WO2015059916A1 - Ultrasonic inspection device and ultrasonic inspection method - Google Patents

Ultrasonic inspection device and ultrasonic inspection method Download PDF

Info

Publication number
WO2015059916A1
WO2015059916A1 PCT/JP2014/005306 JP2014005306W WO2015059916A1 WO 2015059916 A1 WO2015059916 A1 WO 2015059916A1 JP 2014005306 W JP2014005306 W JP 2014005306W WO 2015059916 A1 WO2015059916 A1 WO 2015059916A1
Authority
WO
WIPO (PCT)
Prior art keywords
expansion
contraction
ultrasonic inspection
ultrasonic
inspection apparatus
Prior art date
Application number
PCT/JP2014/005306
Other languages
French (fr)
Japanese (ja)
Inventor
畑中 健一
裕幸 安部
田中 健二
峰寛 中川
元則 安永
Original Assignee
積水化学工業株式会社
新日本非破壊検査株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2013221463A external-priority patent/JP6306851B2/en
Priority claimed from JP2014044797A external-priority patent/JP6306904B2/en
Application filed by 積水化学工業株式会社, 新日本非破壊検査株式会社 filed Critical 積水化学工業株式会社
Publication of WO2015059916A1 publication Critical patent/WO2015059916A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/04Analysing solids
    • G01N29/07Analysing solids by measuring propagation velocity or propagation time of acoustic waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/225Supports, positioning or alignment in moving situation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N29/00Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
    • G01N29/22Details, e.g. general constructional or apparatus details
    • G01N29/26Arrangements for orientation or scanning by relative movement of the head and the sensor
    • G01N29/265Arrangements for orientation or scanning by relative movement of the head and the sensor by moving the sensor relative to a stationary material
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02854Length, thickness
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/26Scanned objects
    • G01N2291/263Surfaces
    • G01N2291/2636Surfaces cylindrical from inside

Definitions

  • the present invention relates to an ultrasonic inspection apparatus that can be inserted into a tube and an ultrasonic inspection method using the same. More specifically, the present invention relates to a compact ultrasonic inspection apparatus that can be expanded and contracted in a tube and an ultrasonic inspection method using the same. Furthermore, the present invention also relates to a method for testing a thickness of a metal multilayer body and a layer thickness test apparatus for a metal multilayer body. In particular, the present invention also relates to a test method for the degree of deterioration of buried piping and an apparatus therefor.
  • An ultrasonic device has been developed that is inserted into a pipe and transmits ultrasonic waves to the inner wall of the pipe to measure the damaged state of the pipe and the thickness of the pipe.
  • Patent Document 1 a pipe thinning measuring apparatus described in Japanese Patent Application Laid-Open No. 2011-158392 (Patent Document 1) is provided on a front side of a measurement carriage that is inserted into a pipe arranged in a horizontal plane or an inclined plane.
  • a pipe thinning measuring device having a thickness measuring means for measuring the thickness of a pipe and a propulsion means arranged at the rear part of the measuring carriage to advance the measuring carriage, the measuring carriage being a cylindrical casing arranged at the center And at least three parallel link mechanisms that protrude radially outward from the outer peripheral portion of the cylindrical casing, and omnidirectional moving wheels that are front-rear pairs provided on the radially outer side of each parallel link mechanism, and have a thickness
  • the measuring means includes a motor disposed in the cylindrical casing, a sensor holder that is rotationally driven by the motor and disposed at the axial center position of the cylindrical casing, and is mounted perpendicular to the sensor holder.
  • the at least three parallel link mechanisms include a fixing ring fixedly arranged on one side of the front and rear of the cylindrical casing, a sliding ring arranged movably in the front-rear direction on the other side of the cylindrical casing, the fixing ring, and the aforementioned A cross arm whose base is pivotably connected to the sliding ring, a link plate provided on the front side of each cross arm and provided with omnidirectional wheels on both the front and rear sides, and a fixed ring for fixing the sliding ring And a spring urging in the direction.
  • an ultrasonic inspection device for a tube described in Japanese Patent Application Laid-Open No. 2001-83124 has an ultrasonic probe and a rotating body placed in the tube, and is inclined 45 degrees toward the front side of the rotating body.
  • the mirror is provided, the ultrasonic wave emitted from the ultrasonic probe is reflected by the mirror, and the reflected wave is detected by the ultrasonic probe.
  • Patent Document 3 Japanese Patent Laid-Open No. 60-123712
  • Patent Document 3 an ultrasonic probe is installed on the surface of a tube to emit ultrasonic waves in the radial direction and detect reflected waves from the inner surface of the opposite lining.
  • a method for measuring the inner surface lining thickness is disclosed, wherein the lining thickness is measured from the energy loss of the reflected wave.
  • Patent Document 4 discloses the measurement of the thickness of a fiber reinforced composite layer formed integrally with the surface of a metal body and made of a reinforced fiber and a metal matrix.
  • the ultrasonic wave is transmitted toward the surface of the fiber reinforced resin composite layer and the reflected wave is sequentially received, and the time from the transmission of the ultrasonic wave to the reception of the final reflected wave by the reinforcing fiber is converted into the thickness of the fiber reinforced composite layer.
  • a method for measuring the thickness of a fiber-reinforced composite layer using ultrasonic waves is disclosed.
  • Patent Document 1 Since the apparatus of Patent Document 1 is aligned only by the urging force of a spring (specifically, a tension spring), it is not possible to reduce or expand the diameter within the pipe, and it can be applied to a pipe whose diameter changes. Have difficulty.
  • a spring specifically, a tension spring
  • Patent Document 2 uses a rotational drive mechanism using a water jet nozzle, and therefore cannot be applied to a pipe whose diameter changes.
  • the method of patent document 3 measures the thickness of the concrete lining layer of the composite pipe comprised from a metal and concrete. In this method, it is necessary to install a contact-type ultrasonic probe outside the composite tube. Therefore, when applied to the buried pipeline, an excavation work is required. Furthermore, the method of Patent Document 3 is a method of measuring the lining thickness, and does not describe measuring the thickness of the metal layer.
  • the method of patent document 4 is a water immersion type ultrasonic method, and measures the thickness of the fiber reinforcement layer which is an ultrasonic incident side. However, it is not described that the thickness of the metal layer as the back layer can be measured.
  • an object of the present invention is to provide an ultrasonic inspection apparatus that can freely expand and contract within a tube and an ultrasonic inspection method using the same.
  • another object of the present invention is to provide a non-destructive method in the case where a measurement object is a composite layer having a porous layer on the surface of a metal layer, which is considered to have a particularly large ultrasonic attenuation in general technical common sense. Then, it is providing the method which can acquire the information regarding the thickness of a metal layer.
  • the present invention is an ultrasonic inspection apparatus that can be used for internal inspection of a tube.
  • the ultrasonic inspection apparatus of the present invention includes a shaft part, an expansion / contraction arm, a traveling part, an expansion / contraction part, an expansion / contraction control part, a motor, an ultrasonic probe, and an acoustic reflection part.
  • the expansion / contraction arm protrudes from the outer peripheral portion of the shaft portion.
  • the expansion / contraction arm can be expanded / contracted in the radial direction centered on the axial center of the shaft portion.
  • the traveling unit is provided on the expansion / contraction arm. Further, the expansion / contraction arm can be expanded / contracted by controlling the expansion / contraction section by the expansion / contraction control section.
  • the motor is directly or indirectly fixed to the shaft portion.
  • the ultrasonic probe is arranged to transmit ultrasonic waves in the axial direction of the shaft portion.
  • the acoustic reflector reflects the ultrasonic wave transmitted from the ultrasonic probe from the axial direction to the radial direction.
  • the expanding / contracting arm When the ultrasonic inspection apparatus of the present invention is inserted into a tube, the expanding / contracting arm expands so as to stretch toward the inner wall of the tube, and the traveling portion provided on the expanding / contracting arm contacts the inner wall of the tube. Thereby, the ultrasonic inspection apparatus is held. Moreover, the expansion / contraction part can be expanded / contracted to expand / contract the expansion / contraction arm. For this reason, the diameter reduction and diameter expansion in a pipe become free.
  • the ultrasonic inspection apparatus of the present invention includes an internal moving part inserted into the tube (specifically, in the case of (1), an expansion / contraction arm, a traveling part, an expansion / contraction part, a motor, an ultrasonic probe, An acoustic reflection unit) and an external operation unit (specifically, in the case of (1), an expansion / contraction control unit) that is operated outside the tube.
  • the ultrasonic inspection apparatus is inserted into the tube.
  • it means that an internal movement part is inserted in a pipe
  • the tube into which the ultrasonic inspection apparatus of the present invention is inserted is not particularly limited as long as it can be an object of ultrasonic inspection.
  • a metal tube for example, a metal tube, a resin tube, a porous material such as a mortar or a resin, etc.
  • a lined metal tube is an example.
  • the diameter described with respect to the dimensions of the pipe means the inner diameter unless otherwise specified.
  • the fact that the ultrasonic wave is transmitted in the axial direction of the shaft portion is not limited to the transmission of the ultrasonic wave on the axial center, and is preferably within ⁇ 5 mm parallel to the axial center and within the radial direction from the axial center. Includes transmission with a deviation within ⁇ 3 mm and transmission with a deviation in a direction inclined ⁇ 5 degrees, preferably ⁇ 3 degrees from the axis.
  • the position at which the acoustic reflection unit reflects the ultrasonic waves from the axial direction to the radial direction is preferably on the axial center, but the position may be within ⁇ 5 mm from the axial center to the radial direction, and ⁇ 3 mm.
  • the echo height can be reduced to a maximum of about half (decrease by a maximum of 6 dB as a specific example).
  • the ultrasonic wave reflected by the acoustic reflector is preferably incident at 90 degrees with respect to the tangent to the inner wall of the tube, but the incident angle may be not less than 85 degrees and not more than 95 degrees.
  • the incident angle is 88 degrees or more and 92 degrees or less, particularly 90 degrees.
  • the echo height can be reduced to a maximum of about half (decrease by a maximum of 6 dB as a specific example).
  • the motor may be a hollow shaft motor including a hollow rotating member and a non-rotating member surrounding the hollow rotating member.
  • the ultrasonic probe may be fixedly connected to the non-rotating member.
  • continuous fixing means both the aspect fixed directly via other members, and the aspect fixed indirectly via other members.
  • the ultrasonic probe can be provided in a fixed state.
  • the size of the ultrasonic inspection apparatus in the radial direction around the axial center of the shaft portion (particularly, the size when the expansion / contraction arm is most contracted) can be made compact. For example, it is possible to reduce the size more efficiently than when the ultrasonic probe is provided so as to extend in the radiation direction and the ultrasonic probe itself is rotated about the axis.
  • the acoustic reflection unit may be provided so as to be rotatable in conjunction with the hollow rotating member.
  • the ultrasonic probe By using a hollow shaft motor for rotation of the acoustic reflector, the ultrasonic probe itself can be disposed in the axial direction because the ultrasonic wave propagates through the hollow portion of the hollow rotating member. . This also makes it possible to reduce the size of the ultrasonic inspection apparatus in the radial direction.
  • the ultrasonic inspection apparatus of the present invention may include an expansion / contraction part that expands / contracts the expansion / contraction arm.
  • the telescopic part includes a movable part, and the movable part can be provided so as to move in the axial direction of the shaft part.
  • the expansion / contraction arm expands / contracts with expansion / contraction of the expansion / contraction part
  • the expansion / contraction direction of the expansion / contraction part is the axial center direction of the shaft part.
  • the expansion / contraction part may be arranged on the outer peripheral part of the shaft part so as to expand and contract in the axial direction of the shaft part.
  • the expansion / contraction direction of the expansion / contraction part is the axial direction of the shaft part, even if the expansion / contraction part itself is provided on the outer peripheral part of the shaft part, the radiation direction of the ultrasonic inspection apparatus around the axis
  • the size of can be made compact. For example, it is possible to reduce the size more efficiently than in the case where an expansion / contraction part is disposed on the outer peripheral part of the shaft part so as to expand and contract in the radial direction.
  • the stretchable part may constitute at least a part of the shaft part.
  • the function of the expansion / contraction part is assigned to at least a part of the shaft part, a structure in which the expansion / contraction part having a relatively large size is not provided on the outer peripheral part of the shaft part is possible.
  • the ultrasonic inspection apparatus of the present invention may be configured such that when the expansion / contraction arm has a storage portion and the expansion / contraction arm is reduced, the expansion / contraction portion is stored in the storage portion.
  • the ultrasonic inspection apparatus of the present invention may include at least a housing portion that houses a motor. In this case, when the expansion / contraction arm is most contracted, it is preferable that the entire expansion / contraction arm overlaps the projection of the casing in the axial direction.
  • the size of the ultrasonic inspection apparatus in the radial direction when the expansion / contraction arm is most contracted can be made compact.
  • each of the plurality of expansion / contraction arms are pivotally attached at two locations on one end side and the other end side of the shaft portion in the axial direction.
  • the expansion / contraction arm arranged on one end side and the expansion / contraction arm arranged on the other end side are opposite to each other in the axial direction.
  • the base ends of each of the plurality of expansion / contraction arms are arranged at equal intervals around the axis at a predetermined position in the axial direction, and the expansion / contraction arms have an angle not exceeding 90 degrees in the radial direction with the base end as a center. It is configured to be rotatable.
  • the expansion / contraction arm extends substantially along the axis of the shaft when it is most contracted, and at the time of expansion, the base end located at a predetermined position is the center, and the tip is in the reflection direction from the axis. The tip rises away from the center of the screen, and at the time of reduction, the tip falls down so as to approach the axis. Accordingly, the structure of each of the expansion / contraction arms can be simplified, and the size of the ultrasonic inspection apparatus in the radial direction around the axis of the shaft portion can be made compact. Further, in this case, the rotation angle around the base end of the expansion / contraction arm does not exceed 90 degrees.
  • the expansion / contraction arm having a simple structure moves within a predetermined movable range in the axial direction, the size of the axial portion of the ultrasonic inspection apparatus in the axial direction can be made compact. Therefore, the space occupied by the trajectory of the operation of the expansion / contraction arm can be reduced. For this reason, the direction change in a branch pipe like a cheese type piping becomes easy.
  • the ultrasonic inspection apparatus is stably held in the tube.
  • the expansion / contraction arm includes a long arm piece having a traveling portion disposed at the tip, and a short arm piece shorter than the long arm piece. You may have a link mechanism comprised including.
  • the space occupied by the trajectory of the expansion / contraction arm can be reduced, and the expansion / contraction operation of the expansion / contraction part can be linked to the expansion / contraction operation of the expansion / contraction arm by the link mechanism having a simple structure.
  • the short arm piece constituting the link mechanism has its base end rotatable to the movable part of the telescopic part, and its tip is rotatable between the tip of the long arm piece and the base end. It is preferably fixed. This is preferable in terms of the linkage between the expansion / contraction operation of the expansion / contraction part and the expansion / contraction operation of the expansion / contraction arm.
  • the short arm piece is preferably provided in the vicinity of the tip of the long arm piece in view of the stability of the expansion / contraction arm.
  • the motor is a hollow shaft motor including a hollow rotating member and a non-rotating member surrounding the hollow rotating member, and at least a part of the ultrasonic probe is a hollow rotating member. It is preferable to be disposed in the hollow portion.
  • the expansion / contraction part may include an auxiliary spring that assists the operation of the expansion / contraction arm.
  • the expansion / contraction part may be driven by atmospheric pressure.
  • the extendable part may be an air cylinder.
  • the ultrasonic inspection apparatus of the present invention preferably includes a position marker provided in the motor or the acoustic reflection unit, and a sensor for detecting the position marker.
  • the position marker is provided on the hollow rotating member or the acoustic reflection portion, and the sensor is an ultrasonic probe (continuously fixed to the non-rotating member). It may be fixed continuously. This makes it possible to accurately determine the circumferential position of the inner wall of the tube to be inspected by ultrasonic waves.
  • the layer thickness test method for a metal multilayer body of the present invention is a method for testing the layer thickness of a multilayer body including a metal layer and a porous layer provided on the surface of the metal layer.
  • the layer thickness test method includes a transmitting step for applying an ultrasonic wave transmitted in a direction from the porous layer side to the metal layer side through an aqueous medium; and receiving a reflected wave with respect to the ultrasonic propagation time.
  • the layer thickness test method for a metal multilayer body of the present invention is a method for testing the layer thickness of a multilayer body including a metal layer and a porous layer provided on the surface of the metal layer.
  • the layer thickness test method includes a transmitting step for applying an ultrasonic wave transmitted in a direction from the porous layer side to the metal layer side through an aqueous medium; and receiving a reflected wave with respect to the ultrasonic propagation time.
  • the peak of the first interface reflected wave and the peak of the outer surface reflected wave are detected in a manner that can be discriminated as a reflected wave.
  • the signal noise ratio (S / N) is It means 2.5 or more, preferably 3 or more.
  • Porous is a solid material with continuous pores that are connected in three dimensions.
  • the porous material is caused by the fact that the continuous pores are filled with air with particularly low acoustic impedance (that is, extremely small compared to solids and liquids). Hateful. For this reason, the porous material is not inherently suitable for ultrasonic measurement.
  • an aqueous medium is interposed, the porous layer is impregnated with the aqueous medium, and the continuous pores are filled with water having a higher acoustic impedance (that is, having an acoustic impedance close to a solid). It is. That is, the inside of the continuous pores is replaced with air from water. For this reason, it is conceivable that the ultrasonic impedance is easily transmitted by making the difference in acoustic impedance from the solid constituting the porous material small, and ultrasonic measurement is possible.
  • the porous material may be a cement-containing material. Since the cement-containing material has an acoustic impedance that is particularly close to that of water, the difference in acoustic impedance is reduced by the intervention of the aqueous medium, and ultrasonic measurement becomes easier.
  • the frequency of the ultrasonic wave transmitted in the transmitting step is 1 MHz or more and 9 MHz or less.
  • the test target of the layer thickness test method of the present invention may be a composite tube in which a porous layer is lined as a lining layer on the inner peripheral surface of a metal tube.
  • the ultrasonic wave is transmitted from a probe unit provided inside the composite tube.
  • the lining layer is a layer which is coated on the surface of a base material (metal in the present invention) relatively thickly to prevent corrosion, abrasion and contamination of the base.
  • the probe unit is a member including at least an ultrasonic probe. In this case, since the layer thickness test can be performed by inserting the probe portion into the composite pipe filled with water, the excavation work becomes unnecessary particularly when the composite pipe is buried.
  • ultrasonic waves can be transmitted so as to scan the entire inner circumference of the composite tube while maintaining an angle at which the ultrasonic waves are transmitted perpendicularly to the inner surface of the lining layer.
  • the distance between the head portion of the probe portion and the inner surface of the lining layer corresponds to the thickness of the intervening aqueous medium.
  • the head portion refers to the outer surface on the ultrasonic wave transmission side in the housing of the ultrasonic probe constituting the probe portion.
  • the term “perpendicular to the inner surface of the lining layer” does not mean that the angle is strictly 90 degrees with respect to the tangent line of the inner surface of the lining layer, but 85 degrees or more and 95 degrees or less with respect to the tangent line. The angle which forms is also allowed. Further, it is preferable that the allowable range is 88 degrees or more and 92 degrees or less because the echo height can be reduced to about half of the case where the echo height is 90 degrees (specifically, a decrease of 6 dB).
  • a deviation in the radial direction parallel to the tangent (the tangent to the inner surface of the lining layer on which the ultrasonic wave is incident) from the central axis at the position where the ultrasonic wave is transmitted is also allowed.
  • the allowable range of this deviation depends on the water distance, but is within ⁇ 5 mm in the radial direction from the central axis, preferably within ⁇ 3 mm.
  • the cement-containing substance to be tested may be mortar.
  • the present invention can realize high versatility particularly when the test object is a mortar lining pipe.
  • the metal layer to be tested may be at least one of cast iron and steel.
  • the present invention can realize high versatility, particularly when the test object is an embedded lining pipe. It is also useful when the test object is a buried lining steel structure such as an underground tank.
  • the ultrasonic inspection method of the present invention performs ultrasonic inspection inside the tube using the ultrasonic waves described in (1) to (13) above.
  • the inside of the tube is ultrasonically inspected by expanding and contracting the expansion / contraction arm according to the change in the diameter of the tube inner wall and transmitting ultrasonic waves to the tube inner wall while traveling in the tube. be able to.
  • the tube may be a multilayer body including a metal layer and a porous layer provided on the surface of the metal layer.
  • the ultrasonic wave is transmitted in the direction from the porous layer side to the metal layer side under the condition that the aqueous medium is interposed, and at least the first reflected first at the boundary surface between the metal layer and the porous layer.
  • the thickness of the metal layer is calculated based on the detection time difference between the peak of the interface reflected wave and the peak of the first outer surface reflected wave that is first reflected on the surface of the metal layer opposite to the porous layer.
  • a layer thickness test apparatus for a metal multilayer is used in the method according to any one of ⁇ A> to ⁇ H>, a probe unit for transmitting ultrasonic waves; a head unit of the probe unit; A separation part that separates the surface of the porous layer; a waveform acquisition part that acquires a waveform of the reflected wave intensity with respect to the ultrasonic propagation time; and at least a boundary surface between the metal layer and the porous layer from the acquired waveform
  • a determination unit for determining a peak of the first interface reflected wave reflected first and a peak of the first outer surface reflected wave first reflected on the surface of the metal layer opposite to the porous layer; And a thickness calculator for calculating the thickness of the metal layer based on the difference in detection time between the peak of the first and the peak of the first external reflection wave.
  • a layer thickness test apparatus for a metal multilayer according to still another aspect is used in the method according to any one of ⁇ A> to ⁇ H>, and a probe unit for transmitting ultrasonic waves; and a head unit of the probe unit A separation part that separates the surface of the porous layer from the surface; a waveform acquisition part that acquires a waveform of the reflected wave intensity with respect to the ultrasonic propagation time; and an n-fold reflection (n is the acquired waveform) in the metal layer
  • a determination unit that determines at least two peaks of externally reflected waves that are surface-reflected on the side opposite to the porous layer of the metal layer from the waveform when detected as multiple peaks by an integer of 2 or more);
  • a wall thickness calculating unit that calculates the wall thickness of the metal layer based on the detection time of at least two peaks arbitrarily selected from the determined peak of the external reflection wave.
  • the layer thickness test apparatus for a metal multilayer body of the present invention may include an angle holding unit that holds an angle at which ultrasonic waves are transmitted perpendicularly to the inner surface of the porous layer.
  • the echo peak can be detected with sufficient intensity.
  • the angle holding unit may be provided separately from the separation unit, or may be provided as one configuration of the separation unit.
  • the apparatus for testing a thickness of a metal multilayer body according to the present invention is a metal composite tube in which a porous layer is lined as a cement-containing lining layer on an inner peripheral surface of a metal tube, and a separation portion is a shaft of the metal composite tube.
  • a moving mechanism capable of traveling in the central direction may be included.
  • the apparatus for testing a thickness of a metal multilayer body according to the present invention is a metal composite tube in which a porous layer is lined as a cement-containing lining layer on the inner peripheral surface of a metal tube, and ultrasonic waves are applied to the entire inner periphery of the composite tube. May be configured to be transmitted to scan.
  • the apparatus for testing a thickness of a metal multilayer body according to the present invention is a metal composite tube in which a porous layer is lined as a cement-containing lining layer on an inner peripheral surface of a metal tube, and a probe portion is a shaft of the metal composite tube. It may be provided so as to be rotatable inside the metal composite tube with the core as a rotation axis.
  • the layer thickness test apparatus of this invention does not ask
  • the separating portion is on the inner periphery of the metal composite tube (that is, the surface of the lining layer is in the circumferential direction).
  • the moving mechanism which can drive along is included is mentioned.
  • the apparatus for testing a thickness of a metal multilayer body is a metal composite tube in which a porous layer is lined as a cement-containing lining layer on an inner peripheral surface of a metal tube, and a probe portion is a shaft of the metal composite tube.
  • a refracting part that refracts the transmitted ultrasonic wave so as to be incident on the inner surface of the lining layer is provided with the axis of the composite tube as the rotation axis. It may be provided so as to be rotatable.
  • the layer thickness test apparatus for a metal multilayer body of the present invention may be set so that the ultrasonic frequency is 1 MHz or more and 9 MHz or less. This makes it easy to obtain a resolution for separating and detecting the peak in the waveform of the reflected wave intensity with respect to the ultrasonic propagation time. Therefore, it is easy to acquire the thickness of the metal layer more accurately. Since the ultrasonic wave is easily transmitted through the metal layer, the external surface reflected wave is easily obtained in a highly sensitive state.
  • the probe portion may include an ultrasonic probe.
  • the ultrasonic probe is generally an ultrasonic sensor that is housed in a casing by adhering a sound absorbing material and a protective plate to a vibrator having piezoelectric characteristics.
  • the present invention it is possible to provide an ultrasonic inspection apparatus that can freely expand and contract in a tube and an ultrasonic inspection method using the same. Furthermore, according to the present invention, when the measurement target is a composite layer having a porous layer on the surface of the metal layer, it is possible to provide a method capable of obtaining information on the thickness of the metal layer in a non-destructive manner. .
  • FIG. 1 is a schematic front sectional view of an ultrasonic inspection apparatus according to a first embodiment. It is the typical side sectional view and typical side view at the time of diameter reduction of the ultrasonic inspection device concerning a 1st embodiment. It is a typical sectional side view of the principal part containing the detection part of the ultrasonic inspection apparatus concerning 1st Embodiment. It is a typical exploded view of the principal part of FIG.
  • Example 3 is a layer thickness test result obtained in Example 1.
  • 3 is a layer thickness test result obtained in Example 2.
  • 4 is a layer thickness test result obtained in Example 3.
  • 4 is a layer thickness test result obtained in Example 4.
  • 5 is a layer thickness test result obtained in Example 5. It is a layer thickness test result obtained in Example 6. It is a layer thickness test result obtained in Example 7.
  • 10 is a layer thickness test result obtained in Example 8.
  • 10 is a layer thickness test result obtained in Example 9.
  • 3 is a layer thickness test result obtained in Example 11.
  • It is a layer thickness test result obtained in Example 12.
  • It is a layer thickness test result obtained in Reference Example 2.
  • It is a layer thickness test result obtained in Example 13.
  • Example 14 is a layer thickness test result obtained in Example 14.
  • FIG. 1 is a block diagram of an ultrasonic inspection apparatus according to the first embodiment.
  • FIG. 2 is a schematic side cross-sectional view and a schematic side view of the ultrasonic inspection apparatus according to the first embodiment at the time of diameter expansion.
  • the ultrasonic inspection apparatus inserted in the tube is shown, and the inner wall surface L of the tube is indicated by a dashed line in the drawing (the same applies to the following drawings).
  • the main part including the expansion / contraction arm in FIG. 2 is shown in the upper half of a cross section taken along line AA of FIG. 4 to be described later, and the lower half is a schematic view corresponding to the appearance of the main part described as the cross-sectional view.
  • FIG. 3 Shown in FIG. 3 is a schematic front view of the ultrasonic inspection apparatus according to the first embodiment.
  • the front means an external appearance when the ultrasonic inspection apparatus is viewed in the axial direction of the tube from the traveling direction side.
  • FIG. 4 is a schematic front sectional view of the ultrasonic inspection apparatus according to the first embodiment. Specifically, a cross section taken along line BB in FIG. 2 is shown.
  • FIG. 5 is a schematic cross-sectional side view and a schematic side view of the ultrasonic inspection apparatus according to the first embodiment when the diameter is reduced.
  • FIG. 5 is the same as FIG. 2 except that the enlargement / reduction mode is different.
  • the direction of the arrow F (see FIGS. 2 and 5) is the traveling direction, the direction opposite to the arrow F is the retreating direction, and the axis O of the inner wall surface L (see FIGS. 3 and 4). )
  • the axis, and the radial direction of the inner wall surface L may be referred to as the radial direction.
  • the ultrasonic inspection apparatus 100 includes an internal movement unit 110 and an external operation unit 120.
  • the internal movement unit 110 and the external operation unit 120 are physically and electrically connected by a cable 130.
  • the internal moving part 110 is a part that is inserted into the pipe and travels in the axial direction of the pipe, and includes a cylindrical part (shaft part) 200, an air cylinder 300, an expansion / contraction arm 400, and a wheel 500.
  • the internal moving unit 110 includes a hollow shaft motor 610, a direction changing unit 620, and a detecting unit 700.
  • the internal movement unit 110 will be described in detail with reference to FIGS. 2 to 5, and the detection unit 700 will be described in detail with reference to FIGS. 2, 3, 6, and 7. In these drawings, the illustration of the cable 130 connected to the internal moving unit 110 is omitted.
  • the external operation unit 120 is a part that is operated outside the pipe, and includes an input / output unit such as an expansion / contraction control unit 121, a motor control unit 122, a direction control unit 123, and a detection condition control unit 124, a detection information analysis unit 125, and an output. Part 126.
  • the expansion / contraction control unit 121 controls expansion / contraction of the air cylinder 300.
  • a sequencer for controlling a solenoid valve (described later) which is one of the components constituting the air cylinder 300 can be cited.
  • the motor control unit 122 controls the traveling speed of the wheels 500.
  • the motor control unit 122 controls the hollow shaft motor 610.
  • the direction control unit 123 converts the traveling direction of the wheel 500.
  • the detection condition control unit 124 controls the detection unit 700 such as control of input information such as measurement conditions and feedback control based on output information such as measurement results.
  • the detection information analysis unit 125 analyzes output information from the detection unit 700.
  • the output unit 126 outputs information output by the detection unit 700.
  • the internal movement part 110 has the cylinder part 200 in the front view center.
  • the cylindrical portion 200 extends in the axial direction of the inner wall surface L of the tube, and includes a shaft housing portion 210 and a connecting member 220 provided on the outer peripheral surface of the shaft housing portion 210.
  • a desired member can be accommodated in the shaft housing part 210.
  • related parts (described later) of the air cylinder 300 can be accommodated.
  • the direction changer 620 and the cable 130 shown in FIG. 1 can be accommodated.
  • the connecting member 220 connects the cylindrical portion 200 and other members.
  • the air cylinder 300 and the expansion / contraction arm 400 are connected.
  • the connecting member 220 is provided in a manner corresponding to the expansion / contraction mechanism of the expansion / contraction arm 400.
  • the connecting member 220 is fixed to the sliding ring 221 provided so as to be slidable in the axial direction on the outer peripheral surface of the shaft housing portion 210 and the outer peripheral surface of the shaft housing portion 210.
  • Fixing rings 222, 223, and 225 In the axial direction, a fixing ring 223, a fixing ring 225, a sliding ring 221 and a fixing ring 222 are provided in this order from the traveling direction F side.
  • the sliding ring 221 is pivotally attached to the base of the expansion / contraction arm 400. Thereby, the base part of the expansion-contraction arm 400 is connected in the state which can rotate freely and can move to an axial direction.
  • the fixing rings 222 and 223 also pivotally attach to the base of the expansion / contraction arm 400. Thereby, the base part of the expansion-contraction arm 400 is connected in the state fixed rotatably.
  • the fixing ring 225 fixes the air cylinder 300 so as to hold it.
  • the air cylinder 300 is an actuator that is driven using the pressure of air. Accordingly, the piston 310, the cylinder 320, and other related parts (not shown) are included. Related parts include parts necessary for air circulation, specifically, air piping and a compressed air source. Other related parts include parts necessary for operation, specifically, a speed controller that adjusts the speed, a sensor that detects the piston position, and a solenoid valve that switches the direction of air.
  • the air cylinder 300 is arranged so as to extend in the axial direction as shown in FIG. Thereby, the expansion / contraction direction of the air cylinder 300 becomes the axial direction.
  • a portion of the cylinder 320 is fixed to the fixing ring 225, while the rod 311 of the piston 310 of the air cylinder 300 is fixed to the sliding ring 221. Therefore, the sliding ring 221 slides in the axial direction by the expansion / contraction operation of the air cylinder 300, and thereby the expansion / contraction arm 400 connected to the sliding ring 221 can be operated as will be described in detail later.
  • the expansion / contraction arm 400 is connected to the connecting member 220 of the cylindrical portion 200, thereby projecting in the radial direction around the axial center of the cylindrical portion 200, that is, in the radial direction of the tube.
  • a wheel 500 is provided at the tip of the expansion / contraction arm 400, that is, the portion of the expansion / contraction arm 400 that is farthest from the cylindrical portion 200.
  • three sets of the expansion / contraction arm 400 and the wheel 500 are provided so as to be equally spaced around the axis.
  • the expansion / contraction arm 400 includes a main arm piece 411, a link arm piece 412, a sub arm piece 413, and a synchronization arm piece 414. Together with the connecting member 220 and the air cylinder 300, they constitute a link mechanism that links the expansion / contraction operation of the air cylinder 300 with the expansion / contraction operation of the expansion / contraction arm 400.
  • the main arm piece 411, the link arm piece 412, the sub arm piece 413, and the synchronization arm piece 414 are provided in pairs at both ends of the axle 500 so as to hold the axle of the wheel 500.
  • a free space S is formed between the arm pieces.
  • the main arm piece 411 can be rotated so that the angle with respect to the shaft center changes with the base end portion being pivotally attached to the sliding ring 221. Since the distal end portion of the main arm piece 411 is connected to the wheel 500 via the synchronous arm piece 414 as will be described later, the amount of separation of the wheel 500 from the cylinder portion 200 is physically defined by the rotation operation.
  • the base arm position of the main arm piece 411 can move in the axial direction as the sliding ring 221 moves in the axial direction.
  • the slide ring 221 fixes the rod 311 of the air cylinder 300 as described above. That is, the base end position of the main arm piece 411 moves with the expansion / contraction operation of the air cylinder 300.
  • the distal end portion of the link arm piece 412 is rotatably fixed between the distal end portion and the proximal end portion of the main arm piece 411.
  • the link arm piece 412 is pivotally attached to the fixing ring 222 at the base end portion on the retreat direction side with respect to the fixing position of the tip end portion. Accordingly, the link arm piece 412 rotates in the direction opposite to the main arm piece 411 around the axis-attached portion according to the change in the relative position with the base end portion of the main arm piece 411, and the distal end of the main arm piece 411 The part is operated so as to be close to or away from the cylindrical part 200.
  • the sub arm piece 413 has the same shape and size as the main arm piece 411, and the base end portion is pivotally attached to the fixing ring 223, so that the sub arm piece 413 can perform the same rotation operation as the main arm piece 411. Further, the distal end portion of the sub arm piece 413 is connected to a synchronous arm piece 414 to which the distal end portion of the main arm piece 411 is rotatably fixed so as to be rotatable and slidable in the axial direction. Therefore, the sub arm piece 413 rotates by the synchronization arm piece 414 in synchronization with the rotation operation of the main arm piece 411.
  • the synchronous arm piece 414 maintains a posture substantially parallel to the axial center throughout the operation. Since the wheels 500 are provided at both ends of the synchronization arm piece 414 in the axial center direction, both wheels 500 can reliably contact the inner wall surface L parallel to the axial center. Other members (not shown) related to the wheel 500, such as a driving device and a suspension, may be provided.
  • the main arm piece 411 is operated so that the sub arm piece 413 similarly occurs via the synchronous arm piece 414.
  • the expansion / contraction arm 400 is expanded in the direction of the arrow SU, and a load is applied to stretch the wheels 500 provided at both ends of the synchronization arm piece 414 with respect to the inner wall surface L.
  • the air cylinder 300 is synchronously extended in all the expansion / contraction arms 400 provided to the cylinder portion 200 by the operation of the expansion / contraction control unit 121 (see FIG. 1), the degree of expansion in all the expansion / contraction arms 400 And the expansion timing becomes substantially equal.
  • the center of the cylindrical portion 200 is aligned so as to substantially coincide with the axis of the inner wall surface L.
  • the expansion / contraction control unit 121 (see FIG. 1) is operated to reduce the air cylinder 300 in the direction of arrow C. Accordingly, the sliding ring 221 moves in the same direction as the arrow C, so that the base end position of the main arm piece 411 also moves in the same direction as the arrow C. As a result, the space between the base end portion of the main arm piece 411 and the base end portion of the link arm piece 412 expands, so that the link arm piece 412 tilts the tip end portion in the direction close to the cylindrical portion 200 and the main arm piece 411. Is tilted in the direction of approaching the tube part 200.
  • the operation of the main arm piece 411 causes the sub arm piece 413 to be similarly moved down via the synchronous arm piece 414.
  • the expansion / contraction arm 400 is contracted in the direction of the arrow SD.
  • the expansion / contraction arm 400 applies a load that causes the wheels 500 provided at both ends of the synchronization arm piece 414 to be stretched against the inner wall surface L.
  • the expansion / contraction arm 400 when the expansion / contraction arm 400 is reduced to the minimum as shown in FIG. 5, a part of the air cylinder 300 is accommodated in the free space S (see FIG. 4) formed in the expansion / contraction arm 400. That is, the presence of the air cylinder 300 does not hinder the diameter reduction. For this reason, when the expansion / contraction arm 400 is reduced to the minimum, the size of the ultrasonic inspection apparatus 100 in the radial direction can be made compact.
  • Such expansion / contraction of the expansion / contraction arm 400 is performed by remotely operating the expansion / contraction operation of the air cylinder 300 by the expansion / contraction control unit 121 (see FIG. 1) of the external operation unit 120. Is free. Thereby, even in a portion where the change in the diameter of the inner wall surface L is large, the diameter can be positively reduced and expanded according to the change in the diameter of the inner wall surface L. Furthermore, the direction change in cheese-shaped piping is also facilitated.
  • a hollow shaft motor 610 housed in a housing 800 and a detection unit 700 are disposed at the end of the cylindrical part 200 on the traveling direction F side.
  • the hollow shaft motor 610 includes a rotating hollow rotating member 611 and a non-rotating non-rotating member 612, and the detection unit 700 includes an ultrasonic probe 710 and an acoustic reflection unit 720.
  • the hollow rotating member 611 has a circular pipe shape with a through hole 615 for securing a hollow portion, and is disposed coaxially with the axis O of the cylindrical portion 200.
  • the non-rotating member 612 has a substantially square block shape with a through hole corresponding to the outer surface of the hollow rotating member 611, and the hollow rotating member 611 can be rotated by passing the hollow rotating member 611 through the through hole. Go to. Further, fixing screw holes are recessed in the vicinity of the four corners of the substantially square of the non-rotating member 612.
  • the housing portion 800 that accommodates the hollow shaft motor 610 includes a casing member 810 that opens on the retracting direction side, and a casing cover member 820 that closely fits the opening portion. A close fitting portion between the casing member 810 and the casing cover member 820 is sealed with a gasket.
  • the casing member 810 and the casing cover member 820 have a through hole 813 and a through hole 822 that are coaxial with the axis O, respectively.
  • the casing cover member 820 is provided with a cable hole 826 that allows the motor cable 136 of the hollow shaft motor 610 to pass therethrough, and the motor cable 136 is wired from the inside of the housing portion 800 to the outside.
  • the casing cover member 820 has a screw hole at a position corresponding to a fixing screw hole provided in the non-rotating member 612 of the hollow shaft motor 610, and the non-rotating member 612 is fixed by screwing. (Refer to the lower half of FIG. 6).
  • a probe fixing member 750 is further screwed and fixed to the casing cover member 820 fixed to the non-rotating member 612 in this way (see the upper half of FIG. 6).
  • the probe fixing member 750 is provided with a through hole 755 that is coaxial with the axis O and has a diameter that allows the ultrasonic probe 710 to be fitted therein.
  • the ultrasonic probe 710 is fixed by fitting the ultrasonic probe 710 into the screw.
  • the ultrasonic probe 710 is fixed to the non-rotating member 612 of the hollow shaft motor 610 via the probe fixing member 750 and the casing cover member 820. In this case, as shown in FIG.
  • the ultrasonic wave propagation part 712 of the ultrasonic probe 710 also penetrates through the through hole 822 of the casing cover member 820, and the end on the traveling direction side is a hollow shaft in the housing part 800.
  • the motor 610 is inserted until it reaches the inside of the through hole 615 (inside the hollow portion). Thereby, the length of the ultrasonic inspection apparatus in the axis O direction can be shortened.
  • the probe cable 137 of the ultrasonic probe 710 is wired into the shaft housing 210 (see FIG. 2).
  • the ultrasonic probe 710 fixed as described above is coaxial with the axis O, the ultrasonic wave transmitted from the transmitting unit 711 and propagated in the ultrasonic propagating unit 712 is transmitted to the axis O. It is transmitted in the traveling direction so that the sound axes coincide.
  • an acoustic reflection unit 720 for changing the propagation direction of the transmitted ultrasonic wave is provided on the traveling direction side of the fixed ultrasonic probe 710 in a rotatable manner.
  • the acoustic reflection unit 720 includes a reflection member 721 and a rotation holder 724 to which the reflection member 721 is attached.
  • the rotating holder 724 is a cylindrical member having a large-diameter cylindrical portion 725 on the traveling direction side into which the reflecting member 721 is inserted and a small-diameter cylindrical portion 726 on the retracting direction side fixed to the hollow rotating member 611 (FIG. 7). reference). As shown in FIG. 6, the rotation holder 724 passes through the through hole 813 of the casing member 810 and is inserted into the housing portion 800. It is inserted. In this case, the insertion amount of the rotating holder 724 is such that the locking surface 729 formed at the boundary between the large diameter cylindrical portion 725 and the small diameter cylindrical portion 726 contacts and locks the end surface on the traveling direction side of the hollow rotating member 611.
  • the end of the small-diameter tubular portion 726 on the retracting direction side is loosely inserted into the through hole of the casing cover member 820, and the end face of the end and the contact surface 751 of the probe fixing member 750 are inserted.
  • a clearance (for example, a gap of 0.1 mm or more and 0.5 mm or less) is generated between the two.
  • the ultrasonic wave propagation portion 712 of the ultrasonic probe 710 is loosely inserted into the small diameter cylindrical portion 726.
  • the rotation holder 724 is fixed to the hollow rotation member 611 by the small diameter cylindrical portion 726 being fitted into the through hole 615 of the hollow rotation member 611, so that the rotation of the hollow rotation member 611 is performed. It can be rotated integrally with driving.
  • a loose groove portion between the large-diameter cylindrical portion 725 of the rotary holder 724 and the through hole 813 of the casing member 810 has a packing groove 811 (see FIG. 7) formed in the through hole 813.
  • the packing is fitted in the packing groove 824 formed in the through hole 822.
  • the packing may be any sealing material for rotational movement, and an oil seal is an example.
  • the housing portion 800 and the ultrasonic probe 710 can be rotated freely while being rotatable integrally with the hollow rotating member 611.
  • the non-rotating state can be maintained together with the non-rotating member 612 without transmitting the rotational driving of the member 611.
  • the reflection member 721 that is fixedly inserted and fixed to the opening end of the large-diameter cylindrical portion 725 of the rotary holder 724 has an inclined surface 723 that can reflect ultrasonic waves on the regression direction side.
  • the inclined surface 723 is formed so as to form 45 degrees with respect to the axis O in a side view, and is transmitted from the ultrasonic probe 710 in the direction of the axis O within the large-diameter cylindrical portion 725.
  • the reflected ultrasonic wave is reflected on the axis O and its propagation direction is changed vertically.
  • the material of the reflecting member 721 on the inclined surface 723 has a large acoustic impedance value relative to the acoustic impedance value of the ultrasonic propagation medium (water in this embodiment) from the ultrasonic probe 710. It is comprised from the metal material, resin material, ceramic material, etc. which have a difference.
  • An exit hole 727 serving as an exit to the outside of the ultrasonic wave whose propagation direction is changed by the inclined surface 723 is provided on a side surface of the large diameter cylindrical portion 725 of the rotary holder 724.
  • the ultrasonic wave transmitted from the ultrasonic probe 710 is changed in propagation direction by the inclined surface 723, propagates outside through the exit hole 727, and passes through the tube.
  • the inclined surface 723 of the reflecting member 721 also rotates integrally.
  • the incident position can be rotated and moved along the circumferential direction of the tube while maintaining the incident angle to the inner wall L of the tube. Therefore, the inner wall surface L in the circumferential direction of the tube can be scanned evenly.
  • a one-turn sensor 770 is provided inside the housing unit 800.
  • the single rotation sensor 770 includes a position marker 771 fixed to the hollow rotation member 611 and a sensor 772 fixed to the casing cover member 820.
  • the position marker 771 is detected by a sensor 772 such as a permanent magnet, and rotates together with the hollow rotating member 611.
  • the sensor 772 is a sensor selected according to the characteristics of the position marker 771 such as a Hall element, and the non-rotating state is maintained together with the non-rotating member 612.
  • the sensor 772 detects when the position of the rotating position marker 771 coincides with the position shown in the figure, thereby detecting the time for one rotation of the hollow rotating member 611.
  • a more detailed position marker position can be derived from the detection timing (period T) of the sensor 772 and the rotation time ( ⁇ T) of the position marker 771.
  • FIG. 8 is a schematic rear view of the ultrasonic inspection apparatus according to the second embodiment.
  • the back surface means an external appearance when the device is viewed from the regression direction side in the axial direction of the tube.
  • FIG. 9 is a schematic partial cross-sectional view of the ultrasonic inspection apparatus according to the second embodiment at the time of diameter expansion. 9 schematically shows a cross section taken along the line DD of FIG. 8, and the hollow shaft motor 610, the detection unit 700, and the housing unit 800 are omitted because they are the same as those in the first embodiment.
  • FIG. 10 is a schematic partial side sectional view of the ultrasonic inspection apparatus according to the second embodiment when the diameter is reduced. FIG. 10 is displayed in the same manner as FIG. 9 except that the enlargement / reduction mode is different.
  • the internal movement part 110a of the ultrasonic inspection apparatus 100a shown in FIGS. 8 to 10 includes an expansion / contraction arm 400a having a link mechanism different from that of the first embodiment, and an auxiliary wheel 510a.
  • the connecting member 220a is provided in a manner corresponding to the expansion / contraction arm 400a.
  • the connecting member 220a includes the sliding ring 221a provided so as to be slidable in the axial direction on the outer peripheral surface of the shaft housing portion 210, and the outer peripheral surface of the shaft housing portion 210 of the cylindrical portion 200a.
  • fixing rings 224a and 225a are provided in the axial direction.
  • a fixing ring 224a, a sliding ring 221a, and a fixing ring 225a are provided in this order from the traveling direction F side.
  • the air cylinder 300 is fixed to the fixing ring 225a, and the rod 311 is fixed to the sliding ring 221a. Therefore, the sliding ring 221a slides in the axial direction by the expansion / contraction operation of the air cylinder 300, and thereby the expansion / contraction arm 400a connected to the sliding ring 221a can be operated as will be described in detail later.
  • the expansion / contraction arm 400a includes a main arm piece 411a and a link arm piece 412a having a shorter length than the main arm piece 411a. Together with the connecting member 220a and the air cylinder 300, these constitute a link mechanism that links the expansion / contraction operation of the air cylinder 300 with the expansion / contraction operation of the expansion / contraction arm 400a.
  • the main arm piece 411a can be rotated so that the angle ⁇ with respect to the shaft center changes with the base end portion being pivotally attached to the fixing ring 224a. Since the wheel 500a is connected to the tip of the main arm piece 411a, the amount of separation of the wheel 500a from the cylindrical portion 200a is physically defined by the rotation operation.
  • the angle ⁇ should not exceed 90 degrees. Furthermore, it may be 60 degrees or less or 45 degrees or less from the viewpoint of stability of the ultrasonic inspection apparatus 100a when the diameter of the expansion / contraction arm 400a is expanded most.
  • the distal end portion of the link arm piece 412a is rotatably fixed between the distal end portion and the proximal end portion of the main arm piece 411a.
  • the link arm piece 412a is pivotally attached to the sliding ring 221a at the base end portion on the traveling direction F side from the fixed position of the tip end portion.
  • the link arm piece 412a rotates in the same direction as the main arm piece 411 around the pivoted portion in accordance with a change in the relative position with the base end of the main arm piece 411a, and the tip of the main arm piece 411a.
  • the part is operated so as to be close to or away from the cylindrical part 200a.
  • the main arm piece 411a has a pair of auxiliary wheels 510a.
  • the pair of auxiliary wheels 510a is pivotally attached between the base end portion and the tip end portion, in the vicinity of the base end portion in the present embodiment.
  • the auxiliary wheel 510a has a wheel shaft that can slide in the short direction of the main arm piece 411a, and is biased in a direction that is exposed from the main arm piece 411a to the inner wall surface L side in a side view.
  • the wheel axle slides against the urging force when the tip of the main arm piece 411a is close to the cylindrical portion 200a and the auxiliary wheel 510a contacts the inner wall surface L.
  • the air cylinder 300 is synchronously contracted in all of the expansion / contraction arms 400a provided for the cylindrical portion 200a by the operation of the expansion / contraction control unit 121 (see FIG. 1), the degree of expansion in all the expansion / contraction arms 400a. And the expansion timing becomes substantially equal.
  • the axis of the cylindrical portion 200a is aligned so as to substantially coincide with the axis of the inner wall surface L.
  • the expansion / contraction control unit 121 when the diameter is reduced (when the diameter is reduced to the minimum), the expansion / contraction control unit 121 (see FIG. 1) is operated to extend the air cylinder 300 in the direction of arrow E. Accordingly, the sliding ring 221a moves in the same direction as the arrow E, so that the base end position of the link arm piece 412a also moves in the same direction as the arrow E. As a result, the space between the base end portion of the link arm piece 412a and the base end portion of the main arm piece 411a is narrowed, so that the link arm piece 412a tilts the tip end portion in the direction close to the cylindrical portion 200a and the main arm piece 411a. Is tilted in a direction approaching the tube portion 200a. As a result, the expansion / contraction arm 400a is contracted in the direction of the arrow SD. In this case as well, the expansion / contraction arm 400a applies a load that stretches the wheel 500a against the inner wall surface L.
  • the air cylinder 300 is synchronously extended in all the expansion / contraction arms 400a provided to the cylindrical portion 200a by the operation of the expansion / contraction control unit 121 (see FIG. 1), the degree of reduction and The timing of reduction becomes substantially equal. Also by such a reduction operation of the expansion / contraction arm 400a, the axis of the cylindrical portion 200a is aligned so as to substantially coincide with the axis of the inner wall surface L.
  • the arm pieces constituting the expansion / contraction arm 400a are folded until they are parallel to the axis.
  • the auxiliary wheel 510a provided in the vicinity of the base end portion of the main arm piece 411a comes into contact with the inner wall surface L, so that the ultrasonic inspection apparatus 100a is balanced.
  • the air cylinder 300 is accommodated in a free space Sa (see FIG. 8) formed in the expansion / contraction arm 400a. That is, the presence of the air cylinder 300 does not hinder the diameter reduction. For this reason, when the expansion / contraction arm 400a is reduced to the minimum, the size of the ultrasonic inspection apparatus 100a in the radial direction can be made compact.
  • FIG. 11 is a schematic front view of an ultrasonic inspection apparatus according to the third embodiment.
  • FIG. 12 is a schematic sectional side view of an ultrasonic inspection apparatus according to the third embodiment.
  • FIG. 12 shows a cross section taken along line EE of FIG.
  • the internal movement part 110b of the ultrasonic inspection apparatus 100b shown in FIGS. 11 and 12 has the same expansion / contraction arm 400b and wheel 500b as the expansion / contraction arm 400a and the wheel 500a of the second embodiment except that the auxiliary wheel 510a is not provided.
  • the expansion / contraction arm 400b is projecting radially from the axial center of the cylindrical portion 200b by being connected to the connecting member 220b of the cylindrical portion 200b.
  • a wheel 500b is provided at the distal end of the expansion / contraction arm 400b, that is, the portion of the expansion / contraction arm 400b that is farthest from the cylindrical portion 200b.
  • FIG. 11 six sets of expansion / contraction arms 400b and wheels 500b are provided at equal intervals around the axis. As shown in FIG. 12, adjacent expansion / contraction arms 400b are arranged so that the directions in the axial direction are staggered. For this reason, the wheel 500b is always in contact with the inner wall surface L on both the traveling direction F side and the facing direction side. Therefore, the ultrasonic inspection apparatus 100b can always be stably held in the tube.
  • the expansion / contraction arm 400b includes a main arm piece 411b and a link arm piece 412b having a shorter length than the main arm piece 411b, and these, together with the connecting member 220b and the air cylinder 300, are combined with the air cylinder 300. It is the same as that in the internal movement part 110a of 2nd Embodiment to comprise the link mechanism which links this expansion-contraction operation
  • FIG. 13 is a schematic partial cross-sectional view of the ultrasonic inspection apparatus according to the fourth embodiment at the time of diameter expansion.
  • FIG. 14 is a schematic partial side sectional view of the ultrasonic inspection apparatus according to the fourth embodiment when the diameter is reduced.
  • the expansion / contraction arm 400c, its constituent arm pieces (the main arm 411c and the link arm 412c), the wheel 500c, and the free space Sc are respectively an ultrasonic inspection apparatus 100b according to the third embodiment.
  • the shaft housing part 210 and the air cylinder 300 of the ultrasonic inspection apparatus 100b according to the third embodiment there are a shaft housing part 210c and an air cylinder 300c, respectively.
  • a fixing ring 224c, a sliding ring 221c, a sliding ring 226c, and a fixing ring 227c are provided from the traveling direction side.
  • the fixing rings 224c and 227c are fixed to the shaft housing portion 210c, and the sliding rings 221c and 226c are provided so as to be slidable on the surface of the shaft housing portion 210c in the axial direction.
  • the shaft housing portion 210c constitutes a part of an air cylinder 300c (air tank 330c) described later.
  • the base end portion of the main arm piece 411c is pivotally attached to the fixing ring 224c.
  • the base end portion of the link arm piece 412c is pivotally attached to a sliding ring 221c that is provided on the retraction direction side of the fixed ring 224c and can be manually operated in the axial direction.
  • Each of the sliding ring 221c and the fixed ring 224c has a shaft attachment portion of a link arm piece 412c and a main arm piece 411c, and both constitute a part (following portion 340c) of an air cylinder 300c described later. Is formed.
  • the air cylinder 300c includes an air tank 330c, a follower 340c, and an auxiliary spring 350c.
  • the air tank 330c is used to send and discharge air serving as an operation source of the expansion / contraction arm 400c, and is configured by the shaft housing portion 210c.
  • An air tube (not shown) for sending and discharging air is connected to the air tank 330c.
  • the follower 340c constitutes an expansion / contraction mechanism so that the operation follows as air is fed into the air tank 330c and discharged from the air tank 330c. That is, the expansion / contraction operation of the air cylinder 300c is caused by the expansion / contraction operation of the follower 340.
  • the follower 340c includes a sliding ring 221c and a fixed ring 224c. More specifically, the sliding ring 221c has a housing portion that opens in the traveling direction F side, the fixing ring 224c has an extending portion that extends in the backward direction, and the inner peripheral side surface of the sliding ring 221c. The outer peripheral surface of the extending portion of the fixing ring 224c is slidably adhered to the extension ring 224c to constitute an expansion / contraction mechanism. Furthermore, the space AR in the housing portion and the space in the air tank 330c communicate with each other through a communication hole provided in the air tank 300c. As a result, the air supply to the air tank 330c and the air discharge operation from the air tank 330c change the volume of the space AR in the housing part and cause the follow-up part 340c to expand and contract.
  • the fixed ring 224c may be referred to as a fixed portion 324c of the air cylinder 300c
  • the sliding ring 221c may be referred to as a movable portion 321c of the air cylinder 300c.
  • the auxiliary spring 350c is provided on the retreating direction side of the sliding ring 221c so as to extend in the axial direction, and one is fixed to the sliding ring 226c and the other is fixed to the fixing ring 227c. Further, since the sliding ring 221c and the sliding ring 226c are fixed to each other, the auxiliary spring 350c moves as the sliding ring 221c moves.
  • the space between the link arm piece 412c and the main arm piece 411c is widened, so that the link arm piece 412c raises its distal end portion in a direction away from the cylindrical portion 200c and the main arm piece 411c is separated from the cylindrical portion 200c.
  • the expansion / contraction arm 400c is expanded in the direction of the arrow SU, and a load is applied to stretch the wheel 500c provided at the tip of the main arm piece 411c against the inner wall surface L.
  • the auxiliary spring 350c contracts with the movement of the sliding ring 226c. It is the same as that of the above-mentioned embodiment that it is diameter-expanded in the state aligned so that the axial center of the cylinder part 200c may correspond with the axial center of the inner wall surface L substantially.
  • the expansion / contraction control unit 121 (see FIG. 1) is operated to discharge air from the air tank 330c of the air cylinder 300c.
  • the air in the space AR moves in the communication hole of the air tank 330c in the direction of the arrow FL in the figure, and the air is discharged from the space AR.
  • the movable portion 321c moves together with the sliding ring 226c, the base end position of the link arm piece 412c moves in the traveling direction.
  • a force is applied to the movable portion 321c to return the auxiliary spring 350c that has contracted due to the diameter expansion, so that the sliding operation occurs smoothly.
  • the space between the link arm piece 412c and the main arm piece 411c is narrowed, so that the link arm piece 412c tilts the tip portion in a direction close to the cylindrical portion 200c and the main arm piece 411c approaches the cylindrical portion 200c. knock down.
  • the expansion / contraction arm 400c is reduced in the direction of the arrow SD.
  • the expansion / contraction arm 400c gives a load that stretches the wheel 500c against the inner wall surface L.
  • the diameter is reduced in a state in which the axis of the cylindrical portion 200c is aligned so as to substantially coincide with the axis of the inner wall surface L.
  • the auxiliary spring 350c is accommodated in the free space Sc formed in the expansion / contraction arm 400c. That is, the presence of the auxiliary spring 350c does not hinder the diameter reduction. For this reason, when the expansion / contraction arm 400c is reduced to the minimum, the size of the ultrasonic inspection apparatus 100c in the radial direction can be made compact.
  • the auxiliary spring 350c is disposed on the side opposite to the fixed ring 224c with respect to the sliding ring 221c in the axial direction.
  • the present invention is not limited to this embodiment.
  • the auxiliary spring 350c may be disposed in a state where both ends are fixed between the fixed ring 224c and the sliding ring 221c. In this case, when the diameter is expanded, the auxiliary spring is extended, and when the diameter is reduced, the returning operation of the expansion / contraction arm 400c can be assisted by the return force of the extended auxiliary spring.
  • FIG. 15 is a schematic partial cross-sectional view of the ultrasonic inspection apparatus according to the fifth embodiment at the time of diameter expansion.
  • FIG. 16 is a schematic partial cross-sectional view of an ultrasonic inspection apparatus according to the fifth embodiment.
  • FIG. 17 is a schematic partial cross-sectional view of the ultrasonic inspection apparatus according to the fifth embodiment when the diameter is reduced.
  • An ultrasonic inspection apparatus 100d shown in FIGS. 15 to 17 is a modification of the ultrasonic inspection apparatus 100c according to the fourth embodiment.
  • the expansion / contraction arm 400d and its constituent arm pieces main arm 411d and link arm 412d
  • wheel 500d shaft housing part 210d
  • fixing ring 224d fixing part 324d
  • sliding ring 221d Movable part 321d
  • sliding ring 216d air cylinder 300d and its constituent members
  • air tank 330d, follow-up part 340d, auxiliary spring 350d free space Sd
  • Expansion / contraction arm 400c and its constituent arm pieces (main arm 411c and link arm 412c), wheel 500c, shaft housing part 210c, fixed ring 224c (fixed part 324c), sliding ring 221c (movable part 321c) in internal moving part 110c , Sliding ring 21 c, air cylinder 300c and its components (air tank 330c, tracking unit 340 c, the auxiliary spring 350c), the same as the free space Sc.
  • a sliding ring 228d and a fixing ring 229d are provided instead of the fixing ring 227c of the ultrasonic inspection apparatus 100c according to the fourth embodiment.
  • the other end of the auxiliary spring 350d is fixed, and the sliding ring 228d is provided so as to be slidable on the surface of the shaft housing portion 210 in the axial direction.
  • the fixing ring 229d is fixed to the shaft housing part 210.
  • FIG. 16A and FIG. 16B illustrate a case where the diameter is further expanded from the state of FIG.
  • the fixing ring 229d has an abutting wall 229Hd that abuts the end wall 228Hd on the retracting direction side of the sliding ring 228d.
  • the expansion / contraction control unit 121 see FIG. 1
  • the auxiliary spring 350d is also the same.
  • the end wall 228Hd of the sliding ring 228d on the retreating direction side abuts against the contact wall 229Hd.
  • the other end of the auxiliary spring 350d is fixed.
  • the movable portion 321d may further move in the direction of the arrow in the drawing as shown in FIG. 16 (b).
  • the expansion / contraction arm 400d is reduced in the direction of the arrow SD in the aligned state as in the fourth embodiment. Get up.
  • the auxiliary spring 350d moves in the traveling direction F along with the movement of the sliding rings 226c and 228d.
  • FIG. 18 is a schematic partial cross-sectional view of the ultrasonic inspection apparatus according to the sixth embodiment at the time of diameter expansion.
  • FIG. 19 is a schematic partial cross-sectional view of the ultrasonic inspection apparatus according to the sixth embodiment when the diameter is reduced.
  • the expansion / contraction arm 400e and its constituent arm pieces (main arm 411 piece e and link arm piece 412e), wheels 500e, and free space Se are ultrasonic waves according to the third embodiment.
  • This is the same as the expansion / contraction arm 400b and its constituent arm pieces (main arm 411b and link arm 412b), wheels 500b, and free space Sb in the internal moving part 110b of the inspection apparatus 100b.
  • a shaft housing part 210e and an air cylinder 300e are provided instead of the shaft housing part 210e and an air cylinder 300e are provided.
  • a fixing ring 224e and a sliding ring 221e are provided from the traveling direction F side as the connecting member 220e.
  • the fixing ring 224e is fixed to the shaft housing portion 210e, and the sliding ring 221e is provided so that the shaft housing portion 210e can slide in the axial direction.
  • the base end portion of the main arm piece 411e is pivotally attached to the fixing ring 224e.
  • the base end portion of the link arm piece 412e is pivotally attached to the sliding ring 221e.
  • a part of the shaft housing portion 210e constitutes the air cylinder 300e.
  • the end portion of the shaft housing portion 210e forms a cylinder portion, and a piston portion 321e that slides in the axial direction so as to be able to contact the inner peripheral wall of the cylinder portion is a slit formed on the side surface of the shaft housing portion 210e. It continues to the sliding ring 221e through the hole. As a result, the sliding ring 221e can move together with the movement of the piston portion 321e.
  • An auxiliary spring 350e extending in the axial direction is provided between the fixing ring 224e and the sliding ring 221e.
  • One end of the auxiliary spring 350e is fixed to the fixing ring 224e and the other end is fixed to the sliding ring 221e. . For this reason, the auxiliary spring 350e expands and contracts with the movement of the sliding ring 221e.
  • the expansion / contraction arm 400e is reduced in the direction of the arrow SD in the aligned state as in the third embodiment. Get up.
  • the auxiliary spring 350e applies a force to the piston portion 321e to return the auxiliary spring 350c that has been extended by the diameter expansion, so that the diameter reducing operation smoothly occurs.
  • the auxiliary spring 350e is accommodated in the free space Se as in the third embodiment.
  • the auxiliary spring 350e is disposed between the fixed ring 224e and the sliding ring 221e.
  • the present invention is not limited to this mode.
  • the auxiliary spring 350e may be disposed on the side opposite to the fixed ring 224e with respect to the sliding ring 221e in the axial direction.
  • one of the auxiliary springs is fixed to the sliding ring 221e, and the other is fixed to the outer peripheral portion of the cylindrical portion 200e.
  • the auxiliary spring contracts, and when the diameter is contracted, the returning operation of the expansion / contraction arm 400e can be assisted by the return force of the contracted auxiliary spring.
  • FIG. 20 is a schematic partial side view of an ultrasonic inspection apparatus according to the seventh embodiment.
  • FIG. 21 is a schematic front view of an ultrasonic inspection apparatus according to the seventh embodiment.
  • Each part (internal movement part 110i, expansion / contraction arm 400i, wheel 500i) which comprises the ultrasonic inspection apparatus 100i shown in FIG. 20 is each part (internal movement part 110e, expansion / contraction arm 400e, etc.) of the ultrasonic inspection apparatus e concerning 6th Embodiment. It is the same as the wheel 500e).
  • wheels 850 are provided on the casing 800i.
  • the ultrasonic inspection apparatus 100i is in a state in which the expansion / contraction arm 400i is contracted to a minimum.
  • the wheel 850 provided in the housing portion 800i is in contact with the inner wall surface L, the ultrasonic inspection apparatus 100i in the inner wall surface L is stably held.
  • FIG. 22 is an external view of the ultrasonic inspection apparatus 100e ′ according to the eighth embodiment at the time of diameter expansion.
  • FIG. 23 is an external view of a cable portion of the ultrasonic inspection apparatus 100e ′, and
  • FIG. 24 is an external view of the ultrasonic inspection apparatus 100e ′ when the diameter is reduced.
  • 25 is a cross-sectional view taken along line FF in FIG.
  • Each part (internal movement part 110e ', cylinder part 200e', shaft housing part 210e ', sliding ring 221e', fixing ring 224e ', air cylinder 300e', auxiliary spring constituting the ultrasonic inspection apparatus 100e 'shown in FIG. 350e '(omitted in the broken line illustration), expansion / contraction arm 400e', main arm piece 411e ', link arm piece 412e', wheel 500e ') are each part (internal movement part 110e) of the ultrasonic inspection apparatus e according to the sixth embodiment.
  • the ultrasonic inspection apparatus 100e is the same as each part of the ultrasonic inspection apparatus 100e, except that each part is changed to a size suitable for further compaction and the like.
  • the cable 130 includes an air cable 133 communicating with the air cylinder 300 e ′, a motor cable 136 of the hollow shaft motor 610, and a probe cable 137 of the ultrasonic probe 710.
  • the air cable 133 is wired outside from the end surface in the retraction direction of the shaft housing portion 210 e ′.
  • the motor cable 136 exiting from the housing 800 is wired along the cylinder part 200e 'in the backward direction.
  • the probe cable 137 passes through the shaft housing 210e 'and is inserted into the air cable 133 wired from the end surface in the backward direction.
  • the motor cable 136 and the air cable 133 into which the probe cable 137 is inserted are connected to the motor cable 136 and the probe in the air cable 134 that communicates with the air cable 133 via the repeater 135. Rewiring is performed with both of the tentacle cables 137 inserted.
  • the air cable 134 is connected to the compressor.
  • a flexible resin tube may be used as a material for the air cable 134.
  • a flexible shaft body such as a metal wire may be further provided along the inside or the outer periphery of the air cable 134. Accordingly, the ultrasonic inspection apparatus 100e ′ can be easily inserted into the tube by holding the air cable 134.
  • the ultrasonic inspection apparatus 100e ′ when the diameter is most reduced is such that all of the expansion / contraction arm 400e ′ and the wheel 500e ′ overlap in the projection in the axial direction of the housing portion 800. It will be compact.
  • the motor cable 136 wired outside from the housing portion 800 is located between the folded expansion / contraction arm 400e ′ at the outer peripheral portion of the cylindrical portion 200e ′, so that the ultrasonic inspection apparatus 100e ′ can be made compact. There is no problem.
  • the ultrasonic inspection apparatus 100e ′ slightly expands the diameter of the wheel 500e ′ so that a part of the wheel 500e ′ protrudes from the projection when the diameter is reduced to the maximum, so that the expansion / contraction arm in the tube is expanded.
  • the diameter expanding operation may be made easier.
  • an aspect of changing the direction of the inside of the cheese mold tube will be described using an ultrasonic inspection apparatus 100e 'as an example.
  • a pipe T into which the ultrasonic inspection apparatus 100e 'is inserted is a cheese-type pipe used for a fire hydrant, for example.
  • the insertion port of the tube T is, for example, a small diameter tube having an inner diameter of 75 mm.
  • the ultrasonic inspection apparatus 100 e ′ is inserted from the insertion port in the most contracted state, and when it reaches the branch portion of the tube T, the direction is changed while maintaining the contracted state.
  • the ultrasonic inspection apparatus of the present invention exemplified by the ultrasonic inspection apparatus 100e ′ is designed to be compact in both the radial direction and the axial direction with respect to the axial center, thereby enabling 90-degree direction conversion in the tube. .
  • the shaft portion is the cylindrical portion 200, 200a, 200b having the shaft housing portion 210 has been described, but the embodiment is not limited thereto.
  • the shaft portion may be a solid bar shape.
  • the example in which the cross section of the shaft housing part 210 is circular was given, but the shape of the cross section is not limited to this.
  • arbitrary shapes such as polygons, such as a rectangle and a hexagon, and those deformation
  • the connecting members 220, 220a, 220b, 220d, 220e, and 220e ′ are those in which the shaft-attached portion is provided on the ring portion having a circular cross section.
  • the present invention is limited to this embodiment. Is not to be done.
  • an arbitrary shape such as a polygon such as a quadrangle and a hexagon and a deformed shape thereof is allowed for the outer periphery of the cross section of the ring portion.
  • only the shaft attachment portion may be fixed to the shaft housing portion 210 instead of the connecting member that does not slide.
  • the expansion / contraction part is the air cylinders 300, 300 c, 300 d, 300 e, and 300 e ′ that can be controlled by the expansion / contraction control part 121 . If it has, it will not specifically limit.
  • a hydraulic spring, an air spring, and a coil spring that drives the movable part by electrical control may be used.
  • the coil spring may have an axial center disposed on the outer peripheral portion of the cylindrical portions 200, 200 a,..., 200 e, 200 i, 200 e ′, or may be coaxial with the axial center of the shaft housing portion 210. It may be arranged. In either case, the diameter can be reduced and expanded in the pipe.
  • the air cylinder 300 extends in the axial direction.
  • the present invention is not limited to this.
  • the air cylinder 300 is provided so as to extend in the radial direction.
  • both ends of the air cylinder are fixedly connected to a connecting member that does not slide and to any of the arm pieces constituting the expansion / contraction arms 400, 400a, 400b.
  • the expansion / contraction arms 400, 400a,..., 400e, 400i, and 400e ' have been described as having specific link mechanisms, but the present invention is not limited to this. Any other mechanism is acceptable as long as it is a link mechanism that links the expansion and contraction operations of the air cylinders 300, 300c, 300d, 300e, and 300e 'with the expansion and contraction operations of the expansion and contraction arms 400, 400a, ..., 400e, 400i, and 400e'.
  • the ultrasonic inspection apparatus 100 instead of the ultrasonic inspection apparatus 100 according to the first embodiment, the ultrasonic inspection apparatus 100a according to the second embodiment, and the air cylinder 300 of the ultrasonic inspection apparatus 100b according to the third embodiment, the fourth embodiment is used.
  • the traveling unit is the wheels 500, 500a,..., 500e, 500i, and 500e ′
  • a caterpillar may be used.
  • a pair of gears are coaxially attached to both ends of the synchronization arm piece 414 in the axial direction so as to sandwich the synchronization arm piece 414, and a caterpillar is wound around each gear.
  • the wheels may be self-propelled having a drive mechanism.
  • the traveling unit may be capable of traveling by a water injection mechanism.
  • the position marker 771 is fixed to the hollow rotating member 611.
  • the position marker 771 is fixed to the rotating holder 724 of the acoustic reflector 720 as long as the position marker 771 can be detected by the sensor 772. May be.
  • the rotation sensor is the one-rotation sensor 770.
  • the present invention is not limited to this.
  • a rotary encoder may be used.
  • the connectable part is a part that can be detachably connected to the connecting member, for example, by engagement or fitting. An example of usage of such a connectable part will be described as follows.
  • a pulling member such as a cable with a connecting member is inserted into the pipe from the opening end located on the traveling direction side, which is different from the entrance where the ultrasonic inspection apparatus is inserted, of the pipe to be measured, After the connecting member is connected to the connectable portion provided in the housing parts 800 and 800i, the ultrasonic inspection apparatus can be advanced in the traveling direction by pulling the pulling member out of the opening end. it can.
  • one internal moving unit 110, 110a,..., 110e, 110i, and 110e ′ is provided per one ultrasonic inspection apparatus 100, 100a,. It is not limited to this aspect.
  • One ultrasonic inspection apparatus 100, 100a, ..., 100e, 100i, 100e ' may include a plurality of mutually connected internal moving units 110, 110a, ..., 110e, 110i, 110e'.
  • FIG. 27 is a partially cutaway view schematically showing an example of a layer thickness test method according to the present embodiment.
  • FIG. 28 is a schematic view seen from the axial direction of the lining pipe to be tested in the layer measurement test method of FIG.
  • FIG. 29 is a schematic partially enlarged view showing an example of a layer thickness test method in the present embodiment.
  • FIG. 31 is a block diagram showing a part of the layer thickness test apparatus.
  • the test target of the layer thickness test apparatus 100j (one aspect of the ultrasonic inspection apparatus) in the layer thickness test method is a lining pipe 900 (one aspect of the pipe).
  • the lining pipe 900 is such that a cement-containing layer 920 is lined on the inner surface of a metal pipe 910 and embedded in the ground. For example, plumbing of waterworks, sewage, industrial water and agricultural water is included.
  • Examples of the material of the metal tube 910 include iron (particularly cast iron) and steel.
  • Cast iron is an iron-carbon alloy containing about 2.0% or more of carbon. Generally, the carbon content is 2.0% or more and 4.5% or less and silicon is 0.5% or more and 3.0% or less, manganese is 1.0% or less, phosphorus and / or sulfur is 0.1%. In many cases, it also contains about% (% is based on weight).
  • Types of cast iron include white cast iron, mottled cast iron and gray cast iron as normal cast iron, and reinforced cast iron as tough cast iron, spheroidal graphite cast iron (for example, nodular cast iron, ductile cast iron), malleable cast iron and alloys Cast iron is mentioned.
  • JIS G 5521, 5522, 5523, 5524, 5526, 5527 Japan Waterworks Association Standards
  • JWSA G 102, 103, 105, 106, 108, 109, 110, 111, 113, 114, 114-2 Japan Sewerage Association Standard
  • JSWASJG-1, G-2 Japan Ductile Iron Pipe Association Standard
  • Steel is an iron-carbon alloy containing about 2.0% or less of carbon (% is based on weight). Examples include carbon steel and stainless steel.
  • the nominal diameter of the metal tube 910 is, for example, 100 or more, more specifically, 100 or more and 300 or less.
  • the material of the cement-containing layer 920 may be a lining material containing cement.
  • the cement include pollite cement, mixed cement (for example, blast furnace cement, fly ash cement, silica cement), eco cement, hydrated cement, and unhydrated cement.
  • Typical pollite cements fire a mixture of limestone and clay, silica, and iron oxide, and clinker such as tricalcium silicate, dicalcium silicate, tricalcium aluminate, iron tetracalcium aluminate After that, a small amount of gypsum was added to the clinker and pulverized.
  • air and / or water may be present in the cement.
  • the cement-containing layer 920 is formed by layering the above-described material containing cement.
  • materials containing cement examples of materials mixed with cement include fine aggregates such as sand, coarse aggregates such as gravel and crushed stone, and admixtures. More specifically, materials containing cement include mortar and concrete (eg, fresh concrete, hardened concrete).
  • mortar is generally obtained by adding a fine aggregate alone to cement or adding both a fine aggregate and an admixture to cement.
  • JIS A5314 Japan Industrial Standard
  • JWWA A 107, JWWA A 113 Japan Ductile Iron Pipe Association Standard
  • JDPA Z 2013, JDPA Z 2015 Japan Ductile Iron Pipe Association Standard
  • the cement-containing layer 920 may have another coating layer, that is, a seal coat, on the inner surface of the cement-containing material layer.
  • the material of the further another coating layer includes, for example, a resin, more specifically, an acrylic resin and a vinyl chloride resin.
  • the lining pipe 900 is filled with water W.
  • the layer thickness test apparatus 100j is disposed inside the lining pipe 900.
  • the layer thickness test apparatus 100j includes a probe part 700j (one aspect of the detection part), a holding part 200j (one aspect of the shaft part), and a separation part 400j (implemented with an expansion / contraction arm). Furthermore, as shown in FIG. 31, the layer thickness test apparatus 100 j includes a waveform acquisition unit 150, a determination unit 160, a thickness calculation unit 170, and a display unit 180.
  • the probe unit 700j includes an ultrasonic probe 710, a sensor holder 732 that holds the ultrasonic probe 710 toward the cement-containing layer 920 at one end, and the other end of the sensor holder 732 And an arm member 733 that couples the part to the holding part 200j.
  • the ultrasonic probe 710, the sensor holder 732, and the arm member 733 are arranged so as to be coaxial with each other in the radial direction of the lining pipe 900.
  • the ultrasonic probe 710 shown in FIG. 28 generates an ultrasonic wave and transmits and receives an ultrasonic beam.
  • the ultrasonic probe 710 mainly includes an acoustic lens, an acoustic matching layer (matching layer), a vibrator (element), and a backing (damper) in a housing.
  • the acoustic lens is provided to focus the ultrasonic beam using refraction and improve the resolution.
  • a concave lens is generally used as the acoustic lens.
  • the sound speed of the acoustic lens is about 2000 m / sec or more and 3000 m / sec or less, and an acrylic resin or polystyrene resin is used as the material.
  • the acoustic matching layer (matching layer) is also called a ⁇ / 4 layer.
  • the vibrator (element) transmits and receives ultrasonic waves.
  • transducer that vibrates when a voltage is applied to generate ultrasonic waves, and generates a voltage when vibrated.
  • It is also called a piezoelectric element, and is composed of a material having a piezo effect (piezoelectric effect).
  • a typical example of such a material is quartz, and more generally, PZT (lead zirconate titanate).
  • Other examples include PVDF (polyvinylidene fluoride).
  • the backing (damper) is disposed on the back surface of the vibrator, and suppresses the propagation of ultrasonic waves to the rear. This contributes to shortening the pulse width.
  • Ultrasonic probes include a focus type probe and a straight type probe.
  • the focus-type probe is designed so that the transmitted ultrasonic wave is temporarily focused at a point at a certain distance (see symbol D in FIG. 27) from the head unit.
  • the rectilinear probe is designed so that ultrasonic waves transmitted from each point of the head part are parallel. In order to obtain a sharp peak, a focus type probe is preferable.
  • a single probe method that is, a method using one transmission / reception integrated ultrasonic probe 710 is illustrated, but the present invention is not limited to this.
  • a two-probe method that is, a method using a transmitting probe and a receiving probe may be used.
  • the transmitting probe and the receiving probe may be functionally and physically separated from each other.
  • the transmitting probe and the receiving probe are oblique to the tangent to the inner surface of the lining layer (that is, more than 0 degrees 90 degrees).
  • the ultrasonic wave is transmitted from the transmitting probe so that the incident angle is less than 50 degrees, and the reflected wave reflected obliquely (that is, with a reflection angle of more than 0 degrees and less than 90 degrees) is received by the receiving probe.
  • a method of using a plurality of transmission / reception integrated sensors may be used.
  • a method using a plurality of two-probe methods may be used.
  • the holding part 200j is provided so as to be interposed between the two parts in order to hold the probe part 700j and the separating part 400j. Further, in the case of FIGS. 27 and 28, the probe portion 700j and the separation portion 400j are maintained so that the angle (vertical) of the probe portion 700j with respect to the tangent TL (see FIG. 28) of the inner peripheral surface of the cement-containing layer 920 is kept constant. Can also be connected.
  • the holding portion 200j includes a rotating shaft 250j, a cylindrical casing 210j (one aspect of the shaft housing portion) arranged so as to be coaxial with the axis of the lining pipe 900, and a connecting ring 220j. (One aspect of the connecting member).
  • the rotary shaft 250j has one end fixed to the arm member 733 of the probe portion 700j and the other end supported at the axial center position of the cylindrical casing 210j. It is rotationally driven by a motor (not shown) accommodated therein.
  • the motor may be a solid shaft motor instead of the hollow shaft motor 610 described in the first to eighth embodiments.
  • the solid shaft motor can be directly fixed to the rotating shaft 250j.
  • the separating portion 400j separates the head portion (a portion where ultrasonic waves are transmitted) of the ultrasonic probe 710 of the probe portion 700j and the surface of the cement-containing layer 920. Is provided.
  • the distance D (see FIG. 27) between the head portion of the ultrasonic probe 710 of the probe unit 700j and the cement-containing layer 920 is the wavelength of the transmitted ultrasonic wave and the characteristics (straight line) of the ultrasonic probe 710. There is no particular limitation as it may differ depending on the type and the focus type. For example, from the viewpoint of easily maintaining good detection sensitivity, the distance D can be set to 5 mm or more.
  • the spacing portion 400j includes three parallel link mechanisms 410j that can radially expand outward in the radial direction of the inner circumference of the cement-containing layer 920 and degenerate radially inward. Further, on the radially outer side of each parallel link mechanism 410j, there is provided a wheel 500j that forms a pair in the axial direction of the lining pipe 900 (see FIG. 27) and can travel in the axial direction.
  • the parallel link mechanism 410j includes a cross arm 415j and a link plate 414j (one aspect of a synchronization arm).
  • Two connecting rings 220j are provided in the axial direction of the cylindrical casing 210j, one is fitted on the outer peripheral surface of the cylindrical casing 210j, and the other is slidable in the axial direction on the outer peripheral surface of the cylindrical casing 210j. It is loosely fitted.
  • each of the connecting rings 220j has three connecting protrusions for connecting the cross arm 415j projecting radially on the surface.
  • the cross arm 415j can change the crossing angle of a pair of arms, and as shown in FIG. 27, one end of each arm is connected to each of the two connecting rings 220j.
  • the link plate 414j connects the other end of the cross arm 415j and connects a pair of wheels 500j. In the link plate 414j, one connecting position at the other end of the cross arm 415j is fixed, and the other connecting position is slidable in the axial direction of the lining pipe 900.
  • the spacing portion 400j is crossed so that the three pairs of wheels 500j abut against the cement-containing layer 920 and the axis of the cylindrical casing 210j coincides with the axis of the lining pipe 900.
  • the ultrasonic probe 710 of the probe unit 700j and the cement-containing layer 920 are kept apart.
  • the ultrasonic inspection described in the first embodiment and the eighth embodiment described above using a hollow shaft motor instead of the layer thickness test apparatus 100j described in FIGS. Devices 100, 100a,..., 100e, 100i, 100e ′ may be used.
  • FIG. 29 is an enlarged schematic view of the ultrasonic probe 710 and a part of the lining tube 900 when the layer thickness test is performed.
  • an ultrasonic wave (transmitted wave R) is transmitted from the head portion of the ultrasonic probe 710.
  • the transmitted wave R is transmitted so as to be perpendicular to the tangent TL of the inner peripheral surface Ls of the cement-containing layer 920.
  • the wavelength of the transmitted ultrasonic wave is particularly limited because it can vary depending on the characteristics (linear type and focal type) of the ultrasonic probe 710, the distance between the head portion of the ultrasonic probe 710 and the surface of the cement-containing layer 920, and the like. Is not to be done.
  • the lower limit of the wavelength of the ultrasonic wave is 1 MHz or more, and 1.5 MHz, 1.8 MHz, and further 2 MHz are preferable.
  • the upper limit of the wavelength of the ultrasonic wave is, for example, 10 MHz, more preferably 9 MHz, further 7.5 MHz, further 5 MHz, and further 3.5 MHz.
  • the transmitted wave R reaches the outer surface Lb of the metal tube 910, and the inner peripheral surface Ls of the cement-containing layer 920, the cement-containing layer.
  • FIG. 30 schematically shows a reflection path of ultrasonic waves when multiple echo peaks are acquired by multiple reflection in the metal layer 910.
  • the transmitted wave R is n-fold reflected in the metal layer 910 (n is an integer of 2 or more, the same applies hereinafter)
  • the reflected wave reflected by the outer surface Lb at the (n ⁇ 1) th time Is the (n-1) th reflected wave RB (n-1), and the (n-1) th reflected wave RB (n-1) is reflected again at the outer surface Lb for the nth time by reflecting off the boundary surface Li.
  • the reflected wave that has been reflected is the nth reflected wave RBn.
  • the reflected wave that the transmitted wave R is first reflected by the outer surface Lb of the metal layer 910 is described as the first reflected wave RB1, and the reflected wave RB1 is reflected by the boundary surface Li, so that the reflected wave RB1 is reflected the second time on the outer surface Lb.
  • the reflected wave reflected again is referred to as a second reflected wave RB2.
  • the number of the reflected light is not particularly limited, it is simply described as a reflected wave RB.
  • the received signal is processed into a waveform of reflected wave intensity with respect to propagation time in the waveform acquisition unit 150 (see FIG. 31). More specifically, the received wave (in the case of FIG. 29, reflected wave RS, RI1, RB1) is amplified by a signal amplifier, noise is removed by a band pass filter or the like, digitized by an A / D converter, and thereafter The waveform is acquired by performing an averaging process of adding and averaging the digitized waveforms on the same time axis. The acquired waveform is stored together with the measurement position information. The acquired waveform can be displayed on the display unit 180.
  • the peak pattern (intensity of reflected wave with respect to propagation time) in this model case is schematically shown in FIG. FIG. 32 shows the propagation time on the horizontal axis and the signal intensity on the vertical axis.
  • three echo peaks are detected with separable resolution. More specifically, the reflected wave RS reflected by the inner peripheral surface Ls of the cement-containing layer 920 is detected as the reflected wave having the shortest propagation time.
  • the first reflected wave RI1 reflected first at the boundary surface Li is detected as the reflected wave having the second longest propagation time.
  • the first reflected wave RB1 that is first reflected by the outer surface Lb is detected as the reflected wave having the third longest propagation time.
  • multiple echo peaks including two or more reflected waves RB may be obtained by multiple reflection in the metal layer 910. That is, the (n ⁇ k + 1) th reflected wave RB (n ⁇ k + 1), the (n ⁇ k + 2) th reflected wave RB (n ⁇ k + 2), the (n ⁇ k) th reflected wave RB (n ⁇ k), (n ⁇ k + 3) reflected wave RB (n ⁇ k + 3), (n ⁇ k + 4) th reflected wave RB (n ⁇ k + 4)... may be acquired (k is an integer equal to or greater than 1. In the following, the same applies.
  • echo peaks are often acquired.
  • the echo peak of each reflected wave RS, RI1, RB1 is displayed as a single peak of normal distribution, but it is not limited to such a shape.
  • the echo peak may be at least an aspect in which the echo peaks of the first reflected waves RI1 and RB1 necessary for measuring the thickness of the metal tube 910 are detected so as to be distinguishable from each other.
  • the aspect which formed the peak group by the synthesized wave by interference of the reflected wave which reflected the same interface for the echo peak may be sufficient.
  • Each echo peak of the reflected waves RS, RI1, RB1 has, for example, an S / N ratio of 2.5 or more, preferably 3 or more.
  • At least the first reflected waves RI1 and RB1 or at least two reflected waves RB among the reflected waves RB in the case of n-layer reflection in the metal layer 910 are determined as peaks. It is determined whether or not detection has been made with possible resolution, or resolution and S / N ratio (for example, S / N ratio is 2.5 or more, preferably 3 or more).
  • the thickness of the metal tube 910 of the lining tube 900 can determine the thickness. It can be judged that.
  • the thickness of the metal layer 910 of the lining tube 900 is such that the thickness can be obtained.
  • the thickness calculation unit 170 further reduces the propagation time difference ( ⁇ seconds) between the first reflected wave RB1 and the first reflected wave RI1 to 1/2.
  • the thickness of the metal tube 910 is calculated by multiplying by the speed of sound.
  • the thickness of the metal layer can be calculated.
  • the (nk) reflected wave RB (nk) is used.
  • the thickness of the metal tube 910 is calculated by multiplying the difference in propagation time ( ⁇ seconds) between the (n ⁇ k + 1) th reflected wave RB (n ⁇ k + 1) and the sound speed by 1/2.
  • the thickness of the metal tube 910 is increased. Calculate the thickness.
  • a value obtained by calculating the plurality of patterns and averaging the calculation results May finally be the thickness of the metal tube 910.
  • the relationship of the propagation time to the path distance of the reflected wave RB is determined by the least square method or the like.
  • the coefficient of the approximated linear function is calculated as an average value of the time during which the reflected wave RB travels once between the boundary surface Li and the outer surface Lb of the metal layer 910, and then calculated.
  • the thickness of the metal layer 910 may be obtained by multiplying the average value by 1/2 and the speed of sound.
  • the determination result by the determination unit 160 and / or the result of the wall thickness calculation unit 170 can be displayed on the display unit 180.
  • FIG. 33 shows a peak pattern in another example of a model case caused by the layer thickness test.
  • the echo peak of the reflected wave RS is detected so as to be separable while the echo peak of the first reflected wave RI1 and the first reflected wave RB1 cannot be separated.
  • the metal tube 910 of the lining tube 900 has been thinned to such an extent that it cannot be measured.
  • the cement-containing layer 920 is not deteriorated, or even if it is deteriorated, it is determined that the degree is small enough to allow the transmission wave R to enter the cement-containing layer 920. can do.
  • the thickness of the metal tube 910 is measured based on the detection peaks of the first reflected wave RI1 and the first reflected wave RB1 is shown.
  • the second reflection is performed together with the first reflected wave RB1.
  • the wave RB2 (see FIG. 29) is detected with a detectability that can be distinguished from each other (for example, the S / N ratio is 2.5 or more, preferably 3 or more)
  • the first reflected wave RB1 and the second reflected wave RB2 Similarly, the thickness of the metal tube 910 can be measured based on the detected peak.
  • FIG. 34 shows a peak pattern in yet another example of the model case caused by the layer thickness test.
  • FIG. 34 only the echo peak of the reflected wave RS is detected.
  • a peak pattern as shown in FIG. 34 it can be determined that the deterioration of at least the cement-containing layer 920 of the lining pipe 900 is advanced.
  • the state in which the deterioration of the cement-containing layer 920 is advanced is a state in which the transmitted wave R does not enter the cement-containing layer 920 due to at least one of an increase in porosity, a decrease in the weight ratio of cement, and a decrease in calcium concentration.
  • Examples of the deterioration degree of the cement-containing layer 920 when such a peak pattern is generated include a case where the weight ratio of the cement is 20% by weight or less and / or a case where the calcium concentration is 100,000 ppm or less. . In addition, the case where the porosity of the cement-containing layer 920 is 0.5% or more is also included.
  • the aspect in which the ultrasonic probe 710 of the probe unit 700j fixed to the rotation shaft 250j rotates along the inner peripheral surface of the cement-containing layer 920 (arrows in FIGS. 27 and 28) is shown.
  • the probe unit 700j including the ultrasonic probe 710 that is not fixed to the rotation shaft 250j may be self-propelled while maintaining a distance and an angle (perpendicular) to the surface of the cement-containing layer 920.
  • the ultrasonic probe 710 of the probe unit 700k fixed to the non-rotating axis is formed of the lining tube 900.
  • An ultrasonic wave may be provided so as to be transmitted in the axial direction from the axial position.
  • the mirror 720k one aspect of the acoustic reflection unit
  • the ultrasonic wave R transmitted from the ultrasonic probe 710 is applied to the cement.
  • the light is refracted by the inclined surface 723k on the surface of the mirror 720k so as to be incident on the inner surface of the containing layer 920 at a predetermined angle (perpendicular).
  • the layer thickness test is performed on the lining pipe 900 lined with the cement-containing layer 920 having a curved surface.
  • the present invention is not limited to this mode.
  • a layer thickness test may be performed on a metal multilayer body in which a cement-containing layer having a flat surface is laminated so that the surface opposite to the surface is in contact with the metal surface.
  • the porous layer provided on the surface of the metal tube 910 is the cement-containing layer 920
  • the porous layer is not limited to the cement-containing substance.
  • the layer thickness test apparatus 100j exemplifies a mode in which the probe unit 700j is connected to the separation unit 400j via the holding unit 200j.
  • the present invention is not limited to this mode.
  • the layer thickness test apparatus 100j may have a configuration in which the probe unit is directly connected to the separation unit.
  • the spacing portion may have a function of keeping the angle of the probe portion perpendicular to the surface of the cement-containing layer or the tangent to the surface.
  • the metal tube 910 has a thickness that allows thickness measurement.
  • the thickness of the metal tube 910 can be accurately obtained by multiplying the detection time difference between the peak of the first reflected wave RB1 and the peak of the first reflected wave RI1 by the speed of sound.
  • the peak pattern of FIG. 33 when the peak pattern of FIG. 33 is observed, it can be determined that the thickness reduction of the metal tube 910 is large.
  • the peak pattern of FIG. 34 when the peak pattern of FIG. 34 is observed, it can be determined that at least the degree of deterioration of the cement-containing layer 920 is large.
  • the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ are expanded so that the expansion / contraction arms 400, 400a,..., 400e, 400i, 400e ′ are stretched toward the inner wall L when inserted into the tube. Then, the wheels 500, 500a,..., 500e, 500i, 500e ′ come into contact with the inner wall surface L. Thereby, the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ are held.
  • Expansion / contraction of the expansion / contraction arms 400, 400a,..., 400e, 400i, 400e ′ can be performed by expansion / contraction of the air cylinders 300, 300c, 300d, 300e, 300e ′. For this reason, the diameter reduction and diameter expansion in a pipe become free.
  • the ultrasonic probe 710 can be provided in a fixed state.
  • the size of the expansion / contraction arms 400, 400a,..., 400e, 400i, 400e ′ can be reduced.
  • the ultrasonic probe 710 itself is connected to the cylindrical portion 200, 200a,..., 200e, 200i, 200e ′ can be arranged coaxially. This also makes it possible to reduce the size of the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e 'in the radial direction.
  • the rod 311 of the air cylinders 300, 300c, 300d, 300e, and 300e ′, the movable portions 321c and 321d of the air cylinders 300c and 300d, and the piston 321e of the air cylinders 300e and 300e ′ are cylindrical portions 200, 200a,. , 200e ′ is arranged so as to move in the axial direction, and the size of the radiation direction of the ultrasonic inspection apparatus 100, 100a,..., 100e, 100i, 100e ′ when the expansion / contraction arm is most contracted is compact. Can be.
  • the air cylinder 300 Since the air cylinder 300 is fixed to the connecting members 220, 220a, 220b so as to expand and contract in the axial direction of the cylindrical portions 200, 200a, 200b, the radial direction, that is, the expansion / contraction direction SU of the expansion / contraction arms 400, 400a, 400b. , Does not expand or contract to SD. Therefore, even when the air cylinder 300 is disposed on the outer peripheral portion of the cylindrical portions 200, 200a, 200b, the size of the ultrasonic inspection apparatus 100, 100a, 100b in the radial direction when the expansion / contraction arm is most contracted is made compact. be able to.
  • the air cylinders 300c and 300d include the entire shaft housing portions 210c and 210d, and the air cylinders 300e and 300e ′ include a part of the shaft housing portion 210e, the ultrasonic inspection apparatuses 100c, 100d, 100e, 100i, and 100e ′.
  • the size of the radiation direction can be made compact.
  • the expansion / contraction arms 400, 400a,..., 400e, 400e ′ have free spaces S, Sa,. ,..., 400e, 400e ′, when the air cylinders 300, 300c, 300d, 300e, 300e ′ are at their smallest size, at least some of the air cylinders 300, 300c, 300d, 300e ′ are accommodated in the free spaces S, Sa,. Therefore, the size of the ultrasonic inspection apparatus 100, 100a,..., 100e, 100i, 100e ′ in the radial direction when the expansion / contraction arms 400, 400a,. .
  • the ultrasonic inspection apparatuses 100, 100a,..., 100i, 100e ′ project the housing parts 800, 800i in the axial direction when the expansion / contraction arms 400, 400a,..., 400e, 400i, 400e ′ are most contracted. Further, since the expansion / contraction arms 400, 400a,..., 400e, 400i, 400e ′ overlap, the size in the radial direction can be made compact.
  • the expansion / contraction arms 400a,..., 400e, 400i, 400e ′ extend substantially along the axis O of the cylindrical portions 200a,..., 200e, 200e ′ when they are most contracted, and the fixing rings 224a, 224c to 224e, 224e. Because it has a simple structure that rotates at a rotation angle that does not exceed 90 degrees, centering on the shaft attachment part of ', it can be made compact in the radial direction and compact in the axis O direction. can do. Therefore, the space occupied by the trajectories of the expansion / contraction arms 400a,..., 400e, 400i, 400e 'can be reduced, so that the direction in the branch pipe such as the cheese pipe T can be easily changed.
  • the expansion / contraction arms 400b,..., 400e, 400i, 400e ′ are provided with fixing rings 224c to 224e, 224e ′ provided at two locations on the advancing direction side in the axis O direction and the retreating walking side. Since the attached expansion / contraction arms 400b,..., 400e, 400i, 400e ′ are opposite in the direction of the axis O, the space occupied by the movement trajectory of the expansion / contraction arms 400b,..., 400e, 400i, 400e ′ is reduced.
  • the ultrasonic inspection apparatuses 100b to 100e, 100i, 100e ' can be stably held in the tube.
  • the expansion / contraction arms 400a,..., 400e, 400i, 400e ′ are composed of main arm pieces 411a,..., 411e, 411e ′ having wheels 500a,. 412a,..., 412e, 412e ′ form a link mechanism.
  • the expansion / contraction arm of the air cylinders 300, 300c, 300d, 300e, 300e ′ can be expanded and contracted by the link mechanism having a simple structure.
  • 400a,..., 400e, 400i, 400e ′ can be linked to the expansion / contraction operation.
  • the size of the ultrasonic inspection apparatus 100, 100a,..., 100e, 100i, 100e ′ is set in the axial direction. It can be made compact.
  • the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ are air cylinders 300, 300c, 300d, 300e, 300e ′ whose telescopic parts are driven by atmospheric pressure. The danger of contamination, ignition, electric shock, etc. in the pipe is avoided, and expansion / contraction operation with a simple structure is possible.
  • the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, and 100e ′ can operate the air cylinders 300, 300c, 300d, 300e, and 300e ′ by the expansion / contraction control unit 121 after being inserted into the tube, the expansion / contraction arm can be remotely operated. Can be scaled freely.
  • the tube 900 is a measurement object, and the transmitted wave R is detected by the detection unit 700 of the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ provided in the composite pipe, and the probes of the layer thickness test apparatuses 100j, 100k.
  • the layer thickness test can be performed in a state where the lining pipe 900 is embedded and the water W is filled therein. For this reason, it is possible to perform a layer thickness test without performing a cutting operation.
  • the transmitted wave R is perpendicular to the inner surface of the cement-containing layer 920.
  • the transmission can be performed so as to scan the entire inner circumference of the lining pipe 900 while maintaining the positional relationship of the transmission. Therefore, the thickness of the entire circumference of the metal tube 910 can be tested.
  • the frequency of the ultrasonic wave (transmitted wave R) transmitted in the transmission process is When it is 1 MHz or more and 9 MHz or less, it is easy to accurately obtain the thickness of the metal tube 910.
  • the thickness D of the aqueous medium interposed in the transmission process is 5 mm or more and 60 mm or less. Therefore, the transmitted wave R is easily transmitted through the metal tube 910, and the reflected wave RB is easily obtained in a highly sensitive state.
  • the test object is a metal pipe 910 represented by a cast iron pipe. Since the lining pipe 900 is lined, high versatility can be realized.
  • the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ and the layer thickness test apparatuses 100j, 100k include a detection unit 700, probe units 700j, 700k, a detection unit 700, and a probe unit for transmitting ultrasonic waves.
  • the expansion / contraction arm 400, 400a,..., 400e, 400i, 400e ′, the separation portion 400j that separates the head portion of 700j, 700k and the surface of the cement-containing layer 920, and the waveform of the reflected wave intensity with respect to the ultrasonic wave propagation time are acquired.
  • the waveform acquisition unit 150 includes at least the peaks of the first reflected waves RI1 and RB1.
  • the metal tube 910 has a thickness that allows thickness measurement. It can be determined that that.
  • the thickness calculator 170 can accurately acquire the thickness of the metal tube 910 by multiplying the detection time difference between the peak of the first reflected wave RB1 and the peak of the first reflected wave RI1 by the speed of sound. .
  • the detection unit 700 and the probe unit 700j can rotate inside the lining tube 900 about the axis of the lining tube 900 as a rotation axis. Therefore, the thickness of the entire circumference of the metal tube 910 can be tested.
  • the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′, and the layer thickness test apparatus 100k are configured such that the detection unit 700 and the probe unit 700k are provided at the axis of the lining tube 900, and the cement-containing layer 920. Since the acoustic reflection part 720 and the mirror 720k that refract so as to be incident perpendicularly to the inner surface of the lining tube 900 are provided to be rotatable about the axis of the lining tube 900, the thickness of the entire circumference of the metal tube 910 Can be tested.
  • the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ correspond to “ultrasonic inspection apparatuses”
  • the expansion / contraction control unit 121 corresponds to “extension control unit”
  • 200a,..., 200e, 200i, 200e ′ correspond to “shaft portions”
  • the connecting members 220, 220a,..., 220e correspond to “outer peripheral portions”
  • the air cylinders 300, 300c, 300d, 300e, 300e ′ correspond to “outer peripheral portions”
  • the rod 311, the movable parts 321c and 321d, and the piston 321e correspond to the “movable part”
  • the auxiliary springs 350c, 350d, 350e, and 350e ′ correspond to the “auxiliary spring”.
  • the arms 400, 400a,..., 400e, 400i, 400e ' correspond to "expansion / contraction arms”
  • the main arm pieces 411a, ..., 411e, 411e' correspond to "long arms.
  • the link arm pieces 412a,..., 412e, 412e ′ correspond to “short arm pieces”
  • the wheels 500, 500a,..., 500e, 500i, 500e ′ correspond to “running parts” and are hollow.
  • the shaft motor 610 corresponds to a “hollow shaft motor”
  • the hollow rotating member 611 corresponds to a “hollow rotating member”
  • the non-rotating member 612 corresponds to a “non-rotating member”
  • the ultrasonic probe 710 It corresponds to an “acoustic probe”
  • the acoustic reflection part 720 corresponds to an “acoustic reflection part”
  • the one-turn sensor 770 corresponds to a “rotation sensor”
  • the position marker 771 corresponds to a “position marker”
  • the sensor 772 Corresponds to a “sensor for detecting a position marker”
  • the housing parts 800 and 800 i correspond to “housing parts”
  • the free spaces S, Sa,..., Se correspond to “accommodating parts”
  • the axis O is “ Is equivalent to Traveling direction F corresponds to the "direction of travel”.
  • the metal pipe 910 corresponds to a “metal layer”
  • the cement-containing layer 920 corresponds to a “porous layer”
  • the lining pipe 900 corresponds to a “multilayer body”
  • the water W corresponds to a “water medium”.
  • the boundary surface Li between the cement-containing layer and the metal tube corresponds to “the boundary surface between the metal layer and the porous layer”
  • the outer surface Lb of the metal tube is “the surface of the metal layer opposite to the porous layer” ”.
  • the transmitted wave R corresponds to“ transmitted ultrasonic wave ”
  • the first reflected wave RI1 corresponds to“ first interface reflected wave ”
  • the first reflected wave RB1 corresponds to“ first outer surface reflected wave ”.
  • the inner peripheral surface Ls corresponds to the “inner peripheral surface”
  • the layer thickness test apparatus 100j corresponds to the “layer thickness test apparatus”.
  • the sample tube used in Examples 1 to 7 has a nominal diameter of 250.
  • the thinning process was performed by counterboring, and the flat bottom surface of the counterbored hole with a diameter of 20 mm was defined as the thinned part.
  • the metal thickness is 50% of the healthy portion.
  • the layer thickness test was performed by filling the sample tube with water and inserting the layer thickness test apparatus 100j.
  • Example 1 In this example, the layer thickness test was performed with the transmission frequency of 1.0 MHz, the characteristics of the ultrasonic probe being the straight type, and the water distance (distance D in FIGS. 27 and 29) being 15 mm.
  • the oscillogram obtained for the healthy part is shown in FIG. 36 (a)
  • the oscillogram obtained for the thinned part is shown in FIG. 36 (b).
  • the horizontal axis indicates the relative value of the layer thickness based on the propagation time
  • the vertical axis indicates the relative intensity of the signal.
  • S represents the peak of the reflected wave reflected on the inner peripheral surface of the cement-containing layer
  • I represents the first reflected wave first reflected at the interface between the cement-containing layer and the metal tube
  • B 1 and F represents the first reflected wave first reflected on the outer surface of the metal tube
  • B 2 is a second reflected wave reflected again on the second outside surface of the metal pipe by first reflected wave is reflected at the boundary surface. The same applies to the subsequent oscillograms.
  • Example 2 A layer thickness test was performed in the same manner as in Example 1 except that the transmission frequency was changed to 2.25 MHz.
  • FIG. 37 (a) shows the oscillogram obtained for the healthy part
  • FIG. 37 (b) shows the oscillogram obtained for the thinned part.
  • Example 3 A layer thickness test was performed in the same manner as in Example 1 except that the transmission frequency was changed to 3.5 MHz.
  • the oscillogram obtained for the healthy part is shown in FIG. 38 (a), and the oscillogram obtained for the thinned part is shown in FIG. 38 (b).
  • Example 4 A layer thickness test was performed in the same manner as in Example 1 except that the transmission frequency was changed to 5.0 MHz.
  • the oscillogram obtained for the healthy part is shown in FIG. 39 (a), and the oscillogram obtained for the thinned part is shown in FIG. 39 (b).
  • Example 5 A layer thickness test was performed in the same manner as in Example 1 except that the transmission frequency was changed to 7.5 MHz.
  • the oscillogram obtained for the healthy part is shown in FIG. 40 (a), and the oscillogram obtained for the thinned part is shown in FIG. 40 (b).
  • Example 6 A layer thickness test was performed in the same manner as in Example 1 except that the transmission frequency was changed to 10 MHz.
  • FIG. 41 (a) shows the oscillogram obtained for the healthy part
  • FIG. 41 (b) shows the oscillogram obtained for the thinned part.
  • Example 7 A layer thickness test was conducted in the same manner as in Example 1 except that the transmission frequency was changed to 2.25 MHz and the characteristics of the ultrasonic probe were of the focus type.
  • the oscillogram obtained for the healthy part is shown in FIG. 42 (a), and the oscillogram obtained for the thinned part is shown in FIG. 42 (b).
  • [Reference Example 1] Prepare a test piece of mortar-lined ductile cast iron pipe (half pipe of sample pipe with nominal diameter of 250), and change the water distance (corresponding to distance D in FIGS. 27 and 29) in the range of 10 mm or more and 200 mm or less. And the measurement sensitivity was evaluated.
  • the equipment used is an ultrasonic flaw detector epoch 4 manufactured by Olympus, and the probe has a focus type, a transmission frequency of 2.25 MHz, a vibrator diameter of 12.7 mm, and a focusing point of 50.8 mm.
  • the evaluation of the measurement sensitivity was based on the sensitivity obtained by adjusting the bottom echo detected when the water distance was set to 10 mm to 80% on the display.
  • FIG. 43 shows the change in echo height with respect to the water distance.
  • Example 8 A healthy pipe of a mortar-lined ductile cast iron pipe (nominal diameter 250) of JWWA A107, A113 was prepared, and a part of the metal was thinned to prepare a plurality of sample pipes having different thinning degrees. The thinning process was performed by counterboring, and the flat bottom surface of the counterbored hole with a diameter of 20 mm was defined as the thinned part. The thickness reduction of the metal thickness in the thinned portion of the sample tube is 30%, 50%, 60%, and 75% of the healthy portion, respectively. A layer thickness test was performed on the healthy part and the thinned part. The layer thickness test was performed by filling the sample tube with water and using the layer thickness test apparatus 100j under the conditions of a transmission frequency of 2.25 MHz, using a focal probe, and a water distance of 45 mm.
  • FIG. 44 shows the relationship between the metal thickness measured by the layer thickness test (water immersion method) and the actual metal thickness. As shown in FIG. 44, the measurement error was about 0.1 mm for the thinning, indicating the accuracy of the layer thickness test of the present invention.
  • Example 9 A mortar ductile cast iron pipe (nominal diameter 150), which has passed 27 years after laying, was obtained, and a layer thickness test was conducted under the conditions of a transmission frequency of 2.25 MHz, using a focal probe, and a water distance of 45 mm.
  • FIG. 45 shows an oscillogram obtained by the layer thickness test. As shown in FIG. 45, a good oscillogram was obtained as in the case where the layer thickness test was performed on the healthy pipe (Example 1 to Example 8).
  • Example 10 A mortar ductile cast iron pipe (nominal diameter 150) 1 m, which has passed 27 years after laying, was obtained, and further subjected to artificial thinning of 2.0 mm and 3.0 mm to prepare a sample pipe.
  • the layer thickness test was performed under the conditions in Example 5 by filling the sample tube with water and inserting the layer thickness test apparatus 100j.
  • the rotational speed of the motor accommodated in the cylindrical casing 210j was set to 60 rpm, and the ultrasonic probe 710 was rotated along the circumferential direction of the inner peripheral surface of the sample tube.
  • FIG. 46 shows the result of the thinning evaluation of the sample tube according to this example.
  • the horizontal axis indicates the rotational distance (mm) in the circumferential direction
  • the vertical axis indicates the thickness reduction (mm).
  • the rotational distance in the circumferential direction indicates the circumferential distance of the outer peripheral surface of the sample tube.
  • natural thinning of 1.4 mm is observed at a rotational distance of 55 mm
  • artificial thinning of 2.0 mm is observed at a rotational distance of 80 mm
  • 3.0 mm at a rotational distance of 200 mm. Artificial thinning was observed.
  • Example 11 A mortar-lined ductile cast iron pipe (nominal diameter 250) having an original wall thickness of 7.7 mm was subjected to a layer thickness test under the conditions of a transmission frequency of 2.25 MHz, a focus type probe, and a water distance of 45 mm.
  • FIG. 47 shows the obtained oscillogram. As FIG. 47 shows, since the detected peak was two, it turned out that the cast iron part of the pipe
  • Example 12 A mortar ductile cast iron pipe (nominal diameter 200), which has passed 50 years after laying, was subjected to a layer thickness test under the conditions of a transmission frequency of 2.25 MHz, a focus type probe, and a water distance of 45 mm.
  • FIG. 48 shows the obtained oscillogram. As FIG. 48 shows, since the detected peak was one, it turned out that the lining layer of the pipe
  • the solid was washed with pure water until neutral (centrifugation 3000 rpm, 2 min x 7 to 10 times), and the solid was dried together with the centrifuge tube in a gear oven (50 ° C.). After weighing the whole centrifuge tube, the sand ratio was calculated.
  • ICP analysis inductively coupled plasma emission spectroscopy
  • the measurement conditions for ICP analysis are as follows. ⁇ High frequency output 1.2 kw ⁇ Spray chamber quartz cyclone chamber ⁇ Plasma gas flow rate 15 L / min ⁇ No argon humidifier used ⁇ Auxiliary gas flow rate 1.5 L / min ⁇ Analysis wavelength as shown below ⁇ Carrier gas flow rate 0.9 L / min ⁇ Integration time 3 seconds, torch quartz torch, 5 repetitions, nebulizer coaxial glass nebulizer, no internal standard correction, ICP emission analysis (SII nanotechnology SPS5100) 2-point qualitative analysis
  • the mortar porosity was 1.13%
  • the cement weight ratio was 18% by weight
  • the calcium concentration was 15,782 ppm.
  • Example 13 A test piece of the same mortar-lined ductile cast iron pipe as in Reference Example 3 was prepared, and a part of the metal was thinned to prepare a sample piece. The thinning process was performed by counterboring, and the flat bottom surface of the counterbored hole with a diameter of 20 mm was defined as the thinned part. As for the thickness reduction of the thinned portion, the metal thickness is 50% of the healthy portion. The layer thickness test was performed by filling the sample piece with water and inserting the layer thickness test apparatus 100j.
  • the oscillogram obtained for the healthy part is shown in FIG. 50 (a), and the oscillogram obtained for the thinned part is shown in FIG. 50 (b).
  • 50 (a) and 50 (b) the horizontal axis indicates the relative value of the layer thickness based on the propagation time, and the vertical axis indicates the relative intensity of the signal.
  • S represents the peak of the reflected wave reflected on the inner peripheral surface of the cement-containing layer
  • I represents the first reflected wave first reflected at the interface between the cement-containing layer and the metal tube
  • B1 and F Represents the first reflected wave first reflected on the outer surface of the metal tube (the same applies to the following oscillogram).
  • Example 14 A layer thickness test was performed in the same manner as in Example 13 except that the transmission frequency of the probe was changed to 2.25 MHz.
  • the oscillogram obtained for the healthy part is shown in FIG. 51 (a), and the oscillogram obtained for the thinned part is shown in FIG. 51 (b).

Abstract

The present invention provides an ultrasonic inspection device that is capable of freely expanding and contracting within a pipe and that achieves additional compactness through diameter reduction to a minimum size. The present invention is an ultrasonic inspection device that can be inserted inside a pipe, said ultrasonic inspection device including a shaft part, an expansion and contraction arm, a traveling part, an extension and contraction part, an extension and contraction control part, a motor, an ultrasonic probe, and an acoustic reflection part. The expansion and contraction arm is provided so as to protrude from the outer periphery of the shaft part and can expand and contract radially around the axis of the shaft part. The expansion and contraction arm is made to expand and contract through the control of the extension and contraction part by the extension and contraction control part. The traveling part is provided on the leading end of the expansion and contraction arm and abuts the inner wall of the pipe. The motor is directly or indirectly fixed to the shaft part and is disposed so as to emit ultrasound having a sound axis matching the axis of the shaft part. The acoustic reflection part reflects the ultrasound emitted by the ultrasonic probe in a direction in which the ultrasound is perpendicularly incident on the inner wall of the pipe.

Description

超音波検査装置および超音波検査方法Ultrasonic inspection apparatus and ultrasonic inspection method
 本発明は、管の内部への挿入が可能な超音波検査装置およびそれを用いた超音波検査法に関する。より具体的には、本発明は、管内での拡縮が自在であり且つコンパクトな超音波検査装置およびそれを用いた超音波検査方法に関する。
 さらに、本発明は、金属複層体の層厚試験法および金属複層体の層厚試験装置にも関する。特に、本発明は、埋設配管の劣化程度の試験法およびそのための装置にも関する。
The present invention relates to an ultrasonic inspection apparatus that can be inserted into a tube and an ultrasonic inspection method using the same. More specifically, the present invention relates to a compact ultrasonic inspection apparatus that can be expanded and contracted in a tube and an ultrasonic inspection method using the same.
Furthermore, the present invention also relates to a method for testing a thickness of a metal multilayer body and a layer thickness test apparatus for a metal multilayer body. In particular, the present invention also relates to a test method for the degree of deterioration of buried piping and an apparatus therefor.
 管の内部へ挿入して管内壁に超音波を発信して、管の損傷状態および管の肉厚等を測定する超音波装置が開発されている。 An ultrasonic device has been developed that is inserted into a pipe and transmits ultrasonic waves to the inner wall of the pipe to measure the damaged state of the pipe and the thickness of the pipe.
 例えば、特開2011-158392号公報(特許文献1)に記載の配管減肉測定装置は、水平面内又は傾斜面内に配置された配管内に挿入される測定台車と、測定台車の前側に設けられ配管の厚みを測定する厚み測定手段と、測定台車の後部に配置され、測定台車を前進させる推進手段とを有する配管減肉測定装置であって、測定台車は、中央に配置される円筒ケーシングと、円筒ケーシングの外周部から半径方向外側に向けて突出する少なくとも3つの平行リンク機構と、各平行リンク機構の半径方向外側に設けられた前後対となる全方向移動車輪とを有し、厚み測定手段は、円筒ケーシング内に配置されたモータと、モータによって回転駆動され円筒ケーシングの軸心位置に配置されたセンサホルダと、センサホルダに直交して取付けられた厚み測定センサとを有し、しかも、円筒ケーシングの半径方向外側の一部には、測定台車の位置を一定方向に保持する錘が設けられていることを特徴とする。
 少なくとも3つの平行リンク機構は、円筒ケーシングの前後の一方側に固定配置された固定リングと、円筒ケーシングの前後の他方側に前後方向に移動可能に配置された摺動リングと、固定リング及び前記摺動リングにそれぞれ基部が回動自在に連結されたクロスアームと、各クロスアームの先側に設けられ、前後両側にそれぞれ全方向移動車輪が設けられたリンクプレートと、摺動リングを固定リングの方向に付勢するスプリングとを有する。
For example, a pipe thinning measuring apparatus described in Japanese Patent Application Laid-Open No. 2011-158392 (Patent Document 1) is provided on a front side of a measurement carriage that is inserted into a pipe arranged in a horizontal plane or an inclined plane. A pipe thinning measuring device having a thickness measuring means for measuring the thickness of a pipe and a propulsion means arranged at the rear part of the measuring carriage to advance the measuring carriage, the measuring carriage being a cylindrical casing arranged at the center And at least three parallel link mechanisms that protrude radially outward from the outer peripheral portion of the cylindrical casing, and omnidirectional moving wheels that are front-rear pairs provided on the radially outer side of each parallel link mechanism, and have a thickness The measuring means includes a motor disposed in the cylindrical casing, a sensor holder that is rotationally driven by the motor and disposed at the axial center position of the cylindrical casing, and is mounted perpendicular to the sensor holder. And a thickness measuring sensor, moreover, a part of the radially outer cylindrical casing, wherein the weight to hold the position of the measuring carriage in a predetermined direction is provided.
The at least three parallel link mechanisms include a fixing ring fixedly arranged on one side of the front and rear of the cylindrical casing, a sliding ring arranged movably in the front-rear direction on the other side of the cylindrical casing, the fixing ring, and the aforementioned A cross arm whose base is pivotably connected to the sliding ring, a link plate provided on the front side of each cross arm and provided with omnidirectional wheels on both the front and rear sides, and a fixed ring for fixing the sliding ring And a spring urging in the direction.
 また、特開2001-83124号公報(特許文献2)に記載の管の超音波探傷装置は、管の中に超音波探触子と回転体とを入れ、回転体の先側に45度傾斜したミラーを設けて、超音波探触子から発した超音波をミラーによって反射させ、その反射波を超音波探触子によって検知するものである。 Also, an ultrasonic inspection device for a tube described in Japanese Patent Application Laid-Open No. 2001-83124 (Patent Document 2) has an ultrasonic probe and a rotating body placed in the tube, and is inclined 45 degrees toward the front side of the rotating body. The mirror is provided, the ultrasonic wave emitted from the ultrasonic probe is reflected by the mirror, and the reflected wave is detected by the ultrasonic probe.
 さらに、従来から、複層体の構成層の厚みを非破壊方式で測定する方法が採用されている。
 たとえば、特開昭60-123712号公報(特許文献3)には、管の表面に超音波探触子を設置して半径方向に超音波を発し、対向側のライニング内面からの反射波を検出し、この反射波のエネルギ損失によりライニング厚を測定することを特徴とする管内面ライニング厚の測定方法が開示されている。
Furthermore, conventionally, a method of measuring the thickness of the constituent layers of the multilayer body by a non-destructive method has been adopted.
For example, in Japanese Patent Laid-Open No. 60-123712 (Patent Document 3), an ultrasonic probe is installed on the surface of a tube to emit ultrasonic waves in the radial direction and detect reflected waves from the inner surface of the opposite lining. A method for measuring the inner surface lining thickness is disclosed, wherein the lining thickness is measured from the energy loss of the reflected wave.
 また、特開昭63-3211号公報(特許文献4)には、金属製本体の表面に一体に形成された、強化繊維と金属マトリックスとよりなる繊維強化複合層の厚さを測定するに当り、繊維強化樹脂複合層の表面に向けて超音波を発信して反射波を逐次受信し、超音波の発信から強化繊維による最終反射波受信までの時間を繊維強化複合層の厚さに換算することを特徴とする、超音波による繊維強化複合層の厚さ測定方法が開示されている。 Japanese Patent Application Laid-Open No. 63-3211 (Patent Document 4) discloses the measurement of the thickness of a fiber reinforced composite layer formed integrally with the surface of a metal body and made of a reinforced fiber and a metal matrix. The ultrasonic wave is transmitted toward the surface of the fiber reinforced resin composite layer and the reflected wave is sequentially received, and the time from the transmission of the ultrasonic wave to the reception of the final reflected wave by the reinforcing fiber is converted into the thickness of the fiber reinforced composite layer. A method for measuring the thickness of a fiber-reinforced composite layer using ultrasonic waves is disclosed.
特開2011-158392号公報JP 2011-158392 A 特開2001-83124号公報JP 2001-83124 A 特開昭60-123712号公報JP-A-60-123712 特開昭63-3211号公報Japanese Patent Laid-Open No. Sho 63-3211
 特許文献1の装置は、スプリング(具体的には引張りばね)の付勢力のみで調芯されるため、管内での縮径および拡径が自在ではなく、径が変化する管に適用することは困難である。 Since the apparatus of Patent Document 1 is aligned only by the urging force of a spring (specifically, a tension spring), it is not possible to reduce or expand the diameter within the pipe, and it can be applied to a pipe whose diameter changes. Have difficulty.
 特許文献2の装置は、水ジェットノズルによる回転駆動機構が用いられるため、径が変化する管に適用することは設計上不可能である。 The device of Patent Document 2 uses a rotational drive mechanism using a water jet nozzle, and therefore cannot be applied to a pipe whose diameter changes.
 特許文献3の方法は、金属およびコンクリートから構成される複合管の、コンクリートライニング層の厚みを測定するものである。この方法では、複合管の外側に接触型超音波探触子を設置する必要がある。従って、埋設管路について適用する場合、開削作業が必要となる。さらに、特許文献3の方法は、ライニング厚を測定する方法であり、金属層の厚みを測定することは記載されていない。
 特許文献4の方法は、水浸式超音波法で、超音波入射側である繊維強化層の厚みを測定するものである。しかしながら、裏層である金属層の厚みを測定できることは記載されていない。
The method of patent document 3 measures the thickness of the concrete lining layer of the composite pipe comprised from a metal and concrete. In this method, it is necessary to install a contact-type ultrasonic probe outside the composite tube. Therefore, when applied to the buried pipeline, an excavation work is required. Furthermore, the method of Patent Document 3 is a method of measuring the lining thickness, and does not describe measuring the thickness of the metal layer.
The method of patent document 4 is a water immersion type ultrasonic method, and measures the thickness of the fiber reinforcement layer which is an ultrasonic incident side. However, it is not described that the thickness of the metal layer as the back layer can be measured.
 そこで、本発明の一の目的は、管内での拡縮が自在である超音波検査装置およびそれを用いた超音波検査方法を提供することにある。 Accordingly, an object of the present invention is to provide an ultrasonic inspection apparatus that can freely expand and contract within a tube and an ultrasonic inspection method using the same.
 さらに本発明の他の目的は、測定対象が、一般的技術常識において超音波の減衰が特に大きいと考えられている多孔質層を金属層の表面上に有する複合層の場合に、非破壊方式で、金属層の厚みに関する情報を取得することができる方法を提供することにある。 Furthermore, another object of the present invention is to provide a non-destructive method in the case where a measurement object is a composite layer having a porous layer on the surface of a metal layer, which is considered to have a particularly large ultrasonic attenuation in general technical common sense. Then, it is providing the method which can acquire the information regarding the thickness of a metal layer.
(1)
 本発明は、管の内部検査に利用することができる超音波検査装置である。本発明の超音波検査装置は、軸部と、拡縮アームと、走行部と、伸縮部と、伸縮制御部と、モータと、超音波探触子と、音響反射部とを含む。
 拡縮アームは、軸部の外周部から突設される。さらに、拡縮アームは、軸部の軸心を中心とした放射方向に拡縮可能である。
 走行部は、拡縮アームに設けられる。
 さらに、伸縮制御部により伸縮部を制御して拡縮アームの拡縮を行うことができる。このため、管内での縮径および拡径が自在となる。
 モータは、軸部に直接的または間接的に固定されている。
 超音波探触子は、軸部の軸心方向に超音波を発信するように配置される。
 音響反射部は、超音波探触子から発信された超音波を、軸心方向から放射方向に反射させる。
(1)
The present invention is an ultrasonic inspection apparatus that can be used for internal inspection of a tube. The ultrasonic inspection apparatus of the present invention includes a shaft part, an expansion / contraction arm, a traveling part, an expansion / contraction part, an expansion / contraction control part, a motor, an ultrasonic probe, and an acoustic reflection part.
The expansion / contraction arm protrudes from the outer peripheral portion of the shaft portion. Furthermore, the expansion / contraction arm can be expanded / contracted in the radial direction centered on the axial center of the shaft portion.
The traveling unit is provided on the expansion / contraction arm.
Further, the expansion / contraction arm can be expanded / contracted by controlling the expansion / contraction section by the expansion / contraction control section. For this reason, the diameter reduction and diameter expansion in a pipe become free.
The motor is directly or indirectly fixed to the shaft portion.
The ultrasonic probe is arranged to transmit ultrasonic waves in the axial direction of the shaft portion.
The acoustic reflector reflects the ultrasonic wave transmitted from the ultrasonic probe from the axial direction to the radial direction.
 本発明の超音波検査装置が管内へ挿入された場合、拡縮アームが管内壁へ向かって突っ張るように拡張し、拡縮アームに設けられた走行部が管内壁へ接触する。これにより、超音波検査装置が保持される。また、伸縮部を伸縮させて拡縮アームの拡縮を行うことができる。このため、管内での縮径および拡径が自在となる。
 なお、本発明の超音波検査装置は、管の内部へ挿入される内部移動部(具体的には、(1)の場合、拡縮アーム、走行部、伸縮部、モータ、超音波探触子、音響反射部)と、管の外部で操作する外部操作部(具体的には、(1)の場合、伸縮制御部)とを含み、本明細書において、超音波検査装置が管内へ挿入されると記載する場合、内部移動部が管内へ挿入されることをいう。
When the ultrasonic inspection apparatus of the present invention is inserted into a tube, the expanding / contracting arm expands so as to stretch toward the inner wall of the tube, and the traveling portion provided on the expanding / contracting arm contacts the inner wall of the tube. Thereby, the ultrasonic inspection apparatus is held. Moreover, the expansion / contraction part can be expanded / contracted to expand / contract the expansion / contraction arm. For this reason, the diameter reduction and diameter expansion in a pipe become free.
The ultrasonic inspection apparatus of the present invention includes an internal moving part inserted into the tube (specifically, in the case of (1), an expansion / contraction arm, a traveling part, an expansion / contraction part, a motor, an ultrasonic probe, An acoustic reflection unit) and an external operation unit (specifically, in the case of (1), an expansion / contraction control unit) that is operated outside the tube. In this specification, the ultrasonic inspection apparatus is inserted into the tube. When it describes, it means that an internal movement part is inserted in a pipe | tube.
 なお、本発明の超音波検査装置が挿入される管は、超音波検査の対象となりうるものであれば特に限定されず、たとえば、金属管、樹脂管、およびモルタルなどの多孔質または樹脂などでライニングされた金属管が挙げられる。 The tube into which the ultrasonic inspection apparatus of the present invention is inserted is not particularly limited as long as it can be an object of ultrasonic inspection. For example, a metal tube, a resin tube, a porous material such as a mortar or a resin, etc. A lined metal tube is an example.
 さらに、本明細書において、管の寸法に関して記載される径とは、特に断りがない限り内径を意味する。 Further, in the present specification, the diameter described with respect to the dimensions of the pipe means the inner diameter unless otherwise specified.
 また、超音波が軸部の軸心方向に発信されるとは、超音波が軸心上に発信されることに限定されず、軸心に平行かつ軸心から放射方向へ±5mm以内、好ましくは±3mm以内のずれをもって発信されること、および、軸心から±5度、好ましくは±3度傾斜した方向へのずれをもって発信されることの両方を含む。
 たとえば、音響反射部によって超音波を軸心方向から放射方向に反射させる位置は軸心上であることが好ましいが、当該位置は、軸心から放射方向へ±5mm以内であればよく、±3mmであることがより好ましい。これによって、好ましい感度を得ることができる。たとえば、エコー高さの低減を最大で半分(具体例として最大6dB分減少)程度に留まらせることができる。
 さらに、音響反射部によって反射させた超音波は管の内壁の接線に対して90度で入射することが好ましいが、入射角は、85度以上95度以下であればよい。さらに、当該入射角が88度以上92度以下、特に90度であれば、感度の観点からより好ましい。たとえば、エコー高さの低減を最大で半分(具体例として最大6dB分減少)程度に留まらせることができる。
Further, the fact that the ultrasonic wave is transmitted in the axial direction of the shaft portion is not limited to the transmission of the ultrasonic wave on the axial center, and is preferably within ± 5 mm parallel to the axial center and within the radial direction from the axial center. Includes transmission with a deviation within ± 3 mm and transmission with a deviation in a direction inclined ± 5 degrees, preferably ± 3 degrees from the axis.
For example, the position at which the acoustic reflection unit reflects the ultrasonic waves from the axial direction to the radial direction is preferably on the axial center, but the position may be within ± 5 mm from the axial center to the radial direction, and ± 3 mm. It is more preferable that Thereby, a preferable sensitivity can be obtained. For example, the echo height can be reduced to a maximum of about half (decrease by a maximum of 6 dB as a specific example).
Furthermore, the ultrasonic wave reflected by the acoustic reflector is preferably incident at 90 degrees with respect to the tangent to the inner wall of the tube, but the incident angle may be not less than 85 degrees and not more than 95 degrees. Furthermore, it is more preferable from the viewpoint of sensitivity if the incident angle is 88 degrees or more and 92 degrees or less, particularly 90 degrees. For example, the echo height can be reduced to a maximum of about half (decrease by a maximum of 6 dB as a specific example).
 上記(1)において、モータは、中空回転部材と、中空回転部材を囲繞する非回転部材とを含む中空軸モータであってよい。
 本発明の超音波検査装置が中空軸モータを含む場合、超音波探触子は、非回転部材に連設固定されてよい。なお、本明細書において、連設固定とは、他の部材を介さずに直接的に固定される態様と、他の部材を介して間接的に固定される態様との両方を意味する。
In the above (1), the motor may be a hollow shaft motor including a hollow rotating member and a non-rotating member surrounding the hollow rotating member.
When the ultrasonic inspection apparatus of the present invention includes a hollow shaft motor, the ultrasonic probe may be fixedly connected to the non-rotating member. In addition, in this specification, continuous fixing means both the aspect fixed directly via other members, and the aspect fixed indirectly via other members.
 超音波を反射する音響反射部が回転可能に設けられることにより、超音波探触子を固定された状態で設けることができる。これによって、超音波検査装置の、軸部の軸心を中心とした放射方向の大きさ(特に、拡縮アームが最も縮小する場合の大きさ)をコンパクトにすることができる。たとえば、当該放射方向に延在するように超音波探触子を設け、軸心を中心として超音波探触子自体を回転させる場合に比べて効率よくコンパクト化を図ることができる。 音響 By providing an acoustic reflection part that reflects ultrasonic waves in a rotatable manner, the ultrasonic probe can be provided in a fixed state. As a result, the size of the ultrasonic inspection apparatus in the radial direction around the axial center of the shaft portion (particularly, the size when the expansion / contraction arm is most contracted) can be made compact. For example, it is possible to reduce the size more efficiently than when the ultrasonic probe is provided so as to extend in the radiation direction and the ultrasonic probe itself is rotated about the axis.
 本発明の超音波検査装置が中空軸モータを含む場合、音響反射部は、中空回転部材と連動して回転可能に設けられていてよい。 When the ultrasonic inspection apparatus of the present invention includes a hollow shaft motor, the acoustic reflection unit may be provided so as to be rotatable in conjunction with the hollow rotating member.
 音響反射部の回転に中空軸モータを用いることによって、中空回転部材の中空部内を超音波が伝搬するように構成されるため、超音波探触子自体を軸心方向に配設することができる。これによっても、超音波検査装置の放射方向の大きさをコンパクトにすることができる。 By using a hollow shaft motor for rotation of the acoustic reflector, the ultrasonic probe itself can be disposed in the axial direction because the ultrasonic wave propagates through the hollow portion of the hollow rotating member. . This also makes it possible to reduce the size of the ultrasonic inspection apparatus in the radial direction.
(2)
 本発明の超音波検査装置は、拡縮アームを拡縮させる伸縮部を含んでよい。伸縮部は可動部を含み、可動部は、軸部の軸心方向に移動するように設けられることができる。
(2)
The ultrasonic inspection apparatus of the present invention may include an expansion / contraction part that expands / contracts the expansion / contraction arm. The telescopic part includes a movable part, and the movable part can be provided so as to move in the axial direction of the shaft part.
 この場合、拡縮アームは伸縮部の伸縮に伴って拡縮し、伸縮部の伸縮方向は軸部の軸心方向である。これによって、超音波検査装置の、軸部の軸心を中心とした放射方向の大きさをコンパクトにすることができる。たとえば、当該放射方向に伸縮するように伸縮部が配設される場合に比べて効率よくコンパクト化を図ることができる。 In this case, the expansion / contraction arm expands / contracts with expansion / contraction of the expansion / contraction part, and the expansion / contraction direction of the expansion / contraction part is the axial center direction of the shaft part. As a result, the size of the ultrasonic inspection apparatus in the radial direction around the axis of the shaft can be made compact. For example, the size reduction can be achieved more efficiently than in the case where the expansion / contraction part is disposed so as to expand and contract in the radial direction.
(3)
 上記(1)に記載の本発明の超音波検査装置において、伸縮部は、軸部の軸心方向に伸縮するように、軸部の外周部に配設されていてよい。
(3)
In the ultrasonic inspection apparatus of the present invention described in (1) above, the expansion / contraction part may be arranged on the outer peripheral part of the shaft part so as to expand and contract in the axial direction of the shaft part.
 この場合、伸縮部の伸縮方向が軸部の軸心方向であるため、伸縮部自体が軸部の外周部に設けられていても、超音波検査装置の、当該軸心を中心とした放射方向の大きさをコンパクトにすることができる。たとえば、軸部の外周部に、当該放射方向に伸縮するように伸縮部が配設される場合に比べ、効率よくコンパクト化を図ることができる。 In this case, since the expansion / contraction direction of the expansion / contraction part is the axial direction of the shaft part, even if the expansion / contraction part itself is provided on the outer peripheral part of the shaft part, the radiation direction of the ultrasonic inspection apparatus around the axis The size of can be made compact. For example, it is possible to reduce the size more efficiently than in the case where an expansion / contraction part is disposed on the outer peripheral part of the shaft part so as to expand and contract in the radial direction.
(4)
 上記(1)および(2)に記載の本発明の超音波検査装置において、伸縮部は、軸部の少なくとも一部を構成してよい。
(4)
In the ultrasonic inspection apparatus according to the present invention described in (1) and (2) above, the stretchable part may constitute at least a part of the shaft part.
 この場合、軸部の少なくとも一部に伸縮部の機能を担わせるため、軸部の外周部に、比較的大きな寸法の伸縮部を設けない構造が可能となる。たとえば、軸部の外周部に伸縮部を全く設けないことも可能であるし、軸部の外周部に伸縮部の動作を補助する補助バネなどの補助部材(当該補助部材も伸縮部の構成要素とする。)のみを設けることも可能である。したがって、超音波検査装置の、軸部の軸心を中心とした放射方向の大きさをコンパクトにすることができる。 In this case, since the function of the expansion / contraction part is assigned to at least a part of the shaft part, a structure in which the expansion / contraction part having a relatively large size is not provided on the outer peripheral part of the shaft part is possible. For example, it is possible to provide no expansion / contraction part at the outer peripheral part of the shaft part, or an auxiliary member such as an auxiliary spring for assisting the operation of the expansion / contraction part on the outer peripheral part of the shaft part (the auxiliary member is also a component of the expansion / contraction part) It is also possible to provide only. Therefore, the magnitude | size of the radial direction centering on the axial center of an axial part of an ultrasonic inspection apparatus can be made compact.
(5)
 本発明の超音波検査装置は、拡縮アームが収容部を有し、拡縮アームが縮小した場合に、伸縮部が収容部内に収容されるように構成されてよい。
(5)
The ultrasonic inspection apparatus of the present invention may be configured such that when the expansion / contraction arm has a storage portion and the expansion / contraction arm is reduced, the expansion / contraction portion is stored in the storage portion.
 これによって、超音波検査装置の、軸部の軸心を中心とした放射方向の大きさをコンパクトにすることができる。 This makes it possible to reduce the size of the ultrasonic inspection apparatus in the radial direction around the axis of the shaft.
(6)
 本発明の超音波検査装置は、少なくともモータを収容する筐体部を含んでよい。この場合、拡縮アームが最も縮小した場合に、筐体部の、軸心方向への投影に、拡縮アームの全部が重なることが好ましい。
(6)
The ultrasonic inspection apparatus of the present invention may include at least a housing portion that houses a motor. In this case, when the expansion / contraction arm is most contracted, it is preferable that the entire expansion / contraction arm overlaps the projection of the casing in the axial direction.
 この場合、拡縮アームが最も縮小した場合における超音波検査装置の当該放射方向の大きさをコンパクトにすることができる。 In this case, the size of the ultrasonic inspection apparatus in the radial direction when the expansion / contraction arm is most contracted can be made compact.
(7)
 複数の拡縮アームそれぞれの基端は、軸心方向における、軸部の一端の側と他端の側との2箇所に軸着されていることが好ましい。この場合、一端の側に配置される拡縮アームと、他端の側に配置される拡縮アームとは、軸心方向の向きが互いに反対である。
 なお、複数の拡縮アームそれぞれの基端は、軸心方向の所定の位置において軸心周りに等間隔で配置され、拡縮アームは、当該基端を中心として放射方向に90度を超えない角度で回転可能であるように構成されている。
(7)
It is preferable that the base ends of each of the plurality of expansion / contraction arms are pivotally attached at two locations on one end side and the other end side of the shaft portion in the axial direction. In this case, the expansion / contraction arm arranged on one end side and the expansion / contraction arm arranged on the other end side are opposite to each other in the axial direction.
The base ends of each of the plurality of expansion / contraction arms are arranged at equal intervals around the axis at a predetermined position in the axial direction, and the expansion / contraction arms have an angle not exceeding 90 degrees in the radial direction with the base end as a center. It is configured to be rotatable.
 この場合、拡縮アームは、最も縮小した場合に軸体の軸心にほぼ沿って延在し、拡張時には、所定の位置に配置された当該基端を中心とし、先端が軸心から当該反射方向に離れるように立ち上がり、縮小時には、当該先端が軸心に近づくように倒れる。従って、拡縮アームそれぞれの構造をシンプルにすることができ、超音波検査装置の、軸部の軸心を中心とした放射方向の大きさをコンパクトにすることができる。
 さらにこの場合において、拡縮アームの当該基端を中心とする回転角は90度を超えない。このように、シンプルな構造の拡縮アームが軸心方向において所定の可動域内で動くため、超音波検査装置の、軸部の軸心方向の大きさもコンパクトにすることができる。
 従って、拡縮アームの動作の軌跡が占める空間を小さくすることができる。このため、チーズ型配管のような分岐管の中の方向変換が容易となる。
In this case, the expansion / contraction arm extends substantially along the axis of the shaft when it is most contracted, and at the time of expansion, the base end located at a predetermined position is the center, and the tip is in the reflection direction from the axis. The tip rises away from the center of the screen, and at the time of reduction, the tip falls down so as to approach the axis. Accordingly, the structure of each of the expansion / contraction arms can be simplified, and the size of the ultrasonic inspection apparatus in the radial direction around the axis of the shaft portion can be made compact.
Further, in this case, the rotation angle around the base end of the expansion / contraction arm does not exceed 90 degrees. In this way, since the expansion / contraction arm having a simple structure moves within a predetermined movable range in the axial direction, the size of the axial portion of the ultrasonic inspection apparatus in the axial direction can be made compact.
Therefore, the space occupied by the trajectory of the operation of the expansion / contraction arm can be reduced. For this reason, the direction change in a branch pipe like a cheese type piping becomes easy.
さらに、管内での軸体の調芯が安定的に行われるため、超音波検査装置が管内で安定的に保持される。 Furthermore, since the shaft body is aligned stably in the tube, the ultrasonic inspection apparatus is stably held in the tube.
(8)
 上記(1)から(7)に記載の本発明の超音波検査装置においては、拡縮アームが、先端に走行部が配設された長アーム片と、当該長アーム片より短い短アーム片とを含んで構成されるリンク機構を有するものであってよい。
(8)
In the ultrasonic inspection apparatus according to the present invention described in (1) to (7) above, the expansion / contraction arm includes a long arm piece having a traveling portion disposed at the tip, and a short arm piece shorter than the long arm piece. You may have a link mechanism comprised including.
 この場合、拡縮アームの動作の軌跡が占める空間を小さくすることができるとともに、簡易な構造のリンク機構により、伸縮部の伸縮動作を拡縮アームの拡縮動作に連動させることができる。 In this case, the space occupied by the trajectory of the expansion / contraction arm can be reduced, and the expansion / contraction operation of the expansion / contraction part can be linked to the expansion / contraction operation of the expansion / contraction arm by the link mechanism having a simple structure.
 上記(8)の場合、リンク機構を構成する短アーム片は、その基端が伸縮部の可動部に、先端が長アーム片の先端と基端との間に、それぞれ回転自在となるように固定されることが好ましい。これは、伸縮部の伸縮動作と、拡縮アームの拡縮動作との連動性の点で好ましい。また、短アーム片は、長アーム片の先端近傍に設けられることが、拡縮アームの安定性等の点で好ましい。 In the case of (8) above, the short arm piece constituting the link mechanism has its base end rotatable to the movable part of the telescopic part, and its tip is rotatable between the tip of the long arm piece and the base end. It is preferably fixed. This is preferable in terms of the linkage between the expansion / contraction operation of the expansion / contraction part and the expansion / contraction operation of the expansion / contraction arm. The short arm piece is preferably provided in the vicinity of the tip of the long arm piece in view of the stability of the expansion / contraction arm.
(9)
 本発明の超音波検査装置においては、モータが、中空回転部材と中空回転部材を囲繞する非回転部材とを含む中空軸モータであり、超音波探触子の少なくとも一部が、中空回転部材の中空部内に配設されていることが好ましい。
(9)
In the ultrasonic inspection apparatus of the present invention, the motor is a hollow shaft motor including a hollow rotating member and a non-rotating member surrounding the hollow rotating member, and at least a part of the ultrasonic probe is a hollow rotating member. It is preferable to be disposed in the hollow portion.
 これによって、超音波検査装置の、軸部の軸心方向の大きさをコンパクトにすることができる。 This makes it possible to make the size of the axial portion of the ultrasonic inspection apparatus compact.
(10)
 上記(1)から(9)に記載の本発明の超音波検査装置において、伸縮部は、拡縮アームの動作を補助する補助バネを有してよい。
(10)
In the ultrasonic inspection apparatus according to the present invention described in (1) to (9) above, the expansion / contraction part may include an auxiliary spring that assists the operation of the expansion / contraction arm.
 これによって、補助バネによって拡縮アームの動作が補助されるため、拡縮アームの動作がよりスムーズになる。 ∙ As a result, the operation of the expansion / contraction arm is assisted by the auxiliary spring, so that the expansion / contraction arm operates more smoothly.
(11)
 上記(1)から(10)に記載の本発明の超音波検査装置において、伸縮部は、気圧により駆動されるものであってよい。
(11)
In the ultrasonic inspection apparatus according to the present invention described in (1) to (10) above, the expansion / contraction part may be driven by atmospheric pressure.
 この場合、媒体が空気であるため、万一媒体の漏れが発生した場合であっても、管内の汚染、引火、感電等の危険性が回避される。 In this case, since the medium is air, the danger of contamination, ignition, electric shock, etc. in the pipe is avoided even if the medium leaks.
(12)
 上記(11)に記載の本発明の超音波検査装置において、伸縮部はエアシリンダであってよい。
(12)
In the ultrasonic inspection apparatus of the present invention described in (11) above, the extendable part may be an air cylinder.
 これによって、簡易な構造によって伸縮部の伸縮動作を拡縮アームの拡縮動作に連動させることができる。 This allows the expansion / contraction operation of the expansion / contraction part to be linked to the expansion / contraction operation of the expansion / contraction arm with a simple structure.
(13)
 本発明の超音波検査装置においては、モータまたは音響反射部に設けられたポジションマーカと、ポジションマーカを検出するセンサと含むことが好ましい。
(13)
The ultrasonic inspection apparatus of the present invention preferably includes a position marker provided in the motor or the acoustic reflection unit, and a sensor for detecting the position marker.
 これによって、超音波により検査すべき管内壁の周方向の位置を正確に判断することができる。 This makes it possible to accurately determine the circumferential position of the inner wall of the tube to be inspected by ultrasonic waves.
 上記(13)において、モータが中空軸モータである場合、ポジションマーカは、中空回転部材または音響反射部に設けられ、センサは、超音波探触子(非回転部材に連設固定されている)に連設固定されてよい。これによって、超音波により検査すべき管内壁の周方向の位置を正確に判断することができる。 In the above (13), when the motor is a hollow shaft motor, the position marker is provided on the hollow rotating member or the acoustic reflection portion, and the sensor is an ultrasonic probe (continuously fixed to the non-rotating member). It may be fixed continuously. This makes it possible to accurately determine the circumferential position of the inner wall of the tube to be inspected by ultrasonic waves.
<A>
 本発明の金属複層体の層厚試験法は、金属層と、金属層の表面上に設けられた多孔質層とを含む複層体の層厚を試験する方法である。層厚試験法は、水媒体を介して、複層体の多孔質層の側から金属層の側へ向かう方向に発信される超音波に供する発信工程と;超音波伝播時間に対する反射波を受信し、反射波の強度の波形を取得する波形取得工程と;取得された波形から、少なくとも、金属層と多孔質層との境界面で最初に反射した第1界面反射波のピークと、金属層の多孔質層とは反対側の面で最初に反射した第1外面反射波のピークとを判定する判定工程と;第1界面反射波のピークと第1外面反射波のピークとの検出時間差に基づいて金属層の肉厚を算出する肉厚算出工程とを含む。
<A>
The layer thickness test method for a metal multilayer body of the present invention is a method for testing the layer thickness of a multilayer body including a metal layer and a porous layer provided on the surface of the metal layer. The layer thickness test method includes a transmitting step for applying an ultrasonic wave transmitted in a direction from the porous layer side to the metal layer side through an aqueous medium; and receiving a reflected wave with respect to the ultrasonic propagation time. A waveform acquisition step of acquiring a waveform of the intensity of the reflected wave; at least a peak of the first interface reflected wave first reflected at the boundary surface between the metal layer and the porous layer from the acquired waveform; and the metal layer A determination step of determining a peak of the first outer surface reflected wave first reflected on the surface opposite to the porous layer; and a detection time difference between the peak of the first interface reflected wave and the peak of the first outer surface reflected wave And a thickness calculating step of calculating the thickness of the metal layer based on the above.
 これによって、非破壊方式で金属層の肉厚を測定することができる。 This makes it possible to measure the thickness of the metal layer in a nondestructive manner.
<B>
 本発明の金属複層体の層厚試験法は、金属層と、金属層の表面上に設けられた多孔質層とを含む複層体の層厚を試験する方法である。層厚試験法は、水媒体を介して、複層体の多孔質層の側から金属層の側へ向かう方向に発信される超音波に供する発信工程と;超音波伝播時間に対する反射波を受信し、反射波の強度の波形を取得する波形取得工程と;取得された波形が、金属層中でのn重反射(nは、2以上の整数である)による多重ピークとして検出される場合に、当該波形から、金属層の多孔質層とは反対側の面で反射した外面反射波のピークを少なくとも2本判定する判定工程と;判定された外面反射波のピークから任意に選択される少なくとも2本のピークの検出時間に基づいて金属層の肉厚を算出する肉厚算出工程とを含む。
<B>
The layer thickness test method for a metal multilayer body of the present invention is a method for testing the layer thickness of a multilayer body including a metal layer and a porous layer provided on the surface of the metal layer. The layer thickness test method includes a transmitting step for applying an ultrasonic wave transmitted in a direction from the porous layer side to the metal layer side through an aqueous medium; and receiving a reflected wave with respect to the ultrasonic propagation time. A waveform acquisition step of acquiring a waveform of the intensity of the reflected wave; and when the acquired waveform is detected as a multiple peak due to n-fold reflection (n is an integer of 2 or more) in the metal layer. A determination step of determining at least two peaks of the external reflection wave reflected by the surface of the metal layer opposite to the porous layer from the waveform; and at least arbitrarily selected from the determined peaks of the external reflection wave A thickness calculating step of calculating the thickness of the metal layer based on the detection time of the two peaks.
 これによって、非破壊方式で金属層の肉厚を測定することができる。 This makes it possible to measure the thickness of the metal layer in a nondestructive manner.
 第1界面反射波のピーク、外面反射波(第1外面反射波を含む)のピークは、反射波として判別可能な態様で検出されるピークであり、例えば、シグナルノイズ比(S/N)が2.5以上、好ましくは3以上であるものをいう。 The peak of the first interface reflected wave and the peak of the outer surface reflected wave (including the first outer surface reflected wave) are detected in a manner that can be discriminated as a reflected wave. For example, the signal noise ratio (S / N) is It means 2.5 or more, preferably 3 or more.
 多孔質とは、3次元に連なった連続気孔を持つ固体物質である。
 多孔質は、音響インピーダンスが特に小さい(つまり固体および液体と比べて極めて小さい)空気で連続気孔内が満たされていることに起因し、超音波を照射しても物質内部で散乱して透過しにくい。このため、多孔質は本来的に超音波測定に適さない。本発明の層厚試験法においては、水媒体を介在させるとともに、多孔質層に水媒体が含浸され、連続気孔内が、音響インピーダンスがより大きい(つまり固体に近い音響インピーダンスを有する)水で満たされる。つまり、連続気孔内が空気から水に置換される。このため、多孔質を構成する固体との音響インピーダンスの差が小さくなることで、超音波が透過しやすくなり、超音波測定を可能にしていることが考えられる。
Porous is a solid material with continuous pores that are connected in three dimensions.
The porous material is caused by the fact that the continuous pores are filled with air with particularly low acoustic impedance (that is, extremely small compared to solids and liquids). Hateful. For this reason, the porous material is not inherently suitable for ultrasonic measurement. In the layer thickness test method of the present invention, an aqueous medium is interposed, the porous layer is impregnated with the aqueous medium, and the continuous pores are filled with water having a higher acoustic impedance (that is, having an acoustic impedance close to a solid). It is. That is, the inside of the continuous pores is replaced with air from water. For this reason, it is conceivable that the ultrasonic impedance is easily transmitted by making the difference in acoustic impedance from the solid constituting the porous material small, and ultrasonic measurement is possible.
<C>
 本発明の層厚試験方法において、多孔質はセメント含有物質であってよい。
 セメント含有物質は水と音響インピーダンスが特に近いため、水媒体の介在によって音響インピーダンスの差が小さくなり、超音波測定がより容易となる。
<C>
In the layer thickness test method of the present invention, the porous material may be a cement-containing material.
Since the cement-containing material has an acoustic impedance that is particularly close to that of water, the difference in acoustic impedance is reduced by the intervention of the aqueous medium, and ultrasonic measurement becomes easier.
<D>
 本発明の層厚試験法においては、発信工程において発信される超音波の周波数が、1MHz以上9MHz以下である事が好ましい。
<D>
In the layer thickness test method of this invention, it is preferable that the frequency of the ultrasonic wave transmitted in the transmitting step is 1 MHz or more and 9 MHz or less.
 これによって、超音波伝播時間に対する反射波強度の波形においてピークを分離して検出する分解能が得られやすい。したがって、金属層の肉厚をより正確に取得しやすい。超音波が金属層内部を透過しやすくなるため、上記の外部面反射波が感度の高い状態で得られやすくなる。 This makes it easy to obtain a resolution for separating and detecting peaks in the waveform of the reflected wave intensity with respect to the ultrasonic propagation time. Therefore, it is easy to acquire the thickness of the metal layer more accurately. Since the ultrasonic wave is easily transmitted through the metal layer, the external surface reflected wave is easily obtained in a highly sensitive state.
<E>
 本発明の層厚試験法の試験対象は、金属管の内周面に多孔質層がライニング層としてライニングされた複合管であってもよい。この場合、超音波は、複合管の内部に設けられたプローブ部から発信される。
<E>
The test target of the layer thickness test method of the present invention may be a composite tube in which a porous layer is lined as a lining layer on the inner peripheral surface of a metal tube. In this case, the ultrasonic wave is transmitted from a probe unit provided inside the composite tube.
 ライニング層は、基材(本発明においては金属)の表面に比較的厚く被覆された、基剤の腐食、摩耗、汚染を防ぐ層である。プローブ部は、少なくとも超音波探触子を含む部材である。
 この場合、水が満たされた複合管の内部にプローブ部を挿入して層厚試験を行うことができるため、特に複合管が埋設されている場合に、開削作業が不要となる。
The lining layer is a layer which is coated on the surface of a base material (metal in the present invention) relatively thickly to prevent corrosion, abrasion and contamination of the base. The probe unit is a member including at least an ultrasonic probe.
In this case, since the layer thickness test can be performed by inserting the probe portion into the composite pipe filled with water, the excavation work becomes unnecessary particularly when the composite pipe is buried.
<F>
 発信工程においては、超音波が、ライニング層の内表面に対して垂直に発信される角度を保ちながら、複合管の全内周を走査するように発信されることができる。
 なお、プローブ部のヘッド部とライニング層の内表面との間の距離は、介在する水媒体の厚みに相当する。ヘッド部は、プローブ部を構成する超音波探触子の筐体における超音波発信側の外表面をいう。
<F>
In the transmitting step, ultrasonic waves can be transmitted so as to scan the entire inner circumference of the composite tube while maintaining an angle at which the ultrasonic waves are transmitted perpendicularly to the inner surface of the lining layer.
Note that the distance between the head portion of the probe portion and the inner surface of the lining layer corresponds to the thickness of the intervening aqueous medium. The head portion refers to the outer surface on the ultrasonic wave transmission side in the housing of the ultrasonic probe constituting the probe portion.
 また、ライニング層の内表面に対して垂直とは、ライニング層の内表面の接線に対して厳密に90度を成す角に限定される意ではなく、当該接線に対して85度以上95度以下を成す角も許容する意である。さらに、許容範囲をさらに88度以上92度以下とすれば、エコー高さが90度の場合の半分(具体例として6dB分減少)程度に留まらせることができる点で好ましい。 Further, the term “perpendicular to the inner surface of the lining layer” does not mean that the angle is strictly 90 degrees with respect to the tangent line of the inner surface of the lining layer, but 85 degrees or more and 95 degrees or less with respect to the tangent line. The angle which forms is also allowed. Further, it is preferable that the allowable range is 88 degrees or more and 92 degrees or less because the echo height can be reduced to about half of the case where the echo height is 90 degrees (specifically, a decrease of 6 dB).
 さらに、超音波が発信される位置の、中心軸から上記接線(超音波が入射するライニング層の内表面の接線)に平行な径方向へのずれも許容する。このずれの許容範囲は、水距離にも依存するが、中心軸から上記径方向へ±5mm以内であり、好ましくは±3mm以内である。これにより、ずれがない場合に比べ、エコー高さを半分(具体例として6dB分減少)程度に留まらせることができる。 Furthermore, a deviation in the radial direction parallel to the tangent (the tangent to the inner surface of the lining layer on which the ultrasonic wave is incident) from the central axis at the position where the ultrasonic wave is transmitted is also allowed. The allowable range of this deviation depends on the water distance, but is within ± 5 mm in the radial direction from the central axis, preferably within ± 3 mm. Thereby, compared with the case where there is no deviation, the echo height can be reduced to about half (decrease by 6 dB as a specific example).
 これによって、金属管の全周の肉厚を試験することができる。 This makes it possible to test the wall thickness of the entire circumference of the metal tube.
<G>
 本発明の層厚試験法においては、試験対象のセメント含有物質がモルタルであってよい。
<G>
In the layer thickness test method of the present invention, the cement-containing substance to be tested may be mortar.
 これによって、本発明は、特に試験対象がモルタルライニング管である場合において、高い汎用性を実現することができる。 Thereby, the present invention can realize high versatility particularly when the test object is a mortar lining pipe.
<H>
 本発明の層厚試験法においては、試験対象の金属層が鋳鉄および鋼の少なくともいずれかであってよい。
<H>
In the layer thickness test method of the present invention, the metal layer to be tested may be at least one of cast iron and steel.
 これによって、本発明は、特に試験対象が埋設ライニング配管である場合において、高い汎用性を実現することができる。また、試験対象が地下タンクなどの埋設ライニング鋼構造物である場合にも有用である。 Thereby, the present invention can realize high versatility, particularly when the test object is an embedded lining pipe. It is also useful when the test object is a buried lining steel structure such as an underground tank.
(14)
 本発明の超音波検査方法は、上記(1)から(13)に記載の超音波を用いて、管の内部で超音波検査する。
 これによって、小口径から管内に挿入後、管内を走行しつつ、管内壁の径変化に応じて拡縮アームを拡縮し、管内壁に超音波を発信することで、管の内部を超音波検査することができる。
(14)
The ultrasonic inspection method of the present invention performs ultrasonic inspection inside the tube using the ultrasonic waves described in (1) to (13) above.
As a result, after being inserted into the tube from a small diameter, the inside of the tube is ultrasonically inspected by expanding and contracting the expansion / contraction arm according to the change in the diameter of the tube inner wall and transmitting ultrasonic waves to the tube inner wall while traveling in the tube. be able to.
(15)
 上記(14)において、前記管は、金属層と、金属層の表面上に設けられた多孔質層とを含む複層体であってよい。この場合、水媒体が介在する条件下、多孔質層の側から金属層の側へ向かう方向に超音波を発信し、少なくとも、金属層と多孔質層との境界面で最初に反射した第1界面反射波のピークと、金属層の多孔質層とは反対側の面で最初に反射した第1外面反射波のピークとの検出時間差に基づいて、金属層の肉厚を算出する。
(15)
In the above (14), the tube may be a multilayer body including a metal layer and a porous layer provided on the surface of the metal layer. In this case, the ultrasonic wave is transmitted in the direction from the porous layer side to the metal layer side under the condition that the aqueous medium is interposed, and at least the first reflected first at the boundary surface between the metal layer and the porous layer. The thickness of the metal layer is calculated based on the detection time difference between the peak of the interface reflected wave and the peak of the first outer surface reflected wave that is first reflected on the surface of the metal layer opposite to the porous layer.
<I>
 他の局面に従う金属複層体の層厚試験装置は、<A>から<H>のいずれかに記載の方法に用いられ、超音波を発信するためのプローブ部と;プローブ部のヘッド部と多孔質層の表面とを離間させる離間部と;超音波伝播時間に対する反射波強度の波形を取得する波形取得部と;取得された波形から、少なくとも、金属層と多孔質層との境界面で最初に反射した第1界面反射波のピークと、金属層の多孔質層とは反対側の面で最初に反射した第1外面反射波のピークとを判定する判定部と;第1界面反射波のピークと第1外面反射波のピークとの検出時間差に基づいて金属層の肉厚を算出する肉厚算出部とを含む。
<I>
A layer thickness test apparatus for a metal multilayer according to another aspect is used in the method according to any one of <A> to <H>, a probe unit for transmitting ultrasonic waves; a head unit of the probe unit; A separation part that separates the surface of the porous layer; a waveform acquisition part that acquires a waveform of the reflected wave intensity with respect to the ultrasonic propagation time; and at least a boundary surface between the metal layer and the porous layer from the acquired waveform A determination unit for determining a peak of the first interface reflected wave reflected first and a peak of the first outer surface reflected wave first reflected on the surface of the metal layer opposite to the porous layer; And a thickness calculator for calculating the thickness of the metal layer based on the difference in detection time between the peak of the first and the peak of the first external reflection wave.
 これによって、非破壊方式で金属層の肉厚を正確に取得することができる。 This makes it possible to accurately obtain the thickness of the metal layer in a nondestructive manner.
<J>
 さらに他の局面に従う金属複層体の層厚試験装置は、<A>から<H>のいずれかに記載の方法に用いられ、超音波を発信するためのプローブ部と;プローブ部のヘッド部と多孔質層の表面とを離間させる離間部と;超音波伝播時間に対する反射波強度の波形を取得する波形取得部と;取得された波形が、金属層中でのn重反射(nは、2以上の整数である)による多重ピークとして検出される場合に、当該波形から、金属層の多孔質層とは反対側の面反射した外面反射波のピークを少なくとも2本判定する判定部と;判定された外面反射波のピークから任意に選択される2本の少なくともピークの検出時間に基づいて金属層の肉厚を算出する肉厚算出部とを含む。
<J>
A layer thickness test apparatus for a metal multilayer according to still another aspect is used in the method according to any one of <A> to <H>, and a probe unit for transmitting ultrasonic waves; and a head unit of the probe unit A separation part that separates the surface of the porous layer from the surface; a waveform acquisition part that acquires a waveform of the reflected wave intensity with respect to the ultrasonic propagation time; and an n-fold reflection (n is the acquired waveform) in the metal layer A determination unit that determines at least two peaks of externally reflected waves that are surface-reflected on the side opposite to the porous layer of the metal layer from the waveform when detected as multiple peaks by an integer of 2 or more); A wall thickness calculating unit that calculates the wall thickness of the metal layer based on the detection time of at least two peaks arbitrarily selected from the determined peak of the external reflection wave.
 これによって、非破壊方式で金属層の肉厚を正確に取得することができる。 This makes it possible to accurately obtain the thickness of the metal layer in a nondestructive manner.
<K>
 本発明の金属複層体の層厚試験装置は、超音波が多孔質層の内表面に対して垂直に発信される角度を保持する角度保持部を含んでよい。
<K>
The layer thickness test apparatus for a metal multilayer body of the present invention may include an angle holding unit that holds an angle at which ultrasonic waves are transmitted perpendicularly to the inner surface of the porous layer.
 これによって、エコーピークを充分な強度で検出することができる。
 なお、角度保持部は、離間部とは別に設けられてもよいし、離間部の一構成としてもうけられてもよい。
Thereby, the echo peak can be detected with sufficient intensity.
Note that the angle holding unit may be provided separately from the separation unit, or may be provided as one configuration of the separation unit.
<L>
 本発明の金属複層体の層厚試験装置は、金属管の内周面に多孔質層がセメント含有ライニング層としてライニングされた金属複合管を試験対象とし、離間部が、金属複合管の軸心方向に走行可能な移動機構を含んでよい。
<L>
The apparatus for testing a thickness of a metal multilayer body according to the present invention is a metal composite tube in which a porous layer is lined as a cement-containing lining layer on an inner peripheral surface of a metal tube, and a separation portion is a shaft of the metal composite tube. A moving mechanism capable of traveling in the central direction may be included.
 これによって、金属管の軸方向について肉厚を試験することができる。 This makes it possible to test the wall thickness in the axial direction of the metal tube.
<M>
 本発明の金属複層体の層厚試験装置は、金属管の内周面に多孔質層がセメント含有ライニング層としてライニングされた金属複合管を試験対象とし、超音波が複合管の全内周を走査するように発信されるように構成されてよい。
<M>
The apparatus for testing a thickness of a metal multilayer body according to the present invention is a metal composite tube in which a porous layer is lined as a cement-containing lining layer on the inner peripheral surface of a metal tube, and ultrasonic waves are applied to the entire inner periphery of the composite tube. May be configured to be transmitted to scan.
 これによって、金属管の全周の肉厚を試験することができる。 This makes it possible to test the wall thickness of the entire circumference of the metal tube.
<N>
 本発明の金属複層体の層厚試験装置は、金属管の内周面に多孔質層がセメント含有ライニング層としてライニングされた金属複合管を試験対象とし、プローブ部が、金属複合管の軸心を回転軸として金属複合管内部で回転可能に設けられてよい。
<N>
The apparatus for testing a thickness of a metal multilayer body according to the present invention is a metal composite tube in which a porous layer is lined as a cement-containing lining layer on an inner peripheral surface of a metal tube, and a probe portion is a shaft of the metal composite tube. It may be provided so as to be rotatable inside the metal composite tube with the core as a rotation axis.
 これによって、金属管の全周の肉厚を試験することができる。なお、本発明の層厚試験装置は、当該回転軸を機械的構成の一部として有するか否かを問わない。本発明の層厚試験装置が、当該回転軸を機械的構成の一部として有さない場合の例として、離間部が、金属複合管の内周に(すなわちライニング層の表面を周方向に)沿って走行可能な移動機構を含んでいる場合が挙げられる。 This makes it possible to test the wall thickness of the entire circumference of the metal tube. In addition, the layer thickness test apparatus of this invention does not ask | require whether it has the said rotating shaft as a part of mechanical structure. As an example of the case where the layer thickness test apparatus of the present invention does not have the rotating shaft as a part of the mechanical configuration, the separating portion is on the inner periphery of the metal composite tube (that is, the surface of the lining layer is in the circumferential direction). The case where the moving mechanism which can drive along is included is mentioned.
 本発明の金属複層体の層厚試験装置は、金属管の内周面に多孔質層がセメント含有ライニング層としてライニングされた金属複合管を試験対象とし、プローブ部が、金属複合管の軸心位置から当該軸心方向に超音波を発信するように設けられ、発信された超音波を、ライニング層の内表面に入射するように屈折させる屈折部が、複合管の軸心を回転軸として回転可能に設けられてもよい。 The apparatus for testing a thickness of a metal multilayer body according to the present invention is a metal composite tube in which a porous layer is lined as a cement-containing lining layer on an inner peripheral surface of a metal tube, and a probe portion is a shaft of the metal composite tube. A refracting part that refracts the transmitted ultrasonic wave so as to be incident on the inner surface of the lining layer is provided with the axis of the composite tube as the rotation axis. It may be provided so as to be rotatable.
 これによって、複合管の全内周を走査するように発信されることができる。したがって、金属管の全周の肉厚を試験することができる。 This can be transmitted to scan the entire inner circumference of the composite tube. Therefore, the thickness of the entire circumference of the metal tube can be tested.
<O>
 本発明の金属複層体の層厚試験装置は、超音波の周波数が1MHz以上9MHz以下となるように設定されていてよい。
 これによって、超音波伝播時間に対する反射波強度の波形においてピークを分離して検出する分解能が得られやすい。したがって、金属層の肉厚をより正確に取得しやすい。超音波が金属層内部を透過しやすくなるため、上記の外部面反射波が感度の高い状態で得られやすくなる。
<O>
The layer thickness test apparatus for a metal multilayer body of the present invention may be set so that the ultrasonic frequency is 1 MHz or more and 9 MHz or less.
This makes it easy to obtain a resolution for separating and detecting the peak in the waveform of the reflected wave intensity with respect to the ultrasonic propagation time. Therefore, it is easy to acquire the thickness of the metal layer more accurately. Since the ultrasonic wave is easily transmitted through the metal layer, the external surface reflected wave is easily obtained in a highly sensitive state.
<P>
 本発明の金属複層体の層厚試験装置は、プローブ部が、超音波探触子を含むものであってよい。
 これによって、一般的に水浸法に用いられる超音波探触子を用いることができる。なお、超音波探触子は、圧電特性を有する振動子に吸音材と保護板とを張り合わせて筐体内に収容された超音波センサが一般的である。
<P>
In the layer thickness test apparatus for a metal multilayer body according to the present invention, the probe portion may include an ultrasonic probe.
This makes it possible to use an ultrasonic probe that is generally used in the water immersion method. The ultrasonic probe is generally an ultrasonic sensor that is housed in a casing by adhering a sound absorbing material and a protective plate to a vibrator having piezoelectric characteristics.
 本発明によって、管内での拡縮が自在である超音波検査装置およびそれを用いた超音波検査方法を提供することができる。さらに本発明によると、測定対象が多孔質層を金属層の表面上に有する複合層である場合、非破壊方式で、金属層の厚みに関する情報を取得することができる方法を提供することができる。 According to the present invention, it is possible to provide an ultrasonic inspection apparatus that can freely expand and contract in a tube and an ultrasonic inspection method using the same. Furthermore, according to the present invention, when the measurement target is a composite layer having a porous layer on the surface of the metal layer, it is possible to provide a method capable of obtaining information on the thickness of the metal layer in a non-destructive manner. .
第1実施形態にかかる超音波検査装置のブロック図である。It is a block diagram of the ultrasonic inspection apparatus concerning a 1st embodiment. 第1実施形態にかかる超音波検査装置の、拡径時における模式的側断面図および模式的側面図である。It is the typical side sectional view and typical side view at the time of diameter expansion of the ultrasonic inspection device concerning a 1st embodiment. 第1実施形態にかかる超音波検査装置の模式的正面図である。It is a typical front view of the ultrasonic inspection apparatus concerning a 1st embodiment. 第1実施形態にかかる超音波検査装置の模式的正断面図である。1 is a schematic front sectional view of an ultrasonic inspection apparatus according to a first embodiment. 第1実施形態にかかる超音波検査装置の、縮径時における模式的側断面図および模式的側面図である。It is the typical side sectional view and typical side view at the time of diameter reduction of the ultrasonic inspection device concerning a 1st embodiment. 第1実施形態にかかる超音波検査装置の、検知部を含む要部の模式的側断面図である。It is a typical sectional side view of the principal part containing the detection part of the ultrasonic inspection apparatus concerning 1st Embodiment. 図6の要部の模式的分解図である。It is a typical exploded view of the principal part of FIG. 第2実施形態にかかる超音波検査装置の模式的背面図である。It is a typical back view of the ultrasonic inspection apparatus concerning 2nd Embodiment. 第2実施形態にかかる超音波検査装置の、拡縮アームを含む要部の拡径時における模式的側断面図である。It is a typical sectional side view at the time of the diameter expansion of the principal part containing the expansion / contraction arm of the ultrasonic inspection apparatus concerning 2nd Embodiment. 第2実施形態にかかる超音波検査装置の、拡縮アームを含む要部の縮径時における模式的側断面図である。It is a typical sectional side view at the time of the diameter reduction of the principal part containing the expansion / contraction arm of the ultrasonic inspection apparatus concerning 2nd Embodiment. 第3実施形態にかかる超音波検査装置の模式的正断面図である。It is a typical front sectional view of an ultrasonic inspection device concerning a 3rd embodiment. 第3実施形態にかかる超音波検査装置の、拡縮アームを含む要部の模式的一部側断面図である。It is a typical partial sectional side view of the principal part containing the expansion / contraction arm of the ultrasonic inspection apparatus concerning 3rd Embodiment. 第4実施形態にかかる超音波検査装置の、拡縮アームを含む要部の拡径時における模式的一部側断面図である。It is a typical partial sectional side view at the time of the diameter expansion of the principal part containing the expansion / contraction arm of the ultrasonic inspection apparatus concerning 4th Embodiment. 第4実施形態にかかる超音波検査装置の、拡縮アームを含む要部の縮径時における模式的一部側断面図である。It is a typical partial sectional side view at the time of the diameter reduction of the principal part containing the expansion / contraction arm of the ultrasonic inspection apparatus concerning 4th Embodiment. 第5実施形態にかかる超音波検査装置の、拡縮アームを含む要部の拡径時における模式的一部側断面図である。It is a typical partial sectional side view at the time of the diameter expansion of the principal part containing the expansion / contraction arm of the ultrasonic inspection apparatus concerning 5th Embodiment. 第5実施形態にかかる超音波検査装置の模式的一部断面図である。It is a typical partial cross section figure of the ultrasonic inspection apparatus concerning 5th Embodiment. 第5実施形態にかかる超音波検査装置の、拡縮アームを含む要部の縮径時における模式的一部側断面図である。It is a typical partial sectional side view at the time of the diameter reduction of the principal part containing the expansion / contraction arm of the ultrasonic inspection apparatus concerning 5th Embodiment. 第6実施形態にかかる超音波検査装置の、拡縮アームを含む要部の拡径時における模式的一部側断面図である。It is a typical partial sectional side view at the time of the diameter expansion of the principal part containing the expansion / contraction arm of the ultrasonic inspection apparatus concerning 6th Embodiment. 第6実施形態にかかる超音波検査装置の、拡縮アームを含む要部の縮径時における模式的一部側断面図である。It is a typical partial sectional side view at the time of the diameter reduction of the principal part containing the expansion / contraction arm of the ultrasonic inspection apparatus concerning 6th Embodiment. 第7実施形態にかかる超音波検査装置の模式的一部側面図である。It is a typical partial side view of the ultrasonic inspection apparatus concerning 7th Embodiment. 第7実施形態にかかる超音波検査装置の模式的正面図である。It is a typical front view of the ultrasonic inspection apparatus concerning a 7th embodiment. 第8実施形態にかかる超音波検査装置の拡径時の模式的外観図である。It is a typical external view at the time of diameter expansion of the ultrasonic inspection apparatus concerning 8th Embodiment. 第8実施形態にかかる超音波検査装置のケーブルを含む要部の模式的外観図である。It is a typical external view of the principal part containing the cable of the ultrasonic inspection apparatus concerning 8th Embodiment. 第8実施形態にかかる超音波検査装置の縮径時の模式的外観図である。It is a typical external view at the time of diameter reduction of the ultrasonic inspection apparatus concerning 8th Embodiment. 第8実施形態にかかる超音波検査装置の模式的背断面図である。It is a typical back sectional view of the ultrasonic inspection equipment concerning an 8th embodiment. 第8実施形態にかかる超音波検査装置がチーズ型管内を方向変換する態様を説明する概念図である。It is a conceptual diagram explaining the aspect in which the ultrasonic inspection apparatus concerning 8th Embodiment changes the direction in a cheese type pipe | tube. 本実施の形態の層厚試験法の一例を示す模式図である。It is a schematic diagram which shows an example of the layer thickness test method of this Embodiment. 本実施の形態の層厚試験法の一例を示す模式図である。It is a schematic diagram which shows an example of the layer thickness test method of this Embodiment. 本実施の形態の層厚試験法の一例を示す模式的一部拡大図である。It is a typical partial enlarged view which shows an example of the layer thickness test method of this Embodiment. 本実施の形態の層厚試験法の一例を示す模式的一部拡大図である。It is a typical partial enlarged view which shows an example of the layer thickness test method of this Embodiment. 本実施の形態の層厚試験装置の要部の一例を示すブロック図である。It is a block diagram which shows an example of the principal part of the layer thickness test apparatus of this Embodiment. 本実施の形態の層厚試験法における検出ピークパターンの一例を示す模式図である。It is a schematic diagram which shows an example of the detection peak pattern in the layer thickness test method of this Embodiment. 本実施の形態の層厚試験法における検出ピークパターンの他の例を示す模式図である。It is a schematic diagram which shows the other example of the detection peak pattern in the layer thickness test method of this Embodiment. 本実施の形態の層厚試験法における検出ピークパターンのさらに他の例を示す模式図である。It is a schematic diagram which shows the further another example of the detection peak pattern in the layer thickness test method of this Embodiment. 本実施の形態の層厚試験法の他の一例を示す模式図である。It is a schematic diagram which shows another example of the layer thickness test method of this Embodiment. 実施例1で得られた層厚試験結果である。3 is a layer thickness test result obtained in Example 1. 実施例2で得られた層厚試験結果である。3 is a layer thickness test result obtained in Example 2. 実施例3で得られた層厚試験結果である。4 is a layer thickness test result obtained in Example 3. 実施例4で得られた層厚試験結果である。4 is a layer thickness test result obtained in Example 4. 実施例5で得られた層厚試験結果である。5 is a layer thickness test result obtained in Example 5. 実施例6で得られた層厚試験結果である。It is a layer thickness test result obtained in Example 6. 実施例7で得られた層厚試験結果である。It is a layer thickness test result obtained in Example 7. 参考例1で得られた結果である。This is the result obtained in Reference Example 1. 実施例8で得られた層厚試験結果である。10 is a layer thickness test result obtained in Example 8. 実施例9で得られた層厚試験結果である。10 is a layer thickness test result obtained in Example 9. 実施例10で得られた層厚試験結果である。It is a layer thickness test result obtained in Example 10. 実施例11で得られた層厚試験結果である。3 is a layer thickness test result obtained in Example 11. 実施例12で得られた層厚試験結果である。It is a layer thickness test result obtained in Example 12. 参考例2で得られた層厚試験結果である。It is a layer thickness test result obtained in Reference Example 2. 実施例13で得られた層厚試験結果である。It is a layer thickness test result obtained in Example 13. 実施例14で得られた層厚試験結果である。It is a layer thickness test result obtained in Example 14.
100,100a,~,100e,100i,100e’ 超音波検査装置
100j,100k 層厚試験装置(超音波検査装置の一態様)
121 伸縮制御部
150 波形取得部
160 判定部
170 肉厚算出部
200,200a,~,200e,200i,200e’ 筒部(軸部の一態様)
200j 保持部(軸部の一態様)
220,220a,~,220e 連結用部材
220j 連結用リング(連結用部材の一態様)
300,300c,300d,300e,300e’ エアシリンダ
311 ロッド
321c,321d 可動部
321e ピストン
350c,350d,350e,350e’ 補助バネ
400,400a,~,400e,400i,400e’ 拡縮アーム
400j 離間部(拡縮アームで具現化)
411a,~,411e,411e’ 主アーム片
412a,~,412e,412e’ リンクアーム片
500,500a,~,500e,500i,500e’,500j 車輪
610 中空軸モータ
611 中空回転部材
612 非回転部材
710 超音波探触子
720 音響反射部
720k ミラー(音響反射部の一態様)
770 一回転センサ
771 ポジションマーカ
772 センサ
800,800i 筺体部
900 ライニング管(管の一態様)
910 金属管
920 セメント含有層
S,Sa,~,Se フリースペース
O 軸心
F 進行方向
W 水
Ls 内周表面(内壁面)
Li セメント含有層と金属管との境界面
Lb 金属管の外表面
R 発信波
RI1 第1界面反射波
RB1 第1外面反射波
RB2 第2外面反射波
100, 100a, ..., 100e, 100i, 100e 'Ultrasonic inspection apparatus 100j, 100k Layer thickness test apparatus (one aspect of ultrasonic inspection apparatus)
121 Stretching Control Unit 150 Waveform Acquisition Unit 160 Determination Unit 170 Thickness Calculation Units 200, 200a,...
200j holding part (one aspect of shaft part)
220, 220a, ..., 220e Connection member 220j Connection ring (one aspect of connection member)
300, 300c, 300d, 300e, 300e 'Air cylinder 311 Rod 321c, 321d Movable part 321e Piston 350c, 350d, 350e, 350e' Auxiliary springs 400, 400a, ..., 400e, 400i, 400e 'Expanding / contracting arm 400j Spacing part (expanding / contracting) (Implemented with an arm)
411a,..., 411e, 411e 'Main arm piece 412a,..., 412e, 412e' Link arm piece 500, 500a,..., 500e, 500i, 500e ', 500j Wheel 610 Hollow shaft motor 611 Hollow rotating member 612 Non-rotating member 710 Ultrasonic probe 720 Acoustic reflector 720k Mirror (one aspect of acoustic reflector)
770 Single-turn sensor 771 Position marker 772 Sensor 800, 800i Housing part 900 Lining pipe (one aspect of pipe)
910 Metal pipe 920 Cement containing layer S, Sa, ..., Se Free space O Axis center F Traveling direction W Water Ls Inner peripheral surface (inner wall surface)
Li Interface Lb between cement containing layer and metal tube Outer surface R of metal tube Transmitted wave RI1 First interface reflected wave RB1 First outer surface reflected wave RB2 Second outer surface reflected wave
 以下、図面を参照しつつ、本発明の実施の形態について説明する。以下の説明では、同一の要素には同一の符号を付しており、それらの名称および機能も同じである。したがって、それらについての詳細な説明は繰り返さない。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the following description, the same elements are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed description thereof will not be repeated.
[第1実施形態-超音波検査装置100]
 図1は、第1実施形態にかかる超音波検査装置のブロック図である。
 図2は、第1実施形態にかかる超音波検査装置の、拡径時における模式的側断面図および模式的側面図である。図2においては、管内に挿入された状態の超音波検査装置を示し、図中の一点鎖線によって管の内壁面Lを示す(以下の図において同様)。図2における拡縮アームを含む要部は、上半分に、後述の図4のA-A線断面が示され、下半分に、当該断面図として記載した要部の外観に相当する図が模式的に示される。
 図3は、第1実施形態にかかる超音波検査装置の模式的正面図である。正面とは、進行方向側から管の軸心方向に超音波検査装置を見た場合の外観をいう。
 図4は、第1実施形態にかかる超音波検査装置の模式的正断面図である。具体的には、図2のB-B線断面を示す。
 図5は、第1実施形態にかかる超音波検査装置の、縮径時における模式的側断面図および模式的側面図である。図5は、拡縮態様が異なることを除いて、図2と同様に表示している。
[First Embodiment-Ultrasonic Inspection Apparatus 100]
FIG. 1 is a block diagram of an ultrasonic inspection apparatus according to the first embodiment.
FIG. 2 is a schematic side cross-sectional view and a schematic side view of the ultrasonic inspection apparatus according to the first embodiment at the time of diameter expansion. In FIG. 2, the ultrasonic inspection apparatus inserted in the tube is shown, and the inner wall surface L of the tube is indicated by a dashed line in the drawing (the same applies to the following drawings). The main part including the expansion / contraction arm in FIG. 2 is shown in the upper half of a cross section taken along line AA of FIG. 4 to be described later, and the lower half is a schematic view corresponding to the appearance of the main part described as the cross-sectional view. Shown in
FIG. 3 is a schematic front view of the ultrasonic inspection apparatus according to the first embodiment. The front means an external appearance when the ultrasonic inspection apparatus is viewed in the axial direction of the tube from the traveling direction side.
FIG. 4 is a schematic front sectional view of the ultrasonic inspection apparatus according to the first embodiment. Specifically, a cross section taken along line BB in FIG. 2 is shown.
FIG. 5 is a schematic cross-sectional side view and a schematic side view of the ultrasonic inspection apparatus according to the first embodiment when the diameter is reduced. FIG. 5 is the same as FIG. 2 except that the enlargement / reduction mode is different.
 なお、以下においては、説明の便宜上、矢印F(図2、図5参照)の方向を進行方向、矢印Fと反対の方向を退行方向、内壁面Lの軸心O(図3、図4参照)を軸心、内壁面Lの径方向を径方向と記載する場合がある。 In the following, for convenience of explanation, the direction of the arrow F (see FIGS. 2 and 5) is the traveling direction, the direction opposite to the arrow F is the retreating direction, and the axis O of the inner wall surface L (see FIGS. 3 and 4). ) As the axis, and the radial direction of the inner wall surface L may be referred to as the radial direction.
[構成概要]
 図1に示すように、本実施形態にかかる超音波検査装置100は、内部移動部110と外部操作部120とを含む。内部移動部110と外部操作部120とは、ケーブル130で物理的および電気的に接続されている。
[Configuration overview]
As shown in FIG. 1, the ultrasonic inspection apparatus 100 according to the present embodiment includes an internal movement unit 110 and an external operation unit 120. The internal movement unit 110 and the external operation unit 120 are physically and electrically connected by a cable 130.
 内部移動部110は、管内に挿入されて管の軸心方向に走行する部分であり、筒部(軸部)200、エアシリンダ300、拡縮アーム400、車輪500を有する。その他に、内部移動部110は、中空軸モータ610、方向変換部620及び検知部700を有する。内部移動部110については図2から図5を、検知部700については図2、図3、図6、図7を用いて詳述する。なお、これら図においては、内部移動部110と接続されるケーブル130の図示を省略する。 The internal moving part 110 is a part that is inserted into the pipe and travels in the axial direction of the pipe, and includes a cylindrical part (shaft part) 200, an air cylinder 300, an expansion / contraction arm 400, and a wheel 500. In addition, the internal moving unit 110 includes a hollow shaft motor 610, a direction changing unit 620, and a detecting unit 700. The internal movement unit 110 will be described in detail with reference to FIGS. 2 to 5, and the detection unit 700 will be described in detail with reference to FIGS. 2, 3, 6, and 7. In these drawings, the illustration of the cable 130 connected to the internal moving unit 110 is omitted.
 外部操作部120は、管外で操作される部分であり、伸縮制御部121、その他モータ制御部122、方向制御部123および検知条件制御部124といった入力部と、検知情報解析部125と、出力部126を有する。 The external operation unit 120 is a part that is operated outside the pipe, and includes an input / output unit such as an expansion / contraction control unit 121, a motor control unit 122, a direction control unit 123, and a detection condition control unit 124, a detection information analysis unit 125, and an output. Part 126.
 伸縮制御部121は、エアシリンダ300の伸縮を制御する。具体例として、エアシリンダ300を構成する部品の1つであるソレノイドバルブ(後述)を制御するシーケンサ等が挙げられる。モータ制御部122は、車輪500の走行速度を制御する。また、モータ制御部122は、中空軸モータ610を制御する。方向制御部123は、車輪500の走行方向を変換する。検知条件制御部124は、検知部700に対し、測定条件等の入力情報の制御および測定結果等の出力情報に基づくフィードバック制御等の制御を行う。検知情報解析部125は、検知部700による出力情報の解析を行う。出力部126は、検知部700による出力情報を出力する。 The expansion / contraction control unit 121 controls expansion / contraction of the air cylinder 300. As a specific example, a sequencer for controlling a solenoid valve (described later) which is one of the components constituting the air cylinder 300 can be cited. The motor control unit 122 controls the traveling speed of the wheels 500. The motor control unit 122 controls the hollow shaft motor 610. The direction control unit 123 converts the traveling direction of the wheel 500. The detection condition control unit 124 controls the detection unit 700 such as control of input information such as measurement conditions and feedback control based on output information such as measurement results. The detection information analysis unit 125 analyzes output information from the detection unit 700. The output unit 126 outputs information output by the detection unit 700.
[筒部]
 図2及び図4に示すように、内部移動部110は、正面視中央に筒部200を有する。筒部200は、管の内壁面Lの軸心方向に延在し、軸筺体部210と、軸筺体部210の外周面上に設けられた連結用部材220とから構成される。
[Cylinder part]
As shown in FIG.2 and FIG.4, the internal movement part 110 has the cylinder part 200 in the front view center. The cylindrical portion 200 extends in the axial direction of the inner wall surface L of the tube, and includes a shaft housing portion 210 and a connecting member 220 provided on the outer peripheral surface of the shaft housing portion 210.
 軸筺体部210内には、所望の部材を収容することができる。たとえば、エアシリンダ300の関連部品(後述)を収容することができる。その他、図1に示した方向変換部620およびケーブル130等を収容することができる。 A desired member can be accommodated in the shaft housing part 210. For example, related parts (described later) of the air cylinder 300 can be accommodated. In addition, the direction changer 620 and the cable 130 shown in FIG. 1 can be accommodated.
 連結用部材220は、筒部200と他の部材を連結する。本実施形態では、エアシリンダ300および拡縮アーム400を連結する。連結用部材220は、拡縮アーム400の拡縮機構に応じた態様で設けられる。 The connecting member 220 connects the cylindrical portion 200 and other members. In this embodiment, the air cylinder 300 and the expansion / contraction arm 400 are connected. The connecting member 220 is provided in a manner corresponding to the expansion / contraction mechanism of the expansion / contraction arm 400.
 本実施形態では、連結用部材220は、軸筺体部210の外周面を軸心方向に摺動可能となるように設けられた摺動リング221と、軸筺体部210の外周面に固定された固定リング222,223,225とを含む。軸心方向において進行方向F側から順に、固定リング223、固定リング225、摺動リング221および固定リング222が設けられる。 In the present embodiment, the connecting member 220 is fixed to the sliding ring 221 provided so as to be slidable in the axial direction on the outer peripheral surface of the shaft housing portion 210 and the outer peripheral surface of the shaft housing portion 210. Fixing rings 222, 223, and 225. In the axial direction, a fixing ring 223, a fixing ring 225, a sliding ring 221 and a fixing ring 222 are provided in this order from the traveling direction F side.
 摺動リング221は、拡縮アーム400の基部を軸着する。これにより、拡縮アーム400の基部が回転自在且つ軸方向に移動可能な状態で連結される。
 固定リング222,223も、拡縮アーム400の基部を軸着する。これにより、拡縮アーム400の基部が回転自在に固定された状態で連結される。
 一方固定リング225は、エアシリンダ300を保持するよう固定する。
The sliding ring 221 is pivotally attached to the base of the expansion / contraction arm 400. Thereby, the base part of the expansion-contraction arm 400 is connected in the state which can rotate freely and can move to an axial direction.
The fixing rings 222 and 223 also pivotally attach to the base of the expansion / contraction arm 400. Thereby, the base part of the expansion-contraction arm 400 is connected in the state fixed rotatably.
On the other hand, the fixing ring 225 fixes the air cylinder 300 so as to hold it.
[エアシリンダ]
 エアシリンダ300は、空気の圧力を利用して駆動するアクチュエータである。従って、ピストン310およびシリンダ320、その他図示しない関連部品で構成される。関連部品としては、空気流通に必要な部品、具体的にはエア配管および圧縮空気源等が挙げられる。そのほか、関連部品として、動作に必要な部品、具体的には、速度を調節するスピードコントローラ、ピストン位置を検知するセンサ、および空気の方向を切り替えるソレノイドバルブ等が挙げられる。
[Air cylinder]
The air cylinder 300 is an actuator that is driven using the pressure of air. Accordingly, the piston 310, the cylinder 320, and other related parts (not shown) are included. Related parts include parts necessary for air circulation, specifically, air piping and a compressed air source. Other related parts include parts necessary for operation, specifically, a speed controller that adjusts the speed, a sensor that detects the piston position, and a solenoid valve that switches the direction of air.
 エアシリンダ300は、図2に示すように、軸心方向に延在するように配置される。これによって、エアシリンダ300の伸縮方向が軸心方向となる。シリンダ320の部分が固定リング225に固定される一方、エアシリンダ300のピストン310のロッド311は摺動リング221に固定される。したがって、エアシリンダ300の伸縮動作によって摺動リング221が軸心方向に摺動し、これにより、後に詳述するように、摺動リング221と連結する拡縮アーム400を動作させることができる。 The air cylinder 300 is arranged so as to extend in the axial direction as shown in FIG. Thereby, the expansion / contraction direction of the air cylinder 300 becomes the axial direction. A portion of the cylinder 320 is fixed to the fixing ring 225, while the rod 311 of the piston 310 of the air cylinder 300 is fixed to the sliding ring 221. Therefore, the sliding ring 221 slides in the axial direction by the expansion / contraction operation of the air cylinder 300, and thereby the expansion / contraction arm 400 connected to the sliding ring 221 can be operated as will be described in detail later.
[拡縮アームおよび車輪]
 図2および図4に示すように、拡縮アーム400は、筒部200の連結用部材220に連結されることにより、筒部200の軸心を中心とする放射方向、つまり管の径方向に突設される。拡縮アーム400の先端つまり拡縮アーム400のうち筒部200から最も離間した部分には、車輪500が設けられる。本実施形態においては、拡縮アーム400および車輪500のセットは、軸心まわりに等間隔となるように3セット設けられる。
[Expansion and contraction arm and wheel]
As shown in FIGS. 2 and 4, the expansion / contraction arm 400 is connected to the connecting member 220 of the cylindrical portion 200, thereby projecting in the radial direction around the axial center of the cylindrical portion 200, that is, in the radial direction of the tube. Established. A wheel 500 is provided at the tip of the expansion / contraction arm 400, that is, the portion of the expansion / contraction arm 400 that is farthest from the cylindrical portion 200. In the present embodiment, three sets of the expansion / contraction arm 400 and the wheel 500 are provided so as to be equally spaced around the axis.
 拡縮アーム400は、主アーム片411と、リンクアーム片412と、副アーム片413と、同期アーム片414とを含む。これらは、連結用部材220およびエアシリンダ300と相まって、エアシリンダ300の伸縮動作を拡縮アーム400の拡縮動作に連動させるリンク機構を構成する。 The expansion / contraction arm 400 includes a main arm piece 411, a link arm piece 412, a sub arm piece 413, and a synchronization arm piece 414. Together with the connecting member 220 and the air cylinder 300, they constitute a link mechanism that links the expansion / contraction operation of the air cylinder 300 with the expansion / contraction operation of the expansion / contraction arm 400.
 図4に示すように、主アーム片411、リンクアーム片412、副アーム片413および同期アーム片414は、車輪500の車軸を両持ちするように車軸500の両端部に一対ずつ設けられ、対をなすアーム片の間にはフリースペースSが形成される。 As shown in FIG. 4, the main arm piece 411, the link arm piece 412, the sub arm piece 413, and the synchronization arm piece 414 are provided in pairs at both ends of the axle 500 so as to hold the axle of the wheel 500. A free space S is formed between the arm pieces.
 図2に示すように、主アーム片411は基端部が摺動リング221に軸着されることにより、軸着部分を中心として、軸心に対する角度が変化するように回転動作できる。主アーム片411先端部は後述のように同期アーム片414を介して車輪500に連結しているため、当該回転動作により、車輪500の筒部200からの離間量を物理的に規定する。 As shown in FIG. 2, the main arm piece 411 can be rotated so that the angle with respect to the shaft center changes with the base end portion being pivotally attached to the sliding ring 221. Since the distal end portion of the main arm piece 411 is connected to the wheel 500 via the synchronous arm piece 414 as will be described later, the amount of separation of the wheel 500 from the cylinder portion 200 is physically defined by the rotation operation.
 主アーム片411は、摺動リング221の軸心方向の移動に伴って基端位置が軸心方向に移動可能である。摺動リング221は前述のようにエアシリンダ300のロッド311を固定している。つまり、主アーム片411の基端位置は、エアシリンダ300伸縮動作に伴って移動する。 The base arm position of the main arm piece 411 can move in the axial direction as the sliding ring 221 moves in the axial direction. The slide ring 221 fixes the rod 311 of the air cylinder 300 as described above. That is, the base end position of the main arm piece 411 moves with the expansion / contraction operation of the air cylinder 300.
 さらに主アーム片411の先端部と基端部との間では、リンクアーム片412の先端部が回転自在に固定されている。リンクアーム片412は、基端部が、先端部の固定位置よりも退行方向側において固定リング222に軸着されている。したがって、リンクアーム片412は、主アーム片411の基端部との相対位置の変化に応じ、軸着部分を中心として主アーム片411と反対方向に回転動作するととともに、主アーム片411の先端部を、筒部200と近接または離間するように動作させる。 Further, the distal end portion of the link arm piece 412 is rotatably fixed between the distal end portion and the proximal end portion of the main arm piece 411. The link arm piece 412 is pivotally attached to the fixing ring 222 at the base end portion on the retreat direction side with respect to the fixing position of the tip end portion. Accordingly, the link arm piece 412 rotates in the direction opposite to the main arm piece 411 around the axis-attached portion according to the change in the relative position with the base end portion of the main arm piece 411, and the distal end of the main arm piece 411 The part is operated so as to be close to or away from the cylindrical part 200.
 副アーム片413は、主アーム片411と同形同大であり、基端部が固定リング223に軸着されることにより主アーム片411と同様の回転動作が可能である。さらに副アーム片413の先端部は、主アーム片411の先端部が回転可能に固定された同期アーム片414に、回転可能かつ軸心方向に摺動可能であるように連結される。したがって、副アーム片413は、同期アーム片414によって、主アーム片411の回転動作に同期して回転動作する。 The sub arm piece 413 has the same shape and size as the main arm piece 411, and the base end portion is pivotally attached to the fixing ring 223, so that the sub arm piece 413 can perform the same rotation operation as the main arm piece 411. Further, the distal end portion of the sub arm piece 413 is connected to a synchronous arm piece 414 to which the distal end portion of the main arm piece 411 is rotatably fixed so as to be rotatable and slidable in the axial direction. Therefore, the sub arm piece 413 rotates by the synchronization arm piece 414 in synchronization with the rotation operation of the main arm piece 411.
 さらに、副アーム片413の先端部における当該回転動作とともに、連結位置が軸心方向に移動するため、同期アーム片414は動作の間一貫して、軸心と略平行の姿勢を保つ。同期アーム片414の軸心方向両端には車輪500が設けられているため、軸心に平行な内壁面Lに両車輪500が確実に接触できる。
 なお、車輪500に関連する他の図示しない部材、たとえば駆動装置およびサスペンション等が設けられていてよい。
Furthermore, since the connecting position moves in the axial direction along with the rotational operation at the tip of the sub arm piece 413, the synchronous arm piece 414 maintains a posture substantially parallel to the axial center throughout the operation. Since the wheels 500 are provided at both ends of the synchronization arm piece 414 in the axial center direction, both wheels 500 can reliably contact the inner wall surface L parallel to the axial center.
Other members (not shown) related to the wheel 500, such as a driving device and a suspension, may be provided.
[拡縮動作]
 図2に示すように、拡径時においては、伸縮制御部121(図1参照)を操作してエアシリンダ300を矢印Eの方向へ伸長させることに伴い、摺動リング221が矢印Eと同じ方向へ移動することで主アーム片411の基端位置も矢印Eと同じ方向へ移動する。これによって主アーム片411の基端部とリンクアーム片412の基端部との間が狭まるため、リンクアーム片412がその先端部を筒部200から離間する方向へ起こすとともに、主アーム片411を筒部200から離間する方向へ起こす。この主アーム片411の動作が同期アーム片414を介して副アーム片413を同様に起きるように動作させる。その結果、拡縮アーム400が矢印SUの方向へ拡長した態様となり、同期アーム片414の両端に設けられた車輪500を内壁面Lに対して突っ張らせる負荷を与える。
[Scale operation]
As shown in FIG. 2, when the diameter is expanded, the sliding ring 221 is the same as the arrow E as the expansion / contraction control unit 121 (see FIG. 1) is operated to extend the air cylinder 300 in the direction of the arrow E. By moving in the direction, the base end position of the main arm piece 411 also moves in the same direction as the arrow E. As a result, the space between the base end of the main arm piece 411 and the base end of the link arm piece 412 is narrowed, so that the link arm piece 412 raises its tip end in a direction away from the tube portion 200 and the main arm piece 411. Is raised in a direction away from the cylindrical portion 200. The main arm piece 411 is operated so that the sub arm piece 413 similarly occurs via the synchronous arm piece 414. As a result, the expansion / contraction arm 400 is expanded in the direction of the arrow SU, and a load is applied to stretch the wheels 500 provided at both ends of the synchronization arm piece 414 with respect to the inner wall surface L.
 この場合、伸縮制御部121(図1参照)の操作により筒部200に対して設けられた全ての拡縮アーム400においてエアシリンダ300が同期伸長するため、全ての拡縮アーム400において、拡長の程度および拡長のタイミングが略等しくなる。このような拡縮アーム400の拡張動作によって、図4に示すように、筒部200の軸心が内壁面Lの軸心に略一致するように調芯される。 In this case, since the air cylinder 300 is synchronously extended in all the expansion / contraction arms 400 provided to the cylinder portion 200 by the operation of the expansion / contraction control unit 121 (see FIG. 1), the degree of expansion in all the expansion / contraction arms 400 And the expansion timing becomes substantially equal. By such an expansion operation of the expansion / contraction arm 400, as shown in FIG. 4, the center of the cylindrical portion 200 is aligned so as to substantially coincide with the axis of the inner wall surface L.
 反対に、図5に示すように、縮径時(最小限まで縮径させる時)においては、伸縮制御部121(図1参照)を操作してエアシリンダ300を矢印Cの方向へ縮小させることに伴い、摺動リング221が矢印Cと同じ方向へ移動することで主アーム片411の基端位置も矢印Cと同じ方向へ移動する。これによって主アーム片411の基端部とリンクアーム片412の基端部との間が拡がるため、リンクアーム片412がその先端部を筒部200に近接する方向へ倒すとともに、主アーム片411を筒部200へ近づく方向へ倒す。この主アーム片411の動作が同期アーム片414を介して副アーム片413を同様に倒すように動作させる。その結果、拡縮アーム400が矢印SDの方向へ縮小した態様となる。この場合にも、拡縮アーム400は、同期アーム片414の両端に設けられた車輪500を内壁面Lに対して突っ張らせる負荷を与える。 On the contrary, as shown in FIG. 5, when the diameter is reduced (when the diameter is reduced to the minimum), the expansion / contraction control unit 121 (see FIG. 1) is operated to reduce the air cylinder 300 in the direction of arrow C. Accordingly, the sliding ring 221 moves in the same direction as the arrow C, so that the base end position of the main arm piece 411 also moves in the same direction as the arrow C. As a result, the space between the base end portion of the main arm piece 411 and the base end portion of the link arm piece 412 expands, so that the link arm piece 412 tilts the tip end portion in the direction close to the cylindrical portion 200 and the main arm piece 411. Is tilted in the direction of approaching the tube part 200. The operation of the main arm piece 411 causes the sub arm piece 413 to be similarly moved down via the synchronous arm piece 414. As a result, the expansion / contraction arm 400 is contracted in the direction of the arrow SD. Also in this case, the expansion / contraction arm 400 applies a load that causes the wheels 500 provided at both ends of the synchronization arm piece 414 to be stretched against the inner wall surface L.
 この場合、伸縮制御部121(図1参照)の操作により筒部200に対して設けられた全ての拡縮アーム400においてエアシリンダ300が同期収縮するため、全ての拡縮アーム400において、縮小の程度および縮小のタイミングが略等しくなる。このような拡縮アーム400の縮小動作によっても、筒部200の軸心が内壁面Lの軸心に略一致するように調芯される。 In this case, since the air cylinders 300 are synchronously contracted in all the expansion / contraction arms 400 provided for the cylindrical portion 200 by the operation of the expansion / contraction control unit 121 (see FIG. 1), The timing of reduction becomes substantially equal. By such a reduction operation of the expansion / contraction arm 400, the axis of the cylindrical portion 200 is aligned so as to substantially coincide with the axis of the inner wall surface L.
 さらに図5のように拡縮アーム400が最小限まで縮小された場合、拡縮アーム400に形成されたフリースペースS(図4参照)の中にエアシリンダ300の一部が収容される。つまり、エアシリンダ300の存在が縮径に支障しない。このため、拡縮アーム400が最小限まで縮小された場合に超音波検査装置100の放射方向の大きさをコンパクトにすることができる。 Further, when the expansion / contraction arm 400 is reduced to the minimum as shown in FIG. 5, a part of the air cylinder 300 is accommodated in the free space S (see FIG. 4) formed in the expansion / contraction arm 400. That is, the presence of the air cylinder 300 does not hinder the diameter reduction. For this reason, when the expansion / contraction arm 400 is reduced to the minimum, the size of the ultrasonic inspection apparatus 100 in the radial direction can be made compact.
 このような拡縮アーム400の拡縮が、外部操作部120の伸縮制御部121(図1参照)により、エアシリンダ300の伸縮動作を遠隔操作することにより行われるため、管内での縮径および拡径が自在である。これによって、内壁面Lの径の変化の大きい部分であっても、内壁面Lの径の変化に応じて積極的に縮径および拡径することができる。さらに、チーズ形状の配管内での方向変換も容易になる。 Such expansion / contraction of the expansion / contraction arm 400 is performed by remotely operating the expansion / contraction operation of the air cylinder 300 by the expansion / contraction control unit 121 (see FIG. 1) of the external operation unit 120. Is free. Thereby, even in a portion where the change in the diameter of the inner wall surface L is large, the diameter can be positively reduced and expanded according to the change in the diameter of the inner wall surface L. Furthermore, the direction change in cheese-shaped piping is also facilitated.
[モータおよび検知部]
 図2に示すように、筒部200の進行方向F側の端部には、筺体部800に収容された中空軸モータ610、および検知部700が配設される。中空軸モータ610は回転する中空回転部材611と回転しない非回転部材612から構成され、検知部700は超音波探触子710と音響反射部720とから構成される。
[Motor and detector]
As shown in FIG. 2, a hollow shaft motor 610 housed in a housing 800 and a detection unit 700 are disposed at the end of the cylindrical part 200 on the traveling direction F side. The hollow shaft motor 610 includes a rotating hollow rotating member 611 and a non-rotating non-rotating member 612, and the detection unit 700 includes an ultrasonic probe 710 and an acoustic reflection unit 720.
 図3に示すように、中空回転部材611は、中空部を確保するための貫通孔615を有する正面視円形のパイプ状であり、筒部200の軸心Oと同軸に配置される。非回転部材612は中空回転部材611の外表面に対応する貫通孔を有する正面視略正方形のブロック状であり、当該貫通孔内に中空回転部材611を貫通させることにより中空回転部材611を回転可能に囲繞する。また、非回転部材612の当該略正方形の四隅近傍には固定用ねじ穴が凹設される。 As shown in FIG. 3, the hollow rotating member 611 has a circular pipe shape with a through hole 615 for securing a hollow portion, and is disposed coaxially with the axis O of the cylindrical portion 200. The non-rotating member 612 has a substantially square block shape with a through hole corresponding to the outer surface of the hollow rotating member 611, and the hollow rotating member 611 can be rotated by passing the hollow rotating member 611 through the through hole. Go to. Further, fixing screw holes are recessed in the vicinity of the four corners of the substantially square of the non-rotating member 612.
 図6および図7に示すように、中空軸モータ610を収容する筺体部800は、退行方向側が開口したケーシング部材810と、当該開口部分を密嵌するケーシングカバー部材820とから構成される。ケーシング部材810とケーシングカバー部材820との密嵌部分はガスケットにより封止される。ケーシング部材810とケーシングカバー部材820には、それぞれ、軸心Oと同軸の貫通孔813と貫通孔822とが穿設されている。また、ケーシングカバー部材820には、中空軸モータ610のモータケーブル136を貫通させるケーブル孔826が設けられており、モータケーブル136を筺体部800内部から外部へ配線させる。さらに、ケーシングカバー部材820には、中空軸モータ610の非回転部材612に設けられた固定用ねじ穴に対応する位置にねじ孔が穿設されており、非回転部材612をねじ止めにより固定する(図6下半分表示参照)。 As shown in FIGS. 6 and 7, the housing portion 800 that accommodates the hollow shaft motor 610 includes a casing member 810 that opens on the retracting direction side, and a casing cover member 820 that closely fits the opening portion. A close fitting portion between the casing member 810 and the casing cover member 820 is sealed with a gasket. The casing member 810 and the casing cover member 820 have a through hole 813 and a through hole 822 that are coaxial with the axis O, respectively. The casing cover member 820 is provided with a cable hole 826 that allows the motor cable 136 of the hollow shaft motor 610 to pass therethrough, and the motor cable 136 is wired from the inside of the housing portion 800 to the outside. Further, the casing cover member 820 has a screw hole at a position corresponding to a fixing screw hole provided in the non-rotating member 612 of the hollow shaft motor 610, and the non-rotating member 612 is fixed by screwing. (Refer to the lower half of FIG. 6).
 このように非回転部材612に固定されたケーシングカバー部材820には、さらに、退行方向側で探触子固定部材750がねじ止め固定されている(図6上半分表示参照)。図6および図7に示すように、探触子固定部材750には軸心Oと同軸かつ超音波探触子710を嵌通可能な径で貫通孔755が穿設されており、貫通孔755に超音波探触子710を嵌通させることにより超音波探触子710を固定する。これにより、超音波探触子710は、探触子固定部材750とケーシングカバー部材820とを介して、中空軸モータ610の非回転部材612に固定される。この場合、図6に示すように、超音波探触子710の超音波伝搬部712は、ケーシングカバー部材820の貫通孔822内も貫通し、進行方向側の端が筺体部800内の中空軸モータ610の貫通孔615内(中空部内)に達するまで挿入される。これにより、超音波検査装置の軸心O方向の長さを短くすることができる。
 なお、超音波探触子710の探触子ケーブル137は、軸筺体部210(図2参照)内へ配線される。
A probe fixing member 750 is further screwed and fixed to the casing cover member 820 fixed to the non-rotating member 612 in this way (see the upper half of FIG. 6). As shown in FIGS. 6 and 7, the probe fixing member 750 is provided with a through hole 755 that is coaxial with the axis O and has a diameter that allows the ultrasonic probe 710 to be fitted therein. The ultrasonic probe 710 is fixed by fitting the ultrasonic probe 710 into the screw. As a result, the ultrasonic probe 710 is fixed to the non-rotating member 612 of the hollow shaft motor 610 via the probe fixing member 750 and the casing cover member 820. In this case, as shown in FIG. 6, the ultrasonic wave propagation part 712 of the ultrasonic probe 710 also penetrates through the through hole 822 of the casing cover member 820, and the end on the traveling direction side is a hollow shaft in the housing part 800. The motor 610 is inserted until it reaches the inside of the through hole 615 (inside the hollow portion). Thereby, the length of the ultrasonic inspection apparatus in the axis O direction can be shortened.
Note that the probe cable 137 of the ultrasonic probe 710 is wired into the shaft housing 210 (see FIG. 2).
 上記のように固定された超音波探触子710は、軸心Oと同軸配置となっているため、発信部711から発信され超音波伝搬部712内を伝搬された超音波は、軸Oに音軸が一致するように進行方向へ発信される。
 一方、図6に示すように、固定された超音波探触子710の進行方向側には、発信された超音波の伝搬方向を変更するための音響反射部720が回転可能な態様で設けられる。図6および図7に示すように、音響反射部720は、反射部材721と、反射部材721が取り付けられる回転ホルダ724とから構成される。
Since the ultrasonic probe 710 fixed as described above is coaxial with the axis O, the ultrasonic wave transmitted from the transmitting unit 711 and propagated in the ultrasonic propagating unit 712 is transmitted to the axis O. It is transmitted in the traveling direction so that the sound axes coincide.
On the other hand, as shown in FIG. 6, an acoustic reflection unit 720 for changing the propagation direction of the transmitted ultrasonic wave is provided on the traveling direction side of the fixed ultrasonic probe 710 in a rotatable manner. . As shown in FIGS. 6 and 7, the acoustic reflection unit 720 includes a reflection member 721 and a rotation holder 724 to which the reflection member 721 is attached.
 回転ホルダ724は、反射部材721を挿嵌する進行方向側の径大筒部725と、中空回転部材611に固定される退行方向側の径小筒部726とを有する筒状部材である(図7参照)。図6に示すように、回転ホルダ724は、ケーシング部材810の貫通孔813を遊貫して筺体部800内部に挿入され、さらに径小筒部726が、中空回転部材611の貫通孔615内に嵌通される。この場合、回転ホルダ724の挿入量は、径大筒部725と径小筒部726との境界に形成される係止面729が、中空回転部材611の進行方向側の端面へ当接係止することにより決定される。これにより、径小筒部726の退行方向側の端部が、ケーシングカバー部材820の貫通孔内に遊挿され、かつ当該端部の最端面と、探触子固定部材750の当接面751との間にはクリアランス(たとえば、0.1mm以上0.5mm以下の隙間)を生じさせる。それとともに、径小筒部726の内部には超音波探触子710の超音波伝搬部712を遊挿させる。 The rotating holder 724 is a cylindrical member having a large-diameter cylindrical portion 725 on the traveling direction side into which the reflecting member 721 is inserted and a small-diameter cylindrical portion 726 on the retracting direction side fixed to the hollow rotating member 611 (FIG. 7). reference). As shown in FIG. 6, the rotation holder 724 passes through the through hole 813 of the casing member 810 and is inserted into the housing portion 800. It is inserted. In this case, the insertion amount of the rotating holder 724 is such that the locking surface 729 formed at the boundary between the large diameter cylindrical portion 725 and the small diameter cylindrical portion 726 contacts and locks the end surface on the traveling direction side of the hollow rotating member 611. Is determined by As a result, the end of the small-diameter tubular portion 726 on the retracting direction side is loosely inserted into the through hole of the casing cover member 820, and the end face of the end and the contact surface 751 of the probe fixing member 750 are inserted. A clearance (for example, a gap of 0.1 mm or more and 0.5 mm or less) is generated between the two. At the same time, the ultrasonic wave propagation portion 712 of the ultrasonic probe 710 is loosely inserted into the small diameter cylindrical portion 726.
 図6に示すように、回転ホルダ724は、径小筒部726が中空回転部材611の貫通孔615内に嵌通されることで中空回転部材611に固定されるため、中空回転部材611の回転駆動を受けて一体的に回転することができる。 As shown in FIG. 6, the rotation holder 724 is fixed to the hollow rotation member 611 by the small diameter cylindrical portion 726 being fitted into the through hole 615 of the hollow rotation member 611, so that the rotation of the hollow rotation member 611 is performed. It can be rotated integrally with driving.
 一方、図6に示すように、回転ホルダ724の径大筒部725とケーシング部材810の貫通孔813との遊貫部分には、貫通孔813に刻設されたパッキン溝811(図7参照)にパッキンが嵌着され、回転ホルダ724の径小筒部726とケーシングカバー部材820の貫通孔822との遊挿部分においては、貫通孔822に刻設されたパッキン溝824にパッキンが嵌着される。なお、パッキンとしては回転運動用シール材であればよく、一例としてオイルシールが挙げられる。
 さらに、回転ホルダ724の径小筒部726と超音波伝搬部712との遊挿部分においては、径小筒部726の内壁728と、超音波伝搬部712の外表面との間にクリアランス(たとえば、0.1mm以上0.5mm以下の隙間)が生じている。
On the other hand, as shown in FIG. 6, a loose groove portion between the large-diameter cylindrical portion 725 of the rotary holder 724 and the through hole 813 of the casing member 810 has a packing groove 811 (see FIG. 7) formed in the through hole 813. In the loose insertion portion between the small diameter cylindrical portion 726 of the rotary holder 724 and the through hole 822 of the casing cover member 820, the packing is fitted in the packing groove 824 formed in the through hole 822. . The packing may be any sealing material for rotational movement, and an oil seal is an example.
Further, in the loose insertion portion between the small diameter cylindrical portion 726 and the ultrasonic propagation portion 712 of the rotary holder 724, a clearance (for example, between the inner wall 728 of the small diameter cylindrical portion 726 and the outer surface of the ultrasonic propagation portion 712). , A gap of 0.1 mm to 0.5 mm is generated.
 このように回転ホルダ724を中空回転部材611以外の部材に固定されないように設けることによって、中空回転部材611と一体的に回転自在としながら、筺体部800および超音波探触子710には中空回転部材611の回転駆動を伝えることなく、非回転部材612と共に非回転状態を維持することができる。 Thus, by providing the rotation holder 724 so as not to be fixed to a member other than the hollow rotating member 611, the housing portion 800 and the ultrasonic probe 710 can be rotated freely while being rotatable integrally with the hollow rotating member 611. The non-rotating state can be maintained together with the non-rotating member 612 without transmitting the rotational driving of the member 611.
 回転ホルダ724の径大筒部725の開口端に挿嵌されて固定される反射部材721は、退行方向側に、超音波を反射可能な傾斜面723を有する。具体的には、傾斜面723は、側面視で軸心Oに対して45度をなすように形成されており、径大筒部725内で、超音波探触子710から軸心O方向に発信された超音波を軸心O上で反射しその伝搬方向を垂直に変化させる。なお、傾斜面723における反射部材721の素材は、音響インピーダンスの値が、超音波探触子710からの超音波の伝搬媒質(本実施形態においては、水)の音響インピーダンスの値に対して大きな差を有する金属材料、樹脂材料、セラミック材料などから構成される。
 回転ホルダ724の径大筒部725の側面には、傾斜面723により伝搬方向が変更された超音波の外部への出口となる出口孔727が設けられる。
The reflection member 721 that is fixedly inserted and fixed to the opening end of the large-diameter cylindrical portion 725 of the rotary holder 724 has an inclined surface 723 that can reflect ultrasonic waves on the regression direction side. Specifically, the inclined surface 723 is formed so as to form 45 degrees with respect to the axis O in a side view, and is transmitted from the ultrasonic probe 710 in the direction of the axis O within the large-diameter cylindrical portion 725. The reflected ultrasonic wave is reflected on the axis O and its propagation direction is changed vertically. Note that the material of the reflecting member 721 on the inclined surface 723 has a large acoustic impedance value relative to the acoustic impedance value of the ultrasonic propagation medium (water in this embodiment) from the ultrasonic probe 710. It is comprised from the metal material, resin material, ceramic material, etc. which have a difference.
An exit hole 727 serving as an exit to the outside of the ultrasonic wave whose propagation direction is changed by the inclined surface 723 is provided on a side surface of the large diameter cylindrical portion 725 of the rotary holder 724.
 これにより、図2の点線で示すように、超音波探触子710から発信された超音波は、傾斜面723で伝搬方向を変更され、出口孔727内を通って外部へ伝搬し、管の内壁Lへ垂直に入射する。
 さらに、回転ホルダ724が中空軸モータ610の回転により軸心Oを中心として回転すると、反射部材721の傾斜面723も一体的に回転する。これによって、管の内壁Lへの入射角度を保ったまま、入射位置を管の周方向に沿って回転移動させることができる。したがって、管の周方向の内壁面Lをまんべんなく走査することができる。
As a result, as indicated by the dotted line in FIG. 2, the ultrasonic wave transmitted from the ultrasonic probe 710 is changed in propagation direction by the inclined surface 723, propagates outside through the exit hole 727, and passes through the tube. Incident perpendicularly to the inner wall L.
Further, when the rotary holder 724 rotates about the axis O by the rotation of the hollow shaft motor 610, the inclined surface 723 of the reflecting member 721 also rotates integrally. Thereby, the incident position can be rotated and moved along the circumferential direction of the tube while maintaining the incident angle to the inner wall L of the tube. Therefore, the inner wall surface L in the circumferential direction of the tube can be scanned evenly.
 さらに、筺体部800の内部には、図6に示すように、一回転センサ770が設けられる。一回転センサ770は、中空回転部材611に固定されたポジションマーカ771と、ケーシングカバー部材820に固定されたセンサ772とから構成される。ポジションマーカ771は、永久磁石など、センサ772によって検知されるものであり、中空回転部材611とともに回転する。一方、センサ772は、ホール素子など、ポジションマーカ771の特性に応じて選択されるセンサであり、非回転部材612とともに非回転状態が維持される。 Furthermore, as shown in FIG. 6, a one-turn sensor 770 is provided inside the housing unit 800. The single rotation sensor 770 includes a position marker 771 fixed to the hollow rotation member 611 and a sensor 772 fixed to the casing cover member 820. The position marker 771 is detected by a sensor 772 such as a permanent magnet, and rotates together with the hollow rotating member 611. On the other hand, the sensor 772 is a sensor selected according to the characteristics of the position marker 771 such as a Hall element, and the non-rotating state is maintained together with the non-rotating member 612.
 したがって、回転するポジションマーカ771の位置が図示される位置に一致した時にセンサ772が検知することで、中空回転部材611の一回転の時間を検出する。さらに詳細なポジションマーカの位置は、センサ772の検出タイミング(周期T)とポジションマーカ771の回転時間(<T)とから導出することができる。 Therefore, the sensor 772 detects when the position of the rotating position marker 771 coincides with the position shown in the figure, thereby detecting the time for one rotation of the hollow rotating member 611. A more detailed position marker position can be derived from the detection timing (period T) of the sensor 772 and the rotation time (<T) of the position marker 771.
[第2実施形態-超音波検査装置100a]
 図8は、第2実施形態にかかる超音波検査装置の模式的背面図である。背面とは、装置を、退行方向側から管の軸心方向に見た場合の外観をいう。図9は、第2実施形態にかかる超音波検査装置の、拡径時における模式的一部側断面図である。図9においては、図8のD-D線断面を模式的に示し、中空軸モータ610、検知部700および筺体部800は第1実施形態と同様につき省略する。図10は、第2実施形態にかかる超音波検査装置の、縮径時における模式的一部側断面図である。図10は、拡縮態様が異なることを除いて、図9と同様に表示している。
[Second Embodiment-Ultrasonic Inspection Apparatus 100a]
FIG. 8 is a schematic rear view of the ultrasonic inspection apparatus according to the second embodiment. The back surface means an external appearance when the device is viewed from the regression direction side in the axial direction of the tube. FIG. 9 is a schematic partial cross-sectional view of the ultrasonic inspection apparatus according to the second embodiment at the time of diameter expansion. 9 schematically shows a cross section taken along the line DD of FIG. 8, and the hollow shaft motor 610, the detection unit 700, and the housing unit 800 are omitted because they are the same as those in the first embodiment. FIG. 10 is a schematic partial side sectional view of the ultrasonic inspection apparatus according to the second embodiment when the diameter is reduced. FIG. 10 is displayed in the same manner as FIG. 9 except that the enlargement / reduction mode is different.
 第2実施形態においては、主に第1実施形態と異なる部分について説明し、同様の部分については説明を省略する。
 図8から図10に示す超音波検査装置100aの内部移動部110aは、第1実施形態と異なるリンク機構を有する拡縮アーム400a、および補助車輪510aを有する。
In the second embodiment, portions that are different from the first embodiment will be mainly described, and description of similar portions will be omitted.
The internal movement part 110a of the ultrasonic inspection apparatus 100a shown in FIGS. 8 to 10 includes an expansion / contraction arm 400a having a link mechanism different from that of the first embodiment, and an auxiliary wheel 510a.
[連結用部材]
 連結用部材220aは、拡縮アーム400aに応じた態様で設けられる。本実施形態では、連結用部材220aは、軸筺体部210の外周面を軸心方向に摺動可能となるように設けられた摺動リング221aと、筒部200aの軸筺体部210の外周面に固定された固定リング224a,225aとを含む。軸心方向において進行方向F側から順に、固定リング224a、摺動リング221aおよび固定リング225aが設けられる。
[Connecting members]
The connecting member 220a is provided in a manner corresponding to the expansion / contraction arm 400a. In the present embodiment, the connecting member 220a includes the sliding ring 221a provided so as to be slidable in the axial direction on the outer peripheral surface of the shaft housing portion 210, and the outer peripheral surface of the shaft housing portion 210 of the cylindrical portion 200a. And fixing rings 224a and 225a. In the axial direction, a fixing ring 224a, a sliding ring 221a, and a fixing ring 225a are provided in this order from the traveling direction F side.
[エアシリンダ]
 エアシリンダ300は、固定リング225aに固定され、ロッド311が摺動リング221aに固定される。したがって、エアシリンダ300の伸縮動作によって摺動リング221aが軸心方向に摺動し、これにより、後に詳述するように、摺動リング221aと連結する拡縮アーム400aを動作させることができる。
[Air cylinder]
The air cylinder 300 is fixed to the fixing ring 225a, and the rod 311 is fixed to the sliding ring 221a. Therefore, the sliding ring 221a slides in the axial direction by the expansion / contraction operation of the air cylinder 300, and thereby the expansion / contraction arm 400a connected to the sliding ring 221a can be operated as will be described in detail later.
[拡縮アーム]
 拡縮アーム400aは、主アーム片411aおよび主アーム片411aより短い長さで構成されたリンクアーム片412aを含む。これらは、連結用部材220aおよびエアシリンダ300と相まって、エアシリンダ300の伸縮動作を拡縮アーム400aの拡縮動作に連動させるリンク機構を構成する。
[Expansion and contraction arm]
The expansion / contraction arm 400a includes a main arm piece 411a and a link arm piece 412a having a shorter length than the main arm piece 411a. Together with the connecting member 220a and the air cylinder 300, these constitute a link mechanism that links the expansion / contraction operation of the air cylinder 300 with the expansion / contraction operation of the expansion / contraction arm 400a.
 図8に示すように、主アーム片411aおよびリンクアーム片412aは、車輪500aの車軸を両持ちするように車軸500の両端部に一対ずつ設けられるため、対をなすアーム片の間にはフリースペースSaが形成される。 As shown in FIG. 8, since the main arm piece 411a and the link arm piece 412a are provided in pairs at both ends of the axle 500 so as to hold the axle of the wheel 500a, there is free between the pair of arm pieces. A space Sa is formed.
 図9に示すように、主アーム片411aは基端部が固定リング224aに軸着されることにより、軸着部分を中心として、軸心に対する角度θが変化するように回転動作できる。主アーム片411a先端には車輪500aが連結しているため、当該回転動作により、車輪500aの筒部200aからの離間量を物理的に規定する。角度θは、90度を越えなければよい。さらに、拡縮アーム400aが最も拡径した場合の超音波検査装置100aの安定性の観点から60度以下、または45度以下であってよい。 As shown in FIG. 9, the main arm piece 411a can be rotated so that the angle θ with respect to the shaft center changes with the base end portion being pivotally attached to the fixing ring 224a. Since the wheel 500a is connected to the tip of the main arm piece 411a, the amount of separation of the wheel 500a from the cylindrical portion 200a is physically defined by the rotation operation. The angle θ should not exceed 90 degrees. Furthermore, it may be 60 degrees or less or 45 degrees or less from the viewpoint of stability of the ultrasonic inspection apparatus 100a when the diameter of the expansion / contraction arm 400a is expanded most.
 さらに主アーム片411aの先端部と基端部との間では、リンクアーム片412aの先端部が回転自在に固定されている。リンクアーム片412aは、基端部が、先端部の固定位置よりも進行方向F側において摺動リング221aに軸着されている。これにより、軸着部分を中心として、軸心に対する角度が変化するように回転動作できるとともに、摺動リング221aの軸心方向の移動に伴って基端位置が軸心方向に移動可能である。したがって、リンクアーム片412aは、主アーム片411aの基端部との相対位置の変化に応じ、軸着部分を中心として主アーム片411と同じ方向に回転動作するととともに、主アーム片411aの先端部を、筒部200aと近接または離間するように動作させる。 Further, the distal end portion of the link arm piece 412a is rotatably fixed between the distal end portion and the proximal end portion of the main arm piece 411a. The link arm piece 412a is pivotally attached to the sliding ring 221a at the base end portion on the traveling direction F side from the fixed position of the tip end portion. As a result, the rotation can be performed so that the angle with respect to the axis changes around the axis-attached portion, and the base end position can move in the axis direction as the sliding ring 221a moves in the axis direction. Accordingly, the link arm piece 412a rotates in the same direction as the main arm piece 411 around the pivoted portion in accordance with a change in the relative position with the base end of the main arm piece 411a, and the tip of the main arm piece 411a. The part is operated so as to be close to or away from the cylindrical part 200a.
 なお、主アーム片411aは一対の補助車輪510aを有する。一対の補助車輪510aは、基端部と先端部との間、本実施形態では基端部近傍に軸着される。補助車輪510aは、車輪軸が主アーム片411aの短手方向に摺動可能であり、側面視において主アーム片411aから内壁面L側へ露出する方向に付勢されている。車輪軸は、主アーム片411aの先端部が筒部200aに近接して補助車輪510aが内壁面Lに接する場合に、付勢力に抗って摺動する。 The main arm piece 411a has a pair of auxiliary wheels 510a. The pair of auxiliary wheels 510a is pivotally attached between the base end portion and the tip end portion, in the vicinity of the base end portion in the present embodiment. The auxiliary wheel 510a has a wheel shaft that can slide in the short direction of the main arm piece 411a, and is biased in a direction that is exposed from the main arm piece 411a to the inner wall surface L side in a side view. The wheel axle slides against the urging force when the tip of the main arm piece 411a is close to the cylindrical portion 200a and the auxiliary wheel 510a contacts the inner wall surface L.
[拡縮動作]
 図9に示すように、拡径時においては、伸縮制御部121(図1参照)を操作してエアシリンダ300を矢印C方向へ収縮させることに伴い、摺動リング221aが矢印Cと同じ方向へ移動することでリンクアーム片412aの基端位置も矢印Cと同じ方向へ移動する。これによってリンクアーム片412aの基端部と主アーム片411aの基端部との間が広がるため、リンクアーム片412aがその先端部を筒部200aから離間する方向へ起こすとともに、主アーム片411aを筒部200aから離間する方向へ起こす。その結果、拡縮アーム400aが矢印SUの方向へ拡長した態様となり、主アーム片411aの先端部に設けられた車輪500aを内壁面Lに対して突っ張らせる負荷を与える。
[Scale operation]
As shown in FIG. 9, when the diameter is expanded, the sliding ring 221a is moved in the same direction as the arrow C as the expansion / contraction control unit 121 (see FIG. 1) is operated to contract the air cylinder 300 in the arrow C direction. The base end position of the link arm piece 412a also moves in the same direction as the arrow C. As a result, the space between the base end portion of the link arm piece 412a and the base end portion of the main arm piece 411a widens, so that the link arm piece 412a raises the tip end portion in a direction away from the cylindrical portion 200a and the main arm piece 411a. Is raised in a direction away from the cylindrical portion 200a. As a result, the expansion / contraction arm 400a is expanded in the direction of the arrow SU, and a load is applied to stretch the wheel 500a provided at the tip of the main arm piece 411a against the inner wall surface L.
 この場合、伸縮制御部121(図1参照)の操作により筒部200aに対して設けられたすべての拡縮アーム400aにおいてエアシリンダ300が同期収縮するため、全ての拡縮アーム400aにおいて、拡長の程度および拡長のタイミングが略等しくなる。このような拡縮アーム400aの拡張動作によって、筒部200aの軸心が内壁面Lの軸心に略一致するように調芯される。 In this case, since the air cylinder 300 is synchronously contracted in all of the expansion / contraction arms 400a provided for the cylindrical portion 200a by the operation of the expansion / contraction control unit 121 (see FIG. 1), the degree of expansion in all the expansion / contraction arms 400a. And the expansion timing becomes substantially equal. By such an expansion operation of the expansion / contraction arm 400a, the axis of the cylindrical portion 200a is aligned so as to substantially coincide with the axis of the inner wall surface L.
 反対に、図10に示すように、縮径時(最小限まで縮径させる時)においては、伸縮制御部121(図1参照)を操作してエアシリンダ300を矢印Eの方向へ伸長させることに伴い、摺動リング221aが矢印Eと同じ方向へ移動することでリンクアーム片412aの基端位置も矢印Eと同じ方向へ移動する。これによってリンクアーム片412aの基端部と主アーム片411aの基端部との間が狭まるため、リンクアーム片412aがその先端部を筒部200aに近接する方向へ倒すとともに、主アーム片411aを筒部200aへ近づく方向へ倒す。その結果、拡縮アーム400aが矢印SDの方向へ縮小した態様となる。この場合にも、拡縮アーム400aは、車輪500aを内壁面Lに対して突っ張らせる負荷を与える。 On the contrary, as shown in FIG. 10, when the diameter is reduced (when the diameter is reduced to the minimum), the expansion / contraction control unit 121 (see FIG. 1) is operated to extend the air cylinder 300 in the direction of arrow E. Accordingly, the sliding ring 221a moves in the same direction as the arrow E, so that the base end position of the link arm piece 412a also moves in the same direction as the arrow E. As a result, the space between the base end portion of the link arm piece 412a and the base end portion of the main arm piece 411a is narrowed, so that the link arm piece 412a tilts the tip end portion in the direction close to the cylindrical portion 200a and the main arm piece 411a. Is tilted in a direction approaching the tube portion 200a. As a result, the expansion / contraction arm 400a is contracted in the direction of the arrow SD. In this case as well, the expansion / contraction arm 400a applies a load that stretches the wheel 500a against the inner wall surface L.
 この場合、伸縮制御部121(図1参照)の操作により筒部200aに対して設けられたすべての拡縮アーム400aにおいてエアシリンダ300が同期伸長するため、全ての拡縮アーム400aにおいて、縮小の程度および縮小のタイミングが略等しくなる。このような拡縮アーム400aの縮小動作によっても、筒部200aの軸心が内壁面Lの軸心に略一致するように調芯される。 In this case, since the air cylinder 300 is synchronously extended in all the expansion / contraction arms 400a provided to the cylindrical portion 200a by the operation of the expansion / contraction control unit 121 (see FIG. 1), the degree of reduction and The timing of reduction becomes substantially equal. Also by such a reduction operation of the expansion / contraction arm 400a, the axis of the cylindrical portion 200a is aligned so as to substantially coincide with the axis of the inner wall surface L.
 さらに図10のように拡縮アーム400aが最小限まで縮小された場合、拡縮アーム400aを構成するアーム片が軸心と平行となるまで折り畳まれる。このとき、主アーム片411aの基端部近傍に設けられた補助車輪510aが内壁面Lに接触することにより、超音波検査装置100aのバランスをとる。さらに、拡縮アーム400aに形成されたフリースペースSa(図8参照)の中にエアシリンダ300が収容される。つまり、エアシリンダ300の存在が縮径に支障しない。このため、拡縮アーム400aが最小限まで縮小された場合に超音波検査装置100aの放射方向の大きさをコンパクトにすることができる。 Further, when the expansion / contraction arm 400a is reduced to the minimum as shown in FIG. 10, the arm pieces constituting the expansion / contraction arm 400a are folded until they are parallel to the axis. At this time, the auxiliary wheel 510a provided in the vicinity of the base end portion of the main arm piece 411a comes into contact with the inner wall surface L, so that the ultrasonic inspection apparatus 100a is balanced. Further, the air cylinder 300 is accommodated in a free space Sa (see FIG. 8) formed in the expansion / contraction arm 400a. That is, the presence of the air cylinder 300 does not hinder the diameter reduction. For this reason, when the expansion / contraction arm 400a is reduced to the minimum, the size of the ultrasonic inspection apparatus 100a in the radial direction can be made compact.
[第3実施形態-超音波検査装置100b]
 図11は、第3実施形態にかかる超音波検査装置の模式的正面図である。図12は、第3実施形態にかかる超音波検査装置の模式的側断面図である。図12においては、図11のE-E線断面を示す。
[Third Embodiment-Ultrasonic Inspection Apparatus 100b]
FIG. 11 is a schematic front view of an ultrasonic inspection apparatus according to the third embodiment. FIG. 12 is a schematic sectional side view of an ultrasonic inspection apparatus according to the third embodiment. FIG. 12 shows a cross section taken along line EE of FIG.
 図11および図12に示す超音波検査装置100bの内部移動部110bは、補助車輪510aを有しないことを除いて第2実施形態の拡縮アーム400aおよび車輪500aと同じ拡縮アーム400bおよび車輪500bを有する。拡縮アーム400bは、筒部200bの連結用部材220bに連結されることにより、筒部200bの軸心を中心として放射状に突設される。拡縮アーム400bの先端つまり拡縮アーム400bのうち筒部200bから最も離間した部分には、車輪500bが設けられる。 The internal movement part 110b of the ultrasonic inspection apparatus 100b shown in FIGS. 11 and 12 has the same expansion / contraction arm 400b and wheel 500b as the expansion / contraction arm 400a and the wheel 500a of the second embodiment except that the auxiliary wheel 510a is not provided. . The expansion / contraction arm 400b is projecting radially from the axial center of the cylindrical portion 200b by being connected to the connecting member 220b of the cylindrical portion 200b. A wheel 500b is provided at the distal end of the expansion / contraction arm 400b, that is, the portion of the expansion / contraction arm 400b that is farthest from the cylindrical portion 200b.
 本実施形態においては、図11に示すように、拡縮アーム400bおよび車輪500bのセットは、軸心まわりに等間隔となるように6セット設けられる。図12に示すように、隣り合う拡縮アーム400bは、軸心方向の向きが互い違いになるように配設される。このため、進行方向F側と対向方向側の両方で常に車輪500bが内壁面Lに接している。したがって、管内において超音波検査装置100bを常に安定に保持することができる。 In the present embodiment, as shown in FIG. 11, six sets of expansion / contraction arms 400b and wheels 500b are provided at equal intervals around the axis. As shown in FIG. 12, adjacent expansion / contraction arms 400b are arranged so that the directions in the axial direction are staggered. For this reason, the wheel 500b is always in contact with the inner wall surface L on both the traveling direction F side and the facing direction side. Therefore, the ultrasonic inspection apparatus 100b can always be stably held in the tube.
 拡縮アーム400bが、主アーム片411bと、主アーム片411bより短い長さで構成されたリンクアーム片412bとを含むこと、および、これらが連結用部材220bおよびエアシリンダ300と相まって、エアシリンダ300の伸縮動作を拡縮アーム400bの拡縮動作に連動させるリンク機構を構成することは、第2実施形態の内部移動部110aにおけるものと同じである。従って、拡縮アーム400bの動作および機能も、第2実施形態の内部移動部110aにおけるものと同じである。 The expansion / contraction arm 400b includes a main arm piece 411b and a link arm piece 412b having a shorter length than the main arm piece 411b, and these, together with the connecting member 220b and the air cylinder 300, are combined with the air cylinder 300. It is the same as that in the internal movement part 110a of 2nd Embodiment to comprise the link mechanism which links this expansion-contraction operation | movement with expansion / contraction operation | movement of the expansion / contraction arm 400b. Accordingly, the operation and function of the expansion / contraction arm 400b are the same as those in the internal movement unit 110a of the second embodiment.
[第4実施形態-超音波検査装置100c]
 図13は、第4実施形態にかかる超音波検査装置の拡径時における模式的一部側断面図である。図14は、第4実施形態にかかる超音波検査装置の縮径時における模式的一部側断面図である。
[Fourth Embodiment-Ultrasonic Inspection Apparatus 100c]
FIG. 13 is a schematic partial cross-sectional view of the ultrasonic inspection apparatus according to the fourth embodiment at the time of diameter expansion. FIG. 14 is a schematic partial side sectional view of the ultrasonic inspection apparatus according to the fourth embodiment when the diameter is reduced.
 図13および図14に示す超音波検査装置100cは、第3実施形態にかかる超音波検査装置100bの変形態様である。具体的には、内部移動部110cにおいて、拡縮アーム400cおよびその構成アーム片(主アーム411cおよびリンクアーム412c)、車輪500c、フリースペースScは、それぞれ、第3実施形態にかかる超音波検査装置100bの内部移動部110bにおける、拡縮アーム400bおよびその構成アーム片(主アーム411bおよびリンクアーム412b)、車輪500b、フリースペースSbと同じである。一方、第3実施形態にかかる超音波検査装置100bの軸筺体部210およびエアシリンダ300の代わりに、それぞれ、軸筺体部210cおよびエアシリンダ300cを有する。 13 and 14 is a modification of the ultrasonic inspection apparatus 100b according to the third embodiment. Specifically, in the internal movement unit 110c, the expansion / contraction arm 400c, its constituent arm pieces (the main arm 411c and the link arm 412c), the wheel 500c, and the free space Sc are respectively an ultrasonic inspection apparatus 100b according to the third embodiment. This is the same as the expansion / contraction arm 400b and its constituent arm pieces (the main arm 411b and the link arm 412b), the wheel 500b, and the free space Sb. On the other hand, instead of the shaft housing part 210 and the air cylinder 300 of the ultrasonic inspection apparatus 100b according to the third embodiment, there are a shaft housing part 210c and an air cylinder 300c, respectively.
 本実施形態においては、連結用部材220cとして、進行方向側から、固定リング224c、摺動リング221c、摺動リング226c、および固定リング227cが設けられている。固定リング224c,227cは軸筺体部210cに固定され、摺動リング221c,226cは、軸筺体部210c表面を軸心方向に摺動可能となるように設けられる。軸筺体部210cは、後述のエアシリンダ300cの一部(エアタンク330c)を構成する。 In the present embodiment, as the connecting member 220c, a fixing ring 224c, a sliding ring 221c, a sliding ring 226c, and a fixing ring 227c are provided from the traveling direction side. The fixing rings 224c and 227c are fixed to the shaft housing portion 210c, and the sliding rings 221c and 226c are provided so as to be slidable on the surface of the shaft housing portion 210c in the axial direction. The shaft housing portion 210c constitutes a part of an air cylinder 300c (air tank 330c) described later.
 主アーム片411cの基端部は、固定リング224cに軸着される。リンクアーム片412cの基端部は、固定リング224cより退行方向側に設けられた、軸方向に手動可能な摺動リング221cに軸着される。摺動リング221cと固定リング224cとは、それぞれがリンクアーム片412cおよび主アーム片411cの軸着部を有するとともに、両者が後述のエアシリンダ300cの一部(追従部340c)を構成するように形成されている。 The base end portion of the main arm piece 411c is pivotally attached to the fixing ring 224c. The base end portion of the link arm piece 412c is pivotally attached to a sliding ring 221c that is provided on the retraction direction side of the fixed ring 224c and can be manually operated in the axial direction. Each of the sliding ring 221c and the fixed ring 224c has a shaft attachment portion of a link arm piece 412c and a main arm piece 411c, and both constitute a part (following portion 340c) of an air cylinder 300c described later. Is formed.
[エアシリンダ]
 エアシリンダ300cは、エアタンク330c、追従部340cおよび補助バネ350cを含む。
 エアタンク330cは、拡縮アーム400cの動作源となる空気の送入および排出がなされるものであり、軸筺体部210cによって構成される。エアタンク330cには、空気の送入および排出のための図示しないエアチューブが連結されている。
[Air cylinder]
The air cylinder 300c includes an air tank 330c, a follower 340c, and an auxiliary spring 350c.
The air tank 330c is used to send and discharge air serving as an operation source of the expansion / contraction arm 400c, and is configured by the shaft housing portion 210c. An air tube (not shown) for sending and discharging air is connected to the air tank 330c.
 追従部340cは、エアタンク330cへの空気の送入およびエアタンク330cからの排出に伴って動作が追従するように伸縮機構を構成する。つまり、エアシリンダ300cの伸縮動作は、この追従部340の伸縮動作に起因する。 The follower 340c constitutes an expansion / contraction mechanism so that the operation follows as air is fed into the air tank 330c and discharged from the air tank 330c. That is, the expansion / contraction operation of the air cylinder 300c is caused by the expansion / contraction operation of the follower 340.
 追従部340cは、摺動リング221cと固定リング224cとによって構成される。より具体的には、摺動リング221cが進行方向F側に開口するハウジング部を有し、固定リング224cが、退行方向に延出する延出部を有し、摺動リング221cの内周側面に固定リング224cの延出部の外周面が摺動可能に密着することにより、伸縮機構を構成する。さらに、ハウジング部内の空間ARとエアタンク330c内の空間とは、エアタンク300cに設けられた連通孔によって連通する。これによって、エアタンク330cへの空気の送入およびエアタンク330cからの空気の排出動作が、ハウジング部内の空間ARの体積を変化させるとともに、追従部340cの伸縮動作を生じさせる。 The follower 340c includes a sliding ring 221c and a fixed ring 224c. More specifically, the sliding ring 221c has a housing portion that opens in the traveling direction F side, the fixing ring 224c has an extending portion that extends in the backward direction, and the inner peripheral side surface of the sliding ring 221c. The outer peripheral surface of the extending portion of the fixing ring 224c is slidably adhered to the extension ring 224c to constitute an expansion / contraction mechanism. Furthermore, the space AR in the housing portion and the space in the air tank 330c communicate with each other through a communication hole provided in the air tank 300c. As a result, the air supply to the air tank 330c and the air discharge operation from the air tank 330c change the volume of the space AR in the housing part and cause the follow-up part 340c to expand and contract.
 以下において、エアシリンダ300cの伸縮に関する説明のため、固定リング224cをエアシリンダ300cの固定部324c、摺動リング221cをエアシリンダ300cの可動部321cと記載する場合がある。 Hereinafter, for the purpose of explaining expansion and contraction of the air cylinder 300c, the fixed ring 224c may be referred to as a fixed portion 324c of the air cylinder 300c, and the sliding ring 221c may be referred to as a movable portion 321c of the air cylinder 300c.
 補助バネ350cは、摺動リング221cの退行方向側に、軸心方向に延在するように設けられ、一方が摺動リング226cに、他方が固定リング227cに固定される。さらに、摺動リング221cと摺動リング226cとは互いに固定されているため、補助バネ350cは、摺動リング221cの移動に伴って動く。 The auxiliary spring 350c is provided on the retreating direction side of the sliding ring 221c so as to extend in the axial direction, and one is fixed to the sliding ring 226c and the other is fixed to the fixing ring 227c. Further, since the sliding ring 221c and the sliding ring 226c are fixed to each other, the auxiliary spring 350c moves as the sliding ring 221c moves.
[拡縮動作]
 図13に示すように、拡径時においては、伸縮制御部121(図1参照)を操作し、エアシリンダ300cのエアタンク330c内に空気を送り込む。これにより、送り込まれた空気はエアタンク330cの連通孔内を図中矢印FLの方向へ移動し、空間AR内に空気が流れ込む。これに伴い、可動部321cが摺動リング226cと共に移動するため、リンクアーム片412cの基端位置が退行方向へ移動する。これによってリンクアーム片412cと主アーム片411cとの間が広がるため、リンクアーム片412cがその先端部を筒部200cから離間する方向へ起こすとともに、主アーム片411cを筒部200cから離間する方向へ起こす。その結果、拡縮アーム400cが矢印SUの方向へ拡長した態様となり、主アーム片411cの先端部に設けられた車輪500cを内壁面Lに対して突っ張らせる負荷を与える。
 一方で、補助バネ350cは、摺動リング226cの移動とともに収縮する。
 筒部200cの軸心が内壁面Lの軸心と略一致するように調芯された状態で拡径されることは、上述の実施形態と同様である。
[Scale operation]
As shown in FIG. 13, during the diameter expansion, the expansion / contraction control unit 121 (see FIG. 1) is operated to send air into the air tank 330c of the air cylinder 300c. Thereby, the sent air moves in the direction of the arrow FL in the drawing in the communication hole of the air tank 330c, and the air flows into the space AR. Accordingly, the movable portion 321c moves together with the sliding ring 226c, so that the base end position of the link arm piece 412c moves in the retreat direction. As a result, the space between the link arm piece 412c and the main arm piece 411c is widened, so that the link arm piece 412c raises its distal end portion in a direction away from the cylindrical portion 200c and the main arm piece 411c is separated from the cylindrical portion 200c. Wake up. As a result, the expansion / contraction arm 400c is expanded in the direction of the arrow SU, and a load is applied to stretch the wheel 500c provided at the tip of the main arm piece 411c against the inner wall surface L.
On the other hand, the auxiliary spring 350c contracts with the movement of the sliding ring 226c.
It is the same as that of the above-mentioned embodiment that it is diameter-expanded in the state aligned so that the axial center of the cylinder part 200c may correspond with the axial center of the inner wall surface L substantially.
 反対に図14に示すように、縮径時(最小限まで縮径させる時)においては、伸縮制御部121(図1参照)を操作し、エアシリンダ300cのエアタンク330cから空気を排出する。これにより、空間AR内の空気がエアタンク330cの連通孔内を図中矢印FLの方向へ移動し、空間ARから空気が排出される。これに伴い、可動部321cが摺動リング226cと共に移動するため、リンクアーム片412cの基端位置が進行方向へ移動する。同時に、拡径によって収縮していた補助バネ350cが戻る力が可動部321cに加わるため、当該摺動動作がスムーズに起きる。 On the contrary, as shown in FIG. 14, when the diameter is reduced (when the diameter is reduced to the minimum), the expansion / contraction control unit 121 (see FIG. 1) is operated to discharge air from the air tank 330c of the air cylinder 300c. Thereby, the air in the space AR moves in the communication hole of the air tank 330c in the direction of the arrow FL in the figure, and the air is discharged from the space AR. Accordingly, since the movable portion 321c moves together with the sliding ring 226c, the base end position of the link arm piece 412c moves in the traveling direction. At the same time, a force is applied to the movable portion 321c to return the auxiliary spring 350c that has contracted due to the diameter expansion, so that the sliding operation occurs smoothly.
 これによってリンクアーム片412cと主アーム片411cとの間が狭まるため、リンクアーム片412cがその先端部を筒部200cに近接する方向へ倒すとともに、主アーム片411cを筒部200cへ近づく方向へ倒す。その結果、拡縮アーム400cが矢印SDの方向へ縮小した態様となる。この場合にも、拡縮アーム400cは、車輪500cを内壁面Lに対して突っ張らせる負荷を与える。
 筒部200cの軸心が内壁面Lの軸心と略一致するように調芯された状態で縮径されることは、上述の実施形態と同様である。
As a result, the space between the link arm piece 412c and the main arm piece 411c is narrowed, so that the link arm piece 412c tilts the tip portion in a direction close to the cylindrical portion 200c and the main arm piece 411c approaches the cylindrical portion 200c. knock down. As a result, the expansion / contraction arm 400c is reduced in the direction of the arrow SD. Also in this case, the expansion / contraction arm 400c gives a load that stretches the wheel 500c against the inner wall surface L.
Similar to the above-described embodiment, the diameter is reduced in a state in which the axis of the cylindrical portion 200c is aligned so as to substantially coincide with the axis of the inner wall surface L.
 さらに図14のように拡縮アーム400cが最小限まで縮小された場合、拡縮アーム400cに形成されたフリースペースScの中に補助バネ350cが収容される。つまり、補助バネ350cの存在が縮径に支障しない。このため、拡縮アーム400cが最小限まで縮小された場合に超音波検査装置100cの放射方向の大きさをコンパクトにすることができる。 Further, when the expansion / contraction arm 400c is reduced to the minimum as shown in FIG. 14, the auxiliary spring 350c is accommodated in the free space Sc formed in the expansion / contraction arm 400c. That is, the presence of the auxiliary spring 350c does not hinder the diameter reduction. For this reason, when the expansion / contraction arm 400c is reduced to the minimum, the size of the ultrasonic inspection apparatus 100c in the radial direction can be made compact.
 なお、本実施形態では、補助バネ350cが、軸心方向において摺動リング221cに対し固定リング224cとは反対側に配設されている例を挙げたが、この態様に限定されるものではない。たとえば、補助バネ350cが固定リング224cと摺動リング221cとの間にそれぞれ両端が固定された状態で配設されてよい。この場合、拡径時においては補助バネが伸長し、縮径時においては当該伸長した補助バネが戻る力により拡縮アーム400cの復帰動作を補助することができる。 In the present embodiment, the auxiliary spring 350c is disposed on the side opposite to the fixed ring 224c with respect to the sliding ring 221c in the axial direction. However, the present invention is not limited to this embodiment. . For example, the auxiliary spring 350c may be disposed in a state where both ends are fixed between the fixed ring 224c and the sliding ring 221c. In this case, when the diameter is expanded, the auxiliary spring is extended, and when the diameter is reduced, the returning operation of the expansion / contraction arm 400c can be assisted by the return force of the extended auxiliary spring.
[第5実施形態-超音波検査装置100d]
 図15は、第5実施形態にかかる超音波検査装置の拡径時における模式的一部側断面図である。図16は、第5実施形態にかかる超音波検査装置の模式的一部断面図である。図17は、第5実施形態にかかる超音波検査装置の縮径時における模式的一部側断面図である。
[Fifth Embodiment-Ultrasonic Inspection Apparatus 100d]
FIG. 15 is a schematic partial cross-sectional view of the ultrasonic inspection apparatus according to the fifth embodiment at the time of diameter expansion. FIG. 16 is a schematic partial cross-sectional view of an ultrasonic inspection apparatus according to the fifth embodiment. FIG. 17 is a schematic partial cross-sectional view of the ultrasonic inspection apparatus according to the fifth embodiment when the diameter is reduced.
 図15から図17に示す超音波検査装置100dは、第4実施形態にかかる超音波検査装置100cの変形態様である。具体的には、内部移動部110dにおいて、拡縮アーム400dおよびその構成アーム片(主アーム411dおよびリンクアーム412d)、車輪500d、軸筺体部210d、固定リング224d(固定部324d)、摺動リング221d(可動部321d)、摺動リング216d、エアシリンダ300dおよびその構成部材(エアタンク330d、追従部340d、補助バネ350d)、フリースペースSdは、それぞれ、第4実施形態にかかる超音波検査装置100cの内部移動部110cにおける、拡縮アーム400cおよびその構成アーム片(主アーム411cおよびリンクアーム412c)、車輪500c、軸筺体部210c、固定リング224c(固定部324c)、摺動リング221c(可動部321c)、摺動リング216c、エアシリンダ300cおよびその構成部材(エアタンク330c、追従部340c、補助バネ350c)、フリースペースScと同じである。一方、第4実施形態にかかる超音波検査装置100cの固定リング227cの代わりに、摺動リング228dおよび固定リング229dを有する。 An ultrasonic inspection apparatus 100d shown in FIGS. 15 to 17 is a modification of the ultrasonic inspection apparatus 100c according to the fourth embodiment. Specifically, in the internal moving part 110d, the expansion / contraction arm 400d and its constituent arm pieces (main arm 411d and link arm 412d), wheel 500d, shaft housing part 210d, fixing ring 224d (fixing part 324d), sliding ring 221d (Movable part 321d), sliding ring 216d, air cylinder 300d and its constituent members (air tank 330d, follow-up part 340d, auxiliary spring 350d), free space Sd are respectively included in ultrasonic inspection apparatus 100c according to the fourth embodiment. Expansion / contraction arm 400c and its constituent arm pieces (main arm 411c and link arm 412c), wheel 500c, shaft housing part 210c, fixed ring 224c (fixed part 324c), sliding ring 221c (movable part 321c) in internal moving part 110c , Sliding ring 21 c, air cylinder 300c and its components (air tank 330c, tracking unit 340 c, the auxiliary spring 350c), the same as the free space Sc. On the other hand, a sliding ring 228d and a fixing ring 229d are provided instead of the fixing ring 227c of the ultrasonic inspection apparatus 100c according to the fourth embodiment.
 摺動リング228dは、補助バネ350dの他端が固定され、かつ、軸筺体部210表面を軸心方向に摺動可能となるように設けられる。固定リング229dは、軸筺体部210に固定される。 The other end of the auxiliary spring 350d is fixed, and the sliding ring 228d is provided so as to be slidable on the surface of the shaft housing portion 210 in the axial direction. The fixing ring 229d is fixed to the shaft housing part 210.
[拡縮動作]
 図15に示すように、拡径時においては、第4実施形態と同様に、調芯された状態で、矢印SUの方向へ拡縮アーム400dの拡長が起こる。
 一方で、補助バネ350dは、摺動リング226d,228dの移動とともに退行方向へ移動する。
[Scale operation]
As shown in FIG. 15, at the time of diameter expansion, expansion / contraction of the expansion / contraction arm 400d occurs in the direction of the arrow SU in the aligned state as in the fourth embodiment.
On the other hand, the auxiliary spring 350d moves in the retraction direction with the movement of the sliding rings 226d and 228d.
 図16(a)および図16(b)は、図15の状態からさらに拡径された場合について説明するものである。
 本実施形態においては、固定リング229dが、摺動リング228dの退行方向側の端壁228Hdを突き当てる当接壁229Hdを有する。
 ここで、図15の状態からさらに伸縮制御部121(図1参照)を操作し、エアタンク330dに空気を送り込むことによって追従部340d内の空間ARにさらに空気を流れ込ませると、補助バネ350dも同様に移動するとともに、図16(a)に示すように、当接壁229Hdに摺動リング228dの退行方向側の端壁228Hdが突き当る。これにより、補助バネ350dの他端が固定される。
FIG. 16A and FIG. 16B illustrate a case where the diameter is further expanded from the state of FIG.
In the present embodiment, the fixing ring 229d has an abutting wall 229Hd that abuts the end wall 228Hd on the retracting direction side of the sliding ring 228d.
Here, when the expansion / contraction control unit 121 (see FIG. 1) is further operated from the state of FIG. 15 and air is further fed into the space AR in the follower 340d by sending air into the air tank 330d, the auxiliary spring 350d is also the same. As shown in FIG. 16A, the end wall 228Hd of the sliding ring 228d on the retreating direction side abuts against the contact wall 229Hd. Thereby, the other end of the auxiliary spring 350d is fixed.
 この場合、可動部321dの加速度合い等によっては、図16(b)に示すように、可動部321dが、さらに図中矢印の方向へ動くことがある。この場合、すでに他端が固定された補助バネ350dが収縮することでクッションとなる。 In this case, depending on the degree of acceleration of the movable portion 321d, the movable portion 321d may further move in the direction of the arrow in the drawing as shown in FIG. 16 (b). In this case, the auxiliary spring 350d with the other end already fixed contracts to become a cushion.
 反対に図17に示すように、縮径時(最小限まで縮径させる時)においても、第4実施形態と同様に、調芯された状態で、矢印SDの方向へ拡縮アーム400dの縮小が起きる。この場合、補助バネ350dは、摺動リング226c,228dの移動とともに進行方向Fへ移動する。 On the contrary, as shown in FIG. 17, even when the diameter is reduced (when the diameter is reduced to the minimum), the expansion / contraction arm 400d is reduced in the direction of the arrow SD in the aligned state as in the fourth embodiment. Get up. In this case, the auxiliary spring 350d moves in the traveling direction F along with the movement of the sliding rings 226c and 228d.
 さらに図17のように拡縮アーム400cが最小限まで縮小された場合、フリースペースSdの中に補助バネ350dが収容される点も第4実施形態と同様である。 Further, as shown in FIG. 17, when the expansion / contraction arm 400c is reduced to the minimum, the auxiliary spring 350d is accommodated in the free space Sd as in the fourth embodiment.
[第6実施形態-超音波検査装置100e]
 図18は、第6実施形態にかかる超音波検査装置の拡径時における模式的一部側断面図である。図19は、第6実施形態にかかる超音波検査装置の縮径時における模式的一部側断面図である。
[Sixth Embodiment-Ultrasonic Inspection Apparatus 100e]
FIG. 18 is a schematic partial cross-sectional view of the ultrasonic inspection apparatus according to the sixth embodiment at the time of diameter expansion. FIG. 19 is a schematic partial cross-sectional view of the ultrasonic inspection apparatus according to the sixth embodiment when the diameter is reduced.
 図18および図19に示す超音波検査装置100eは、第3実施形態にかかる超音波検査装置100bの変形態様である。具体的には、内部移動部110eにおいて、拡縮アーム400eおよびその構成アーム片(主アーム411片eおよびリンクアーム片412e)、車輪500e、フリースペースSeは、それぞれ、第3実施形態にかかる超音波検査装置100bの内部移動部110bにおける、拡縮アーム400bおよびその構成アーム片(主アーム411bおよびリンクアーム412b)、車輪500b、フリ-スペースSbと同じである。一方、第3実施形態にかかる超音波検査装置100bの軸筺体部210b、エアシリンダ300の代わりに、軸筺体部210e、エアシリンダ300eを有する。 18 and 19 is a modification of the ultrasonic inspection apparatus 100b according to the third embodiment. Specifically, in the internal movement unit 110e, the expansion / contraction arm 400e and its constituent arm pieces (main arm 411 piece e and link arm piece 412e), wheels 500e, and free space Se are ultrasonic waves according to the third embodiment. This is the same as the expansion / contraction arm 400b and its constituent arm pieces (main arm 411b and link arm 412b), wheels 500b, and free space Sb in the internal moving part 110b of the inspection apparatus 100b. On the other hand, instead of the shaft housing part 210b and the air cylinder 300 of the ultrasonic inspection apparatus 100b according to the third embodiment, a shaft housing part 210e and an air cylinder 300e are provided.
 本実施形態においては、連結用部材220eとして、進行方向F側から、固定リング224e、摺動リング221eが設けられている。固定リング224eは軸筺体部210eに固定され、摺動リング221eは、軸筺体部210eを軸心方向に摺動可能となるように設けられる。 In the present embodiment, a fixing ring 224e and a sliding ring 221e are provided from the traveling direction F side as the connecting member 220e. The fixing ring 224e is fixed to the shaft housing portion 210e, and the sliding ring 221e is provided so that the shaft housing portion 210e can slide in the axial direction.
 主アーム片411eの基端部は、固定リング224eに軸着される。リンクアーム片412eの基端部は、摺動リング221eに軸着される。 The base end portion of the main arm piece 411e is pivotally attached to the fixing ring 224e. The base end portion of the link arm piece 412e is pivotally attached to the sliding ring 221e.
[エアシリンダ]
 本実施形態では、軸筺体部210eの一部がエアシリンダ300eを構成する。具体的には、軸筺体部210eの端部がシリンダ部を形成し、当該シリンダ部内周壁に密着可能に軸心方向に摺動するピストン部321eが、軸筺体部210eの側面に形成されたスリット孔を通じて摺動リング221eに連設している。これによって、ピストン部321eの移動とともに摺動リング221eが移動可能となる。
[Air cylinder]
In the present embodiment, a part of the shaft housing portion 210e constitutes the air cylinder 300e. Specifically, the end portion of the shaft housing portion 210e forms a cylinder portion, and a piston portion 321e that slides in the axial direction so as to be able to contact the inner peripheral wall of the cylinder portion is a slit formed on the side surface of the shaft housing portion 210e. It continues to the sliding ring 221e through the hole. As a result, the sliding ring 221e can move together with the movement of the piston portion 321e.
 固定リング224eと摺動リング221eとの間には、軸心方向に延在する補助バネ350eが設けられ、補助バネ350eの一端が固定リング224eに、他端が摺動リング221eに固定される。このため、補助バネ350eは、摺動リング221eの移動に伴って伸縮する。 An auxiliary spring 350e extending in the axial direction is provided between the fixing ring 224e and the sliding ring 221e. One end of the auxiliary spring 350e is fixed to the fixing ring 224e and the other end is fixed to the sliding ring 221e. . For this reason, the auxiliary spring 350e expands and contracts with the movement of the sliding ring 221e.
[拡縮動作]
 図18に示すように、拡径時においては、伸縮制御部121(図1参照)を操作し、エアシリンダ300e内の空間ARに空気を送り込むことによって、矢印Eの方向へ伸長させる。これに伴い、ピストン部321eが摺動リング221eと共に移動するため、リンクアーム片412eの基端位置が矢印Eと同じ方向へ移動する。これと同時に、補助バネ350eが伸長される。
 したがって、第3実施形態と同様に、調芯された状態で、矢印SUの方向へ拡縮アーム400eの拡長が起こる。
[Scale operation]
As shown in FIG. 18, when the diameter is expanded, the expansion / contraction control unit 121 (see FIG. 1) is operated to send air into the space AR in the air cylinder 300 e to extend in the direction of arrow E. Accordingly, the piston portion 321e moves together with the sliding ring 221e, so that the base end position of the link arm piece 412e moves in the same direction as the arrow E. At the same time, the auxiliary spring 350e is extended.
Therefore, as in the third embodiment, the expansion / contraction arm 400e expands in the direction of the arrow SU in the aligned state.
 反対に図19に示すように、縮径時(最小限まで縮径させる時)においても、第3実施形態と同様に、調芯された状態で、矢印SDの方向へ拡縮アーム400eの縮小が起きる。同時に、補助バネ350eは、拡径によって伸長していた補助バネ350cが戻る力がピストン部321eに加わるため、縮径動作がスムーズに起きる。 On the other hand, as shown in FIG. 19, even when the diameter is reduced (when the diameter is reduced to the minimum), the expansion / contraction arm 400e is reduced in the direction of the arrow SD in the aligned state as in the third embodiment. Get up. At the same time, the auxiliary spring 350e applies a force to the piston portion 321e to return the auxiliary spring 350c that has been extended by the diameter expansion, so that the diameter reducing operation smoothly occurs.
 さらに図19のように拡縮アーム400eが最小限まで縮小された場合、フリースペースSeの中に補助バネ350eが収容される点も第3実施形態と同様である。 Further, when the expansion / contraction arm 400e is reduced to the minimum as shown in FIG. 19, the auxiliary spring 350e is accommodated in the free space Se as in the third embodiment.
 なお、本実施形態では、補助バネ350eが固定リング224eと摺動リング221eとの間に配設されている例を挙げたが、この態様に限定されるものではない。たとえば、補助バネ350eが、軸心方向において摺動リング221eに対して固定リング224eとは反対側に配設されていてもよい。この場合、補助バネの一方が摺動リング221eに固定され、他方が筒部200eの外周部に固定される。この場合、拡径時においては補助バネが収縮し、縮径時においては当該収縮した補助バネが戻る力により拡縮アーム400eの復帰動作を補助することができる。 In the present embodiment, the auxiliary spring 350e is disposed between the fixed ring 224e and the sliding ring 221e. However, the present invention is not limited to this mode. For example, the auxiliary spring 350e may be disposed on the side opposite to the fixed ring 224e with respect to the sliding ring 221e in the axial direction. In this case, one of the auxiliary springs is fixed to the sliding ring 221e, and the other is fixed to the outer peripheral portion of the cylindrical portion 200e. In this case, when the diameter is expanded, the auxiliary spring contracts, and when the diameter is contracted, the returning operation of the expansion / contraction arm 400e can be assisted by the return force of the contracted auxiliary spring.
[第7実施形態-超音波検査装置100i]
 図20は、第7実施形態にかかる超音波検査装置の模式的一部側面図である。図21は、第7実施形態にかかる超音波検査装置の模式的正面図である。図20に示す超音波検査装置100iを構成する各部(内部移動部110i、拡縮アーム400i、車輪500i)は第6実施形態にかかる超音波検査装置eの各部(内部移動部110e、拡縮アーム400e、車輪500e)と同様である。
[Seventh Embodiment-Ultrasonic Inspection Apparatus 100i]
FIG. 20 is a schematic partial side view of an ultrasonic inspection apparatus according to the seventh embodiment. FIG. 21 is a schematic front view of an ultrasonic inspection apparatus according to the seventh embodiment. Each part (internal movement part 110i, expansion / contraction arm 400i, wheel 500i) which comprises the ultrasonic inspection apparatus 100i shown in FIG. 20 is each part (internal movement part 110e, expansion / contraction arm 400e, etc.) of the ultrasonic inspection apparatus e concerning 6th Embodiment. It is the same as the wheel 500e).
 図20に示す超音波検査装置100iは、筺体部800iには車輪850が設けられている。図20において、超音波検査装置100iは、拡縮アーム400iが最小限に縮小した状態である。筺体部800iに設けられた車輪850が内壁面Lに接することにより、内壁面L内における超音波検査装置100iを安定に保持する。 In the ultrasonic inspection apparatus 100i shown in FIG. 20, wheels 850 are provided on the casing 800i. In FIG. 20, the ultrasonic inspection apparatus 100i is in a state in which the expansion / contraction arm 400i is contracted to a minimum. When the wheel 850 provided in the housing portion 800i is in contact with the inner wall surface L, the ultrasonic inspection apparatus 100i in the inner wall surface L is stably held.
 さらに、超音波検査装置100iが図20の態様である場合、図21に示すように、筺体部800iを進行方向F(図20参照)側から軸心方向へ投影すると、当該投影に、拡縮アーム400iの全てが重なる。このため、拡縮アーム400iが超音波検査装置100iの放射方向の大きさに支障しない。 Furthermore, when the ultrasonic inspection apparatus 100i is in the form of FIG. 20, as shown in FIG. 21, when the housing portion 800i is projected from the traveling direction F (see FIG. 20) side to the axial direction, All of 400i overlap. For this reason, the expansion / contraction arm 400i does not interfere with the radial size of the ultrasonic inspection apparatus 100i.
[第8実施形態-超音波検査装置100e’]
 図22は、第8実施形態にかかる超音波検査装置100e’の拡径時の外観図である。図23は、超音波検査装置100e’のケーブル部分の外観図である、図24は、超音波検査装置100e’の縮径時の外観図である。図25は、図24におけるF-F線断面図である。
[Eighth Embodiment—Ultrasonic Inspection Apparatus 100e ′]
FIG. 22 is an external view of the ultrasonic inspection apparatus 100e ′ according to the eighth embodiment at the time of diameter expansion. FIG. 23 is an external view of a cable portion of the ultrasonic inspection apparatus 100e ′, and FIG. 24 is an external view of the ultrasonic inspection apparatus 100e ′ when the diameter is reduced. 25 is a cross-sectional view taken along line FF in FIG.
 図22に示す超音波検査装置100e’を構成する各部(内部移動部110e’、筒部200e’、軸筺体部210e’、摺動リング221e’、固定リング224e’、エアシリンダ300e’、補助ばね350e’(破線図示にて省略)、拡縮アーム400e’、主アーム片411e’、リンクアーム片412e’、車輪500e’)は第6実施形態にかかる超音波検査装置eの各部(内部移動部110e、筒部200e、軸筺体部210e、摺動リング221e、固定リング224e、エアシリンダ300e、補助ばね350e、拡縮アーム400e、主アーム片411e、リンクアーム片412e、車輪500e)に対応する。超音波検査装置100e’においては、各部が、さらなるコンパクト化等のために適したサイズに変更されていることを除いて、超音波検査装置100eの各部と同様である。 Each part (internal movement part 110e ', cylinder part 200e', shaft housing part 210e ', sliding ring 221e', fixing ring 224e ', air cylinder 300e', auxiliary spring constituting the ultrasonic inspection apparatus 100e 'shown in FIG. 350e '(omitted in the broken line illustration), expansion / contraction arm 400e', main arm piece 411e ', link arm piece 412e', wheel 500e ') are each part (internal movement part 110e) of the ultrasonic inspection apparatus e according to the sixth embodiment. , Cylinder portion 200e, shaft housing portion 210e, sliding ring 221e, fixing ring 224e, air cylinder 300e, auxiliary spring 350e, expansion / contraction arm 400e, main arm piece 411e, link arm piece 412e, and wheel 500e). The ultrasonic inspection apparatus 100e 'is the same as each part of the ultrasonic inspection apparatus 100e, except that each part is changed to a size suitable for further compaction and the like.
 図22においては、超音波検査装置100e’のケーブル130の配線も示す。ケーブル130は、エアシリンダ300e’内に連通するエアケーブル133、中空軸モータ610のモータケーブル136、および超音波探触子710の探触子ケーブル137を含む。 22 also shows the wiring of the cable 130 of the ultrasonic inspection apparatus 100e '. The cable 130 includes an air cable 133 communicating with the air cylinder 300 e ′, a motor cable 136 of the hollow shaft motor 610, and a probe cable 137 of the ultrasonic probe 710.
 図22に示すように、エアケーブル133は、軸筺体部210e’の退行方向端面から外に配線される。筺体800から外部に出たモータケーブル136は、筒部200e’に沿って退行方向へ向かって配線される。探触子ケーブル137は、軸筺体部210e’内を通り、退行方向端面から配線されたエアケーブル133の中に挿入される。 As shown in FIG. 22, the air cable 133 is wired outside from the end surface in the retraction direction of the shaft housing portion 210 e ′. The motor cable 136 exiting from the housing 800 is wired along the cylinder part 200e 'in the backward direction. The probe cable 137 passes through the shaft housing 210e 'and is inserted into the air cable 133 wired from the end surface in the backward direction.
 さらに図23に示すように、モータケーブル136と、探触子ケーブル137が挿入されたエアケーブル133とは、中継器135を介し、エアケーブル133と連通するエアケーブル134内にモータケーブル136と探触子ケーブル137との両方が挿入された状態で配線されなおす。エアケーブル134は、コンプレッサに接続される。
 なお、エアケーブル134の材質としては、可撓性のある樹脂チューブが用いられてよい。適宜、エアケーブル134の内部または外周部に金属ワイヤなどのこしが強い可撓性を有する軸体をさらに沿わせてもよい。これより、エアケーブル134部分を持って、超音波検査装置100e’を管内に挿入しやすくなる。
Further, as shown in FIG. 23, the motor cable 136 and the air cable 133 into which the probe cable 137 is inserted are connected to the motor cable 136 and the probe in the air cable 134 that communicates with the air cable 133 via the repeater 135. Rewiring is performed with both of the tentacle cables 137 inserted. The air cable 134 is connected to the compressor.
As a material for the air cable 134, a flexible resin tube may be used. If necessary, a flexible shaft body such as a metal wire may be further provided along the inside or the outer periphery of the air cable 134. Accordingly, the ultrasonic inspection apparatus 100e ′ can be easily inserted into the tube by holding the air cable 134.
 図24および図25に示すように、最も縮径された時の超音波検査装置100e’は、筺体部800の軸心方向への投影に、拡縮アーム400e’と車輪500e’との全てが重なるほどにコンパクト化される。この場合、筺体部800から外部に配線されたモータケーブル136は、筒部200e’の外周部において、折り畳まれた拡縮アーム400e’の間に位置するため、超音波検査装置100e’のコンパクト性に支障しない。なお、超音波検査装置100e’は、最も縮径された時において、当該投影から車輪500e’の一部がはみ出す程度に、図24に示した態様よりわずかに拡径させ、管内での拡縮アームの拡径動作をより容易にしてもよい。 As shown in FIG. 24 and FIG. 25, the ultrasonic inspection apparatus 100e ′ when the diameter is most reduced is such that all of the expansion / contraction arm 400e ′ and the wheel 500e ′ overlap in the projection in the axial direction of the housing portion 800. It will be compact. In this case, the motor cable 136 wired outside from the housing portion 800 is located between the folded expansion / contraction arm 400e ′ at the outer peripheral portion of the cylindrical portion 200e ′, so that the ultrasonic inspection apparatus 100e ′ can be made compact. There is no problem. Note that the ultrasonic inspection apparatus 100e ′ slightly expands the diameter of the wheel 500e ′ so that a part of the wheel 500e ′ protrudes from the projection when the diameter is reduced to the maximum, so that the expansion / contraction arm in the tube is expanded. The diameter expanding operation may be made easier.
 図26において、一例として超音波検査装置100e’を挙げて、チーズ型管内を方向変換する態様を説明する。図26において、超音波検査装置100e’が挿入される管Tは、たとえば消火栓に用いられるチーズ型配管である。管Tの挿入口は、たとえば内径φ75mmの小径管である。超音波検査装置100e’は最も縮径した状態で当該挿入口から挿入され、管Tの分岐部に達すると、当該縮径状態を保って方向変換する。超音波検査装置100e’に例示される本発明の超音波検査装置は、軸心に対する放射方向および軸心方向の両方向でコンパクトに設計されることにより、管内での90度方向変換が可能となる。 In FIG. 26, an aspect of changing the direction of the inside of the cheese mold tube will be described using an ultrasonic inspection apparatus 100e 'as an example. In FIG. 26, a pipe T into which the ultrasonic inspection apparatus 100e 'is inserted is a cheese-type pipe used for a fire hydrant, for example. The insertion port of the tube T is, for example, a small diameter tube having an inner diameter of 75 mm. The ultrasonic inspection apparatus 100 e ′ is inserted from the insertion port in the most contracted state, and when it reaches the branch portion of the tube T, the direction is changed while maintaining the contracted state. The ultrasonic inspection apparatus of the present invention exemplified by the ultrasonic inspection apparatus 100e ′ is designed to be compact in both the radial direction and the axial direction with respect to the axial center, thereby enabling 90-degree direction conversion in the tube. .
[他の例]
 他の例においては、図示しない変形例について説明する。
[Other examples]
In another example, a modification example not shown will be described.
[軸筺体部の変形例]
 上述の実施形態では、軸部が軸筺体部210を有する筒部200,200a,200bである態様を挙げたが、これに限定されるものではない。たとえば、軸部は中実の棒状であってもよい。また、上述の実施形態および他の例では、軸筺体部210の断面が円形である例を挙げたが、断面の形状はこれに限定されるものではない。たとえば、四角形、六角形などの多角形およびそれらの変形形状等、任意の形状が許容される。
[Modification of shaft housing]
In the above-described embodiment, the mode in which the shaft portion is the cylindrical portion 200, 200a, 200b having the shaft housing portion 210 has been described, but the embodiment is not limited thereto. For example, the shaft portion may be a solid bar shape. Moreover, in the above-mentioned embodiment and other examples, the example in which the cross section of the shaft housing part 210 is circular was given, but the shape of the cross section is not limited to this. For example, arbitrary shapes, such as polygons, such as a rectangle and a hexagon, and those deformation | transformation shapes are accept | permitted.
 さらに、上述の実施形態では、連結用部材220,220a,220b,220d,220e,220e’が断面円形のリング部に軸着部が設けられた態様であるものを挙げたが、この態様に限定されるものではない。たとえば、リング部の断面外周は四角形、六角形などの多角形およびそれらの変形形状等、任意の形状が許容される。また、摺動しない連結用部材の代わりに、軸筺体部210に軸着部のみが固定されていてもよい。 Furthermore, in the above-described embodiment, the connecting members 220, 220a, 220b, 220d, 220e, and 220e ′ are those in which the shaft-attached portion is provided on the ring portion having a circular cross section. However, the present invention is limited to this embodiment. Is not to be done. For example, an arbitrary shape such as a polygon such as a quadrangle and a hexagon and a deformed shape thereof is allowed for the outer periphery of the cross section of the ring portion. Further, only the shaft attachment portion may be fixed to the shaft housing portion 210 instead of the connecting member that does not slide.
[伸縮部の変形例]
 上述の実施形態では、伸縮部が、伸縮制御部121によって制御可能なエアシリンダ300,300c,300d,300e,300e’である例を挙げたが、伸縮制御部121によって遠隔操作が可能な伸縮機構を有するものであれば特に限定されるものではない。たとえば、油圧シリンダ、空気ばね、可動部を電気的制御により駆動させるコイルばねであってもよい。この場合のコイルばねは、軸心が筒部200,200a,~,200e,200i,200e’の外周部に配設されてもよいし、軸筐体部210の軸心と同軸となるように配設されてもよい。いずれも、管内での縮径および拡径が自在である。
[Modification example of expansion and contraction part]
In the above-described embodiment, the example in which the expansion / contraction part is the air cylinders 300, 300 c, 300 d, 300 e, and 300 e ′ that can be controlled by the expansion / contraction control part 121 has been described. If it has, it will not specifically limit. For example, a hydraulic spring, an air spring, and a coil spring that drives the movable part by electrical control may be used. In this case, the coil spring may have an axial center disposed on the outer peripheral portion of the cylindrical portions 200, 200 a,..., 200 e, 200 i, 200 e ′, or may be coaxial with the axial center of the shaft housing portion 210. It may be arranged. In either case, the diameter can be reduced and expanded in the pipe.
 上述の実施形態では、エアシリンダ300が軸心方向に延在する態様を挙げたが、これに限定されるものではない。たとえば、エアシリンダ300が放射方向に延在するように設けられることを許容する。この場合、エアシリンダの両端はそれぞれ、摺動しない連結用部材と、拡縮アーム400,400a,400bを構成するいずれかのアーム片とに固定されて連結される。 In the above-described embodiment, the air cylinder 300 extends in the axial direction. However, the present invention is not limited to this. For example, the air cylinder 300 is provided so as to extend in the radial direction. In this case, both ends of the air cylinder are fixedly connected to a connecting member that does not slide and to any of the arm pieces constituting the expansion / contraction arms 400, 400a, 400b.
[拡縮アームの変形例]
 上述の実施形態では、拡縮アーム400,400a,~,400e,400i,400e’の数が3または6である態様を挙げたが、これに限定されるものではない。拡縮アームの数は複数であればよい。
[Modification of expansion / contraction arm]
In the above-described embodiment, the embodiment in which the number of the expansion / contraction arms 400, 400a,..., 400e, 400i, 400e ′ is 3 or 6 has been described, but the embodiment is not limited thereto. The number of expansion / contraction arms may be plural.
 上述の実施形態では、拡縮アーム400,400a,~,400e,400i,400e’が特定のリンク機構を有する態様を挙げたが、これに限定されるものではない。エアシリンダ300,300c,300d,300e,300e’の伸縮動作を拡縮アーム400,400a,~,400e,400i,400e’の拡縮動作に連動させるリンク機構であれば、他の任意の機構が許容される。 In the above-described embodiment, the expansion / contraction arms 400, 400a,..., 400e, 400i, and 400e 'have been described as having specific link mechanisms, but the present invention is not limited to this. Any other mechanism is acceptable as long as it is a link mechanism that links the expansion and contraction operations of the air cylinders 300, 300c, 300d, 300e, and 300e 'with the expansion and contraction operations of the expansion and contraction arms 400, 400a, ..., 400e, 400i, and 400e'. The
[伸縮部と拡縮アームとの組み合わせの変形例]
 たとえば、第1実施形態にかかる超音波検査装置100、第2実施形態にかかる超音波検査装置100a、第3実施形態にかかる超音波検査装置100bのエアシリンダ300の代わりに、第4実施形態にかかる超音波検査装置100cのエアシリンダ300c、第5実施形態にかかる超音波検査装置100dのエアシリンダ300d、第6実施形態から第8実施形態にかかる超音波検査装置100e,100i,100e’のエアシリンダ300e,300e’のいずれかを任意に組み合わせることができる。
[Modified example of combination of expansion / contraction part and expansion / contraction arm]
For example, instead of the ultrasonic inspection apparatus 100 according to the first embodiment, the ultrasonic inspection apparatus 100a according to the second embodiment, and the air cylinder 300 of the ultrasonic inspection apparatus 100b according to the third embodiment, the fourth embodiment is used. The air cylinder 300c of the ultrasonic inspection apparatus 100c, the air cylinder 300d of the ultrasonic inspection apparatus 100d according to the fifth embodiment, and the air of the ultrasonic inspection apparatuses 100e, 100i, and 100e 'according to the sixth to eighth embodiments. Any of the cylinders 300e and 300e ′ can be arbitrarily combined.
[走行部の変形例]
 上述の実施形態では、走行部が車輪500,500a,~,500e,500i,500e’である態様を挙げたが、これに限定されるものではない。例えば、キャタピラであってもよい。その場合、例えば同期アーム片414の軸方向の両端それぞれにおいて、同期アーム片414をはさむように一対の歯車を同軸で軸着し、それぞれの歯車に、キャタピラを巻きつける。
 また、車輪は、駆動機構を有する自走式であってもよい。さらに、走行部は水噴射機構により走行可能とするものであってもよい。
[Modified examples of running section]
In the above-described embodiment, an example in which the traveling unit is the wheels 500, 500a,..., 500e, 500i, and 500e ′ has been described, but the embodiment is not limited thereto. For example, a caterpillar may be used. In that case, for example, a pair of gears are coaxially attached to both ends of the synchronization arm piece 414 in the axial direction so as to sandwich the synchronization arm piece 414, and a caterpillar is wound around each gear.
The wheels may be self-propelled having a drive mechanism. Furthermore, the traveling unit may be capable of traveling by a water injection mechanism.
[検出部の変形例]
 上述の実施形態では、超音波探触子710(具体的には超音波伝搬部712)の一部が中空回転部材611の中空部内に挿入された態様を挙げたが、超音波探触子710の挿入量はこの態様に限定されるものではない。超音波探触子710の全てが中空回転部材611の中空部内に挿入されていてもよいし、反対に超音波探触子710の全てが中空回転部材611の中空部外に配設されてもよい。後者の場合、超音波探触子710は、軸筐体部210内に固定されてもよい。
[Modification of detection unit]
In the above-described embodiment, an example in which a part of the ultrasonic probe 710 (specifically, the ultrasonic wave propagation part 712) is inserted into the hollow part of the hollow rotating member 611 has been described. The amount of insertion is not limited to this mode. All of the ultrasonic probe 710 may be inserted into the hollow portion of the hollow rotating member 611, or conversely, all of the ultrasonic probe 710 may be disposed outside the hollow portion of the hollow rotating member 611. Good. In the latter case, the ultrasonic probe 710 may be fixed in the shaft housing part 210.
[回転センサの変形例]
 上述の実施形態では、ポジションマーカ771が中空回転部材611に固定された態様を挙げたが、ポジションマーカ771は、センサ772によって検出可能な位置である限り、音響反射部720の回転ホルダ724に固定されてもよい。また、上述の実施形態では、回転センサが一回転センサ770である態様を挙げたが、これに限定されるものではない。たとえば、ロータリーエンコーダであってもよい。
[Variation of rotation sensor]
In the above-described embodiment, the position marker 771 is fixed to the hollow rotating member 611. However, the position marker 771 is fixed to the rotating holder 724 of the acoustic reflector 720 as long as the position marker 771 can be detected by the sensor 772. May be. In the above-described embodiment, the rotation sensor is the one-rotation sensor 770. However, the present invention is not limited to this. For example, a rotary encoder may be used.
[筐体部の変形例]
 上述の実施形態では、筐体部800,800iが検知部700を具備する態様を挙げたが、さらに他の構成要素が具備されてもよい。他の構成要素としては、たとえば、撮像装置および照明(一例としてLED)が挙げられる。これらの構成要素は、筐体部800,800iの進行方向側の端部に設けられることができる。これによって、管内を照らしながら撮影を行いつつ、超音波検査を行うことができる。
[Modification of the casing]
In the above-described embodiment, the case in which the casing units 800 and 800i include the detection unit 700 has been described. However, other components may be further included. Examples of other components include an imaging device and illumination (LED as an example). These components can be provided at the ends of the casings 800 and 800i on the traveling direction side. Thereby, an ultrasonic inspection can be performed while photographing while illuminating the inside of the tube.
 筐体部800,800iの進行方向側の端部に設けられる当該他の構成要素としては、上述の他、連結可能部も挙げられる。連結可能部は、たとえば、連結用部材に係合または嵌合等により着脱可能に連結することができる部位である。このような連結可能部の使用態様の一例を説明すると、以下のとおりである。 In addition to the above, other components that can be connected may be mentioned as the other components provided at the end of the casing 800, 800i on the traveling direction side. The connectable part is a part that can be detachably connected to the connecting member, for example, by engagement or fitting. An example of usage of such a connectable part will be described as follows.
 測定すべき管の、超音波検査装置が挿入される入口とは別の、進行方向側に位置する開口端から、連結用部材(一例としてフック)付きケーブルなどの牽引部材を管内へ挿入し、当該連結用部材を筐体部800,800iに設けられた連結可能部に連結させた後、牽引部材を上述の開口端の外へ引っ張ることにより、超音波検査装置を進行方向に進行させることができる。 A pulling member such as a cable with a connecting member (for example, a hook) is inserted into the pipe from the opening end located on the traveling direction side, which is different from the entrance where the ultrasonic inspection apparatus is inserted, of the pipe to be measured, After the connecting member is connected to the connectable portion provided in the housing parts 800 and 800i, the ultrasonic inspection apparatus can be advanced in the traveling direction by pulling the pulling member out of the opening end. it can.
[内部移動部の変形例]
 上述の実施形態では、1の超音波検査装置100,100a,~,100e,100i,100e’につき1の内部移動部110,110a,~,110e,110i,110e’を有する例を挙げたが、この態様に限定されるものではない。1の超音波検査装置100,100a,~,100e,100i,100e’につき複数の互いに連結された内部移動部110,110a,~,110e,110i,110e’を有してもよい。
[Modification of internal moving part]
In the above-described embodiment, an example in which one internal moving unit 110, 110a,..., 110e, 110i, and 110e ′ is provided per one ultrasonic inspection apparatus 100, 100a,. It is not limited to this aspect. One ultrasonic inspection apparatus 100, 100a, ..., 100e, 100i, 100e 'may include a plurality of mutually connected internal moving units 110, 110a, ..., 110e, 110i, 110e'.
[層厚測定法]
 以下、超音波検査装置によって行われる超音波測定法の例として、ライニング金属管における金属層の層厚を試験する方法について述べる。
 図27は、本実施の形態にかかる層厚試験法の一例を模式的に示す一部切欠図である。図28は、図27の層測定試験法において、試験対象のライニング管の軸方向から見た模式図である。図29は、本実施の形態に層厚試験法の一例を示す模式的一部拡大図である。図31は、層厚試験装置の一部を示すブロック図である。
[Layer thickness measurement method]
Hereinafter, a method for testing the thickness of the metal layer in the lining metal tube will be described as an example of the ultrasonic measurement method performed by the ultrasonic inspection apparatus.
FIG. 27 is a partially cutaway view schematically showing an example of a layer thickness test method according to the present embodiment. FIG. 28 is a schematic view seen from the axial direction of the lining pipe to be tested in the layer measurement test method of FIG. FIG. 29 is a schematic partially enlarged view showing an example of a layer thickness test method in the present embodiment. FIG. 31 is a block diagram showing a part of the layer thickness test apparatus.
 図27および図28に示すように、層厚試験法における層厚試験装置100j(超音波検査装置の一態様)の試験対象は、ライニング管900(管の一態様)である。ライニング管900は、金属管910の内面に、セメント含有層920がライニングされ、且つ地中に埋設されているものである。たとえば、上水道、下水道、工業用水道および農業用水道の配管が挙げられる。 27 and 28, the test target of the layer thickness test apparatus 100j (one aspect of the ultrasonic inspection apparatus) in the layer thickness test method is a lining pipe 900 (one aspect of the pipe). The lining pipe 900 is such that a cement-containing layer 920 is lined on the inner surface of a metal pipe 910 and embedded in the ground. For example, plumbing of waterworks, sewage, industrial water and agricultural water is included.
 金属管910の材質としては、鉄(特に鋳鉄)および鋼が挙げられる。
 鋳鉄は、炭素を約2.0%以上含む鉄-炭素系合金である。一般的に、炭素を2.0%以上4.5%以下およびケイ素を0.5%以上3.0%以下含み、その他、マンガンを1.0%以下、リンおよび/または硫黄を0.1%程度をさらに含むことが多い(%は、重量を基準とする)。
Examples of the material of the metal tube 910 include iron (particularly cast iron) and steel.
Cast iron is an iron-carbon alloy containing about 2.0% or more of carbon. Generally, the carbon content is 2.0% or more and 4.5% or less and silicon is 0.5% or more and 3.0% or less, manganese is 1.0% or less, phosphorus and / or sulfur is 0.1%. In many cases, it also contains about% (% is based on weight).
 鋳鉄の種類としては、通常の鋳鉄として、白鋳鉄、まだら鋳鉄およびねずみ鋳鉄が挙げられ、強化された鋳鉄として、強靭鋳鉄、球状黒鉛鋳鉄(たとえば、ノジュラー鋳鉄、ダクタイル鋳鉄)、可鍛鋳鉄および合金鋳鉄が挙げられる。水道管の場合、具体的には、日本工業規格(JIS G 5521, 5522, 5523, 5524, 5526, 5527)、日本水道協会規格(JWSA G 102, 103, 105, 106, 108, 109, 110, 111, 113, 114, 114-2)、日本下水道協会規格(JSWAS G-1, G-2)、日本ダクタイル鉄管協会規格(JDPA G 1001, 1002, 1003, 1004, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, 1048)などに規定されている。 Types of cast iron include white cast iron, mottled cast iron and gray cast iron as normal cast iron, and reinforced cast iron as tough cast iron, spheroidal graphite cast iron (for example, nodular cast iron, ductile cast iron), malleable cast iron and alloys Cast iron is mentioned. In the case of water pipes, specifically, Japanese Industrial Standards (JIS G 5521, 5522, 5523, 5524, 5526, 5527), Japan Waterworks Association Standards (JWSA G 102, 103, 105, 106, 108, 109, 110, 111, 113, 114, 114-2), Japan Sewerage Association Standard (JSWASJG-1, G-2), Japan Ductile Iron Pipe Association Standard (JDPA G 1001, 1002, 1003, 1004, 1007, 1008, 1009, 1010, 1011, 1012, 1013, 1014, 1015, 1016, 1017, 1018, 1019, 1020, 1021, 1022, 1024, 1025, 1026, 1027, 1028, 1029, 1030, 1031, 1032, 1033, 1034, 1035, 1036, 1037, 1038, 1039, 1040, 1041, 1042, 1043, 1044, 1045, 1046, 1047, and 1048).
 鋼は、炭素を約2.0%以下含む鉄-炭素系合金である(%は、重量を基準とする)。たとえば、炭素鋼およびステンレス鋼が挙げられる。 Steel is an iron-carbon alloy containing about 2.0% or less of carbon (% is based on weight). Examples include carbon steel and stainless steel.
 また、金属管910の呼び径は、たとえば100以上、より具体的には100以上300以下である。 Further, the nominal diameter of the metal tube 910 is, for example, 100 or more, more specifically, 100 or more and 300 or less.
 セメント含有層920の材質としては、セメントが含有されたライニング用材料であればよい。セメントとしては、ポルライトセメント、混合セメント(たとえば、高炉セメント、フライアッシュセメント、シリカセメント)、エコセメント、水和セメント、および未水和セメントなどが挙げられる。代表的なポルライトセメントは、石灰石と、粘土、ケイ石、および酸化鉄などとの混合物を焼成し、ケイ酸三カルシウム、ケイ酸二カルシウム、アルミン酸三カルシウム、鉄アルミン酸四カルシウムなどのクリンカーとした後、クリンカーに対し石膏を少量添加し、微粉砕処理したものである。セメントには、上述の成分の他に、空気および/または水が存在しても良い。 The material of the cement-containing layer 920 may be a lining material containing cement. Examples of the cement include pollite cement, mixed cement (for example, blast furnace cement, fly ash cement, silica cement), eco cement, hydrated cement, and unhydrated cement. Typical pollite cements fire a mixture of limestone and clay, silica, and iron oxide, and clinker such as tricalcium silicate, dicalcium silicate, tricalcium aluminate, iron tetracalcium aluminate After that, a small amount of gypsum was added to the clinker and pulverized. In addition to the components described above, air and / or water may be present in the cement.
 セメント含有層920は、上述のセメントを含む材料が層状をなすものである。セメントを含む材料において、セメントに混合される材料としては、砂などの細骨材、砂利や砕石などの粗骨材、および混和材が挙げられる。より具体的には、セメントを含む材料としては、モルタルおよびコンクリート(たとえば、フレッシュコンクリート、硬化コンクリート)が挙げられる。 The cement-containing layer 920 is formed by layering the above-described material containing cement. In materials containing cement, examples of materials mixed with cement include fine aggregates such as sand, coarse aggregates such as gravel and crushed stone, and admixtures. More specifically, materials containing cement include mortar and concrete (eg, fresh concrete, hardened concrete).
 なお、モルタルは、一般的に、セメントに細骨材が単独で、またはセメントに細骨材と混和材料との両方が加えられたものである。水道管の場合、具体的には、日本工業規格(JIS A5314)、日本水道協会規格(JWWA A 107, JWWA A 113)、日本ダクタイル鉄管協会規格(JDPA Z 2013, JDPA Z 2015)などに規定されている。健全状態(すなわち劣化されていない状態)における組成として、セメントと細骨材との質量配合比率が1:1.5以上1:3.5以下であること、および、混和材を配合する場合は、セメント質量に対して15%以下であることが定義されている(%は、重量を基準とする)。 In addition, mortar is generally obtained by adding a fine aggregate alone to cement or adding both a fine aggregate and an admixture to cement. In the case of water pipes, specifically, it is stipulated in Japan Industrial Standard (JIS A5314), Japan Waterworks Association Standard (JWWA A 107, JWWA A 113), Japan Ductile Iron Pipe Association Standard (JDPA Z 2013, JDPA Z 2015), etc. ing. When the blending ratio of the cement and fine aggregate is 1: 1.5 or more and 1: 3.5 or less as a composition in a healthy state (that is, an undegraded state), and an admixture is blended , Is defined as 15% or less relative to the cement mass (% is based on weight).
 さらに、セメント含有層920は、セメント含有材料の層の内表面に、さらなる別の被覆層すなわちシールコートを有するものであってもよい。さらなる別の被覆層の材質は、たとえば樹脂、より具体的にはアクリル系樹脂および塩化ビニル系樹脂が挙げられる。 Further, the cement-containing layer 920 may have another coating layer, that is, a seal coat, on the inner surface of the cement-containing material layer. The material of the further another coating layer includes, for example, a resin, more specifically, an acrylic resin and a vinyl chloride resin.
 図27および図28に示すように、ライニング管900の内部には水Wが満たされている。層厚試験装置100jは、ライニング管900の内部に配置される。層厚試験装置100jは、プローブ部700j(検知部の一態様)と、保持部200j(軸部の一態様)と、離間部400j(拡縮アームで具現化)とを含む。さらに、図31に示すように、層厚試験装置100jは、波形取得部150と、判定部160と、肉厚算出部170と、表示部180とを含む。 27 and 28, the lining pipe 900 is filled with water W. The layer thickness test apparatus 100j is disposed inside the lining pipe 900. The layer thickness test apparatus 100j includes a probe part 700j (one aspect of the detection part), a holding part 200j (one aspect of the shaft part), and a separation part 400j (implemented with an expansion / contraction arm). Furthermore, as shown in FIG. 31, the layer thickness test apparatus 100 j includes a waveform acquisition unit 150, a determination unit 160, a thickness calculation unit 170, and a display unit 180.
 図28に示すように、プローブ部700jは、超音波探触子710と、一端部において超音波探触子710をセメント含有層920へ向けて保持するセンサホルダ732と、センサホルダ732の他端部を保持部200jに連結するアーム部材733とを含む。超音波探触子710と、センサホルダ732と、アーム部材733とは、ライニング管900の径方向に同軸となるように配置される。 As shown in FIG. 28, the probe unit 700j includes an ultrasonic probe 710, a sensor holder 732 that holds the ultrasonic probe 710 toward the cement-containing layer 920 at one end, and the other end of the sensor holder 732 And an arm member 733 that couples the part to the holding part 200j. The ultrasonic probe 710, the sensor holder 732, and the arm member 733 are arranged so as to be coaxial with each other in the radial direction of the lining pipe 900.
 図28に示す超音波探触子710は、超音波を発生するとともに、超音波ビームを送受信する。超音波探触子710は、主として、音響レンズ、音響整合層(マッチング層)、振動子(素子)およびバッキング(ダンパー)を筐体内に含む。 The ultrasonic probe 710 shown in FIG. 28 generates an ultrasonic wave and transmits and receives an ultrasonic beam. The ultrasonic probe 710 mainly includes an acoustic lens, an acoustic matching layer (matching layer), a vibrator (element), and a backing (damper) in a housing.
 音響レンズは、屈折を利用して超音波ビームを集束し分解能を向上させるために設けられる。音響レンズとしては凹型が一般的である。音響レンズの音速としては、2000m/sec以上3000m/sec以下程度であり、材料としては、アクリル樹脂又はポリスチレン樹脂が使用される。
 音響整合層(マッチング層)は、λ/4層とも呼称される。振動子と検体との間の音響インピーダンス差を少なくし、超音波を効率よく送受信するために多層配置される。
 振動子(素子)は、超音波を送受信する。電圧を加えると振動して超音波を発生し、逆に振動すると電圧を発生するいわゆるトランスデューサーである。圧電素子とも呼称され、ピエゾ効果(圧電効果)を具備する素材によって構成される。そのような素材として代表的なものとして水晶が挙げられるが、より一般的には、PZT(ジルコン酸チタン酸鉛)が挙げられる。その他、PVDF(ポリフッ化ビニリデン)も挙げられる。
 バッキング(ダンパー)は、振動子の背面に配置され、後方への超音波の伝搬を抑制する。パルス幅を短くすることに寄与する。
The acoustic lens is provided to focus the ultrasonic beam using refraction and improve the resolution. A concave lens is generally used as the acoustic lens. The sound speed of the acoustic lens is about 2000 m / sec or more and 3000 m / sec or less, and an acrylic resin or polystyrene resin is used as the material.
The acoustic matching layer (matching layer) is also called a λ / 4 layer. In order to reduce the acoustic impedance difference between the transducer and the specimen and to efficiently transmit and receive ultrasonic waves, the multilayer arrangement is used.
The vibrator (element) transmits and receives ultrasonic waves. It is a so-called transducer that vibrates when a voltage is applied to generate ultrasonic waves, and generates a voltage when vibrated. It is also called a piezoelectric element, and is composed of a material having a piezo effect (piezoelectric effect). A typical example of such a material is quartz, and more generally, PZT (lead zirconate titanate). Other examples include PVDF (polyvinylidene fluoride).
The backing (damper) is disposed on the back surface of the vibrator, and suppresses the propagation of ultrasonic waves to the rear. This contributes to shortening the pulse width.
 超音波探触子としては、焦点型探触子および直進型探触子が挙げられる。焦点型探触子は、発信される超音波が、ヘッド部からある一定距離(図27中符号D参照)をおいた地点で一時的に集束されるように設計されている。焦点型探触子では、ヘッド部の各点から発信される超音波が平行ではなく、当該地点に向けて集まるように発信される。直進型探触子は、ヘッド部の各点から発信される超音波が平行となるように設計されている。シャープなピークを得るためには、焦点型探触子であることが好ましい。 Ultrasonic probes include a focus type probe and a straight type probe. The focus-type probe is designed so that the transmitted ultrasonic wave is temporarily focused at a point at a certain distance (see symbol D in FIG. 27) from the head unit. In the focus type probe, ultrasonic waves transmitted from each point of the head unit are transmitted in such a way that they are not parallel but gather toward the point. The rectilinear probe is designed so that ultrasonic waves transmitted from each point of the head part are parallel. In order to obtain a sharp peak, a focus type probe is preferable.
 また、本実施の形態では、一探触子法つまり1個の送受信一体型超音波探触子710を用いる方法を例示しているが、これに限定されるものではない。
 たとえば、二探触子法つまり発信用探触子と、受信用探触子とを用いる方法が用いられてもよい。発信用探触子と受信用探触子とは、それぞれ機能的および物理的に分離されたものであってよく、この場合、ライニング層の内表面の接線に対して斜め(つまり0度超90度未満の入射角となるよう)に発信用探触子から超音波発信し、斜めに(つまり0度超90度未満の反射角で)反射した反射波を受信用探触子で受信することができる。
 他にも、送受信一体型センサを複数利用する方法が用いられてもよい。また、二探触子法を複数利用する方法が用いられてもよい。
In the present embodiment, a single probe method, that is, a method using one transmission / reception integrated ultrasonic probe 710 is illustrated, but the present invention is not limited to this.
For example, a two-probe method, that is, a method using a transmitting probe and a receiving probe may be used. The transmitting probe and the receiving probe may be functionally and physically separated from each other. In this case, the transmitting probe and the receiving probe are oblique to the tangent to the inner surface of the lining layer (that is, more than 0 degrees 90 degrees). The ultrasonic wave is transmitted from the transmitting probe so that the incident angle is less than 50 degrees, and the reflected wave reflected obliquely (that is, with a reflection angle of more than 0 degrees and less than 90 degrees) is received by the receiving probe. Can do.
In addition, a method of using a plurality of transmission / reception integrated sensors may be used. Further, a method using a plurality of two-probe methods may be used.
 図27および図28に示すように、保持部200jは、プローブ部700jと離間部400jとを保持するために、両部の間に介在するよう設けられる。さらに図27および図28の場合、セメント含有層920の内周表面の接線TL(図28参照)に対するプローブ部700jの角度(垂直)が一定に保持されるように、プローブ部700jと離間部400jとの間を連結することもできる。図28に示すように、保持部200jは、ライニング管900の軸心と同軸となるように配置された回転軸250jと筒状ケーシング210j(軸筐体部の一態様)と、連結用リング220j(連結用部材の一態様)とを含む。 27 and 28, the holding part 200j is provided so as to be interposed between the two parts in order to hold the probe part 700j and the separating part 400j. Further, in the case of FIGS. 27 and 28, the probe portion 700j and the separation portion 400j are maintained so that the angle (vertical) of the probe portion 700j with respect to the tangent TL (see FIG. 28) of the inner peripheral surface of the cement-containing layer 920 is kept constant. Can also be connected. As shown in FIG. 28, the holding portion 200j includes a rotating shaft 250j, a cylindrical casing 210j (one aspect of the shaft housing portion) arranged so as to be coaxial with the axis of the lining pipe 900, and a connecting ring 220j. (One aspect of the connecting member).
 図27および図28に示すように、回転軸250jは、一端部がプローブ部700jのアーム部材733を固定するとともに、他端部が筒状ケーシング210jの軸心位置で支承され、筒状ケーシング210j内に収容されたモータ(図示せず)によって回転駆動される。モータは、上記の第1実施形態から第8実施形態に記載の中空軸モータ610でなく、中実軸モータであってよい。中実軸モータは、回転軸250jに直接的に固定されることができる。これによって、回転軸250jの回転と共に、アーム部材733を介して、超音波探触子710が、セメント含有層920表面とに対する角度(垂直)を保った状態で、セメント含有層920内周表面に沿って回転する(図27および図28中矢印)。 As shown in FIGS. 27 and 28, the rotary shaft 250j has one end fixed to the arm member 733 of the probe portion 700j and the other end supported at the axial center position of the cylindrical casing 210j. It is rotationally driven by a motor (not shown) accommodated therein. The motor may be a solid shaft motor instead of the hollow shaft motor 610 described in the first to eighth embodiments. The solid shaft motor can be directly fixed to the rotating shaft 250j. Thus, along with the rotation of the rotation shaft 250j, the ultrasonic probe 710 maintains an angle (perpendicular) with respect to the surface of the cement-containing layer 920 via the arm member 733 on the inner peripheral surface of the cement-containing layer 920. Rotate along (arrows in FIGS. 27 and 28).
 図27および図28に示すように、離間部400jは、プローブ部700jの超音波探触子710のヘッド部(超音波が発信される部位)とセメント含有層920表面との間を離間させるように設けられる。プローブ部700jの超音波探触子710のヘッド部とセメント含有層920との間の距離D(図27参照)は、発信される超音波の波長、および超音波探触子710の特性(直線型および焦点型)などによって異なり得るため特に限定されるものではない。例えば、検出感度を良好に保ち易くする観点からは、距離Dは5mm以上とすることができる。 As shown in FIGS. 27 and 28, the separating portion 400j separates the head portion (a portion where ultrasonic waves are transmitted) of the ultrasonic probe 710 of the probe portion 700j and the surface of the cement-containing layer 920. Is provided. The distance D (see FIG. 27) between the head portion of the ultrasonic probe 710 of the probe unit 700j and the cement-containing layer 920 is the wavelength of the transmitted ultrasonic wave and the characteristics (straight line) of the ultrasonic probe 710. There is no particular limitation as it may differ depending on the type and the focus type. For example, from the viewpoint of easily maintaining good detection sensitivity, the distance D can be set to 5 mm or more.
 図28に示すように、離間部400jは、セメント含有層920の内周の半径方向外側に放射状に拡出および半径方向内側に放射状に縮退可能な3つの平行リンク機構410jを含む。さらに、それぞれの平行リンク機構410jの半径方向外側に、ライニング管900の軸方向に対をなし(図27参照)、当該軸方向に走行可能な車輪500jが設けられている。 As shown in FIG. 28, the spacing portion 400j includes three parallel link mechanisms 410j that can radially expand outward in the radial direction of the inner circumference of the cement-containing layer 920 and degenerate radially inward. Further, on the radially outer side of each parallel link mechanism 410j, there is provided a wheel 500j that forms a pair in the axial direction of the lining pipe 900 (see FIG. 27) and can travel in the axial direction.
 図27に示すように、平行リンク機構410jは、クロスアーム415jと、リンクプレート414j(同期アームの一態様)とを含む。
 連結用リング220jは、筒状ケーシング210jの軸方向に2個設けられ、一方は筒状ケーシング210jの外周面に外嵌され、他方は筒状ケーシング210jの外周面を軸方向に摺動可能となるように遊嵌される。連結用リング220jはいずれも、図28に示すように、表面に、クロスアーム415jを連結するための連結用突部が3個、放射状に突設されている。
As shown in FIG. 27, the parallel link mechanism 410j includes a cross arm 415j and a link plate 414j (one aspect of a synchronization arm).
Two connecting rings 220j are provided in the axial direction of the cylindrical casing 210j, one is fitted on the outer peripheral surface of the cylindrical casing 210j, and the other is slidable in the axial direction on the outer peripheral surface of the cylindrical casing 210j. It is loosely fitted. As shown in FIG. 28, each of the connecting rings 220j has three connecting protrusions for connecting the cross arm 415j projecting radially on the surface.
 クロスアーム415jは、一対のアームの交差角が変化可能であり、図27に示すように、それぞれのアームの一端部は、2個の連結用リング220jそれぞれに連結される。リンクプレート414jは、クロスアーム415jの他端部を連結するとともに、車輪500jの対同士を連結する。リンクプレート414jにおいては、クロスアーム415jの他端部の一方の連結位置が固定され、他方の連結位置がライニング管900の軸方向に摺動可能である。 The cross arm 415j can change the crossing angle of a pair of arms, and as shown in FIG. 27, one end of each arm is connected to each of the two connecting rings 220j. The link plate 414j connects the other end of the cross arm 415j and connects a pair of wheels 500j. In the link plate 414j, one connecting position at the other end of the cross arm 415j is fixed, and the other connecting position is slidable in the axial direction of the lining pipe 900.
 図27および図28に示すように、離間部400jは、3対の車輪500jがセメント含有層920に当接しかつ筒状ケーシング210jの軸心がライニング管900の軸心と一致するように、クロスアーム415jの交差角度が調整されることによって、プローブ部700jの超音波探触子710とセメント含有層920とが離間した状態が保たれる。 As shown in FIG. 27 and FIG. 28, the spacing portion 400j is crossed so that the three pairs of wheels 500j abut against the cement-containing layer 920 and the axis of the cylindrical casing 210j coincides with the axis of the lining pipe 900. By adjusting the crossing angle of the arms 415j, the ultrasonic probe 710 of the probe unit 700j and the cement-containing layer 920 are kept apart.
 なお、本発明の層厚試験方法では、図27および図28に記載の層厚試験装置100jに代えて、中空軸モータを用いる上記の第1実施形態および第8実施形態に記載の超音波検査装置100,100a,~,100e,100i,100e’を用いてもよい。 In the layer thickness test method of the present invention, the ultrasonic inspection described in the first embodiment and the eighth embodiment described above using a hollow shaft motor instead of the layer thickness test apparatus 100j described in FIGS. Devices 100, 100a,..., 100e, 100i, 100e ′ may be used.
 図29は、層厚試験を行う場合の、超音波探触子710とライニング管900の一部とを拡大した模式図である。図29に示すように、超音波探触子710のヘッド部から超音波(発信波R)が発信される。発信波Rは、セメント含有層920の内周表面Lsの接線TLに対して垂直となるように発信される。 FIG. 29 is an enlarged schematic view of the ultrasonic probe 710 and a part of the lining tube 900 when the layer thickness test is performed. As shown in FIG. 29, an ultrasonic wave (transmitted wave R) is transmitted from the head portion of the ultrasonic probe 710. The transmitted wave R is transmitted so as to be perpendicular to the tangent TL of the inner peripheral surface Ls of the cement-containing layer 920.
 発信される超音波の波長は、超音波探触子710の特性(直線型および焦点型)、超音波探触子710のヘッド部とセメント含有層920表面との距離などによって異なり得るため特に限定されるものではない。例えば、超音波の波長の下限値は1MHz以上であり、さらに、1.5MHz、1.8MHz、さらには2MHzが好ましい。超音波の波長の上限値は、たとえば、10MHzであり、より好ましくは、9MHz、さらには、7.5MHz、さらには、5MHz、さらには、3.5MHzである。上記範囲を上回ると、シグナルノイズ比(S/N比)に対して感度が低くなる傾向がある。上記範囲を下回ると、不感帯(すなわち各ピークの裾幅)が広くなり、層厚測定精度が低下する傾向、および、層厚測定可能範囲が狭くなる傾向がある。 The wavelength of the transmitted ultrasonic wave is particularly limited because it can vary depending on the characteristics (linear type and focal type) of the ultrasonic probe 710, the distance between the head portion of the ultrasonic probe 710 and the surface of the cement-containing layer 920, and the like. Is not to be done. For example, the lower limit of the wavelength of the ultrasonic wave is 1 MHz or more, and 1.5 MHz, 1.8 MHz, and further 2 MHz are preferable. The upper limit of the wavelength of the ultrasonic wave is, for example, 10 MHz, more preferably 9 MHz, further 7.5 MHz, further 5 MHz, and further 3.5 MHz. When the above range is exceeded, the sensitivity tends to be low with respect to the signal noise ratio (S / N ratio). Below the above range, the dead zone (that is, the skirt width of each peak) becomes wide, the layer thickness measurement accuracy tends to decrease, and the layer thickness measurable range tends to narrow.
 層厚試験によってもたらされるモデルケースの一例においては、図29に示すように、発信波Rは、金属管910の外表面Lbまで到達するとともに、セメント含有層920の内周表面Ls、セメント含有層920と金属管910との境界面Li、および金属管910の外表面Lbそれぞれで反射し、内周表面Lsで反射した反射波RS、境界面Liで最初に反射した第1反射波RI1、および外表面Lbで最初に反射した第1反射波RB1が、超音波探触子710に受信される。 In an example of the model case brought about by the layer thickness test, as shown in FIG. 29, the transmitted wave R reaches the outer surface Lb of the metal tube 910, and the inner peripheral surface Ls of the cement-containing layer 920, the cement-containing layer. A reflected surface RS reflected by the boundary surface Li between the metal tube 910 and the outer surface Lb of the metal tube 910 and reflected by the inner peripheral surface Ls, a first reflected wave RI1 reflected first by the boundary surface Li, and The first reflected wave RB1 first reflected by the outer surface Lb is received by the ultrasonic probe 710.
 さらに、図30に、金属層910中で多重反射することによって多重エコーピークが取得される場合における、超音波の反射経路を模式的に示す。
 発信波Rが、金属層910中でn重反射(nは、2以上の整数である。以下において同じ。)するとして一般化すると、外表面Lbで(n-1)回目に反射した反射波は、第(n-1)反射波RB(n-1)であり、第(n-1)反射波RB(n-1)が境界面Liで反射することにより外表面Lbでn回目に再び反射した反射波は、第n反射波RBnである。
 したがって、発信波Rが、金属層910の外表面Lbで最初に反射した反射波は第1反射波RB1と記載し、反射波RB1が境界面Liで反射することにより外表面Lbで2回目に再び反射した反射波は第2反射波RB2と記載する。また、何番目に反射したものかを特に限定せずに差す場合は、単に反射波RBと記載する。
Furthermore, FIG. 30 schematically shows a reflection path of ultrasonic waves when multiple echo peaks are acquired by multiple reflection in the metal layer 910.
When generalizing that the transmitted wave R is n-fold reflected in the metal layer 910 (n is an integer of 2 or more, the same applies hereinafter), the reflected wave reflected by the outer surface Lb at the (n−1) th time. Is the (n-1) th reflected wave RB (n-1), and the (n-1) th reflected wave RB (n-1) is reflected again at the outer surface Lb for the nth time by reflecting off the boundary surface Li. The reflected wave that has been reflected is the nth reflected wave RBn.
Therefore, the reflected wave that the transmitted wave R is first reflected by the outer surface Lb of the metal layer 910 is described as the first reflected wave RB1, and the reflected wave RB1 is reflected by the boundary surface Li, so that the reflected wave RB1 is reflected the second time on the outer surface Lb. The reflected wave reflected again is referred to as a second reflected wave RB2. In addition, when the number of the reflected light is not particularly limited, it is simply described as a reflected wave RB.
 受信された信号は、波形取得部150(図31参照)において、伝播時間に対する反射波強度の波形へ処理される。より具体的には、受信波(図29の場合、反射波RS,RI1,RB1)を信号増幅器で増幅し、バンドパスフィルタなどでノイズを除去し、A/D変換器でデジタル化され、その後、デジタル化された波形を同一時間軸上で加算平均する平均化処理が行われることで波形が取得される。取得された波形は、測定位置情報とともに記憶される。取得された波形は、表示部180に表示されることができる。 The received signal is processed into a waveform of reflected wave intensity with respect to propagation time in the waveform acquisition unit 150 (see FIG. 31). More specifically, the received wave (in the case of FIG. 29, reflected wave RS, RI1, RB1) is amplified by a signal amplifier, noise is removed by a band pass filter or the like, digitized by an A / D converter, and thereafter The waveform is acquired by performing an averaging process of adding and averaging the digitized waveforms on the same time axis. The acquired waveform is stored together with the measurement position information. The acquired waveform can be displayed on the display unit 180.
 このモデルケースにおけるピークパターン(伝播時間に対する反射波強度)を図32に模式的に示す。図32は、横軸に伝播時間、縦軸に信号強度を示す。図32に示すように、分離可能な分解能で3本のエコーピークが検出される。より具体的には、最も伝播時間が短い反射波として、セメント含有層920の内周表面Lsで反射した反射波RSが検出される。2番目に伝播時間が長い反射波として、境界面Liで最初に反射した第1反射波RI1が検出される。3番目に伝播時間が長い反射波として、外表面Lbで最初に反射した第1反射波RB1が検出される。 The peak pattern (intensity of reflected wave with respect to propagation time) in this model case is schematically shown in FIG. FIG. 32 shows the propagation time on the horizontal axis and the signal intensity on the vertical axis. As shown in FIG. 32, three echo peaks are detected with separable resolution. More specifically, the reflected wave RS reflected by the inner peripheral surface Ls of the cement-containing layer 920 is detected as the reflected wave having the shortest propagation time. The first reflected wave RI1 reflected first at the boundary surface Li is detected as the reflected wave having the second longest propagation time. The first reflected wave RB1 that is first reflected by the outer surface Lb is detected as the reflected wave having the third longest propagation time.
 さらに、場合によっては、金属層910中で多重反射することによって2以上の反射波RBを含む多重エコーピークが取得されることもある。つまり、第(n-k)反射波RB(n-k)とともに、第(n-k+1)反射波RB(n-k+1)、第(n-k+2)反射波RB(n-k+2)、第(n-k+3)反射波RB(n-k+3)、第(n-k+4)反射波RB(n-k+4)・・・が取得される場合もある(kは1以上の整数である。以下において同じ。)。この場合、第1反射波RB1と、外表面Lbで再反射により二番目に反射した第2反射波RB2(図29参照)が検出されることによる第2反射波とから主に構成された多重エコーピークが取得されることが多い傾向にある。 Furthermore, in some cases, multiple echo peaks including two or more reflected waves RB may be obtained by multiple reflection in the metal layer 910. That is, the (n−k + 1) th reflected wave RB (n−k + 1), the (n−k + 2) th reflected wave RB (n−k + 2), the (n−k) th reflected wave RB (n−k), (n−k + 3) reflected wave RB (n−k + 3), (n−k + 4) th reflected wave RB (n−k + 4)... may be acquired (k is an integer equal to or greater than 1. In the following, the same applies. .) In this case, the multiplex composed mainly of the first reflected wave RB1 and the second reflected wave detected by detecting the second reflected wave RB2 (see FIG. 29) secondly reflected by re-reflection on the outer surface Lb. There is a tendency that echo peaks are often acquired.
 図32のモデルケースでは、それぞれの反射波RS,RI1,RB1のエコーピークを正規分布のシングルピークとして表示しているが、このような形状に限られるものではない。エコーピークは、少なくとも、金属管910の肉厚測定に必要な第1反射波RI1,RB1のそれぞれのエコーピークが互いに判別可能に検出される態様であればよい。たとえば、エコーピークが、同じ界面を反射した反射波の干渉による合成波によりピーク群を形成した態様であってもよい。また、反射波RS,RI1,RB1のそれぞれのエコーピークは、例えばS/N比が2.5以上、好ましくは3以上である。 32, the echo peak of each reflected wave RS, RI1, RB1 is displayed as a single peak of normal distribution, but it is not limited to such a shape. The echo peak may be at least an aspect in which the echo peaks of the first reflected waves RI1 and RB1 necessary for measuring the thickness of the metal tube 910 are detected so as to be distinguishable from each other. For example, the aspect which formed the peak group by the synthesized wave by interference of the reflected wave which reflected the same interface for the echo peak may be sufficient. Each echo peak of the reflected waves RS, RI1, RB1 has, for example, an S / N ratio of 2.5 or more, preferably 3 or more.
 判定部160(図31参照)においては、少なくとも、第1反射波RI1,RB1、または、金属層910中でn重反射する場合の反射波RBのうち少なくとも2の反射波RBが、ピークとして判別可能な分解能、または分解能およびS/N比(たとえばS/N比が2.5以上、好ましくは3以上)で検出されたか否かが判断される。 In the determination unit 160 (see FIG. 31), at least the first reflected waves RI1 and RB1 or at least two reflected waves RB among the reflected waves RB in the case of n-layer reflection in the metal layer 910 are determined as peaks. It is determined whether or not detection has been made with possible resolution, or resolution and S / N ratio (for example, S / N ratio is 2.5 or more, preferably 3 or more).
 たとえば図32のようなピークパターン(反射波RS,RI1,RB1のエコーピーク)が判別可能に検出された場合、ライニング管900の金属管910の肉厚が、その肉厚を求めることができる程度であると判断できる。 For example, when a peak pattern (echo peak of reflected waves RS, RI1, RB1) as shown in FIG. 32 is detected so as to be discriminable, the thickness of the metal tube 910 of the lining tube 900 can determine the thickness. It can be judged that.
 同様に、2以上の反射波RBのエコーピークが判別可能に検出された場合、ライニング管900の金属層910の肉厚が、その肉厚を求めることができる程度であると判断できる。 Similarly, when the echo peaks of two or more reflected waves RB are detected in a distinguishable manner, it can be determined that the thickness of the metal layer 910 of the lining tube 900 is such that the thickness can be obtained.
 図32のようなピークパターンの場合、さらに、肉厚算出部170(図31参照)において、第1反射波RB1と第1反射波RI1との伝播時間の差(μ秒)に1/2と音速とを乗じることにより、金属管910の肉厚を算出する。 In the case of the peak pattern as shown in FIG. 32, the thickness calculation unit 170 (see FIG. 31) further reduces the propagation time difference (μ seconds) between the first reflected wave RB1 and the first reflected wave RI1 to 1/2. The thickness of the metal tube 910 is calculated by multiplying by the speed of sound.
 同様に、2以上の反射波RBのピークが判別可能に検出された場合、検出された反射波RBのピークから任意に選択される一対(2本)の反射波RBのピークを用い、それらの伝播時間の差に基づいて、金属層の肉厚を算出することができる。 Similarly, when two or more reflected wave RB peaks are detected in a distinguishable manner, a pair of (two) reflected wave RB peaks arbitrarily selected from the detected reflected wave RB peaks are used. Based on the difference in propagation time, the thickness of the metal layer can be calculated.
 たとえば、第(n-k)反射波RB(n-k)および第(n-k+1)反射波RB(n-k+1)を用いる場合は、第(n-k)反射波RB(n-k)と第(n-k+1)反射波RB(n-k+1)との伝播時間の差(μ秒)に1/2と音速とを乗じることにより、金属管910の肉厚を算出する。 For example, when using the (nk) reflected wave RB (nk) and the (nk + 1) reflected wave RB (nk + 1), the (nk) reflected wave RB (nk) is used. The thickness of the metal tube 910 is calculated by multiplying the difference in propagation time (μ seconds) between the (n−k + 1) th reflected wave RB (n−k + 1) and the sound speed by 1/2.
 さらにたとえば、第(n-k)反射波RB(n-k)および第(n-k+3)反射波RB(n-k+3)を用いる場合は、第(n-k)反射波RB(n-k)と第(n-k+3)反射波RB(n-k+3)との伝播時間の差(μ秒)に1/3を乗じ、さらに1/2と音速とを乗じることにより、金属管910の肉厚を算出する。 Further, for example, when using the (nk) reflected wave RB (nk) and the (nk + 3) reflected wave RB (nk + 3), the (nk) reflected wave RB (nk) ) And the (n−k + 3) reflected wave RB (n−k + 3) by multiplying the difference in propagation time (μ seconds) by 1/3, and further multiplying by 1/2 and the sound velocity, the thickness of the metal tube 910 is increased. Calculate the thickness.
 なお、判別可能に検出された2以上の反射波RBのピークから一対の反射波RBのピークを選択する組み合わせが複数パターンある場合は、複数パターンについて計算を行い、それら計算結果を平均化した値を最終的に金属管910の肉厚としてもよい。 In addition, when there are a plurality of patterns for selecting a pair of reflected waves RB from the peaks of two or more reflected waves RB detected in a distinguishable manner, a value obtained by calculating the plurality of patterns and averaging the calculation results May finally be the thickness of the metal tube 910.
 あるいは、判別可能に検出された2以上の反射波RBのピークから任意に選択される2以上の反射波RBについて、まず、反射波RBの経路の距離に対する伝播時間の関係を最少自乗法等により一次関数に近似することで、近似された一次関数の係数を、反射波RBが金属層910の境界面Liと外表面Lbとを1往復する時間の平均値として算出し、次に、算出された平均値に1/2と音速とを乗じることにより、金属層910の肉厚としてもよい。 Alternatively, for two or more reflected waves RB arbitrarily selected from the peaks of the two or more reflected waves RB detected in a distinguishable manner, first, the relationship of the propagation time to the path distance of the reflected wave RB is determined by the least square method or the like. By approximating to the linear function, the coefficient of the approximated linear function is calculated as an average value of the time during which the reflected wave RB travels once between the boundary surface Li and the outer surface Lb of the metal layer 910, and then calculated. The thickness of the metal layer 910 may be obtained by multiplying the average value by 1/2 and the speed of sound.
 判定部160による判定結果および/または肉厚算出部170の結果は、表示部180に表示されることができる。 The determination result by the determination unit 160 and / or the result of the wall thickness calculation unit 170 can be displayed on the display unit 180.
 図33は、層厚試験によってもたらされるモデルケースの他の例におけるピークパターンを示す。
 図33においては、第1反射波RI1と第1反射波RB1とのエコーピークが分離不能であることに対して、反射波RSのエコーピークは分離可能に検出されている。
FIG. 33 shows a peak pattern in another example of a model case caused by the layer thickness test.
In FIG. 33, the echo peak of the reflected wave RS is detected so as to be separable while the echo peak of the first reflected wave RI1 and the first reflected wave RB1 cannot be separated.
 図33のようなピークパターンが検出された場合、ライニング管900の金属管910は、測定不可能な程度に減肉されていると判断することができる。一方で、セメント含有層920については、劣化していないか、または劣化していても、その程度が、セメント含有層920内部への発信波Rの入射を可能とする程度に軽微であると判断することができる。 33, when the peak pattern as shown in FIG. 33 is detected, it can be determined that the metal tube 910 of the lining tube 900 has been thinned to such an extent that it cannot be measured. On the other hand, the cement-containing layer 920 is not deteriorated, or even if it is deteriorated, it is determined that the degree is small enough to allow the transmission wave R to enter the cement-containing layer 920. can do.
 図32および図33の例では、第1反射波RI1および第1反射波RB1の検出ピークに基づいて金属管910の肉厚を測定する態様を示したが、第1反射波RB1とともに第2反射波RB2(図29参照)が、互いに判別可能な検出能(例えばS/N比が2.5以上、好ましくは3以上)で検出される場合は、第1反射波RB1および第2反射波RB2の検出ピークに基づいて、同様に、金属管910の肉厚を測定することができる。 In the example of FIGS. 32 and 33, the aspect in which the thickness of the metal tube 910 is measured based on the detection peaks of the first reflected wave RI1 and the first reflected wave RB1 is shown. However, the second reflection is performed together with the first reflected wave RB1. When the wave RB2 (see FIG. 29) is detected with a detectability that can be distinguished from each other (for example, the S / N ratio is 2.5 or more, preferably 3 or more), the first reflected wave RB1 and the second reflected wave RB2 Similarly, the thickness of the metal tube 910 can be measured based on the detected peak.
 図34は、層厚試験によってもたらされるモデルケースのさらに他の例におけるピークパターンを示す。
 図34おいては、反射波RSのエコーピークのみが検出されている。図34のようなピークパターンが検出された場合、ライニング管900の少なくともセメント含有層920の劣化が進んだ状態であると判断することができる。セメント含有層920の劣化が進んだ状態とは、空隙率の増加、セメントの重量比率の減少、およびカルシウム濃度の減少の少なくともいずれかによって、発信波Rが、セメント含有層920内部に入らない状態をいう。このようなピークパターンを生じる場合のセメント含有層920の劣化度合いとしては、例えば、セメントの重量比率が20重量%以下である場合、および/またはカルシウム濃度が100,000ppm以下である場合が挙げられる。その他、セメント含有層920の空隙率が0.5%以上である場合も挙げられる。
FIG. 34 shows a peak pattern in yet another example of the model case caused by the layer thickness test.
In FIG. 34, only the echo peak of the reflected wave RS is detected. When a peak pattern as shown in FIG. 34 is detected, it can be determined that the deterioration of at least the cement-containing layer 920 of the lining pipe 900 is advanced. The state in which the deterioration of the cement-containing layer 920 is advanced is a state in which the transmitted wave R does not enter the cement-containing layer 920 due to at least one of an increase in porosity, a decrease in the weight ratio of cement, and a decrease in calcium concentration. Say. Examples of the deterioration degree of the cement-containing layer 920 when such a peak pattern is generated include a case where the weight ratio of the cement is 20% by weight or less and / or a case where the calcium concentration is 100,000 ppm or less. . In addition, the case where the porosity of the cement-containing layer 920 is 0.5% or more is also included.
 また、上述の例では、回転軸250jに固定されたプローブ部700jの超音波探触子710が、セメント含有層920内周表面に沿って回転する(図27および図28中矢印)態様を示したが、この態様に限定されるものではない。たとえば、回転軸250jに固定されない超音波探触子710を備えるプローブ部700jが、セメント含有層920表面に対する距離と角度(垂直)とを保った状態で、自走する態様であってもよい。 Moreover, in the above-mentioned example, the aspect in which the ultrasonic probe 710 of the probe unit 700j fixed to the rotation shaft 250j rotates along the inner peripheral surface of the cement-containing layer 920 (arrows in FIGS. 27 and 28) is shown. However, it is not limited to this aspect. For example, the probe unit 700j including the ultrasonic probe 710 that is not fixed to the rotation shaft 250j may be self-propelled while maintaining a distance and an angle (perpendicular) to the surface of the cement-containing layer 920.
 さらに、図35に示す層厚試験装置100jの他の例である層厚試験装置100kのように、回転しない軸心に固定されたプローブ部700kの超音波探触子710が、ライニング管900の軸心位置から当該軸心方向に超音波を発信するように設けられてもよい。この場合、ミラー720k(音響反射部の一態様)が、当該軸心を回転軸として回転可能に(図35中矢印)設けられ、超音波探触子710から発信された超音波Rを、セメント含有層920の内表面に対して所定の角度(垂直)で入射させられるように、ミラー720k表面の傾斜面723kで屈折させる。 Further, like the layer thickness test apparatus 100k which is another example of the layer thickness test apparatus 100j shown in FIG. 35, the ultrasonic probe 710 of the probe unit 700k fixed to the non-rotating axis is formed of the lining tube 900. An ultrasonic wave may be provided so as to be transmitted in the axial direction from the axial position. In this case, the mirror 720k (one aspect of the acoustic reflection unit) is provided so as to be rotatable about the axis (indicated by an arrow in FIG. 35), and the ultrasonic wave R transmitted from the ultrasonic probe 710 is applied to the cement. The light is refracted by the inclined surface 723k on the surface of the mirror 720k so as to be incident on the inner surface of the containing layer 920 at a predetermined angle (perpendicular).
 また、上述の例では、表面が曲面であるセメント含有層920がライニングされたライニング管900に対して層厚試験を行う態様を示したが、この態様に限定されるものではない。例えば、表面が平面であるセメント含有層が、当該表面と反対側の面が金属表面に接するように積層された金属複層体に対して層厚試験が行われてもよい。 In the above-described example, the layer thickness test is performed on the lining pipe 900 lined with the cement-containing layer 920 having a curved surface. However, the present invention is not limited to this mode. For example, a layer thickness test may be performed on a metal multilayer body in which a cement-containing layer having a flat surface is laminated so that the surface opposite to the surface is in contact with the metal surface.
 さらに、上述の例では、金属管910の表面に設けられた多孔質層がセメント含有層920である態様を示したが、多孔質層はセメント含有物質に限られない。 Furthermore, in the above-described example, the aspect in which the porous layer provided on the surface of the metal tube 910 is the cement-containing layer 920 is shown, but the porous layer is not limited to the cement-containing substance.
 さらに、上述の例では、層厚試験装置100jが、プローブ部700jが保持部200jを介して離間部400jに連結される態様を例示したが、この態様に限定されるものではない。例えば、層厚試験装置100jは、プローブ部が直接離間部に直接連結された構成であってもよい。この場合、セメント含有層の表面または当該表面の接線に対するプローブ部の角度を垂直に保持する機能を、離間部に担わせてよい。 Furthermore, in the above-described example, the layer thickness test apparatus 100j exemplifies a mode in which the probe unit 700j is connected to the separation unit 400j via the holding unit 200j. However, the present invention is not limited to this mode. For example, the layer thickness test apparatus 100j may have a configuration in which the probe unit is directly connected to the separation unit. In this case, the spacing portion may have a function of keeping the angle of the probe portion perpendicular to the surface of the cement-containing layer or the tangent to the surface.
 以上のように、層厚試験装置100j,100kを用いた層厚試験によると、波形取得工程で少なくとも第1反射波RI1,RB1のピーク(たとえば図32のピークパターン)が観測された場合は、金属管910が、厚み測定が可能な程度の肉厚を有すると判断することができる。この場合、第1反射波RB1のピークと第1反射波RI1のピークとの検出時間差に音速を乗じることで、金属管910の肉厚を正確に取得することができる。 As described above, according to the layer thickness test using the layer thickness test apparatuses 100j and 100k, when at least the peaks of the first reflected waves RI1 and RB1 (for example, the peak pattern in FIG. 32) are observed in the waveform acquisition process, It can be determined that the metal tube 910 has a thickness that allows thickness measurement. In this case, the thickness of the metal tube 910 can be accurately obtained by multiplying the detection time difference between the peak of the first reflected wave RB1 and the peak of the first reflected wave RI1 by the speed of sound.
 なお、図33のピークパターンが観測された場合は、金属管910の減肉程度が大きいと判断することができる。図34のピークパターンが観測された場合は、少なくともセメント含有層920の劣化程度が大きいと判断することができる。 In addition, when the peak pattern of FIG. 33 is observed, it can be determined that the thickness reduction of the metal tube 910 is large. When the peak pattern of FIG. 34 is observed, it can be determined that at least the degree of deterioration of the cement-containing layer 920 is large.
[実施形態および他の例により奏される効果]
 超音波検査装置100,100a,~,100e,100i,100e’は、管内へ挿入された場合、拡縮アーム400,400a,~,400e,400i,400e’が内壁面Lへ向かって突っ張るように拡張し、車輪500,500a,~,500e,500i,500e’が内壁面Lへ接触する。これにより、超音波検査装置100,100a,~,100e,100i,100e’が保持される。エアシリンダ300,300c,300d,300e,300e’の伸縮により拡縮アーム400,400a,~,400e,400i,400e’の拡縮を行うことができる。このため、管内での縮径および拡径が自在となる。
[Effects achieved by the embodiment and other examples]
The ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ are expanded so that the expansion / contraction arms 400, 400a,..., 400e, 400i, 400e ′ are stretched toward the inner wall L when inserted into the tube. Then, the wheels 500, 500a,..., 500e, 500i, 500e ′ come into contact with the inner wall surface L. Thereby, the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ are held. Expansion / contraction of the expansion / contraction arms 400, 400a,..., 400e, 400i, 400e ′ can be performed by expansion / contraction of the air cylinders 300, 300c, 300d, 300e, 300e ′. For this reason, the diameter reduction and diameter expansion in a pipe become free.
 また、音響反射部720が回転可能に設けられることにより、超音波探触子710を固定された状態で設けることができる。これによって、超音波検査装置100,100a,~,100e,100i,100e’の、筒部200,200a,~,200e,200e’の軸心を中心とした放射方向の大きさ(特に、拡縮アーム拡縮アーム400,400a,~,400e,400i,400e’が最も縮小する場合の大きさ)をコンパクトにすることができる。 Also, since the acoustic reflector 720 is rotatably provided, the ultrasonic probe 710 can be provided in a fixed state. As a result, the size of the ultrasonic inspection apparatus 100, 100a,..., 100e, 100i, 100e ′ in the radial direction centered on the axis of the cylindrical portion 200, 200a,. The size of the expansion / contraction arms 400, 400a,..., 400e, 400i, 400e ′ can be reduced.
 さらに、音響反射部720の回転に中空軸モータ610を用いることによって、中空回転部材611の中空部内を超音波が伝搬するように構成されるため、超音波探触子710自体を筒部200,200a,~,200e,200i,200e’と同軸に配設することができる。これによっても、超音波検査装置100,100a,~,100e,100i,100e’の放射方向の大きさをコンパクトにすることができる。 Further, since the ultrasonic wave is transmitted through the hollow portion of the hollow rotating member 611 by using the hollow shaft motor 610 for the rotation of the acoustic reflecting portion 720, the ultrasonic probe 710 itself is connected to the cylindrical portion 200, 200a,..., 200e, 200i, 200e ′ can be arranged coaxially. This also makes it possible to reduce the size of the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e 'in the radial direction.
 エアシリンダ300,300c,300d,300e,300e’のロッド311、エアシリンダ300c,300dの可動部321c,321d、エアシリンダ300e,300e’のピストン321eは、筒部200,200a,~,200e,200i,200e’の軸心方向に移動するように設けられているため、拡縮アームが最も縮小した場合における超音波検査装置100,100a,~,100e,100i,100e’の放射方向の大きさをコンパクトにすることができる。 The rod 311 of the air cylinders 300, 300c, 300d, 300e, and 300e ′, the movable portions 321c and 321d of the air cylinders 300c and 300d, and the piston 321e of the air cylinders 300e and 300e ′ are cylindrical portions 200, 200a,. , 200e ′ is arranged so as to move in the axial direction, and the size of the radiation direction of the ultrasonic inspection apparatus 100, 100a,..., 100e, 100i, 100e ′ when the expansion / contraction arm is most contracted is compact. Can be.
 エアシリンダ300は、筒部200,200a,200bの軸心方向に伸縮するように連結用部材220,220a,220bに固定されているため、放射方向つまり拡縮アーム400,400a,400bの拡縮方向SU,SDに伸縮しない。したがって、エアシリンダ300が筒部200,200a,200bの外周部に配置されていても、拡縮アームが最も縮小した場合における超音波検査装置100,100a,100bの放射方向の大きさをコンパクトにすることができる。 Since the air cylinder 300 is fixed to the connecting members 220, 220a, 220b so as to expand and contract in the axial direction of the cylindrical portions 200, 200a, 200b, the radial direction, that is, the expansion / contraction direction SU of the expansion / contraction arms 400, 400a, 400b. , Does not expand or contract to SD. Therefore, even when the air cylinder 300 is disposed on the outer peripheral portion of the cylindrical portions 200, 200a, 200b, the size of the ultrasonic inspection apparatus 100, 100a, 100b in the radial direction when the expansion / contraction arm is most contracted is made compact. be able to.
 エアシリンダ300c,300dは、軸筺体部210c,210d全体を含み、エアシリンダ300e,300e’は、軸筺体部210eの一部を含むため、超音波検査装置100c,100d,100e,100i,100e’の放射方向の大きさをコンパクトにすることができる。 Since the air cylinders 300c and 300d include the entire shaft housing portions 210c and 210d, and the air cylinders 300e and 300e ′ include a part of the shaft housing portion 210e, the ultrasonic inspection apparatuses 100c, 100d, 100e, 100i, and 100e ′. The size of the radiation direction can be made compact.
 超音波検査装置100,100a,~,100e,100i,100e’においては、拡縮アーム400,400a,~,400e,400e’がフリースペースS,Sa,~,Seを有するため、拡縮アーム400,400a,~,400e,400e’が最も縮小した場合に、エアシリンダ300,300c,300d,300e,300e’の少なくとも一部がフリースペースS,Sa,~,Se内に収容される。このため、拡縮アーム400,400a,~,400e,400e’が最も縮小した場合における超音波検査装置100,100a,~,100e,100i,100e’の放射方向の大きさをコンパクトにすることができる。 In the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′, the expansion / contraction arms 400, 400a,..., 400e, 400e ′ have free spaces S, Sa,. ,..., 400e, 400e ′, when the air cylinders 300, 300c, 300d, 300e, 300e ′ are at their smallest size, at least some of the air cylinders 300, 300c, 300d, 300e ′ are accommodated in the free spaces S, Sa,. Therefore, the size of the ultrasonic inspection apparatus 100, 100a,..., 100e, 100i, 100e ′ in the radial direction when the expansion / contraction arms 400, 400a,. .
 超音波検査装置100,100a,~,100i,100e’は、拡縮アーム400,400a,~,400e,400i,400e’が最も縮小した場合に、筺体部800,800iの、軸心方向への投影に、拡縮アーム400,400a,~,400e,400i,400e’が重なるため、放射方向の大きさをコンパクトにすることができる。 The ultrasonic inspection apparatuses 100, 100a,..., 100i, 100e ′ project the housing parts 800, 800i in the axial direction when the expansion / contraction arms 400, 400a,..., 400e, 400i, 400e ′ are most contracted. Further, since the expansion / contraction arms 400, 400a,..., 400e, 400i, 400e ′ overlap, the size in the radial direction can be made compact.
 拡縮アーム400a,~,400e,400i,400e’は、最も縮小した場合に筒部200a,~,200e,200e’の軸心Oにほぼ沿って延在し、固定リング224a,224c~224e,224e’の軸着部を中心とし、90度を超えない回転角で回転運動するシンプルな構造を有するため、放射方向の大きさをコンパクトにすることができるとともに、軸心O方向の大きさもコンパクトにすることができる。従って、拡縮アーム400a,~,400e,400i,400e’の動作の軌跡が占める空間を小さくすることができるため、チーズ型配管Tのような分岐管の中の方向変換が容易となる。 The expansion / contraction arms 400a,..., 400e, 400i, 400e ′ extend substantially along the axis O of the cylindrical portions 200a,..., 200e, 200e ′ when they are most contracted, and the fixing rings 224a, 224c to 224e, 224e. Because it has a simple structure that rotates at a rotation angle that does not exceed 90 degrees, centering on the shaft attachment part of ', it can be made compact in the radial direction and compact in the axis O direction. can do. Therefore, the space occupied by the trajectories of the expansion / contraction arms 400a,..., 400e, 400i, 400e 'can be reduced, so that the direction in the branch pipe such as the cheese pipe T can be easily changed.
 さらに、拡縮アーム400b,~,400e,400i,400e’は、固定リング224c~224e,224e’が軸心O方向の進行方向側と退行歩行側との2箇所に設けられ、それぞれの箇所に軸着される拡縮アーム400b,~,400e,400i,400e’が軸心O方向の向きが反対であるため、拡縮アーム400b,~,400e,400i,400e’の動作の軌跡が占める空間を小さくすることができるとともに、管内で超音波検査装置100b,~,100e,100i,100e’が管内で安定的に保持される。 Further, the expansion / contraction arms 400b,..., 400e, 400i, 400e ′ are provided with fixing rings 224c to 224e, 224e ′ provided at two locations on the advancing direction side in the axis O direction and the retreating walking side. Since the attached expansion / contraction arms 400b,..., 400e, 400i, 400e ′ are opposite in the direction of the axis O, the space occupied by the movement trajectory of the expansion / contraction arms 400b,..., 400e, 400i, 400e ′ is reduced. In addition, the ultrasonic inspection apparatuses 100b to 100e, 100i, 100e 'can be stably held in the tube.
 拡縮アーム400a,~,400e,400i,400e’は、先端に車輪500a,~,500e,500i,500e’が配設された主アーム片411a,~,411e,411e’と、より短いリンクアーム片412a,~,412e,412e’とがリンク機構を形成したものであるため、このように、簡易な構造のリンク機構により、エアシリンダ300,300c,300d,300e,300e’の伸縮動作を拡縮アーム400a,~,400e,400i,400e’の拡縮動作に連動させることができる。 The expansion / contraction arms 400a,..., 400e, 400i, 400e ′ are composed of main arm pieces 411a,..., 411e, 411e ′ having wheels 500a,. 412a,..., 412e, 412e ′ form a link mechanism. Thus, the expansion / contraction arm of the air cylinders 300, 300c, 300d, 300e, 300e ′ can be expanded and contracted by the link mechanism having a simple structure. 400a,..., 400e, 400i, 400e ′ can be linked to the expansion / contraction operation.
 超音波探触子710は、その一部が中空回転部材611の中空部内に配設されるため、超音波検査装置100,100a,~,100e,100i,100e’の軸心方向の大きさをコンパクトにすることができる。 Since a part of the ultrasonic probe 710 is disposed in the hollow portion of the hollow rotating member 611, the size of the ultrasonic inspection apparatus 100, 100a,..., 100e, 100i, 100e ′ is set in the axial direction. It can be made compact.
 エアシリンダ300c,300d,300e,300e’は、拡縮アーム400c,400d,400e,400i,400e’の拡長動作からの復帰を補助する補助バネ350c,350d,350e,350e’を有するため、拡縮アーム400c,400d,400e,400i,400e’の動作がよりスムーズになる。 Since the air cylinders 300c, 300d, 300e, and 300e ′ have auxiliary springs 350c, 350d, 350e, and 350e ′ that assist the return from the expansion operation of the expansion and contraction arms 400c, 400d, 400e, 400i, and 400e ′, The operations of 400c, 400d, 400e, 400i, and 400e ′ become smoother.
 超音波検査装置100,100a,~,100e,100i,100e’は、伸縮部が気圧により駆動するエアシリンダ300,300c,300d,300e,300e’であるため、万一漏れが発生した場合にも、管内の汚染、引火、感電等の危険性が回避され、かつ、簡易な構造による拡縮動作が可能である。 The ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ are air cylinders 300, 300c, 300d, 300e, 300e ′ whose telescopic parts are driven by atmospheric pressure. The danger of contamination, ignition, electric shock, etc. in the pipe is avoided, and expansion / contraction operation with a simple structure is possible.
 超音波検査装置100,100a,~,100e,100i,100e’は、管内挿入後に、伸縮制御部121によりエアシリンダ300,300c,300d,300e,300e’を操作できるため、拡縮アームを遠隔操作により自在に拡縮することができる。 Since the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, and 100e ′ can operate the air cylinders 300, 300c, 300d, 300e, and 300e ′ by the expansion / contraction control unit 121 after being inserted into the tube, the expansion / contraction arm can be remotely operated. Can be scaled freely.
 超音波検査装置100,100a,~,100e,100i,100e’は、回転センサ770を含むことによって、超音波により検査すべき管内壁Lの周方向の位置を正確に判断することができる。 The ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, and 100e 'can accurately determine the circumferential position of the tube inner wall L to be inspected by ultrasonic waves by including the rotation sensor 770.
 超音波検査装置100,100a,~,100e,100i,100e’、層厚試験装置100j,100kを用いた層厚試験によると、金属管910の内周面にセメント含有層920がライニングされたライニング管900を測定対象とし、発信波Rは、複合管の内部に設けられた超音波検査装置100,100a,~,100e,100i,100e’の検知部700、層厚試験装置100j,100kのプローブ部700j,700kの超音波探触子710から発信されるため、ライニング管900が埋設されかつ中に水Wが満たされた状態で層厚試験を行うことができる。このため、開削作業を行うことなく層厚試験を行うことができる。 According to the layer thickness test using the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ and the layer thickness test apparatuses 100j, 100k, the lining in which the cement-containing layer 920 is lined on the inner peripheral surface of the metal tube 910. The tube 900 is a measurement object, and the transmitted wave R is detected by the detection unit 700 of the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ provided in the composite pipe, and the probes of the layer thickness test apparatuses 100j, 100k. Since it is transmitted from the ultrasonic probe 710 of the parts 700j and 700k, the layer thickness test can be performed in a state where the lining pipe 900 is embedded and the water W is filled therein. For this reason, it is possible to perform a layer thickness test without performing a cutting operation.
 超音波検査装置100,100a,~,100e,100i,100e’,層厚試験装置100j,100kを用いた層厚試験によると、発信波Rが、セメント含有層920の内表面に対して垂直に発信される位置関係を保ちながら、ライニング管900の全内周を走査するように発信されることができる。したがって、金属管910の全周の肉厚を試験することができる。 According to the layer thickness test using the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ and the layer thickness test apparatuses 100j, 100k, the transmitted wave R is perpendicular to the inner surface of the cement-containing layer 920. The transmission can be performed so as to scan the entire inner circumference of the lining pipe 900 while maintaining the positional relationship of the transmission. Therefore, the thickness of the entire circumference of the metal tube 910 can be tested.
 超音波検査装置100,100a,~,100e,100i,100e’,層厚試験装置100j,100kを用いた層厚試験によると、発信工程において発信される超音波(発信波R)の周波数が、1MHz以上9MHz以下であると、金属管910の肉厚を正確に取得しやすい。 According to the layer thickness test using the ultrasonic inspection apparatuses 100, 100a, ..., 100e, 100i, 100e 'and the layer thickness test apparatuses 100j, 100k, the frequency of the ultrasonic wave (transmitted wave R) transmitted in the transmission process is When it is 1 MHz or more and 9 MHz or less, it is easy to accurately obtain the thickness of the metal tube 910.
 超音波検査装置100,100a,~,100e,100i,100e’,層厚試験装置100j,100kを用いた層厚試験によると、発信工程において介在する水媒体の厚みDが、5mm以上60mm以下であるため、発信波Rが金属管910内部を透過しやすくなり、反射波RBが感度の高い状態で得られやすくなる。 According to the layer thickness test using the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ and the layer thickness test apparatuses 100j, 100k, the thickness D of the aqueous medium interposed in the transmission process is 5 mm or more and 60 mm or less. Therefore, the transmitted wave R is easily transmitted through the metal tube 910, and the reflected wave RB is easily obtained in a highly sensitive state.
 超音波検査装置100,100a,~,100e,100i,100e’,層厚試験装置100j,100kを用いた層厚試験によると、試験対象が、鋳鉄管を代表とする金属管910セメント含有層920がライニングされたライニング管900であるため、高い汎用性を実現することができる。 According to the layer thickness test using the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ and the layer thickness test apparatuses 100j, 100k, the test object is a metal pipe 910 represented by a cast iron pipe. Since the lining pipe 900 is lined, high versatility can be realized.
 超音波検査装置100,100a,~,100e,100i,100e’,層厚試験装置100j,100kは、超音波を発信するための検出部700,プローブ部700j,700kと、検出部700,プローブ部700j,700kのヘッド部とセメント含有層920の表面とを離間させる拡縮アーム400,400a,~,400e,400i,400e’,離間部400jと、超音波伝播時間に対する反射波強度の波形を取得する波形取得部150と、波形において、反射波のピーク数が、3本以上であるか否かを判定する判定部160とを含むため、波形取得部150で少なくとも第1反射波RI1,RB1のピーク(たとえば図32のピークパターン)が観測された場合は、金属管910が、厚み測定が可能な程度の肉厚を有すると判断することができる。この場合、肉厚算出部170が、第1反射波RB1のピークと第1反射波RI1のピークとの検出時間差に音速を乗じることで、金属管910の肉厚を正確に取得することができる。 The ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ and the layer thickness test apparatuses 100j, 100k include a detection unit 700, probe units 700j, 700k, a detection unit 700, and a probe unit for transmitting ultrasonic waves. The expansion / contraction arm 400, 400a,..., 400e, 400i, 400e ′, the separation portion 400j that separates the head portion of 700j, 700k and the surface of the cement-containing layer 920, and the waveform of the reflected wave intensity with respect to the ultrasonic wave propagation time are acquired. Since the waveform acquisition unit 150 and the determination unit 160 that determines whether or not the number of reflected wave peaks in the waveform is 3 or more are included, the waveform acquisition unit 150 includes at least the peaks of the first reflected waves RI1 and RB1. When (for example, the peak pattern in FIG. 32) is observed, the metal tube 910 has a thickness that allows thickness measurement. It can be determined that that. In this case, the thickness calculator 170 can accurately acquire the thickness of the metal tube 910 by multiplying the detection time difference between the peak of the first reflected wave RB1 and the peak of the first reflected wave RI1 by the speed of sound. .
 超音波検査装置100,100a,~,100e,100i,100e’,層厚試験装置100jは、検出部700,プローブ部700jが、ライニング管900の軸心を回転軸としてライニング管900内部で回転可能に設けられているため、金属管910の全周の肉厚を試験することができる。 In the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′, and the layer thickness test apparatus 100j, the detection unit 700 and the probe unit 700j can rotate inside the lining tube 900 about the axis of the lining tube 900 as a rotation axis. Therefore, the thickness of the entire circumference of the metal tube 910 can be tested.
 超音波検査装置100,100a,~,100e,100i,100e’,層厚試験装置100kは、検出部700,プローブ部700kが、ライニング管900の軸心に、設けられ、かつ、セメント含有層920の内表面に対して垂直に入射するように屈折させる音響反射部720,ミラー720kが、ライニング管900の軸心を回転軸として回転可能に設けられるため、金属管910の全周の肉厚を試験することができる。 The ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′, and the layer thickness test apparatus 100k are configured such that the detection unit 700 and the probe unit 700k are provided at the axis of the lining tube 900, and the cement-containing layer 920. Since the acoustic reflection part 720 and the mirror 720k that refract so as to be incident perpendicularly to the inner surface of the lining tube 900 are provided to be rotatable about the axis of the lining tube 900, the thickness of the entire circumference of the metal tube 910 Can be tested.
[実施形態および他の例における各部と請求項の各構成要素との対応関係]
 本発明においては、超音波検査装置100,100a,~,100e,100i,100e’が「超音波検査装置」に相当し、伸縮制御部121が「伸縮制御部」に相当し、筒部200,200a,~,200e,200i,200e’が「軸部」に相当し、連結用部材220,220a,~,220eが「外周部」に相当し、エアシリンダ300,300c,300d,300e,300e’が「伸縮部」に相当し、ロッド311、可動部321c,321d、およびピストン321eが「可動部」に相当し、補助バネ350c,350d,350e,350e’が「補助バネ」に相当し、拡縮アーム400,400a,~,400e,400i,400e’が「拡縮アーム」に相当し、主アーム片411a,~,411e,411e’が「長アーム片」に相当し、リンクアーム片412a,~,412e,412e’が「短アーム片」に相当し、車輪500,500a,~,500e,500i,500e’が「走行部」に相当し、中空軸モータ610が「中空軸モータ」に相当し、中空回転部材611が「中空回転部材」に相当し、非回転部材612が「非回転部材」に相当し、超音波探触子710が「超音波探触子」に相当し、音響反射部720が「音響反射部」に相当し、一回転センサ770が「回転センサ」に相当し、ポジションマーカ771が「ポジションマーカ」に相当し、センサ772が「ポジションマーカを検出するセンサ」に相当し、筺体部800,800iが「筺体部」に相当し、フリースペースS,Sa,~,Seが「収容部」に相当し、軸心Oが「軸心」に相当し、進行方向Fが「進行方向」に相当する。
[Correspondence Relationship Between Each Part in Embodiment and Other Examples and Each Component in Claim]
In the present invention, the ultrasonic inspection apparatuses 100, 100a,..., 100e, 100i, 100e ′ correspond to “ultrasonic inspection apparatuses”, the expansion / contraction control unit 121 corresponds to “extension control unit”, 200a,..., 200e, 200i, 200e ′ correspond to “shaft portions”, the connecting members 220, 220a,..., 220e correspond to “outer peripheral portions”, and the air cylinders 300, 300c, 300d, 300e, 300e ′. Corresponds to the “expandable part”, the rod 311, the movable parts 321c and 321d, and the piston 321e correspond to the “movable part”, and the auxiliary springs 350c, 350d, 350e, and 350e ′ correspond to the “auxiliary spring”. The arms 400, 400a,..., 400e, 400i, 400e 'correspond to "expansion / contraction arms", and the main arm pieces 411a, ..., 411e, 411e' correspond to "long arms. The link arm pieces 412a,..., 412e, 412e ′ correspond to “short arm pieces”, and the wheels 500, 500a,..., 500e, 500i, 500e ′ correspond to “running parts” and are hollow. The shaft motor 610 corresponds to a “hollow shaft motor”, the hollow rotating member 611 corresponds to a “hollow rotating member”, the non-rotating member 612 corresponds to a “non-rotating member”, and the ultrasonic probe 710 It corresponds to an “acoustic probe”, the acoustic reflection part 720 corresponds to an “acoustic reflection part”, the one-turn sensor 770 corresponds to a “rotation sensor”, the position marker 771 corresponds to a “position marker”, and the sensor 772 Corresponds to a “sensor for detecting a position marker”, the housing parts 800 and 800 i correspond to “housing parts”, the free spaces S, Sa,..., Se correspond to “accommodating parts”, and the axis O is “ Is equivalent to Traveling direction F corresponds to the "direction of travel".
 さらに、金属管910が「金属層」に相当し、セメント含有層920が「多孔質層」に相当し、ライニング管900が「複層体」に相当し、水Wが「水媒体」に相当し、セメント含有層と金属管との境界面Liが「金属層と多孔質層との境界面」に相当し、金属管の外表面Lbが「金属層の多孔質層とは反対側の面」に相当し、発信波Rが「発信される超音波」に相当し、第1反射波RI1が「第1界面反射波」に相当し、第1反射波RB1が「第1外面反射波」に相当し、内周表面Lsが「内周面」に相当し、層厚試験装置100jが「層厚試験装置」に相当する。 Further, the metal pipe 910 corresponds to a “metal layer”, the cement-containing layer 920 corresponds to a “porous layer”, the lining pipe 900 corresponds to a “multilayer body”, and the water W corresponds to a “water medium”. The boundary surface Li between the cement-containing layer and the metal tube corresponds to “the boundary surface between the metal layer and the porous layer”, and the outer surface Lb of the metal tube is “the surface of the metal layer opposite to the porous layer” ”, The transmitted wave R corresponds to“ transmitted ultrasonic wave ”, the first reflected wave RI1 corresponds to“ first interface reflected wave ”, and the first reflected wave RB1 corresponds to“ first outer surface reflected wave ”. The inner peripheral surface Ls corresponds to the “inner peripheral surface”, and the layer thickness test apparatus 100j corresponds to the “layer thickness test apparatus”.
 以下に実施例を示し、本発明を具体的に説明するが、本発明は下記の実施例に制限されるものではない。 Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to the following examples.
 JWWA A107,A113既定のモルタルライニングダクタイル鋳鉄管(モルタルライニング層の層厚は7mm程度)の健全管を用意し、その一部の金属を減肉させてサンプル管を作成した。実施例1から実施例7で用いたサンプル管の口径は呼び径250である。減肉加工はザグリ加工によって行い、φ20mmのザグリ穴の平底面を減肉部とした。減肉部の減肉程度は、金属肉厚が健全部の50%である。層厚試験は、サンプル管内に水を充填し、層厚試験装置100jを挿入して行った。 JWWA A107, A113 predetermined mortar lining ductile cast iron pipe (mortar lining layer thickness is about 7 mm) was prepared, and a part of the metal was thinned to prepare a sample pipe. The sample tube used in Examples 1 to 7 has a nominal diameter of 250. The thinning process was performed by counterboring, and the flat bottom surface of the counterbored hole with a diameter of 20 mm was defined as the thinned part. As for the thickness reduction of the thinned portion, the metal thickness is 50% of the healthy portion. The layer thickness test was performed by filling the sample tube with water and inserting the layer thickness test apparatus 100j.
[実施例1]
 本実施例では、発信周波数を1.0MHz、超音波探触子の特性を直進型、および水距離(図27および図29における距離D)を15mmとして、層厚試験を行った。健全部について得られたオシログラムを図36(a)に、減肉部について得られたオシログラムを図36(b)に示す。図36(a)および図36(b)において、横軸は伝播時間に基づく層厚の相対値、縦軸は信号の相対強度を示す。また、Sは、セメント含有層の内周表面で反射した反射波のピークを表し、Iは、セメント含有層と金属管との境界面で最初に反射した第1反射波を表し、BおよびFは、金属管の外表面で最初に反射した第1反射波を表す。Bは、第1反射波が境界面で反射することにより金属管の外表面で2番目に再び反射した第2反射波である。以降のオシログラムについても同様である。
[Example 1]
In this example, the layer thickness test was performed with the transmission frequency of 1.0 MHz, the characteristics of the ultrasonic probe being the straight type, and the water distance (distance D in FIGS. 27 and 29) being 15 mm. The oscillogram obtained for the healthy part is shown in FIG. 36 (a), and the oscillogram obtained for the thinned part is shown in FIG. 36 (b). 36 (a) and 36 (b), the horizontal axis indicates the relative value of the layer thickness based on the propagation time, and the vertical axis indicates the relative intensity of the signal. S represents the peak of the reflected wave reflected on the inner peripheral surface of the cement-containing layer, I represents the first reflected wave first reflected at the interface between the cement-containing layer and the metal tube, and B 1 and F represents the first reflected wave first reflected on the outer surface of the metal tube. B 2 is a second reflected wave reflected again on the second outside surface of the metal pipe by first reflected wave is reflected at the boundary surface. The same applies to the subsequent oscillograms.
[実施例2]
 発信周波数を2.25MHzに変更したことを除いて、実施例1と同様に層厚試験を行った。健全部について得られたオシログラムを図37(a)に、減肉部について得られたオシログラムを図37(b)に示す。
[Example 2]
A layer thickness test was performed in the same manner as in Example 1 except that the transmission frequency was changed to 2.25 MHz. FIG. 37 (a) shows the oscillogram obtained for the healthy part, and FIG. 37 (b) shows the oscillogram obtained for the thinned part.
[実施例3]
 発信周波数を3.5MHzに変更したことを除いて、実施例1と同様に層厚試験を行った。健全部について得られたオシログラムを図38(a)に、減肉部について得られたオシログラムを図38(b)に示す。
[Example 3]
A layer thickness test was performed in the same manner as in Example 1 except that the transmission frequency was changed to 3.5 MHz. The oscillogram obtained for the healthy part is shown in FIG. 38 (a), and the oscillogram obtained for the thinned part is shown in FIG. 38 (b).
[実施例4]
 発信周波数を5.0MHzに変更したことを除いて、実施例1と同様に層厚試験を行った。健全部について得られたオシログラムを図39(a)に、減肉部について得られたオシログラムを図39(b)に示す。
[Example 4]
A layer thickness test was performed in the same manner as in Example 1 except that the transmission frequency was changed to 5.0 MHz. The oscillogram obtained for the healthy part is shown in FIG. 39 (a), and the oscillogram obtained for the thinned part is shown in FIG. 39 (b).
[実施例5]
 発信周波数を7.5MHzに変更したことを除いて、実施例1と同様に層厚試験を行った。健全部について得られたオシログラムを図40(a)に、減肉部について得られたオシログラムを図40(b)に示す。
[Example 5]
A layer thickness test was performed in the same manner as in Example 1 except that the transmission frequency was changed to 7.5 MHz. The oscillogram obtained for the healthy part is shown in FIG. 40 (a), and the oscillogram obtained for the thinned part is shown in FIG. 40 (b).
[実施例6]
 発信周波数を10MHzに変更したことを除いて、実施例1と同様に層厚試験を行った。健全部について得られたオシログラムを図41(a)に、減肉部について得られたオシログラムを図41(b)に示す。
[Example 6]
A layer thickness test was performed in the same manner as in Example 1 except that the transmission frequency was changed to 10 MHz. FIG. 41 (a) shows the oscillogram obtained for the healthy part, and FIG. 41 (b) shows the oscillogram obtained for the thinned part.
[実施例7]
 発信周波数を2.25MHzに変更し、かつ超音波探触子の特性を焦点型としたことを除いて、実施例1と同様に層厚試験を行った。健全部について得られたオシログラムを図42(a)に、減肉部について得られたオシログラムを図42(b)に示す。
[Example 7]
A layer thickness test was conducted in the same manner as in Example 1 except that the transmission frequency was changed to 2.25 MHz and the characteristics of the ultrasonic probe were of the focus type. The oscillogram obtained for the healthy part is shown in FIG. 42 (a), and the oscillogram obtained for the thinned part is shown in FIG. 42 (b).
[参考例1]
 モルタルライニングダクタイル鋳鉄管のテストピース(呼び径250のサンプル管の半割管)を用意し、水距離(図27および図29における距離Dに相当)を10mm以上200mm以下の範囲で変化させてオシログラムを取得し、測定感度を評価した。なお、使用した機器は、オリンパス社製超音波探傷器エポック4、探触子の特性は焦点型、発信周波数2.25MHz、振動子径12.7mm、集束ポイント50.8mmである。測定感度の評価は、水距離を10mmに設定した場合に検出された底面エコーをディスプレイ上80%に調整した感度を基準とした。水距離に対するエコー高さの変化を図43に示す。
[Reference Example 1]
Prepare a test piece of mortar-lined ductile cast iron pipe (half pipe of sample pipe with nominal diameter of 250), and change the water distance (corresponding to distance D in FIGS. 27 and 29) in the range of 10 mm or more and 200 mm or less. And the measurement sensitivity was evaluated. The equipment used is an ultrasonic flaw detector epoch 4 manufactured by Olympus, and the probe has a focus type, a transmission frequency of 2.25 MHz, a vibrator diameter of 12.7 mm, and a focusing point of 50.8 mm. The evaluation of the measurement sensitivity was based on the sensitivity obtained by adjusting the bottom echo detected when the water distance was set to 10 mm to 80% on the display. FIG. 43 shows the change in echo height with respect to the water distance.
 水距離10mmから60mmまでを10mm刻みで、水距離60mmから200mmまでを20mm刻みで測定を行った結果は、いずれも感度良好であった。図43に示すように、特に、水距離10mm以上100mm以下の範囲では、底面エコーが高くなり、感度が良いことが分かった。一方、100mm超200mm以下の範囲では、徐々に底面エコーが低くなり、感度が低下する傾向が見られた。しかしながら、特に感度が良好である水距離50mmの場合と、最も感度が低い水距離200mmの場合とを比べた場合、感度差は6dBであり、測定に大きな影響を与えるものではなかった。 The results of measuring the water distance from 10 mm to 60 mm in 10 mm increments and the water distance from 60 mm to 200 mm in 20 mm increments were all good in sensitivity. As shown in FIG. 43, it was found that the bottom echo was high and the sensitivity was good particularly in the range of the water distance of 10 mm to 100 mm. On the other hand, in the range of more than 100 mm and not more than 200 mm, the bottom echo gradually decreased and the sensitivity tended to decrease. However, when the water distance of 50 mm where the sensitivity is particularly good is compared with the case of the water distance of 200 mm where the sensitivity is the lowest, the sensitivity difference is 6 dB, which does not greatly affect the measurement.
[実施例8]
 JWWA A107,A113既定のモルタルライニングダクタイル鋳鉄管(呼び径250)の健全管を用意し、その一部の金属を減肉させて、減肉度合いの異なる複数のサンプル管を作成した。減肉加工はザグリ加工によって行い、φ20mmのザグリ穴の平底面を減肉部とした。サンプル管の減肉部における金属肉厚の減肉程度は、それぞれ、健全部の30%、50%、60%、および75%である。健全部および減肉部につて層厚試験を行った。層厚試験は、サンプル管内に水を充填し、層厚試験装置100jを用い、発信周波数2.25MHz、焦点型探触子使用、水距離45mmの条件下で行った。
[Example 8]
A healthy pipe of a mortar-lined ductile cast iron pipe (nominal diameter 250) of JWWA A107, A113 was prepared, and a part of the metal was thinned to prepare a plurality of sample pipes having different thinning degrees. The thinning process was performed by counterboring, and the flat bottom surface of the counterbored hole with a diameter of 20 mm was defined as the thinned part. The thickness reduction of the metal thickness in the thinned portion of the sample tube is 30%, 50%, 60%, and 75% of the healthy portion, respectively. A layer thickness test was performed on the healthy part and the thinned part. The layer thickness test was performed by filling the sample tube with water and using the layer thickness test apparatus 100j under the conditions of a transmission frequency of 2.25 MHz, using a focal probe, and a water distance of 45 mm.
 図44に、層厚試験(水浸法)によって測定された金属肉厚と、実際の金属肉厚との関係を示す。図44に示すように、減肉について測定誤差は0.1mmレベルであり、本発明の層厚試験の正確さが示された。 FIG. 44 shows the relationship between the metal thickness measured by the layer thickness test (water immersion method) and the actual metal thickness. As shown in FIG. 44, the measurement error was about 0.1 mm for the thinning, indicating the accuracy of the layer thickness test of the present invention.
[実施例9]
 敷設後27年が経過したモルタルダクタイル鋳鉄管(呼び径150)を入手し、発信周波数2.25MHz、焦点型探触子使用、水距離45mmの条件下で層厚試験を行った。
 図45に、層厚試験によって得られたオシログラムを示す。図45が示すように、健全管について層厚試験した場合(実施例1から実施例8)と同様、良好なオシログラムが得られた。
[Example 9]
A mortar ductile cast iron pipe (nominal diameter 150), which has passed 27 years after laying, was obtained, and a layer thickness test was conducted under the conditions of a transmission frequency of 2.25 MHz, using a focal probe, and a water distance of 45 mm.
FIG. 45 shows an oscillogram obtained by the layer thickness test. As shown in FIG. 45, a good oscillogram was obtained as in the case where the layer thickness test was performed on the healthy pipe (Example 1 to Example 8).
[実施例10]
 敷設後27年が経過したモルタルダクタイル鋳鉄管(呼び径150)1mを入手し、さらに、2.0mmと3.0mmとの人工減肉を施し、サンプル管を作成した。層厚試験は、サンプル管内に水を充填し、層厚試験装置100jを挿入し、実施例5における条件下で行った。本実施例においては、筒状ケーシング210j内に収容されたモータの回転速度を60rpmとして、超音波探触子710を、サンプル管内周表面の周方向に沿って回転させた。
[Example 10]
A mortar ductile cast iron pipe (nominal diameter 150) 1 m, which has passed 27 years after laying, was obtained, and further subjected to artificial thinning of 2.0 mm and 3.0 mm to prepare a sample pipe. The layer thickness test was performed under the conditions in Example 5 by filling the sample tube with water and inserting the layer thickness test apparatus 100j. In this example, the rotational speed of the motor accommodated in the cylindrical casing 210j was set to 60 rpm, and the ultrasonic probe 710 was rotated along the circumferential direction of the inner peripheral surface of the sample tube.
 本実施例によるサンプル管の減肉評価の結果を図46に示す。図46中、横軸は周方向における回転距離(mm)、縦軸は減肉量(mm)を示す。周方向における回転距離は、サンプル管の外周面の周方向距離を示す。図46が示すように、回転距離55mm地点で1.4mmの自然減肉が観測され、回転距離80mmの地点で2.0mmの人工減肉が観測され、回転距離200mmの地点で3.0mmの人工減肉が観測された。 FIG. 46 shows the result of the thinning evaluation of the sample tube according to this example. In FIG. 46, the horizontal axis indicates the rotational distance (mm) in the circumferential direction, and the vertical axis indicates the thickness reduction (mm). The rotational distance in the circumferential direction indicates the circumferential distance of the outer peripheral surface of the sample tube. As shown in FIG. 46, natural thinning of 1.4 mm is observed at a rotational distance of 55 mm, artificial thinning of 2.0 mm is observed at a rotational distance of 80 mm, and 3.0 mm at a rotational distance of 200 mm. Artificial thinning was observed.
[実施例11]
 元の肉厚が7.7mmであったモルタルライニングダクタイル鋳鉄管(呼び径250)を、発信周波数2.25MHz、焦点型探触子使用、水距離45mmの条件下で層厚試験に供した。図47に、得られたオシログラムを示す。図47が示すように、検出されたピークは2本であったため、層厚試験に供された管の鋳鉄部分は、顕著に減肉していることが分かった。実際に、層厚試験に供された管の鋳鉄部分の肉厚を直接測定したところ1.9mmであり、従って減肉率(肉厚基準)は75%であった。
[Example 11]
A mortar-lined ductile cast iron pipe (nominal diameter 250) having an original wall thickness of 7.7 mm was subjected to a layer thickness test under the conditions of a transmission frequency of 2.25 MHz, a focus type probe, and a water distance of 45 mm. FIG. 47 shows the obtained oscillogram. As FIG. 47 shows, since the detected peak was two, it turned out that the cast iron part of the pipe | tube used for the layer thickness test has remarkably thinned. Actually, when the thickness of the cast iron portion of the pipe subjected to the layer thickness test was directly measured, it was 1.9 mm, and the thickness reduction rate (thickness standard) was 75%.
[実施例12]
 敷設後50年が経過したモルタルダクタイル鋳鉄管(呼び径200)を、発信周波数2.25MHz、焦点型探触子使用、水距離45mmの条件下で層厚試験に供した。図48に、得られたオシログラムを示す。図48が示すように、検出されたピークは1本であったため、層厚試験に供された管のライニング層が、顕著に劣化していることが分かった。実際に、層厚試験に供された管のライニング部分について、モルタル空隙率、セメント重量比率、およびカルシウム濃度を直接測定した。
[Example 12]
A mortar ductile cast iron pipe (nominal diameter 200), which has passed 50 years after laying, was subjected to a layer thickness test under the conditions of a transmission frequency of 2.25 MHz, a focus type probe, and a water distance of 45 mm. FIG. 48 shows the obtained oscillogram. As FIG. 48 shows, since the detected peak was one, it turned out that the lining layer of the pipe | tube used for the layer thickness test has deteriorated notably. In fact, the mortar porosity, cement weight ratio, and calcium concentration were directly measured on the lining portion of the tube subjected to the layer thickness test.
(空隙率の測定方法)
 X線CTシステムとして、松定プレシジョン社製 μB3500を使用し、300data/360°(1回転で300枚の透過画像を撮影)の測定条件で、ライニング層を3D化した。専用解析ソフトとして、VG Studio(Volume Graphics社製) CTX/欠陥抽出オプションを用い、空隙率を算出した。
(Measurement method of porosity)
As an X-ray CT system, μB3500 manufactured by Matsusada Precision Co., Ltd. was used, and the lining layer was converted to 3D under measurement conditions of 300 data / 360 ° (taken 300 transmission images per rotation). The porosity was calculated using VG Studio (Volume Graphics) CTX / defect extraction option as dedicated analysis software.
(セメント重量比率の測定方法)
 まず85℃で1hr乾燥機でモルタル層の検体を乾燥し、乾燥後の検体をハンマーで小片まで粉砕した。乾燥後計量したルツボに、検体約10gを計量投入し、15% HCl 50mlを添加して、大きな検体片をガラス棒で粉砕し、超音波処理(10min)した。2日間浸漬状態を維持し、その後、計量した50ml 遠沈管に検体を移した。3000rpm・5minの条件で遠心分離処理を行った。
(Measurement method of cement weight ratio)
First, the specimen in the mortar layer was dried at 85 ° C. for 1 hour with a drier, and the dried specimen was crushed into small pieces with a hammer. About 10 g of a sample was weighed into a crucible weighed after drying, 50 ml of 15% HCl was added, a large sample piece was crushed with a glass rod, and sonicated (10 min). The immersion state was maintained for 2 days, and then the specimen was transferred to a weighed 50 ml centrifuge tube. Centrifugation was performed at 3000 rpm for 5 min.
 固形物を純水で中性になるまで洗浄(遠心3000rpm・2min x 7~10回)し、固形物を遠沈管ごと、ギアオーブン(50℃)で乾燥した。遠沈管ごと計量した後、砂割合を算出した。 The solid was washed with pure water until neutral (centrifugation 3000 rpm, 2 min x 7 to 10 times), and the solid was dried together with the centrifuge tube in a gear oven (50 ° C.). After weighing the whole centrifuge tube, the sand ratio was calculated.
(カルシウム濃度の測定方法)
 上記の遠心分離処理後の上澄みをサンプリングし、ICP分析(誘導結合プラズマ発光分光分析)に供した。ICP分析の測定条件は、以下の通りである。
・高周波出力1.2 kw ・スプレイチャンバー石英サイクロンチャンバー
・プラズマガス流量15 L/min ・アルゴン加湿器使用なし
・補助ガス流量1.5 L/min ・分析波長下記の通り
・キャリアガス流量0.9 L/min ・積分時間3秒
・トーチ石英トーチ・繰り返し回数5回
・ネブライザ同軸ガラスネブライザー・内部標準補正なし
・ICP発光分析( SIIナノテクノロジーSPS5100)2点計量定性分析
(Calculation method of calcium concentration)
The supernatant after the above centrifugation treatment was sampled and subjected to ICP analysis (inductively coupled plasma emission spectroscopy). The measurement conditions for ICP analysis are as follows.
・ High frequency output 1.2 kw ・ Spray chamber quartz cyclone chamber ・ Plasma gas flow rate 15 L / min ・ No argon humidifier used ・ Auxiliary gas flow rate 1.5 L / min ・ Analysis wavelength as shown below ・ Carrier gas flow rate 0.9 L / min ・ Integration time 3 seconds, torch quartz torch, 5 repetitions, nebulizer coaxial glass nebulizer, no internal standard correction, ICP emission analysis (SII nanotechnology SPS5100) 2-point qualitative analysis
 測定の結果、モルタル空隙率が1.13%、セメント重量比が18重量%、カルシウム濃度が15,782ppmであった。 As a result of the measurement, the mortar porosity was 1.13%, the cement weight ratio was 18% by weight, and the calcium concentration was 15,782 ppm.
[参考例2]
 ダクタイル鋳鉄管のライニング層として、モルタルライニング層の代わりにエポキシ樹脂粉体塗装層(2mm程度)を被覆したことを除いて、実施例1と同様のサンプル管(呼び径250)を作成した。このサンプル管に対し、参考例1と同じ機器を用いて、水距離15mmとして、層厚試験を行った。健全部について得られたオシログラムを図49(a)に、減肉部について得られたオシログ
ラムを図49(b)に示す。
[Reference Example 2]
As a lining layer of a ductile cast iron pipe, a sample pipe (nominal diameter 250) similar to that of Example 1 was prepared except that an epoxy resin powder coating layer (about 2 mm) was coated instead of the mortar lining layer. A layer thickness test was performed on the sample tube using the same equipment as in Reference Example 1 with a water distance of 15 mm. FIG. 49A shows the oscillogram obtained for the healthy part, and FIG. 49B shows the oscillogram obtained for the thinned part.
[参考例3]
 モルタルライニングダクタイル鋳鉄管のテストピース(φ270、総厚7mm、モルタルライニング暑さ5mのサンプル管の半割管)を用意し、水距離D(図27および図29における距離Dに相当)を10mm以上200mm以下の範囲で変化させてオシログラムを取得し、測定感度を評価した。なお、使用した機器は、オリンパス社製超音波探傷器エポック4、探触子の特性は焦点型(PF=R80)、発信周波数1.8MHz、振動子径φ12.7mmである。測定感度の評価は、水距離Dを10mmに設定した場合に検出された底面エコーをディスプレイ上80%に調整した感度を基準とした。水距離Dに対するエコー高さHの変化を図43に示す。
[Reference Example 3]
Prepare a test piece of mortar-lined ductile cast iron pipe (φ270, total thickness 7mm, halved sample pipe with mortar lining heat 5m), and water distance D (corresponding to distance D in FIGS. 27 and 29) of 10mm or more The oscillogram was acquired by changing within a range of 200 mm or less, and the measurement sensitivity was evaluated. The equipment used is an ultrasonic flaw detector epoch 4 manufactured by Olympus, and the probe has a focus type (PF = R80), a transmission frequency of 1.8 MHz, and a vibrator diameter of 12.7 mm. The evaluation of the measurement sensitivity was based on the sensitivity obtained by adjusting the bottom echo detected when the water distance D was set to 10 mm to 80% on the display. The change in echo height H with respect to water distance D is shown in FIG.
 水距離10mmから60mmまでを10mm刻みで、水距離60mmから200mmまでを20mm刻みで測定を行った結果は、いずれも感度良好であった。表1に示すように、水距離Dが大きくなるにつれ徐々に底面エコーが低くなり、感度が低下する傾向が見られた。しかしながら、感度が最も良好である水距離10mmの場合と、水距離180mmの場合とを比べた場合の感度差は6dB、感度が最も良好である水距離10mmの場合と、最も感度が低い水距離200mmの場合とを比べた場合の感度差は7dBであり、参考例1と同様に、測定に大きな影響を与えるものではなかった。 The results of measuring the water distance from 10 mm to 60 mm in 10 mm increments and the water distance from 60 mm to 200 mm in 20 mm increments were all good in sensitivity. As shown in Table 1, as the water distance D increases, the bottom echo gradually decreases and the sensitivity tends to decrease. However, when the water distance is 10 mm where the sensitivity is the best and the water distance is 180 mm, the sensitivity difference is 6 dB, the water distance where the sensitivity is the best 10 mm, and the water distance where the sensitivity is the lowest. When compared with the case of 200 mm, the sensitivity difference was 7 dB, and as in Reference Example 1, the measurement did not have a significant effect.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
[実施例13]
 参考例3と同じモルタルライニングダクタイル鋳鉄管のテストピースを用意し、その一部の金属を減肉させてサンプルピースを作成した。減肉加工はザグリ加工によって行い、φ20mmのザグリ穴の平底面を減肉部とした。減肉部の減肉程度は、金属肉厚が健全部の50%である。層厚試験は、サンプルピース内に水を充填し、層厚試験装置100jを挿入して行った。
[Example 13]
A test piece of the same mortar-lined ductile cast iron pipe as in Reference Example 3 was prepared, and a part of the metal was thinned to prepare a sample piece. The thinning process was performed by counterboring, and the flat bottom surface of the counterbored hole with a diameter of 20 mm was defined as the thinned part. As for the thickness reduction of the thinned portion, the metal thickness is 50% of the healthy portion. The layer thickness test was performed by filling the sample piece with water and inserting the layer thickness test apparatus 100j.
 本実施例では、参考例3と同じ機器(オリンパス社製超音波探傷器エポック4、探触子の特性は焦点型(PF=R80)、発信周波数1.8MHz、振動子径φ12.7mmである。)を用い、水距離Dを10mmとして、層厚試験を行った。健全部について得られたオシログラムを図50(a)に、減肉部について得られたオシログラムを図50(b)に示す。図50(a)および図50(b)において、横軸は伝播時間に基づく層厚の相対値、縦軸は信号の相対強度を示す。また、Sは、セメント含有層の内周表面で反射した反射波のピークを表し、Iは、セメント含有層と金属管との境界面で最初に反射した第1反射波を表し、B1およびFは、金属管の外表面で最初に反射した第1反射波を表す(以下のオシログラムについても同様)。 In the present embodiment, the same equipment as in Reference Example 3 (Olympus ultrasonic flaw detector epoch 4, the characteristics of the probe are the focus type (PF = R80), the transmission frequency is 1.8 MHz, and the vibrator diameter is 12.7 mm. )) And the water distance D was set to 10 mm, and the layer thickness test was performed. The oscillogram obtained for the healthy part is shown in FIG. 50 (a), and the oscillogram obtained for the thinned part is shown in FIG. 50 (b). 50 (a) and 50 (b), the horizontal axis indicates the relative value of the layer thickness based on the propagation time, and the vertical axis indicates the relative intensity of the signal. S represents the peak of the reflected wave reflected on the inner peripheral surface of the cement-containing layer, I represents the first reflected wave first reflected at the interface between the cement-containing layer and the metal tube, and B1 and F Represents the first reflected wave first reflected on the outer surface of the metal tube (the same applies to the following oscillogram).
[実施例14]
 探触子の発信周波数を2.25MHzに変更したことを除いて、実施例13と同様に層厚試験を行った。健全部について得られたオシログラムを図51(a)に、減肉部について得られたオシログラムを図51(b)に示す。
[Example 14]
A layer thickness test was performed in the same manner as in Example 13 except that the transmission frequency of the probe was changed to 2.25 MHz. The oscillogram obtained for the healthy part is shown in FIG. 51 (a), and the oscillogram obtained for the thinned part is shown in FIG. 51 (b).
 本発明は、上述の実施形態に限定されるものではなく、本発明の趣旨から逸脱することのない様々な変形がなされる。 The present invention is not limited to the above-described embodiment, and various modifications can be made without departing from the spirit of the present invention.

Claims (15)

  1.  軸部と、
     前記軸部の外周部から突設され、且つ前記軸部の軸心を中心とした放射方向に拡縮可能な複数の拡縮アームと、
     前記拡縮アームに設けられた走行部と、
     前記拡縮アームを拡縮させる伸縮部と、
     前記伸縮部を制御する伸縮制御部と、
     前記軸部に直接的または間接的に固定されたモータと、
     前記軸心方向に超音波を発信するように配置された超音波探触子と、
     前記超音波探触子から発信された前記超音波を、前記軸心方向から前記放射方向に反射させる音響反射部と、を含む超音波検査装置。
    The shaft,
    A plurality of expansion / contraction arms projecting from the outer peripheral portion of the shaft portion and capable of expanding / contracting in a radial direction around the axis of the shaft portion;
    A traveling part provided on the expansion / contraction arm;
    A telescopic part for expanding and contracting the expansion / contraction arm;
    An expansion / contraction control unit for controlling the expansion / contraction part;
    A motor directly or indirectly fixed to the shaft portion;
    An ultrasonic probe arranged to emit ultrasonic waves in the axial direction;
    An ultrasonic inspection apparatus comprising: an acoustic reflection unit configured to reflect the ultrasonic wave transmitted from the ultrasonic probe in the radial direction from the axial direction.
  2.  前記伸縮部が可動部を有し、前記可動部が前記軸部の軸心方向に移動するように設けられている、請求項1に記載の超音波検査装置。 The ultrasonic inspection apparatus according to claim 1, wherein the extendable part has a movable part, and the movable part is provided so as to move in an axial direction of the shaft part.
  3.  前記伸縮部が前記軸部の軸心方向に伸縮するように、前記軸部の前記外周部に配設されている、請求項1に記載の超音波検査装置。 2. The ultrasonic inspection apparatus according to claim 1, wherein the expansion / contraction portion is disposed on the outer peripheral portion of the shaft portion such that the expansion / contraction portion expands and contracts in an axial direction of the shaft portion.
  4.  前記伸縮部が前記軸部の少なくとも一部を構成する、請求項1または2に記載の超音波検査装置。 The ultrasonic inspection apparatus according to claim 1 or 2, wherein the stretchable part constitutes at least a part of the shaft part.
  5.  前記拡縮アームが収容部を有し、
     前記拡縮アームが縮小した場合に、前記伸縮部が前記収容部内に収容される、請求項1から4のいずれか1項に記載の超音波検査装置。
    The expansion / contraction arm has a receiving portion;
    The ultrasonic inspection apparatus according to claim 1, wherein when the expansion / contraction arm is contracted, the expansion / contraction part is accommodated in the accommodation part.
  6.  少なくとも前記モータを収容する筐体部を含み、
     前記拡縮アームが最も縮小した場合に、前記筐体部の、前記軸心方向への投影に、前記拡縮アームの全部が重なる、請求項1から5のいずれか1項に記載の超音波検査装置。
    Including at least a housing portion for housing the motor;
    The ultrasonic inspection apparatus according to any one of claims 1 to 5, wherein when the expansion / contraction arm is most contracted, the entire expansion / contraction arm overlaps the projection of the housing portion in the axial direction. .
  7.  前記複数の拡縮アームそれぞれの基端が、前記軸心方向における、前記軸部の前記一端の側と他端の側との2箇所に軸着され、前記一端の側に配置される前記拡縮アームと、前記他端の側に配置される前記拡縮アームとは、前記軸心方向の向きが互いに反対である、請求項1から6のいずれか1項に記載の超音波検査装置。 The expansion / contraction arms arranged at the one end side, with the base ends of the plurality of expansion / contraction arms being axially attached at two locations on the shaft portion on the one end side and the other end side in the axial direction. The ultrasonic inspection apparatus according to claim 1, wherein the expansion / contraction arm disposed on the other end side is opposite in the axial direction.
  8.  前記拡縮アームが、先端に前記走行部が配設された長アーム片と、前記長アーム片より短い短アーム片とを含んで構成されるリンク機構を有する、請求項1から7のいずれか1項に記載の超音波検査装置。 8. The link mechanism according to claim 1, wherein the expansion / contraction arm has a link mechanism configured to include a long arm piece having the traveling portion disposed at a tip thereof and a short arm piece shorter than the long arm piece. The ultrasonic inspection apparatus according to item.
  9.  前記モータが、中空回転部材および前記中空回転部材を囲繞する非回転部材を含む中空軸モータであり、前記超音波探触子の少なくとも一部が、前記中空回転部材の中空部内に配設されている、請求項1から8のいずれか1項に記載の超音波検査装置。 The motor is a hollow shaft motor including a hollow rotating member and a non-rotating member surrounding the hollow rotating member, and at least a part of the ultrasonic probe is disposed in a hollow portion of the hollow rotating member. The ultrasonic inspection apparatus according to any one of claims 1 to 8.
  10.  前記伸縮部が、前記拡縮アームの動作を補助する補助バネを有する、請求項1から9のいずれか1項に記載の超音波検査装置。 The ultrasonic inspection apparatus according to any one of claims 1 to 9, wherein the expansion / contraction section includes an auxiliary spring that assists the operation of the expansion / contraction arm.
  11.  前記伸縮部が気圧により駆動されるものである、請求項1から10のいずれか1項に記載の超音波検査装置。 The ultrasonic inspection apparatus according to claim 1, wherein the expansion / contraction part is driven by atmospheric pressure.
  12.  前記伸縮部がエアシリンダである、請求項11に記載の超音波検査装置。 The ultrasonic inspection apparatus according to claim 11, wherein the expandable portion is an air cylinder.
  13.  前記モータまたは前記音響反射部に設けられたポジションマーカと、前記ポジションマーカを検出するセンサとを含む、請求項1から12のいずれか1項に記載の超音波検査装置。 The ultrasonic inspection apparatus according to any one of claims 1 to 12, including a position marker provided in the motor or the acoustic reflection unit, and a sensor for detecting the position marker.
  14.  請求項1から13のいずれか1項に記載の超音波検査装置を用いて、管の内部で超音波検査する、超音波検査方法。 An ultrasonic inspection method for performing an ultrasonic inspection inside a pipe using the ultrasonic inspection apparatus according to any one of claims 1 to 13.
  15.  前記管が、金属層と、前記金属層の表面上に設けられた多孔質層とを含む複層体であり、水媒体が介在する条件下、前記多孔質層の側から前記金属層の側へ向かう方向に超音波を発信し、少なくとも、前記金属層と前記多孔質層との境界面で最初に反射した第1界面反射波のピークと、前記金属層の前記多孔質層とは反対側の面で最初に反射した第1外面反射波のピークとの検出時間差に基づいて、前記金属層の肉厚を算出する、請求項14に記載の超音波検査方法。 The tube is a multilayer body including a metal layer and a porous layer provided on the surface of the metal layer, and the metal layer side from the porous layer side under the condition that an aqueous medium is interposed An ultrasonic wave is transmitted in the direction toward the surface, and at least the peak of the first interface reflected wave first reflected at the interface between the metal layer and the porous layer, and the opposite side of the metal layer from the porous layer The ultrasonic inspection method according to claim 14, wherein the thickness of the metal layer is calculated based on a detection time difference from a peak of the first outer surface reflected wave first reflected on the surface.
PCT/JP2014/005306 2013-10-24 2014-10-20 Ultrasonic inspection device and ultrasonic inspection method WO2015059916A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2013-221463 2013-10-24
JP2013221463A JP6306851B2 (en) 2013-10-24 2013-10-24 Layer thickness test method for metal multilayer and layer thickness test equipment for metal multilayer
JP2014-044797 2014-03-07
JP2014044797A JP6306904B2 (en) 2014-03-07 2014-03-07 Ultrasonic inspection apparatus and ultrasonic inspection method

Publications (1)

Publication Number Publication Date
WO2015059916A1 true WO2015059916A1 (en) 2015-04-30

Family

ID=52992535

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005306 WO2015059916A1 (en) 2013-10-24 2014-10-20 Ultrasonic inspection device and ultrasonic inspection method

Country Status (1)

Country Link
WO (1) WO2015059916A1 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032367A (en) * 2015-07-31 2017-02-09 積水化学工業株式会社 Ultrasonic inspection device
JP2017032368A (en) * 2015-07-31 2017-02-09 積水化学工業株式会社 Ultrasonic inspection device
US20180181136A1 (en) * 2016-12-23 2018-06-28 Gecko Robotics, Inc. Inspection robot
CN109386278A (en) * 2018-10-29 2019-02-26 长江地球物理探测(武汉)有限公司 A kind of opening constriction device and the probe that drills
CN110967405A (en) * 2019-11-28 2020-04-07 苏州热工研究院有限公司 Nondestructive testing device for load performance of rod piece
WO2020161314A1 (en) * 2019-02-08 2020-08-13 Paul Wurth S.A. Cooling plate thickness measurement in a blast furnace
CN112903160A (en) * 2019-12-03 2021-06-04 哈尔滨工业大学 Method for measuring assembly stress of large-scale high-speed rotation equipment based on critical refraction longitudinal wave
US11135721B2 (en) 2016-12-23 2021-10-05 Gecko Robotics, Inc. Apparatus for providing an interactive inspection map
CN113686973A (en) * 2021-08-13 2021-11-23 大连理工大学 Interface rigidity detection device based on solid coupling
US11307063B2 (en) 2016-12-23 2022-04-19 Gtc Law Group Pc & Affiliates Inspection robot for horizontal tube inspection having vertically positionable sensor carriage
CN116399943A (en) * 2023-05-29 2023-07-07 沈阳爱尔泰医疗科技有限公司 Ultrasonic oxygen concentration measuring equipment
CN116973446A (en) * 2023-09-25 2023-10-31 新乡南方苏光测绘仪器有限公司 Ultrasonic flaw detection device
US11850726B2 (en) 2021-04-20 2023-12-26 Gecko Robotics, Inc. Inspection robots with configurable interface plates
CN117442236A (en) * 2023-12-22 2024-01-26 吉林大学 B ultrasonic probe for expanding anus based on rotation
US11964382B2 (en) 2022-04-26 2024-04-23 Gecko Robotics, Inc. Inspection robots with swappable drive modules

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190053A (en) * 1984-10-11 1986-05-08 Nikki Kensa Kk Ultrasonic inspecting device
JPS61288153A (en) * 1985-06-17 1986-12-18 Hitachi Ltd Aligning device for probe
JP2001226707A (en) * 1999-12-10 2001-08-21 Sumitomo Metal Ind Ltd Method for inspecting stave cooler, device for the same, method for inspecting multilayered structure consisting of pipe as core and device for the same
JP2007064904A (en) * 2005-09-02 2007-03-15 Jfe Engineering Kk Thickness measuring method by ultrasonic wave, and instrument therefor
JP2007263579A (en) * 2006-03-27 2007-10-11 Jfe Engineering Kk Intra-pipe inspection device
JP2008014868A (en) * 2006-07-07 2008-01-24 Ishikawajima Inspection & Instrumentation Co Method for measuring attached material, and apparatus for measuring the attached material
JP2011158392A (en) * 2010-02-02 2011-08-18 Shin Nippon Hihakai Kensa Kk Piping reduced-thickness measuring device

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6190053A (en) * 1984-10-11 1986-05-08 Nikki Kensa Kk Ultrasonic inspecting device
JPS61288153A (en) * 1985-06-17 1986-12-18 Hitachi Ltd Aligning device for probe
JP2001226707A (en) * 1999-12-10 2001-08-21 Sumitomo Metal Ind Ltd Method for inspecting stave cooler, device for the same, method for inspecting multilayered structure consisting of pipe as core and device for the same
JP2007064904A (en) * 2005-09-02 2007-03-15 Jfe Engineering Kk Thickness measuring method by ultrasonic wave, and instrument therefor
JP2007263579A (en) * 2006-03-27 2007-10-11 Jfe Engineering Kk Intra-pipe inspection device
JP2008014868A (en) * 2006-07-07 2008-01-24 Ishikawajima Inspection & Instrumentation Co Method for measuring attached material, and apparatus for measuring the attached material
JP2011158392A (en) * 2010-02-02 2011-08-18 Shin Nippon Hihakai Kensa Kk Piping reduced-thickness measuring device

Cited By (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017032367A (en) * 2015-07-31 2017-02-09 積水化学工業株式会社 Ultrasonic inspection device
JP2017032368A (en) * 2015-07-31 2017-02-09 積水化学工業株式会社 Ultrasonic inspection device
US11504850B2 (en) 2016-12-23 2022-11-22 Gecko Robotics, Inc. Inspection robot and methods thereof for responding to inspection data in real time
US11157013B2 (en) 2016-12-23 2021-10-26 Gecko Robotics, Inc. Inspection robot having serial sensor operations
US10481608B2 (en) 2016-12-23 2019-11-19 Gecko Robotics, Inc. System, method, and apparatus to perform a surface inspection using real-time position information
US10534365B2 (en) 2016-12-23 2020-01-14 Gecko Robotics, Inc. Inspection robot having vertically distributed payloads with horizontally distributed sensor sleds
US11511427B2 (en) 2016-12-23 2022-11-29 Gecko Robotics, Inc. System, apparatus and method for providing an inspection map
US10698412B2 (en) * 2016-12-23 2020-06-30 Gecko Robotics, Inc. Inspection robot with couplant chamber disposed within sled for acoustic coupling
US10739779B2 (en) 2016-12-23 2020-08-11 Gecko Robotics, Inc. Inspection robot having replaceable sensor sled portions
US11673272B2 (en) 2016-12-23 2023-06-13 Gecko Robotics, Inc. Inspection robot with stability assist device
US10795373B2 (en) 2016-12-23 2020-10-06 Gecko Robotics, Inc. Inspection robot having a number of horizontally displaced sensor sleds
US10884423B2 (en) 2016-12-23 2021-01-05 Gecko Robotics, Inc. System, method, and apparatus for acoustic and magnetic induction thickness inspection of a material on a substrate
US10895878B2 (en) 2016-12-23 2021-01-19 Gecko Robotics, Inc. Inspection robot having self-aligning wheels
US10942522B2 (en) 2016-12-23 2021-03-09 Gecko Robotics, Inc. System, method, and apparatus for correlating inspection data and image data
US11669100B2 (en) 2016-12-23 2023-06-06 Gecko Robotics, Inc. Inspection robot having a laser profiler
US11135721B2 (en) 2016-12-23 2021-10-05 Gecko Robotics, Inc. Apparatus for providing an interactive inspection map
US20180181136A1 (en) * 2016-12-23 2018-06-28 Gecko Robotics, Inc. Inspection robot
US11148292B2 (en) 2016-12-23 2021-10-19 Gecko Robotics, Inc. Controller for inspection robot traversing an obstacle
US11157012B2 (en) 2016-12-23 2021-10-26 Gecko Robotics, Inc. System, method, and apparatus for an inspection robot performing an ultrasonic inspection
US11740635B2 (en) 2016-12-23 2023-08-29 Gecko Robotics, Inc. System, method, and apparatus for acoustic inspection of a surface
US11892322B2 (en) 2016-12-23 2024-02-06 Gecko Robotics, Inc. Inspection robot for horizontal tube inspection having sensor carriage
US11307063B2 (en) 2016-12-23 2022-04-19 Gtc Law Group Pc & Affiliates Inspection robot for horizontal tube inspection having vertically positionable sensor carriage
US11385650B2 (en) 2016-12-23 2022-07-12 Gecko Robotics, Inc. Inspection robot having replaceable sensor sled portions
US11429109B2 (en) 2016-12-23 2022-08-30 Gecko Robotics, Inc. System, method, and apparatus to perform a surface inspection using real-time position information
US11144063B2 (en) 2016-12-23 2021-10-12 Gecko Robotics, Inc. System, method, and apparatus for inspecting a surface
US11511426B2 (en) 2016-12-23 2022-11-29 Gecko Robotics, Inc. System, method, and apparatus for rapid development of an inspection scheme for an inspection robot
US11872707B2 (en) 2016-12-23 2024-01-16 Gecko Robotics, Inc. Systems and methods for driving an inspection robot with motor having magnetic shielding
US11518030B2 (en) 2016-12-23 2022-12-06 Gecko Robotics, Inc. System, apparatus and method for providing an interactive inspection map
US11518031B2 (en) 2016-12-23 2022-12-06 Gecko Robotics, Inc. System and method for traversing an obstacle with an inspection robot
US11529735B2 (en) 2016-12-23 2022-12-20 Gecko Robotics, Inc. Inspection robots with a multi-function piston connecting a drive module to a central chassis
US11565417B2 (en) 2016-12-23 2023-01-31 Gecko Robotics, Inc. System and method for configuring an inspection robot for inspecting an inspection surface
US11648671B2 (en) 2016-12-23 2023-05-16 Gecko Robotics, Inc. Systems, methods, and apparatus for tracking location of an inspection robot
CN109386278A (en) * 2018-10-29 2019-02-26 长江地球物理探测(武汉)有限公司 A kind of opening constriction device and the probe that drills
CN109386278B (en) * 2018-10-29 2024-01-12 长江地球物理探测(武汉)有限公司 Expansion and contraction device and drilling probe
WO2020161314A1 (en) * 2019-02-08 2020-08-13 Paul Wurth S.A. Cooling plate thickness measurement in a blast furnace
CN110967405A (en) * 2019-11-28 2020-04-07 苏州热工研究院有限公司 Nondestructive testing device for load performance of rod piece
CN112903160A (en) * 2019-12-03 2021-06-04 哈尔滨工业大学 Method for measuring assembly stress of large-scale high-speed rotation equipment based on critical refraction longitudinal wave
US11904456B2 (en) 2021-04-20 2024-02-20 Gecko Robotics, Inc. Inspection robots with center encoders
US11850726B2 (en) 2021-04-20 2023-12-26 Gecko Robotics, Inc. Inspection robots with configurable interface plates
US11865698B2 (en) 2021-04-20 2024-01-09 Gecko Robotics, Inc. Inspection robot with removeable interface plates and method for configuring payload interfaces
US11872688B2 (en) 2021-04-20 2024-01-16 Gecko Robotics, Inc. Inspection robots and methods for inspection of curved surfaces
US11926037B2 (en) 2021-04-20 2024-03-12 Gecko Robotics, Inc. Systems for reprogrammable inspection robots
CN113686973A (en) * 2021-08-13 2021-11-23 大连理工大学 Interface rigidity detection device based on solid coupling
US11964382B2 (en) 2022-04-26 2024-04-23 Gecko Robotics, Inc. Inspection robots with swappable drive modules
CN116399943B (en) * 2023-05-29 2023-08-04 沈阳爱尔泰医疗科技有限公司 Ultrasonic oxygen concentration measuring equipment
CN116399943A (en) * 2023-05-29 2023-07-07 沈阳爱尔泰医疗科技有限公司 Ultrasonic oxygen concentration measuring equipment
CN116973446B (en) * 2023-09-25 2023-12-15 新乡南方苏光测绘仪器有限公司 Ultrasonic flaw detection device
CN116973446A (en) * 2023-09-25 2023-10-31 新乡南方苏光测绘仪器有限公司 Ultrasonic flaw detection device
CN117442236A (en) * 2023-12-22 2024-01-26 吉林大学 B ultrasonic probe for expanding anus based on rotation
CN117442236B (en) * 2023-12-22 2024-03-08 吉林大学 B ultrasonic probe for expanding anus based on rotation

Similar Documents

Publication Publication Date Title
WO2015059916A1 (en) Ultrasonic inspection device and ultrasonic inspection method
JP6306904B2 (en) Ultrasonic inspection apparatus and ultrasonic inspection method
US8042399B2 (en) Method and a device for inspecting a pipe connection weld by an ultrasound probe
US8356518B2 (en) Method and apparatus for ultrasonically inspecting pipes
WO2003076916A1 (en) Device and method for inspecting inside of underground pipe line and method of inspecting concrete on inside of underground pipe line for deterioration
AU2012360750A2 (en) Device for measuring an internal or external profile of a tubular component
JP4232623B2 (en) In-pipe inspection cart and in-pipe inspection device
CN106093196B (en) A kind of defect of pipeline ultrasound is interior to detect compound sensor array and defect quantitative method
US5370006A (en) Piping inspection carriage having axially displaceable sensor
JPS608746A (en) Method and device for detecting defect of material
RU2334980C1 (en) Intratubal gear-defectoscope with rotary odometers
JP6555919B2 (en) Multilayer degradation test method and layer thickness test method, and multilayer degradation test apparatus and layer thickness test apparatus
JP6306851B2 (en) Layer thickness test method for metal multilayer and layer thickness test equipment for metal multilayer
CN109212029B (en) Linkage excitation device suitable for impact echo acoustic frequency detection
JP6039599B2 (en) Tube ultrasonic inspection equipment
JP6588761B2 (en) Ultrasonic inspection equipment
US4453410A (en) Method and apparatus for locating material defects in hollow bodies
Park et al. Design of a mobile robot system for automatic integrity evaluation of large size reservoirs and pipelines in industrial fields
CN206609830U (en) One kind is used for pipeline corrosion ultrasonic scanning device
RU2497074C1 (en) Device for diagnostics of wall of manifold pipelines with moire method
JP6555918B2 (en) Multilayer thickness test method and multilayer thickness test equipment
RU197520U1 (en) Robotic flaw detector for non-destructive testing of pipelines
WO2012008882A2 (en) Pipe inspection means, movable device for the use thereof and pipe inspection method
JP2000249783A (en) Position detection method of in-core pipe welding part and device thereof
JP2011149858A (en) Non-destructive measurement fixture, device for measuring concrete covering thickness using the same, and method for measuring concrete covering thickness in sc pile

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856001

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856001

Country of ref document: EP

Kind code of ref document: A1