィラーを添加することが考えられる。しかしながら、当該フィラーとして例えば極性基変性ハロゲン化炭化水素繊維を多量に添加しようとすると、熱伝導性感圧接着剤組成物及び熱伝導性感圧接着性シート状成形体の前駆体である組成物の粘度が過度に上昇し、生産性が低下する、又は生産が困難になる虞があった。本発明者らは、熱伝導性感圧接着剤組成物及び熱伝導性感圧接着性シート状成形体を構成する物質を全て同時に混合するのではなく、所定の段階を経て組成物を作製することによって、極性基変性ハロゲン化炭化水素繊維の添加量を増やしても組成物の過度な粘度上昇を抑制できることを知見した。本発明は当該知見に基づくものである。以下に詳しく説明する。 In order to provide the heat conductive pressure-sensitive adhesive composition and the heat conductive pressure-sensitive adhesive sheet-like molded product with flame retardancy, it is conceivable to add a filler capable of improving the flame retardancy. However, when a large amount of, for example, polar group-modified halogenated hydrocarbon fiber is added as the filler, the viscosity of the heat conductive pressure-sensitive adhesive composition and the composition that is a precursor of the heat conductive pressure-sensitive adhesive sheet-like molded product May increase excessively, resulting in decreased productivity or difficulty in production. The present inventors do not mix all the substances constituting the heat conductive pressure-sensitive adhesive composition and the heat conductive pressure-sensitive adhesive sheet-like molded article at the same time, but by preparing the composition through a predetermined stage. It has been found that an excessive increase in the viscosity of the composition can be suppressed even when the amount of the polar group-modified halogenated hydrocarbon fiber is increased. The present invention is based on this finding. This will be described in detail below.
 1.熱伝導性感圧接着剤組成物(F)の製造方法
  本発明の熱伝導性感圧接着剤組成物(F)の製造方法は、極性基変性ハロゲン化炭化水素繊維(C)と、多価アルコール重合体の脂肪酸エステル(D)と、を含む第1の混合組成物を作製する第1の混合工程、(メタ)アクリル酸エステル重合体(A1)および(メタ)アクリル酸エステル単量体(α1)を含む(メタ)アクリル樹脂組成物(A)と、熱伝導性フィラー(B)と、第1の混合組成物と、を含む第2の混合組成物を作製する第2の混合工程、並びに、第2の混合組成物中において、少なくとも(メタ)アクリル酸エステル単量体(α1)の重合反応を行う重合工程、を含んでいる。
1. Method for Producing Thermally Conductive Pressure Sensitive Adhesive Composition (F) The method for producing the thermally conductive pressure sensitive adhesive composition (F) of the present invention comprises a polar group-modified halogenated hydrocarbon fiber (C), polyhydric alcohol heavy 1st mixing process which produces the 1st mixed composition containing fatty acid ester (D) of a coalescence, (meth) acrylic acid ester polymer (A1), and (meth) acrylic acid ester monomer (α1) A second mixing step of producing a second mixed composition comprising a (meth) acrylic resin composition (A) containing a thermal conductive filler (B) and a first mixed composition; The second mixed composition includes at least a polymerization step for performing a polymerization reaction of the (meth) acrylic acid ester monomer (α1).
 1.1.第1の混合工程
  第1の混合工程において用いる極性基変性ハロゲン化炭化水素繊維(C)および多価アルコール重合体の脂肪酸エステル(D)について以下に説明する。
1.1. First Mixing Step The polar group-modified halogenated hydrocarbon fiber (C) and the fatty acid ester (D) of the polyhydric alcohol polymer used in the first mixing step will be described below.
 <極性基変性ハロゲン化炭化水素繊維(C)>
  本発明に用いることができる極性基変性ハロゲン化炭化水素繊維(C)は、極性基変性ハロゲン化炭化水素が繊維状になったものであり、該極性基変性ハロゲン化炭化水素は、構造中に極性基を有するハロゲン化炭化水素であり、繊維状である必要があるため、通常、固体状のものであり、好ましくは高分子化合物である。当該極性基は、一種のみでも良く、複数種の異なる極性基でも良い。当該極性基の具体例としては、(メタ)アクリル基、水酸基、カルボニル基、カルボキシル基、エポキシ基、グリシジル基、アミノ基、アミド基、イミド基、シアノ基などを挙げることができ、これらの中で(メタ)アクリル基が好ましい。また、極性基変性ハロゲン化炭化水素繊維(C)を構成する極性基変性ハロゲン化炭化水素の構造中に含まれるハロゲン原子としては、フッ素原子、塩素原子、臭素原子などを挙げることができ、これらの中でフッ素原子が好ましい。さらに、極性基変性ハロゲン化炭化水素繊維(C)を構成する、極性基部分を除くハロゲン化炭化水素としては、前記極性基部分を除くハロゲン化炭化水素を構成する全ての炭素原子に結合しているハロゲン原子と水素原子の合計を100モル%としたとき、ハロゲン原子が50モル%以上であることが好ましく、70モル%以上であることがより好ましく、90モル%以上であることがさらに好ましく、100モル%であることが特に好ましい。以上のことから、極性基変性ハロゲン化炭化水素繊維(C)としては、(メタ)アクリル基変性ハロゲン化炭化水素繊維、極性基変性ポリテトラフルオロエチレン繊維(以下、ポリテトラフルオロエチレンのことを、「PTFE」と略記することがある。)が好ましく、(メタ)アクリル基変性PTFE繊維(例えば、三菱レイヨン株式会社製の「メタブレンA-3000」)が特に好ましい。
<Polar group-modified halogenated hydrocarbon fiber (C)>
The polar group-modified halogenated hydrocarbon fiber (C) that can be used in the present invention is a fiber in which a polar group-modified halogenated hydrocarbon is in the form of a fiber. Since it is a halogenated hydrocarbon having a polar group and needs to be fibrous, it is usually a solid, preferably a polymer compound. The polar group may be only one kind or a plurality of different polar groups. Specific examples of the polar group include (meth) acryl group, hydroxyl group, carbonyl group, carboxyl group, epoxy group, glycidyl group, amino group, amide group, imide group, cyano group, and the like. (Meth) acrylic groups are preferred. In addition, examples of the halogen atom contained in the structure of the polar group-modified halogenated hydrocarbon constituting the polar group-modified halogenated hydrocarbon fiber (C) include a fluorine atom, a chlorine atom, and a bromine atom. Of these, a fluorine atom is preferred. Furthermore, the halogenated hydrocarbons excluding the polar group part constituting the polar group-modified halogenated hydrocarbon fiber (C) are bonded to all the carbon atoms constituting the halogenated hydrocarbon excluding the polar group part. When the total of halogen atoms and hydrogen atoms is 100 mol%, the halogen atoms are preferably 50 mol% or more, more preferably 70 mol% or more, and even more preferably 90 mol% or more. 100 mol% is particularly preferable. From the above, as the polar group-modified halogenated hydrocarbon fiber (C), (meth) acryl group-modified halogenated hydrocarbon fiber, polar group-modified polytetrafluoroethylene fiber (hereinafter referred to as polytetrafluoroethylene, (May be abbreviated as “PTFE”), and (meth) acrylic group-modified PTFE fibers (for example, “methabrene A-3000” manufactured by Mitsubishi Rayon Co., Ltd.) are particularly preferable.
 第1の混合工程において用いる極性基変性ハロゲン化炭化水素繊維(C)の量は、第2の混合工程において用いる(メタ)アクリル樹脂組成物(A)を100質量部として、0.3質量部以上3.5質量部以下であり、0.5質量部以上3質量部以下であることが好ましく、0.5質量部以上2質量部以下であることがさらに好ましい。極性基変性ハロゲン化炭化水素繊維(C)の量を上記範囲の下限以上とすることによって、熱伝導性感圧接着剤組成物(F)に十分な難燃性を備えさせることができる。一方、極性基変性ハロゲン化炭化水素繊維(C)の量を上記範囲の上限以下とすることによって、後に詳述する第2の混合組成物の粘度が過度に上昇することを抑制できる。 The amount of the polar group-modified halogenated hydrocarbon fiber (C) used in the first mixing step is 0.3 parts by mass with 100 parts by mass of the (meth) acrylic resin composition (A) used in the second mixing step. It is preferably 3.5 parts by mass or less, preferably 0.5 parts by mass or more and 3 parts by mass or less, and more preferably 0.5 parts by mass or more and 2 parts by mass or less. By setting the amount of the polar group-modified halogenated hydrocarbon fiber (C) to be not less than the lower limit of the above range, the heat conductive pressure-sensitive adhesive composition (F) can be provided with sufficient flame retardancy. On the other hand, when the amount of the polar group-modified halogenated hydrocarbon fiber (C) is not more than the upper limit of the above range, it is possible to suppress an excessive increase in the viscosity of the second mixed composition described in detail later.
 <多価アルコール重合体の脂肪酸エステル(D)>
  次に、多価アルコール重合体の脂肪酸エステル(D)について説明する。
<Fatty acid ester of polyhydric alcohol polymer (D)>
Next, the fatty acid ester (D) of the polyhydric alcohol polymer will be described.
 本発明者らは、第1の混合工程において上記極性基変性ハロゲン化炭化水素繊維(C)と多価アルコール重合体の脂肪酸エステル(D)とを含む第1の混合組成物を事前に作製した後に、熱伝導性感圧接着剤組成物(F)に含まれる他の物質と第1の混合組成物とを含む第2の混合組成物を作製することによって、難燃剤として機能する極性基変性ハロゲン化炭化水素繊維(C)の使用量を従来の量より増やしても第2の混合組成物の粘度の過度な上昇を抑制し、熱伝導性感圧接着剤組成物(F)の生産性を向上させられることを見出した。すなわち、難燃性が高い熱伝導性感圧接着剤組成物(F)の生産性を向上させられることを見出した。 The inventors previously prepared a first mixed composition containing the polar group-modified halogenated hydrocarbon fiber (C) and the fatty acid ester (D) of a polyhydric alcohol polymer in the first mixing step. Later, a polar group-modified halogen functioning as a flame retardant is produced by preparing a second mixed composition comprising the first mixed composition with another substance contained in the heat conductive pressure-sensitive adhesive composition (F). Even if the use amount of the activated hydrocarbon fiber (C) is increased from the conventional amount, an excessive increase in the viscosity of the second mixed composition is suppressed, and the productivity of the heat conductive pressure-sensitive adhesive composition (F) is improved. I found out that That is, it has been found that the productivity of the heat conductive pressure-sensitive adhesive composition (F) having high flame retardancy can be improved.
 本発明に用いる多価アルコール重合体の脂肪酸エステル(D)としては、ポリグリセリン脂肪酸エステル、ポリソルビタン脂肪酸エステル、ポリプロピレングリコール脂肪酸エステル等が挙げられる。中でも、ポリグリセリン脂肪酸エステルがより好ましい。 Examples of the fatty acid ester (D) of the polyhydric alcohol polymer used in the present invention include polyglycerin fatty acid ester, polysorbitan fatty acid ester, and polypropylene glycol fatty acid ester. Of these, polyglycerol fatty acid esters are more preferable.
 上記ポリグリセリン脂肪酸エステルとしては、ポリグリセリン縮合リシノレイン酸エステル、ポリグリセリンリシノレイン酸エステル、ポリグリセリンオレイン酸エステル、ポリグリセリンステアリン酸エステル、などが挙げられる。中でも、ポリグリセリン縮合リシノレイン酸エステルが特に好ましい。
  上記ポリソルビタン脂肪酸エステルとしては、ポリソルビタン縮合リシノレイン酸エステル、ポリソルビタンリシノレイン酸エステル、ポリソルビタンオレイン酸エステル、ポリソルビタンステアリン酸エステル、などが挙げられる。
  上記ポリプロピレングリコール脂肪酸エステルとしては、ポリプロピレングリコール縮合リシノレイン酸エステル、ポリプロピレングリコールリシノレイン酸エステル、ポリプロピレングリコールオレイン酸エステル、ポリプロピレングリコールステアリン酸エステル、などが挙げられる。
Examples of the polyglycerin fatty acid ester include polyglycerin condensed ricinoleic acid ester, polyglycerin ricinoleic acid ester, polyglycerin oleic acid ester, polyglycerin stearic acid ester, and the like. Among them, polyglycerin condensed ricinoleic acid ester is particularly preferable.
Examples of the polysorbitan fatty acid ester include polysorbitan condensed ricinoleic acid ester, polysorbitan ricinoleic acid ester, polysorbitan oleic acid ester, polysorbitan stearic acid ester, and the like.
Examples of the polypropylene glycol fatty acid ester include polypropylene glycol condensed ricinoleic acid ester, polypropylene glycol ricinoleic acid ester, polypropylene glycol oleic acid ester, and polypropylene glycol stearic acid ester.
 前記における「縮合リシノレイン酸」について説明する。リシノレイン酸はカルボキシル基と水酸基との両方を有する化合物であるが、リシノレイン酸が有するカルボキシル基と、別分子であるリシノレイン酸が有する水酸基とがエステル化反応することで多量化したものを「縮合リシノレイン酸」と称する。また、前記ポリグリセリン縮合リシノレイン酸エステルは、縮合リシノレイン酸中のカルボキシル基が、水酸基を有する化合物中の水酸基との間でエステル化反応することにより得られるものである。 The “condensed ricinoleic acid” in the above will be described. Although ricinoleic acid is a compound having both a carboxyl group and a hydroxyl group, a compound obtained by the esterification reaction between the carboxyl group possessed by ricinoleic acid and the hydroxyl group possessed by ricinoleic acid, which is a separate molecule, is referred to as “condensed ricinolein”. Referred to as "acid". The polyglycerin condensed ricinoleic acid ester is obtained by an esterification reaction between a carboxyl group in condensed ricinoleic acid and a hydroxyl group in a compound having a hydroxyl group.
 なお、多価アルコール重合体の脂肪酸エステル(D)としては、数平均分子量が1,000以上10,000以下のものが好ましい。また、多価アルコール重合体の脂肪酸エステル(D)は、10℃以上40℃以下の温度下において液体であることが好ましい。 In addition, as the fatty acid ester (D) of the polyhydric alcohol polymer, those having a number average molecular weight of 1,000 or more and 10,000 or less are preferable. The fatty acid ester (D) of the polyhydric alcohol polymer is preferably liquid at a temperature of 10 ° C. or higher and 40 ° C. or lower.
 第1の混合工程において用いる多価アルコール重合体の脂肪酸エステル(D)の量は、第2の混合工程で用いる(メタ)アクリル樹脂組成物(A)を100質量部として、2質量部以上13質量部以下であり、3質量部以上10質量部以下であることが好ましく、4質量部以上10質量部以下であることがより好ましい。多価アルコール重合体の脂肪酸エステル(D)の量を上記範囲の下限以上とすることによって、第2の混合組成物の過度な粘度上昇を抑制し、熱伝導性感圧接着剤組成物(F)を成形しやすくなる。一方、多価アルコール重合体の脂肪酸エステル(D)の量を上記範囲の上限以下とすることによって、第2の混合組成物の凝集力が低下して熱伝導性感圧接着剤組成物(F)の成形が困難になるということを抑制できる。 The amount of the fatty acid ester (D) of the polyhydric alcohol polymer used in the first mixing step is 2 parts by mass or more and 13 parts by mass with the (meth) acrylic resin composition (A) used in the second mixing step being 100 parts by mass. 3 parts by mass or more, preferably 10 parts by mass or less, and more preferably 4 parts by mass or more and 10 parts by mass or less. By setting the amount of the fatty acid ester (D) of the polyhydric alcohol polymer to be not less than the lower limit of the above range, an excessive increase in viscosity of the second mixed composition is suppressed, and the heat conductive pressure-sensitive adhesive composition (F). It becomes easy to mold. On the other hand, by setting the amount of the fatty acid ester (D) of the polyhydric alcohol polymer to be equal to or less than the upper limit of the above range, the cohesive force of the second mixed composition is lowered and the heat conductive pressure-sensitive adhesive composition (F). It is possible to prevent the molding of the material from becoming difficult.
 1.2.第2の混合工程
  次に、第2の混合工程について説明する。第2の混合工程は、(メタ)アクリル樹脂組成物(A)と、熱伝導性フィラー(B)と、上記第1の混合組成物と、を含む第2の混合組成物を作製する工程である。第2の混合工程において用いる(メタ)アクリル樹脂組成物(A)および熱伝導性フィラー(B)について以下に説明する。
1.2. Second Mixing Step Next, the second mixing step will be described. A 2nd mixing process is a process of producing the 2nd mixed composition containing a (meth) acrylic resin composition (A), a heat conductive filler (B), and the said 1st mixed composition. is there. The (meth) acrylic resin composition (A) and the heat conductive filler (B) used in the second mixing step will be described below.
 <(メタ)アクリル樹脂組成物(A)>
  第2の混合工程において用いる(メタ)アクリル樹脂組成物(A)は、(メタ)アクリル酸エステル重合体(A1)及び(メタ)アクリル酸エステル単量体(α1)を含んでおり、さらに後述する多官能性単量体を含んでいてもよい。なお、熱伝導性感圧接着剤組成物(F)を得る際には、少なくとも(メタ)アクリル酸エステル単量体(α1)の重合反応が行われる。当該重合反応を行うことによって(メタ)アクリル酸エステル単量体(α1)由来の構造単位を含む重合体は(メタ)アクリル酸エステル重合体(A1)の成分と混合及び/又は一部結合する。
<(Meth) acrylic resin composition (A)>
The (meth) acrylic resin composition (A) used in the second mixing step contains a (meth) acrylic acid ester polymer (A1) and a (meth) acrylic acid ester monomer (α1), which will be described later. It may contain a multifunctional monomer. In addition, when obtaining a heat conductive pressure sensitive adhesive composition (F), the polymerization reaction of a (meth) acrylic acid ester monomer ((alpha) 1) is performed at least. By performing the polymerization reaction, the polymer containing the structural unit derived from the (meth) acrylate monomer (α1) is mixed and / or partially bonded to the component of the (meth) acrylate polymer (A1). .
 (メタ)アクリル酸エステル重合体(A1)及び(メタ)アクリル酸エステル単量体(α1)の混合割合は、(メタ)アクリル樹脂組成物(A)を100質量%として、(メタ)アクリル酸エステル重合体(A1)が20質量%以上80質量%以下、(メタ)アクリル酸エステル単量体(α1)が20質量%以上80質量%以下であることが好ましく、(メタ)アクリル酸エステル重合体(A1)が30質量%以上69.5質量%以下、(メタ)アクリル酸エステル単量体(α1)が30質量%以上69.5質量%以下であることがより好ましい。(メタ)アクリル酸エステル単量体(α1)の使用割合を上記範囲とすることによって、熱伝導性感圧接着剤組成物(F)を成形しやすくなる。 The mixing ratio of the (meth) acrylic acid ester polymer (A1) and the (meth) acrylic acid ester monomer (α1) is (meth) acrylic acid with the (meth) acrylic resin composition (A) being 100% by mass. The ester polymer (A1) is preferably 20% by mass or more and 80% by mass or less, and the (meth) acrylic acid ester monomer (α1) is preferably 20% by mass or more and 80% by mass or less. More preferably, the coalescence (A1) is 30% by mass or more and 69.5% by mass or less, and the (meth) acrylic acid ester monomer (α1) is 30% by mass or more and 69.5% by mass or less. It becomes easy to shape | mold a heat conductive pressure sensitive adhesive composition (F) by making the usage-amount of a (meth) acrylic acid ester monomer ((alpha) 1) into the said range.
 ((メタ)アクリル酸エステル重合体(A1))
  本発明に用いることができる(メタ)アクリル酸エステル重合体(A1)は特に限定されないが、ガラス転移温度が-20℃以下となる単独重合体を形成する(メタ)アクリル酸エステル単量体の単位(a1)、及び、有機酸基を有する単量体単位(a2)を含有することが好ましい。
((Meth) acrylic acid ester polymer (A1))
The (meth) acrylic acid ester polymer (A1) that can be used in the present invention is not particularly limited, but the (meth) acrylic acid ester monomer that forms a homopolymer having a glass transition temperature of −20 ° C. or lower. It is preferable to contain the unit (a1) and the monomer unit (a2) having an organic acid group.
 上記(メタ)アクリル酸エステル単量体の単位(a1)を与える(メタ)アクリル酸エステル単量体(a1m)は特に限定されないが、例えば、アクリル酸エチル(単独重合体のガラス転移温度は、-24℃)、アクリル酸n-プロピル(同-37℃)、アクリル酸n-ブチル(同-54℃)、アクリル酸sec-ブチル(同-22℃)、アクリル酸n-ヘプチル(同-60℃)、アクリル酸n-ヘキシル(同-61℃)、アクリル酸n-オクチル(同-65℃)、アクリル酸2-エチルヘキシル(同-50℃)、メタクリル酸n-オクチル(同-25℃)、メタクリル酸n-デシル(同-49℃)などの、ガラス転移温度が-20℃以下となる単独重合体を形成する(メタ)アクリル酸アルキルエステル;アクリル酸2-メトキシエチル(同-50℃)、アクリル酸3-メトキシプロピル(同-75℃)、アクリル酸3-メトキシブチル(同-56℃)、アクリル酸エトキシメチル(同-50℃)などの、ガラス転移温度が-20℃以下となる単独重合体を形成する(メタ)アクリル酸アルコキシアルキルエステル;などを挙げることができる。中でも、ガラス転移温度が-20℃以下となる単独重合体を形成する(メタ)アクリル酸アルキルエステル、ガラス転移温度が-20℃以下となる単独重合体を形成する(メタ)アクリル酸アルコキシアルキルエステルが好ましく、ガラス転移温度が-20℃以下となる単独重合体を形成する(メタ)アクリル酸アルキルエステルがより好ましく、アクリル酸2-エチルヘキシルがさらに好ましい。 The (meth) acrylate monomer (a1m) that gives the unit (a1) of the (meth) acrylate monomer is not particularly limited. For example, ethyl acrylate (the glass transition temperature of the homopolymer is -24 ° C), n-propyl acrylate (-37 ° C), n-butyl acrylate (-54 ° C), sec-butyl acrylate (-22 ° C), n-heptyl acrylate (-60) ° C), n-hexyl acrylate (-61 ° C), n-octyl acrylate (-65 ° C), 2-ethylhexyl acrylate (-50 ° C), n-octyl methacrylate (-25 ° C) A (meth) acrylic acid alkyl ester that forms a homopolymer having a glass transition temperature of −20 ° C. or lower, such as n-decyl methacrylate (-49 ° C.); 2-methoxyethyl acrylate The glass transition temperature is −50 ° C.), 3-methoxypropyl acrylate (-75 ° C.), 3-methoxybutyl acrylate (-56 ° C.), ethoxymethyl acrylate (−50 ° C.), etc. And (meth) acrylic acid alkoxyalkyl esters that form a homopolymer of 20 ° C. or lower. Among them, (meth) acrylic acid alkyl ester forming a homopolymer having a glass transition temperature of −20 ° C. or lower, (meth) acrylic acid alkoxyalkyl ester forming a homopolymer having a glass transition temperature of −20 ° C. or lower (Meth) acrylic acid alkyl ester forming a homopolymer having a glass transition temperature of −20 ° C. or lower is more preferable, and 2-ethylhexyl acrylate is more preferable.
 これらの(メタ)アクリル酸エステル単量体(a1m)は、一種を単独で使用してもよく、二種以上を併用してもよい。 These (meth) acrylic acid ester monomers (a1m) may be used alone or in combination of two or more.
 (メタ)アクリル酸エステル単量体(a1m)は、それから導かれる単量体単位(a1)が、(メタ)アクリル酸エステル重合体(A1)中、好ましくは80質量%以上99.9質量%以下、より好ましくは85質量%以上99.5質量%以下となるような量で重合に供する。(メタ)アクリル酸エステル単量体(a1m)の使用量が上記範囲内であると、重合時の重合系の粘度を適正な範囲に保つことが容易になる。 In the (meth) acrylic acid ester monomer (a1m), the monomer unit (a1) derived therefrom is preferably 80% by mass or more and 99.9% by mass in the (meth) acrylic acid ester polymer (A1). Hereinafter, it is used for polymerization in such an amount that it is more preferably 85 mass% or more and 99.5 mass% or less. When the amount of the (meth) acrylic acid ester monomer (a1m) is within the above range, the viscosity of the polymerization system at the time of polymerization can be easily maintained within an appropriate range.
 次に、有機酸基を有する単量体単位(a2)について説明する。有機酸基を有する単量体単位(a2)を与える単量体(a2m)は特に限定されないが、その代表的なものとして、カルボキシル基、酸無水物基、スルホン酸基などの有機酸基を有する単量体を挙げることができる。また、これらのほか、スルフェン酸基、スルフィン酸基、燐酸基などを含有する単量体も使用することができる。 Next, the monomer unit (a2) having an organic acid group will be described. The monomer (a2m) that gives the monomer unit (a2) having an organic acid group is not particularly limited, but representative examples thereof include organic acid groups such as a carboxyl group, an acid anhydride group, and a sulfonic acid group. The monomer which has can be mentioned. In addition to these, monomers containing sulfenic acid groups, sulfinic acid groups, phosphoric acid groups, and the like can also be used.
 カルボキシル基を有する単量体の具体例としては、例えば、アクリル酸、メタクリル酸、クロトン酸などのα,β-エチレン性不飽和モノカルボン酸や、イタコン酸、マレイン酸、フマル酸などのα,β-エチレン性不飽和多価カルボン酸の他、イタコン酸モノメチル、マレイン酸モノブチル、フマル酸モノプロピルなどのα,β-エチレン性不飽和多価カルボン酸部分エステルなどを挙げることができる。また、無水マレイン酸、無水イタコン酸などの、加水分解などによりカルボキシル基に誘導することができる基を有するものも同様に使用することができる。 Specific examples of the monomer having a carboxyl group include, for example, α, β-ethylenically unsaturated monocarboxylic acids such as acrylic acid, methacrylic acid, and crotonic acid, and α, β such as itaconic acid, maleic acid, and fumaric acid. In addition to β-ethylenically unsaturated polyvalent carboxylic acid, α, β-ethylenically unsaturated polyvalent carboxylic acid partial esters such as monomethyl itaconate, monobutyl maleate and monopropyl fumarate can be exemplified. Moreover, what has group which can be induced | guided | derived to a carboxyl group by hydrolysis etc., such as maleic anhydride and itaconic anhydride, can be used similarly.
 スルホン酸基を有する単量体の具体例としては、アリルスルホン酸、メタリルスルホン酸、ビニルスルホン酸、スチレンスルホン酸、アクリルアミド-2-メチルプロパンスルホン酸などのα,β-不飽和スルホン酸、及び、これらの塩を挙げることができる。 Specific examples of the monomer having a sulfonic acid group include allyl sulfonic acid, methallyl sulfonic acid, vinyl sulfonic acid, styrene sulfonic acid, α, β-unsaturated sulfonic acid such as acrylamide-2-methylpropane sulfonic acid, And salts thereof.
 単量体(a2m)としては、上に例示した有機酸基を有する単量体のうち、カルボキシル基を有する単量体がより好ましく、α,β-エチレン性不飽和モノカルボン酸がさらに好ましく、(メタ)アクリル酸が特に好ましい。これらの単量体は工業的に安価で容易に入手することができ、他の単量体成分との共重合性も良く、生産性の点でも好ましい。なお、単量体(a2m)は、一種を単独で使用してもよく、二種以上を併用してもよい。 As the monomer (a2m), among the monomers having an organic acid group exemplified above, a monomer having a carboxyl group is more preferable, and an α, β-ethylenically unsaturated monocarboxylic acid is more preferable. (Meth) acrylic acid is particularly preferred. These monomers are industrially inexpensive and can be easily obtained, have good copolymerizability with other monomer components, and are preferable in terms of productivity. In addition, a monomer (a2m) may be used individually by 1 type, and may use 2 or more types together.
 有機酸基を有する単量体(a2m)は、それから導かれる単量体単位(a2)が(メタ)アクリル酸エステル重合体(A1)中、好ましくは0.1質量%以上20質量%以下、より好ましくは0.5質量%以上15質量%以下となるような量で重合に供する。有機酸基を有する単量体(a2m)の使用量が上記範囲内であると、重合時の重合系の粘度を適正な範囲に保つことが容易になる。 In the monomer (a2m) having an organic acid group, the monomer unit (a2) derived from the monomer unit (a2) is preferably 0.1% by mass or more and 20% by mass or less in the (meth) acrylic acid ester polymer (A1). More preferably, it is used for the polymerization in such an amount that it is 0.5 to 15% by mass. When the usage-amount of the monomer (a2m) which has an organic acid group exists in the said range, it will become easy to maintain the viscosity of the polymerization system at the time of superposition | polymerization in an appropriate range.
 なお、有機酸基を有する単量体単位(a2)は、前述のように、有機酸基を有する単量体(a2m)の重合によって、(メタ)アクリル酸エステル重合体(A1)中に導入するのが簡便であり好ましい。ただし、(メタ)アクリル酸エステル重合体(A1)を生成した後に、公知の高分子反応により有機酸基を導入してもよい。 The monomer unit (a2) having an organic acid group is introduced into the (meth) acrylic acid ester polymer (A1) by polymerization of the monomer (a2m) having an organic acid group as described above. It is convenient and preferable. However, after producing the (meth) acrylic acid ester polymer (A1), an organic acid group may be introduced by a known polymer reaction.
 また、(メタ)アクリル酸エステル重合体(A1)は、有機酸基以外の官能基を有する単量体(a3m)から誘導される単量体単位(a3)を含有していてもよい。上記有機酸基以外の官能基としては、水酸基、アミノ基、アミド基、エポキシ基、メルカプト基などを挙げることができる。 Further, the (meth) acrylic acid ester polymer (A1) may contain a monomer unit (a3) derived from a monomer (a3m) having a functional group other than an organic acid group. Examples of the functional group other than the organic acid group include a hydroxyl group, an amino group, an amide group, an epoxy group, and a mercapto group.
 水酸基を有する単量体としては、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸3-ヒドロキシプロピルなどの、(メタ)アクリル酸ヒドロキシアルキルエステルなどを挙げることができる。 Examples of the monomer having a hydroxyl group include (meth) acrylic acid hydroxyalkyl esters such as (meth) acrylic acid 2-hydroxyethyl and (meth) acrylic acid 3-hydroxypropyl.
 アミノ基を有する単量体としては、(メタ)アクリル酸N,N-ジメチルアミノメチル、(メタ)アクリル酸N,N-ジメチルアミノエチル、アミノスチレンなどを挙げることができる。 Examples of the monomer having an amino group include N, N-dimethylaminomethyl (meth) acrylate, N, N-dimethylaminoethyl (meth) acrylate, and aminostyrene.
 アミド基を有する単量体としては、アクリルアミド、メタクリルアミド、N-メチロールアクリルアミド、N-メチロールメタクリルアミド、N,N-ジメチルアクリルアミドなどのα,β-エチレン性不飽和カルボン酸アミド単量体などを挙げることができる。 Examples of monomers having an amide group include α, β-ethylenically unsaturated carboxylic acid amide monomers such as acrylamide, methacrylamide, N-methylol acrylamide, N-methylol methacrylamide, and N, N-dimethylacrylamide. Can be mentioned.
 エポキシ基を有する単量体としては、(メタ)アクリル酸グリシジル、アリルグリシジルエーテルなどを挙げることができる。 Examples of the monomer having an epoxy group include glycidyl (meth) acrylate and allyl glycidyl ether.
 有機酸基以外の官能基を有する単量体(a3m)は、一種を単独で使用してもよく、二種以上を併用してもよい。 As the monomer (a3m) having a functional group other than the organic acid group, one type may be used alone, or two or more types may be used in combination.
 これらの有機酸基以外の官能基を有する単量体(a3m)は、それから導かれる単量体単位(a3)が、(メタ)アクリル酸エステル重合体(A1)中、10質量%以下となるような量で重合に使用することが好ましい。10質量%以下の単量体(a3m)を使用することにより、重合時の重合系の粘度を適正な範囲に保つことが容易になる。 In the monomer (a3m) having a functional group other than these organic acid groups, the monomer unit (a3) derived therefrom is 10% by mass or less in the (meth) acrylate polymer (A1). It is preferable to use it for polymerization in such an amount. By using the monomer (a3m) of 10% by mass or less, it becomes easy to keep the viscosity of the polymerization system during polymerization in an appropriate range.
 (メタ)アクリル酸エステル重合体(A1)は、上述したガラス転移温度が-20℃以下となる単独重合体を形成する(メタ)アクリル酸エステル単量体単位(a1)、有機酸基を有する単量体単位(a2)、及び、有機酸基以外の官能基を有する単量体単位(a3)以外に、上述した単量体と共重合可能な単量体(a4m)から誘導される単量体単位(a4)を含有していてもよい。 The (meth) acrylic acid ester polymer (A1) has a (meth) acrylic acid ester monomer unit (a1) that forms a homopolymer having a glass transition temperature of −20 ° C. or lower, and an organic acid group. In addition to the monomer unit (a2) and the monomer unit (a3) having a functional group other than an organic acid group, a monomer derived from the monomer (a4m) copolymerizable with the above-described monomer. The monomer unit (a4) may be contained.
 単量体(a4m)は、特に限定されないが、その具体例として、上記(メタ)アクリル酸エステル単量体(a1m)以外の(メタ)アクリル酸エステル単量体、α,β-エチレン性不飽和多価カルボン酸完全エステル、アルケニル芳香族単量体、シアン化ビニル単量体、カルボン酸不飽和アルコールエステル、オレフィン系単量体などを挙げることができる。 The monomer (a4m) is not particularly limited, and specific examples thereof include (meth) acrylate monomers other than the (meth) acrylate monomer (a1m), α, β-ethylenic monomers. Saturated polyvalent carboxylic acid complete ester, alkenyl aromatic monomer, vinyl cyanide monomer, carboxylic acid unsaturated alcohol ester, olefin monomer and the like can be mentioned.
 上記(メタ)アクリル酸エステル単量体(a1m)以外の(メタ)アクリル酸エステル単量体の具体例としては、アクリル酸メチル(単独重合体のガラス転移温度は、10℃)、メタクリル酸メチル(同105℃)、メタクリル酸エチル(同63℃)、メタクリル酸n-プロピル(同25℃)、メタクリル酸n-ブチル(同20℃)などを挙げることができる。 Specific examples of the (meth) acrylate monomer other than the (meth) acrylate monomer (a1m) include methyl acrylate (homopolymer having a glass transition temperature of 10 ° C.), methyl methacrylate. (105 ° C.), ethyl methacrylate (63 ° C.), n-propyl methacrylate (25 ° C.), n-butyl methacrylate (20 ° C.), and the like.
 α,β-エチレン性不飽和多価カルボン酸完全エステルの具体例としては、フマル酸ジメチル、フマル酸ジエチル、マレイン酸ジメチル、マレイン酸ジエチル、イタコン酸ジメチルなどを挙げることができる。 Specific examples of the α, β-ethylenically unsaturated polyvalent carboxylic acid complete ester include dimethyl fumarate, diethyl fumarate, dimethyl maleate, diethyl maleate, dimethyl itaconate and the like.
 アルケニル芳香族単量体の具体例としては、スチレン、α-メチルスチレン、メチルα-メチルスチレン、ビニルトルエンなどを挙げることができる。 Specific examples of the alkenyl aromatic monomer include styrene, α-methylstyrene, methyl α-methylstyrene, vinyltoluene and the like.
 シアン化ビニル単量体の具体例としては、アクリロニトリル、メタクリロニトリル、α-クロロアクリロニトリル、α-エチルアクリロニトリルなどを挙げることができる。 Specific examples of the vinyl cyanide monomer include acrylonitrile, methacrylonitrile, α-chloroacrylonitrile, α-ethylacrylonitrile and the like.
 カルボン酸不飽和アルコールエステル単量体の具体例としては、酢酸ビニルなどを挙げることができる。 Specific examples of the carboxylic acid unsaturated alcohol ester monomer include vinyl acetate.
 オレフィン系単量体の具体例としては、エチレン、プロピレン、ブテン、ペンテンなどを挙げることができる。 Specific examples of the olefin monomer include ethylene, propylene, butene, pentene and the like.
 単量体(a4m)は、一種を単独で使用してもよく、二種以上を併用してもよい。 As the monomer (a4m), one type may be used alone, or two or more types may be used in combination.
 単量体(a4m)は、それから導かれる単量体単位(a4)の量が、(メタ)アクリル酸エステル重合体(A1)中、好ましくは10質量%以下、より好ましくは5質量%以下となるような量で重合に供する。 In the monomer (a4m), the amount of the monomer unit (a4) derived therefrom is preferably 10% by mass or less, more preferably 5% by mass or less in the (meth) acrylate polymer (A1). It is subjected to polymerization in such an amount.
 (メタ)アクリル酸エステル重合体(A1)は、上述した、ガラス転移温度が-20℃以下となる単独重合体を形成する(メタ)アクリル酸エステル単量体(a1m)、有機酸基を有する単量体(a2m)、必要に応じて使用する、有機酸基以外の官能基を含有する単量体(a3m)、及び、必要に応じて使用するこれらの単量体と共重合可能な単量体(a4m)を共重合することによって特に好適に得ることができる。 The (meth) acrylic acid ester polymer (A1) has the above-mentioned (meth) acrylic acid ester monomer (a1m) that forms a homopolymer having a glass transition temperature of −20 ° C. or lower, and an organic acid group. Monomer (a2m), a monomer containing a functional group other than an organic acid group (a3m) used as necessary, and a monomer copolymerizable with these monomers used as needed It can be particularly suitably obtained by copolymerizing the monomer (a4m).
 (メタ)アクリル酸エステル重合体(A1)を得る際の重合方法は特に限定されず、溶液重合、乳化重合、懸濁重合、塊状重合などのいずれであってもよく、これら以外の方法でもよい。ただしこれらの重合方法の中で溶液重合が好ましく、中でも重合溶媒として、酢酸エチル、乳酸エチルなどのカルボン酸エステルやベンゼン、トルエン、キシレンなどの芳香族溶媒を用いた溶液重合がより好ましい。重合に際して、単量体は、重合反応容器に分割添加してもよいが、全量を一括添加するのが好ましい。重合開始の方法は、特に限定されないが、重合開始剤として熱重合開始剤を用いるのが好ましい。当該熱重合開始剤は特に限定されず、例えば過酸化物重合開始剤やアゾ化合物重合開始剤を用いることができる。 The polymerization method for obtaining the (meth) acrylic acid ester polymer (A1) is not particularly limited, and may be any of solution polymerization, emulsion polymerization, suspension polymerization, bulk polymerization, and the like, or any other method. . However, among these polymerization methods, solution polymerization is preferable, and among them, solution polymerization using a carboxylic acid ester such as ethyl acetate or ethyl lactate or an aromatic solvent such as benzene, toluene or xylene is more preferable. In the polymerization, the monomer may be added in portions to the polymerization reaction vessel, but it is preferable to add the whole amount at once. The method for initiating the polymerization is not particularly limited, but it is preferable to use a thermal polymerization initiator as the polymerization initiator. The thermal polymerization initiator is not particularly limited, and for example, a peroxide polymerization initiator or an azo compound polymerization initiator can be used.
 過酸化物重合開始剤としては、t-ブチルヒドロペルオキシドのようなヒドロペルオキシドや、ベンゾイルペルオキシド、シクロヘキサノンペルオキシドのようなペルオキシドの他、過硫酸カリウム、過硫酸ナトリウム、過硫酸アンモニウムなどの過硫酸塩などを挙げることができる。これらの過酸化物は、還元剤と適宜組み合わせて、レドックス系触媒として使用することもできる。 Peroxide polymerization initiators include hydroperoxides such as t-butyl hydroperoxide, peroxides such as benzoyl peroxide and cyclohexanone peroxide, and persulfates such as potassium persulfate, sodium persulfate and ammonium persulfate. Can be mentioned. These peroxides can also be used as a redox catalyst in appropriate combination with a reducing agent.
 アゾ化合物重合開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)などを挙げることができる。 As azo compound polymerization initiators, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylbutyronitrile) And so on.
 重合開始剤の使用量は特に限定されないが、単量体100質量部に対して0.01質量部以上50質量部以下の範囲であることが好ましい。 Although the usage-amount of a polymerization initiator is not specifically limited, It is preferable that it is the range of 0.01 to 50 mass parts with respect to 100 mass parts of monomers.
 これらの単量体のその他の重合条件(重合温度、圧力、撹拌条件など)は、特に制限がない。 Other polymerization conditions (polymerization temperature, pressure, stirring conditions, etc.) of these monomers are not particularly limited.
 重合反応終了後、必要により、得られた重合体を重合媒体から分離する。分離の方法は特に限定されない。例えば、溶液重合の場合、重合溶液を減圧下に置き、重合溶媒を留去することによって、(メタ)アクリル酸エステル重合体(A1)を得ることができる。 After completion of the polymerization reaction, the obtained polymer is separated from the polymerization medium if necessary. The separation method is not particularly limited. For example, in the case of solution polymerization, the (meth) acrylic acid ester polymer (A1) can be obtained by placing the polymerization solution under reduced pressure and distilling off the polymerization solvent.
 (メタ)アクリル酸エステル重合体(A1)の重量平均分子量(Mw)は、ゲルパーミエーションクロマトグラフ法(GPC法)で測定して、標準ポリスチレン換算で1000以上100万以下の範囲にあることが好ましく、10万以上50万以下の範囲にあることが、より好ましい。(メタ)アクリル酸エステル重合体(A1)の重量平均分子量は、重合の際に使用する重合開始剤の量や、連鎖移動剤の量を適宜調整することによって制御することができる。 The weight average molecular weight (Mw) of the (meth) acrylic acid ester polymer (A1) is measured by gel permeation chromatography (GPC method) and may be in the range of 1,000 to 1,000,000 in terms of standard polystyrene. Preferably, it is in the range of 100,000 or more and 500,000 or less. The weight average molecular weight of the (meth) acrylic acid ester polymer (A1) can be controlled by appropriately adjusting the amount of the polymerization initiator used in the polymerization and the amount of the chain transfer agent.
 ((メタ)アクリル酸エステル単量体(α1))
  (メタ)アクリル酸エステル単量体(α1)は、(メタ)アクリル酸エステル単量体を含有するものであれば特に限定されないが、ガラス転移温度が-20℃以下となる単独重合体を形成する(メタ)アクリル酸エステル単量体(a5m)を含有するものであることが好ましい。
((Meth) acrylic acid ester monomer (α1))
The (meth) acrylate monomer (α1) is not particularly limited as long as it contains the (meth) acrylate monomer, but forms a homopolymer having a glass transition temperature of −20 ° C. or lower. It is preferable to contain the (meth) acrylic acid ester monomer (a5m).
 ガラス転移温度が-20℃以下となる単独重合体を形成する(メタ)アクリル酸エステル単量体(a5m)の例としては、(メタ)アクリル酸エステル重合体(A1)の合成に用いる(メタ)アクリル酸エステル単量体(a1m)と同様の(メタ)アクリル酸エステル単量体を挙げることができる。(メタ)アクリル酸エステル単量体(a5m)は、一種を単独で使用してもよく、二種以上を併用してもよい。 As an example of a (meth) acrylate monomer (a5m) that forms a homopolymer having a glass transition temperature of −20 ° C. or lower, it is used for the synthesis of a (meth) acrylate polymer (A1) (meth) ) The same (meth) acrylate monomer as the acrylate monomer (a1m) can be mentioned. A (meth) acrylic acid ester monomer (a5m) may be used individually by 1 type, and may use 2 or more types together.
 (メタ)アクリル酸エステル単量体(α1)における(メタ)アクリル酸エステル単量体(a5m)の比率は、好ましくは50質量%以上100質量%以下、より好ましくは75質量%以上100質量%以下である。(メタ)アクリル酸エステル単量体(α1)における(メタ)アクリル酸エステル単量体(a5m)の比率を上記範囲とすることによって、感圧接着性や柔軟性に優れた熱伝導性感圧接着剤組成物(F)を得やすくなる。 The ratio of the (meth) acrylate monomer (a5m) in the (meth) acrylate monomer (α1) is preferably 50% by mass to 100% by mass, more preferably 75% by mass to 100% by mass. It is as follows. By making the ratio of the (meth) acrylic acid ester monomer (a5m) in the (meth) acrylic acid ester monomer (α1) in the above range, the heat conductive pressure-sensitive adhesive having excellent pressure-sensitive adhesiveness and flexibility. The agent composition (F) can be easily obtained.
 また、(メタ)アクリル酸エステル単量体(α1)は、ガラス転移温度が-20℃以下となる単独重合体を形成する(メタ)アクリル酸エステル単量体(a5m)、及び、これらと共重合可能な有機酸基を有する単量体(a6m)の混合物としてもよい。 The (meth) acrylic acid ester monomer (α1) is a (meth) acrylic acid ester monomer (a5m) that forms a homopolymer having a glass transition temperature of −20 ° C. or lower. It is good also as a mixture of the monomer (a6m) which has a polymerizable organic acid group.
 上記単量体(a6m)の例としては、(メタ)アクリル酸エステル重合体(A1)の合成に用いる単量体(a2m)として例示したものと同様の有機酸基を有する単量体を挙げることができる。単量体(a6m)は、一種を単独で使用してもよく、二種以上を併用してもよい。 Examples of the monomer (a6m) include monomers having an organic acid group similar to those exemplified as the monomer (a2m) used for the synthesis of the (meth) acrylic acid ester polymer (A1). be able to. A monomer (a6m) may be used individually by 1 type, and may use 2 or more types together.
 (メタ)アクリル酸エステル単量体(α1)における単量体(a6m)の比率は、30質量%以下が好ましく、より好ましくは10質量%以下である。(メタ)アクリル酸エステル単量体(α1)における単量体(a6m)の比率を上記範囲とすることによって、感圧接着性や柔軟性に優れた熱伝導性感圧接着剤組成物(F)を得やすくなる。 The ratio of the monomer (a6m) in the (meth) acrylic acid ester monomer (α1) is preferably 30% by mass or less, and more preferably 10% by mass or less. By setting the ratio of the monomer (a6m) in the (meth) acrylic acid ester monomer (α1) to the above range, the heat conductive pressure-sensitive adhesive composition (F) excellent in pressure-sensitive adhesiveness and flexibility. It will be easier to get.
 (メタ)アクリル酸エステル単量体(α1)は、(メタ)アクリル酸エステル単量体(a5m)及び所望により共重合させることができる有機酸基を有する単量体(a6m)の他に、これらと共重合可能な単量体(a7m)も含む混合物としてもよい。 The (meth) acrylic acid ester monomer (α1), in addition to the (meth) acrylic acid ester monomer (a5m) and the monomer (a6m) having an organic acid group that can be optionally copolymerized, It is good also as a mixture containing the monomer (a7m) copolymerizable with these.
 上記単量体(a7m)の例としては、(メタ)アクリル酸エステル重合体(A1)の合成に用いる単量体(a3m)、及び単量体(a4m)として例示したものと同様の単量体を挙げることができる。単量体(a7m)は、一種を単独で使用してもよく、二種以上を併用してもよい。 Examples of the monomer (a7m) include the monomer (a3m) used for the synthesis of the (meth) acrylic acid ester polymer (A1) and the same amount as those exemplified as the monomer (a4m). The body can be mentioned. A monomer (a7m) may be used individually by 1 type, and may use 2 or more types together.
 (メタ)アクリル酸エステル単量体(α1)における単量体(a7m)の比率は、20質量%以下であることが好ましく、15質量%以下であることがより好ましい。 The ratio of the monomer (a7m) in the (meth) acrylic acid ester monomer (α1) is preferably 20% by mass or less, and more preferably 15% by mass or less.
 (多官能性単量体)
  本発明において、(メタ)アクリル樹脂組成物(A)には多官能性単量体も用いることができる。通常、ラジカル熱重合などの重合時には、多官能性単量体を用いずともある程度の架橋反応は進行する。しかしながら、より確実にしかも所望の量の架橋構造を形成させるためには多官能性単量体を用いてもよい。
(Polyfunctional monomer)
In the present invention, a polyfunctional monomer can also be used in the (meth) acrylic resin composition (A). Usually, at the time of polymerization such as radical thermal polymerization, a certain degree of crosslinking reaction proceeds without using a polyfunctional monomer. However, a polyfunctional monomer may be used in order to form a desired amount of a crosslinked structure more reliably.
 本発明に用いることができる多官能性単量体としては、(メタ)アクリル酸エステル単量体(α1)に含まれる単量体と共重合可能なものを用いる。また、当該多官能性単量体は重合性不飽和結合を複数有しており、該不飽和結合を末端に有することが好ましい。このような多官能性単量体を用いることによって、共重合体に分子内及び/又は分子間架橋を導入して、熱伝導性感圧接着剤組成物(F)の感圧接着剤としての凝集力を高めることができる。 As the polyfunctional monomer that can be used in the present invention, one that can be copolymerized with the monomer contained in the (meth) acrylic acid ester monomer (α1) is used. The polyfunctional monomer has a plurality of polymerizable unsaturated bonds, and preferably has the unsaturated bond at the terminal. By using such a polyfunctional monomer, intramolecular and / or intermolecular crosslinking is introduced into the copolymer, and the heat conductive pressure sensitive adhesive composition (F) is aggregated as a pressure sensitive adhesive. You can increase your power.
 上記多官能性単量体としては、例えば1,6-ヘキサンジオールジ(メタ)アクリレート、1,2-エチレングリコールジ(メタ)アクリレート、1,12-ドデカンジオールジ(メタ)アクリレート、ポリエチレングリコールジ(メタ)アクリレート、ポリプロピレングリコールジ(メタ)アクリレート、ネオペンチルグリコールジ(メタ)アクリレート、ペンタエリスリトールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールヘキサ(メタ)アクリレートなどの多官能性(メタ)アクリレートや、2,4-ビス(トリクロロメチル)-6-p-メトキシスチレン-5-トリアジンなどの置換トリアジンの他、4-アクリルオキシベンゾフェノンのようなモノエチレン系不飽和芳香族ケトンなどを用いることができる。中でも、多官能性(メタ)アクリレートが好ましく、ペンタエリスリトールジ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレートがより好ましい。多官能性単量体は、一種を単独で使用してもよく、二種以上を併用してもよい。 Examples of the polyfunctional monomer include 1,6-hexanediol di (meth) acrylate, 1,2-ethylene glycol di (meth) acrylate, 1,12-dodecanediol di (meth) acrylate, polyethylene glycol di (Meth) acrylate, polypropylene glycol di (meth) acrylate, neopentyl glycol di (meth) acrylate, pentaerythritol di (meth) acrylate, trimethylolpropane tri (meth) acrylate, pentaerythritol tri (meth) acrylate, ditrimethylolpropane Multifunctional (meth) acrylates such as tri (meth) acrylate, pentaerythritol tetra (meth) acrylate, dipentaerythritol hexa (meth) acrylate, and 2,4-bis (trick Other substituted triazines, such as Romechiru) -6-p-methoxystyrene-5-triazine, etc. monoethylenically unsaturated aromatic ketones such as 4-acryloxy benzophenone can be used. Among these, polyfunctional (meth) acrylate is preferable, and pentaerythritol di (meth) acrylate, pentaerythritol tri (meth) acrylate, and pentaerythritol tetra (meth) acrylate are more preferable. A polyfunctional monomer may be used individually by 1 type, and may use 2 or more types together.
 多官能性単量体の使用量は、(メタ)アクリル樹脂組成物(A)を100質量%として、10質量%以下であることが好ましく、0.5質量%以上5質量%以下であることがより好ましい。多官能性単量体の使用量を上記範囲とすることによって、熱伝導性感圧接着剤組成物(F)に適正な凝集力を付与し易くなる。 The amount of the polyfunctional monomer used is preferably 10% by mass or less, based on the (meth) acrylic resin composition (A) as 100% by mass, and is 0.5% by mass or more and 5% by mass or less. Is more preferable. By making the usage-amount of a polyfunctional monomer into the said range, it becomes easy to provide suitable cohesion force to a heat conductive pressure sensitive adhesive composition (F).
 <重合開始剤>
  熱伝導性感圧接着剤組成物(F)を得る際、上述したように(メタ)アクリル樹脂組成物(A)に含まれる成分が重合する。当該重合反応を促進するため、重合開始剤を用いることが好ましい。当該重合開始剤としては、光重合開始剤、アゾ系熱重合開始剤、有機過酸化物熱重合開始剤などが挙げられる。ただし、得られる熱伝導性感圧接着剤組成物(F)に強い接着力を付与する等の観点からは、有機過酸化物熱重合開始剤を用いることが好ましい。
<Polymerization initiator>
When obtaining the heat conductive pressure sensitive adhesive composition (F), the components contained in the (meth) acrylic resin composition (A) are polymerized as described above. In order to accelerate the polymerization reaction, it is preferable to use a polymerization initiator. Examples of the polymerization initiator include a photopolymerization initiator, an azo thermal polymerization initiator, and an organic peroxide thermal polymerization initiator. However, it is preferable to use an organic peroxide thermal polymerization initiator from the viewpoint of imparting strong adhesive force to the obtained heat conductive pressure-sensitive adhesive composition (F).
 光重合開始剤としては、公知の各種光重合開始剤を用いることができる。その中でも、アシルホスフィンオキサイド系化合物が好ましい。好ましい光重合開始剤であるアシルホスフィンオキサイド系化合物としては、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキサイド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキサイドなどが挙げられる。 As the photopolymerization initiator, various known photopolymerization initiators can be used. Of these, acylphosphine oxide compounds are preferred. Preferred examples of the acylphosphine oxide compound that is a photopolymerization initiator include bis (2,4,6-trimethylbenzoyl) phenylphosphine oxide and 2,4,6-trimethylbenzoyldiphenylphosphine oxide.
 アゾ系熱重合開始剤としては、2,2’-アゾビスイソブチロニトリル、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)などが挙げられる。 As the azo-based thermal polymerization initiator, 2,2′-azobisisobutyronitrile, 2,2′-azobis (2,4-dimethylvaleronitrile), 2,2′-azobis (2-methylbutyronitrile) ) And the like.
 有機過酸化物熱重合開始剤としては、t-ブチルヒドロペルオキシドのようなヒドロペルオキシドや、ベンゾイルペルオキシド、シクロヘキサノンペルオキシド、1,6-ビス(t-ブチルペルオキシカルボニルオキシ)ヘキサン、1,1-ビス(t-ブチルペルオキシ)-3,3,5-トリメチルシクロヘキサノンのようなペルオキシドなどを挙げることができる。ただし、熱分解時に臭気の原因となる揮発性物質を放出しないものが好ましい。また、有機過酸化物熱重合開始剤の中でも、1分間半減期温度が100℃以上かつ170℃以下のものが好ましい。 Examples of the organic peroxide thermal polymerization initiator include hydroperoxides such as t-butyl hydroperoxide, benzoyl peroxide, cyclohexanone peroxide, 1,6-bis (t-butylperoxycarbonyloxy) hexane, 1,1-bis ( and a peroxide such as t-butylperoxy) -3,3,5-trimethylcyclohexanone. However, those that do not release volatile substances that cause odor during thermal decomposition are preferred. Among organic peroxide thermal polymerization initiators, those having a 1-minute half-life temperature of 100 ° C. or more and 170 ° C. or less are preferable.
 上記重合開始剤の使用量は、(メタ)アクリル樹脂組成物(A)100質量部に対して0.01質量部以上10質量部以下であることが好ましく、0.1質量部以上5質量部以下であることがより好ましく、0.3質量部以上2質量部以下であることがさらに好ましい。
  重合開始剤の使用量を上記範囲とすることによって、(メタ)アクリル酸エステル単量体(α1)の重合転化率を適正な範囲にし易くなり、熱伝導性感圧接着剤組成物(F)に単量体臭が残ることを防止し易くなる。
  なお、(メタ)アクリル酸エステル単量体(α1)の重合転化率は、95質量%以上であることが好ましい。(メタ)アクリル酸エステル単量体(α1)の重合転化率が95質量%以上であれば、熱伝導性感圧接着剤組成物(F)に単量体臭が残ることを防止し易くなる。
  また、重合開始剤の使用量を上記範囲とすることによって、重合反応が過度に進行して熱伝導性感圧接着剤組成物(F)の表面が平滑にならずに凹凸やピンホールが発生するという事態を防止し易くなる。
The amount of the polymerization initiator used is preferably 0.01 parts by mass or more and 10 parts by mass or less, and 0.1 parts by mass or more and 5 parts by mass with respect to 100 parts by mass of the (meth) acrylic resin composition (A). More preferably, it is 0.3 to 2 parts by mass.
By making the usage-amount of a polymerization initiator into the said range, it becomes easy to make the polymerization conversion rate of a (meth) acrylic acid ester monomer ((alpha) 1) into an appropriate range, and it becomes a heat conductive pressure-sensitive-adhesive composition (F). It becomes easy to prevent the monomer odor from remaining.
The polymerization conversion rate of the (meth) acrylic acid ester monomer (α1) is preferably 95% by mass or more. If the polymerization conversion rate of the (meth) acrylic acid ester monomer (α1) is 95% by mass or more, it becomes easy to prevent the monomer odor from remaining in the heat conductive pressure-sensitive adhesive composition (F).
Moreover, by making the usage-amount of a polymerization initiator into the said range, superposition | polymerization reaction will advance excessively and the unevenness | corrugation and a pinhole will generate | occur | produce without the surface of a heat conductive pressure sensitive adhesive composition (F) becoming smooth. It becomes easy to prevent the situation.
 <熱伝導性フィラー(B)>
  次に熱伝導性フィラー(B)について説明する。熱伝導性フィラー(B)としては、添加することによって熱伝導性感圧接着剤組成物(F)の熱伝導性を向上させることができ、自身の熱伝導率が0.3W/m・K以上であるフィラーを用いることができる。
<Thermal conductive filler (B)>
Next, the heat conductive filler (B) will be described. As the thermally conductive filler (B), the thermal conductivity of the thermally conductive pressure-sensitive adhesive composition (F) can be improved by adding it, and its own thermal conductivity is 0.3 W / m · K or more. The filler which is can be used.
 熱伝導性フィラー(B)の具体例としては、水酸化アルミニウム、水酸化ガリウム、水酸化インジウム、水酸化マグネシウム、水酸化カルシウム、水酸化ストロンチウム、水酸化バリウムなどの金属水酸化物;酸化アルミニウム(アルミナ)、酸化マグネシウム、シリカ(酸化ケイ素)、酸化亜鉛などの金属酸化物;炭酸カルシウム、炭酸アルミニウムなどの金属炭酸塩;窒化ホウ素、窒化アルミニウムなどの金属窒化物;ホウ酸亜鉛水和物;カオリンクレー;アルミン酸カルシウム水和物;ドーソナイト;膨張化黒鉛粉、人造黒鉛、カーボンブラック、炭素繊維などの、炭素含有導電性フィラー;等を挙げることができる。これらの中で金属水酸化物、金属酸化物及び炭素含有導電性フィラーが好ましく、金属水酸化物及び炭素含有導電性フィラーがより好ましく、水酸化アルミニウム及び膨張化黒鉛粉が更に好ましい。熱伝導性フィラー(B)は一種を単独で使用してもよく、二種以上を併用してもよい。 Specific examples of the thermally conductive filler (B) include aluminum hydroxide, gallium hydroxide, indium hydroxide, magnesium hydroxide, calcium hydroxide, strontium hydroxide, barium hydroxide and other metal hydroxides; aluminum oxide ( Alumina), magnesium oxide, silica (silicon oxide), metal oxides such as zinc oxide; metal carbonates such as calcium carbonate and aluminum carbonate; metal nitrides such as boron nitride and aluminum nitride; zinc borate hydrate; kaolin Clay; calcium aluminate hydrate; dosonite; carbon-containing conductive fillers such as expanded graphite powder, artificial graphite, carbon black, and carbon fiber; Among these, metal hydroxides, metal oxides, and carbon-containing conductive fillers are preferable, metal hydroxides and carbon-containing conductive fillers are more preferable, and aluminum hydroxide and expanded graphite powder are more preferable. A heat conductive filler (B) may be used individually by 1 type, and may use 2 or more types together.
 <膨張化黒鉛粉>
  ここで、熱伝導性フィラー(B)として用いることができる、膨張化黒鉛粉について説明する。
  膨張化黒鉛粉は高い熱伝導性を有しており、膨張化黒鉛粉を添加することによって、熱伝導性感圧接着剤組成物(F)及び熱伝導性感圧接着性シート状成形体(G)の熱伝導性を向上させることができる。また、膨張化黒鉛粉を添加することによって、熱伝導性感圧接着剤組成物(F)及び熱伝導性感圧接着性シート状成形体(G)が加熱されても溶けることを抑制できる、すなわち難燃性を向上させることができる。
  なお、膨張化黒鉛粉は、第2の混合工程において添加することが好ましい。
<Expanded graphite powder>
Here, the expanded graphite powder that can be used as the thermally conductive filler (B) will be described.
The expanded graphite powder has high thermal conductivity, and by adding the expanded graphite powder, the thermally conductive pressure-sensitive adhesive composition (F) and the thermally conductive pressure-sensitive adhesive sheet-like molded body (G). The thermal conductivity of can be improved. Moreover, by adding the expanded graphite powder, it is possible to suppress melting even when the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) are heated. Flammability can be improved.
The expanded graphite powder is preferably added in the second mixing step.
 膨張化黒鉛粉とは、黒鉛を膨張させた後に粉砕して得られものである。本発明に用いる膨張化黒鉛粉の例としては、酸処理した黒鉛を500℃以上1200℃以下にて熱処理して100ml/g以上300ml/g以下に膨張させ、次いでそれを粉砕する工程を含む方法によって得られたものを挙げることができる。より好ましくは、黒鉛を強酸で処理した後にアルカリ中で焼結し、その後再度強酸で処理したものを500℃以上1200℃以下にて熱処理して酸を除去すると共に100ml/g以上300ml/g以下に膨張させ、次いで粉砕する工程を含む方法によって得られたものを挙げることができる。上記熱処理の温度は、特に好ましくは800℃以上1000℃以下である。 Expanded graphite powder is obtained by expanding and then pulverizing graphite. As an example of the expanded graphite powder used in the present invention, a method comprising a step of heat-treating acid-treated graphite at 500 ° C. or more and 1200 ° C. or less to expand it to 100 ml / g or more and 300 ml / g or less and then crushing it. Can be mentioned. More preferably, the graphite is treated with a strong acid, then sintered in an alkali, and then again treated with a strong acid at a temperature of 500 ° C. to 1200 ° C. to remove the acid and 100 ml / g to 300 ml / g. And a product obtained by a method including a step of expanding and then crushing. The temperature of the heat treatment is particularly preferably 800 ° C. or higher and 1000 ° C. or lower.
 第2の混合工程において用いる熱伝導性フィラー(B)の量は、(メタ)アクリル樹脂組成物(A)100質量部に対して、50質量部以上1000質量部以下であり、100質量部以上900質量部以下であることが好ましく、150質量部以上800質量部以下であることがより好ましく、150質量部以上300質量部以下であることが更に好ましい。熱伝導性フィラー(B)の量を上記上限以下とすることによって、第2の混合組成物の粘度が過度に高くなることを抑制しやすくなる。そのため、熱伝導性感圧接着剤組成物(F)を成形し難くなったり、成形できたとしても熱伝導性感圧接着剤組成物(F)の硬度が増大して形状追随性(被着体への密着性)が低下したりする事態を防ぐことができる。一方、熱伝導性フィラー(B)の含有量を上記下限以上とすることによって、熱伝導性感圧接着剤組成物(F)の熱伝導性を向上させる効果を発揮しやすくなる。 The amount of the thermally conductive filler (B) used in the second mixing step is 50 parts by mass or more and 1000 parts by mass or less, and 100 parts by mass or more with respect to 100 parts by mass of the (meth) acrylic resin composition (A). It is preferably 900 parts by mass or less, more preferably 150 parts by mass or more and 800 parts by mass or less, and further preferably 150 parts by mass or more and 300 parts by mass or less. By making the quantity of a heat conductive filler (B) below the said upper limit, it becomes easy to suppress that the viscosity of a 2nd mixture composition becomes high too much. Therefore, it becomes difficult to mold the heat conductive pressure-sensitive adhesive composition (F), or even if it can be molded, the hardness of the heat conductive pressure-sensitive adhesive composition (F) increases and the shape followability (to the adherend) ) Can be prevented. On the other hand, the effect of improving the thermal conductivity of the heat conductive pressure-sensitive adhesive composition (F) is easily exhibited by setting the content of the heat conductive filler (B) to the above lower limit or more.
 また、熱伝導性フィラー(B)として、金属水酸化物及び炭素含有導電性フィラーを併用する場合は、熱伝導性感圧接着剤組成物(F)及び熱伝導性感圧接着性シート状成形体(G)に、絶縁性(非導電性)を有させる観点から、第2の混合工程において用いる炭素含有導電性フィラーの量は、(メタ)アクリル樹脂組成物(A)100質量部に対して、50質量部以下であり、1質量部以上30質量部以下であることが好ましく、2質量部以上15質量部以下であることがより好ましく、3質量部以上10質量部以下であることが更に好ましい。 Moreover, when using a metal hydroxide and a carbon containing conductive filler together as a heat conductive filler (B), a heat conductive pressure sensitive adhesive composition (F) and a heat conductive pressure sensitive adhesive sheet-like molded object ( From the viewpoint of having G) an insulating property (non-conductive property), the amount of the carbon-containing conductive filler used in the second mixing step is based on 100 parts by mass of the (meth) acrylic resin composition (A). 50 parts by mass or less, preferably 1 part by mass or more and 30 parts by mass or less, more preferably 2 parts by mass or more and 15 parts by mass or less, and further preferably 3 parts by mass or more and 10 parts by mass or less. .
  熱伝導性フィラー(B)として使用するフィラー全体の平均粒径は、0.5μm以上15μm以下であることが好ましく、0.8μm以上12μm以下であることがより好ましい。また、熱伝導性フィラー(B)として使用するフィラー全体のBET比表面積は、0.3m/g以上10m/g以下であることが好ましく、0.5m/g以上5m/g以下であることがより好ましい。熱伝導性フィラー(B)として使用するフィラー全体の平均粒径及びBET比表面積を上記範囲内とすることによって、熱伝導性フィラー(B)の含有量を増やしても混合組成物の粘度を適正な範囲内とすることができ、かつ、熱伝導性感圧接着剤組成物(F)及び熱伝導性感圧接着性シート状成形体(G)が脆くなりにくく、強度が低下することをより抑制できる。 The average particle diameter of the whole filler used as the thermally conductive filler (B) is preferably 0.5 μm or more and 15 μm or less, and more preferably 0.8 μm or more and 12 μm or less. Further, BET specific surface area of the entire filler used as the thermally conductive filler (B) is preferably from 0.3 m 2 / g or more 10m 2 / g, 0.5m 2 / g or more 5 m 2 / g or less It is more preferable that Even if the content of the heat conductive filler (B) is increased by adjusting the average particle diameter and BET specific surface area of the whole filler used as the heat conductive filler (B) within the above range, the viscosity of the mixed composition is appropriate. The heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) are less likely to become brittle, and the strength can be further suppressed from decreasing. .
 なお、本発明において「平均粒径」とは、以下に説明する方法で測定したものを意味する。すなわち、レーザー式粒度測定機(株式会社セイシン企業製)を用い、マイクロソーティング制御方式(測定領域内にのみ測定対象粒子を通過させ、測定の信頼性を向上させる方式)により測定する。この測定方法によれば、セル中に測定対象粒子0.01g~0.02gが流されることで、測定領域内に流れてくる測定対象粒子に波長670nmの半導体レーザー光が照射され、その際のレーザー光の散乱と回折が測定機にて測定されることにより、フランホーファの回折原理から、平均粒径及び粒径分布が算出される。 In the present invention, the “average particle diameter” means that measured by the method described below. That is, a laser type particle size measuring machine (manufactured by Seishin Enterprise Co., Ltd.) is used, and measurement is performed by a microsorting control method (a method in which the measurement target particles are allowed to pass only in the measurement region and the measurement reliability is improved). According to this measurement method, when the measurement target particles 0.01 g to 0.02 g are flowed into the cell, the measurement target particles flowing in the measurement region are irradiated with the semiconductor laser light having a wavelength of 670 nm. By measuring the scattering and diffraction of laser light with a measuring instrument, the average particle size and particle size distribution are calculated from the diffraction principle of Franhofer.
 また、本発明において「BET比表面積」とは、以下の方法で計測したものを意味する。まず、窒素及びヘリウムの混合ガスをBET比表面積測定装置内に導入し、試料(BET比表面積の測定対象物)を入れた試料セルを液体窒素に浸して、窒素ガスを試料表面に吸着させる。吸着平衡に達した後、試料セルを水浴に入れ常温まで温め、試料に付着していた窒素を脱着させる。窒素ガスの吸着、脱着時に試料セルを通過する前後のガスの混合比は変化するので、この変化を窒素及びヘリウムの混合比が一定のガスを対照として熱伝導度検出器(TCD)で検知し、窒素ガスの吸着量及び脱着量を求める。測定前に単位量の窒素ガスを装置内に導入してキャリブレーションを行い、TCDで検出した値に対応する表面績の値を求めておくことにより、その試料の表面積を求める。そして、求めた表面積をその試料の質量で除すことにより、BET比表面積を求めることができる。 In the present invention, the “BET specific surface area” means that measured by the following method. First, a mixed gas of nitrogen and helium is introduced into a BET specific surface area measuring apparatus, and a sample cell containing a sample (an object to be measured for BET specific surface area) is immersed in liquid nitrogen to adsorb nitrogen gas to the sample surface. After reaching adsorption equilibrium, the sample cell is placed in a water bath and warmed to room temperature, and nitrogen adhering to the sample is desorbed. Since the mixing ratio of the gas before and after passing through the sample cell changes during the adsorption and desorption of nitrogen gas, this change is detected by a thermal conductivity detector (TCD) using a gas with a constant mixing ratio of nitrogen and helium as a control. Then, the adsorption amount and desorption amount of nitrogen gas are obtained. Before the measurement, a unit amount of nitrogen gas is introduced into the apparatus for calibration, and the surface area value corresponding to the value detected by TCD is obtained to obtain the surface area of the sample. Then, the BET specific surface area can be determined by dividing the determined surface area by the mass of the sample.
 1.3.重合工程
  次に、重合工程について説明する。重合工程は、第2の混合組成物中において、少なくとも(メタ)アクリル酸エステル単量体(α1)の重合反応を行う工程である。当該重合反応を行う際には、加熱することが好ましい。当該加熱には、例えば、熱風、電気ヒーター、赤外線などを用いることができる。このときの加熱温度は、重合開始剤が効率良く分解し、(メタ)アクリル酸エステル単量体(α1)の重合が進行する温度が好ましい。具体的な好ましい温度範囲は、用いる重合開始剤の種類等により異なるが、100℃以上200℃以下が好ましく、120℃以上180℃以下がより好ましい。
1.3. Polymerization step Next, the polymerization step will be described. The polymerization step is a step of performing a polymerization reaction of at least the (meth) acrylic acid ester monomer (α1) in the second mixed composition. When performing the said polymerization reaction, it is preferable to heat. For the heating, for example, hot air, an electric heater, infrared rays, or the like can be used. The heating temperature at this time is preferably a temperature at which the polymerization initiator is efficiently decomposed and the polymerization of the (meth) acrylate monomer (α1) proceeds. The specific preferable temperature range varies depending on the type of polymerization initiator used, but is preferably 100 ° C. or higher and 200 ° C. or lower, and more preferably 120 ° C. or higher and 180 ° C. or lower.
 1.4.効果
  本発明の熱伝導性感圧接着剤組成物(F)の製造方法によれば、第1の混合工程と第2の混合工程とを分けて行うことによって、極性基変性ハロゲン化炭化水素繊維(C)の添加量を従来の量より多少増やしたとしても、第2の混合組成物の粘度が過度に上昇することを抑制できるので、熱伝導性感圧接着剤組成物(F)の生産性が低下することを抑制できる。従って、難燃性が高い熱伝導性感圧接着剤組成物(F)の生産性を向上させることができる。
1.4. Effect According to the method for producing the heat conductive pressure-sensitive adhesive composition (F) of the present invention, the first mixing step and the second mixing step are performed separately, whereby the polar group-modified halogenated hydrocarbon fiber ( Even if the addition amount of C) is slightly increased from the conventional amount, the viscosity of the second mixed composition can be suppressed from excessively increasing, and therefore the productivity of the heat conductive pressure-sensitive adhesive composition (F) is improved. It can suppress that it falls. Therefore, the productivity of the heat conductive pressure-sensitive adhesive composition (F) having high flame retardancy can be improved.
 1.5.その他の添加剤
  本発明の熱伝導性感圧接着剤組成物(F)には、これまでに説明した物質以外にも、上述した本発明の熱伝導性感圧接着剤組成物(F)の製造方法による効果をより向上させる、または妨げない範囲で、公知の各種添加剤を添加することができる。
  公知の添加剤としては、例えば、リン酸エステル等の難燃剤;発泡剤(発泡助剤を含む。);ガラス繊維;外部架橋剤;顔料;熱伝導性フィラー以外のその他の充填材;ポリフェノール系、ハイドロキノン系、ヒンダードアミン系などの酸化防止剤;アクリル系ポリマー粒子などの増粘剤;などを挙げることができる。
1.5. Other Additives The thermally conductive pressure-sensitive adhesive composition (F) of the present invention includes the above-described method for producing the thermally conductive pressure-sensitive adhesive composition (F) of the present invention in addition to the substances described above. Various known additives can be added as long as the effect of is improved or not hindered.
Known additives include, for example, flame retardants such as phosphate esters; foaming agents (including foaming aids); glass fibers; external crosslinking agents; pigments; other fillers other than thermally conductive fillers; , Hydroquinone-based and hindered amine-based antioxidants; acrylic polymer particle-based thickeners; and the like.
 2.熱伝導性感圧接着性シート状成形体(G)の製造方法
  次に、本発明の熱伝導性感圧接着性シート状成形体(G)の製造方法について説明する。本発明の熱伝導性感圧接着性シート状成形体(G)の製造方法は、多価アルコール重合体の脂肪酸エステル(C)と、極性基変性ハロゲン化炭化水素繊維(D)と、を含む第1の混合組成物を作製する第1の混合工程、(メタ)アクリル酸エステル重合体(A1)および(メタ)アクリル酸エステル単量体(α1)を含む(メタ)アクリル樹脂組成物(A)と、熱伝導性フィラー(B)と、第1の混合組成物と、を含む第2の混合組成物を作製する第2の混合工程、並びに、第2の混合組成物をシート状に成形した後、又は第2の混合組成物をシート状に成形しながら、少なくとも(メタ)アクリル酸エステル単量体(α1)の重合反応を行う、成形工程及び重合工程、を含んでいる。
  第1の混合工程、第2の混合工程、およびその他の添加剤については熱伝導性感圧接着剤組成物(F)の製造方法と同様なので、説明を省略する。
2. Manufacturing method of heat conductive pressure-sensitive-adhesive sheet-like molded object (G) Next, the manufacturing method of the heat conductive pressure-sensitive-adhesive sheet-like molded object (G) of this invention is demonstrated. The manufacturing method of the heat conductive pressure-sensitive-adhesive sheet-like molded object (G) of this invention contains the fatty acid ester (C) of a polyhydric alcohol polymer, and a polar group modified | denatured halogenated hydrocarbon fiber (D). (Meth) acrylic resin composition (A) containing the (meth) acrylic acid ester polymer (A1) and the (meth) acrylic acid ester monomer (α1) And a second mixing step for producing a second mixed composition containing the thermally conductive filler (B) and the first mixed composition, and the second mixed composition was formed into a sheet shape. It includes a molding step and a polymerization step in which at least a polymerization reaction of the (meth) acrylate monomer (α1) is performed while molding the second mixed composition into a sheet.
Since it is the same as that of the manufacturing method of a heat conductive pressure sensitive adhesive composition (F) about a 1st mixing process, a 2nd mixing process, and another additive, description is abbreviate | omitted.
 2.1.成形工程及び重合工程
  本発明の熱伝導性感圧接着性シート状成形体(G)の製造方法における成形工程及び重合工程について説明する。成形工程及び重合工程は、第2の混合組成物をシート状に成形した後、又は第2の混合組成物をシート状に成形しながら、少なくとも(メタ)アクリル酸エステル単量体(α1)の重合反応を行う工程である。重合工程において、当該重合反応を行う際には、加熱することが好ましい。当該加熱には、例えば、熱風、電気ヒーター、赤外線などを用いることができる。このときの加熱温度は、重合開始剤が効率良く分解し、(メタ)アクリル酸エステル単量体(α1)の重合が進行する温度が好ましい。具体的な好ましい温度範囲は、用いる重合開始剤の種類等により異なるが、100℃以上200℃以下が好ましく、120℃以上180℃以下がより好ましい。
2.1. Molding Step and Polymerization Step The molding step and the polymerization step in the method for producing the heat conductive pressure-sensitive adhesive sheet-shaped body (G) of the present invention will be described. In the molding step and the polymerization step, at least the (meth) acrylic acid ester monomer (α1) is formed after the second mixed composition is molded into a sheet shape or while the second mixed composition is molded into a sheet shape. This is a step of performing a polymerization reaction. In the polymerization step, heating is preferably performed when the polymerization reaction is performed. For the heating, for example, hot air, an electric heater, infrared rays, or the like can be used. The heating temperature at this time is preferably a temperature at which the polymerization initiator is efficiently decomposed and the polymerization of the (meth) acrylate monomer (α1) proceeds. The specific preferable temperature range varies depending on the type of polymerization initiator used, but is preferably 100 ° C. or higher and 200 ° C. or lower, and more preferably 120 ° C. or higher and 180 ° C. or lower.
 また、成形工程において、第2の混合組成物をシート状に成形する方法は特に限定されない。好適な方法としては、例えば、離型処理されたポリエステルフィルムなどの工程紙の上に第2の混合組成物を塗布してシート状に成形する方法、二枚の離型処理された工程紙間に第2の混合組成物を挟んでロールの間を通して押圧することでシート状に成形する方法、及び、押出機を用いて第2の混合組成物を押出し、その際にダイスを通して厚さを制御することでシート状に成形する方法などが挙げられる。上記工程紙は特に限定されないが、例えば、離型処理されたポリエチレンテレフタレートフィルムや離型処理されたポリエチレンナフタレートフィルムなどを用いることができる。中でも、離型処理されたポリエチレンテレフタレートフィルムが好ましい。 In the molding step, the method for molding the second mixed composition into a sheet is not particularly limited. As a suitable method, for example, a method in which the second mixed composition is applied on a process paper such as a release-treated polyester film and formed into a sheet shape, or between two process papers subjected to a release process A method of forming a sheet by pressing between the rolls with the second mixed composition in between, and extruding the second mixed composition using an extruder, and controlling the thickness through a die at that time The method etc. which shape | mold into a sheet form by doing are mentioned. Although the process paper is not particularly limited, for example, a release-treated polyethylene terephthalate film or a release-treated polyethylene naphthalate film can be used. Among these, a polyethylene terephthalate film subjected to a release treatment is preferable.
 熱伝導性感圧接着性シート状成形体(G)は、厚みを薄くすることによって厚さ方向の熱抵抗を低くすることができる。かかる観点から、熱伝導性感圧接着性シート状成形体(G)の厚さの上限は、好ましくは2mm程度である。一方、熱伝導性感圧接着性シート状成形体(G)の厚さの下限は、好ましくは0.1mmである。熱伝導性感圧接着性シート状成形体(G)にある程度の厚さをもたせることによって、当該熱伝導性感圧接着性シート状成形体(G)を発熱体及び放熱体に貼付する際に空気を巻き込むことを防止し易くなり、結果として熱抵抗の増加を防止し、且つ、被着体への貼り付け工程における作業性を良好にし易くなる。 The heat conductive pressure-sensitive adhesive sheet-like molded body (G) can reduce the thermal resistance in the thickness direction by reducing the thickness. From such a viewpoint, the upper limit of the thickness of the heat conductive pressure-sensitive adhesive sheet-like molded body (G) is preferably about 2 mm. On the other hand, the lower limit of the thickness of the heat conductive pressure-sensitive adhesive sheet-like molded product (G) is preferably 0.1 mm. By applying a certain thickness to the heat conductive pressure-sensitive adhesive sheet-like molded body (G), air is applied when the heat-conductive pressure-sensitive adhesive sheet-like molded body (G) is applied to the heating element and the heat radiating body. It becomes easy to prevent entrainment, and as a result, increase in thermal resistance is prevented, and workability in the step of attaching to the adherend is easily improved.
 また、熱伝導性感圧接着性シート状成形体(G)は、基材の片面又は両面に成形することもできる。当該基材を構成する材料は特に限定されない。当該基材の具体例としては、アルミニウム、銅、ステンレス鋼、ベリリウム銅などの熱伝導性に優れる金属、及び、合金の箔状物や、熱伝導性シリコーンなどのそれ自体熱伝導性に優れるポリマーからなるシート状物や、熱伝導性添加物を含有させた熱伝導性プラスチックフィルムや、各種不織布や、ガラスクロスや、ハニカム構造体などを挙げることができる。プラスチックフィルムとしては、ポリイミド;ポリエチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル;ポリテトラフルオロエチレンなどのフッ素樹脂;ポリエーテルケトン;ポリエーテルスルホン;ポリメチルペンテン;ポリエーテルイミド;ポリスルホン;ポリフェニレンスルフィド;ポリアミドイミド;ポリエステルイミド;ポリアミド;などを挙げることができる。 Also, the heat conductive pressure-sensitive adhesive sheet-like molded body (G) can be molded on one side or both sides of the substrate. The material which comprises the said base material is not specifically limited. Specific examples of the substrate include metals having excellent thermal conductivity such as aluminum, copper, stainless steel, and beryllium copper, and polymers having excellent thermal conductivity such as foils of alloys and thermally conductive silicone. And a sheet-like material made of the above, a heat-conductive plastic film containing a heat-conductive additive, various non-woven fabrics, a glass cloth, and a honeycomb structure. As a plastic film, polyimide; polyester such as polyethylene terephthalate and polyethylene naphthalate; fluorine resin such as polytetrafluoroethylene; polyetherketone; polyethersulfone; polymethylpentene; polyetherimide; polysulfone; polyphenylene sulfide; Polyesterimide; polyamide; and the like.
 2.2.効果
  本発明の熱伝導性感圧接着性シート状成形体(G)の製造方法によれば、第1の混合工程と第2の混合工程とを分けて行うことによって、極性基変性ハロゲン化炭化水素繊維(C)の添加量を従来の量より多少増やしたとしても、第2の混合組成物の粘度が過度に上昇することを抑制できるので、熱伝導性感圧接着性シート状成形体(G)の生産性が低下することを抑制できる。従って、難燃性が高い熱伝導性感圧接着性シート状成形体(G)の生産性を向上させることができる。
2.2. Effect According to the manufacturing method of the heat conductive pressure-sensitive-adhesive sheet-like molded body (G) of the present invention, the first mixing step and the second mixing step are performed separately, whereby the polar group-modified halogenated hydrocarbon is obtained. Even if the addition amount of the fiber (C) is slightly increased from the conventional amount, the viscosity of the second mixed composition can be suppressed from being excessively increased, so that the thermally conductive pressure-sensitive adhesive sheet-like molded product (G) It can suppress that productivity of this falls. Therefore, the productivity of the heat conductive pressure-sensitive adhesive sheet-like molded body (G) having high flame retardancy can be improved.
 3.使用例
  本発明の熱伝導性感圧接着剤組成物(F)の製造方法によって得られる熱伝導性感圧接着剤組成物(F)、及び本発明の熱伝導性感圧接着性シート状成形体(G)の製造方法によって得られる熱伝導性感圧接着性シート状成形体(G)は、熱伝導性が高く、且つ感圧接着性を有しているため、発熱体と放熱体との間に介在させて、発熱体から放熱体への熱伝導を効率よく行うなどの用途に使用できる。また、熱伝導性感圧接着剤組成物(F)及び熱伝導性感圧接着性シート状成形体(G)は、電子機器に備えられる発熱体である電子部品に取り付け、該電子部品の一部として用いることができる。熱伝導性感圧接着剤組成物(F)及び熱伝導性感圧接着性シート状成形体(G)の使用例について、図1を参照しつつ説明する。図1は、熱伝導性感圧接着性シート状成形体(G)の使用例を説明する図である。
3. Use example Thermally conductive pressure-sensitive adhesive composition (F) obtained by the production method of thermally conductive pressure-sensitive adhesive composition (F) of the present invention, and thermally conductive pressure-sensitive adhesive sheet-like molded product (G) of the present invention (G) The heat-conductive pressure-sensitive adhesive sheet-like molded product (G) obtained by the production method (2) has high heat conductivity and pressure-sensitive adhesive properties, and therefore is interposed between the heating element and the heat radiating body. Therefore, it can be used for applications such as efficiently conducting heat conduction from the heat generating element to the heat radiating element. Further, the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) are attached to an electronic component that is a heating element provided in an electronic device, and are part of the electronic component. Can be used. The usage example of a heat conductive pressure-sensitive-adhesive composition (F) and a heat conductive pressure-sensitive-adhesive sheet-like molded object (G) is demonstrated, referring FIG. FIG. 1 is a diagram for explaining an example of use of a heat conductive pressure-sensitive adhesive sheet-like molded body (G).
 図1(A)は、パーソナルコンピュータ等の電子機器の一部を概略的に示す斜視図である。図1(A)には、基板1、基板1上に設置した発熱体である電子部品2、放熱体であるヒートシンク3、および電子部品2とヒートシンク3との間に配置した熱伝導性感圧接着性シート状成形体(G)4と、を示している。
  図1(A)に示したように、電子部品2とヒートシンク3とで熱伝導性感圧接着性シート状成形体(G)4を挟んで固定することによって、熱伝導性感圧接着性シート状成形体(G)4が有する感圧接着性により、熱伝導性感圧接着性シート状成形体(G)4は電子部品2とヒートシンク3とに接着する。そして、熱伝導性感圧接着性シート状成形体(G)4は高い熱伝導性を有しているので、電子部品2で発した熱は熱伝導性感圧接着性シート状成形体(G)4を介してヒートシンク3へと効率よく伝えられ、ヒートシンク3から放熱される。
FIG. 1A is a perspective view schematically showing a part of an electronic device such as a personal computer. FIG. 1A shows a substrate 1, an electronic component 2 that is a heating element installed on the substrate 1, a heat sink 3 that is a radiator, and a thermally conductive pressure-sensitive adhesive disposed between the electronic component 2 and the heat sink 3. The sheet-like molded article (G) 4 is shown.
As shown in FIG. 1 (A), a heat conductive pressure-sensitive adhesive sheet-like molded body (G) 4 is sandwiched and fixed between the electronic component 2 and the heat sink 3, thereby forming a heat conductive pressure-sensitive adhesive sheet-like mold. Due to the pressure-sensitive adhesiveness of the body (G) 4, the heat conductive pressure-sensitive adhesive sheet-like molded body (G) 4 is bonded to the electronic component 2 and the heat sink 3. And since the heat conductive pressure-sensitive-adhesive sheet-like molded object (G) 4 has high heat conductivity, the heat | fever emitted by the electronic component 2 is a heat conductive pressure-sensitive-adhesive sheet-like molded object (G) 4 Is efficiently transmitted to the heat sink 3 through the heat sink 3 and radiated from the heat sink 3.
 図1(B)は、放熱体であるヒートシンク13に熱伝導性感圧接着性シート状成形体(G)14、14を介して発熱体であるNPNトランジスタ12a及びPNPトランジスタ12bを取り付けた様子を概略的に示す斜視図である。
  図1(B)に示したように、1つのヒートシンク13に熱伝導性感圧接着性シート状成形体(G)14、14を介してNPNトランジスタ12a及びPNPトランジスタ12bを取り付けることによって、熱伝導性感圧接着性シート状成形体(G)14が有する感圧接着性により、一方の熱伝導性感圧接着性シート状成形体(G)14はNPNトランジスタ12aとヒートシンク13とに接着し、他方の熱伝導性感圧接着性シート状成形体(G)14はPNPトランジスタ12bとヒートシンク13とに接着する。そして、熱伝導性感圧接着性シート状成形体(G)14は高い熱伝導性を有しているので、NPNトランジスタ12a及びPNPトランジスタ12bで発した熱は熱伝導性感圧接着性シート状成形体(G)14、14を介してヒートシンク13へと効率よく伝えられ、ヒートシンク13から放熱される。このとき、NPNトランジスタ12a及びPNPトランジスタ12bが、共に、高い熱伝導性を有する熱伝導性感圧接着性シート状成形体(G)14、14を介して一つのヒートシンク13に取り付けられていることによって、NPNトランジスタ12aとPNPトランジスタ12bとで温度差が生じることを抑制できる。
FIG. 1B schematically shows a state in which the NPN transistor 12a and the PNP transistor 12b, which are heating elements, are attached to the heat sink 13, which is a radiator, through the heat conductive pressure-sensitive adhesive sheet-like molded bodies (G) 14, 14. FIG.
As shown in FIG. 1B, by attaching the NPN transistor 12a and the PNP transistor 12b to the heat sink 13 via the heat conductive pressure-sensitive adhesive sheet-like molded bodies (G) 14 and 14, the heat conductive feeling is obtained. Due to the pressure-sensitive adhesive property of the pressure-adhesive sheet-like molded body (G) 14, one heat conductive pressure-sensitive adhesive sheet-like molded body (G) 14 is bonded to the NPN transistor 12a and the heat sink 13, and the other heat The conductive pressure-sensitive adhesive sheet-like molded body (G) 14 is bonded to the PNP transistor 12 b and the heat sink 13. And since the heat conductive pressure-sensitive-adhesive sheet-like molded object (G) 14 has high heat conductivity, the heat | fever emitted by the NPN transistor 12a and the PNP transistor 12b is a heat conductive pressure-sensitive-adhesive sheet-like molded object. (G) It is efficiently transmitted to the heat sink 13 via 14, 14 and is radiated from the heat sink 13. At this time, both the NPN transistor 12a and the PNP transistor 12b are attached to one heat sink 13 via the heat conductive pressure-sensitive adhesive sheet-like molded bodies (G) 14 and 14 having high heat conductivity. The temperature difference between the NPN transistor 12a and the PNP transistor 12b can be suppressed.
 図1(C)は、発熱体である2つのトランジスタ22、22が熱伝導性感圧接着性シート状成形体(G)24を介して固定された様子を概略的に示す断面図である。
  図1(C)に示したように、2つの発熱体22、22が熱伝導性感圧接着性シート状成形体(G)24を介して固定されることによって、熱伝導性感圧接着性シート状成形体(G)24が有する感圧接着性により、熱伝導性感圧接着性シート状成形体(G)24は2つの発熱体22、22に接着する。そして、熱伝導性感圧接着性シート状成形体(G)24は高い熱伝導性を有しているので、2つの発熱体22、22の一方の温度が他方に比べて高くなれば、一方から他方へと速やかに熱を伝えられるので、2つの発熱体22、22の間で温度差が生じることを抑制できる。
FIG. 1C is a cross-sectional view schematically showing a state in which two transistors 22 and 22 that are heating elements are fixed via a heat conductive pressure-sensitive adhesive sheet-like molded body (G) 24.
As shown in FIG. 1 (C), two heat generating elements 22 and 22 are fixed via a heat conductive pressure-sensitive adhesive sheet-like molded body (G) 24, thereby forming a heat conductive pressure-sensitive adhesive sheet. Due to the pressure-sensitive adhesive property of the molded body (G) 24, the thermally conductive pressure-sensitive adhesive sheet-shaped molded body (G) 24 is bonded to the two heating elements 22 and 22. And since the heat conductive pressure-sensitive-adhesive sheet-like molded object (G) 24 has high heat conductivity, if one temperature of two heat generating bodies 22 and 22 becomes high compared with the other, from one side. Since heat can be quickly transmitted to the other side, it is possible to suppress the occurrence of a temperature difference between the two heating elements 22 and 22.
 なお、図1に示した例では熱伝導性感圧接着性シート状成形体(G)を用いたが、熱伝導性感圧接着性シート状成形体(G)に代えて熱伝導性感圧接着剤組成物(F)を同様に用いることもできる。また、上記例では放熱体としてヒートシンクを用いたが、電子部品の筐体などを放熱体とすることもできる。以下、本発明の熱伝導性感圧接着剤組成物(F)及び熱伝導性感圧接着性シート状成形体(G)の他の使用例について説明する。 In addition, although the heat conductive pressure-sensitive-adhesive sheet-like molded object (G) was used in the example shown in FIG. 1, it replaces with a heat conductive pressure-sensitive-adhesive sheet-like molded object (G), and a heat conductive pressure-sensitive-adhesive composition. A thing (F) can also be used similarly. In the above example, the heat sink is used as the heat radiating body. However, a housing of an electronic component or the like can be used as the heat radiating body. Hereinafter, other usage examples of the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) of the present invention will be described.
 上述したように、本発明の熱伝導性感圧接着剤組成物(F)及び熱伝導性感圧接着性シート状成形体(G)は、電子機器に備えられる電子部品の一部として用いることができる。当該電子機器及び電子部品の具体例としては、エレクトロルミネッセンス(EL)、発光ダイオード(LED)光源を有する機器における発熱部周囲の部品、自動車等のパワーデバイス周囲の部品、燃料電池、太陽電池、バッテリー、携帯電話、携帯情報端末(PDA)、ノートパソコン、液晶パネル、表面伝導型電子放出素子ディスプレイ(SED)、プラズマディスプレイパネル(PDP)、又は集積回路(IC)などの発熱部を有する機器や部品を挙げることができる。 As described above, the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) of the present invention can be used as a part of an electronic component provided in an electronic device. . Specific examples of the electronic device and electronic component include electroluminescence (EL), a component around a heat generating part in a device having a light emitting diode (LED) light source, a component around a power device such as an automobile, a fuel cell, a solar cell, and a battery. , Devices and parts having heat generating parts such as mobile phones, personal digital assistants (PDAs), notebook computers, liquid crystal panels, surface conduction electron-emitting device displays (SED), plasma display panels (PDP), or integrated circuits (ICs) Can be mentioned.
 なお、本発明の熱伝導性感圧接着剤組成物(F)及び熱伝導性感圧接着性シート状成形体(G)の電子機器への使用方法の一例としては、LED光源を例にすると下記に記述するような使用方法を挙げることができる。すなわちLED光源に直接貼り付ける;LED光源と放熱材料(ヒートシンク、ファン、ペルチェ素子、ヒートパイプ、グラファイトシート等)との間に挟みこむ;LED光源に接続された放熱材料(ヒートシンク、ファン、ペルチェ素子、ヒートパイプ、グラファイトシート等)に貼り付ける;LED光源を取り囲む筐体として使用する;LED光源を取り囲む筐体に貼り付ける;LED光源と筐体との隙間を埋める;等の方法である。LED光源の用途例としては、透過型の液晶パネルを有する表示装置のバックライト装置(テレビ、携帯、PC、ノートPC、PDA等);車両用灯具;工業用照明;商業用照明;一般住宅用照明;等が挙げられる。 In addition, as an example of the usage method for the electronic device of the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) of the present invention, an LED light source is exemplified below. Examples of usage can be mentioned. That is, it is directly attached to the LED light source; sandwiched between the LED light source and a heat dissipation material (heat sink, fan, Peltier element, heat pipe, graphite sheet, etc.); , Heat pipe, graphite sheet, etc.); used as a housing surrounding the LED light source; pasted on a housing surrounding the LED light source; filling a gap between the LED light source and the housing; Examples of LED light source applications include backlight devices for display devices having transmissive liquid crystal panels (TVs, mobile phones, PCs, notebook PCs, PDAs, etc.); vehicle lamps; industrial lighting; commercial lighting; Lighting; and the like.
 また、LED光源以外の具体例としては、以下のものが挙げられる。すなわち、PDPパネル;IC発熱部;冷陰極管(CCFL);有機EL光源;無機EL光源;高輝度発光LED光源;高輝度発光有機EL光源;高輝度発光無機EL光源;CPU;MPU;半導体素子;等である。 Further, specific examples other than the LED light source include the following. That is, PDP panel; IC heating part; Cold cathode tube (CCFL); Organic EL light source; Inorganic EL light source; High luminance light emitting LED light source; High luminance light emitting organic EL light source; And so on.
 更に本発明の熱伝導性感圧接着剤組成物(F)及び熱伝導性感圧接着性シート状成形体(G)の使用方法としては、装置の筐体に貼り付けること等を挙げることができる。例えば、自動車等に備えられる装置に使用する場合、自動車に備えられる筐体の内部に貼り付ける;自動車に備えられる筐体の外側に貼り付ける;自動車に備えられる筐体の内部にある発熱部(カーナビ/燃料電池/熱交換器)と該筐体とを接続する;自動車に備えられる筐体の内部にある発熱部(カーナビ/燃料電池/熱交換器)に接続した放熱板に貼り付ける;こと等が挙げられる。 Furthermore, examples of the method of using the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded product (G) of the present invention include affixing to the housing of the apparatus. For example, when used in a device provided in an automobile or the like, it is affixed inside a casing provided in the automobile; affixed outside the casing provided in the automobile; a heat generating part (inside the casing provided in the automobile) Connecting the car navigation / fuel cell / heat exchanger) and the housing; affixing to a heat sink connected to the heat generating part (car navigation / fuel cell / heat exchanger) in the housing of the automobile; Etc.
 なお、自動車以外にも、同様の方法で本発明の熱伝導性感圧接着剤組成物(F)及び熱伝導性感圧接着性シート状成形体(G)を使用することができる。その対象としては、例えばパソコン;住宅;テレビ;携帯電話機;自動販売機;冷蔵庫;太陽電池;表面伝導型電子放出素子ディスプレイ(SED);有機ELディスプレイ;無機ELディスプレイ;有機EL照明;無機EL照明;有機ELディスプレイ;ノートパソコン;PDA;燃料電池;半導体装置;炊飯器;洗濯機;洗濯乾燥機;光半導体素子と蛍光体とを組み合わせた光半導体装置;各種パワーデバイス;ゲーム機;キャパシタ;等が挙げられる。 In addition to the automobile, the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded body (G) of the present invention can be used in the same manner. For example, personal computers; homes; TVs; mobile phones; vending machines; refrigerators; solar cells; surface-conduction electron-emitting device displays (SEDs); organic EL displays; inorganic EL displays; Organic EL display; laptop computer; PDA; fuel cell; semiconductor device; rice cooker; washing machine; laundry dryer; optical semiconductor device combining optical semiconductor elements and phosphors; Is mentioned.
 更に、本発明の熱伝導性感圧接着剤組成物(F)及び熱伝導性感圧接着性シート状成形体(G)は上記の使用方法に留まらず、用途に応じて他の方法で使用することも可能である。例えば、カーペットや温暖マット等の熱の均一化のために使用する;LED光源/熱源の封止剤として使用する;太陽電池セルの封止剤として使用する;太陽電池のバックシ-トとして使用する;太陽電池のバックシ-トと屋根との間に使用する;自動販売機内部の断熱層の内側に使用する;有機EL照明の筐体内部に、乾燥剤や吸湿剤と共に使用する;有機EL照明の筐体内部の熱伝導層及びその上に、乾燥剤や吸湿剤と共に使用する;有機EL照明の筐体内部の熱伝導層、放熱層、及びその上に、乾燥剤や吸湿剤と共に使用する;有機EL照明の筐体内部の熱伝導層、エポキシ系の放熱層、及びその上に、乾燥剤や吸湿剤と共に使用する;人や動物を冷やすための装置、衣類、タオル、シート等の冷却部材に対し、身体と反対の面に使用する;電子写真複写機、電子写真プリンタ等の画像成形装置に搭載する定着装置の加圧部材に使用する;電子写真複写機、電子写真プリンタ等の画像成形装置に搭載する定着装置の加圧部材そのものとして使用する;制膜装置の処理対象体を載せる熱流制御用伝熱部として使用する;制膜装置の処理対象体を載せる熱流制御用伝熱部に使用する;放射性物質格納容器の外層と内装の間に使用する;太陽光線を吸収するソーラパネルを設置したボックス体の中に使用する;CCFLバックライトの反射シートとアルミシャーシの間に使用する;こと等を挙げることができる。 Furthermore, the heat conductive pressure-sensitive adhesive composition (F) and the heat conductive pressure-sensitive adhesive sheet-like molded product (G) of the present invention are not limited to the above-described usage methods, and may be used in other methods depending on the application. Is also possible. For example, used for heat uniformity of carpets and warm mats, etc .; used as LED light source / heat source sealant; used as solar cell sealant; used as solar cell backsheet Used between the backsheet of the solar cell and the roof; used inside the heat insulating layer inside the vending machine; used inside the housing of the organic EL lighting with a desiccant or a hygroscopic agent; organic EL lighting Use with desiccant and hygroscopic agent on the heat conductive layer inside the housing of the LED; Use with desiccant and hygroscopic agent on the heat conductive layer and heat dissipation layer inside the housing of the organic EL lighting Used for heat conduction layer inside the housing of organic EL lighting, epoxy heat dissipation layer, and on top of it with desiccant and moisture absorbent; cooling equipment, clothing, towels, sheets, etc. for cooling humans and animals Used on the opposite side of the body to the member Used as a pressure member of a fixing device mounted on an image forming apparatus such as an electrophotographic copying machine or an electrophotographic printer; Pressing member of a fixing device mounted on an image forming apparatus such as an electrophotographic copying machine or an electrophotographic printer Used as a heat transfer part for heat flow control on which the treatment object of the membrane control device is placed; Used for a heat transfer part for heat flow control on which the treatment object of the film control device is placed; and the outer layer of the radioactive substance storage container It is used between interiors; it is used in a box body provided with a solar panel that absorbs sunlight; it is used between a reflective sheet of a CCFL backlight and an aluminum chassis.
 以下に、実施例にて本発明をさらに詳しく説明するが、本発明は実施例に限定されるものではない。なお、ここで用いる「部」や「%」は、特に断らない限り、質量基準である。 Hereinafter, the present invention will be described in more detail with reference to examples, but the present invention is not limited to the examples. The “parts” and “%” used here are based on mass unless otherwise specified.
 <粘度>
  後述する第2の混合組成物について、B型粘度計(東京計器株式会社製)を用いて粘度を測定した。その結果を表2及び表3に示した。第2の混合組成物の粘度が高すぎると、熱伝導性感圧接着性シート状成形体の生産性が悪くなる。この評価による結果が20,000mPa・s以下であれば、熱伝導性感圧接着性シート状成形体の生産性が良好であると言える。粘度の測定方法は、以下に説明する通りである。
<Viscosity>
About the 2nd mixed composition mentioned later, the viscosity was measured using the B-type viscosity meter (made by Tokyo Keiki Co., Ltd.). The results are shown in Tables 2 and 3. When the viscosity of the second mixed composition is too high, the productivity of the heat conductive pressure-sensitive adhesive sheet-like molded product is deteriorated. If the result of this evaluation is 20,000 mPa · s or less, it can be said that the productivity of the heat conductive pressure-sensitive adhesive sheet-like molded article is good. The method for measuring the viscosity is as described below.
 B型粘度計(東京計器株式会社製)を用いた粘度の測定は以下に示す手順で行う。
(1)常温の環境で測定対象を300ml計量し、500mlの容器に入れる。
(2)攪拌用ロータNo.1、2、3、4、5、6、7から、いずれかを選択し、粘度計に取り付ける。
(3)測定対象が入った容器を粘度計の上に置き、ロータを該容器内の測定対象に沈める。このとき、ロータの目印となる凹みが丁度、測定対象の液状界面にくるように沈める。
(4)回転数を20、10、4、2の中から選択する。
(5)攪拌スイッチを入れ、1分後の数値を読み取る。
(6)読み取った数値に、係数Aを掛け算した値が粘度[mPa・s]となる。
なお、係数Aは、下記表1に示すように、選択したロータNo.と回転数とから決まる。
Viscosity measurement using a B-type viscometer (manufactured by Tokyo Keiki Co., Ltd.) is performed according to the following procedure.
(1) Weigh 300 ml of the measurement object in a room temperature environment and place it in a 500 ml container.
(2) Stirring rotor No. Select one from 1, 2, 3, 4, 5, 6, and 7 and attach to the viscometer.
(3) The container containing the measurement object is placed on the viscometer, and the rotor is submerged in the measurement object in the container. At this time, the dent which becomes the mark of the rotor is submerged so as to be exactly at the liquid interface to be measured.
(4) The rotation speed is selected from 20, 10, 4, and 2.
(5) Turn on the stirring switch and read the value after 1 minute.
(6) The value obtained by multiplying the read numerical value by the coefficient A is the viscosity [mPa · s].
The coefficient A is the selected rotor No. as shown in Table 1 below. And the number of revolutions.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 <難燃性>
  後に説明するようにして熱伝導性感圧接着性シート状成形体を作製後、これを幅10mm×長さ150mmの短冊状に裁断した試験片を5本用意した。ブンゼンバーナーの空気及びガスの流量を調整して高さ20mm程度の青色炎をつくり、垂直に支持した試験片の下端にバーナーの炎をあてて(試験片とバーナーの炎と約10mm交わるように)10秒間保った後、試験片をバーナーの炎から離した。その後、試験片の炎が消えれば直ちにバーナーの炎を試験片にあて、更に10秒間保持した後、試験片をバーナーの炎から離した。このようにして試験片にバーナーの炎をあて、燃焼滴下物(ドリップ)の有無を調べた。その結果を表2及び表3に示した。この評価において、ドリップが発生しなかった場合は、難燃性が優れていると言える。
<Flame retardance>
As described later, after preparing a heat conductive pressure-sensitive adhesive sheet-like molded body, five test pieces were prepared by cutting the sheet into a strip shape having a width of 10 mm and a length of 150 mm. Adjust the air and gas flow rates of the Bunsen burner to create a blue flame with a height of about 20 mm. ) After holding for 10 seconds, the specimen was removed from the burner flame. Thereafter, as soon as the flame of the test piece disappeared, the burner flame was applied to the test piece and held for another 10 seconds, and then the test piece was separated from the burner flame. Thus, the flame of the burner was applied to the test piece, and the presence or absence of combustion dripping (drip) was examined. The results are shown in Tables 2 and 3. In this evaluation, when no drip occurs, it can be said that the flame retardancy is excellent.
 <熱伝導性感圧接着性シート状成形体の作製>
  (実施例1)
  まず、以下のようにして第1の混合工程を行った。すなわち、アクリル変性PTFE繊維(商品名「メンブレンA-3000」、三菱レイヨン株式会社製)1部と、多価アルコール重合体の脂肪酸エステル(チラバゾール H-818、太陽化学株式会社製、数平均分子量:4000)5部と、を電子天秤で計量し、これらをスパチュラーで1分間攪拌しながら混合して第1の混合組成物を得た。
<Preparation of heat conductive pressure-sensitive adhesive sheet-like molded body>
Example 1
First, the first mixing step was performed as follows. That is, 1 part of acrylic modified PTFE fiber (trade name “Membrane A-3000”, manufactured by Mitsubishi Rayon Co., Ltd.) and a fatty acid ester of a polyhydric alcohol polymer (Tirabazole H-818, manufactured by Taiyo Chemical Co., Ltd., number average molecular weight: 4000) 5 parts were weighed with an electronic balance, and these were mixed with a spatula for 1 minute while stirring to obtain a first mixed composition.
 一方、反応器に、アクリル酸2-エチルヘキシル94%とアクリル酸6%とからなる単量体混合物100部、2,2’-アゾビスイソブチロニトリル0.03部及び酢酸エチル700部を入れて均一に溶解し、窒素置換後、80℃で6時間重合反応を行った。重合転化率は97%であった。得られた重合体を減圧乾燥して酢酸エチルを蒸発させ、粘性のある固体状の(メタ)アクリル酸エステル重合体(A1-1)を得た。(メタ)アクリル酸エステル重合体(A1-1)の重量平均分子量(Mw)は270,000、重量平均分子量(Mw)/数平均分子量(Mn)は3.1であった。重量平均分子量(Mw)及び数平均分子量(Mn)は、テトラヒドロフランを溶離液とするゲルパーミエーションクロマトグラフィーにより、標準ポリスチレン換算で求めた。 On the other hand, 100 parts of a monomer mixture consisting of 94% 2-ethylhexyl acrylate and 6% acrylic acid, 0.03 part 2,2′-azobisisobutyronitrile and 700 parts ethyl acetate were placed in a reactor. The solution was uniformly dissolved, and after substitution with nitrogen, a polymerization reaction was carried out at 80 ° C. for 6 hours. The polymerization conversion rate was 97%. The obtained polymer was dried under reduced pressure to evaporate ethyl acetate to obtain a viscous solid (meth) acrylic acid ester polymer (A1-1). The weight average molecular weight (Mw) of the (meth) acrylic acid ester polymer (A1-1) was 270,000, and the weight average molecular weight (Mw) / number average molecular weight (Mn) was 3.1. The weight average molecular weight (Mw) and the number average molecular weight (Mn) were determined in terms of standard polystyrene by gel permeation chromatography using tetrahydrofuran as an eluent.
 次に、アクリル酸2-エチルヘキシル(2EHA、和光純薬株式会社製)49部と、有機過酸化物熱重合開始剤(1,6-ビス(t-ブチルペルオキシカルボニルオキシ)ヘキサン(1分間半減期温度は150℃である。))1部と、ペンタエリスリトールトリアクリレート、ペンタエリスリトールテトラアクリレート及びペンタエリスリトールジアクリレートを60:35:5の割合で混合した、架橋剤である多官能性単量体(ライトアクリレートPE-3A、共栄社化学株式会社製)1部と、を電子天秤で計量し、これらを上記(メタ)アクリル酸エステル重合体(A1-1)50部と混合した。混合には、恒温槽(東機産業株式会社製、ビスコメイト 150III)及びホバートミキサー(株式会社小平製作所製、ACM-5LVT型、容量:5L)を用いた。ホバート容器の温調は23℃に設定し、回転数目盛を5にして10分間攪拌した。 Next, 49 parts of 2-ethylhexyl acrylate (2EHA, manufactured by Wako Pure Chemical Industries, Ltd.) and an organic peroxide thermal polymerization initiator (1,6-bis (t-butylperoxycarbonyloxy) hexane (1 minute half-life) The temperature is 150 ° C.)) A polyfunctional monomer as a crosslinking agent, in which 1 part is mixed with pentaerythritol triacrylate, pentaerythritol tetraacrylate and pentaerythritol diacrylate in a ratio of 60: 35: 5 ( 1 part of light acrylate PE-3A (manufactured by Kyoeisha Chemical Co., Ltd.) was weighed with an electronic balance, and these were mixed with 50 parts of the (meth) acrylic acid ester polymer (A1-1). For the mixing, a thermostatic bath (manufactured by Toki Sangyo Co., Ltd., Viscomate 150III) and a Hobart mixer (manufactured by Kodaira Manufacturing Co., Ltd., ACM-5LVT type, capacity: 5 L) were used. The temperature control of the Hobart container was set at 23 ° C., the rotation speed scale was set to 5, and the mixture was stirred for 10 minutes.
 次に、熱伝導性フィラー(B)としての水酸化アルミニウム(日本軽金属株式会社製、BF-083、平均粒径:8μm、BET比表面積:0.8m/g)200部と、上記第1の混合組成物6部と、膨張化黒鉛粉(商品名「EC-500」、伊藤黒鉛工業株式会社製、平均粒径(D50):30μm)5部と、を計量して上記ホバート容器に投入し、第2の混合工程を行って第2の混合組成物を得た。第2の混合工程では、ホバート容器の温調を23℃に設定し、真空(-0.1MPaG)にして、回転数目盛を5にして10分間攪拌した。 Next, 200 parts of aluminum hydroxide (manufactured by Nippon Light Metal Co., Ltd., BF-083, average particle size: 8 μm, BET specific surface area: 0.8 m 2 / g) as the heat conductive filler (B), 6 parts of the above composition and 5 parts of expanded graphite powder (trade name “EC-500”, manufactured by Ito Graphite Industries Co., Ltd., average particle size (D50): 30 μm) are weighed and put into the Hobart container. And the 2nd mixing process was performed and the 2nd mixed composition was obtained. In the second mixing step, the temperature control of the Hobart container was set to 23 ° C., the vacuum (−0.1 MPaG) was set, the rotation speed scale was set to 5, and the mixture was stirred for 10 minutes.
 次に、上記第2の混合組成物を、厚さ75μmの離型PETフィルム上に垂らし、当該第2の混合組成物上にさらに、厚さ75μmの他の離型PETフィルムを被せた。第2の混合組成物が離型PETフィルムに挟持されたこの積層体を、間隔を650μmに調整した2つのロールの間に通し、第2の混合組成物をシート状に成形した。その後、当該積層体をオーブンに投入し、150℃で15分間加熱して重合工程を行った。この重合工程によって、(メタ)アクリル酸エステル単量体及び多官能性単量体を重合させ、またほぼ同時に、架橋剤である多官能性単量体により、(メタ)アクリル酸エステル重合体(A1-1)及び(メタ)アクリル酸エステル単量体由来の構造単位を含む重合体を架橋させ、熱伝導性感圧接着性シート状成形体(以下、単に「シート」と表記する。)(G1)を得た。なお、シート(G1)中の残存単量体量から、全単量体の重合転化率を計算したところ、99.9%であった。 Next, the second mixed composition was hung on a release PET film having a thickness of 75 μm, and another release PET film having a thickness of 75 μm was further covered on the second mixed composition. The laminate, in which the second mixed composition was sandwiched between the release PET films, was passed between two rolls adjusted to a distance of 650 μm, and the second mixed composition was formed into a sheet. Thereafter, the laminate was put into an oven and heated at 150 ° C. for 15 minutes to perform a polymerization step. Through this polymerization step, the (meth) acrylic acid ester monomer and the polyfunctional monomer are polymerized, and at the same time, the polyfunctional monomer as a cross-linking agent allows the (meth) acrylic acid ester polymer ( A1-1) and a polymer containing a structural unit derived from a (meth) acrylic acid ester monomer are crosslinked to form a thermally conductive pressure-sensitive adhesive sheet-like molded product (hereinafter simply referred to as “sheet”) (G1). ) The polymerization conversion rate of all monomers was calculated from the amount of residual monomers in the sheet (G1) and found to be 99.9%.
 (実施例2乃至5、及び比較例1乃至6)
  各物質の配合を表2及び表3に示したように変更した以外は実施例1と同様にして実施例2乃至5に係るシート(G2乃至G5)、及び比較例1乃至6に係るシート(GC1乃至GC6)を作製した。表2及び表3には各物質の配合量を質量部で示している。なお、比較例3では、多価アルコール重合体の脂肪酸エステルに代えてチタネートカップリング剤(味の素ファインテック株式会社製、プレンアクトTTS、イソプロピルトリイソステアロイルチタネート)を用いた。また、表2及び表3には第1の混合工程の有無を示している。すなわち、比較例4以外は実施例1と同様に第1の混合工程を行っており、比較例4では、第1の混合工程を行わずに、第2の混合工程に相当する工程で極性基変性ハロゲン化炭化水素繊維および多価アルコール重合体の脂肪酸エステルも混合して得た混合組成物をシート状にして重合工程を行った。
(Examples 2 to 5 and Comparative Examples 1 to 6)
The sheets (G2 to G5) according to Examples 2 to 5 and the sheets according to Comparative Examples 1 to 6 (Similar to Example 1) except that the composition of each substance was changed as shown in Tables 2 and 3. GC1 to GC6) were produced. Tables 2 and 3 show the amount of each substance in parts by mass. In Comparative Example 3, a titanate coupling agent (manufactured by Ajinomoto Finetech Co., Ltd., Preneact TTS, isopropyl triisostearoyl titanate) was used instead of the fatty acid ester of the polyhydric alcohol polymer. Tables 2 and 3 show the presence or absence of the first mixing step. That is, except for Comparative Example 4, the first mixing step is performed in the same manner as in Example 1. In Comparative Example 4, the first mixing step is not performed, and the polar group is formed in a step corresponding to the second mixing step. The mixed composition obtained by mixing the modified halogenated hydrocarbon fiber and the fatty acid ester of the polyhydric alcohol polymer was formed into a sheet and subjected to the polymerization step.
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
 表2及び表3に示したように、実施例にかかるシート(G1乃至G5)は、いずれも第2の混合組成物の粘度が低く、難燃性が高かった。すなわち、生産性が良く、難燃性が高かった。
  一方、極性基変性ハロゲン化炭化水素繊維の添加量が本発明で規定する範囲を超えていた比較例1にかかるシート(GC1)は、第2の混合組成物の粘度が高く、生産性が悪かった。また、多価アルコール重合体の脂肪酸エステルの添加量が本発明で規定する範囲を下回っていた比較例2にかかるシート(GC2)は、第2の混合組成物の粘度が高く(生産性が悪く)、難燃性が劣っていた。また、多価アルコール重合体の脂肪酸エステルに代えてチタネートカップリング剤を用いた比較例3にかかるシート(GC3)も、第2の混合組成物の粘度が高く(生産性が悪く)、難燃性が劣っていた。また、第1の混合工程を行わなかった比較例4にかかるシート(GC4)は、実施例1と各物質の配合量が同じであるにも関わらず、第2の混合組成物の粘度が高く(生産性が悪く)、難燃性が劣っていた。また、極性基変性ハロゲン化炭化水素繊維の添加量が本発明で規定する範囲を下回っていた比較例5にかかるシート(GC5)は、難燃性が劣っていた。また、多価アルコール重合体の脂肪酸エステルの添加量が本発明で規定する範囲を超えていた比較例6にかかるシート(GC6)も難燃性が劣っていた。
As shown in Tables 2 and 3, the sheets (G1 to G5) according to the examples all had low viscosity of the second mixed composition and high flame retardancy. That is, productivity was good and flame retardancy was high.
On the other hand, in the sheet (GC1) according to Comparative Example 1 in which the addition amount of the polar group-modified halogenated hydrocarbon fiber exceeded the range specified in the present invention, the viscosity of the second mixed composition was high and the productivity was poor. It was. Moreover, the sheet | seat (GC2) concerning the comparative example 2 in which the addition amount of the fatty acid ester of a polyhydric alcohol polymer was less than the range prescribed | regulated by this invention has the high viscosity of 2nd mixed composition (productivity is bad). ), Flame retardancy was poor. Further, the sheet (GC3) according to Comparative Example 3 using a titanate coupling agent in place of the fatty acid ester of the polyhydric alcohol polymer also has a high viscosity of the second mixed composition (productivity is poor), and flame retardancy. The sex was inferior. In addition, the sheet (GC4) according to Comparative Example 4 in which the first mixing step was not performed has a high viscosity of the second mixed composition despite the fact that the amount of each substance is the same as Example 1. (Productivity was bad) and flame retardancy was poor. Further, the sheet (GC5) according to Comparative Example 5 in which the addition amount of the polar group-modified halogenated hydrocarbon fiber was less than the range specified in the present invention was inferior in flame retardancy. In addition, the sheet (GC6) according to Comparative Example 6 in which the addition amount of the fatty acid ester of the polyhydric alcohol polymer exceeded the range defined in the present invention was inferior in flame retardancy.
 1 基板
 2、12a、12b、22 発熱体
 3、13 放熱体
 4、14、24 熱伝導性感圧接着性シート状成形体
DESCRIPTION OF SYMBOLS 1 Board | substrate 2,12a, 12b, 22 Heat generating body 3,13 Heat radiating body 4,14,24 Thermal conductive pressure-sensitive-adhesive sheet-like molded object

Claims (3)

  1.  極性基変性ハロゲン化炭化水素繊維(C)を0.3質量部以上3.5質量部以下と、
    多価アルコール重合体の脂肪酸エステル(D)を2質量部以上13質量部以下と、
    を含む第1の混合組成物を作製する第1の混合工程、
     (メタ)アクリル酸エステル重合体(A1)および(メタ)アクリル酸エステル単量体(α1)を含む(メタ)アクリル樹脂組成物(A)を100質量部と、
    熱伝導性フィラー(B)を50質量部以上1000質量部以下と、
    前記第1の混合組成物と、
    を含む第2の混合組成物を作製する第2混合工程、並びに、
     前記第2の混合組成物中において、少なくとも前記(メタ)アクリル酸エステル単量体(α1)の重合反応を行う重合工程、
    を含む、熱伝導性感圧接着剤組成物(F)の製造方法。
    Polar group-modified halogenated hydrocarbon fiber (C) 0.3 parts by mass or more and 3.5 parts by mass or less,
    2 parts by weight or more and 13 parts by weight or less of a fatty acid ester (D) of a polyhydric alcohol polymer;
    A first mixing step for producing a first mixed composition comprising:
    100 parts by weight of (meth) acrylic resin composition (A) containing (meth) acrylic acid ester polymer (A1) and (meth) acrylic acid ester monomer (α1);
    50 parts by mass or more and 1000 parts by mass or less of the heat conductive filler (B),
    The first mixed composition;
    A second mixing step for producing a second mixed composition comprising:
    In the second mixed composition, a polymerization step of performing a polymerization reaction of at least the (meth) acrylic acid ester monomer (α1),
    The manufacturing method of a heat conductive pressure sensitive adhesive composition (F) containing this.
  2.  極性基変性ハロゲン化炭化水素繊維(C)を0.3質量部以上3.5質量部以下と、
    多価アルコール重合体の脂肪酸エステル(D)を2質量部以上13質量部以下と、
    を含む第1の混合組成物を作製する第1混合工程、
     (メタ)アクリル酸エステル重合体(A1)および(メタ)アクリル酸エステル単量体(α1)を含む(メタ)アクリル樹脂組成物(A)を100質量部と、
    熱伝導性フィラー(B)を50質量部以上1000質量部以下と、
    前記第1の混合組成物と、
    を含む第2の混合組成物を作製する第2混合工程、並びに、
     前記第2の混合組成物をシート状に成形した後、又は前記第2の混合組成物をシート状に成形しながら、少なくとも前記(メタ)アクリル酸エステル単量体(α1)の重合反応を行う、成形工程及び重合工程、
    を含む、熱伝導性感圧接着性シート状成形体(G)の製造方法。
    Polar group-modified halogenated hydrocarbon fiber (C) 0.3 parts by mass or more and 3.5 parts by mass or less,
    2 parts by weight or more and 13 parts by weight or less of a fatty acid ester (D) of a polyhydric alcohol polymer;
    A first mixing step for producing a first mixed composition comprising:
    100 parts by weight of (meth) acrylic resin composition (A) containing (meth) acrylic acid ester polymer (A1) and (meth) acrylic acid ester monomer (α1);
    50 parts by mass or more and 1000 parts by mass or less of the heat conductive filler (B),
    The first mixed composition;
    A second mixing step for producing a second mixed composition comprising:
    After forming the second mixed composition into a sheet or while forming the second mixed composition into a sheet, at least the polymerization reaction of the (meth) acrylate monomer (α1) is performed. , Molding process and polymerization process,
    The manufacturing method of a heat conductive pressure-sensitive-adhesive sheet-like molded object (G) including this.
  3.  発熱体及び該発熱体に貼合された請求項1に記載の熱伝導性感圧接着剤組成物(F)の製造方法によって得られた熱伝導性感圧接着剤組成物(F)、又は、発熱体及び該発熱体に貼合された請求項2に記載の熱伝導性感圧接着性シート状成形体(G)の製造方法によって得られた熱伝導性感圧接着性シート状成形体(G)、を備えた電子機器。 The heat conductive pressure-sensitive adhesive composition (F) obtained by the manufacturing method of the heat conductive and the heat conductive pressure-sensitive adhesive composition (F) of claim 1 bonded to the heat generating element, or heat generation The heat conductive pressure-sensitive-adhesive sheet-like molded product (G) obtained by the manufacturing method of the heat-conductive pressure-sensitive-adhesive sheet-like molded product (G) of Claim 2 bonded to the said body and this heat generating body, With electronic equipment.
PCT/JP2014/076443 2013-10-24 2014-10-02 Method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like article, and electronic device WO2015060091A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013-221491 2013-10-24
JP2013221491 2013-10-24

Publications (1)

Publication Number Publication Date
WO2015060091A1 true WO2015060091A1 (en) 2015-04-30

Family

ID=52992694

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/076443 WO2015060091A1 (en) 2013-10-24 2014-10-02 Method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like article, and electronic device

Country Status (2)

Country Link
TW (1) TW201522556A (en)
WO (1) WO2015060091A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032454A (en) * 2009-07-07 2011-02-17 Mitsubishi Rayon Co Ltd Dispersibility improver, thermoplastic resin composition and formed article
JP2011246590A (en) * 2010-05-26 2011-12-08 Nippon Zeon Co Ltd Heat-conductive pressure-sensitive adhesive composition, heat-conductive pressure-sensitive adhesive sheet and electronic element
JP2013129814A (en) * 2011-11-25 2013-07-04 Nippon Zeon Co Ltd Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molded body, method for producing them, and electronic equipment

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011032454A (en) * 2009-07-07 2011-02-17 Mitsubishi Rayon Co Ltd Dispersibility improver, thermoplastic resin composition and formed article
JP2011246590A (en) * 2010-05-26 2011-12-08 Nippon Zeon Co Ltd Heat-conductive pressure-sensitive adhesive composition, heat-conductive pressure-sensitive adhesive sheet and electronic element
JP2013129814A (en) * 2011-11-25 2013-07-04 Nippon Zeon Co Ltd Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molded body, method for producing them, and electronic equipment

Also Published As

Publication number Publication date
TW201522556A (en) 2015-06-16

Similar Documents

Publication Publication Date Title
JP5975028B2 (en) Thermally conductive pressure-sensitive adhesive sheet-like molded product, method for producing the same, and electronic device
JP5556433B2 (en) Thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet, and electronic component
JPWO2012132656A1 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive and pressure-sensitive adhesive sheet-like molded product, production method thereof, and electronic component
WO2013047145A1 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molded body, method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like molded body, and electronic component
JPWO2013084750A1 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molded product, production method thereof, and electronic device
JP2014028903A (en) Heat-conductive laminate sheet, method for manufacturing the heat-conductive laminate sheet, and electronic appliance
JP2013129814A (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molded body, method for producing them, and electronic equipment
JP2011246590A (en) Heat-conductive pressure-sensitive adhesive composition, heat-conductive pressure-sensitive adhesive sheet and electronic element
JP2013124289A (en) Thermally-conductive pressure-sensitive adhesive composition, thermally-conductive pressure-sensitive adhesive sheet-like molding, methods for producing them, and electronic device
WO2013175950A1 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet forming body, method of manufacturing these, and electronic device
JP2015067638A (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-shaped molded product, method for producing the same, and electronic equipment
JP2015067640A (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-shaped molded product, methods for producing them, and electronic equipment
WO2013183389A1 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molded body, method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like molded body, and electronic device
WO2015060092A1 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like article, method for producing same, and electronic device
JP2014005336A (en) Heat-conductive pressure-sensitive adhesive composition and heat-conductive pressure-sensitive adhesive sheet-like molding, their manufacturing method, and electronic equipment
JP2014009287A (en) Thermal conductivity pressure-sensitive adhesive composition, thermal conductivity pressure-sensitive adhesiveness sheet-like compact, production method of the same, and electronic apparatus
JP5696599B2 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molded product, production method thereof, and electronic device
WO2015060091A1 (en) Method for producing thermally conductive pressure-sensitive adhesive composition, method for producing thermally conductive pressure-sensitive adhesive sheet-like article, and electronic device
JP2015117341A (en) Method of producing thermally-conductive, pressure-sensitive adhesive multilayer sheet, thermally-conductive, pressure-sensitive adhesive multilayer sheet, and electronic equipment
WO2013061830A1 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-form molded body, manufacturing method of these, and electronic component
WO2015056577A1 (en) Heat-conductive pressure-sensitive adhesive layered sheet, method for manufacturing heat-conductive pressure-sensitive adhesive layered sheet, and electronic device
JP2015067637A (en) Heat conductive pressure-sensitive adhesive composition, heat conductive pressure-sensitive adhesive sheet-shaped molded product, methods for producing them, and electronic equipment
JP2016175950A (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like molding, method for producing them, and electronic equipment
JP5652365B2 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive and pressure-sensitive adhesive sheet-like molded product, production method thereof, and electronic component
WO2015045918A1 (en) Thermally conductive pressure-sensitive adhesive composition, thermally conductive pressure-sensitive adhesive sheet-like article, method for producing same, and electronic equipment

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14855694

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: JP

122 Ep: pct application non-entry in european phase

Ref document number: 14855694

Country of ref document: EP

Kind code of ref document: A1