JPS61288153A - Aligning device for probe - Google Patents

Aligning device for probe

Info

Publication number
JPS61288153A
JPS61288153A JP60129852A JP12985285A JPS61288153A JP S61288153 A JPS61288153 A JP S61288153A JP 60129852 A JP60129852 A JP 60129852A JP 12985285 A JP12985285 A JP 12985285A JP S61288153 A JPS61288153 A JP S61288153A
Authority
JP
Japan
Prior art keywords
probe
alignment
tube
section
align
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP60129852A
Other languages
Japanese (ja)
Inventor
Shigeru Kajiyama
梶山 茂
Chikara Sato
主税 佐藤
Shinji Naito
内藤 紳司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK, Hitachi Ltd filed Critical Babcock Hitachi KK
Priority to JP60129852A priority Critical patent/JPS61288153A/en
Publication of JPS61288153A publication Critical patent/JPS61288153A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2291/00Indexing codes associated with group G01N29/00
    • G01N2291/02Indexing codes associated with the analysed material
    • G01N2291/028Material parameters
    • G01N2291/02872Pressure

Abstract

PURPOSE:To pass a probe on the internal surface of a small-diameter tube which has a curvature part and a different-diameter part and to align the probe through remote operation by coupling the probe with front and a rear alignment part rotatably by springs and aligning the alignment part by performing external positive/negative pressure switching. CONSTITUTION:A device consists of the alignment parts 17 and 27 which performs alignment by cylinders 11 and 21 driven by supplying external air pressure and the probe 31 coupled therewith rotatably by the springs 10 and 20. Then, the springs 10 and 20 move in the tube with a hydraulic flow while displacing the springs 10 and 20 according to the state of curvature, etc., of the tube. When positive air pressure is supplied to the tube 41 from outside so as to align the probe 31, the cylinders 11 and 21 of the alignment parts 17 and 27 operate at the same time to press alignment bars 15 and 25 against the internal surface of the tube. Further, when the probe is passed through a small-diameter part 8, the alignment parts 17 and 27 shrink and when alignment is performed by a large-diameter part 9 and inspection is performed, the alignment parts 17 and 27 are expanded to align the probe 31 are expanded to align the probe 31.

Description

【発明の詳細な説明】 〔発明の利用分野〕 本発明は伝熱管などの細管を検査する装置に係り、特に
曲がシ、異径部のある細管内面にも追従して超音波探触
子などで検査するのに好適な調心装置に関する。
[Detailed Description of the Invention] [Field of Application of the Invention] The present invention relates to an apparatus for inspecting thin tubes such as heat exchanger tubes, and in particular, an ultrasonic probe that can follow the inner surface of a thin tube with curves and different diameter parts. This invention relates to an alignment device suitable for inspections such as the following.

〔発明の背景〕[Background of the invention]

従来装置は、特開昭59−143955号に記載のよう
にスプリングによって調心レバーヲ1駆動する機構にな
っていた。しかし、スプリングは動作ストロークによっ
て伸1縮力が変化するので、異径部の段差が大きくなる
と、少径部通過時の反力が大きくなって高摩擦抵抗のた
め走行できない場合も生じる。特に小曲率部でのこの傾
向が顕著であυ、この点については配慮されていなかっ
た。なお、この種装置に関連するものは特開昭49−2
9692号などがある。
The conventional device has a mechanism in which the centering lever is driven by a spring, as described in Japanese Patent Laid-Open No. 59-143955. However, since the spring's expansion and contraction forces change depending on the operating stroke, if the difference in level between the different diameter parts becomes large, the reaction force when passing through the small diameter part becomes large, and there may be cases where the spring cannot run due to high frictional resistance. This tendency is particularly noticeable in small curvature parts, and this point has not been taken into account. In addition, those related to this type of device are disclosed in Japanese Patent Application Laid-Open No. 49-2
9692, etc.

〔発明の目的〕[Purpose of the invention]

本発明の目的は、曲率部、異径部のある小口径管の内面
を通過できるとともに探触子部を遠隔から調心できる装
置を提供することにある。
An object of the present invention is to provide a device that can pass through the inner surface of a small-diameter tube that has a curved portion or a different diameter portion, and that can remotely align a probe portion.

〔発明の概要〕[Summary of the invention]

探触子部の前後の調心部とを回転自在にスプリングで連
結し、す4心部は外部からの正圧、負圧の切換によるエ
アシリンダの動作で調心する。小口径部及び曲率部を通
過させる場合は、エアシリンダ全員圧にして調心部のリ
ンク全周方向に収縮させ、外径を小さくする。また、大
口径部の場合は、エアシリンダに加圧して両調心部のリ
ンクを周方向に伸長させれば、中間の探触子部を調心で
きる。
The front and rear alignment parts of the probe part are rotatably connected by a spring, and the four core parts are aligned by the operation of an air cylinder by switching between positive and negative pressure from the outside. When passing through a small diameter part and a curved part, the entire air cylinder is made to have full pressure and is contracted in the entire circumferential direction of the link of the alignment part to reduce the outer diameter. In addition, in the case of a large-diameter portion, the middle probe portion can be aligned by applying pressure to the air cylinder to extend the links of both alignment portions in the circumferential direction.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明の一実施例を第1図によシ説明する。検査
対象は、大口径部9であるが、この途中には曲率部を混
えた小口径部8を通過する必要がある。つまり異径部6
の前後に応じて挿入する調心装置1を管の周方向に伸縮
させる必要がある。
An embodiment of the present invention will be explained below with reference to FIG. The object to be inspected is the large diameter section 9, but it is necessary to pass through the small diameter section 8, which includes a curved section. In other words, the different diameter portion 6
It is necessary to expand and contract the alignment device 1 inserted in the circumferential direction of the tube depending on the front and back of the tube.

この装置は、調心部17.27と探触子部31及びこれ
らを連結するスプリング10.20とから構成する。す
なわち管の曲がυなどの状態に応じてスプリング10.
20が変形し、管内を移動できる。この場合、この推進
力は、水圧流である。
This device consists of a centering part 17.27, a probe part 31, and a spring 10.20 connecting these parts. In other words, the spring 10.
20 can be deformed and moved within the tube. In this case, this driving force is a hydraulic flow.

小口径部8を通過する場合は、調心部17.27は収縮
して小さくなった状態になシ、大口径部9で調心して検
査する場合は、調心部17.27i伸長させ探触子部3
1を調心する。以下、詳細に実施例を説明する。
When passing through the small diameter section 8, the centering section 17.27 must be in a contracted and small state; when inspecting with alignment at the large diameter section 9, the centering section 17.27i should be extended and probed. Child part 3
Align 1. Examples will be described in detail below.

管内8に挿入する調心部f1は、2個の調心部17.2
7と探触子部31から構成され、曲率部8を通すために
柔軟なスプリング10.20で連結している。この場合
の調心部17.27は、外部からの負の空気圧がチュー
ブ41を介してエアシリンダ11.21に導かれている
ので、スライダ12.22は軸方向に収縮しこれと連結
したリンクのレバ・−14,24も小口径部8の内径よ
シも小さく周方向に収縮する。この結果、水圧流の力で
小口径部8を移動する。
The centering part f1 inserted into the pipe 8 has two centering parts 17.2.
7 and a probe section 31, which are connected by a flexible spring 10, 20 to allow the curved section 8 to pass through. In this case, the aligning portion 17.27 is configured such that negative air pressure from the outside is guided to the air cylinder 11.21 via the tube 41, so the slider 12.22 contracts in the axial direction and the link connected thereto. Both the levers -14 and 24 and the inner diameter of the small diameter portion 8 contract in the circumferential direction. As a result, the small diameter portion 8 is moved by the force of the hydraulic flow.

次に調心部17.27の詳細は第2図のようになる。チ
ューブ41、穴55を介した負の空気圧によってスライ
ダ12は軸方向に収縮した状態になる。このため、スラ
イダ12と一体になった軸54とシャフト13と1体と
なった軸59との間隔によってレバー14の角度は小さ
くなって周方向に収縮した状態になる。この場合のエア
シリンダ11の内部はオーリング19.56によって気
密が保たれているので、小口径部8の水が内部に浸入し
たシ、外部に空気が漏れ出ることはない。
Next, the details of the centering portion 17.27 are as shown in FIG. The negative air pressure applied through the tube 41 and the hole 55 causes the slider 12 to contract in the axial direction. Therefore, the angle of the lever 14 becomes smaller due to the distance between the shaft 54 that is integrated with the slider 12 and the shaft 59 that is integrated with the shaft 13, and the lever 14 is in a contracted state in the circumferential direction. In this case, the inside of the air cylinder 11 is kept airtight by the O-rings 19, 56, so that even if water in the small diameter portion 8 enters the inside, air will not leak out to the outside.

なお、探触子部と連結するためのスプリング10は、調
心部17の端部のパイプ58に固定している。
Note that the spring 10 for connecting with the probe section is fixed to a pipe 58 at the end of the alignment section 17.

第3図は、管の外部に設けた空気圧の切換系統図を示し
たもので、管内の調心装置に連通したチューブ41に正
または負の空気圧を供給するため、正の空気圧発生装置
49と負の空気圧発生装置48によって発生した各々の
空気圧は圧力調整器46.47で所定の圧力に調整され
る。次に指令信号45に基づき電磁弁44でいずれかの
空気圧をチューブ41に送出する。
FIG. 3 shows a switching system diagram for the air pressure provided outside the tube. In order to supply positive or negative air pressure to the tube 41 that communicates with the alignment device inside the tube, a positive air pressure generator 49 is used. Each air pressure generated by the negative air pressure generator 48 is adjusted to a predetermined pressure by a pressure regulator 46,47. Next, based on the command signal 45, the solenoid valve 44 sends out one of the air pressures to the tube 41.

超音波探傷する場合の探触子の調心装置を第4図に示す
。探傷あるいは板厚測定の場合は、探触子32と被検体
である管内面との距離を常に一定に保つことが正確な測
定に結び付く。そこで、探触子部31全調心させるため
チューブ41に正の空気圧を外部から供給すれば、調心
部17.27のエアシリンダ11.21が同時に動作し
て調心バー15.25i管内面に押付ける。この調心部
17.27との間にはスプリング10.20i介して探
触部31が連結しであるので、探触子部31は大口径部
と調心し、探触子32と管面との距離を一定にできる。
FIG. 4 shows a probe alignment device for ultrasonic flaw detection. In the case of flaw detection or plate thickness measurement, keeping the distance between the probe 32 and the tube inner surface, which is the object to be inspected, constant at all times leads to accurate measurements. Therefore, if positive air pressure is supplied from the outside to the tube 41 in order to fully align the probe section 31, the air cylinders 11.21 of the alignment section 17.27 will operate at the same time and the inner surface of the tube 15.25i will be activated. to press. Since the probe part 31 is connected to this alignment part 17.27 via the spring 10.20i, the probe part 31 is aligned with the large diameter part, and the probe part 31 and the tube surface are aligned with each other. You can maintain a constant distance from

また、超音波ケーブル42とチューブ41をシャフト2
3,13、スプリング10.20などの内部を通すので
レバー24などとのからみによるトラブルを防止できる
In addition, the ultrasonic cable 42 and tube 41 are connected to the shaft 2.
3, 13, spring 10, 20, etc., it is possible to prevent troubles caused by entanglement with the lever 24, etc.

第5図は、調心部17に正の空気圧を供給した場合の動
作状態を示したものであシ、チューブ41によって導入
された空気圧は穴55を経由してエアシリンダ11内に
供給される。この結果スライダ12及び軸54はシャフ
ト13に沿ってストッパ51によって停止されるまで移
動する。このため、レバー14もヒンジ18を中心に他
のヒンジ53,57によって角度が変わり、調心バー1
5を大口径部9の内面に押付ける。この場合ヒンジ57
も長穴16に沿って移動する。このレバー14と調心バ
ー15は円周方間に4組の同じものが配置しであるので
、大口径部9に調心して密着できる。なお、この場合も
オーリング19゜56によってエアシリンダ11に供給
した空気圧は外部に漏れ出すことがない。
FIG. 5 shows the operating state when positive air pressure is supplied to the alignment part 17, and the air pressure introduced by the tube 41 is supplied into the air cylinder 11 via the hole 55. . As a result, the slider 12 and the shaft 54 move along the shaft 13 until they are stopped by the stopper 51. Therefore, the lever 14 also changes its angle around the hinge 18 depending on the other hinges 53 and 57, and the alignment bar 1
5 against the inner surface of the large diameter portion 9. In this case hinge 57
also moves along the elongated hole 16. Since four sets of the same lever 14 and centering bar 15 are arranged circumferentially, they can be aligned and brought into close contact with the large diameter portion 9. In this case as well, the air pressure supplied to the air cylinder 11 by the O-ring 19° 56 will not leak to the outside.

再び大口径部9を移動させる場合は、エアシリンダ11
への空気圧を減圧すれば、スライダ12がシャフト13
に沿って戻シ、両レバー14間の角度が小さくなって調
心バー15を収縮状態にできる。
When moving the large diameter portion 9 again, use the air cylinder 11
By reducing the air pressure to the shaft 13, the slider 12 moves to the shaft 13.
, the angle between both levers 14 becomes smaller and the alignment bar 15 can be brought into a contracted state.

本実施例によれば、以下の効果がある。According to this embodiment, there are the following effects.

(1)外部からの正負の空気圧の切換操作によって調心
及びその解除が確実にできる。
(1) Alignment and release can be reliably achieved by switching between positive and negative air pressure from the outside.

(2)管の軸方向の長さを短くするため分割し、これを
スプリングで連結したので、小口径の曲率部を通過でき
る。
(2) In order to shorten the length of the pipe in the axial direction, it is divided into parts and connected with springs, so it can pass through curved parts with small diameters.

(3)探触子部を前後の調心部で調心しているので確実
な調心ができる。
(3) Since the probe section is aligned with the front and rear alignment sections, reliable alignment can be achieved.

(4)調心バーにエアシリンダで押付けているのでスト
ロークによって押付は力が変化しない。
(4) Since the alignment bar is pressed with an air cylinder, the pressing force does not change depending on the stroke.

(5)単純な機構であるので小型化できるとともに高信
頼性が得られる。
(5) Since it is a simple mechanism, it can be miniaturized and high reliability can be obtained.

(6)空気圧をチューブ、エアシリンダから外に排出な
いので、探傷時に気泡による支障などがない。
(6) Air pressure is not discharged from the tube or air cylinder, so there is no problem with air bubbles during flaw detection.

(7) チューブ、ケーブルを調心部、探触子部及びス
プリングの内側を通しているので、ケーブルなどの、駆
動機構にからむなどのトラブルを防止できる。
(7) Since the tube and cable are passed through the centering part, probe part, and spring, troubles such as cables getting tangled with the drive mechanism can be prevented.

実施例では前後の調心部で探触子部全調心する方式につ
いて説明したが、これに限定されるものでなく、例えば
、第6図のように1つの調心部17だけで探触子部31
を調心することができる。
In the embodiment, a method has been described in which the probe is fully aligned using the front and rear alignment parts, but the method is not limited to this. For example, as shown in FIG. Child part 31
can be aligned.

エアシリンダ11のスライダ12に連結したピン61が
長穴62に沿って動き、シャフト63を移動させて、パ
イプ58の端部のテーパ部66に探触子部31と一体に
なったシャフト64のテーパ部67を挿入する。これに
よって調心部17と探触子部31を固定できる。すなわ
ち、調心バー15によって大口径部9の内面に押付ける
とともに探触子部31を調心部17に固定すれば、探触
子部31を調心できる。
The pin 61 connected to the slider 12 of the air cylinder 11 moves along the elongated hole 62, moves the shaft 63, and the shaft 64 integrated with the probe part 31 is attached to the tapered part 66 at the end of the pipe 58. Insert the tapered portion 67. This allows the alignment section 17 and the probe section 31 to be fixed. That is, the probe section 31 can be aligned by pressing it against the inner surface of the large diameter section 9 using the alignment bar 15 and fixing the probe section 31 to the alignment section 17 .

小口径部の曲率部を通す場合は、調心部17と探触子部
31が回動自在に独立して動けるようにするためスライ
ダ12全外部から減圧して移動させればピン61はピン
61Cにまた、シャフト63のボール64もボール64
cの位置に移動し、パイプ58からシャフト65が離れ
てスプリング10とボール64cによって連結する。こ
の結果、シャフト63の先端のボール64ci中心にし
て探触子部31Cが動けるので、管の曲率部に倣って動
くことができ、小型化がさらに図れる。
When passing through a curved part of a small diameter part, in order to allow the alignment part 17 and the probe part 31 to freely rotate and move independently, the pin 61 should be moved by reducing pressure from the entire outside of the slider 12. 61C, the ball 64 of the shaft 63 is also
The shaft 65 is moved away from the pipe 58 and connected to the spring 10 by the ball 64c. As a result, the probe section 31C can move centered around the ball 64ci at the tip of the shaft 63, so it can move along the curvature of the tube, making it possible to further reduce the size.

調心部17と探触子31の配置は第6図に限定すること
なく、前後進に配置しても何んら問題なく目的を達成で
きる。
The arrangement of the alignment part 17 and the probe 31 is not limited to that shown in FIG. 6, and the purpose can be achieved without any problems even if they are arranged in the forward and backward directions.

水圧流による管内の移動方式について説明したが、これ
に限定されるものでなく、モータによる自走など他の移
動方式であっても何んら問題なく適用できる。また、超
音波探触子以外のセンサを取付けることができる。
Although the method of movement within the pipe using hydraulic flow has been described, the method is not limited to this, and other methods of movement such as self-propulsion using a motor can be applied without any problem. Further, sensors other than the ultrasonic probe can be attached.

実施例では、正の空気圧で調心バーを伸長させ、負の空
気圧で調心バーを収縮させる方式について説明したが、
これを逆にして伸縮させても何んら問題はない。さらに
、リンクの伸縮方式にも限定されるものでなく、目的に
応じて他のリンク方式。
In the embodiment, a method was explained in which the alignment bar is extended by positive air pressure and contracted by negative air pressure.
There is no problem even if you reverse this and expand and contract. Furthermore, the link expansion/contraction method is not limited, and other link methods may be used depending on the purpose.

カムなどを使用できる。You can use cams etc.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、曲率部のある小口径管全通過できると
ともに遠隔操作で探触子部を確実に調心とその解除がで
きる効果がある。
According to the present invention, it is possible to completely pass through a small diameter tube having a curved portion, and the probe portion can be reliably aligned and released by remote control.

【図面の簡単な説明】[Brief explanation of drawings]

第1図は管内を移動する状態を示す側面図、第2図は調
心機構の側断面図、第3図は調心動作の駆動源の系統図
、第4図は調心状態を示す側断面図、第5図は調心動作
機構の側断面図、第6図は他の実施例の調心機構の側断
面図である。 10.20・・・スプリング、11.21・・・エアシ
リンダ、14・・・パイプ、17・・・調心部、27・
・・調心部、31・・・探触子部、41・・・チューブ
、61・・・ピン、63・・・シャフト、64・・・ボ
ール、65・・・シャフト。
Figure 1 is a side view showing the state of movement in the pipe, Figure 2 is a side sectional view of the alignment mechanism, Figure 3 is a system diagram of the drive source for alignment operation, and Figure 4 is the side showing the alignment state. 5 is a side sectional view of the alignment mechanism, and FIG. 6 is a side sectional view of the alignment mechanism of another embodiment. 10.20... Spring, 11.21... Air cylinder, 14... Pipe, 17... Aligning part, 27...
...Aligning part, 31...Probe part, 41...Tube, 61...Pin, 63...Shaft, 64...Ball, 65...Shaft.

Claims (1)

【特許請求の範囲】 1、外部からの流体圧によって駆動するシリンダと、該
シリンダによって調心する調心部と、少なくとも1つの
該調心部と回動自在に連結した探触子部とから構成する
ことを特徴とする探触子の調心装置。 2、流体圧シリンダによって調心動作と、調心部と探触
子部との固定動作とを同時に行なわせることを特徴とす
る特許請求の範囲第1項記載の探触子の調心装置。 3、調心部、探触子部及びこれの連結部を中空構造にし
たことを特徴とする特許請求の範囲第1項記載の探触子
の調心装置。
[Claims] 1. A cylinder driven by external fluid pressure, an alignment section aligned by the cylinder, and a probe section rotatably connected to at least one alignment section. A probe alignment device comprising: 2. The probe alignment device according to claim 1, wherein the alignment operation and the fixing operation of the alignment section and the probe section are performed simultaneously by a fluid pressure cylinder. 3. The probe alignment device as set forth in claim 1, wherein the alignment portion, the probe portion, and the connecting portion thereof have a hollow structure.
JP60129852A 1985-06-17 1985-06-17 Aligning device for probe Pending JPS61288153A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP60129852A JPS61288153A (en) 1985-06-17 1985-06-17 Aligning device for probe

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60129852A JPS61288153A (en) 1985-06-17 1985-06-17 Aligning device for probe

Publications (1)

Publication Number Publication Date
JPS61288153A true JPS61288153A (en) 1986-12-18

Family

ID=15019846

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60129852A Pending JPS61288153A (en) 1985-06-17 1985-06-17 Aligning device for probe

Country Status (1)

Country Link
JP (1) JPS61288153A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325364A (en) * 1989-06-23 1991-02-04 Nkk Corp Pipeline inspecting device
US5015828A (en) * 1989-07-07 1991-05-14 Westinghouse Electric Corp. System and method for stress-relief of welds in heat exchanger tubes
US5174165A (en) * 1990-08-13 1992-12-29 Westinghouse Electric Corp. Flexible delivery system for a rotatable probe
JP2010271072A (en) * 2009-05-19 2010-12-02 Naa Fueling Facilities Corp Pipe thickness measuring device
JP2011027506A (en) * 2009-07-23 2011-02-10 Shin Nippon Hihakai Kensa Kk Piping thickness reduction measuring apparatus and piping thickness reduction measuring method using the same
JP2011158392A (en) * 2010-02-02 2011-08-18 Shin Nippon Hihakai Kensa Kk Piping reduced-thickness measuring device
JP2012021882A (en) * 2010-07-14 2012-02-02 Tokyo Energy & Systems Inc Pipe wall thinning measuring apparatus
WO2015059916A1 (en) * 2013-10-24 2015-04-30 積水化学工業株式会社 Ultrasonic inspection device and ultrasonic inspection method
JP2015169548A (en) * 2014-03-07 2015-09-28 積水化学工業株式会社 Ultrasonic inspection device and ultrasonic inspection method
JP2017032368A (en) * 2015-07-31 2017-02-09 積水化学工業株式会社 Ultrasonic inspection device
JP2017032367A (en) * 2015-07-31 2017-02-09 積水化学工業株式会社 Ultrasonic inspection device
CN113686973A (en) * 2021-08-13 2021-11-23 大连理工大学 Interface rigidity detection device based on solid coupling

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0325364A (en) * 1989-06-23 1991-02-04 Nkk Corp Pipeline inspecting device
US5015828A (en) * 1989-07-07 1991-05-14 Westinghouse Electric Corp. System and method for stress-relief of welds in heat exchanger tubes
US5174165A (en) * 1990-08-13 1992-12-29 Westinghouse Electric Corp. Flexible delivery system for a rotatable probe
JP2010271072A (en) * 2009-05-19 2010-12-02 Naa Fueling Facilities Corp Pipe thickness measuring device
JP2011027506A (en) * 2009-07-23 2011-02-10 Shin Nippon Hihakai Kensa Kk Piping thickness reduction measuring apparatus and piping thickness reduction measuring method using the same
JP2011158392A (en) * 2010-02-02 2011-08-18 Shin Nippon Hihakai Kensa Kk Piping reduced-thickness measuring device
JP2012021882A (en) * 2010-07-14 2012-02-02 Tokyo Energy & Systems Inc Pipe wall thinning measuring apparatus
WO2015059916A1 (en) * 2013-10-24 2015-04-30 積水化学工業株式会社 Ultrasonic inspection device and ultrasonic inspection method
JP2015169548A (en) * 2014-03-07 2015-09-28 積水化学工業株式会社 Ultrasonic inspection device and ultrasonic inspection method
JP2017032368A (en) * 2015-07-31 2017-02-09 積水化学工業株式会社 Ultrasonic inspection device
JP2017032367A (en) * 2015-07-31 2017-02-09 積水化学工業株式会社 Ultrasonic inspection device
CN113686973A (en) * 2021-08-13 2021-11-23 大连理工大学 Interface rigidity detection device based on solid coupling

Similar Documents

Publication Publication Date Title
JPS61288153A (en) Aligning device for probe
CN101680592B (en) Boiler tube inspection probe with centering mechanism and method of operating the same
JP4931461B2 (en) Bore inspection probe
KR100196194B1 (en) Small volume probe
CN110118307B (en) Small-sized pipeline leakage detection device and detection method for nuclear power plant
BR9102243A (en) PROCESS CONTROL VALVE, FLOW CONTROL VALVE SYSTEM, FLOW CONTROL VALVE DIAGNOSTIC TEST METHOD, VALVE TESTING EQUIPMENT, METHOD FOR CONTROLLING THE CONTROL VALVE OPERATION AND VALVE CONTROL EQUIPMENT
KR20230062531A (en) Fin tube inspection device of heat recovery steam generator
JPS5913200A (en) Pipe-scraper
JPS6190052A (en) Profiling device for run in pipe
US3421366A (en) Multiaxial stress apparatus
RU63489U1 (en) PIPELINE IN-TUBE EXAMINATION DEVICE
JPS5845650B2 (en) Meter tester for flow measurement
US4856353A (en) Nondestructive inspection apparatus for heat-transfer tubes in boilers
JPS60177262A (en) Jet propulsion type in-tube inspecting device
JP3111193B2 (en) Inspection equipment
US4928532A (en) Hydrostatic self-aligning axial/torsional mechanism
JPS5952985B2 (en) Annular guide rail device
JPH0749371Y2 (en) Manipulator for pipe wall thickness inspection
JPS61275068A (en) Transfer device in circular tube
JPH0156703B2 (en)
JPS5824783Y2 (en) Flaw detector for pipe inspection
JPH0315913Y2 (en)
JP2004093391A (en) Bolt axial force meter built-in type nut runner
JPS59192919A (en) Guiding device for in-tube movement of measuring instrument
SU1186930A1 (en) Apparatus for checking parameters of steam line radial sections