WO2015059880A1 - Motion compensation method, image encoding method, image decoding method, image encoding device and image decoding device - Google Patents

Motion compensation method, image encoding method, image decoding method, image encoding device and image decoding device Download PDF

Info

Publication number
WO2015059880A1
WO2015059880A1 PCT/JP2014/005072 JP2014005072W WO2015059880A1 WO 2015059880 A1 WO2015059880 A1 WO 2015059880A1 JP 2014005072 W JP2014005072 W JP 2014005072W WO 2015059880 A1 WO2015059880 A1 WO 2015059880A1
Authority
WO
WIPO (PCT)
Prior art keywords
image
block
tile
motion
motion compensation
Prior art date
Application number
PCT/JP2014/005072
Other languages
French (fr)
Japanese (ja)
Inventor
寿郎 笹井
健吾 寺田
Original Assignee
パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2014180546A external-priority patent/JP2015082839A/en
Application filed by パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ filed Critical パナソニック インテレクチュアル プロパティ コーポレーション オブ アメリカ
Publication of WO2015059880A1 publication Critical patent/WO2015059880A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/42Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation
    • H04N19/436Methods or arrangements for coding, decoding, compressing or decompressing digital video signals characterised by implementation details or hardware specially adapted for video compression or decompression, e.g. dedicated software implementation using parallelised computational arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N19/00Methods or arrangements for coding, decoding, compressing or decompressing digital video signals
    • H04N19/50Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding
    • H04N19/503Methods or arrangements for coding, decoding, compressing or decompressing digital video signals using predictive coding involving temporal prediction
    • H04N19/51Motion estimation or motion compensation
    • H04N19/55Motion estimation with spatial constraints, e.g. at image or region borders

Definitions

  • the present invention relates to a motion compensation method, an image encoding method, and an image decoding method.
  • Non-Patent Document 1 High Efficiency Video Coding
  • An object of the present disclosure is to provide an image encoding method, an image decoding method, or a motion compensation method capable of appropriately decoding an encoded bitstream in an image decoding device.
  • a motion compensation method performs motion compensation on a target block included in a plurality of tiles using a prediction mode that uses motion vectors of blocks around the target block.
  • a motion compensation method to be performed wherein when the motion vector of the surrounding block refers to a reference block included in a tile different from the target tile including the target block, a complement that complements a pixel value of the reference block And a motion compensation step for performing the motion compensation using the complemented pixel values.
  • the motion image encoding method includes a dividing step of dividing an image into a plurality of tiles, and target blocks included in the plurality of tiles are converted into motion vectors of blocks around the target block. Encoding using one of a plurality of prediction modes including a prediction mode to be used, and in the encoding step, the target block is included in a tile different from the target tile including the target block. Encoding is performed without using a motion vector that refers to the block to be recorded.
  • an image encoding method an image decoding method, or a motion compensation method capable of appropriately decoding an encoded bitstream in an image decoding device.
  • FIG. 1A is a diagram for explaining a motion compensation limit tile.
  • FIG. 1B is a diagram for explaining a motion compensation limit tile.
  • FIG. 2 is a diagram for explaining the process of generating the decimal pixel at the tile boundary.
  • FIG. 3A is a diagram for explaining a derivation process of a skip / merge vector.
  • FIG. 3B is a diagram for explaining skip / merge vector derivation processing.
  • FIG. 3C is a diagram for explaining the derivation process of the skip / merge vector.
  • FIG. 4 is a block diagram of the image coding apparatus according to Embodiment 1.
  • FIG. 5 is a flowchart of the image encoding process according to the first embodiment.
  • FIG. 5 is a flowchart of the image encoding process according to the first embodiment.
  • FIG. 6 is a flowchart of a modification of the image encoding process according to the first embodiment.
  • FIG. 7 is a block diagram of an image decoding apparatus according to the second embodiment.
  • FIG. 8 is a flowchart illustrating an example of motion compensation processing.
  • FIG. 9 is a flowchart of the image decoding process according to the second embodiment.
  • FIG. 10 is a diagram for explaining a complementing process for pixels outside the area according to the second embodiment.
  • FIG. 11 is a flowchart of the motion compensation process according to the second embodiment.
  • FIG. 12 is a diagram illustrating a syntax example of the encoded bitstream.
  • FIG. 13 is a flowchart illustrating an example of syntax processing.
  • FIG. 14A is a diagram illustrating a syntax example of an encoded bitstream according to Embodiment 3.
  • FIG. 14B is a diagram illustrating another example of the syntax of the encoded bitstream according to Embodiment 3.
  • FIG. 14C is a diagram illustrating another example of the syntax of the encoded bitstream according to Embodiment 3.
  • FIG. 15 is a flowchart of image decoding processing according to the third embodiment.
  • FIG. 16 is a diagram for explaining special processing according to the third embodiment.
  • FIG. 17 is an overall configuration diagram of a content supply system that implements a content distribution service.
  • FIG. 18 is an overall configuration diagram of a digital broadcasting system.
  • FIG. 19 is a block diagram illustrating a configuration example of a television.
  • FIG. 20 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk.
  • FIG. 21 is a diagram illustrating a structure example of a recording medium that is an optical disk.
  • FIG. 22A illustrates an example of a mobile phone.
  • FIG. 22B is a block diagram illustrating a configuration example of a mobile phone.
  • FIG. 23 is a diagram showing a structure of multiplexed data.
  • FIG. 24 is a diagram schematically showing how each stream is multiplexed in the multiplexed data.
  • FIG. 25 is a diagram showing in more detail how the video stream is stored in the PES packet sequence.
  • FIG. 26 is a diagram illustrating the structure of TS packets and source packets in multiplexed data.
  • FIG. 27 is a diagram illustrating a data structure of the PMT.
  • FIG. 28 is a diagram illustrating an internal configuration of multiplexed data information.
  • FIG. 29 shows the internal structure of stream attribute information.
  • FIG. 30 shows steps for identifying video data.
  • FIG. 31 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment.
  • FIG. 32 is a diagram showing a configuration for switching the drive frequency.
  • FIG. 33 is a diagram showing steps for identifying video data and switching between driving frequencies.
  • FIG. 34 is a diagram showing an example of a look-up table in which video data standards are associated with drive frequencies.
  • FIG. 35A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit.
  • FIG. 35B is a diagram illustrating another example of
  • FIG. 1A is a diagram illustrating an example in which a reference block belonging to tile 3 at time t ⁇ 1 is used as a reference image when a target block belonging to tile 2 at time t is processed.
  • Non-Patent Document 1 describes a method for describing in an encoded stream information indicating that reference to other tiles included in images having different times is prohibited.
  • the target block needs to refer to the reference block in the same tile (tile 2) even in the temporally different image (frame (t-1)). This eliminates the need for each LSI to output a reference image to a shared memory when parallel processing is performed by a plurality of LSIs.
  • tiles having such restrictions are referred to as MC restricted tiles.
  • FIG. 2A shows a reference pixel of a filter for generating a pixel value at a position shifted by 1 ⁇ 4 pixel from the leftmost tile boundary. Integer pixels connected by lines are referenced. In this case, three pixels outside the tile area are referred to.
  • FIG. 2 shows a reference pixel of a filter for generating a pixel value at a position shifted by 1/2 pixel from the leftmost tile boundary. In this case, three pixels outside the tile area are referred to.
  • FIG. 2C shows a reference pixel of a filter for generating a pixel value at a position shifted by 3/4 pixel from the leftmost tile boundary. In this case, two pixels outside the tile area are referred to.
  • the motion vector is information indicating a relative position between the target block and the reference block, and includes, for example, a horizontal component and a vertical component.
  • FIG. 3A is a diagram showing a case where a motion vector of an adjacent block in the screen is referred to.
  • the motion vectors of the blocks A0, A1, B0, B1, and B2 located around the target block X may be referred to.
  • FIG. 3C is a diagram illustrating an example in which the target block X located at the tile boundary reuses the motion vector MV0 of the block B0 at the upper right of the target block X.
  • the motion vector MV0 when processing the block B0, the motion vector MV0 does not cross the tile boundary, and the reference block R0 in the same tile (tile 2) as the block B0 is referred to.
  • the motion vector MV0 when the motion vector MV0 is reused in the target block X, the motion vector MV0 straddles the tile boundary, and the reference block R1 of another tile (tile 1) is referred to. Since such a case occurs, the image encoding device or the image decoding device needs to confirm this. However, checking whether the motion vector crosses the tile boundary at the time of all motion predictions leads to an increase in processing amount and an increase in circuit scale.
  • processing different from the processing of the screen edges of the image signal is necessary. This is because, in the case of the screen edge, the process in the case where there is no adjacent pixel is described in Non-Patent Document 1, but the tile edge process in which the motion reference is restricted is not defined. As a result, the processing as described above is required.
  • processing is necessary for the image encoding device or the image decoding device to perform parallel processing (parallel encoding and decoding) on the target image signal. Since the processing time increases due to this processing, it is difficult to realize high-speed processing. Alternatively, there is a problem that it is necessary to increase the circuit scale in order to perform this processing at high speed.
  • an image encoding device or an image decoding device capable of parallel processing, which can encode or decode a target image signal at high speed will be described.
  • an image encoding method, an image decoding method, or a motion compensation method that can reduce the processing amount in the image encoding device or the image decoding device will be described.
  • a motion compensation method is a motion compensation method for performing motion compensation on a target block included in a plurality of tiles using a prediction mode using a motion vector of a block around the target block,
  • the motion vector of the surrounding block refers to a reference block included in a tile different from the target tile in which the target block is included, a complementing step for complementing pixel values of the reference block and the complemented pixel
  • a motion compensation step of performing the motion compensation using a value is a motion compensation method for performing motion compensation on a target block included in a plurality of tiles using a prediction mode using a motion vector of a block around the target block.
  • the motion compensation method complements and generates the pixel value of the other tile.
  • motion compensation can be performed without using pixel values of other tiles.
  • the image decoding apparatus can appropriately decode the encoded bit stream.
  • the pixel value of the reference block may be supplemented using a pixel value included in the target block.
  • the motion compensation method can appropriately complement and generate pixel values of other tiles.
  • the pixel value of the pixel that is included in the target block and that is closest to the reference block is copied to a plurality of pixel values that are included in the reference block. May be supplemented.
  • pixel values of other tiles can be complementarily generated by a process similar to a process when a pixel value outside the screen is referred to. Thereby, an increase in circuit scale can be suppressed.
  • the pixel values of a plurality of pixels included in the target block are folded around the adjacent boundary as an axis, and a plurality of pixels included in the reference block are included.
  • the pixel value of the reference block may be complemented by copying to the pixel value.
  • the motion compensation method can improve the image quality when the video gradually changes, such as a gradation image.
  • an average value of a plurality of pixel values included in the target block may be calculated, and the average value may be supplemented as a plurality of pixel values included in the reference block.
  • the motion compensation method can suppress degradation of image quality.
  • the image coding method is an image coding method using the motion compensation method, wherein the motion vector of the surrounding block is included in the tile different from the target tile.
  • Information for specifying that the reference block is referred to is generated, and an encoded bit stream including the information is generated.
  • the image coding method uses a dividing step of dividing an image into a plurality of tiles, and uses a motion vector of a block around the target block for the target block included in the plurality of tiles. Encoding using one of a plurality of prediction modes including a prediction mode, and in the encoding step, the target block is included in a tile different from the target tile including the target block. Encode without using motion vectors that reference blocks.
  • the image encoding method can generate an encoded bitstream that is encoded without using a motion vector that refers to another tile.
  • the image decoding apparatus can appropriately decode the encoded bit stream.
  • the processing amount in the image decoding apparatus can be reduced.
  • the target block may be encoded using a motion vector other than the motion vector of the surrounding block.
  • the image coding method determines whether or not the motion vector refers to another tile, and does not use the motion vector when referring to the tile. Thereby, since the said image coding method can prohibit use of the motion vector which refers another tile appropriately, the fall of coding efficiency can be suppressed.
  • the target block in the encoding step, it is determined whether or not the target block is located within a certain value from the tile boundary, and when it is determined that the target block is located within the certain value from the tile boundary,
  • the target block may be encoded using a prediction mode other than the skip mode and the merge mode, which are modes in which the motion vector of the block is used as it is.
  • the image encoding method determines whether or not the motion vector refers to another tile based on whether or not the target block is located within a certain value from the tile boundary. Therefore, the processing amount of an image coding apparatus can be reduced.
  • the image decoding method decodes the encoded bitstream generated by the image encoding method.
  • the image decoding method decodes an encoded bitstream that is encoded without using a motion vector that refers to another tile.
  • the image decoding apparatus can appropriately decode the encoded bit stream.
  • the processing amount in the image decoding apparatus can be reduced.
  • the processing amount of the image decoding apparatus can be reduced, or the image quality of the decoded image can be improved.
  • An image encoding device includes a processing circuit and a storage device accessible from the processing circuit, and the processing circuit executes the motion compensation method using the storage device. To do.
  • the image encoding device complementarily generates the pixel value of the other tile.
  • motion compensation can be performed without using pixel values of other tiles.
  • the image decoding apparatus performs the same processing, so that the encoded bitstream can be appropriately decoded.
  • An image decoding device includes a processing circuit and a storage device accessible from the processing circuit, and the processing circuit executes the motion compensation method using the storage device. .
  • the image decoding apparatus complements and generates the pixel value of the other tile. Thereby, motion compensation can be performed without using pixel values of other tiles. Thereby, the image decoding apparatus can appropriately decode the encoded bit stream.
  • An image encoding device includes a processing circuit and a storage device accessible from the processing circuit, and the processing circuit performs the image encoding method using the storage device. Execute.
  • the image encoding apparatus can generate an encoded bitstream that is encoded without using a motion vector that refers to another tile. Thereby, the image decoding apparatus can appropriately decode the encoded bit stream. In addition, since it is not necessary to perform special processing in the image decoding apparatus, the processing amount in the image decoding apparatus can be reduced.
  • An image decoding device includes a processing circuit and a storage device accessible from the processing circuit, and the processing circuit executes the image decoding method using the storage device. .
  • the image decoding apparatus decodes an encoded bitstream that is encoded without using a motion vector that refers to another tile. Thereby, the image decoding apparatus can appropriately decode the encoded bit stream. In addition, since it is not necessary to perform special processing in the image decoding apparatus, the processing amount in the image decoding apparatus can be reduced.
  • an image encoding / decoding device includes the image encoding device and the image decoding device.
  • the bitstream includes information that allows the image encoding device to easily perform parallel processing. That is, a block included in a tile which is a region into which a picture is divided refers only to pixels in the same tile included in a picture at the same time or different times in motion prediction and motion compensation processing.
  • FIG. 4 is a block diagram illustrating a configuration example of the image encoding device 100 according to the present embodiment.
  • the image encoding device 100 generates an encoded signal 129 (encoded bit stream) by compressing and encoding the input image 121.
  • the input image 121 is input to the image encoding device 100 for each block.
  • the image encoding device 100 generates an encoded signal 129 by performing transformation, quantization, and variable length encoding on the input image 121 that has been input.
  • a subtractor 101 includes a subtractor 101, a transform quantization unit 102, an entropy coding unit 103, an inverse quantization inverse transform unit 104, an adder 105, and a deblocking processing unit 106.
  • a memory 107 includes an intra prediction unit 108, a motion compensation unit 109, a motion detection unit 110, and a changeover switch 112.
  • the subtractor 101 calculates a residual signal 122 (also referred to as a prediction error or a difference signal) that is a difference between the input image 121 and the prediction signal 127.
  • a residual signal 122 also referred to as a prediction error or a difference signal
  • the transform quantization unit 102 transforms the spatial domain residual signal 122 into a frequency domain transform coefficient. For example, the transform quantization unit 102 generates a transform coefficient by performing DCT (Discrete Cosine Transform) transform on the residual signal 122. Further, the transform quantization unit 102 generates a quantized coefficient 123 by quantizing the transform coefficient.
  • DCT Discrete Cosine Transform
  • the entropy encoding unit 103 generates an encoded signal 129 by performing variable length encoding on the quantization coefficient 123.
  • the entropy encoding unit 103 encodes the motion data 128 (for example, a motion vector) detected by the motion detection unit 110 and includes the obtained signal in the encoded signal 129 for output.
  • the inverse quantization inverse transform unit 104 restores the residual signal 124 by inversely transforming the restored transform coefficient.
  • the restored residual signal 124 does not match the residual signal 122 generated by the subtractor 101 because a part of the information is lost due to quantization. That is, the restored residual signal 124 includes a quantization error.
  • the adder 105 generates the local decoded image 125 by adding the restored residual signal 124 and the prediction signal 127.
  • the deblocking processing unit 106 generates a local decoded image 126 by performing a deblocking filter process on the local decoded image 125.
  • the memory 107 is a memory for storing a reference image used for motion compensation. Specifically, the memory 107 stores the local decoded image 126 after the deblocking filter process is performed. The memory 107 also stores processed motion data.
  • the intra prediction unit 108 generates a prediction signal (intra prediction signal) by performing intra prediction. Specifically, the intra prediction unit 108 performs intra prediction by referring to images around the encoding target block (the input image 121) in the local decoded image 125 generated by the adder 105, so that intra prediction is performed. Generate a signal.
  • the motion detection unit 110 detects motion data 128 (for example, a motion vector) between the input image 121 and the reference image stored in the memory 107. In addition, the motion detection unit 110 also performs calculations regarding the skip vector and the merge vector using the encoded motion data.
  • motion data 128 for example, a motion vector
  • the motion compensation unit 109 generates a prediction signal (inter prediction signal) by performing motion compensation based on the detected motion data 128.
  • the changeover switch 112 selects either the intra prediction signal or the inter prediction signal, and outputs the selected signal to the subtracter 101 and the adder 105 as the prediction signal 127.
  • the image encoding apparatus 100 compresses and encodes image data.
  • FIG. 5 is a flowchart illustrating an outline of processing when the motion prediction mode is determined by the image coding apparatus 100 according to the present embodiment.
  • the motion detection unit 110 acquires motion information that is a skip / merge vector candidate from the memory 107 (S101). Also, the motion detection unit 110 derives skip / merge vector candidates from, for example, adjacent blocks illustrated in FIGS. 3A and 3B. Specifically, the motion detection unit 110 uses the method shown in Non-Patent Document 1 as a skip vector derivation method and a merge vector derivation method.
  • the motion detection unit 110 determines whether or not the acquired skip / merge vector crosses the tile boundary (S102). Specifically, the motion detection unit 110 converts the start point of the motion vector of the adjacent block into the coordinates of the current target block, and determines whether the reference destination of the converted motion vector is another tile. In addition, even when the reference destination of the motion vector after conversion is not another tile, the motion detection unit 110 has a reference destination of the motion vector that is less than 2 and 3/4 pixels from the tile boundary. If it is a decimal pixel, it may be determined that the converted motion vector straddles the tile boundary. In other words, the skip / merge vector crosses the tile boundary is, in other words, the case where the skip / merge vector refers to another tile (when the predicted image is generated using the pixel value of the other tile).
  • the motion detection unit 110 calculates the cost when using the motion vector (S103).
  • the cost is, for example, a weighted addition between a code amount for indicating the skip / merge vector, and a difference between a predicted image (an image referred to by the vector) and an input image to be encoded, or the like.
  • the cost value calculated by a cost value when motion detection is performed is calculated, and a plurality of cost values are compared to determine an optimal motion prediction mode. Further, when the cost value is defined in this way, the optimum motion prediction mode is when the cost value is minimized. Note that the cost calculation method is not limited to this, but for the sake of simplicity, the case where the cost value is minimized is described as the optimal motion prediction mode.
  • the motion detection unit 110 determines not to use the skip / merge vector (S104). For example, the motion detection unit 110 sets the cost value of the skip / merge vector to the maximum value so that the skip / merge vector is not used. Note that the set value does not need to be the maximum value, and may be an arbitrary value as long as it is a value that is not selected as the optimum value. Further, the method of prohibiting the use of the skip / merge vector may be other than the method of changing the cost value.
  • step S101 If the processing for all skip / merge vector candidates acquired in step S101 has not been completed (NO in S105), the motion detection unit 110 performs cost calculation for the next skip / merge vector candidates (S102 to S102). S104).
  • the motion detection unit 110 When the cost calculation has been completed for all skip / merge vector candidates (YES in S105), the motion detection unit 110 performs motion detection on the target block and calculates a cost value for the motion detection (S106). Note that the motion detection search range at this time is a range that does not exceed the tile boundary. For decimal pixels, less than 2 and 3/4 pixels from the boundary are set outside the search range.
  • the motion detection unit 110 determines the motion prediction mode to be used as the motion prediction mode for the minimum cost value among all the calculated cost values (S107).
  • the motion detection unit 110 can eliminate the reference of pixel data between tiles including pictures at different times by determining whether or not the skip / merge vector crosses the tile boundary. Note that this flowchart is an example, and the processing amount can be further reduced by further modification.
  • the motion detection unit 110 determines whether the reference destination is less than 2 and 3/4 pixels from the boundary when the reference destination is a decimal pixel. In this case, since it is necessary to determine whether or not the reference destination is a decimal pixel every time, the circuit scale may increase.
  • the motion detection unit 110 determines whether the reference destination is less than 3 pixels from the tile boundary, and when the reference destination is less than 3 pixels from the tile boundary. It may be determined that the tile boundary is crossed. In this case, for example, when the integer pixel at the same position as the target block is a reference destination (vector (0, 0)), the motion detection unit 110 specifically permits the vector (0, 0). May be. As a result, the case where the reference destination is an integer pixel and is shifted by 1 or 2 pixels from the target block is excluded. That is, the motion detection unit 110 may determine that the tile boundary crosses when the reference destination is less than 3 pixels from the tile boundary and the motion vector is other than (0, 0). Thereby, degradation of encoding efficiency can be suppressed. In general, since the same position (vector (0, 0)) can be easily processed, deterioration of the coding efficiency can be suppressed by the above method while reducing the processing amount.
  • the motion detection unit 110 confirms whether or not the target block is located at the boundary of the MC restriction tile (S121). Specifically, the motion detection unit 110 determines that the target block is located at the boundary of the MC restricted tiles when the target block is within a certain number of blocks from the boundary of the MC restricted tiles.
  • the block may be a unit block of an encoding process called an encoding block, or may be a block of a unit called an LCU (maximum encoding block) or CTB (encoding tree block). Good.
  • the motion detection unit 110 extracts skip / merge vector candidates as in step S101 (S123). Next, the motion detection unit 110 calculates a cost value in the same manner as in step S103 (S124), and confirms whether all candidates have been confirmed in the same manner as in step S105 (S125).
  • the motion detection unit 110 skips steps S123 to S125, and does not extract skip / merge vector candidates and calculate the cost value.
  • the motion detection unit 110 performs motion detection as in step S106 (S126), and determines the motion prediction mode as in step S107 (S127).
  • the motion detection unit 110 may calculate the cost value only when the target block is located at the tile boundary (YES in S122) and only when the (0, 0) vector is a candidate. As a result, the amount of calculation increases slightly, but as described above, the vector (0, 0) can be easily processed, and thus the amount of processing increases little.
  • the image coding apparatus 100 divides an image into a plurality of tiles, and uses the motion vectors of blocks around the target block for target blocks included in the plurality of tiles. Encoding is performed using one of a plurality of prediction modes including a mode.
  • the plurality of prediction modes include a merge mode or a skip mode.
  • the merge mode and the skip mode are prediction modes that use the motion vectors of the blocks around the target block as they are. That is, in the merge mode and the skip mode, the motion vector difference is not encoded. Note that processing such as time scaling is also used in the merge mode and the skip mode.
  • the image encoding device 100 encodes the target block without using a motion vector that refers to a block included in a tile different from the target tile including the target block.
  • the motion vector that refers to a block included in a tile different from the target tile including the target block is a motion vector whose reference destination is another tile, and the reference destination is It is at least one of motion vectors that are decimal pixels that refer to integer pixels of other blocks.
  • the image encoding device 100 determines whether or not to refer to a block included in a tile whose motion vector of surrounding blocks is different from the target tile (S102). Also, when it is determined that the motion vector of the surrounding block refers to a block included in a tile different from the target tile (YES in S102), the image coding apparatus 100 uses a motion vector other than the motion vector ( The target block is encoded (without using the motion vector) (S104).
  • the image coding apparatus 100 determines whether or not the target block is located within a certain value from the tile boundary (S121). When it is determined that the target block is located within a certain value from the tile boundary (YES in S122), the image coding apparatus 100 has a prediction mode other than a prediction mode (merge mode or skip mode) that uses motion vectors of surrounding blocks. (Without using a prediction mode that uses motion vectors of surrounding blocks) is used to encode the target block.
  • a prediction mode a prediction mode that uses motion vectors of surrounding blocks.
  • the image encoding device 100 can perform processing of the MC restricted tile boundary at high speed. Thereby, the image coding apparatus 100 and the image coding method can generate a bit stream that can be processed at high speed in the image decoding apparatus.
  • Embodiment 2 an image decoding method for decoding an encoded stream that realizes parallel processing will be described.
  • an image decoding method for decoding an encoded bitstream generated by the image encoding apparatus 100 according to Embodiment 1 will be described.
  • FIG. 7 is a block diagram showing an example of the configuration of the image decoding apparatus 200 according to the present embodiment.
  • the image decoding apparatus 200 generates a decoded image 225 from the encoded signal 221 obtained by compressing and encoding the image.
  • the encoded signal 221 is, for example, the encoded signal 129 generated by the image encoding device 100.
  • the encoded signal 221 is input to the image decoding apparatus 200 as a decoding target signal for each block.
  • the image decoding apparatus 200 restores the decoded image 225 by performing variable length decoding, inverse quantization, and inverse transformation on the input decoding target signal.
  • An image decoding apparatus 200 illustrated in FIG. 7 includes an entropy decoding unit 201, an inverse quantization inverse transformation unit 202, an adder 203, a deblocking processing unit 204, a memory 205, an intra prediction unit 206, and a motion compensation unit. 207 and a changeover switch 208.
  • the entropy decoding unit 201 restores the quantization coefficient 222 by variable-length decoding the encoded signal 221 (encoded stream).
  • the encoded signal 221 input stream
  • the entropy decoding unit 201 acquires the motion data 227 from the encoded signal 221 and outputs the acquired motion data 227 to the motion compensation unit 207.
  • the inverse quantization inverse transform unit 202 restores the transform coefficient by inversely quantizing the quantized coefficient 222 restored by the entropy decoding unit 201. Then, the inverse quantization inverse transform unit 202 restores the residual signal 223 (also referred to as a prediction error or a difference signal) by inversely transforming the restored transform coefficient.
  • the residual signal 223 also referred to as a prediction error or a difference signal
  • the adder 203 generates the decoded image 224 by adding the restored residual signal 223 and the prediction signal 226.
  • the deblocking processing unit 204 generates a decoded image 225 by performing a deblocking filter process on the generated decoded image 224.
  • the decoded image 225 after the deblocking filter processing is output to the outside.
  • the memory 205 is a memory for storing a reference image used for motion compensation. Specifically, the memory 205 stores the decoded image 225 after the deblocking filter process is performed.
  • the intra prediction unit 206 generates a prediction signal (intra prediction signal) by performing intra prediction. Specifically, the intra prediction unit 206 performs intra prediction with reference to images around the block to be decoded (encoded signal 221) in the decoded image 224 generated by the adder 203, whereby the intra prediction signal Is generated.
  • the motion compensation unit 207 generates a prediction signal (inter prediction signal) by performing motion compensation based on the motion data 227 output from the entropy decoding unit 201.
  • the changeover switch 208 selects either the intra prediction signal or the inter prediction signal, and outputs the selected signal to the adder 203 as the prediction signal 226.
  • the image decoding apparatus 200 decodes the decoded image 225 from the encoded signal 221 obtained by compressing and encoding the image.
  • FIG. 8 is a flowchart showing an outline of a motion compensation process that does not include a characteristic process according to the present embodiment when a bitstream different from the intention assumed in the present embodiment is received.
  • the motion compensation unit 207 acquires a motion vector (motion data 227) from the encoded bit stream (encoded signal 221) (S201).
  • the motion compensation unit 207 determines whether the reference destination of the motion vector includes outside the region (S202).
  • outside the area means outside the screen of the image signal (picture) or outside the MC restriction tile in the case of the MC restriction tile.
  • the motion compensation unit 207 determines whether the outside of the region is outside the screen (S203).
  • the motion compensation unit 207 When it is outside the screen (YES in S203), the motion compensation unit 207 performs a process (padding process) of repeating pixels at the edge of the screen (S204). This padding process is performed, for example, in FIG. This is the same as the process shown in b). Next, the motion compensation unit 207 generates a motion compensated image with reference to the image after the padding process (S207).
  • the motion compensation unit 207 refers to outside the region. (S205). Since this process is an operation that is not defined in the normal decoding process, an error occurs and the decoding process stops. Alternatively, depending on the decoding device, an unexpected memory may be referred to and undefined data on the memory may be read as a reference image. As a result, the image decoding apparatus cannot continue the decoding operation or generates an image with very poor image quality by referring to indefinite data.
  • the motion compensation unit 207 acquires the target area of the reference destination as usual (S206), and moves using the acquired image of the target area. A compensation image is generated (S207).
  • Non-Patent Document 1 does not specify how to decode the above-described bit stream.
  • the image decoding device cannot decode the encoded bit stream, or the image quality of the decoded image is deteriorated.
  • the boundary processing of the MC restriction tile is complicated, and there are cases where the image coding apparatus illegally processes the above-described complicated processing.
  • FIG. 9 is a flowchart showing an outline of processing in which the image decoding apparatus 200 according to the present embodiment determines the motion prediction mode.
  • the motion compensation unit 207 acquires a motion vector (motion data 227) from the encoded bit stream (encoded signal 221) (S301).
  • the motion compensation unit 207 determines whether the reference destination of the motion vector includes outside the region (S302).
  • the motion compensation unit 207 determines whether the area outside the area is outside the screen (S303). When it is outside the screen (YES in S303), the motion compensation unit 207 performs padding processing (S304), and generates a motion compensated image with reference to the image after the padding processing (S307).
  • the motion compensation unit 207 performs an out-of-region reference process (S305).
  • the out-of-region reference processing is processing for complementing and generating out-of-region pixel values. Details of the processing for reference outside the area will be described later.
  • the case where the motion vector crosses the tile boundary is a case where the reference destination of the motion vector is included in a tile different from the target tile, and a case where an integer pixel of another tile is referred to in calculation of the decimal pixel.
  • the amount of boundary processing can be reduced by a method different from the method according to the first embodiment.
  • the image decoding apparatus 200 performs the same process, so that no mismatch occurs. Thereby, although it becomes a method different from the standard shown in nonpatent literature 1, the picture coding device and picture decoding device which can solve the above-mentioned subject by simple processing are realizable.
  • the motion compensation unit 207 generates a motion compensated image using the image that has been subjected to the out-of-region reference processing (S307).
  • the motion compensation unit 207 obtains the target region of the reference destination as usual (S306), as in step S206, and obtains the motion compensated image. Generate (S307).
  • FIG. 10 is a diagram illustrating an example of special processing when a tile different from the target tile is referred to when the MC restricted tile is used.
  • FIG. 10A is an example of processing in the case shown in FIG. 8, and the portion outside the target tile is not defined. Therefore, when the image decoding apparatus forcibly references this portion, the memory Indefinite values above may be used, and the decoding process may stop.
  • the process shown in FIG. 10B is the same as the process used in the case of the screen edge in step S304, and is also called a padding process.
  • the target tile includes a pixel a, a pixel b, a pixel c, a pixel d, a pixel e, a pixel f, and a pixel g arranged in this order from the tile boundary.
  • the motion compensation unit 207 fills the pixel value outside the target tile by repeating the pixel a adjacent to the tile boundary.
  • the motion compensation unit 207 may use a process different from the process outside the screen as the process outside the area of the MC restricted tile. For example, as illustrated in FIG. 10C, the motion compensation unit 207 folds the pixel a, the pixel b, the pixel c, the pixel d, the pixel e, the pixel f, and the pixel g in a mirror shape at the tile boundary.
  • the pixel value outside the target tile is complemented by copying.
  • this method is a process that utilizes the continuity of video, visual image quality can be improved. For example, this method can improve the image quality compared to the padding process when the video gradually changes, such as a gradation image.
  • the motion compensation unit 207 may fill pixel values outside the target tile with a constant value X, as shown in FIG.
  • the case where the constant value X is the pixel value of the pixel a corresponds to (b) of FIG.
  • the motion compensation unit 207 may use, for example, the average value of the pixel values of the pixel a, the pixel b, the pixel c, and the pixel d close to the tile boundary as the constant value X.
  • the motion compensation unit 207 may select or calculate a value that reduces the change in pixel value at the tile boundary as the constant value X. In the case of this method, the processing amount is increased as compared with FIG. 10B, but deterioration in image quality can be suppressed.
  • the image decoding apparatus 200 can perform the processing even if there is an unexpected reference in the bitstream that exceeds the boundary of the MC restricted tile.
  • the decoding process can be performed without stopping the process and while suppressing the deterioration of the image quality.
  • the image decoding apparatus 200 indicates that an error has occurred when the motion compensation unit 207 determines that the motion vector reference destination includes outside the target tile (YES in S321). May be output (S322).
  • the image decoding apparatus 200 performs the decoding process while detecting the error, it is possible to grasp that the decoding result includes a mismatch when the error is detected. Thereby, the image decoding apparatus 200 does not need to detect an unnecessary mismatch, and can continuously perform reproduction. Further, the error detection result is transmitted to the provider of the encoded bitstream, so that the image encoding apparatus can be improved (for example, the mechanism as in Embodiment 1 is introduced).
  • the image decoding apparatus 200 decodes the encoded bitstream generated by the image encoding apparatus 100 according to Embodiment 1.
  • the image decoding apparatus 200 performs motion compensation on a target block included in a plurality of tiles using a prediction mode (merge mode or skip mode) that uses motion vectors of blocks around the target block. Do.
  • the image decoding apparatus 200 complements the pixel value of the reference block. Specifically, the image decoding apparatus 200 supplements the pixel value of the reference block using the pixel value included in the target block.
  • the image decoding apparatus 200 copies pixel values of pixels included in the target block and closest to the reference block to a plurality of pixel values included in the reference block.
  • the pixel value of the reference block is complemented.
  • the image decoding apparatus 200 folds back the pixel values of a plurality of pixels included in the target block with the adjacent boundary as an axis.
  • the pixel value of the reference block is complemented by copying to a plurality of pixel values included in the reference block.
  • the image decoding apparatus 200 calculates an average value of a plurality of pixel values included in the target block, and uses the average value as a plurality of pixel values included in the reference block. Complement.
  • the image decoding apparatus 200 performs motion compensation using the complemented pixel values.
  • the image decoding apparatus 200 can execute the out-of-region reference process for the unintended encoded stream. That is, the image decoding apparatus 200 can avoid the decoding process from being stopped even in the case of the MC restricted tile. Thereby, stabilization of the image decoding apparatus 200 is realizable.
  • the image encoding device 100 can be speeded up. That is, the motion compensation unit 109 included in the image coding apparatus 100 may perform the same processing as the motion compensation unit 207 according to the second embodiment.
  • the image encoding apparatus 100 uses, as a reference image, an image generated by the above-described out-of-region reference process as a process when a motion vector refers to another tile. Thereby, the encoding process can be simplified and the circuit scale can be reduced. In this case, since the image decoding apparatus 200 includes the similar motion compensation unit 207, a system in which both circuit scales are reduced can be realized.
  • the above process can be realized not only as an image decoding method in the image decoding apparatus 200 but also as an image encoding method in the image encoding apparatus 100.
  • the above processing can also be realized as a motion compensation method in the image decoding apparatus 200 or the image encoding apparatus 100.
  • the bitstream includes information that allows the image decoding apparatus 200 to easily realize parallel processing.
  • the bitstream includes information indicating where the mismatch occurs. That is, the bitstream includes information regarding a case where another tile is referred to in the motion prediction and motion compensation processing when the screen is divided into tiles and encoded.
  • FIG. 12 is a diagram showing a part of the syntax structure of a conventional MC restricted tile encoded bitstream.
  • motion_constrained_tile_sets () is an information group indicating the area of the MC restricted tile. By referring to this information, the image decoding apparatus can know that the target stream does not make reference beyond the tile boundary. Further, this syntax structure includes an execute_sample_value_match_flag. The operation relating to this flag will be described with reference to FIG.
  • FIG. 13 is a flowchart of the operation relating to the execute_sample_value_match_flag. As illustrated in FIG. 13, when the exact_sample_value_match_flag is 0 (YES in S401), the image decoding apparatus determines that there is a mismatch (mismatch) in the stream (S402).
  • the image decoding apparatus 200 cannot identify what type of mismatch has occurred. Accordingly, there is a problem that it is difficult for the image decoding apparatus 200 to perform an appropriate decoding process according to the type of mismatch.
  • 14A to 14C are diagrams showing an example of the syntax structure of the encoded bitstream according to the present embodiment.
  • 14A to 14C are diagrams illustrating syntax examples of motion_constrained_tile_sets included in the encoded bitstream according to the present embodiment. This information is called SEI and is handled as auxiliary information of the encoded bit stream.
  • the encoded bitstream includes a flag (filtering_mismatch_flag: 1) indicating that the above-described three mismatch causes are caused by a loop filter when the above-described exact_sample_value_match_flag is 0.
  • a flag indicating that a mismatch occurs due to a filter and a flag indicating that a mismatch occurs due to other than the loop filter (indicating that mismatch occurs due to other than the loop filter in the case of motion_constraint_mismatch_flag: 1).
  • the encoded bitstream does not include the exact_sample_value_match_flag, but includes the inloop_filtering_mismatch_flag and the motion_constraint_missmatch_flag in parallel.
  • the meaning of inloop_filtering_missmatch_flag is the same as filtering_missmatch_flag.
  • the motion_constraint_mismatch_flag further includes a flag (fractional_point_mismatch_flag) indicating that a mismatch occurs due to the generation processing of a fractional pixel, and a flag (skip_merge) indicating a mismatch (skip_merge) indicating a mismatch due to skip and merge processing.
  • a flag fractional_point_mismatch_flag
  • skip_merge indicating a mismatch
  • skip_merge indicating a mismatch due to skip and merge processing.
  • the image decoding device 200 can appropriately decode the encoded bitstream by notifying the image decoding device 200 of the possibility of a fine mismatch.
  • FIG. 15 is a flowchart showing a processing flow of the image decoding apparatus 200 in the case shown in FIG. 14A. As illustrated in FIG. 15, the image decoding apparatus 200 determines that a problem occurs when the execute_sample_value_match_flag is 0 (YES in S421) (S422).
  • the image decoding apparatus 200 determines that the special processing for out-of-region reference is used (S424), and otherwise (NO in S423), it is a mismatch regarding the loop filter. It is determined that there is an out-of-region reference process for the loop filter (S425). For example, the image decoding apparatus 200 uses the mirroring process shown in FIG. 10C for the loop filter, and uses the padding process shown in FIG. 10B for out-of-region reference for motion compensation. As described above, the image decoding apparatus 200 switches the decoding process according to these filters.
  • the image coding apparatus 100 uses a flag as information indicating the cause of the mismatch, but may use information indicating a number instead of the flag. For example, when this number is 0, it indicates that there is no mismatch (no special processing), when the number is 1, indicates padding processing, when the number is 2, indicates mirroring processing, and when the number is 3, the average value In the case where the number is 4 or more, the value -4 is used as a fixed value for the reference image. With such a configuration, an encoded stream that can be processed in parallel using a simple MC restriction tile can be realized without degrading the image quality of the decoded image.
  • processing when a mismatch occurs is indefinite
  • the image decoding apparatus has been processed as an error or referred to indefinite data. Therefore, by specifying special processing as shown in the figure, it is possible to generate a decoded image with little deterioration.
  • the image decoding apparatus 200 may avoid the mismatch by using the value before the filter as a reference image and passing the filter process later.
  • the image decoding apparatus 200 can specify when a mismatch occurs in the filter processing, and thus can perform the above-described processing.
  • a process of reading out only the pixels having a specified mismatch possibility from the memory may be performed.
  • the cause of the mismatch cannot be identified, the mismatch cannot be appropriately avoided.
  • the image decoding apparatus 200 reads or writes only the pixel data related to the specified mismatch from the memory. Processing can be performed. For example, if the mismatch is caused by the boundary filter process, the image decoding apparatus 200 writes or reads only pixel data necessary for the boundary filter process into the memory.
  • the image decoding apparatus 200 writes or reads data of pixels in a range that can be taken by the skip / merge process to the shared memory. Even in the case of special pixel generation processing, as shown in FIG. 2A, the image decoding apparatus 200 may read data of three pixels of adjacent tiles.
  • the information indicating what is the mismatch is included in the bitstream, so that the image decoding apparatus 200 can avoid the mismatch when there is a margin in processing. Further, the image decoding apparatus 200 can easily determine how to generate a decoded image even when the pixel data cannot be read from the memory. The image quality can be improved.
  • the image coding apparatus 100 generates information for specifying that the motion vector of the surrounding block refers to a reference block included in a tile different from the target tile. Then, an encoded bit stream including the information is generated. In other words, the image encoding device 100 generates two or more flags or two or more information indicating that the encoded bitstream includes an event of violation of the standard, and a code including the two or more flags or the two or more information. Generate a generalized bitstream.
  • the image encoding device 100 can generate an encoded bitstream that can be simply decoded by the image decoding device or can generate a decoded image with little deterioration.
  • each processing unit included in the image encoding device and the image decoding device according to the above embodiment is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
  • circuits are not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor.
  • An FPGA Field Programmable Gate Array
  • reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
  • each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component.
  • Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
  • the image encoding device and the image decoding device include a control circuit (control circuit) and a storage device (storage) electrically connected to the control circuit (accessible from the control circuit).
  • the control circuit includes at least one of dedicated hardware and a program execution unit. Further, when the control circuit includes a program execution unit, the storage device stores a software program executed by the program execution unit.
  • the present invention may be the software program or a non-transitory computer-readable recording medium on which the program is recorded.
  • the program can be distributed via a transmission medium such as the Internet.
  • division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be.
  • functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
  • the order in which the steps included in the image encoding method or the image decoding method are executed is for illustrating the present invention specifically, and may be in an order other than the above. . Also, some of the above steps may be executed simultaneously (in parallel) with other steps.
  • the image encoding device and the image decoding device according to one or more aspects of the present invention have been described based on the embodiment, but the present invention is not limited to this embodiment. Unless it deviates from the gist of the present invention, the embodiment in which various modifications conceived by those skilled in the art have been made in the present embodiment, and forms constructed by combining components in different embodiments are also applicable to one or more of the present invention. It may be included within the scope of the embodiments.
  • the storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
  • the system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method.
  • Other configurations in the system can be appropriately changed according to circumstances.
  • FIG. 17 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service.
  • a communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
  • the content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
  • PDA Personal Digital Assistant
  • each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110.
  • the devices may be directly connected to each other via short-range wireless or the like.
  • the camera ex113 is a device that can shoot moving images such as a digital video camera
  • the camera ex116 is a device that can shoot still images and movies such as a digital camera.
  • the mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Terminal Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
  • the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like.
  • live distribution content that is shot by a user using the camera ex113 (for example, music live video) is encoded as described in each of the above embodiments (that is, in one aspect of the present invention).
  • the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data.
  • Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as an image decoding device according to one embodiment of the present invention).
  • the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other.
  • the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other.
  • still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111.
  • the encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
  • these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device.
  • the LSI ex500 may be configured as a single chip or a plurality of chips.
  • moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be.
  • moving image data acquired by the camera may be transmitted.
  • the moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
  • the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
  • the encoded data can be received and reproduced by the client.
  • the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
  • the digital broadcast system ex200 also includes at least the video encoding device (video encoding device) or video decoding of each of the above embodiments. Any of the devices (image decoding devices) can be incorporated.
  • video encoding device video encoding device
  • Any of the devices (image decoding devices) can be incorporated.
  • the broadcast station ex201 multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves.
  • This video data is data encoded by the moving image encoding method described in each of the above embodiments (that is, data encoded by the image encoding apparatus according to one aspect of the present invention).
  • the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting.
  • the received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as an image decoding apparatus according to one embodiment of the present invention).
  • a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded.
  • a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television.
  • the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
  • FIG. 19 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments.
  • the television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data.
  • the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
  • the television ex300 also decodes the audio data and the video data, or encodes the information, the audio signal processing unit ex304, the video signal processing unit ex305 (the image encoding device or the image according to one embodiment of the present invention) A signal processing unit ex306 that functions as a decoding device), a speaker ex307 that outputs the decoded audio signal, and an output unit ex309 that includes a display unit ex308 such as a display that displays the decoded video signal. Furthermore, the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation. Furthermore, the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit.
  • the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk.
  • a driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included.
  • the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored.
  • Each part of the television ex300 is connected to each other via a synchronous bus.
  • the television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments.
  • the decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described.
  • the television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1).
  • the encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized.
  • a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
  • the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good.
  • the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
  • the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218,
  • the reader / recorder ex218 may share with each other.
  • FIG. 20 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk.
  • the information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below.
  • the optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects information reflected from the recording surface of the recording medium ex215 to read the information.
  • the modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data.
  • the reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information.
  • the buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215.
  • the disk motor ex405 rotates the recording medium ex215.
  • the servo control unit ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process.
  • the system control unit ex407 controls the entire information reproduction / recording unit ex400.
  • the system control unit ex407 uses various types of information held in the buffer ex404, and generates and adds new information as necessary.
  • the modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner.
  • the system control unit ex407 includes, for example, a microprocessor, and executes these processes by executing a read / write program.
  • the optical head ex401 has been described as irradiating a laser spot.
  • a configuration in which higher-density recording is performed using near-field light may be used.
  • FIG. 21 shows a schematic diagram of a recording medium ex215 that is an optical disk.
  • Guide grooves grooves
  • address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove.
  • This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus.
  • the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234.
  • the area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used.
  • the information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
  • an optical disk such as a single-layer DVD or BD has been described as an example.
  • the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used.
  • an optical disc with a multi-dimensional recording / reproducing structure such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
  • the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has.
  • the configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration illustrated in FIG. 19, and the same may be considered for the computer ex111, the mobile phone ex114, and the like.
  • FIG. 22A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment.
  • the mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data.
  • the mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video,
  • an audio input unit ex356 such as a microphone for inputting audio
  • a captured video In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data
  • a slot ex364 is provided.
  • the mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366.
  • a camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
  • the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
  • the cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
  • the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362.
  • the main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350.
  • almost the reverse process is performed on the received data and output to the display unit ex358.
  • the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as an image encoding device according to an aspect of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353.
  • the audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
  • the multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result.
  • the multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
  • the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370.
  • the encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355.
  • the video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method described in each of the above embodiments (that is, an image according to an aspect of the present invention).
  • video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359.
  • the audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
  • the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder.
  • a transmission terminal having only an encoder
  • a receiving terminal having only a decoder.
  • multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
  • the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
  • multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to.
  • identification information indicating which standard the video data conforms to.
  • FIG. 23 is a diagram showing a structure of multiplexed data.
  • multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream.
  • the video stream indicates the main video and sub-video of the movie
  • the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio
  • the presentation graphics stream indicates the subtitles of the movie.
  • the main video indicates a normal video displayed on the screen
  • the sub-video is a video displayed on a small screen in the main video.
  • the interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen.
  • the video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing.
  • the audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
  • Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
  • FIG. 24 is a diagram schematically showing how multiplexed data is multiplexed.
  • a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240.
  • the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246.
  • the multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
  • FIG. 25 shows in more detail how the video stream is stored in the PES packet sequence.
  • the first row in FIG. 25 shows a video frame sequence of the video stream.
  • the second level shows a PES packet sequence.
  • a plurality of Video Presentation Units in the video stream are divided for each picture and stored in the payload of the PES packet.
  • Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
  • PTS Presentation Time-Stamp
  • DTS Decoding Time-Stamp
  • FIG. 26 shows the format of the TS packet that is finally written in the multiplexed data.
  • the TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data.
  • the PES packet is divided and stored in the TS payload.
  • a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data.
  • TP_Extra_Header information such as ATS (Arrival_Time_Stamp) is described.
  • ATS indicates the transfer start time of the TS packet to the PID filter of the decoder.
  • Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 26, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
  • TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption.
  • PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0.
  • the PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data.
  • the descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data.
  • the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
  • FIG. 27 is a diagram for explaining the data structure of the PMT in detail.
  • a PMT header describing the length of data included in the PMT is arranged at the head of the PMT.
  • a plurality of descriptors related to multiplexed data are arranged.
  • the copy control information and the like are described as descriptors.
  • a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged.
  • the stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream.
  • the multiplexed data is recorded together with the multiplexed data information file.
  • the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
  • the multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time as shown in FIG.
  • the system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later.
  • the ATS interval included in the multiplexed data is set to be equal to or less than the system rate.
  • the playback start time is the PTS of the first video frame of the multiplexed data
  • the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
  • attribute information about each stream included in the multiplexed data is registered for each PID.
  • the attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream.
  • the video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is.
  • the audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
  • the stream type included in the PMT is used.
  • video stream attribute information included in the multiplexed data information is used.
  • the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT.
  • FIG. 30 shows steps of the moving picture decoding method according to the present embodiment.
  • step exS100 the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data.
  • step exS101 it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do.
  • step exS102 the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form.
  • the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
  • FIG. 31 shows a configuration of an LSI ex500 that is made into one chip.
  • the LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510.
  • the power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
  • the LSI ex500 when performing the encoding process, performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like.
  • the AV signal is input from the above.
  • the input AV signal is temporarily stored in an external memory ex511 such as SDRAM.
  • the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed.
  • the encoding process of the video signal is the encoding process described in the above embodiments.
  • the signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside.
  • the output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
  • the memory ex511 is described as an external configuration of the LSI ex500.
  • a configuration included in the LSI ex500 may be used.
  • the number of buffers ex508 is not limited to one, and a plurality of buffers may be provided.
  • the LSI ex500 may be made into one chip or a plurality of chips.
  • control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration.
  • the signal processing unit ex507 may further include a CPU.
  • the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507.
  • the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
  • LSI LSI
  • IC system LSI
  • super LSI ultra LSI depending on the degree of integration
  • the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible.
  • An FPGA Field Programmable Gate Array
  • Such a programmable logic device typically loads or reads a program constituting software or firmware from a memory or the like, so that the moving image encoding method or the moving image described in each of the above embodiments is used.
  • An image decoding method can be performed.
  • FIG. 32 shows a configuration ex800 in the present embodiment.
  • the drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments.
  • the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data.
  • the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
  • the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG.
  • the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG.
  • the CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data.
  • the identification information described in the fifth embodiment may be used.
  • the identification information is not limited to that described in the fifth embodiment, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal.
  • the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
  • FIG. 33 shows steps for executing the method of the present embodiment.
  • the signal processing unit ex507 acquires identification information from the multiplexed data.
  • the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information.
  • the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency.
  • step exS203 the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
  • the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
  • the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method.
  • the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
  • the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered.
  • the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high.
  • the driving of the CPU ex502 is stopped.
  • the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
  • a plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone.
  • the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input.
  • the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
  • a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1
  • the processing unit is partly shared.
  • An example of this configuration is shown as ex900 in FIG. 35A.
  • the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common.
  • the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for other processing contents specific to one aspect of the present invention that do not correspond to the MPEG4-AVC standard, a dedicated decoding processing unit A configuration using ex901 is conceivable.
  • a dedicated decoding processing unit ex901 is used for motion compensation, and other dequantization, entropy decoding, deblocking filter, and the like are used. For any or all of these processes, it is conceivable to share the decoding processing unit.
  • the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
  • ex1000 in FIG. 35B shows another example in which processing is partially shared.
  • a dedicated decoding processing unit ex1001 corresponding to the processing content specific to one aspect of the present invention
  • a dedicated decoding processing unit ex1002 corresponding to the processing content specific to another conventional standard
  • a common decoding processing unit ex1003 corresponding to the processing contents common to the moving image decoding method according to the above and other conventional moving image decoding methods.
  • the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in one aspect of the present invention or processing content specific to other conventional standards, and can execute other general-purpose processing. Also good.
  • the configuration of the present embodiment can be implemented by LSI ex500.
  • the processing content common to the moving picture decoding method according to one aspect of the present invention and the moving picture decoding method of the conventional standard reduces the circuit scale of the LSI by sharing the decoding processing unit, In addition, the cost can be reduced.
  • the present invention can be applied to an image encoding method, an image decoding method, an image encoding device, and an image decoding device. Further, the present invention can be used for various purposes such as data storage, transmission or communication. For example, the present invention can be used for information display devices and imaging devices such as televisions, digital video recorders, car navigation systems, cellular phones, digital still cameras, and digital video cameras.

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Computing Systems (AREA)
  • Theoretical Computer Science (AREA)
  • Compression Or Coding Systems Of Tv Signals (AREA)

Abstract

A motion compensation method comprises: a complementing step of complementing the pixel values of a reference block when motion compensation is performed for a target block, which is included in a plurality of tiles, by use of a prediction mode using the motion vectors of peripheral blocks of the target block and further when the motion vectors of the peripheral blocks refer to the reference block included in tiles different from the target tiles in which the target block is included; and a motion compensating step of performing the aforementioned motion compensation by use of the aforementioned pixel values as complemented.

Description

動き補償方法、画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置Motion compensation method, image encoding method, image decoding method, image encoding device, and image decoding device
 本発明は、動き補償方法、画像符号化方法及び画像復号方法に関する。 The present invention relates to a motion compensation method, an image encoding method, and an image decoding method.
 現在、新しい画像符号化規格としてHEVC(High Efficiency Video Coding)方式(非特許文献1参照)が検討されている。 Currently, the HEVC (High Efficiency Video Coding) method (see Non-Patent Document 1) is being studied as a new image coding standard.
 このような画像符号化方法及び画像復号方法では、画像復号装置において符号化ビットストリームを適切に復号できることが望まれている。 In such an image encoding method and image decoding method, it is desired that the encoded bit stream can be appropriately decoded in the image decoding apparatus.
 本開示は、画像復号装置において符号化ビットストリームを適切に復号できる画像符号化方法、画像復号方法又は動き補償方法を提供することを目的とする。 An object of the present disclosure is to provide an image encoding method, an image decoding method, or a motion compensation method capable of appropriately decoding an encoded bitstream in an image decoding device.
 上記目的を達成するために、本開示の一態様に係る動き補償方法は、複数のタイルに含まれる対象ブロックを、当該対象ブロックの周囲のブロックの動きベクトルを用いる予測モードを用いて動き補償を行う動き補償方法であって、前記周囲のブロックの前記動きベクトルが、前記対象ブロックが含まれる対象タイルとは異なるタイルに含まれる参照ブロックを参照する場合、当該参照ブロックの画素値を補完する補完ステップと、補完された前記画素値を用いて前記動き補償を行う動き補償ステップとを含む。 In order to achieve the above object, a motion compensation method according to an aspect of the present disclosure performs motion compensation on a target block included in a plurality of tiles using a prediction mode that uses motion vectors of blocks around the target block. A motion compensation method to be performed, wherein when the motion vector of the surrounding block refers to a reference block included in a tile different from the target tile including the target block, a complement that complements a pixel value of the reference block And a motion compensation step for performing the motion compensation using the complemented pixel values.
 また、本開示の一態様に係る動き画像符号化方法は、画像を複数のタイルに分割する分割ステップと、前記複数のタイルに含まれる対象ブロックを、当該対象ブロックの周囲のブロックの動きベクトルを用いる予測モードを含む複数の予測モードのいずれかを用いて符号化する符号化ステップとを含み、前記符号化ステップでは、前記対象ブロックを、前記対象ブロックが含まれる対象タイルとは異なるタイルに含まれるブロックを参照する動きベクトルを用いずに符号化する。 In addition, the motion image encoding method according to an aspect of the present disclosure includes a dividing step of dividing an image into a plurality of tiles, and target blocks included in the plurality of tiles are converted into motion vectors of blocks around the target block. Encoding using one of a plurality of prediction modes including a prediction mode to be used, and in the encoding step, the target block is included in a tile different from the target tile including the target block. Encoding is performed without using a motion vector that refers to the block to be recorded.
 なお、これらの全般的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 These general or specific aspects may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer-readable CD-ROM. The system, method, integrated circuit, computer program Also, any combination of recording media may be realized.
 本開示によれば、画像復号装置において符号化ビットストリームを適切に復号できる画像符号化方法、画像復号方法又は動き補償方法を提供できる。 According to the present disclosure, it is possible to provide an image encoding method, an image decoding method, or a motion compensation method capable of appropriately decoding an encoded bitstream in an image decoding device.
図1Aは、動き補償制限タイルを説明するための図である。FIG. 1A is a diagram for explaining a motion compensation limit tile. 図1Bは、動き補償制限タイルを説明するための図である。FIG. 1B is a diagram for explaining a motion compensation limit tile. 図2は、タイル境界の小数画素の生成処理を説明するための図である。FIG. 2 is a diagram for explaining the process of generating the decimal pixel at the tile boundary. 図3Aは、スキップ・マージベクトルの導出処理を説明するための図である。FIG. 3A is a diagram for explaining a derivation process of a skip / merge vector. 図3Bは、スキップ・マージベクトルの導出処理を説明するための図である。FIG. 3B is a diagram for explaining skip / merge vector derivation processing. 図3Cは、スキップ・マージベクトルの導出処理を説明するための図である。FIG. 3C is a diagram for explaining the derivation process of the skip / merge vector. 図4は、実施の形態1に係る画像符号化装置のブロック図である。FIG. 4 is a block diagram of the image coding apparatus according to Embodiment 1. 図5は、実施の形態1に係る画像符号化処理のフローチャートである。FIG. 5 is a flowchart of the image encoding process according to the first embodiment. 図6は、実施の形態1に係る画像符号化処理の変形例のフローチャートである。FIG. 6 is a flowchart of a modification of the image encoding process according to the first embodiment. 図7は、実施の形態2に係る画像復号装置のブロック図である。FIG. 7 is a block diagram of an image decoding apparatus according to the second embodiment. 図8は、動き補償処理の例を示すフローチャートである。FIG. 8 is a flowchart illustrating an example of motion compensation processing. 図9は、実施の形態2に係る画像復号処理のフローチャートである。FIG. 9 is a flowchart of the image decoding process according to the second embodiment. 図10は、実施の形態2に係る領域外の画素の補完処理を説明するための図である。FIG. 10 is a diagram for explaining a complementing process for pixels outside the area according to the second embodiment. 図11は、実施の形態2に係る動き補償処理のフローチャートである。FIG. 11 is a flowchart of the motion compensation process according to the second embodiment. 図12は、符号化ビットストリームのシンタックス例を示す図である。FIG. 12 is a diagram illustrating a syntax example of the encoded bitstream. 図13は、シンタックスの処理の例を示すフローチャートである。FIG. 13 is a flowchart illustrating an example of syntax processing. 図14Aは、実施の形態3に係る符号化ビットストリームのシンタックス例を示す図である。FIG. 14A is a diagram illustrating a syntax example of an encoded bitstream according to Embodiment 3. 図14Bは、実施の形態3に係る符号化ビットストリームのシンタックスの別の例を示す図である。FIG. 14B is a diagram illustrating another example of the syntax of the encoded bitstream according to Embodiment 3. 図14Cは、実施の形態3に係る符号化ビットストリームのシンタックスの別の例を示す図である。FIG. 14C is a diagram illustrating another example of the syntax of the encoded bitstream according to Embodiment 3. 図15は、実施の形態3に係る画像復号処理のフローチャートである。FIG. 15 is a flowchart of image decoding processing according to the third embodiment. 図16は、実施の形態3に係る特殊処理を説明する図である。FIG. 16 is a diagram for explaining special processing according to the third embodiment. 図17は、コンテンツ配信サービスを実現するコンテンツ供給システムの全体構成図である。FIG. 17 is an overall configuration diagram of a content supply system that implements a content distribution service. 図18は、デジタル放送用システムの全体構成図である。FIG. 18 is an overall configuration diagram of a digital broadcasting system. 図19は、テレビの構成例を示すブロック図である。FIG. 19 is a block diagram illustrating a configuration example of a television. 図20は、光ディスクである記録メディアに情報の読み書きを行う情報再生/記録部の構成例を示すブロック図である。FIG. 20 is a block diagram illustrating a configuration example of an information reproducing / recording unit that reads and writes information from and on a recording medium that is an optical disk. 図21は、光ディスクである記録メディアの構造例を示す図である。FIG. 21 is a diagram illustrating a structure example of a recording medium that is an optical disk. 図22Aは、携帯電話の一例を示す図である。FIG. 22A illustrates an example of a mobile phone. 図22Bは、携帯電話の構成例を示すブロック図である。FIG. 22B is a block diagram illustrating a configuration example of a mobile phone. 図23は、多重化データの構成を示す図である。FIG. 23 is a diagram showing a structure of multiplexed data. 図24は、各ストリームが多重化データにおいてどのように多重化されているかを模式的に示す図である。FIG. 24 is a diagram schematically showing how each stream is multiplexed in the multiplexed data. 図25は、PESパケット列に、ビデオストリームがどのように格納されるかを更に詳しく示した図である。FIG. 25 is a diagram showing in more detail how the video stream is stored in the PES packet sequence. 図26は、多重化データにおけるTSパケットとソースパケットの構造を示す図である。FIG. 26 is a diagram illustrating the structure of TS packets and source packets in multiplexed data. 図27は、PMTのデータ構成を示す図である。FIG. 27 is a diagram illustrating a data structure of the PMT. 図28は、多重化データ情報の内部構成を示す図である。FIG. 28 is a diagram illustrating an internal configuration of multiplexed data information. 図29は、ストリーム属性情報の内部構成を示す図である。FIG. 29 shows the internal structure of stream attribute information. 図30は、映像データを識別するステップを示す図である。FIG. 30 shows steps for identifying video data. 図31は、各実施の形態の動画像符号化方法および動画像復号化方法を実現する集積回路の構成例を示すブロック図である。FIG. 31 is a block diagram illustrating a configuration example of an integrated circuit that realizes the moving picture coding method and the moving picture decoding method according to each embodiment. 図32は、駆動周波数を切り替える構成を示す図である。FIG. 32 is a diagram showing a configuration for switching the drive frequency. 図33は、映像データを識別し、駆動周波数を切り替えるステップを示す図である。FIG. 33 is a diagram showing steps for identifying video data and switching between driving frequencies. 図34は、映像データの規格と駆動周波数を対応づけたルックアップテーブルの一例を示す図である。FIG. 34 is a diagram showing an example of a look-up table in which video data standards are associated with drive frequencies. 図35Aは、信号処理部のモジュールを共有化する構成の一例を示す図である。FIG. 35A is a diagram illustrating an example of a configuration for sharing a module of a signal processing unit. 図35Bは、信号処理部のモジュールを共有化する構成の他の一例を示す図である。FIG. 35B is a diagram illustrating another example of a configuration for sharing a module of a signal processing unit.
 (本発明の基礎となった知見)
 本発明者は、従来の技術に関し、以下の問題が生じることを見出した。
(Knowledge that became the basis of the present invention)
The present inventor has found that the following problems occur with respect to the prior art.
 H.26xと称されるITU-T規格又はMPEG-xと称されるISO/IEC規格においては、1枚の画像が、図1Aに示すようにタイルと呼ばれる複数の単位に分割される。各タイルは、当該タイルが含まれる画像内の他のタイルを参照できない。例えばタイル2が符号化又は復号対象である場合、タイル2はタイル1を参照できない。ただし、時間的に異なる画像が参照される場合は、符号化又は復号対象である対象ブロックは、タイル2以外のタイルを参照することが可能である。例えば図1Aに示す左の画像は時間t-1の画像であり、右の画像は時間tの画像であり、これらの画像は、時間的に異なる画像である。図1Aは、時間tのタイル2に属する対象ブロックが処理される際に、時間t-1のタイル3に属する参照ブロックが参照画像として用いられる例を示す図である。 H. In the ITU-T standard called 26x or the ISO / IEC standard called MPEG-x, one image is divided into a plurality of units called tiles as shown in FIG. 1A. Each tile cannot reference other tiles in the image in which the tile is included. For example, when the tile 2 is an object to be encoded or decoded, the tile 2 cannot refer to the tile 1. However, when images different in time are referred to, a target block that is an encoding or decoding target can refer to a tile other than the tile 2. For example, the left image shown in FIG. 1A is an image at time t−1, the right image is an image at time t, and these images are temporally different images. FIG. 1A is a diagram illustrating an example in which a reference block belonging to tile 3 at time t−1 is used as a reference image when a target block belonging to tile 2 at time t is processed.
 一方、このような参照を許す場合、次のような課題がある。例えば画像サイズが非常に大きい場合、タイルをそれぞれ別のLSIで処理する並列化処理が行われる。しかし、前述のように、時間の異なる画像に含まれる他のタイルへの参照を許すためには、個々のLSIは、当該LSIが生成した画像を一つの大きなメモリに書き出し、複数のLSIでそのメモリを共有する必要がある。この場合、別々のLSIを同期させることが必要となり、同期処理のための処理量が増加してしまうという課題がある。 On the other hand, when such a reference is allowed, there are the following problems. For example, when the image size is very large, parallel processing is performed in which tiles are processed by different LSIs. However, as described above, in order to allow reference to other tiles included in images having different times, each LSI writes an image generated by the LSI into one large memory, and the plurality of LSIs write the image. Need to share memory. In this case, it is necessary to synchronize separate LSIs, and there is a problem that the amount of processing for synchronization processing increases.
 そこで、非特許文献1には、時間の異なる画像に含まれる他のタイルへの参照を禁止することを示す情報を符号化ストリーム中に記載する方法が記載されている。この場合、図1Bに示すように、時間的に異なる画像(フレーム(t-1))であっても、対象ブロックは同一のタイル(タイル2)内の参照ブロックを参照する必要がある。これにより、複数のLSIで並列処理を行う場合に、各LSIは、参照画像を共有のメモリに出力する必要がなくなる。なお、以降では、このような制限があるタイルのことをMC制限タイルと呼ぶ。 Therefore, Non-Patent Document 1 describes a method for describing in an encoded stream information indicating that reference to other tiles included in images having different times is prohibited. In this case, as shown in FIG. 1B, the target block needs to refer to the reference block in the same tile (tile 2) even in the temporally different image (frame (t-1)). This eliminates the need for each LSI to output a reference image to a shared memory when parallel processing is performed by a plurality of LSIs. In the following, tiles having such restrictions are referred to as MC restricted tiles.
 しかしながら、これを実現するためには、次のような課題があることを本発明者は見出した。 However, the present inventor has found that there are the following problems in order to realize this.
 (1)同一タイル内の領域を参照している場合であっても、小数精度の画素である小数画素を算出するために、異なるタイルが参照される場合がある。 (1) Even when referring to an area within the same tile, different tiles may be referred to in order to calculate a decimal pixel that is a pixel with decimal precision.
 小数画素の生成方法を、図2を用いて説明する。図2の(a)は左端のタイル境界から1/4画素ずれた位置の画素値を生成するためのフィルタの参照画素を示す。線で結んだ整数画素が参照される。この場合、タイル領域外の3画素が参照される。 A method for generating a decimal pixel will be described with reference to FIG. FIG. 2A shows a reference pixel of a filter for generating a pixel value at a position shifted by ¼ pixel from the leftmost tile boundary. Integer pixels connected by lines are referenced. In this case, three pixels outside the tile area are referred to.
 図2の(b)は左端のタイル境界から1/2画素ずれた位置の画素値を生成するためのフィルタの参照画素を示す。この場合、タイル領域外の3画素が参照される。図2の(c)は左端のタイル境界から3/4画素ずれた位置の画素値を生成するためのフィルタの参照画素を示す。この場合、タイル領域外の2画素が参照される。 (B) of FIG. 2 shows a reference pixel of a filter for generating a pixel value at a position shifted by 1/2 pixel from the leftmost tile boundary. In this case, three pixels outside the tile area are referred to. FIG. 2C shows a reference pixel of a filter for generating a pixel value at a position shifted by 3/4 pixel from the leftmost tile boundary. In this case, two pixels outside the tile area are referred to.
 同様に考えた場合、図2の(d)に示す左端のタイル境界から2画素と3/4画素ずれた位置より右側ではタイル領域外が参照されない。このため、異なる時間の画像信号を参照する場合において、前述のようにタイルを跨がない参照を実現するためには、同一タイル内の整数画素、又は、タイル境界から2と3/4画素より内側の小数画素を参照する必要がある。ただし、画面端において、このような処理を切り替えることは処理量の増大及び回路規模の拡大をもたらす。 In the same way, the outside of the tile area is not referred to on the right side of the position shifted by 2/4 and 3/4 pixels from the leftmost tile boundary shown in FIG. For this reason, when referring to image signals at different times, in order to realize a reference that does not cross tiles as described above, from integer pixels in the same tile or 2 and 3/4 pixels from the tile boundary It is necessary to refer to the inner decimal pixel. However, switching such processing at the screen edge results in an increase in processing amount and an increase in circuit scale.
 (2)スキップモード及びマージモードと呼ばれる、周囲の処理済みのブロックの動きベクトルが再利用されるモードがある。ここで、動きベクトルとは、対象ブロックと参照ブロックとの相対位置を示す情報であり、例えば、水平成分及び垂直成分を含む。このモードが選択された場合、再利用対象のブロックがタイル境界を跨いだ参照を行わない場合であっても、対象ブロックで動きベクトルが再利用された場合に境界を跨いだ参照が行われる場合がある。よって、画像符号化装置及び画像復号装置は、このことを確認する必要がある。 (2) There is a mode called a skip mode and a merge mode in which motion vectors of surrounding processed blocks are reused. Here, the motion vector is information indicating a relative position between the target block and the reference block, and includes, for example, a horizontal component and a vertical component. When this mode is selected, even if the block to be reused does not reference across the tile boundary, the reference across the boundary is performed when the motion vector is reused in the target block There is. Therefore, the image encoding device and the image decoding device need to confirm this.
 以下、スキップモード及びマージモードで用いられる動きベクトル(以降、スキップ・マージベクトル)の導出の際に参照される領域を、図3A~図3Cを用いて説明する。 Hereinafter, regions to be referred to when deriving motion vectors used in the skip mode and merge mode (hereinafter, skip / merge vectors) will be described with reference to FIGS. 3A to 3C.
 図3Aは、画面内での隣接ブロックの動きベクトルを参照する場合を示す図である。対象ブロックXのスキップ・マージベクトルの導出では、対象ブロックXの周辺に位置するブロックA0、A1、B0、B1及びB2の動きベクトルが参照される可能性がある。 FIG. 3A is a diagram showing a case where a motion vector of an adjacent block in the screen is referred to. In the derivation of the skip / merge vector of the target block X, the motion vectors of the blocks A0, A1, B0, B1, and B2 located around the target block X may be referred to.
 また、時間的に異なるピクチャの動きベクトルを参照する方法もある。図3Bに示すように、時間的に異なるピクチャの対象ブロックXと同じ位置にあるブロックC、又は、ブロックCの右下に位置するブロックHの動きベクトルが参照される。 There is also a method of referring to motion vectors of pictures that differ in time. As shown in FIG. 3B, the motion vector of the block C located at the same position as the target block X of the temporally different picture or the block H located at the lower right of the block C is referred to.
 図3Cは、タイル境界に位置する対象ブロックXが、当該対象ブロックXの右上のブロックB0の動きベクトルMV0を再利用する場合の例を示す図である。図3Cに示すように、ブロックB0を処理する場合には、動きベクトルMV0はタイル境界を跨がず、ブロックB0と同一タイル(タイル2)内の参照ブロックR0が参照される。一方で、動きベクトルMV0が対象ブロックXで再利用された場合、動きベクトルMV0はタイル境界を跨ぎ、他のタイル(タイル1)の参照ブロックR1が参照される。このような場合が発生するので、画像符号化装置又は画像復号装置は、これを確認する必要がある。ただし、全ての動き予測時に動きベクトルがタイル境界を跨ぐかを確認することは、処理量の増大及び回路規模の拡大をもたらす。 FIG. 3C is a diagram illustrating an example in which the target block X located at the tile boundary reuses the motion vector MV0 of the block B0 at the upper right of the target block X. As shown in FIG. 3C, when processing the block B0, the motion vector MV0 does not cross the tile boundary, and the reference block R0 in the same tile (tile 2) as the block B0 is referred to. On the other hand, when the motion vector MV0 is reused in the target block X, the motion vector MV0 straddles the tile boundary, and the reference block R1 of another tile (tile 1) is referred to. Since such a case occurs, the image encoding device or the image decoding device needs to confirm this. However, checking whether the motion vector crosses the tile boundary at the time of all motion predictions leads to an increase in processing amount and an increase in circuit scale.
 また、これらのタイル端の処理として、画像信号の画面端の処理とは異なる処理が必要である。なぜならば、画面端の場合には隣接する画素が無い場合の処理が、非特許文献1に記載されているが、動き参照を制限したタイル端の処理は規定されていない。これにより、前述のような処理が必要となる。 Also, as processing of these tile edges, processing different from the processing of the screen edges of the image signal is necessary. This is because, in the case of the screen edge, the process in the case where there is no adjacent pixel is described in Non-Patent Document 1, but the tile edge process in which the motion reference is restricted is not defined. As a result, the processing as described above is required.
 上記のように、タイルに分割された領域をそれぞれ並列処理する場合に、特殊な領域端処理を行わなければならないという課題があることを本発明者は見出した。 As described above, the present inventor has found that there is a problem that special area edge processing has to be performed when each of the areas divided into tiles is processed in parallel.
 より詳しく説明すると、画像符号化装置又は画像復号装置が、対象の画像信号を並列処理(並列符号化及び復号)するために処理が必要である。この処理により処理時間が増加することで、高速処理の実現が困難である。または、この処理を高速に行うためには回路規模を増大させることが必要という課題がある。 More specifically, processing is necessary for the image encoding device or the image decoding device to perform parallel processing (parallel encoding and decoding) on the target image signal. Since the processing time increases due to this processing, it is difficult to realize high-speed processing. Alternatively, there is a problem that it is necessary to increase the circuit scale in order to perform this processing at high speed.
 以下の実施の形態では、並列処理が可能な画像符号化装置又は画像復号装置であって、対象の画像信号を高速に符号化又は復号することができる画像符号化装置又は画像復号装置について説明する。 In the following embodiments, an image encoding device or an image decoding device capable of parallel processing, which can encode or decode a target image signal at high speed, will be described. .
 また、以下の実施の形態では、画像符号化装置又は画像復号装置における処理量を低減できる画像符号化方法、画像復号方法、又は動き補償方法について説明する。 In the following embodiment, an image encoding method, an image decoding method, or a motion compensation method that can reduce the processing amount in the image encoding device or the image decoding device will be described.
 本発明の一態様に係る動き補償方法は、複数のタイルに含まれる対象ブロックを、当該対象ブロックの周囲のブロックの動きベクトルを用いる予測モードを用いて動き補償を行う動き補償方法であって、前記周囲のブロックの前記動きベクトルが、前記対象ブロックが含まれる対象タイルとは異なるタイルに含まれる参照ブロックを参照する場合、当該参照ブロックの画素値を補完する補完ステップと、補完された前記画素値を用いて前記動き補償を行う動き補償ステップとを含む。 A motion compensation method according to an aspect of the present invention is a motion compensation method for performing motion compensation on a target block included in a plurality of tiles using a prediction mode using a motion vector of a block around the target block, When the motion vector of the surrounding block refers to a reference block included in a tile different from the target tile in which the target block is included, a complementing step for complementing pixel values of the reference block and the complemented pixel A motion compensation step of performing the motion compensation using a value.
 これによれば、当該動き補償方法は、他のタイルの画素値が参照される場合には、当該他のタイルの画素値を補完生成する。これにより、他のタイルの画素値を用いずに、動き補償を行うことができる。これにより、画像復号装置は、符号化ビットストリームを適切に復号できる。 According to this, when the pixel value of another tile is referred to, the motion compensation method complements and generates the pixel value of the other tile. Thereby, motion compensation can be performed without using pixel values of other tiles. Thereby, the image decoding apparatus can appropriately decode the encoded bit stream.
 例えば、前記補完ステップでは、前記対象ブロックに含まれる画素値を用いて、前記参照ブロックの前記画素値を補完してもよい。 For example, in the complementing step, the pixel value of the reference block may be supplemented using a pixel value included in the target block.
 これによれば、当該動き補償方法は、適切に他のタイルの画素値を補完生成できる。 According to this, the motion compensation method can appropriately complement and generate pixel values of other tiles.
 例えば、前記補完ステップでは、前記対象ブロックに含まれ、かつ前記参照ブロックに最も近い画素の画素値を、前記参照ブロックに含まれる複数の画素値にコピーすることで、前記参照ブロックの前記画素値を補完してもよい。 For example, in the complementing step, the pixel value of the pixel that is included in the target block and that is closest to the reference block is copied to a plurality of pixel values that are included in the reference block. May be supplemented.
 これによれば、当該動き補償方法は、例えば、画面外の画素値が参照される場合の処理と、同様の処理により、他のタイルの画素値を補完生成できる。これにより、回路規模の増加を抑制できる。 According to this, in the motion compensation method, for example, pixel values of other tiles can be complementarily generated by a process similar to a process when a pixel value outside the screen is referred to. Thereby, an increase in circuit scale can be suppressed.
 例えば、前記補完ステップでは、前記対象ブロックと前記参照ブロックとが隣接する場合、当該隣接境界を軸として、前記対象ブロックに含まれる複数の画素の画素値を折り返して、前記参照ブロックに含まれる複数の画素値にコピーすることで、前記参照ブロックの前記画素値を補完してもよい。 For example, in the complementing step, when the target block and the reference block are adjacent to each other, the pixel values of a plurality of pixels included in the target block are folded around the adjacent boundary as an axis, and a plurality of pixels included in the reference block are included. The pixel value of the reference block may be complemented by copying to the pixel value.
 これによれば、当該動き補償方法は、例えば、グラデーション画像などのように、徐々に映像に変化がある場合などにおいて、画質を向上できる。 According to this, the motion compensation method can improve the image quality when the video gradually changes, such as a gradation image.
 例えば、前記補完ステップでは、前記対象ブロックに含まれる複数の画素値の平均値を算出し、当該平均値を、前記参照ブロックに含まれる複数の画素値として補完してもよい。 For example, in the complementing step, an average value of a plurality of pixel values included in the target block may be calculated, and the average value may be supplemented as a plurality of pixel values included in the reference block.
 これによれば、当該動き補償方法は、画質の劣化を抑制できる。 According to this, the motion compensation method can suppress degradation of image quality.
 また、本発明の一態様に係る画像符号化方法は、前記動き補償方法を用いる画像符号化方法であって、前記周囲のブロックの前記動きベクトルが、前記対象タイルとは異なる前記タイルに含まれる前記参照ブロックを参照することを特定するための情報を生成し、当該情報を含む符号化ビットストリームを生成する。 The image coding method according to an aspect of the present invention is an image coding method using the motion compensation method, wherein the motion vector of the surrounding block is included in the tile different from the target tile. Information for specifying that the reference block is referred to is generated, and an encoded bit stream including the information is generated.
 また、本発明の一態様に係る画像符号化方法は、画像を複数のタイルに分割する分割ステップと、前記複数のタイルに含まれる対象ブロックを、当該対象ブロックの周囲のブロックの動きベクトルを用いる予測モードを含む複数の予測モードのいずれかを用いて符号化する符号化ステップとを含み、前記符号化ステップでは、前記対象ブロックを、前記対象ブロックが含まれる対象タイルとは異なるタイルに含まれるブロックを参照する動きベクトルを用いずに符号化する。 The image coding method according to an aspect of the present invention uses a dividing step of dividing an image into a plurality of tiles, and uses a motion vector of a block around the target block for the target block included in the plurality of tiles. Encoding using one of a plurality of prediction modes including a prediction mode, and in the encoding step, the target block is included in a tile different from the target tile including the target block. Encode without using motion vectors that reference blocks.
 これによれば、当該画像符号化方法は、他のタイルを参照する動きベクトルが用いられずに符号化された符号化ビットストリームを生成できる。これにより、画像復号装置は、当該符号化ビットストリームを適切に復号できる。また、画像復号装置において、特殊な処理を行う必要がないので、画像復号装置における処理量を低減できる。 According to this, the image encoding method can generate an encoded bitstream that is encoded without using a motion vector that refers to another tile. Thereby, the image decoding apparatus can appropriately decode the encoded bit stream. In addition, since it is not necessary to perform special processing in the image decoding apparatus, the processing amount in the image decoding apparatus can be reduced.
 例えば、前記符号化ステップでは、前記周囲のブロックの前記動きベクトルが前記対象タイルとは異なる前記タイルに含まれるブロックを参照するか否かを判定し、前記周囲のブロックの前記動きベクトルが前記対象タイルとは異なる前記タイルに含まれる前記ブロックを参照すると判定された場合、前記周囲のブロックの前記動きベクトル以外の動きベクトルを用いて前記対象ブロックを符号化してもよい。 For example, in the encoding step, it is determined whether or not the motion vector of the surrounding block refers to a block included in the tile different from the target tile, and the motion vector of the surrounding block is the target. When it is determined that the block included in the tile different from the tile is referred to, the target block may be encoded using a motion vector other than the motion vector of the surrounding block.
 これによれば、当該画像符号化方法は、動きベクトルが他のタイルを参照するか否かを判定し、参照する場合には、当該動きベクトルを使用しない。これにより、当該画像符号化方法は、適切に他のタイルを参照する動きベクトルの使用を禁止できるので、符号化効率の低下を抑制できる。 According to this, the image coding method determines whether or not the motion vector refers to another tile, and does not use the motion vector when referring to the tile. Thereby, since the said image coding method can prohibit use of the motion vector which refers another tile appropriately, the fall of coding efficiency can be suppressed.
 例えば、前記符号化ステップでは、前記対象ブロックがタイル境界から一定値以内に位置するか否かを判定し、前記対象ブロックが前記タイル境界から前記一定値以内に位置すると判定された場合、前記周囲のブロックの前記動きベクトルをそのまま用いるモードであるスキップモード及びマージモード以外の予測モードを用いて、前記対象ブロックを符号化してもよい。 For example, in the encoding step, it is determined whether or not the target block is located within a certain value from the tile boundary, and when it is determined that the target block is located within the certain value from the tile boundary, The target block may be encoded using a prediction mode other than the skip mode and the merge mode, which are modes in which the motion vector of the block is used as it is.
 これによれば、当該画像符号化方法は、対象ブロックがタイル境界から一定値以内に位置するか否かに基づき、動きベクトルが他のタイルを参照するか否かを判定する。これにより、画像符号化装置の処理量を低減できる。 According to this, the image encoding method determines whether or not the motion vector refers to another tile based on whether or not the target block is located within a certain value from the tile boundary. Thereby, the processing amount of an image coding apparatus can be reduced.
 また、本発明の一態様に係る画像復号方法は、前記画像符号化方法により生成された符号化ビットストリームを復号する。 The image decoding method according to an aspect of the present invention decodes the encoded bitstream generated by the image encoding method.
 これによれば、当該画像復号方法は、他のタイルを参照する動きベクトルが用いられずに符号化された符号化ビットストリームを復号する。これにより、画像復号装置は、該符号化ビットストリームを適切に復号できる。また、画像復号装置において、特殊な処理を行う必要がないので、画像復号装置における処理量を低減できる。 According to this, the image decoding method decodes an encoded bitstream that is encoded without using a motion vector that refers to another tile. Thereby, the image decoding apparatus can appropriately decode the encoded bit stream. In addition, since it is not necessary to perform special processing in the image decoding apparatus, the processing amount in the image decoding apparatus can be reduced.
 これによれば、画像復号装置の処理量を低減できる、又は、復号画像の画質を向上できる。 According to this, the processing amount of the image decoding apparatus can be reduced, or the image quality of the decoded image can be improved.
 また、本発明の一態様に係る画像符号化装置は、処理回路と、前記処理回路からアクセス可能な記憶装置とを備え、前記処理回路は、前記記憶装置を用いて、前記動き補償方法を実行する。 An image encoding device according to an aspect of the present invention includes a processing circuit and a storage device accessible from the processing circuit, and the processing circuit executes the motion compensation method using the storage device. To do.
 これによれば、当該画像符号化装置は、他のタイルの画素値が参照される場合には、当該他のタイルの画素値を補完生成する。これにより、他のタイルの画素値を用いずに、動き補償を行うことができる。また、画像復号装置が同様の処理を行うことにより、符号化ビットストリームを適切に復号できる。 According to this, when the pixel value of another tile is referred to, the image encoding device complementarily generates the pixel value of the other tile. Thereby, motion compensation can be performed without using pixel values of other tiles. Further, the image decoding apparatus performs the same processing, so that the encoded bitstream can be appropriately decoded.
 また、本発明の一態様に係る画像復号装置は、処理回路と、前記処理回路からアクセス可能な記憶装置とを備え、前記処理回路は、前記記憶装置を用いて、前記動き補償方法を実行する。 An image decoding device according to one embodiment of the present invention includes a processing circuit and a storage device accessible from the processing circuit, and the processing circuit executes the motion compensation method using the storage device. .
 これによれば、当該画像復号装置は、他のタイルの画素値が参照される場合には、当該他のタイルの画素値を補完生成する。これにより、他のタイルの画素値を用いずに、動き補償を行うことができる。これにより、画像復号装置は、符号化ビットストリームを適切に復号できる。 According to this, when the pixel value of another tile is referred to, the image decoding apparatus complements and generates the pixel value of the other tile. Thereby, motion compensation can be performed without using pixel values of other tiles. Thereby, the image decoding apparatus can appropriately decode the encoded bit stream.
 また、本発明の一態様に係る画像符号化装置は、処理回路と、前記処理回路からアクセス可能な記憶装置とを備え、前記処理回路は、前記記憶装置を用いて、前記画像符号化方法を実行する。 An image encoding device according to an aspect of the present invention includes a processing circuit and a storage device accessible from the processing circuit, and the processing circuit performs the image encoding method using the storage device. Execute.
 これによれば、当該画像符号化装置は、他のタイルを参照する動きベクトルが用いられずに符号化された符号化ビットストリームを生成できる。これにより、画像復号装置は、当該符号化ビットストリームを適切に復号できる。また、画像復号装置において、特殊な処理を行う必要がないので、画像復号装置における処理量を低減できる。 According to this, the image encoding apparatus can generate an encoded bitstream that is encoded without using a motion vector that refers to another tile. Thereby, the image decoding apparatus can appropriately decode the encoded bit stream. In addition, since it is not necessary to perform special processing in the image decoding apparatus, the processing amount in the image decoding apparatus can be reduced.
 また、本発明の一態様に係る画像復号装置は、処理回路と、前記処理回路からアクセス可能な記憶装置とを備え、前記処理回路は、前記記憶装置を用いて、前記画像復号方法を実行する。 An image decoding device according to an aspect of the present invention includes a processing circuit and a storage device accessible from the processing circuit, and the processing circuit executes the image decoding method using the storage device. .
 これによれば、当該画像復号装置は、他のタイルを参照する動きベクトルが用いられずに符号化された符号化ビットストリームを復号する。これにより、画像復号装置は、該符号化ビットストリームを適切に復号できる。また、画像復号装置において、特殊な処理を行う必要がないので、画像復号装置における処理量を低減できる。 According to this, the image decoding apparatus decodes an encoded bitstream that is encoded without using a motion vector that refers to another tile. Thereby, the image decoding apparatus can appropriately decode the encoded bit stream. In addition, since it is not necessary to perform special processing in the image decoding apparatus, the processing amount in the image decoding apparatus can be reduced.
 また、本発明の一態様に係る画像符号化復号装置は、前記画像符号化装置と、前記画像復号装置とを備える。 Also, an image encoding / decoding device according to an aspect of the present invention includes the image encoding device and the image decoding device.
 なお、これらの包括的または具体的な態様は、システム、方法、集積回路、コンピュータプログラムまたはコンピュータ読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラム及び記録媒体の任意な組み合わせで実現されてもよい。 Note that these comprehensive or specific modes may be realized by a system, a method, an integrated circuit, a computer program, or a recording medium such as a computer-readable CD-ROM, and the system, method, integrated circuit, and computer program. Also, any combination of recording media may be realized.
 以下、本発明の実施の形態について、図面を参照しながら説明する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings.
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置及び接続形態、ステップ、ステップの順序などは、一例であり、本発明を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。 It should be noted that each of the embodiments described below shows a comprehensive or specific example. The numerical values, shapes, materials, constituent elements, arrangement positions and connecting forms of the constituent elements, steps, order of steps, and the like shown in the following embodiments are merely examples, and are not intended to limit the present invention. In addition, among the constituent elements in the following embodiments, constituent elements that are not described in the independent claims indicating the highest concept are described as optional constituent elements.
 (実施の形態1)
 本実施の形態では、並列処理を実現する符号化ストリームを生成するための画像符号化方法について説明する。本実施の形態では、ビットストリームは、画像符号化装置が容易に並列処理を可能となる情報を含む。すなわち、ピクチャが分割された領域であるタイルに含まれるブロックが、動き予測、動き補償処理において、同一時間又は異なる時間のピクチャに含まれる同一タイル内の画素しか参照しない。
(Embodiment 1)
In the present embodiment, an image encoding method for generating an encoded stream that realizes parallel processing will be described. In the present embodiment, the bitstream includes information that allows the image encoding device to easily perform parallel processing. That is, a block included in a tile which is a region into which a picture is divided refers only to pixels in the same tile included in a picture at the same time or different times in motion prediction and motion compensation processing.
 まず、本実施の形態に係る画像符号化装置100の構成を説明する。図4は、本実施の形態に係る画像符号化装置100の構成例を示すブロック図である。 First, the configuration of the image encoding device 100 according to the present embodiment will be described. FIG. 4 is a block diagram illustrating a configuration example of the image encoding device 100 according to the present embodiment.
 画像符号化装置100は、入力画像121を圧縮符号化することで符号化信号129(符号化ビットストリーム)を生成する。例えば、画像符号化装置100には、入力画像121がブロック毎に入力される。画像符号化装置100は、入力された入力画像121に、変換、量子化及び可変長符号化を行うことで、符号化信号129を生成する。 The image encoding device 100 generates an encoded signal 129 (encoded bit stream) by compressing and encoding the input image 121. For example, the input image 121 is input to the image encoding device 100 for each block. The image encoding device 100 generates an encoded signal 129 by performing transformation, quantization, and variable length encoding on the input image 121 that has been input.
 図4に示す画像符号化装置100は、減算器101と、変換量子化部102と、エントロピー符号化部103と、逆量子化逆変換部104と、加算器105と、デブロッキング処理部106と、メモリ107と、イントラ予測部108と、動き補償部109と、動き検出部110と、切換スイッチ112とを備える。 4 includes a subtractor 101, a transform quantization unit 102, an entropy coding unit 103, an inverse quantization inverse transform unit 104, an adder 105, and a deblocking processing unit 106. , A memory 107, an intra prediction unit 108, a motion compensation unit 109, a motion detection unit 110, and a changeover switch 112.
 減算器101は、入力画像121と予測信号127との差分である残差信号122(予測誤差又は差分信号とも呼ぶ)を算出する。 The subtractor 101 calculates a residual signal 122 (also referred to as a prediction error or a difference signal) that is a difference between the input image 121 and the prediction signal 127.
 変換量子化部102は、空間領域の残差信号122を周波数領域の変換係数に変換する。例えば、変換量子化部102は、残差信号122にDCT(Discrete Cosine Transform)変換を行うことで変換係数を生成する。さらに、変換量子化部102は、変換係数を量子化することで量子化係数123を生成する。 The transform quantization unit 102 transforms the spatial domain residual signal 122 into a frequency domain transform coefficient. For example, the transform quantization unit 102 generates a transform coefficient by performing DCT (Discrete Cosine Transform) transform on the residual signal 122. Further, the transform quantization unit 102 generates a quantized coefficient 123 by quantizing the transform coefficient.
 エントロピー符号化部103は、量子化係数123を可変長符号化することで符号化信号129を生成する。また、エントロピー符号化部103は、動き検出部110によって検出された動きデータ128(例えば、動きベクトル)を符号化し、得られた信号を符号化信号129に含めて出力する。 The entropy encoding unit 103 generates an encoded signal 129 by performing variable length encoding on the quantization coefficient 123. In addition, the entropy encoding unit 103 encodes the motion data 128 (for example, a motion vector) detected by the motion detection unit 110 and includes the obtained signal in the encoded signal 129 for output.
 逆量子化逆変換部104は、復元した変換係数を逆変換することで残差信号124を復元する。なお、復元された残差信号124は、量子化により情報の一部が失われているので、減算器101で生成された残差信号122とは一致しない。すなわち、復元された残差信号124は、量子化誤差を含んでいる。 The inverse quantization inverse transform unit 104 restores the residual signal 124 by inversely transforming the restored transform coefficient. The restored residual signal 124 does not match the residual signal 122 generated by the subtractor 101 because a part of the information is lost due to quantization. That is, the restored residual signal 124 includes a quantization error.
 加算器105は、復元された残差信号124と予測信号127とを加算することで、ローカル復号画像125を生成する。 The adder 105 generates the local decoded image 125 by adding the restored residual signal 124 and the prediction signal 127.
 デブロッキング処理部106は、ローカル復号画像125にデブロッキングフィルタ処理を行うことでローカル復号画像126を生成する。 The deblocking processing unit 106 generates a local decoded image 126 by performing a deblocking filter process on the local decoded image 125.
 メモリ107は、動き補償に用いられる参照画像を格納するためのメモリである。具体的には、メモリ107は、デブロッキングフィルタ処理が施された後のローカル復号画像126を格納する。また、メモリ107は処理済みの動きデータも格納する。 The memory 107 is a memory for storing a reference image used for motion compensation. Specifically, the memory 107 stores the local decoded image 126 after the deblocking filter process is performed. The memory 107 also stores processed motion data.
 イントラ予測部108は、イントラ予測を行うことで、予測信号(イントラ予測信号)を生成する。具体的には、イントラ予測部108は、加算器105によって生成されたローカル復号画像125における、符号化対象ブロック(入力画像121)の周囲の画像を参照してイントラ予測を行うことで、イントラ予測信号を生成する。 The intra prediction unit 108 generates a prediction signal (intra prediction signal) by performing intra prediction. Specifically, the intra prediction unit 108 performs intra prediction by referring to images around the encoding target block (the input image 121) in the local decoded image 125 generated by the adder 105, so that intra prediction is performed. Generate a signal.
 動き検出部110は、入力画像121と、メモリ107に格納された参照画像との間の動きデータ128(例えば、動きベクトル)を検出する。また、動き検出部110は、符号化済みの動きデータを用いて、スキップベクトル及びマージベクトルに関する演算も行う。 The motion detection unit 110 detects motion data 128 (for example, a motion vector) between the input image 121 and the reference image stored in the memory 107. In addition, the motion detection unit 110 also performs calculations regarding the skip vector and the merge vector using the encoded motion data.
 動き補償部109は、検出された動きデータ128に基づいて動き補償を行うことで、予測信号(インター予測信号)を生成する。 The motion compensation unit 109 generates a prediction signal (inter prediction signal) by performing motion compensation based on the detected motion data 128.
 切換スイッチ112は、イントラ予測信号及びインター予測信号のいずれかを選択し、選択した信号を予測信号127として減算器101及び加算器105に出力する。 The changeover switch 112 selects either the intra prediction signal or the inter prediction signal, and outputs the selected signal to the subtracter 101 and the adder 105 as the prediction signal 127.
 以上の構成により、本実施の形態に係る画像符号化装置100は、画像データを圧縮符号化する。 With the above configuration, the image encoding apparatus 100 according to the present embodiment compresses and encodes image data.
 次に、画像符号化装置100の動作を説明する。図5は、本実施の形態に係る画像符号化装置100による動き予測モードを判定する際の処理の概要を示すフローチャートである。 Next, the operation of the image encoding device 100 will be described. FIG. 5 is a flowchart illustrating an outline of processing when the motion prediction mode is determined by the image coding apparatus 100 according to the present embodiment.
 図5に示す処理では、動きベクトルの再利用が制限される。まず、動き検出部110は、メモリ107から、スキップ・マージベクトルの候補となる動き情報を取得する(S101)。また、動き検出部110は、例えば、図3A及び図3Bに示す隣接ブロックから、スキップ・マージベクトルの候補を導出する。具体的には、動き検出部110は、スキップベクトルの導出方法、及びマージベクトルの導出方法として、非特許文献1に示す方法を用いる。 In the process shown in FIG. 5, the reuse of motion vectors is limited. First, the motion detection unit 110 acquires motion information that is a skip / merge vector candidate from the memory 107 (S101). Also, the motion detection unit 110 derives skip / merge vector candidates from, for example, adjacent blocks illustrated in FIGS. 3A and 3B. Specifically, the motion detection unit 110 uses the method shown in Non-Patent Document 1 as a skip vector derivation method and a merge vector derivation method.
 次に、動き検出部110は、取得したスキップ・マージベクトルがタイル境界を跨ぐかどうかを判定する(S102)。具体的には、動き検出部110は、隣接ブロックの動きベクトルの始点を現在の対象ブロックの座標に変換し、変換後の動きベクトルの参照先が他のタイルであるかを判定する。また、動き検出部110は、変換後の動きベクトルの参照先が他のタイルでない場合であっても、当該動きベクトルの参照先が、タイル境界からの距離が2と3/4画素未満である小数画素である場合に、変換後の動きベクトルがタイル境界を跨ぐと判定してもよい。つまり、スキップ・マージベクトルがタイル境界を跨ぐとは、言い換えると、スキップ・マージベクトルが他のタイルを参照する場合(他のタイルの画素値を用いて予測画像が生成される場合)である。 Next, the motion detection unit 110 determines whether or not the acquired skip / merge vector crosses the tile boundary (S102). Specifically, the motion detection unit 110 converts the start point of the motion vector of the adjacent block into the coordinates of the current target block, and determines whether the reference destination of the converted motion vector is another tile. In addition, even when the reference destination of the motion vector after conversion is not another tile, the motion detection unit 110 has a reference destination of the motion vector that is less than 2 and 3/4 pixels from the tile boundary. If it is a decimal pixel, it may be determined that the converted motion vector straddles the tile boundary. In other words, the skip / merge vector crosses the tile boundary is, in other words, the case where the skip / merge vector refers to another tile (when the predicted image is generated using the pixel value of the other tile).
 変換後の動きベクトルがタイル境界を跨がない場合(S102でNO)、動き検出部110は、その動きベクトルを使った場合におけるコストを算出する(S103)。なお、ここでコストとは、例えば、そのスキップ・マージベクトルを示すための符号量と、予測画像(そのベクトルで参照される画像)と符号化対象の入力画像との差分との重み付加算等により算出されるコスト値である。また、動き検出を行った場合のコスト値が算出され、複数のコスト値が比較されることにより、最適な動き予測モードが決定される。また、コスト値がこのように規定される場合には、コスト値が最小となる場合が最適な動き予測モードである。なお、コスト算出の方法はこの限りではないが、簡単のため、ここではコスト値が最小となる場合を最適な動き予測モードとする場合に関して説明する。 When the converted motion vector does not cross the tile boundary (NO in S102), the motion detection unit 110 calculates the cost when using the motion vector (S103). Here, the cost is, for example, a weighted addition between a code amount for indicating the skip / merge vector, and a difference between a predicted image (an image referred to by the vector) and an input image to be encoded, or the like. The cost value calculated by In addition, a cost value when motion detection is performed is calculated, and a plurality of cost values are compared to determine an optimal motion prediction mode. Further, when the cost value is defined in this way, the optimum motion prediction mode is when the cost value is minimized. Note that the cost calculation method is not limited to this, but for the sake of simplicity, the case where the cost value is minimized is described as the optimal motion prediction mode.
 一方、スキップ・マージベクトルがタイル境界を超えると判定された場合(S102でYES)、動き検出部110は、当該スキップ・マージベクトルを使用しないと決定する(S104)。例えば、動き検出部110は、当該スキップ・マージベクトルのコスト値を最大値に設定することで、当該スキップ・マージベクトルが使用されないようにする。なお、設定される値は最大値である必要はなく、最適値として選択されない値であれば任意の値でよい。また、スキップ・マージベクトルの使用を禁止する方法は、コスト値を変更する方法以外であってもよい。 On the other hand, when it is determined that the skip / merge vector exceeds the tile boundary (YES in S102), the motion detection unit 110 determines not to use the skip / merge vector (S104). For example, the motion detection unit 110 sets the cost value of the skip / merge vector to the maximum value so that the skip / merge vector is not used. Note that the set value does not need to be the maximum value, and may be an arbitrary value as long as it is a value that is not selected as the optimum value. Further, the method of prohibiting the use of the skip / merge vector may be other than the method of changing the cost value.
 ステップS101で取得されたスキップ・マージベクトルの候補全てに対する処理が完了していない場合(S105でNO)、動き検出部110は、次の、スキップ・マージベクトルの候補に関してコスト計算を行う(S102~S104)。 If the processing for all skip / merge vector candidates acquired in step S101 has not been completed (NO in S105), the motion detection unit 110 performs cost calculation for the next skip / merge vector candidates (S102 to S102). S104).
 全てのスキップ・マージベクトルの候補に関してコスト計算が完了した場合(S105でYES)、動き検出部110は、対象ブロックに対する動き検出を行い、当該動き検出のコスト値を算出する(S106)。なお、この際の動き検出の探索範囲は、前述のタイル境界を超えない範囲である。また、小数画素に関しては境界から2と3/4画素未満も探索範囲外に設定される。 When the cost calculation has been completed for all skip / merge vector candidates (YES in S105), the motion detection unit 110 performs motion detection on the target block and calculates a cost value for the motion detection (S106). Note that the motion detection search range at this time is a range that does not exceed the tile boundary. For decimal pixels, less than 2 and 3/4 pixels from the boundary are set outside the search range.
 最後に、動き検出部110は、算出された全てのコスト値のうち最小のコスト値に対する動き予測モードを、使用する動き予測モードに決定する(S107)。 Finally, the motion detection unit 110 determines the motion prediction mode to be used as the motion prediction mode for the minimum cost value among all the calculated cost values (S107).
 このように、動き検出部110は、スキップ・マージベクトルがタイル境界を跨ぐかどうかを判定することで、異なる時間のピクチャも含むタイル間での画素データの参照を無くすことができる。なお、このフローチャートは一例であり、さらに変形することにより、より処理量を削減することが可能である。 In this way, the motion detection unit 110 can eliminate the reference of pixel data between tiles including pictures at different times by determining whether or not the skip / merge vector crosses the tile boundary. Note that this flowchart is an example, and the processing amount can be further reduced by further modification.
 例えば、図5に示す処理では、動き検出部110は、タイル境界を跨ぐかどうかの判定において、参照先が小数画素の場合に、当該参照先が境界から2と3/4画素未満かどうかを判定したが、この場合、毎回、参照先が小数画素かどうかを判定する必要があるため、回路規模が大きくなる可能性がある。 For example, in the process illustrated in FIG. 5, in the determination of whether to cross the tile boundary, the motion detection unit 110 determines whether the reference destination is less than 2 and 3/4 pixels from the boundary when the reference destination is a decimal pixel. In this case, since it is necessary to determine whether or not the reference destination is a decimal pixel every time, the circuit scale may increase.
 これに対して、動き検出部110は、参照先が小数画素かどうかにかかわらず、当該参照先がタイル境界から3画素未満かどうかを判定し、参照先がタイル境界から3画素未満の場合に、タイル境界を跨ぐと判定してもよい。この場合、例えば、対象ブロックと同じ位置の整数画素が参照先の場合(ベクトル(0、0))も対象外になるが、動き検出部110は、ベクトル(0、0)は特別に許可してもよい。これにより、参照先が整数画素で、対象ブロックから1又は2画素ずれた場合が除外される。つまり、動き検出部110は、参照先がタイル境界から3画素未満であり、かつ、動きベクトルが(0、0)以外の場合に、タイル境界を跨ぐと判定してもよい。これにより、符号化効率の劣化を抑制できる。また、通常、同一位置(ベクトル(0、0))に関しては、容易に処理が可能なため、上記手法により、処理量を削減しつつ、符号化効率の劣化を抑制できる。 On the other hand, regardless of whether the reference destination is a decimal pixel, the motion detection unit 110 determines whether the reference destination is less than 3 pixels from the tile boundary, and when the reference destination is less than 3 pixels from the tile boundary. It may be determined that the tile boundary is crossed. In this case, for example, when the integer pixel at the same position as the target block is a reference destination (vector (0, 0)), the motion detection unit 110 specifically permits the vector (0, 0). May be. As a result, the case where the reference destination is an integer pixel and is shifted by 1 or 2 pixels from the target block is excluded. That is, the motion detection unit 110 may determine that the tile boundary crosses when the reference destination is less than 3 pixels from the tile boundary and the motion vector is other than (0, 0). Thereby, degradation of encoding efficiency can be suppressed. In general, since the same position (vector (0, 0)) can be easily processed, deterioration of the coding efficiency can be suppressed by the above method while reducing the processing amount.
 なお、さらに処理量を削減する変形例について図6を用いて説明する。図6は、本実施の形態に係る画像符号化装置100による動き予測モードを判定する際の処理の変形例のフローチャートである。 A modified example for further reducing the processing amount will be described with reference to FIG. FIG. 6 is a flowchart of a modification of the process when determining the motion prediction mode by the image coding apparatus 100 according to the present embodiment.
 図6に示す処理では、まず、動き検出部110は、対象ブロックがMC制限タイルの境界に位置するかどうかを確認する(S121)。具体的には、動き検出部110は、対象ブロックが、MC制限タイルの境界から一定数以内のブロックである場合に、対象ブロックがMC制限タイルの境界に位置すると判定する。ここでブロックとは、例えば、符号化ブロックと呼ばれる符号化処理の単位ブロックであってもよいし、LCU(最大符号化ブロック)又はCTB(符号化ツリーブロック)と呼ばれる単位のブロックであってもよい。 In the process shown in FIG. 6, first, the motion detection unit 110 confirms whether or not the target block is located at the boundary of the MC restriction tile (S121). Specifically, the motion detection unit 110 determines that the target block is located at the boundary of the MC restricted tiles when the target block is within a certain number of blocks from the boundary of the MC restricted tiles. Here, for example, the block may be a unit block of an encoding process called an encoding block, or may be a block of a unit called an LCU (maximum encoding block) or CTB (encoding tree block). Good.
 対象ブロックがタイル境界に位置しない場合(S122でNO)、動き検出部110は、ステップS101と同様にスキップ・マージベクトル候補を抽出する(S123)。次に、動き検出部110は、ステップS103と同様にコスト値を算出し(S124)、ステップS105と同様に、全ての候補を確認したかどうかを確認する(S125)。 If the target block is not located at the tile boundary (NO in S122), the motion detection unit 110 extracts skip / merge vector candidates as in step S101 (S123). Next, the motion detection unit 110 calculates a cost value in the same manner as in step S103 (S124), and confirms whether all candidates have been confirmed in the same manner as in step S105 (S125).
 一方、対象ブロックがタイル境界に位置する場合(S122でYES)、動き検出部110は、ステップS123~S125をスキップし、スキップ・マージベクトル候補の抽出及びコスト値の算出を行わない。 On the other hand, when the target block is located at the tile boundary (YES in S122), the motion detection unit 110 skips steps S123 to S125, and does not extract skip / merge vector candidates and calculate the cost value.
 次に、動き検出部110は、ステップS106と同様に動き検出を行い(S126)、ステップS107と同様に動き予測モードを判定する(S127)。 Next, the motion detection unit 110 performs motion detection as in step S106 (S126), and determines the motion prediction mode as in step S107 (S127).
 以上の処理により、ブロックごとの境界判定が不要となるため、図5よりも処理量を削減できる。 The above processing eliminates the need for boundary determination for each block, so the processing amount can be reduced as compared with FIG.
 なお、動き検出部110は、対象ブロックがタイル境界に位置する場合(S122でYES)であっても、(0、0)ベクトルが候補である場合だけ、コスト値を計算してもよい。これにより、演算量は少し増加するが、前述のようにベクトル(0、0)に関しては容易に処理が可能なため、処理量の増加は少ない。 Note that the motion detection unit 110 may calculate the cost value only when the target block is located at the tile boundary (YES in S122) and only when the (0, 0) vector is a candidate. As a result, the amount of calculation increases slightly, but as described above, the vector (0, 0) can be easily processed, and thus the amount of processing increases little.
 上記処理を行うことにより、例えば独立した符号化又は復号回路により、複数のタイルを並列処理する場合に、高速な処理を実現できる。 By performing the above processing, for example, when a plurality of tiles are processed in parallel by an independent encoding or decoding circuit, high-speed processing can be realized.
 以上のように、本実施の形態に係る画像符号化装置100は、画像を複数のタイルに分割し、複数のタイルに含まれる対象ブロックを、当該対象ブロックの周囲のブロックの動きベクトルを用いる予測モードを含む複数の予測モードのいずれかを用いて符号化する。例えば、複数の予測モードは、マージモード又はスキップモードを含む。マージモード及びスキップモードは、対象ブロックの周囲のブロックの動きベクトルをそのまま用いる予測モードである。つまり、マージモード及びスキップモードでは、動きベクトルの差分は符号化されない。なお、マージモード及びスキップモードにおいても、時間スケーリング等の処理は用いられる。また、画像符号化装置100は、対象ブロックを、対象ブロックが含まれる対象タイルとは異なるタイルに含まれるブロックを参照する動きベクトルを用いずに符号化する。なお、ここで、対象ブロックが含まれる対象タイルとは異なるタイルに含まれるブロックを参照する動きベクトルとは、上述したように、参照先が他のタイルである動きベクトル、及び、参照先が、他のブロックの整数画素を参照する小数画素である動きベクトルの少なくとも一方である。 As described above, the image coding apparatus 100 according to the present embodiment divides an image into a plurality of tiles, and uses the motion vectors of blocks around the target block for target blocks included in the plurality of tiles. Encoding is performed using one of a plurality of prediction modes including a mode. For example, the plurality of prediction modes include a merge mode or a skip mode. The merge mode and the skip mode are prediction modes that use the motion vectors of the blocks around the target block as they are. That is, in the merge mode and the skip mode, the motion vector difference is not encoded. Note that processing such as time scaling is also used in the merge mode and the skip mode. In addition, the image encoding device 100 encodes the target block without using a motion vector that refers to a block included in a tile different from the target tile including the target block. Here, as described above, the motion vector that refers to a block included in a tile different from the target tile including the target block is a motion vector whose reference destination is another tile, and the reference destination is It is at least one of motion vectors that are decimal pixels that refer to integer pixels of other blocks.
 具体的には、図5に示すように、画像符号化装置100は、周囲のブロックの動きベクトルが対象タイルとは異なるタイルに含まれるブロックを参照するか否かを判定する(S102)。また、画像符号化装置100は、周囲のブロックの動きベクトルが対象タイルとは異なるタイルに含まれるブロックを参照すると判定された場合(S102でYES)、当該動きベクトル以外の動きベクトルを用いて(当該動きベクトルを用いずに)対象ブロックを符号化する(S104)。 Specifically, as illustrated in FIG. 5, the image encoding device 100 determines whether or not to refer to a block included in a tile whose motion vector of surrounding blocks is different from the target tile (S102). Also, when it is determined that the motion vector of the surrounding block refers to a block included in a tile different from the target tile (YES in S102), the image coding apparatus 100 uses a motion vector other than the motion vector ( The target block is encoded (without using the motion vector) (S104).
 または、図6に示すように、画像符号化装置100は、対象ブロックがタイル境界から一定値以内に位置するか否かを判定する(S121)。画像符号化装置100は、対象ブロックがタイル境界から一定値以内に位置すると判定された場合(S122でYES)、周囲のブロックの動きベクトルを用いる予測モード(マージモード又はスキップモード)以外の予測モードを用いて(周囲のブロックの動きベクトルを用いる予測モードを用いずに)、対象ブロックを符号化する。 Or, as shown in FIG. 6, the image coding apparatus 100 determines whether or not the target block is located within a certain value from the tile boundary (S121). When it is determined that the target block is located within a certain value from the tile boundary (YES in S122), the image coding apparatus 100 has a prediction mode other than a prediction mode (merge mode or skip mode) that uses motion vectors of surrounding blocks. (Without using a prediction mode that uses motion vectors of surrounding blocks) is used to encode the target block.
 以上により、画像符号化装置100は、高速にMC制限タイル境界の処理を行うことができる。これにより、当該画像符号化装置100及び画像符号化方法は、画像復号装置において高速に処理することが可能となるビットストリームを生成できる。 As described above, the image encoding device 100 can perform processing of the MC restricted tile boundary at high speed. Thereby, the image coding apparatus 100 and the image coding method can generate a bit stream that can be processed at high speed in the image decoding apparatus.
 (実施の形態2)
 本実施の形態では、並列処理を実現する符号化ストリームを復号するための画像復号方法について説明する。本実施の形態では、上記実施の形態1に係る画像符号化装置100により生成された符号化ビットストリームを復号する画像復号方法について説明する。
(Embodiment 2)
In the present embodiment, an image decoding method for decoding an encoded stream that realizes parallel processing will be described. In the present embodiment, an image decoding method for decoding an encoded bitstream generated by the image encoding apparatus 100 according to Embodiment 1 will be described.
 さらに、本実施の形態では、タイル境界を越えた参照が行われる信号を含むビットストリームを受信した場合であっても、画質劣化を抑制しつつ、並列復号を実現できる画像復号方法及び画像復号装置について説明する。 Furthermore, in this embodiment, even when a bitstream including a signal that is referred to across a tile boundary is received, an image decoding method and an image decoding apparatus that can realize parallel decoding while suppressing image quality degradation Will be described.
 まず、本実施の形態に係る画像復号装置200の構成を説明する。図7は、本実施の形態に係る画像復号装置200の構成の一例を示すブロック図である。 First, the configuration of the image decoding apparatus 200 according to the present embodiment will be described. FIG. 7 is a block diagram showing an example of the configuration of the image decoding apparatus 200 according to the present embodiment.
 画像復号装置200は、画像が圧縮符号化されることで得られた符号化信号221から復号画像225を生成する。ここで、符号化信号221は、例えば、上記画像符号化装置100により生成された符号化信号129である。例えば、画像復号装置200には、符号化信号221がブロック毎に復号対象信号として入力される。画像復号装置200は、入力された復号対象信号に、可変長復号、逆量子化及び逆変換を行うことで、復号画像225を復元する。 The image decoding apparatus 200 generates a decoded image 225 from the encoded signal 221 obtained by compressing and encoding the image. Here, the encoded signal 221 is, for example, the encoded signal 129 generated by the image encoding device 100. For example, the encoded signal 221 is input to the image decoding apparatus 200 as a decoding target signal for each block. The image decoding apparatus 200 restores the decoded image 225 by performing variable length decoding, inverse quantization, and inverse transformation on the input decoding target signal.
 図7に示す画像復号装置200は、エントロピー復号部201と、逆量子化逆変換部202と、加算器203と、デブロッキング処理部204と、メモリ205と、イントラ予測部206と、動き補償部207と、切換スイッチ208とを備える。 An image decoding apparatus 200 illustrated in FIG. 7 includes an entropy decoding unit 201, an inverse quantization inverse transformation unit 202, an adder 203, a deblocking processing unit 204, a memory 205, an intra prediction unit 206, and a motion compensation unit. 207 and a changeover switch 208.
 エントロピー復号部201は、符号化信号221(符号化ストリーム)を可変長復号することで量子化係数222を復元する。なお、ここで、符号化信号221(入力ストリーム)は、復号対象信号であり、符号化画像データのブロック毎のデータに相当する。また、エントロピー復号部201は、符号化信号221から動きデータ227を取得し、取得した動きデータ227を動き補償部207に出力する。 The entropy decoding unit 201 restores the quantization coefficient 222 by variable-length decoding the encoded signal 221 (encoded stream). Here, the encoded signal 221 (input stream) is a signal to be decoded and corresponds to data for each block of the encoded image data. In addition, the entropy decoding unit 201 acquires the motion data 227 from the encoded signal 221 and outputs the acquired motion data 227 to the motion compensation unit 207.
 逆量子化逆変換部202は、エントロピー復号部201によって復元された量子化係数222を逆量子化することで変換係数を復元する。そして、逆量子化逆変換部202は、復元した変換係数を逆変換することで残差信号223(予測誤差又は差分信号とも呼ばれる)を復元する。 The inverse quantization inverse transform unit 202 restores the transform coefficient by inversely quantizing the quantized coefficient 222 restored by the entropy decoding unit 201. Then, the inverse quantization inverse transform unit 202 restores the residual signal 223 (also referred to as a prediction error or a difference signal) by inversely transforming the restored transform coefficient.
 加算器203は、復元された残差信号223と予測信号226とを加算することで復号画像224を生成する。 The adder 203 generates the decoded image 224 by adding the restored residual signal 223 and the prediction signal 226.
 デブロッキング処理部204は、生成された復号画像224にデブロッキングフィルタ処理を行うことで復号画像225を生成する。このデブロッキングフィルタ処理された後の復号画像225は、外部に出力される。 The deblocking processing unit 204 generates a decoded image 225 by performing a deblocking filter process on the generated decoded image 224. The decoded image 225 after the deblocking filter processing is output to the outside.
 メモリ205は、動き補償に用いられる参照画像を格納するためのメモリである。具体的には、メモリ205は、デブロッキングフィルタ処理が施された後の復号画像225を格納する。 The memory 205 is a memory for storing a reference image used for motion compensation. Specifically, the memory 205 stores the decoded image 225 after the deblocking filter process is performed.
 イントラ予測部206は、イントラ予測を行うことで予測信号(イントラ予測信号)を生成する。具体的には、イントラ予測部206は、加算器203によって生成された復号画像224における、復号対象ブロック(符号化信号221)の周囲の画像を参照してイントラ予測を行うことで、イントラ予測信号を生成する。 The intra prediction unit 206 generates a prediction signal (intra prediction signal) by performing intra prediction. Specifically, the intra prediction unit 206 performs intra prediction with reference to images around the block to be decoded (encoded signal 221) in the decoded image 224 generated by the adder 203, whereby the intra prediction signal Is generated.
 動き補償部207は、エントロピー復号部201から出力された動きデータ227に基づいて動き補償を行うことで、予測信号(インター予測信号)を生成する。 The motion compensation unit 207 generates a prediction signal (inter prediction signal) by performing motion compensation based on the motion data 227 output from the entropy decoding unit 201.
 切換スイッチ208は、イントラ予測信号及びインター予測信号のいずれかを選択し、選択した信号を予測信号226として加算器203に出力する。 The changeover switch 208 selects either the intra prediction signal or the inter prediction signal, and outputs the selected signal to the adder 203 as the prediction signal 226.
 以上の構成により、本実施の形態に係る画像復号装置200は、画像が圧縮符号化されることにより得られた符号化信号221から復号画像225を復号する。 With the above configuration, the image decoding apparatus 200 according to the present embodiment decodes the decoded image 225 from the encoded signal 221 obtained by compressing and encoding the image.
 以下、本実施の形態に係る処理を説明する前に、本実施の形態に係る特徴的な処理を含まない方法により、前述のような意図と異なる符号化ビットストリームを復号する際の処理を、図8を用いて説明する。 Hereinafter, before describing the processing according to the present embodiment, the processing when decoding an encoded bitstream different from the intention as described above by a method that does not include the characteristic processing according to the present embodiment, This will be described with reference to FIG.
 図8は、本実施の形態で想定する意図とは異なるビットストリームを受信した場合の、本実施の形態に係る特徴的な処理を含まない動き補償処理の概要を示すフローチャートである。 FIG. 8 is a flowchart showing an outline of a motion compensation process that does not include a characteristic process according to the present embodiment when a bitstream different from the intention assumed in the present embodiment is received.
 まず、動き補償部207は、符号化ビットストリーム(符号化信号221)から動きベクトル(動きデータ227)を取得する(S201)。 First, the motion compensation unit 207 acquires a motion vector (motion data 227) from the encoded bit stream (encoded signal 221) (S201).
 次に、動き補償部207は、動きベクトルの参照先が領域外を含むかどうかを判定する(S202)。ここで領域外とは、画像信号(ピクチャ)の画面外、又は、MC制限タイルの場合のMC制限タイル外を意味する。 Next, the motion compensation unit 207 determines whether the reference destination of the motion vector includes outside the region (S202). Here, outside the area means outside the screen of the image signal (picture) or outside the MC restriction tile in the case of the MC restriction tile.
 動きベクトルの参照先が領域外を含むと判定された場合(S202でYES)、動き補償部207は、その領域外が、画面外がどうかを判定する(S203)。 If it is determined that the reference destination of the motion vector includes outside the region (YES in S202), the motion compensation unit 207 determines whether the outside of the region is outside the screen (S203).
 画面外である場合(S203でYES)、動き補償部207は、画面の端の画素を繰り返す処理(パディング処理)を行う(S204)、なお、このパディング処理は、例えば、後述の図10の(b)に示す処理と同じである。次に、動き補償部207は、そのパディング処理をした後の画像を参照して、動き補償画像を生成する(S207)。 When it is outside the screen (YES in S203), the motion compensation unit 207 performs a process (padding process) of repeating pixels at the edge of the screen (S204). This padding process is performed, for example, in FIG. This is the same as the process shown in b). Next, the motion compensation unit 207 generates a motion compensated image with reference to the image after the padding process (S207).
 一方、画面外ではない場合(対象タイルがMC制限タイルであり、動きベクトルの参照先が対象タイルと異なるタイルに含まれる場合)(S203でNO)、動き補償部207は、領域外を参照する(S205)。この処理は、通常の復号処理では規定されていない動作のため、エラーとなり復号処理が停止してしまう。または、復号装置によっては、予期しないメモリを参照し、メモリ上の不定なデータを参照画像として読みだす場合もある。これにより、画像復号装置は、復号動作を続けられない、または、不定のデータを参照することで、画質の非常に悪い画像を生成してしまう。 On the other hand, when it is not outside the screen (when the target tile is an MC restricted tile and the reference destination of the motion vector is included in a different tile from the target tile) (NO in S203), the motion compensation unit 207 refers to outside the region. (S205). Since this process is an operation that is not defined in the normal decoding process, an error occurs and the decoding process stops. Alternatively, depending on the decoding device, an unexpected memory may be referred to and undefined data on the memory may be read as a reference image. As a result, the image decoding apparatus cannot continue the decoding operation or generates an image with very poor image quality by referring to indefinite data.
 一方、動きベクトルの参照先が領域外ではない場合(S202でNO)、動き補償部207は、通常通り、参照先の対象領域を取得し(S206)、取得した対象領域の画像を用いて動き補償画像を生成する(S207)。 On the other hand, when the reference destination of the motion vector is not outside the area (NO in S202), the motion compensation unit 207 acquires the target area of the reference destination as usual (S206), and moves using the acquired image of the target area. A compensation image is generated (S207).
 なお、非特許文献1等においても、前述のビットストリームをどのように復号するかは規定されていない。 Note that Non-Patent Document 1 or the like does not specify how to decode the above-described bit stream.
 このように、上記手法を用いた場合、画像復号装置が、符号化ビットストリームを復号できない状態になる、又は、復号画像の画質が低下することとなる。 As described above, when the above method is used, the image decoding device cannot decode the encoded bit stream, or the image quality of the decoded image is deteriorated.
 一方、実施の形態1の課題に示したように、MC制限タイルの境界処理は複雑であり、画像符号化装置が前述の複雑な処理を不正に処理するケースもある。 On the other hand, as shown in the problem of the first embodiment, the boundary processing of the MC restriction tile is complicated, and there are cases where the image coding apparatus illegally processes the above-described complicated processing.
 本実施の形態では、このようなケースの場合であっても、復号処理を停止させず、画質の劣化を抑制できる画像復号方法について述べる。 In the present embodiment, an image decoding method capable of suppressing deterioration in image quality without stopping the decoding process even in such a case will be described.
 図9は、本実施の形態に係る画像復号装置200が動き予測モードを判定する処理の概要を示すフローチャートである。 FIG. 9 is a flowchart showing an outline of processing in which the image decoding apparatus 200 according to the present embodiment determines the motion prediction mode.
 まず、図8に示すステップS201と同様に、動き補償部207は符号化ビットストリーム(符号化信号221)から動きベクトル(動きデータ227)を取得する(S301)。次に、動き補償部207は、ステップS202と同様に、動きベクトルの参照先が領域外を含むかどうかを判定する(S302)。 First, similarly to step S201 shown in FIG. 8, the motion compensation unit 207 acquires a motion vector (motion data 227) from the encoded bit stream (encoded signal 221) (S301). Next, as in step S202, the motion compensation unit 207 determines whether the reference destination of the motion vector includes outside the region (S302).
 領域外を含むと判断した場合(S302でYES)、動き補償部207は、その領域外が、画面外がどうかを判定する(S303)。画面外である場合(S303でYES)、動き補償部207は、パディング処理を行い(S304)、そのパディング処理をした後の画像を参照して、動き補償画像を生成する(S307)。 If it is determined that the area outside the area is included (YES in S302), the motion compensation unit 207 determines whether the area outside the area is outside the screen (S303). When it is outside the screen (YES in S303), the motion compensation unit 207 performs padding processing (S304), and generates a motion compensated image with reference to the image after the padding processing (S307).
 一方、画面外ではない場合(対象タイルがMC制限タイルであり、動きベクトルがタイル境界を跨ぐ場合)(S303でNO)、動き補償部207は、領域外参照用の処理を行う(S305)。領域外参照用の処理とは、領域外の画素値を補完生成する処理である。なお、この領域外参照用の処理の詳細は後述する。 On the other hand, when it is not outside the screen (when the target tile is an MC restricted tile and the motion vector crosses the tile boundary) (NO in S303), the motion compensation unit 207 performs an out-of-region reference process (S305). The out-of-region reference processing is processing for complementing and generating out-of-region pixel values. Details of the processing for reference outside the area will be described later.
 また、動きベクトルがタイル境界を跨ぐ場合とは、動きベクトルの参照先が対象タイルと異なるタイルに含まれる場合、及び、小数画素の算出において、他のタイルの整数画素が参照させる場合である。 Also, the case where the motion vector crosses the tile boundary is a case where the reference destination of the motion vector is included in a tile different from the target tile, and a case where an integer pixel of another tile is referred to in calculation of the decimal pixel.
 この処理を規定することにより、画像復号装置を停止させないようにすることができる。また、符号化側で意図しないで領域外が参照されている場合には、ミスマッチ(符号化側で局所復号した画像と、復号画像とが異なることを示す)が発生するものの、領域外参照用の処理を行うことで、不定なメモリのアドレスに格納されている画像を動き補償画像として用いる場合に比べ、画質を改善(画質劣化を抑制)できる。 By defining this process, it is possible to prevent the image decoding apparatus from being stopped. In addition, when an out-of-region is referenced unintentionally on the encoding side, a mismatch (indicating that the image decoded locally on the encoding side is different from the decoded image) occurs, but for out-of-region reference By performing the above process, it is possible to improve the image quality (suppress image quality deterioration) compared to the case where an image stored at an indefinite memory address is used as a motion compensation image.
 一方、符号化側でも同様の動き補償を行うことにより、実施の形態1に係る手法とは異なる手法で、境界処理の処理量を低減することができる。また、画像復号装置200も同じ処理を行うことにより、ミスマッチは発生しない。これにより、非特許文献1に示す規格とは異なる方法となるが、簡易な処理で上記の課題を解決できる画像符号化装置及び画像復号装置を実現できる。 On the other hand, by performing similar motion compensation on the encoding side, the amount of boundary processing can be reduced by a method different from the method according to the first embodiment. Also, the image decoding apparatus 200 performs the same process, so that no mismatch occurs. Thereby, although it becomes a method different from the standard shown in nonpatent literature 1, the picture coding device and picture decoding device which can solve the above-mentioned subject by simple processing are realizable.
 次に、動き補償部207は、領域外参照用の処理が施された後の画像を用いて動き補償画像を生成する(S307)。 Next, the motion compensation unit 207 generates a motion compensated image using the image that has been subjected to the out-of-region reference processing (S307).
 一方、動きベクトルの参照先が領域外ではない場合(S302でNO)、ステップS206と同様に、動き補償部207は、通常通り、参照先の対象領域を取得し(S306)、動き補償画像を生成する(S307)。 On the other hand, when the reference destination of the motion vector is not outside the region (NO in S302), the motion compensation unit 207 obtains the target region of the reference destination as usual (S306), as in step S206, and obtains the motion compensated image. Generate (S307).
 次に、前述の領域外参照の処理について、図10を用いて説明する。図10は、MC制限タイルの使用時に、対象タイルと異なるタイルを参照した場合の特殊処理の例を示す図である。なお、図10の(a)は、図8に示す場合の処理の例であり、対象タイル外の部分は規定されていないため、画像復号装置が、この部分を無理やり参照した場合には、メモリ上にある不定の値を用いてしまい、復号処理が停止してしまう場合もある。 Next, the aforementioned out-of-region reference processing will be described with reference to FIG. FIG. 10 is a diagram illustrating an example of special processing when a tile different from the target tile is referred to when the MC restricted tile is used. FIG. 10A is an example of processing in the case shown in FIG. 8, and the portion outside the target tile is not defined. Therefore, when the image decoding apparatus forcibly references this portion, the memory Indefinite values above may be used, and the decoding process may stop.
 図10の(b)に示す処理は、ステップS304の画面端の場合に用いられる処理と同じであり、パディング処理とも呼ばれる。例えば、図10に示すように、対象タイルに、タイル境界からこの順に並んだ画素a、画素b、画素c、画素d、画素e、画素f、及び画素gが含まれる。この場合、動き補償部207は、タイル境界に隣接する画素aを繰り返すことで対象タイル外の画素値を埋める。この処理をMC制限タイルの領域外処理に用いることで、画面外処理と回路を共通化することができるため、回路規模を低減できる。 The process shown in FIG. 10B is the same as the process used in the case of the screen edge in step S304, and is also called a padding process. For example, as shown in FIG. 10, the target tile includes a pixel a, a pixel b, a pixel c, a pixel d, a pixel e, a pixel f, and a pixel g arranged in this order from the tile boundary. In this case, the motion compensation unit 207 fills the pixel value outside the target tile by repeating the pixel a adjacent to the tile boundary. By using this processing for the processing outside the area of the MC restricted tile, the circuit scale can be reduced because the circuit can be shared with the processing outside the screen.
 なお、動き補償部207は、MC制限タイルの領域外処理として、画面外処理と別の処理を用いてもよい。例えば、図10の(c)に示すように、動き補償部207は、タイル境界を境に画素a、画素b、画素c、画素d、画素e、画素f、画素gをミラー状に折り返して、コピーすることで、対象タイル外の画素値を補完する。前述のパディング処理では、突然同じ値が続くことで、視覚的に目立つケースがある。一方、この手法は、映像の連続性を活用した処理であるので、視覚的な画質を向上できる。例えば、この手法は、グラデーション画像などのように、徐々に映像に変化がある場合などで、パディング処理と比べて画質を向上できる。 Note that the motion compensation unit 207 may use a process different from the process outside the screen as the process outside the area of the MC restricted tile. For example, as illustrated in FIG. 10C, the motion compensation unit 207 folds the pixel a, the pixel b, the pixel c, the pixel d, the pixel e, the pixel f, and the pixel g in a mirror shape at the tile boundary. The pixel value outside the target tile is complemented by copying. In the padding process described above, there are cases where the same value suddenly continues, so that it is visually noticeable. On the other hand, since this method is a process that utilizes the continuity of video, visual image quality can be improved. For example, this method can improve the image quality compared to the padding process when the video gradually changes, such as a gradation image.
 また、別の方法として、図10の(d)に示すように、動き補償部207は、一定値Xで対象タイル外の画素値を埋めてもよい。ここで、一定値Xが画素aの画素値である場合が、図10の(b)に相当する。なお、動き補償部207は、例えばタイル境界に近接する画素a、画素b、画素c、及び画素dの画素値の平均値を、一定値Xとして用いてもよい。また、動き補償部207は、この一定値Xとして、タイル境界での画素値の変化が少なくなるような値を選択又は算出してもよい。この方式の場合は、処理量は図10の(b)と比べて増加するが、画質の劣化を抑制できる。 Alternatively, as shown in FIG. 10D, the motion compensation unit 207 may fill pixel values outside the target tile with a constant value X, as shown in FIG. Here, the case where the constant value X is the pixel value of the pixel a corresponds to (b) of FIG. Note that the motion compensation unit 207 may use, for example, the average value of the pixel values of the pixel a, the pixel b, the pixel c, and the pixel d close to the tile boundary as the constant value X. Further, the motion compensation unit 207 may select or calculate a value that reduces the change in pixel value at the tile boundary as the constant value X. In the case of this method, the processing amount is increased as compared with FIG. 10B, but deterioration in image quality can be suppressed.
 上記のように、領域外参照の処理を規定することにより、例えビットストリームに、想定外にMC制限タイルの境界を越える参照が存在していた場合であっても、画像復号装置200は、途中で止まることなく、また画質の劣化を抑制しつつ復号処理を行うことができる。 By defining the out-of-region reference processing as described above, the image decoding apparatus 200 can perform the processing even if there is an unexpected reference in the bitstream that exceeds the boundary of the MC restricted tile. Thus, the decoding process can be performed without stopping the process and while suppressing the deterioration of the image quality.
 また、図11に示すように、画像復号装置200は、動き補償部207が、動きベクトルの参照先が対象タイル外を含むと判定した場合(S321でYES)に、エラーが発生している旨を出力してもよい(S322)。 Further, as illustrated in FIG. 11, the image decoding apparatus 200 indicates that an error has occurred when the motion compensation unit 207 determines that the motion vector reference destination includes outside the target tile (YES in S321). May be output (S322).
 これにより、画像復号装置200は、エラーを検出しつつ、復号処理を行うため、エラーが検出された場合には復号結果がミスマッチを含んでいることを把握できる。これにより、画像復号装置200は、不要なミスマッチを検出する必要がなく、続けて再生を行うことができる。また、エラー検出結果が符号化ビットストリームの提供元に伝えられることで、画像符号化装置を改良(例えば実施の形態1のような仕組みを導入)することができる。 Thereby, since the image decoding apparatus 200 performs the decoding process while detecting the error, it is possible to grasp that the decoding result includes a mismatch when the error is detected. Thereby, the image decoding apparatus 200 does not need to detect an unnecessary mismatch, and can continuously perform reproduction. Further, the error detection result is transmitted to the provider of the encoded bitstream, so that the image encoding apparatus can be improved (for example, the mechanism as in Embodiment 1 is introduced).
 以上のように、本実施の形態に係る画像復号装置200は、実施の形態1に係る画像符号化装置100により生成された符号化ビットストリームを復号する。 As described above, the image decoding apparatus 200 according to the present embodiment decodes the encoded bitstream generated by the image encoding apparatus 100 according to Embodiment 1.
 また、本実施の形態に係る画像復号装置200は、複数のタイルに含まれる対象ブロックを、当該対象ブロックの周囲のブロックの動きベクトルを用いる予測モード(マージモード又はスキップモードを用いて動き補償を行う。 In addition, the image decoding apparatus 200 according to the present embodiment performs motion compensation on a target block included in a plurality of tiles using a prediction mode (merge mode or skip mode) that uses motion vectors of blocks around the target block. Do.
 画像復号装置200は、周囲のブロックの動きベクトルが、対象ブロックが含まれる対象タイルとは異なるタイルに含まれる参照ブロックを参照する場合、当該参照ブロックの画素値を補完する。具体的には、画像復号装置200は、対象ブロックに含まれる画素値を用いて、参照ブロックの画素値を補完する。 When the motion vector of the surrounding block refers to a reference block included in a tile different from the target tile including the target block, the image decoding apparatus 200 complements the pixel value of the reference block. Specifically, the image decoding apparatus 200 supplements the pixel value of the reference block using the pixel value included in the target block.
 例えば、図10の(b)に示すように、画像復号装置200は、対象ブロックに含まれ、かつ参照ブロックに最も近い画素の画素値を、参照ブロックに含まれる複数の画素値にコピーすることで、参照ブロックの前記画素値を補完する。 For example, as illustrated in FIG. 10B, the image decoding apparatus 200 copies pixel values of pixels included in the target block and closest to the reference block to a plurality of pixel values included in the reference block. Thus, the pixel value of the reference block is complemented.
 または、図10の(c)に示すように、画像復号装置200は、対象ブロックと参照ブロックとが隣接する場合、当該隣接境界を軸として、対象ブロックに含まれる複数の画素の画素値を折り返して、参照ブロックに含まれる複数の画素値にコピーすることで、参照ブロックの前記画素値を補完する。 Alternatively, as illustrated in FIG. 10C, when the target block and the reference block are adjacent to each other, the image decoding apparatus 200 folds back the pixel values of a plurality of pixels included in the target block with the adjacent boundary as an axis. Thus, the pixel value of the reference block is complemented by copying to a plurality of pixel values included in the reference block.
 または、図10の(d)に示すように、画像復号装置200は、対象ブロックに含まれる複数の画素値の平均値を算出し、当該平均値を、参照ブロックに含まれる複数の画素値として補完する。 Alternatively, as illustrated in FIG. 10D, the image decoding apparatus 200 calculates an average value of a plurality of pixel values included in the target block, and uses the average value as a plurality of pixel values included in the reference block. Complement.
 また、画像復号装置200は、補完された画素値を用いて動き補償を行う。 The image decoding apparatus 200 performs motion compensation using the complemented pixel values.
 以上により、画像復号装置200は、前述の意図しない符号化ストリームに対しても領域外参照処理を実行できる。すなわち、画像復号装置200は、MC制限タイルである場合であっても、復号処理が停止することを回避できる。これにより、画像復号装置200の安定化を実現できる。 As described above, the image decoding apparatus 200 can execute the out-of-region reference process for the unintended encoded stream. That is, the image decoding apparatus 200 can avoid the decoding process from being stopped even in the case of the MC restricted tile. Thereby, stabilization of the image decoding apparatus 200 is realizable.
 また、この手法を画像符号化装置100にも導入することで、画像符号化装置100の高速化を実現できる。つまり、画像符号化装置100が備える動き補償部109も、実施の形態2に係る動き補償部207と同様の処理を行ってもよい。画像符号化装置100は、動きベクトルが他のタイルを参照する場合の処理として、前述の領域外参照の処理で生成した画像を参照画像として用いる。これにより、符号化処理を簡素化でき、回路規模を削減できる。なお、この場合、画像復号装置200が同様の動き補償部207を備えることで、両方の回路規模を削減したシステムを実現できる。 Also, by introducing this method to the image encoding device 100, the image encoding device 100 can be speeded up. That is, the motion compensation unit 109 included in the image coding apparatus 100 may perform the same processing as the motion compensation unit 207 according to the second embodiment. The image encoding apparatus 100 uses, as a reference image, an image generated by the above-described out-of-region reference process as a process when a motion vector refers to another tile. Thereby, the encoding process can be simplified and the circuit scale can be reduced. In this case, since the image decoding apparatus 200 includes the similar motion compensation unit 207, a system in which both circuit scales are reduced can be realized.
 つまり、上記処理は、画像復号装置200における画像復号方法として実現できるだけなく、画像符号化装置100における画像符号化方法としても実現できる。また、上記処理は、画像復号装置200又は画像符号化装置100における動き補償方法としても実現できる。 That is, the above process can be realized not only as an image decoding method in the image decoding apparatus 200 but also as an image encoding method in the image encoding apparatus 100. The above processing can also be realized as a motion compensation method in the image decoding apparatus 200 or the image encoding apparatus 100.
 (実施の形態3)
 本実施の形態では、並列処理を実現できる符号化ビットストリームの構造について説明する。本実施の形態では、ビットストリームは、画像復号装置200が容易に並列処理を実現するための情報を含む。具体的には、ビットストリームは、どこでミスマッチを発生するかを示す情報を含む。すなわち、ビットストリームは、画面がタイルに分割されて符号化された場合における、動き予測及び動き補償処理において、他のタイルを参照してしまう場合に関する情報を含む。
(Embodiment 3)
In the present embodiment, a structure of an encoded bit stream that can realize parallel processing will be described. In the present embodiment, the bitstream includes information that allows the image decoding apparatus 200 to easily realize parallel processing. Specifically, the bitstream includes information indicating where the mismatch occurs. That is, the bitstream includes information regarding a case where another tile is referred to in the motion prediction and motion compensation processing when the screen is divided into tiles and encoded.
 図12は、従来のMC制限タイルの符号化ビットストリームのシンタックス構造の一部を示す図である。motion_constrained_tile_sets()は、MC制限タイルの領域を示す情報群である。この情報を参照することで、画像復号装置は、対象ストリームがタイル境界を超えた参照を行わないことを知ることができる。また、このシンタックス構造は、exact_sample_value_match_flagを含む。このフラグに関する動作について、図13を用いて説明する。 FIG. 12 is a diagram showing a part of the syntax structure of a conventional MC restricted tile encoded bitstream. motion_constrained_tile_sets () is an information group indicating the area of the MC restricted tile. By referring to this information, the image decoding apparatus can know that the target stream does not make reference beyond the tile boundary. Further, this syntax structure includes an execute_sample_value_match_flag. The operation relating to this flag will be described with reference to FIG.
 図13は、exact_sample_value_match_flagに関する動作のフローチャートである。図13に示すように、画像復号装置は、exact_sample_value_match_flagが0である場合(S401でYES)、ストリームに不整合(ミスマッチ)があると判断する(S402)。 FIG. 13 is a flowchart of the operation relating to the execute_sample_value_match_flag. As illustrated in FIG. 13, when the exact_sample_value_match_flag is 0 (YES in S401), the image decoding apparatus determines that there is a mismatch (mismatch) in the stream (S402).
 ただし、この情報を用いた処理では次のような課題がある。MC制限タイルにおいてミスマッチが生じる原因には、次の3つがある。 However, processing using this information has the following problems. There are the following three causes of mismatches in the MC restriction tile.
 (1)ループフィルタにより、タイル境界にフィルタをかける処理がある場合、MC制限タイルであっても境界外の画素を用いたフィルタ処理を行うために、符号化時の局所復号画像と復号画像との間で差(ミスマッチ)が生じる。(2)動きベクトル(スキップ・マージベクトルも含む)がタイル境界外を参照することにより、符号化時の局所復号画像と復号画像との間で差(ミスマッチ)が生じる。(3)小数精度の画素の生成のためにタイル境界外が参照されることにより、符号化時の局所復号画像と復号画像との間で差(ミスマッチ)が生じる。 (1) When there is a process for filtering the tile boundary by a loop filter, in order to perform a filtering process using pixels outside the boundary even for MC restricted tiles, A difference (mismatch) occurs. (2) When a motion vector (including a skip / merge vector) refers to outside the tile boundary, a difference (mismatch) occurs between the locally decoded image and the decoded image at the time of encoding. (3) A difference (mismatch) occurs between the locally decoded image and the decoded image at the time of encoding by referring to the outside of the tile boundary for the generation of the decimal precision pixel.
 上記の手法では、この3つを区別できないため、画像復号装置200は、どのようなミスマッチが発生しているかを特定することができない。これにより、画像復号装置200が、ミスマッチの種別に応じた適切な復号処理を行うことが難しいという課題がある。 In the above method, since these three cannot be distinguished, the image decoding apparatus 200 cannot identify what type of mismatch has occurred. Accordingly, there is a problem that it is difficult for the image decoding apparatus 200 to perform an appropriate decoding process according to the type of mismatch.
 以下、本実施の形態に係る符号化ビットストリームのシンタックス構造を説明する。図14A~図14Cは、本実施の形態に係る符号化ビットストリームのシンタックス構造の一例を示す図である。図14A~図14Cは、本実施の形態に係る符号化ビットストリームに含まれるmotion_constrainted_tile_setsのシンタックス例を示す図である。なお、この情報はSEIと呼ばれ、符号化ビットストリームの補助情報として扱われる。 Hereinafter, the syntax structure of the encoded bitstream according to the present embodiment will be described. 14A to 14C are diagrams showing an example of the syntax structure of the encoded bitstream according to the present embodiment. 14A to 14C are diagrams illustrating syntax examples of motion_constrained_tile_sets included in the encoded bitstream according to the present embodiment. This information is called SEI and is handled as auxiliary information of the encoded bit stream.
 図14Aに示す例では、符号化ビットストリームは、前述のexact_sample_value_match_flagが0である場合に、前述の3つのミスマッチの原因のうち、ループフィルタに起因することを示すフラグ(filtering_mismatch_flag:1の場合にループフィルタに起因してミスマッチが生じることを示す)と、ループフィルタ以外に起因することを示すフラグ(motion_constraint_mismatch_flag:1の場合にループフィルタ以外に起因してミスマッチが生じることを示す)とを含む。このようにミスマッチの原因を区別するためのフラグを階層的に設けることで、ミスマッチが生じない場合の符号量を削減できる。 In the example illustrated in FIG. 14A, the encoded bitstream includes a flag (filtering_mismatch_flag: 1) indicating that the above-described three mismatch causes are caused by a loop filter when the above-described exact_sample_value_match_flag is 0. A flag indicating that a mismatch occurs due to a filter) and a flag indicating that a mismatch occurs due to other than the loop filter (indicating that mismatch occurs due to other than the loop filter in the case of motion_constraint_mismatch_flag: 1). Thus, by providing the flags for distinguishing the cause of mismatch in a hierarchical manner, the amount of codes when mismatch does not occur can be reduced.
 図14Bに示す例では、符号化ビットストリームは、exact_sample_value_match_flagを含まず、inloop_filtering_mismatch_flagとmotion_constraint_mismatch_flagとを並列に含む。なお、inloop_filtering_mismatch_flagの意味は、filtering_mismatch_flagと同じである。この構成は、頻繁にミスマッチのストリームが生成される場合に、符号量が少なくなるという利点がある。 In the example illustrated in FIG. 14B, the encoded bitstream does not include the exact_sample_value_match_flag, but includes the inloop_filtering_mismatch_flag and the motion_constraint_missmatch_flag in parallel. The meaning of inloop_filtering_missmatch_flag is the same as filtering_missmatch_flag. This configuration has an advantage that the code amount is reduced when mismatched streams are frequently generated.
 図14Cに示す例では、さらに、motion_constraint_mismatch_flagが、小数画素の生成処理のためにミスマッチが生じる場合を示すフラグ(fractional_point_mismatch_flag)と、スキップ、マージ処理によるミスマッチが生じる場合を示すフラグ(skip_merge_mismatch_flag)とに分離されている。 In the example illustrated in FIG. 14C, the motion_constraint_mismatch_flag further includes a flag (fractional_point_mismatch_flag) indicating that a mismatch occurs due to the generation processing of a fractional pixel, and a flag (skip_merge) indicating a mismatch (skip_merge) indicating a mismatch due to skip and merge processing. Has been.
 なお、ここに示す構成は一例であり、図14A~図14Cの構成は組み合わせてもよい。 Note that the configuration shown here is an example, and the configurations shown in FIGS. 14A to 14C may be combined.
 このように細かくミスマッチが生じる可能性を画像復号装置200に知らせることにより、画像復号装置200は適切に符号化ビットストリームを復号できる。 In this way, the image decoding device 200 can appropriately decode the encoded bitstream by notifying the image decoding device 200 of the possibility of a fine mismatch.
 図15は、図14Aに示す場合の画像復号装置200の処理の流れを示すフローチャートである。図15に示すように、画像復号装置200は、exact_sample_value_match_flagが0である場合に(S421でYES)、不具合が生じると判断する(S422)。 FIG. 15 is a flowchart showing a processing flow of the image decoding apparatus 200 in the case shown in FIG. 14A. As illustrated in FIG. 15, the image decoding apparatus 200 determines that a problem occurs when the execute_sample_value_match_flag is 0 (YES in S421) (S422).
 さらに、画像復号装置200は、motion_constraint_mismatch_flagが1の場合(S423でYES)、領域外参照の特殊処理を使用すると判断し(S424)、それ以外の場合は(S423でNO)、ループフィルタに関するミスマッチであると判断し、ループフィルタ用の領域外参照処理を使用する(S425)。例えば、画像復号装置200は、ループフィルタ向けには、図10の(c)で示すミラーリング処理を用い、動き補償用の領域外参照には図10の(b)のパディング処理を用いる。このように、画像復号装置200は、これらのフィルタに応じて、復号処理を切り替える。 Furthermore, when the motion_constraint_mismatch_flag is 1 (YES in S423), the image decoding apparatus 200 determines that the special processing for out-of-region reference is used (S424), and otherwise (NO in S423), it is a mismatch regarding the loop filter. It is determined that there is an out-of-region reference process for the loop filter (S425). For example, the image decoding apparatus 200 uses the mirroring process shown in FIG. 10C for the loop filter, and uses the padding process shown in FIG. 10B for out-of-region reference for motion compensation. As described above, the image decoding apparatus 200 switches the decoding process according to these filters.
 なお、この例では、画像符号化装置100は、ミスマッチの原因を示す情報としてフラグを用いたが、フラグではなく番号を示す情報を用いてもよい。例えば、この番号が0の場合は、ミスマッチ無し(特殊処理なし)を示し、番号が1の場合はパディング処理を示し、番号が2の場合はミラーリング処理を示し、番号が3の場合は平均値を用いる処理を示し、番号が4以上の場合は、その値-4の値を固定値として参照画像に用いることを示す。このような構成により、復号画像の画質を落とすことなく、簡便なMC制限タイルを活用した並列処理可能な符号化ストリームを実現できる。 In this example, the image coding apparatus 100 uses a flag as information indicating the cause of the mismatch, but may use information indicating a number instead of the flag. For example, when this number is 0, it indicates that there is no mismatch (no special processing), when the number is 1, indicates padding processing, when the number is 2, indicates mirroring processing, and when the number is 3, the average value In the case where the number is 4 or more, the value -4 is used as a fixed value for the reference image. With such a configuration, an encoded stream that can be processed in parallel using a simple MC restriction tile can be realized without degrading the image quality of the decoded image.
 なお、このような処理は図16に示す図のように規定してもよい。従来はミスマッチが発生する際の処理が不定であるため、画像復号装置は、エラーとして処理する、又は、不定となっているデータを参照していた。そのため、図に示すように特殊処理を規定することで、劣化の少ない復号画像を生成することを可能とする。 Note that such processing may be defined as shown in FIG. Conventionally, since processing when a mismatch occurs is indefinite, the image decoding apparatus has been processed as an error or referred to indefinite data. Therefore, by specifying special processing as shown in the figure, it is possible to generate a decoded image with little deterioration.
 なお、境界フィルタがあり、かつミスマッチがある場合には、画像復号装置200は、フィルタを掛ける前の値を参照画像として用い、フィルタ処理をあとに回すことで、ミスマッチを回避してもよい。本実施の形態のビットストリーム構成を用いることで、画像復号装置200は、フィルタ処理でミスマッチが発生すると特定できるので、上記のような処理をすることも可能となる。 When there is a boundary filter and there is a mismatch, the image decoding apparatus 200 may avoid the mismatch by using the value before the filter as a reference image and passing the filter process later. By using the bit stream configuration according to the present embodiment, the image decoding apparatus 200 can specify when a mismatch occurs in the filter processing, and thus can perform the above-described processing.
 また、画像復号装置によっては、指定されたミスマッチの可能性がある画素だけを、メモリから読み出す処理を行ってもよい。ここで、ミスマッチの原因を特定できない場合には、ミスマッチの回避を適切に行うことができない。一方、本実施の形態のように、ミスマッチを特定する情報が符号化ビットストリームに含まれることにより、画像復号装置200は、特定されるミスマッチに関する画素のデータだけを、メモリから読み出す又はメモリへ書き出す処理を行うことができる。例えば、ミスマッチが境界フィルタ処理に起因する場合であれば、画像復号装置200は、境界フィルタ処理に必要な画素のデータだけをメモリに書き出す又は読み出す。例えば、スキップ、マージ処理に起因するミスマッチの場合、画像復号装置200は、スキップ、マージ処理で取り得る範囲だけの画素のデータを共有メモリに書き出す又は読み出す。小数画素の生成特殊処理の場合であっても、図2の(a)に示すように、画像復号装置200は、隣接タイルの3画素のデータを読み出せばよい。 Further, depending on the image decoding apparatus, a process of reading out only the pixels having a specified mismatch possibility from the memory may be performed. Here, when the cause of the mismatch cannot be identified, the mismatch cannot be appropriately avoided. On the other hand, as in the present embodiment, when the information specifying the mismatch is included in the encoded bitstream, the image decoding apparatus 200 reads or writes only the pixel data related to the specified mismatch from the memory. Processing can be performed. For example, if the mismatch is caused by the boundary filter process, the image decoding apparatus 200 writes or reads only pixel data necessary for the boundary filter process into the memory. For example, in the case of a mismatch due to the skip / merge process, the image decoding apparatus 200 writes or reads data of pixels in a range that can be taken by the skip / merge process to the shared memory. Even in the case of special pixel generation processing, as shown in FIG. 2A, the image decoding apparatus 200 may read data of three pixels of adjacent tiles.
 このように、何に起因するミスマッチかを示す情報がビットストリームに含まれることで、画像復号装置200は、処理に余裕がある場合には、ミスマッチを回避できる。また、画像復号装置200は、メモリから画素のデータを読み出せない場合であっても、どのように復号画像を生成するかを容易に決定できるので、情報が無い場合と比べて、復号画像の画質を向上できる。 As described above, the information indicating what is the mismatch is included in the bitstream, so that the image decoding apparatus 200 can avoid the mismatch when there is a margin in processing. Further, the image decoding apparatus 200 can easily determine how to generate a decoded image even when the pixel data cannot be read from the memory. The image quality can be improved.
 以上のように、本実施の形態に係る画像符号化装置100は、周囲のブロックの動きベクトルが、対象タイルとは異なるタイルに含まれる参照ブロックを参照することを特定するための情報を生成し、当該情報を含む符号化ビットストリームを生成する。言い換えると、画像符号化装置100は、符号化ビットストリームが規格違反の事象を含むことを示す2以上のフラグ又は2以上の情報を生成し、当該2以上のフラグ又は2以上の情報を含む符号化ビットストリームを生成する。 As described above, the image coding apparatus 100 according to the present embodiment generates information for specifying that the motion vector of the surrounding block refers to a reference block included in a tile different from the target tile. Then, an encoded bit stream including the information is generated. In other words, the image encoding device 100 generates two or more flags or two or more information indicating that the encoded bitstream includes an event of violation of the standard, and a code including the two or more flags or the two or more information. Generate a generalized bitstream.
 これにより、画像符号化装置100は、画像復号装置で簡素に復号できる、又は、劣化が少ない復号画像を生成できる、符号化ビットストリームを生成できる。 Thereby, the image encoding device 100 can generate an encoded bitstream that can be simply decoded by the image decoding device or can generate a decoded image with little deterioration.
 以上、実施の形態に係る画像符号化装置及び画像復号装置について説明したが、本発明は、この実施の形態に限定されるものではない。 Although the image encoding device and the image decoding device according to the embodiment have been described above, the present invention is not limited to this embodiment.
 また、上記実施の形態に係る画像符号化装置及び画像復号装置に含まれる各処理部は典型的には集積回路であるLSIとして実現される。これらは個別に1チップ化されてもよいし、一部又は全てを含むように1チップ化されてもよい。 In addition, each processing unit included in the image encoding device and the image decoding device according to the above embodiment is typically realized as an LSI that is an integrated circuit. These may be individually made into one chip, or may be made into one chip so as to include a part or all of them.
 また、集積回路化はLSIに限るものではなく、専用回路又は汎用プロセッサで実現してもよい。LSI製造後にプログラムすることが可能なFPGA(Field Programmable Gate Array)、又はLSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。 Further, the integration of circuits is not limited to LSI, and may be realized by a dedicated circuit or a general-purpose processor. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used.
 上記各実施の形態において、各構成要素は、専用のハードウェアで構成されるか、各構成要素に適したソフトウェアプログラムを実行することによって実現されてもよい。各構成要素は、CPU又はプロセッサなどのプログラム実行部が、ハードディスク又は半導体メモリなどの記録媒体に記録されたソフトウェアプログラムを読み出して実行することによって実現されてもよい。 In each of the above embodiments, each component may be configured by dedicated hardware or may be realized by executing a software program suitable for each component. Each component may be realized by a program execution unit such as a CPU or a processor reading and executing a software program recorded on a recording medium such as a hard disk or a semiconductor memory.
 言い換えると、画像符号化装置及び画像復号装置は、制御回路(control circuitry)と、当該制御回路に電気的に接続された(当該制御回路からアクセス可能な)記憶装置(storage)とを備える。制御回路は、専用のハードウェア及びプログラム実行部の少なくとも一方を含む。また、記憶装置は、制御回路がプログラム実行部を含む場合には、当該プログラム実行部により実行されるソフトウェアプログラムを記憶する。 In other words, the image encoding device and the image decoding device include a control circuit (control circuit) and a storage device (storage) electrically connected to the control circuit (accessible from the control circuit). The control circuit includes at least one of dedicated hardware and a program execution unit. Further, when the control circuit includes a program execution unit, the storage device stores a software program executed by the program execution unit.
 さらに、本発明は上記ソフトウェアプログラムであってもよいし、上記プログラムが記録された非一時的なコンピュータ読み取り可能な記録媒体であってもよい。また、上記プログラムは、インターネット等の伝送媒体を介して流通させることができるのは言うまでもない。 Furthermore, the present invention may be the software program or a non-transitory computer-readable recording medium on which the program is recorded. Needless to say, the program can be distributed via a transmission medium such as the Internet.
 また、上記で用いた数字は、全て本発明を具体的に説明するために例示するものであり、本発明は例示された数字に制限されない。 Further, all the numbers used above are illustrated for specifically explaining the present invention, and the present invention is not limited to the illustrated numbers.
 また、ブロック図における機能ブロックの分割は一例であり、複数の機能ブロックを一つの機能ブロックとして実現したり、一つの機能ブロックを複数に分割したり、一部の機能を他の機能ブロックに移してもよい。また、類似する機能を有する複数の機能ブロックの機能を単一のハードウェア又はソフトウェアが並列又は時分割に処理してもよい。 In addition, division of functional blocks in the block diagram is an example, and a plurality of functional blocks can be realized as one functional block, a single functional block can be divided into a plurality of functions, or some functions can be transferred to other functional blocks. May be. In addition, functions of a plurality of functional blocks having similar functions may be processed in parallel or time-division by a single hardware or software.
 また、上記の画像符号化方法又は画像復号方法に含まれるステップが実行される順序は、本発明を具体的に説明するために例示するためのものであり、上記以外の順序であってもよい。また、上記ステップの一部が、他のステップと同時(並列)に実行されてもよい。 In addition, the order in which the steps included in the image encoding method or the image decoding method are executed is for illustrating the present invention specifically, and may be in an order other than the above. . Also, some of the above steps may be executed simultaneously (in parallel) with other steps.
 以上、本発明の一つ又は複数の態様に係る画像符号化装置及び画像復号装置について、実施の形態に基づいて説明したが、本発明は、この実施の形態に限定されるものではない。本発明の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、本発明の一つ又は複数の態様の範囲内に含まれてもよい。 As described above, the image encoding device and the image decoding device according to one or more aspects of the present invention have been described based on the embodiment, but the present invention is not limited to this embodiment. Unless it deviates from the gist of the present invention, the embodiment in which various modifications conceived by those skilled in the art have been made in the present embodiment, and forms constructed by combining components in different embodiments are also applicable to one or more of the present invention. It may be included within the scope of the embodiments.
 (実施の形態4)
 上記各実施の形態で示した動画像符号化方法(画像符号化方法)または動画像復号化方法(画像復号方法)の構成を実現するためのプログラムを記憶メディアに記録することにより、上記各実施の形態で示した処理を独立したコンピュータシステムにおいて簡単に実施することが可能となる。記憶メディアは、磁気ディスク、光ディスク、光磁気ディスク、ICカード、半導体メモリ等、プログラムを記録できるものであればよい。
(Embodiment 4)
By recording a program for realizing the configuration of the moving image encoding method (image encoding method) or the moving image decoding method (image decoding method) shown in each of the above embodiments on a storage medium, each of the above embodiments It is possible to easily execute the processing shown in the form in the independent computer system. The storage medium may be any medium that can record a program, such as a magnetic disk, an optical disk, a magneto-optical disk, an IC card, and a semiconductor memory.
 さらにここで、上記各実施の形態で示した動画像符号化方法(画像符号化方法)や動画像復号化方法(画像復号方法)の応用例とそれを用いたシステムを説明する。当該システムは、画像符号化方法を用いた画像符号化装置、及び画像復号方法を用いた画像復号装置からなる画像符号化復号装置を有することを特徴とする。システムにおける他の構成について、場合に応じて適切に変更することができる。 Furthermore, application examples of the moving picture coding method (picture coding method) and the moving picture decoding method (picture decoding method) shown in the above embodiments and a system using the same will be described. The system has an image encoding / decoding device including an image encoding device using an image encoding method and an image decoding device using an image decoding method. Other configurations in the system can be appropriately changed according to circumstances.
 図17は、コンテンツ配信サービスを実現するコンテンツ供給システムex100の全体構成を示す図である。通信サービスの提供エリアを所望の大きさに分割し、各セル内にそれぞれ固定無線局である基地局ex106、ex107、ex108、ex109、ex110が設置されている。 FIG. 17 is a diagram showing an overall configuration of a content supply system ex100 that realizes a content distribution service. A communication service providing area is divided into desired sizes, and base stations ex106, ex107, ex108, ex109, and ex110, which are fixed wireless stations, are installed in each cell.
 このコンテンツ供給システムex100は、インターネットex101にインターネットサービスプロバイダex102および電話網ex104、および基地局ex106からex110を介して、コンピュータex111、PDA(Personal Digital Assistant)ex112、カメラex113、携帯電話ex114、ゲーム機ex115などの各機器が接続される。 The content supply system ex100 includes a computer ex111, a PDA (Personal Digital Assistant) ex112, a camera ex113, a mobile phone ex114, a game machine ex115 via the Internet ex101, the Internet service provider ex102, the telephone network ex104, and the base stations ex106 to ex110. Etc. are connected.
 しかし、コンテンツ供給システムex100は図17のような構成に限定されず、いずれかの要素を組合せて接続するようにしてもよい。また、固定無線局である基地局ex106からex110を介さずに、各機器が電話網ex104に直接接続されてもよい。また、各機器が近距離無線等を介して直接相互に接続されていてもよい。 However, the content supply system ex100 is not limited to the configuration shown in FIG. 17, and may be connected by combining any one of the elements. In addition, each device may be directly connected to the telephone network ex104 without going from the base station ex106, which is a fixed wireless station, to ex110. In addition, the devices may be directly connected to each other via short-range wireless or the like.
 カメラex113はデジタルビデオカメラ等の動画撮影が可能な機器であり、カメラex116はデジタルカメラ等の静止画撮影、動画撮影が可能な機器である。また、携帯電話ex114は、GSM(登録商標)(Global System for Mobile Communications)方式、CDMA(Code Division Multiple Access)方式、W-CDMA(Wideband-Code Division Multiple Access)方式、若しくはLTE(Long Term Evolution)方式、HSPA(High Speed Packet Access)の携帯電話機、またはPHS(Personal Handyphone System)等であり、いずれでも構わない。 The camera ex113 is a device that can shoot moving images such as a digital video camera, and the camera ex116 is a device that can shoot still images and movies such as a digital camera. The mobile phone ex114 is a GSM (registered trademark) (Global System for Mobile Communications) system, a CDMA (Code Division Multiple Access) system, a W-CDMA (Wideband-Code Division Multiple Access) system, or an LTE (Long Terminal Term Evolution). It is possible to use any of the above-mentioned systems, HSPA (High Speed Packet Access) mobile phone, PHS (Personal Handyphone System), or the like.
 コンテンツ供給システムex100では、カメラex113等が基地局ex109、電話網ex104を通じてストリーミングサーバex103に接続されることで、ライブ配信等が可能になる。ライブ配信では、ユーザがカメラex113を用いて撮影するコンテンツ(例えば、音楽ライブの映像等)に対して上記各実施の形態で説明したように符号化処理を行い(即ち、本発明の一態様に係る画像符号化装置として機能する)、ストリーミングサーバex103に送信する。一方、ストリーミングサーバex103は要求のあったクライアントに対して送信されたコンテンツデータをストリーム配信する。クライアントとしては、上記符号化処理されたデータを復号化することが可能な、コンピュータex111、PDAex112、カメラex113、携帯電話ex114、ゲーム機ex115等がある。配信されたデータを受信した各機器では、受信したデータを復号化処理して再生する(即ち、本発明の一態様に係る画像復号装置として機能する)。 In the content supply system ex100, the camera ex113 and the like are connected to the streaming server ex103 through the base station ex109 and the telephone network ex104, thereby enabling live distribution and the like. In live distribution, content that is shot by a user using the camera ex113 (for example, music live video) is encoded as described in each of the above embodiments (that is, in one aspect of the present invention). Functions as an image encoding device), and transmits it to the streaming server ex103. On the other hand, the streaming server ex103 stream-distributes the content data transmitted to the requested client. Examples of the client include a computer ex111, a PDA ex112, a camera ex113, a mobile phone ex114, and a game machine ex115 that can decode the encoded data. Each device that receives the distributed data decodes the received data and reproduces it (that is, functions as an image decoding device according to one embodiment of the present invention).
 なお、撮影したデータの符号化処理はカメラex113で行っても、データの送信処理をするストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。同様に配信されたデータの復号化処理はクライアントで行っても、ストリーミングサーバex103で行ってもよいし、互いに分担して行ってもよい。また、カメラex113に限らず、カメラex116で撮影した静止画像および/または動画像データを、コンピュータex111を介してストリーミングサーバex103に送信してもよい。この場合の符号化処理はカメラex116、コンピュータex111、ストリーミングサーバex103のいずれで行ってもよいし、互いに分担して行ってもよい。 Note that the captured data may be encoded by the camera ex113, the streaming server ex103 that performs data transmission processing, or may be shared with each other. Similarly, the decryption processing of the distributed data may be performed by the client, the streaming server ex103, or may be performed in common with each other. In addition to the camera ex113, still images and / or moving image data captured by the camera ex116 may be transmitted to the streaming server ex103 via the computer ex111. The encoding process in this case may be performed by any of the camera ex116, the computer ex111, and the streaming server ex103, or may be performed in a shared manner.
 また、これら符号化・復号化処理は、一般的にコンピュータex111や各機器が有するLSIex500において処理する。LSIex500は、ワンチップであっても複数チップからなる構成であってもよい。なお、動画像符号化・復号化用のソフトウェアをコンピュータex111等で読み取り可能な何らかの記録メディア(CD-ROM、フレキシブルディスク、ハードディスクなど)に組み込み、そのソフトウェアを用いて符号化・復号化処理を行ってもよい。さらに、携帯電話ex114がカメラ付きである場合には、そのカメラで取得した動画データを送信してもよい。このときの動画データは携帯電話ex114が有するLSIex500で符号化処理されたデータである。 Further, these encoding / decoding processes are generally performed in the computer ex111 and the LSI ex500 included in each device. The LSI ex500 may be configured as a single chip or a plurality of chips. It should be noted that moving image encoding / decoding software is incorporated into some recording medium (CD-ROM, flexible disk, hard disk, etc.) that can be read by the computer ex111, etc., and encoding / decoding processing is performed using the software. May be. Furthermore, when the mobile phone ex114 is equipped with a camera, moving image data acquired by the camera may be transmitted. The moving image data at this time is data encoded by the LSI ex500 included in the mobile phone ex114.
 また、ストリーミングサーバex103は複数のサーバや複数のコンピュータであって、データを分散して処理したり記録したり配信するものであってもよい。 Further, the streaming server ex103 may be a plurality of servers or a plurality of computers, and may process, record, and distribute data in a distributed manner.
 以上のようにして、コンテンツ供給システムex100では、符号化されたデータをクライアントが受信して再生することができる。このようにコンテンツ供給システムex100では、ユーザが送信した情報をリアルタイムでクライアントが受信して復号化し、再生することができ、特別な権利や設備を有さないユーザでも個人放送を実現できる。 As described above, in the content supply system ex100, the encoded data can be received and reproduced by the client. Thus, in the content supply system ex100, the information transmitted by the user can be received, decrypted and reproduced by the client in real time, and personal broadcasting can be realized even for a user who does not have special rights or facilities.
 なお、コンテンツ供給システムex100の例に限らず、図18に示すように、デジタル放送用システムex200にも、上記各実施の形態の少なくとも動画像符号化装置(画像符号化装置)または動画像復号化装置(画像復号装置)のいずれかを組み込むことができる。具体的には、放送局ex201では映像データに音楽データなどが多重化された多重化データが電波を介して通信または衛星ex202に伝送される。この映像データは上記各実施の形態で説明した動画像符号化方法により符号化されたデータである(即ち、本発明の一態様に係る画像符号化装置によって符号化されたデータである)。これを受けた放送衛星ex202は、放送用の電波を発信し、この電波を衛星放送の受信が可能な家庭のアンテナex204が受信する。受信した多重化データを、テレビ(受信機)ex300またはセットトップボックス(STB)ex217等の装置が復号化して再生する(即ち、本発明の一態様に係る画像復号装置として機能する)。 In addition to the example of the content supply system ex100, as shown in FIG. 18, the digital broadcast system ex200 also includes at least the video encoding device (video encoding device) or video decoding of each of the above embodiments. Any of the devices (image decoding devices) can be incorporated. Specifically, in the broadcast station ex201, multiplexed data obtained by multiplexing music data and the like on video data is transmitted to a communication or satellite ex202 via radio waves. This video data is data encoded by the moving image encoding method described in each of the above embodiments (that is, data encoded by the image encoding apparatus according to one aspect of the present invention). Receiving this, the broadcasting satellite ex202 transmits a radio wave for broadcasting, and this radio wave is received by a home antenna ex204 capable of receiving satellite broadcasting. The received multiplexed data is decoded and reproduced by an apparatus such as the television (receiver) ex300 or the set top box (STB) ex217 (that is, functions as an image decoding apparatus according to one embodiment of the present invention).
 また、DVD、BD等の記録メディアex215に記録した多重化データを読み取り復号化する、または記録メディアex215に映像信号を符号化し、さらに場合によっては音楽信号と多重化して書き込むリーダ/レコーダex218にも上記各実施の形態で示した動画像復号化装置または動画像符号化装置を実装することが可能である。この場合、再生された映像信号はモニタex219に表示され、多重化データが記録された記録メディアex215により他の装置やシステムにおいて映像信号を再生することができる。また、ケーブルテレビ用のケーブルex203または衛星/地上波放送のアンテナex204に接続されたセットトップボックスex217内に動画像復号化装置を実装し、これをテレビのモニタex219で表示してもよい。このときセットトップボックスではなく、テレビ内に動画像復号化装置を組み込んでもよい。 Also, a reader / recorder ex218 that reads and decodes multiplexed data recorded on a recording medium ex215 such as a DVD or a BD, or encodes a video signal on the recording medium ex215 and, in some cases, multiplexes and writes it with a music signal. It is possible to mount the moving picture decoding apparatus or moving picture encoding apparatus described in the above embodiments. In this case, the reproduced video signal is displayed on the monitor ex219, and the video signal can be reproduced in another device or system using the recording medium ex215 on which the multiplexed data is recorded. Alternatively, a moving picture decoding apparatus may be mounted in a set-top box ex217 connected to a cable ex203 for cable television or an antenna ex204 for satellite / terrestrial broadcasting and displayed on the monitor ex219 of the television. At this time, the moving picture decoding apparatus may be incorporated in the television instead of the set top box.
 図19は、上記各実施の形態で説明した動画像復号化方法および動画像符号化方法を用いたテレビ(受信機)ex300を示す図である。テレビex300は、上記放送を受信するアンテナex204またはケーブルex203等を介して映像データに音声データが多重化された多重化データを取得、または出力するチューナex301と、受信した多重化データを復調する、または外部に送信する多重化データに変調する変調/復調部ex302と、復調した多重化データを映像データと、音声データとに分離する、または信号処理部ex306で符号化された映像データ、音声データを多重化する多重/分離部ex303を備える。 FIG. 19 is a diagram illustrating a television (receiver) ex300 that uses the video decoding method and the video encoding method described in each of the above embodiments. The television ex300 obtains or outputs multiplexed data in which audio data is multiplexed with video data via the antenna ex204 or the cable ex203 that receives the broadcast, and demodulates the received multiplexed data. Alternatively, the modulation / demodulation unit ex302 that modulates multiplexed data to be transmitted to the outside, and the demodulated multiplexed data is separated into video data and audio data, or the video data and audio data encoded by the signal processing unit ex306 Is provided with a multiplexing / demultiplexing unit ex303.
 また、テレビex300は、音声データ、映像データそれぞれを復号化する、またはそれぞれの情報を符号化する音声信号処理部ex304、映像信号処理部ex305(本発明の一態様に係る画像符号化装置または画像復号装置として機能する)を有する信号処理部ex306と、復号化した音声信号を出力するスピーカex307、復号化した映像信号を表示するディスプレイ等の表示部ex308を有する出力部ex309とを有する。さらに、テレビex300は、ユーザ操作の入力を受け付ける操作入力部ex312等を有するインタフェース部ex317を有する。さらに、テレビex300は、各部を統括的に制御する制御部ex310、各部に電力を供給する電源回路部ex311を有する。インタフェース部ex317は、操作入力部ex312以外に、リーダ/レコーダex218等の外部機器と接続されるブリッジex313、SDカード等の記録メディアex216を装着可能とするためのスロット部ex314、ハードディスク等の外部記録メディアと接続するためのドライバex315、電話網と接続するモデムex316等を有していてもよい。なお記録メディアex216は、格納する不揮発性/揮発性の半導体メモリ素子により電気的に情報の記録を可能としたものである。テレビex300の各部は同期バスを介して互いに接続されている。 The television ex300 also decodes the audio data and the video data, or encodes the information, the audio signal processing unit ex304, the video signal processing unit ex305 (the image encoding device or the image according to one embodiment of the present invention) A signal processing unit ex306 that functions as a decoding device), a speaker ex307 that outputs the decoded audio signal, and an output unit ex309 that includes a display unit ex308 such as a display that displays the decoded video signal. Furthermore, the television ex300 includes an interface unit ex317 including an operation input unit ex312 that receives an input of a user operation. Furthermore, the television ex300 includes a control unit ex310 that performs overall control of each unit, and a power supply circuit unit ex311 that supplies power to each unit. In addition to the operation input unit ex312, the interface unit ex317 includes a bridge unit ex313 connected to an external device such as a reader / recorder ex218, a recording unit ex216 such as an SD card, and an external recording unit such as a hard disk. A driver ex315 for connecting to a medium, a modem ex316 for connecting to a telephone network, and the like may be included. Note that the recording medium ex216 is capable of electrically recording information by using a nonvolatile / volatile semiconductor memory element to be stored. Each part of the television ex300 is connected to each other via a synchronous bus.
 まず、テレビex300がアンテナex204等により外部から取得した多重化データを復号化し、再生する構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、CPU等を有する制御部ex310の制御に基づいて、変調/復調部ex302で復調した多重化データを多重/分離部ex303で分離する。さらにテレビex300は、分離した音声データを音声信号処理部ex304で復号化し、分離した映像データを映像信号処理部ex305で上記各実施の形態で説明した復号化方法を用いて復号化する。復号化した音声信号、映像信号は、それぞれ出力部ex309から外部に向けて出力される。出力する際には、音声信号と映像信号が同期して再生するよう、バッファex318、ex319等に一旦これらの信号を蓄積するとよい。また、テレビex300は、放送等からではなく、磁気/光ディスク、SDカード等の記録メディアex215、ex216から多重化データを読み出してもよい。次に、テレビex300が音声信号や映像信号を符号化し、外部に送信または記録メディア等に書き込む構成について説明する。テレビex300は、リモートコントローラex220等からのユーザ操作を受け、制御部ex310の制御に基づいて、音声信号処理部ex304で音声信号を符号化し、映像信号処理部ex305で映像信号を上記各実施の形態で説明した符号化方法を用いて符号化する。符号化した音声信号、映像信号は多重/分離部ex303で多重化され外部に出力される。多重化する際には、音声信号と映像信号が同期するように、バッファex320、ex321等に一旦これらの信号を蓄積するとよい。なお、バッファex318、ex319、ex320、ex321は図示しているように複数備えていてもよいし、1つ以上のバッファを共有する構成であってもよい。さらに、図示している以外に、例えば変調/復調部ex302や多重/分離部ex303の間等でもシステムのオーバフロー、アンダーフローを避ける緩衝材としてバッファにデータを蓄積することとしてもよい。 First, a configuration in which the television ex300 decodes and reproduces multiplexed data acquired from the outside by the antenna ex204 and the like will be described. The television ex300 receives a user operation from the remote controller ex220 or the like, and demultiplexes the multiplexed data demodulated by the modulation / demodulation unit ex302 by the multiplexing / demultiplexing unit ex303 based on the control of the control unit ex310 having a CPU or the like. Furthermore, in the television ex300, the separated audio data is decoded by the audio signal processing unit ex304, and the separated video data is decoded by the video signal processing unit ex305 using the decoding method described in each of the above embodiments. The decoded audio signal and video signal are output from the output unit ex309 to the outside. At the time of output, these signals may be temporarily stored in the buffers ex318, ex319, etc. so that the audio signal and the video signal are reproduced in synchronization. Also, the television ex300 may read multiplexed data from recording media ex215 and ex216 such as a magnetic / optical disk and an SD card, not from broadcasting. Next, a configuration in which the television ex300 encodes an audio signal or a video signal and transmits the signal to the outside or to a recording medium will be described. The television ex300 receives a user operation from the remote controller ex220 and the like, encodes an audio signal with the audio signal processing unit ex304, and converts the video signal with the video signal processing unit ex305 based on the control of the control unit ex310. Encoding is performed using the encoding method described in (1). The encoded audio signal and video signal are multiplexed by the multiplexing / demultiplexing unit ex303 and output to the outside. When multiplexing, these signals may be temporarily stored in the buffers ex320, ex321, etc. so that the audio signal and the video signal are synchronized. Note that a plurality of buffers ex318, ex319, ex320, and ex321 may be provided as illustrated, or one or more buffers may be shared. Further, in addition to the illustrated example, data may be stored in the buffer as a buffer material that prevents system overflow and underflow, for example, between the modulation / demodulation unit ex302 and the multiplexing / demultiplexing unit ex303.
 また、テレビex300は、放送等や記録メディア等から音声データ、映像データを取得する以外に、マイクやカメラのAV入力を受け付ける構成を備え、それらから取得したデータに対して符号化処理を行ってもよい。なお、ここではテレビex300は上記の符号化処理、多重化、および外部出力ができる構成として説明したが、これらの処理を行うことはできず、上記受信、復号化処理、外部出力のみが可能な構成であってもよい。 In addition to acquiring audio data and video data from broadcasts, recording media, and the like, the television ex300 has a configuration for receiving AV input of a microphone and a camera, and performs encoding processing on the data acquired from them. Also good. Here, the television ex300 has been described as a configuration capable of the above-described encoding processing, multiplexing, and external output, but these processing cannot be performed, and only the above-described reception, decoding processing, and external output are possible. It may be a configuration.
 また、リーダ/レコーダex218で記録メディアから多重化データを読み出す、または書き込む場合には、上記復号化処理または符号化処理はテレビex300、リーダ/レコーダex218のいずれで行ってもよいし、テレビex300とリーダ/レコーダex218が互いに分担して行ってもよい。 In addition, when reading or writing multiplexed data from a recording medium by the reader / recorder ex218, the decoding process or the encoding process may be performed by either the television ex300 or the reader / recorder ex218, The reader / recorder ex218 may share with each other.
 一例として、光ディスクからデータの読み込みまたは書き込みをする場合の情報再生/記録部ex400の構成を図20に示す。情報再生/記録部ex400は、以下に説明する要素ex401、ex402、ex403、ex404、ex405、ex406、ex407を備える。光ヘッドex401は、光ディスクである記録メディアex215の記録面にレーザスポットを照射して情報を書き込み、記録メディアex215の記録面からの反射光を検出して情報を読み込む。変調記録部ex402は、光ヘッドex401に内蔵された半導体レーザを電気的に駆動し記録データに応じてレーザ光の変調を行う。再生復調部ex403は、光ヘッドex401に内蔵されたフォトディテクタにより記録面からの反射光を電気的に検出した再生信号を増幅し、記録メディアex215に記録された信号成分を分離して復調し、必要な情報を再生する。バッファex404は、記録メディアex215に記録するための情報および記録メディアex215から再生した情報を一時的に保持する。ディスクモータex405は記録メディアex215を回転させる。サーボ制御部ex406は、ディスクモータex405の回転駆動を制御しながら光ヘッドex401を所定の情報トラックに移動させ、レーザスポットの追従処理を行う。システム制御部ex407は、情報再生/記録部ex400全体の制御を行う。上記の読み出しや書き込みの処理はシステム制御部ex407が、バッファex404に保持された各種情報を利用し、また必要に応じて新たな情報の生成・追加を行うと共に、変調記録部ex402、再生復調部ex403、サーボ制御部ex406を協調動作させながら、光ヘッドex401を通して、情報の記録再生を行うことにより実現される。システム制御部ex407は例えばマイクロプロセッサで構成され、読み出し書き込みのプログラムを実行することでそれらの処理を実行する。 As an example, FIG. 20 shows a configuration of the information reproducing / recording unit ex400 when data is read from or written to an optical disk. The information reproducing / recording unit ex400 includes elements ex401, ex402, ex403, ex404, ex405, ex406, and ex407 described below. The optical head ex401 irradiates a laser spot on the recording surface of the recording medium ex215 that is an optical disk to write information, and detects information reflected from the recording surface of the recording medium ex215 to read the information. The modulation recording unit ex402 electrically drives a semiconductor laser built in the optical head ex401 and modulates the laser beam according to the recording data. The reproduction demodulator ex403 amplifies the reproduction signal obtained by electrically detecting the reflected light from the recording surface by the photodetector built in the optical head ex401, separates and demodulates the signal component recorded on the recording medium ex215, and is necessary To play back information. The buffer ex404 temporarily holds information to be recorded on the recording medium ex215 and information reproduced from the recording medium ex215. The disk motor ex405 rotates the recording medium ex215. The servo control unit ex406 moves the optical head ex401 to a predetermined information track while controlling the rotational drive of the disk motor ex405, and performs a laser spot tracking process. The system control unit ex407 controls the entire information reproduction / recording unit ex400. In the reading and writing processes described above, the system control unit ex407 uses various types of information held in the buffer ex404, and generates and adds new information as necessary. The modulation recording unit ex402, the reproduction demodulation unit This is realized by recording / reproducing information through the optical head ex401 while operating the ex403 and the servo control unit ex406 in a coordinated manner. The system control unit ex407 includes, for example, a microprocessor, and executes these processes by executing a read / write program.
 以上では、光ヘッドex401はレーザスポットを照射するとして説明したが、近接場光を用いてより高密度な記録を行う構成であってもよい。 In the above, the optical head ex401 has been described as irradiating a laser spot. However, a configuration in which higher-density recording is performed using near-field light may be used.
 図21に光ディスクである記録メディアex215の模式図を示す。記録メディアex215の記録面には案内溝(グルーブ)がスパイラル状に形成され、情報トラックex230には、予めグルーブの形状の変化によってディスク上の絶対位置を示す番地情報が記録されている。この番地情報はデータを記録する単位である記録ブロックex231の位置を特定するための情報を含み、記録や再生を行う装置において情報トラックex230を再生し番地情報を読み取ることで記録ブロックを特定することができる。また、記録メディアex215は、データ記録領域ex233、内周領域ex232、外周領域ex234を含んでいる。ユーザデータを記録するために用いる領域がデータ記録領域ex233であり、データ記録領域ex233より内周または外周に配置されている内周領域ex232と外周領域ex234は、ユーザデータの記録以外の特定用途に用いられる。情報再生/記録部ex400は、このような記録メディアex215のデータ記録領域ex233に対して、符号化された音声データ、映像データまたはそれらのデータを多重化した多重化データの読み書きを行う。 FIG. 21 shows a schematic diagram of a recording medium ex215 that is an optical disk. Guide grooves (grooves) are formed in a spiral shape on the recording surface of the recording medium ex215, and address information indicating the absolute position on the disc is recorded in advance on the information track ex230 by changing the shape of the groove. This address information includes information for specifying the position of the recording block ex231 that is a unit for recording data, and the recording block is specified by reproducing the information track ex230 and reading the address information in a recording or reproducing apparatus. Can do. Further, the recording medium ex215 includes a data recording area ex233, an inner peripheral area ex232, and an outer peripheral area ex234. The area used for recording user data is the data recording area ex233, and the inner circumference area ex232 and the outer circumference area ex234 arranged on the inner or outer circumference of the data recording area ex233 are used for specific purposes other than user data recording. Used. The information reproducing / recording unit ex400 reads / writes encoded audio data, video data, or multiplexed data obtained by multiplexing these data with respect to the data recording area ex233 of the recording medium ex215.
 以上では、1層のDVD、BD等の光ディスクを例に挙げ説明したが、これらに限ったものではなく、多層構造であって表面以外にも記録可能な光ディスクであってもよい。また、ディスクの同じ場所にさまざまな異なる波長の色の光を用いて情報を記録したり、さまざまな角度から異なる情報の層を記録したりなど、多次元的な記録/再生を行う構造の光ディスクであってもよい。 In the above description, an optical disk such as a single-layer DVD or BD has been described as an example. However, the present invention is not limited to these, and an optical disk having a multilayer structure and capable of recording other than the surface may be used. Also, an optical disc with a multi-dimensional recording / reproducing structure, such as recording information using light of different wavelengths in the same place on the disc, or recording different layers of information from various angles. It may be.
 また、デジタル放送用システムex200において、アンテナex205を有する車ex210で衛星ex202等からデータを受信し、車ex210が有するカーナビゲーションex211等の表示装置に動画を再生することも可能である。なお、カーナビゲーションex211の構成は例えば図19に示す構成のうち、GPS受信部を加えた構成が考えられ、同様なことがコンピュータex111や携帯電話ex114等でも考えられる。 Further, in the digital broadcasting system ex200, the car ex210 having the antenna ex205 can receive data from the satellite ex202 and the like, and the moving image can be reproduced on a display device such as the car navigation ex211 that the car ex210 has. The configuration of the car navigation ex211 may be, for example, a configuration in which a GPS receiving unit is added in the configuration illustrated in FIG. 19, and the same may be considered for the computer ex111, the mobile phone ex114, and the like.
 図22Aは、上記実施の形態で説明した動画像復号化方法および動画像符号化方法を用いた携帯電話ex114を示す図である。携帯電話ex114は、基地局ex110との間で電波を送受信するためのアンテナex350、映像、静止画を撮ることが可能なカメラ部ex365、カメラ部ex365で撮像した映像、アンテナex350で受信した映像等が復号化されたデータを表示する液晶ディスプレイ等の表示部ex358を備える。携帯電話ex114は、さらに、操作キー部ex366を有する本体部、音声を出力するためのスピーカ等である音声出力部ex357、音声を入力するためのマイク等である音声入力部ex356、撮影した映像、静止画、録音した音声、または受信した映像、静止画、メール等の符号化されたデータもしくは復号化されたデータを保存するメモリ部ex367、又は同様にデータを保存する記録メディアとのインタフェース部であるスロット部ex364を備える。 FIG. 22A is a diagram showing the mobile phone ex114 using the moving picture decoding method and the moving picture encoding method described in the above embodiment. The mobile phone ex114 includes an antenna ex350 for transmitting and receiving radio waves to and from the base station ex110, a camera unit ex365 capable of capturing video and still images, a video captured by the camera unit ex365, a video received by the antenna ex350, and the like Is provided with a display unit ex358 such as a liquid crystal display for displaying the decrypted data. The mobile phone ex114 further includes a main body unit having an operation key unit ex366, an audio output unit ex357 such as a speaker for outputting audio, an audio input unit ex356 such as a microphone for inputting audio, a captured video, In the memory unit ex367 for storing encoded data or decoded data such as still images, recorded audio, received video, still images, mails, or the like, or an interface unit with a recording medium for storing data A slot ex364 is provided.
 さらに、携帯電話ex114の構成例について、図22Bを用いて説明する。携帯電話ex114は、表示部ex358及び操作キー部ex366を備えた本体部の各部を統括的に制御する主制御部ex360に対して、電源回路部ex361、操作入力制御部ex362、映像信号処理部ex355、カメラインタフェース部ex363、LCD(Liquid Crystal Display)制御部ex359、変調/復調部ex352、多重/分離部ex353、音声信号処理部ex354、スロット部ex364、メモリ部ex367がバスex370を介して互いに接続されている。 Furthermore, a configuration example of the mobile phone ex114 will be described with reference to FIG. 22B. The mobile phone ex114 has a power supply circuit part ex361, an operation input control part ex362, and a video signal processing part ex355 with respect to a main control part ex360 that comprehensively controls each part of the main body including the display part ex358 and the operation key part ex366. , A camera interface unit ex363, an LCD (Liquid Crystal Display) control unit ex359, a modulation / demodulation unit ex352, a multiplexing / demultiplexing unit ex353, an audio signal processing unit ex354, a slot unit ex364, and a memory unit ex367 are connected to each other via a bus ex370. ing.
 電源回路部ex361は、ユーザの操作により終話及び電源キーがオン状態にされると、バッテリパックから各部に対して電力を供給することにより携帯電話ex114を動作可能な状態に起動する。 When the end of call and the power key are turned on by a user operation, the power supply circuit unit ex361 starts up the mobile phone ex114 in an operable state by supplying power from the battery pack to each unit.
 携帯電話ex114は、CPU、ROM、RAM等を有する主制御部ex360の制御に基づいて、音声通話モード時に音声入力部ex356で収音した音声信号を音声信号処理部ex354でデジタル音声信号に変換し、これを変調/復調部ex352でスペクトラム拡散処理し、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して送信する。また携帯電話ex114は、音声通話モード時にアンテナex350を介して受信した受信データを増幅して周波数変換処理およびアナログデジタル変換処理を施し、変調/復調部ex352でスペクトラム逆拡散処理し、音声信号処理部ex354でアナログ音声信号に変換した後、これを音声出力部ex357から出力する。 The cellular phone ex114 converts the audio signal collected by the audio input unit ex356 in the voice call mode into a digital audio signal by the audio signal processing unit ex354 based on the control of the main control unit ex360 having a CPU, a ROM, a RAM, and the like. Then, this is subjected to spectrum spread processing by the modulation / demodulation unit ex352, digital-analog conversion processing and frequency conversion processing are performed by the transmission / reception unit ex351, and then transmitted via the antenna ex350. The mobile phone ex114 also amplifies the received data received via the antenna ex350 in the voice call mode, performs frequency conversion processing and analog-digital conversion processing, performs spectrum despreading processing by the modulation / demodulation unit ex352, and performs voice signal processing unit After being converted into an analog audio signal by ex354, this is output from the audio output unit ex357.
 さらにデータ通信モード時に電子メールを送信する場合、本体部の操作キー部ex366等の操作によって入力された電子メールのテキストデータは操作入力制御部ex362を介して主制御部ex360に送出される。主制御部ex360は、テキストデータを変調/復調部ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理および周波数変換処理を施した後にアンテナex350を介して基地局ex110へ送信する。電子メールを受信する場合は、受信したデータに対してこのほぼ逆の処理が行われ、表示部ex358に出力される。 Further, when an e-mail is transmitted in the data communication mode, the text data of the e-mail input by operating the operation key unit ex366 of the main unit is sent to the main control unit ex360 via the operation input control unit ex362. The main control unit ex360 performs spread spectrum processing on the text data in the modulation / demodulation unit ex352, performs digital analog conversion processing and frequency conversion processing in the transmission / reception unit ex351, and then transmits the text data to the base station ex110 via the antenna ex350. . In the case of receiving an e-mail, almost the reverse process is performed on the received data and output to the display unit ex358.
 データ通信モード時に映像、静止画、または映像と音声を送信する場合、映像信号処理部ex355は、カメラ部ex365から供給された映像信号を上記各実施の形態で示した動画像符号化方法によって圧縮符号化し(即ち、本発明の一態様に係る画像符号化装置として機能する)、符号化された映像データを多重/分離部ex353に送出する。また、音声信号処理部ex354は、映像、静止画等をカメラ部ex365で撮像中に音声入力部ex356で収音した音声信号を符号化し、符号化された音声データを多重/分離部ex353に送出する。 When transmitting video, still images, or video and audio in the data communication mode, the video signal processing unit ex355 compresses the video signal supplied from the camera unit ex365 by the moving image encoding method described in the above embodiments. Encode (that is, function as an image encoding device according to an aspect of the present invention), and send the encoded video data to the multiplexing / demultiplexing unit ex353. The audio signal processing unit ex354 encodes the audio signal picked up by the audio input unit ex356 while the camera unit ex365 images a video, a still image, etc., and sends the encoded audio data to the multiplexing / separating unit ex353. To do.
 多重/分離部ex353は、映像信号処理部ex355から供給された符号化された映像データと音声信号処理部ex354から供給された符号化された音声データを所定の方式で多重化し、その結果得られる多重化データを変調/復調部(変調/復調回路部)ex352でスペクトラム拡散処理をし、送信/受信部ex351でデジタルアナログ変換処理及び周波数変換処理を施した後にアンテナex350を介して送信する。 The multiplexing / demultiplexing unit ex353 multiplexes the encoded video data supplied from the video signal processing unit ex355 and the encoded audio data supplied from the audio signal processing unit ex354 by a predetermined method, and is obtained as a result. The multiplexed data is subjected to spread spectrum processing by the modulation / demodulation unit (modulation / demodulation circuit unit) ex352, digital-analog conversion processing and frequency conversion processing by the transmission / reception unit ex351, and then transmitted via the antenna ex350.
 データ通信モード時にホームページ等にリンクされた動画像ファイルのデータを受信する場合、または映像およびもしくは音声が添付された電子メールを受信する場合、アンテナex350を介して受信された多重化データを復号化するために、多重/分離部ex353は、多重化データを分離することにより映像データのビットストリームと音声データのビットストリームとに分け、同期バスex370を介して符号化された映像データを映像信号処理部ex355に供給するとともに、符号化された音声データを音声信号処理部ex354に供給する。映像信号処理部ex355は、上記各実施の形態で示した動画像符号化方法に対応した動画像復号化方法によって復号化することにより映像信号を復号し(即ち、本発明の一態様に係る画像復号装置として機能する)、LCD制御部ex359を介して表示部ex358から、例えばホームページにリンクされた動画像ファイルに含まれる映像、静止画が表示される。また音声信号処理部ex354は、音声信号を復号し、音声出力部ex357から音声が出力される。 Decode multiplexed data received via antenna ex350 when receiving video file data linked to a homepage, etc. in data communication mode, or when receiving e-mail with video and / or audio attached Therefore, the multiplexing / separating unit ex353 separates the multiplexed data into a video data bit stream and an audio data bit stream, and performs video signal processing on the video data encoded via the synchronization bus ex370. The encoded audio data is supplied to the audio signal processing unit ex354 while being supplied to the unit ex355. The video signal processing unit ex355 decodes the video signal by decoding using the video decoding method corresponding to the video encoding method described in each of the above embodiments (that is, an image according to an aspect of the present invention). For example, video and still images included in the moving image file linked to the home page are displayed from the display unit ex358 via the LCD control unit ex359. The audio signal processing unit ex354 decodes the audio signal, and the audio is output from the audio output unit ex357.
 また、上記携帯電話ex114等の端末は、テレビex300と同様に、符号化器・復号化器を両方持つ送受信型端末の他に、符号化器のみの送信端末、復号化器のみの受信端末という3通りの実装形式が考えられる。さらに、デジタル放送用システムex200において、映像データに音楽データなどが多重化された多重化データを受信、送信するとして説明したが、音声データ以外に映像に関連する文字データなどが多重化されたデータであってもよいし、多重化データではなく映像データ自体であってもよい。 In addition to the transmission / reception type terminal having both the encoder and the decoder, the terminal such as the mobile phone ex114 is referred to as a transmission terminal having only an encoder and a receiving terminal having only a decoder. There are three possible mounting formats. Furthermore, in the digital broadcasting system ex200, it has been described that multiplexed data in which music data or the like is multiplexed with video data is received and transmitted, but data in which character data or the like related to video is multiplexed in addition to audio data It may be video data itself instead of multiplexed data.
 このように、上記各実施の形態で示した動画像符号化方法あるいは動画像復号化方法を上述したいずれの機器・システムに用いることは可能であり、そうすることで、上記各実施の形態で説明した効果を得ることができる。 As described above, the moving picture encoding method or the moving picture decoding method shown in each of the above embodiments can be used in any of the above-described devices / systems. The described effect can be obtained.
 また、本発明はかかる上記実施の形態に限定されるものではなく、本発明の範囲を逸脱することなく種々の変形または修正が可能である。 Further, the present invention is not limited to the above-described embodiment, and various changes and modifications can be made without departing from the scope of the present invention.
 (実施の形態5)
 上記各実施の形態で示した動画像符号化方法または装置と、MPEG-2、MPEG4-AVC、VC-1など異なる規格に準拠した動画像符号化方法または装置とを、必要に応じて適宜切替えることにより、映像データを生成することも可能である。
(Embodiment 5)
The moving picture coding method or apparatus shown in the above embodiments and the moving picture coding method or apparatus compliant with different standards such as MPEG-2, MPEG4-AVC, and VC-1 are appropriately switched as necessary. Thus, it is also possible to generate video data.
 ここで、それぞれ異なる規格に準拠する複数の映像データを生成した場合、復号する際に、それぞれの規格に対応した復号方法を選択する必要がある。しかしながら、復号する映像データが、どの規格に準拠するものであるか識別できないため、適切な復号方法を選択することができないという課題を生じる。 Here, when a plurality of pieces of video data conforming to different standards are generated, it is necessary to select a decoding method corresponding to each standard when decoding. However, since it is impossible to identify which standard the video data to be decoded complies with, there arises a problem that an appropriate decoding method cannot be selected.
 この課題を解決するために、映像データに音声データなどを多重化した多重化データは、映像データがどの規格に準拠するものであるかを示す識別情報を含む構成とする。上記各実施の形態で示す動画像符号化方法または装置によって生成された映像データを含む多重化データの具体的な構成を以下説明する。多重化データは、MPEG-2トランスポートストリーム形式のデジタルストリームである。 In order to solve this problem, multiplexed data obtained by multiplexing audio data or the like with video data is configured to include identification information indicating which standard the video data conforms to. A specific configuration of multiplexed data including video data generated by the moving picture encoding method or apparatus shown in the above embodiments will be described below. The multiplexed data is a digital stream in the MPEG-2 transport stream format.
 図23は、多重化データの構成を示す図である。図23に示すように多重化データは、ビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム(PG)、インタラクティブグラフィックスストリームのうち、1つ以上を多重化することで得られる。ビデオストリームは映画の主映像および副映像を、オーディオストリーム(IG)は映画の主音声部分とその主音声とミキシングする副音声を、プレゼンテーショングラフィックスストリームは、映画の字幕をそれぞれ示している。ここで主映像とは画面に表示される通常の映像を示し、副映像とは主映像の中に小さな画面で表示する映像のことである。また、インタラクティブグラフィックスストリームは、画面上にGUI部品を配置することにより作成される対話画面を示している。ビデオストリームは、上記各実施の形態で示した動画像符号化方法または装置、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠した動画像符号化方法または装置によって符号化されている。オーディオストリームは、ドルビーAC-3、Dolby Digital Plus、MLP、DTS、DTS-HD、または、リニアPCMのなどの方式で符号化されている。 FIG. 23 is a diagram showing a structure of multiplexed data. As shown in FIG. 23, multiplexed data is obtained by multiplexing one or more of a video stream, an audio stream, a presentation graphics stream (PG), and an interactive graphics stream. The video stream indicates the main video and sub-video of the movie, the audio stream (IG) indicates the main audio portion of the movie and the sub-audio mixed with the main audio, and the presentation graphics stream indicates the subtitles of the movie. Here, the main video indicates a normal video displayed on the screen, and the sub-video is a video displayed on a small screen in the main video. The interactive graphics stream indicates an interactive screen created by arranging GUI components on the screen. The video stream is encoded by the moving image encoding method or apparatus shown in the above embodiments, or the moving image encoding method or apparatus conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1. ing. The audio stream is encoded by a method such as Dolby AC-3, Dolby Digital Plus, MLP, DTS, DTS-HD, or linear PCM.
 多重化データに含まれる各ストリームはPIDによって識別される。例えば、映画の映像に利用するビデオストリームには0x1011が、オーディオストリームには0x1100から0x111Fまでが、プレゼンテーショングラフィックスには0x1200から0x121Fまでが、インタラクティブグラフィックスストリームには0x1400から0x141Fまでが、映画の副映像に利用するビデオストリームには0x1B00から0x1B1Fまで、主音声とミキシングする副音声に利用するオーディオストリームには0x1A00から0x1A1Fが、それぞれ割り当てられている。 Each stream included in the multiplexed data is identified by PID. For example, 0x1011 for video streams used for movie images, 0x1100 to 0x111F for audio streams, 0x1200 to 0x121F for presentation graphics, 0x1400 to 0x141F for interactive graphics streams, 0x1B00 to 0x1B1F are assigned to video streams used for sub-pictures, and 0x1A00 to 0x1A1F are assigned to audio streams used for sub-audio mixed with the main audio.
 図24は、多重化データがどのように多重化されるかを模式的に示す図である。まず、複数のビデオフレームからなるビデオストリームex235、複数のオーディオフレームからなるオーディオストリームex238を、それぞれPESパケット列ex236およびex239に変換し、TSパケットex237およびex240に変換する。同じくプレゼンテーショングラフィックスストリームex241およびインタラクティブグラフィックスex244のデータをそれぞれPESパケット列ex242およびex245に変換し、さらにTSパケットex243およびex246に変換する。多重化データex247はこれらのTSパケットを1本のストリームに多重化することで構成される。 FIG. 24 is a diagram schematically showing how multiplexed data is multiplexed. First, a video stream ex235 composed of a plurality of video frames and an audio stream ex238 composed of a plurality of audio frames are converted into PES packet sequences ex236 and ex239, respectively, and converted into TS packets ex237 and ex240. Similarly, the data of the presentation graphics stream ex241 and interactive graphics ex244 are converted into PES packet sequences ex242 and ex245, respectively, and further converted into TS packets ex243 and ex246. The multiplexed data ex247 is configured by multiplexing these TS packets into one stream.
 図25は、PESパケット列に、ビデオストリームがどのように格納されるかをさらに詳しく示している。図25における第1段目はビデオストリームのビデオフレーム列を示す。第2段目は、PESパケット列を示す。図25の矢印yy1,yy2,yy3,yy4に示すように、ビデオストリームにおける複数のVideo Presentation UnitであるIピクチャ、Bピクチャ、Pピクチャは、ピクチャ毎に分割され、PESパケットのペイロードに格納される。各PESパケットはPESヘッダを持ち、PESヘッダには、ピクチャの表示時刻であるPTS(Presentation Time-Stamp)やピクチャの復号時刻であるDTS(Decoding Time-Stamp)が格納される。 FIG. 25 shows in more detail how the video stream is stored in the PES packet sequence. The first row in FIG. 25 shows a video frame sequence of the video stream. The second level shows a PES packet sequence. As indicated by arrows yy1, yy2, yy3, and yy4 in FIG. 25, a plurality of Video Presentation Units in the video stream are divided for each picture and stored in the payload of the PES packet. . Each PES packet has a PES header, and a PTS (Presentation Time-Stamp) that is a display time of a picture and a DTS (Decoding Time-Stamp) that is a decoding time of a picture are stored in the PES header.
 図26は、多重化データに最終的に書き込まれるTSパケットの形式を示している。TSパケットは、ストリームを識別するPIDなどの情報を持つ4ByteのTSヘッダとデータを格納する184ByteのTSペイロードから構成される188Byte固定長のパケットであり、上記PESパケットは分割されTSペイロードに格納される。BD-ROMの場合、TSパケットには、4ByteのTP_Extra_Headerが付与され、192Byteのソースパケットを構成し、多重化データに書き込まれる。TP_Extra_HeaderにはATS(Arrival_Time_Stamp)などの情報が記載される。ATSは当該TSパケットのデコーダのPIDフィルタへの転送開始時刻を示す。多重化データには図26下段に示すようにソースパケットが並ぶこととなり、多重化データの先頭からインクリメントする番号はSPN(ソースパケットナンバー)と呼ばれる。 FIG. 26 shows the format of the TS packet that is finally written in the multiplexed data. The TS packet is a 188-byte fixed-length packet composed of a 4-byte TS header having information such as a PID for identifying a stream and a 184-byte TS payload for storing data. The PES packet is divided and stored in the TS payload. The In the case of a BD-ROM, a 4-byte TP_Extra_Header is added to a TS packet, forms a 192-byte source packet, and is written in multiplexed data. In TP_Extra_Header, information such as ATS (Arrival_Time_Stamp) is described. ATS indicates the transfer start time of the TS packet to the PID filter of the decoder. Source packets are arranged in the multiplexed data as shown in the lower part of FIG. 26, and the number incremented from the head of the multiplexed data is called SPN (source packet number).
 また、多重化データに含まれるTSパケットには、映像・音声・字幕などの各ストリーム以外にもPAT(Program Association Table)、PMT(Program Map Table)、PCR(Program Clock Reference)などがある。PATは多重化データ中に利用されるPMTのPIDが何であるかを示し、PAT自身のPIDは0で登録される。PMTは、多重化データ中に含まれる映像・音声・字幕などの各ストリームのPIDと各PIDに対応するストリームの属性情報を持ち、また多重化データに関する各種ディスクリプタを持つ。ディスクリプタには多重化データのコピーを許可・不許可を指示するコピーコントロール情報などがある。PCRは、ATSの時間軸であるATC(Arrival Time Clock)とPTS・DTSの時間軸であるSTC(System Time Clock)の同期を取るために、そのPCRパケットがデコーダに転送されるATSに対応するSTC時間の情報を持つ。 In addition, TS packets included in the multiplexed data include PAT (Program Association Table), PMT (Program Map Table), PCR (Program Clock Reference), and the like in addition to each stream such as video / audio / caption. PAT indicates what the PID of the PMT used in the multiplexed data is, and the PID of the PAT itself is registered as 0. The PMT has the PID of each stream such as video / audio / subtitles included in the multiplexed data and the attribute information of the stream corresponding to each PID, and has various descriptors related to the multiplexed data. The descriptor includes copy control information for instructing permission / non-permission of copying of multiplexed data. In order to synchronize the ATC (Arrival Time Clock), which is the ATS time axis, and the STC (System Time Clock), which is the PTS / DTS time axis, the PCR corresponds to the ATS in which the PCR packet is transferred to the decoder. Contains STC time information.
 図27はPMTのデータ構造を詳しく説明する図である。PMTの先頭には、そのPMTに含まれるデータの長さなどを記したPMTヘッダが配置される。その後ろには、多重化データに関するディスクリプタが複数配置される。上記コピーコントロール情報などが、ディスクリプタとして記載される。ディスクリプタの後には、多重化データに含まれる各ストリームに関するストリーム情報が複数配置される。ストリーム情報は、ストリームの圧縮コーデックなどを識別するためストリームタイプ、ストリームのPID、ストリームの属性情報(フレームレート、アスペクト比など)が記載されたストリームディスクリプタから構成される。ストリームディスクリプタは多重化データに存在するストリームの数だけ存在する。 FIG. 27 is a diagram for explaining the data structure of the PMT in detail. A PMT header describing the length of data included in the PMT is arranged at the head of the PMT. After that, a plurality of descriptors related to multiplexed data are arranged. The copy control information and the like are described as descriptors. After the descriptor, a plurality of pieces of stream information regarding each stream included in the multiplexed data are arranged. The stream information includes a stream descriptor in which a stream type, a stream PID, and stream attribute information (frame rate, aspect ratio, etc.) are described to identify a compression codec of the stream. There are as many stream descriptors as the number of streams existing in the multiplexed data.
 記録媒体などに記録する場合には、上記多重化データは、多重化データ情報ファイルと共に記録される。 When recording on a recording medium or the like, the multiplexed data is recorded together with the multiplexed data information file.
 多重化データ情報ファイルは、図28に示すように多重化データの管理情報であり、多重化データと1対1に対応し、多重化データ情報、ストリーム属性情報とエントリマップから構成される。 As shown in FIG. 28, the multiplexed data information file is management information of multiplexed data, has a one-to-one correspondence with the multiplexed data, and includes multiplexed data information, stream attribute information, and an entry map.
 多重化データ情報は図28に示すようにシステムレート、再生開始時刻、再生終了時刻から構成されている。システムレートは多重化データの、後述するシステムターゲットデコーダのPIDフィルタへの最大転送レートを示す。多重化データ中に含まれるATSの間隔はシステムレート以下になるように設定されている。再生開始時刻は多重化データの先頭のビデオフレームのPTSであり、再生終了時刻は多重化データの終端のビデオフレームのPTSに1フレーム分の再生間隔を足したものが設定される。 The multiplexed data information includes a system rate, a reproduction start time, and a reproduction end time as shown in FIG. The system rate indicates a maximum transfer rate of multiplexed data to a PID filter of a system target decoder described later. The ATS interval included in the multiplexed data is set to be equal to or less than the system rate. The playback start time is the PTS of the first video frame of the multiplexed data, and the playback end time is set by adding the playback interval for one frame to the PTS of the video frame at the end of the multiplexed data.
 ストリーム属性情報は図29に示すように、多重化データに含まれる各ストリームについての属性情報が、PID毎に登録される。属性情報はビデオストリーム、オーディオストリーム、プレゼンテーショングラフィックスストリーム、インタラクティブグラフィックスストリーム毎に異なる情報を持つ。ビデオストリーム属性情報は、そのビデオストリームがどのような圧縮コーデックで圧縮されたか、ビデオストリームを構成する個々のピクチャデータの解像度がどれだけであるか、アスペクト比はどれだけであるか、フレームレートはどれだけであるかなどの情報を持つ。オーディオストリーム属性情報は、そのオーディオストリームがどのような圧縮コーデックで圧縮されたか、そのオーディオストリームに含まれるチャンネル数は何であるか、何の言語に対応するか、サンプリング周波数がどれだけであるかなどの情報を持つ。これらの情報は、プレーヤが再生する前のデコーダの初期化などに利用される。 In the stream attribute information, as shown in FIG. 29, attribute information about each stream included in the multiplexed data is registered for each PID. The attribute information has different information for each video stream, audio stream, presentation graphics stream, and interactive graphics stream. The video stream attribute information includes the compression codec used to compress the video stream, the resolution of the individual picture data constituting the video stream, the aspect ratio, and the frame rate. It has information such as how much it is. The audio stream attribute information includes the compression codec used to compress the audio stream, the number of channels included in the audio stream, the language supported, and the sampling frequency. With information. These pieces of information are used for initialization of the decoder before the player reproduces it.
 本実施の形態においては、上記多重化データのうち、PMTに含まれるストリームタイプを利用する。また、記録媒体に多重化データが記録されている場合には、多重化データ情報に含まれる、ビデオストリーム属性情報を利用する。具体的には、上記各実施の形態で示した動画像符号化方法または装置において、PMTに含まれるストリームタイプ、または、ビデオストリーム属性情報に対し、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示す固有の情報を設定するステップまたは手段を設ける。この構成により、上記各実施の形態で示した動画像符号化方法または装置によって生成した映像データと、他の規格に準拠する映像データとを識別することが可能になる。 In this embodiment, among the multiplexed data, the stream type included in the PMT is used. Also, when multiplexed data is recorded on the recording medium, video stream attribute information included in the multiplexed data information is used. Specifically, in the video encoding method or apparatus shown in each of the above embodiments, the video encoding shown in each of the above embodiments for the stream type or video stream attribute information included in the PMT. There is provided a step or means for setting unique information indicating that the video data is generated by the method or apparatus. With this configuration, it is possible to discriminate between video data generated by the moving picture encoding method or apparatus described in the above embodiments and video data compliant with other standards.
 また、本実施の形態における動画像復号化方法のステップを図30に示す。ステップexS100において、多重化データからPMTに含まれるストリームタイプ、または、多重化データ情報に含まれるビデオストリーム属性情報を取得する。次に、ステップexS101において、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成された多重化データであることを示しているか否かを判断する。そして、ストリームタイプ、または、ビデオストリーム属性情報が上記各実施の形態で示した動画像符号化方法または装置によって生成されたものであると判断された場合には、ステップexS102において、上記各実施の形態で示した動画像復号方法により復号を行う。また、ストリームタイプ、または、ビデオストリーム属性情報が、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠するものであることを示している場合には、ステップexS103において、従来の規格に準拠した動画像復号方法により復号を行う。 FIG. 30 shows steps of the moving picture decoding method according to the present embodiment. In step exS100, the stream type included in the PMT or the video stream attribute information included in the multiplexed data information is acquired from the multiplexed data. Next, in step exS101, it is determined whether or not the stream type or the video stream attribute information indicates multiplexed data generated by the moving picture encoding method or apparatus described in the above embodiments. To do. When it is determined that the stream type or the video stream attribute information is generated by the moving image encoding method or apparatus described in the above embodiments, in step exS102, the above embodiments are performed. Decoding is performed by the moving picture decoding method shown in the form. If the stream type or video stream attribute information indicates that it conforms to a standard such as conventional MPEG-2, MPEG4-AVC, or VC-1, in step exS103, the conventional information Decoding is performed by a moving image decoding method compliant with the standard.
 このように、ストリームタイプ、または、ビデオストリーム属性情報に新たな固有値を設定することにより、復号する際に、上記各実施の形態で示した動画像復号化方法または装置で復号可能であるかを判断することができる。従って、異なる規格に準拠する多重化データが入力された場合であっても、適切な復号化方法または装置を選択することができるため、エラーを生じることなく復号することが可能となる。また、本実施の形態で示した動画像符号化方法または装置、または、動画像復号方法または装置を、上述したいずれの機器・システムに用いることも可能である。 In this way, by setting a new unique value in the stream type or video stream attribute information, whether or not decoding is possible with the moving picture decoding method or apparatus described in each of the above embodiments is performed. Judgment can be made. Therefore, even when multiplexed data conforming to different standards is input, an appropriate decoding method or apparatus can be selected, and therefore decoding can be performed without causing an error. In addition, the moving picture encoding method or apparatus or the moving picture decoding method or apparatus described in this embodiment can be used in any of the above-described devices and systems.
 (実施の形態6)
 上記各実施の形態で示した動画像符号化方法および装置、動画像復号化方法および装置は、典型的には集積回路であるLSIで実現される。一例として、図31に1チップ化されたLSIex500の構成を示す。LSIex500は、以下に説明する要素ex501、ex502、ex503、ex504、ex505、ex506、ex507、ex508、ex509を備え、各要素はバスex510を介して接続している。電源回路部ex505は電源がオン状態の場合に各部に対して電力を供給することで動作可能な状態に起動する。
(Embodiment 6)
The moving picture encoding method and apparatus and moving picture decoding method and apparatus described in the above embodiments are typically realized by an LSI that is an integrated circuit. As an example, FIG. 31 shows a configuration of an LSI ex500 that is made into one chip. The LSI ex500 includes elements ex501, ex502, ex503, ex504, ex505, ex506, ex507, ex508, and ex509 described below, and each element is connected via a bus ex510. The power supply circuit unit ex505 is activated to an operable state by supplying power to each unit when the power supply is on.
 例えば符号化処理を行う場合には、LSIex500は、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有する制御部ex501の制御に基づいて、AV I/Oex509によりマイクex117やカメラex113等からAV信号を入力する。入力されたAV信号は、一旦SDRAM等の外部のメモリex511に蓄積される。制御部ex501の制御に基づいて、蓄積したデータは処理量や処理速度に応じて適宜複数回に分けるなどされ信号処理部ex507に送られ、信号処理部ex507において音声信号の符号化および/または映像信号の符号化が行われる。ここで映像信号の符号化処理は上記各実施の形態で説明した符号化処理である。信号処理部ex507ではさらに、場合により符号化された音声データと符号化された映像データを多重化するなどの処理を行い、ストリームI/Oex506から外部に出力する。この出力された多重化データは、基地局ex107に向けて送信されたり、または記録メディアex215に書き込まれたりする。なお、多重化する際には同期するよう、一旦バッファex508にデータを蓄積するとよい。 For example, when performing the encoding process, the LSI ex500 performs the microphone ex117 and the camera ex113 by the AV I / O ex509 based on the control of the control unit ex501 including the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like. The AV signal is input from the above. The input AV signal is temporarily stored in an external memory ex511 such as SDRAM. Based on the control of the control unit ex501, the accumulated data is divided into a plurality of times as appropriate according to the processing amount and the processing speed and sent to the signal processing unit ex507, and the signal processing unit ex507 encodes an audio signal and / or video. Signal encoding is performed. Here, the encoding process of the video signal is the encoding process described in the above embodiments. The signal processing unit ex507 further performs processing such as multiplexing the encoded audio data and the encoded video data according to circumstances, and outputs the result from the stream I / Oex 506 to the outside. The output multiplexed data is transmitted to the base station ex107 or written to the recording medium ex215. It should be noted that data should be temporarily stored in the buffer ex508 so as to be synchronized when multiplexing.
 なお、上記では、メモリex511がLSIex500の外部の構成として説明したが、LSIex500の内部に含まれる構成であってもよい。バッファex508も1つに限ったものではなく、複数のバッファを備えていてもよい。また、LSIex500は1チップ化されてもよいし、複数チップ化されてもよい。 In the above description, the memory ex511 is described as an external configuration of the LSI ex500. However, a configuration included in the LSI ex500 may be used. The number of buffers ex508 is not limited to one, and a plurality of buffers may be provided. The LSI ex500 may be made into one chip or a plurality of chips.
 また、上記では、制御部ex501が、CPUex502、メモリコントローラex503、ストリームコントローラex504、駆動周波数制御部ex512等を有するとしているが、制御部ex501の構成は、この構成に限らない。例えば、信号処理部ex507がさらにCPUを備える構成であってもよい。信号処理部ex507の内部にもCPUを設けることにより、処理速度をより向上させることが可能になる。また、他の例として、CPUex502が信号処理部ex507、または信号処理部ex507の一部である例えば音声信号処理部を備える構成であってもよい。このような場合には、制御部ex501は、信号処理部ex507、またはその一部を有するCPUex502を備える構成となる。 In the above description, the control unit ex501 includes the CPU ex502, the memory controller ex503, the stream controller ex504, the drive frequency control unit ex512, and the like, but the configuration of the control unit ex501 is not limited to this configuration. For example, the signal processing unit ex507 may further include a CPU. By providing a CPU also in the signal processing unit ex507, the processing speed can be further improved. As another example, the CPU ex502 may be configured to include a signal processing unit ex507 or, for example, an audio signal processing unit that is a part of the signal processing unit ex507. In such a case, the control unit ex501 is configured to include a signal processing unit ex507 or a CPU ex502 having a part thereof.
 なお、ここでは、LSIとしたが、集積度の違いにより、IC、システムLSI、スーパーLSI、ウルトラLSIと呼称されることもある。 In addition, although it was set as LSI here, it may be called IC, system LSI, super LSI, and ultra LSI depending on the degree of integration.
 また、集積回路化の手法はLSIに限るものではなく、専用回路または汎用プロセッサで実現してもよい。LSI製造後に、プログラムすることが可能なFPGA(Field Programmable Gate Array)や、LSI内部の回路セルの接続や設定を再構成可能なリコンフィギュラブル・プロセッサを利用してもよい。このようなプログラマブル・ロジック・デバイスは、典型的には、ソフトウェア又はファームウェアを構成するプログラムを、ロードする又はメモリ等から読み込むことで、上記各実施の形態で示した動画像符号化方法、又は動画像復号化方法を実行することができる。 Further, the method of circuit integration is not limited to LSI, and implementation with a dedicated circuit or a general-purpose processor is also possible. An FPGA (Field Programmable Gate Array) that can be programmed after manufacturing the LSI or a reconfigurable processor that can reconfigure the connection and setting of circuit cells inside the LSI may be used. Such a programmable logic device typically loads or reads a program constituting software or firmware from a memory or the like, so that the moving image encoding method or the moving image described in each of the above embodiments is used. An image decoding method can be performed.
 さらには、半導体技術の進歩または派生する別技術によりLSIに置き換わる集積回路化の技術が登場すれば、当然、その技術を用いて機能ブロックの集積化を行ってもよい。バイオ技術の適応等が可能性としてありえる。 Furthermore, if integrated circuit technology that replaces LSI emerges as a result of advances in semiconductor technology or other derived technology, it is naturally also possible to integrate functional blocks using this technology. Biotechnology can be applied.
 (実施の形態7)
 上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データを復号する場合、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データを復号する場合に比べ、処理量が増加することが考えられる。そのため、LSIex500において、従来の規格に準拠する映像データを復号する際のCPUex502の駆動周波数よりも高い駆動周波数に設定する必要がある。しかし、駆動周波数を高くすると、消費電力が高くなるという課題が生じる。
(Embodiment 7)
When decoding the video data generated by the moving picture encoding method or apparatus shown in the above embodiments, the video data conforming to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1 is decoded. It is conceivable that the amount of processing increases compared to the case. Therefore, in LSI ex500, it is necessary to set a driving frequency higher than the driving frequency of CPU ex502 when decoding video data compliant with the conventional standard. However, when the drive frequency is increased, there is a problem that power consumption increases.
 この課題を解決するために、テレビex300、LSIex500などの動画像復号化装置は、映像データがどの規格に準拠するものであるかを識別し、規格に応じて駆動周波数を切替える構成とする。図32は、本実施の形態における構成ex800を示している。駆動周波数切替え部ex803は、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合には、駆動周波数を高く設定する。そして、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801に対し、映像データを復号するよう指示する。一方、映像データが、従来の規格に準拠する映像データである場合には、映像データが、上記各実施の形態で示した動画像符号化方法または装置によって生成されたものである場合に比べ、駆動周波数を低く設定する。そして、従来の規格に準拠する復号処理部ex802に対し、映像データを復号するよう指示する。 In order to solve this problem, moving picture decoding devices such as the television ex300 and LSI ex500 are configured to identify which standard the video data conforms to and switch the driving frequency in accordance with the standard. FIG. 32 shows a configuration ex800 in the present embodiment. The drive frequency switching unit ex803 sets the drive frequency high when the video data is generated by the moving image encoding method or apparatus described in the above embodiments. Then, the decoding processing unit ex801 that executes the moving picture decoding method described in each of the above embodiments is instructed to decode the video data. On the other hand, when the video data is video data compliant with the conventional standard, compared to the case where the video data is generated by the moving picture encoding method or apparatus shown in the above embodiments, Set the drive frequency low. Then, it instructs the decoding processing unit ex802 compliant with the conventional standard to decode the video data.
 より具体的には、駆動周波数切替え部ex803は、図31のCPUex502と駆動周波数制御部ex512から構成される。また、上記各実施の形態で示した動画像復号化方法を実行する復号処理部ex801、および、従来の規格に準拠する復号処理部ex802は、図31の信号処理部ex507に該当する。CPUex502は、映像データがどの規格に準拠するものであるかを識別する。そして、CPUex502からの信号に基づいて、駆動周波数制御部ex512は、駆動周波数を設定する。また、CPUex502からの信号に基づいて、信号処理部ex507は、映像データの復号を行う。ここで、映像データの識別には、例えば、実施の形態5で記載した識別情報を利用することが考えられる。識別情報に関しては、実施の形態5で記載したものに限られず、映像データがどの規格に準拠するか識別できる情報であればよい。例えば、映像データがテレビに利用されるものであるか、ディスクに利用されるものであるかなどを識別する外部信号に基づいて、映像データがどの規格に準拠するものであるか識別可能である場合には、このような外部信号に基づいて識別してもよい。また、CPUex502における駆動周波数の選択は、例えば、図34のような映像データの規格と、駆動周波数とを対応付けたルックアップテーブルに基づいて行うことが考えられる。ルックアップテーブルを、バッファex508や、LSIの内部メモリに格納しておき、CPUex502がこのルックアップテーブルを参照することにより、駆動周波数を選択することが可能である。 More specifically, the drive frequency switching unit ex803 includes the CPU ex502 and the drive frequency control unit ex512 in FIG. Also, the decoding processing unit ex801 that executes the moving picture decoding method shown in each of the above embodiments and the decoding processing unit ex802 that complies with the conventional standard correspond to the signal processing unit ex507 in FIG. The CPU ex502 identifies which standard the video data conforms to. Then, based on the signal from the CPU ex502, the drive frequency control unit ex512 sets the drive frequency. Further, based on the signal from the CPU ex502, the signal processing unit ex507 decodes the video data. Here, for identification of video data, for example, the identification information described in the fifth embodiment may be used. The identification information is not limited to that described in the fifth embodiment, and any information that can identify which standard the video data conforms to may be used. For example, it is possible to identify which standard the video data conforms to based on an external signal that identifies whether the video data is used for a television or a disk. In some cases, identification may be performed based on such an external signal. In addition, the selection of the driving frequency in the CPU ex502 may be performed based on, for example, a lookup table in which video data standards and driving frequencies are associated with each other as shown in FIG. The look-up table is stored in the buffer ex508 or the internal memory of the LSI, and the CPU ex502 can select the drive frequency by referring to the look-up table.
 図33は、本実施の形態の方法を実施するステップを示している。まず、ステップexS200では、信号処理部ex507において、多重化データから識別情報を取得する。次に、ステップexS201では、CPUex502において、識別情報に基づいて映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものであるか否かを識別する。映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合には、ステップexS202において、駆動周波数を高く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、高い駆動周波数に設定される。一方、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、ステップexS203において、駆動周波数を低く設定する信号を、CPUex502が駆動周波数制御部ex512に送る。そして、駆動周波数制御部ex512において、映像データが上記各実施の形態で示した符号化方法または装置によって生成されたものである場合に比べ、低い駆動周波数に設定される。 FIG. 33 shows steps for executing the method of the present embodiment. First, in step exS200, the signal processing unit ex507 acquires identification information from the multiplexed data. Next, in step exS201, the CPU ex502 identifies whether the video data is generated by the encoding method or apparatus described in each of the above embodiments based on the identification information. When the video data is generated by the encoding method or apparatus shown in the above embodiments, in step exS202, the CPU ex502 sends a signal for setting the drive frequency high to the drive frequency control unit ex512. Then, the drive frequency control unit ex512 sets a high drive frequency. On the other hand, if it indicates that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1, in step exS203, the CPU ex502 drives the signal for setting the drive frequency low. This is sent to the frequency control unit ex512. Then, in the drive frequency control unit ex512, the drive frequency is set to be lower than that in the case where the video data is generated by the encoding method or apparatus described in the above embodiments.
 さらに、駆動周波数の切替えに連動して、LSIex500またはLSIex500を含む装置に与える電圧を変更することにより、省電力効果をより高めることが可能である。例えば、駆動周波数を低く設定する場合には、これに伴い、駆動周波数を高く設定している場合に比べ、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することが考えられる。 Furthermore, the power saving effect can be further enhanced by changing the voltage applied to the LSI ex500 or the device including the LSI ex500 in conjunction with the switching of the driving frequency. For example, when the drive frequency is set low, it is conceivable that the voltage applied to the LSI ex500 or the device including the LSI ex500 is set low as compared with the case where the drive frequency is set high.
 また、駆動周波数の設定方法は、復号する際の処理量が大きい場合に、駆動周波数を高く設定し、復号する際の処理量が小さい場合に、駆動周波数を低く設定すればよく、上述した設定方法に限らない。例えば、MPEG4-AVC規格に準拠する映像データを復号する処理量の方が、上記各実施の形態で示した動画像符号化方法または装置により生成された映像データを復号する処理量よりも大きい場合には、駆動周波数の設定を上述した場合の逆にすることが考えられる。 In addition, the setting method of the driving frequency may be set to a high driving frequency when the processing amount at the time of decoding is large, and to a low driving frequency when the processing amount at the time of decoding is small. It is not limited to the method. For example, the amount of processing for decoding video data compliant with the MPEG4-AVC standard is larger than the amount of processing for decoding video data generated by the moving picture encoding method or apparatus described in the above embodiments. It is conceivable that the setting of the driving frequency is reversed to that in the case described above.
 さらに、駆動周波数の設定方法は、駆動周波数を低くする構成に限らない。例えば、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を高く設定し、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、LSIex500またはLSIex500を含む装置に与える電圧を低く設定することも考えられる。また、他の例としては、識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合には、CPUex502の駆動を停止させることなく、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合には、処理に余裕があるため、CPUex502の駆動を一時停止させることも考えられる。識別情報が、上記各実施の形態で示した動画像符号化方法または装置によって生成された映像データであることを示している場合であっても、処理に余裕があれば、CPUex502の駆動を一時停止させることも考えられる。この場合は、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する映像データであることを示している場合に比べて、停止時間を短く設定することが考えられる。 Furthermore, the method for setting the drive frequency is not limited to the configuration in which the drive frequency is lowered. For example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the voltage applied to the LSIex500 or the apparatus including the LSIex500 is set high. However, when it is shown that the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, VC-1, etc., it is also possible to set the voltage applied to the LSIex500 or the device including the LSIex500 low. It is done. As another example, when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in the above embodiments, the driving of the CPU ex502 is stopped. If the video data conforms to the standards such as MPEG-2, MPEG4-AVC, VC-1, etc., the CPU ex502 is temporarily stopped because there is room in processing. Is also possible. Even when the identification information indicates that the video data is generated by the moving image encoding method or apparatus described in each of the above embodiments, if there is a margin for processing, the CPU ex502 is temporarily driven. It can also be stopped. In this case, it is conceivable to set the stop time shorter than in the case where the video data conforms to the conventional standards such as MPEG-2, MPEG4-AVC, and VC-1.
 このように、映像データが準拠する規格に応じて、駆動周波数を切替えることにより、省電力化を図ることが可能になる。また、電池を用いてLSIex500またはLSIex500を含む装置を駆動している場合には、省電力化に伴い、電池の寿命を長くすることが可能である。 Thus, it is possible to save power by switching the drive frequency according to the standard to which the video data conforms. In addition, when the battery is used to drive the LSI ex500 or the device including the LSI ex500, it is possible to extend the life of the battery with power saving.
 (実施の形態8)
 テレビや、携帯電話など、上述した機器・システムには、異なる規格に準拠する複数の映像データが入力される場合がある。このように、異なる規格に準拠する複数の映像データが入力された場合にも復号できるようにするために、LSIex500の信号処理部ex507が複数の規格に対応している必要がある。しかし、それぞれの規格に対応する信号処理部ex507を個別に用いると、LSIex500の回路規模が大きくなり、また、コストが増加するという課題が生じる。
(Embodiment 8)
A plurality of video data that conforms to different standards may be input to the above-described devices and systems such as a television and a mobile phone. As described above, the signal processing unit ex507 of the LSI ex500 needs to support a plurality of standards in order to be able to decode even when a plurality of video data complying with different standards is input. However, when the signal processing unit ex507 corresponding to each standard is used individually, there is a problem that the circuit scale of the LSI ex500 increases and the cost increases.
 この課題を解決するために、上記各実施の形態で示した動画像復号方法を実行するための復号処理部と、従来のMPEG-2、MPEG4-AVC、VC-1などの規格に準拠する復号処理部とを一部共有化する構成とする。この構成例を図35Aのex900に示す。例えば、上記各実施の形態で示した動画像復号方法と、MPEG4-AVC規格に準拠する動画像復号方法とは、エントロピー符号化、逆量子化、デブロッキング・フィルタ、動き補償などの処理において処理内容が一部共通する。共通する処理内容については、MPEG4-AVC規格に対応する復号処理部ex902を共有し、MPEG4-AVC規格に対応しない、本発明の一態様に特有の他の処理内容については、専用の復号処理部ex901を用いるという構成が考えられる。特に、本発明の一態様は、動き補償に特徴を有していることから、例えば、動き補償については専用の復号処理部ex901を用い、それ以外の逆量子化、エントロピー復号、デブロッキング・フィルタのいずれか、または、全ての処理については、復号処理部を共有することが考えられる。復号処理部の共有化に関しては、共通する処理内容については、上記各実施の形態で示した動画像復号化方法を実行するための復号処理部を共有し、MPEG4-AVC規格に特有の処理内容については、専用の復号処理部を用いる構成であってもよい。 In order to solve this problem, a decoding processing unit for executing the moving picture decoding method shown in each of the above embodiments and a decoding conforming to a standard such as MPEG-2, MPEG4-AVC, or VC-1 The processing unit is partly shared. An example of this configuration is shown as ex900 in FIG. 35A. For example, the moving picture decoding method shown in each of the above embodiments and the moving picture decoding method compliant with the MPEG4-AVC standard are processed in processes such as entropy coding, inverse quantization, deblocking filter, and motion compensation. Some contents are common. For common processing contents, the decoding processing unit ex902 corresponding to the MPEG4-AVC standard is shared, and for other processing contents specific to one aspect of the present invention that do not correspond to the MPEG4-AVC standard, a dedicated decoding processing unit A configuration using ex901 is conceivable. In particular, since one aspect of the present invention has a feature in motion compensation, for example, a dedicated decoding processing unit ex901 is used for motion compensation, and other dequantization, entropy decoding, deblocking filter, and the like are used. For any or all of these processes, it is conceivable to share the decoding processing unit. Regarding the sharing of the decoding processing unit, regarding the common processing content, the decoding processing unit for executing the moving picture decoding method described in each of the above embodiments is shared, and the processing content specific to the MPEG4-AVC standard As for, a configuration using a dedicated decoding processing unit may be used.
 また、処理を一部共有化する他の例を図35Bのex1000に示す。この例では、本発明の一態様に特有の処理内容に対応した専用の復号処理部ex1001と、他の従来規格に特有の処理内容に対応した専用の復号処理部ex1002と、本発明の一態様に係る動画像復号方法と他の従来規格の動画像復号方法とに共通する処理内容に対応した共用の復号処理部ex1003とを用いる構成としている。ここで、専用の復号処理部ex1001、ex1002は、必ずしも本発明の一態様、または、他の従来規格に特有の処理内容に特化したものではなく、他の汎用処理を実行できるものであってもよい。また、本実施の形態の構成を、LSIex500で実装することも可能である。 Further, ex1000 in FIG. 35B shows another example in which processing is partially shared. In this example, a dedicated decoding processing unit ex1001 corresponding to the processing content specific to one aspect of the present invention, a dedicated decoding processing unit ex1002 corresponding to the processing content specific to another conventional standard, and one aspect of the present invention And a common decoding processing unit ex1003 corresponding to the processing contents common to the moving image decoding method according to the above and other conventional moving image decoding methods. Here, the dedicated decoding processing units ex1001 and ex1002 are not necessarily specialized in one aspect of the present invention or processing content specific to other conventional standards, and can execute other general-purpose processing. Also good. Also, the configuration of the present embodiment can be implemented by LSI ex500.
 このように、本発明の一態様に係る動画像復号方法と、従来の規格の動画像復号方法とで共通する処理内容について、復号処理部を共有することにより、LSIの回路規模を小さくし、かつ、コストを低減することが可能である。 As described above, the processing content common to the moving picture decoding method according to one aspect of the present invention and the moving picture decoding method of the conventional standard reduces the circuit scale of the LSI by sharing the decoding processing unit, In addition, the cost can be reduced.
 本発明は、画像符号化方法、画像復号方法、画像符号化装置及び画像復号装置に適用できる。また、本発明は、データの蓄積、伝送又は通信など様々な用途に利用可能である。例えば、本発明は、テレビ、デジタルビデオレコーダー、カーナビゲーションシステム、携帯電話、デジタルスチルカメラ及びデジタルビデオカメラ等の情報表示機器及び撮像機器に利用可能である。 The present invention can be applied to an image encoding method, an image decoding method, an image encoding device, and an image decoding device. Further, the present invention can be used for various purposes such as data storage, transmission or communication. For example, the present invention can be used for information display devices and imaging devices such as televisions, digital video recorders, car navigation systems, cellular phones, digital still cameras, and digital video cameras.
 100 画像符号化装置
 101 減算器
 102 変換量子化部
 103 エントロピー符号化部
 104,202 逆量子化逆変換部
 105,203 加算器
 106,204 デブロッキング処理部
 107,205 メモリ
 108,206 イントラ予測部
 109,207 動き補償部
 110 動き検出部
 112,208 切換スイッチ
 121 入力画像
 122,124,223 残差信号
 123,222 量子化係数
 125,126 ローカル復号画像
 127,226 予測信号
 128,227 動きデータ
 129,221 符号化信号
 200 画像復号装置
 201 エントロピー復号部
 224,225 復号画像
DESCRIPTION OF SYMBOLS 100 Image coding apparatus 101 Subtractor 102 Transform quantization part 103 Entropy encoding part 104,202 Inverse quantization inverse transformation part 105,203 Adder 106,204 Deblocking process part 107,205 Memory 108,206 Intra prediction part 109 , 207 Motion compensation unit 110 Motion detection unit 112, 208 Changeover switch 121 Input image 122, 124, 223 Residual signal 123, 222 Quantization coefficient 125, 126 Local decoded image 127, 226 Predicted signal 128, 227 Motion data 129, 221 Coded signal 200 Image decoding device 201 Entropy decoding unit 224, 225 Decoded image

Claims (14)

  1.  複数のタイルに含まれる対象ブロックを、当該対象ブロックの周囲のブロックの動きベクトルを用いる予測モードを用いて動き補償を行う動き補償方法であって、
     前記周囲のブロックの前記動きベクトルが、前記対象ブロックが含まれる対象タイルとは異なるタイルに含まれる参照ブロックを参照する場合、当該参照ブロックの画素値を補完する補完ステップと、
     補完された前記画素値を用いて前記動き補償を行う動き補償ステップとを含む
     動き補償方法。
    A motion compensation method for performing motion compensation on a target block included in a plurality of tiles using a prediction mode using a motion vector of a block around the target block,
    When the motion vector of the surrounding block refers to a reference block included in a tile different from the target tile including the target block, a complementing step of complementing the pixel value of the reference block;
    And a motion compensation step of performing the motion compensation using the complemented pixel values.
  2.  前記補完ステップでは、前記対象ブロックに含まれる画素値を用いて、前記参照ブロックの前記画素値を補完する
     請求項1記載の動き補償方法。
    The motion compensation method according to claim 1, wherein in the complementing step, the pixel value of the reference block is complemented using a pixel value included in the target block.
  3.  前記補完ステップでは、前記対象ブロックに含まれ、かつ前記参照ブロックに最も近い画素の画素値を、前記参照ブロックに含まれる複数の画素値にコピーすることで、前記参照ブロックの前記画素値を補完する
     請求項2記載の動き補償方法。
    In the complementing step, the pixel value of the reference block is complemented by copying pixel values of the pixel included in the target block and closest to the reference block to a plurality of pixel values included in the reference block. The motion compensation method according to claim 2.
  4.  前記補完ステップでは、前記対象ブロックと前記参照ブロックとが隣接する場合、当該隣接境界を軸として、前記対象ブロックに含まれる複数の画素の画素値を折り返して、前記参照ブロックに含まれる複数の画素値にコピーすることで、前記参照ブロックの前記画素値を補完する
     請求項2記載の動き補償方法。
    In the complementing step, when the target block and the reference block are adjacent to each other, the pixel values of the plurality of pixels included in the target block are folded around the adjacent boundary as an axis, and the plurality of pixels included in the reference block The motion compensation method according to claim 2, wherein the pixel value of the reference block is complemented by copying to a value.
  5.  前記補完ステップでは、前記対象ブロックに含まれる複数の画素値の平均値を算出し、当該平均値を、前記参照ブロックに含まれる複数の画素値として補完する
     請求項2記載の動き補償方法。
    The motion compensation method according to claim 2, wherein in the complementing step, an average value of a plurality of pixel values included in the target block is calculated, and the average value is supplemented as a plurality of pixel values included in the reference block.
  6.  請求項1~5のいずれか1項に記載の動き補償方法を用いる画像符号化方法であって、
     前記周囲のブロックの前記動きベクトルが、前記対象タイルとは異なる前記タイルに含まれる前記参照ブロックを参照することを特定するための情報を生成し、
     当該情報を含む符号化ビットストリームを生成する
     画像符号化方法。
    An image encoding method using the motion compensation method according to any one of claims 1 to 5,
    Generating information for specifying that the motion vector of the surrounding block refers to the reference block included in the tile different from the target tile;
    An image encoding method for generating an encoded bitstream including the information.
  7.  画像を複数のタイルに分割する分割ステップと、
     前記複数のタイルに含まれる対象ブロックを、当該対象ブロックの周囲のブロックの動きベクトルを用いる予測モードを含む複数の予測モードのいずれかを用いて符号化する符号化ステップとを含み、
     前記符号化ステップでは、
     前記対象ブロックを、前記対象ブロックが含まれる対象タイルとは異なるタイルに含まれるブロックを参照する動きベクトルを用いずに符号化する
     画像符号化方法。
    A dividing step of dividing the image into a plurality of tiles;
    Encoding a target block included in the plurality of tiles using any one of a plurality of prediction modes including a prediction mode using a motion vector of a block around the target block,
    In the encoding step,
    An image encoding method for encoding the target block without using a motion vector that refers to a block included in a tile different from the target tile including the target block.
  8.  前記符号化ステップでは、
     前記周囲のブロックの前記動きベクトルが前記対象タイルとは異なる前記タイルに含まれるブロックを参照するか否かを判定し、
     前記周囲のブロックの前記動きベクトルが前記対象タイルとは異なる前記タイルに含まれる前記ブロックを参照すると判定された場合、前記周囲のブロックの前記動きベクトル以外の動きベクトルを用いて前記対象ブロックを符号化する
     請求項7記載の画像符号化方法。
    In the encoding step,
    Determining whether the motion vector of the surrounding block refers to a block included in the tile different from the target tile;
    When it is determined that the motion vector of the surrounding block refers to the block included in the tile different from the target tile, the motion block other than the motion vector of the surrounding block is encoded using the motion vector. The image encoding method according to claim 7.
  9.  前記符号化ステップでは、
     前記対象ブロックがタイル境界から一定値以内に位置するか否かを判定し、
     前記対象ブロックが前記タイル境界から前記一定値以内に位置すると判定された場合、前記周囲のブロックの前記動きベクトルをそのまま用いるモードであるスキップモード及びマージモード以外の予測モードを用いて、前記対象ブロックを符号化する
     請求項7記載の画像符号化方法。
    In the encoding step,
    Determine whether the target block is located within a certain value from the tile boundary,
    When it is determined that the target block is located within the predetermined value from the tile boundary, the target block is used using a prediction mode other than the skip mode and the merge mode, which is a mode in which the motion vectors of the surrounding blocks are used as they are. The image encoding method according to claim 7.
  10.  請求項7~9のいずれか1項に記載の画像符号化方法により生成された符号化ビットストリームを復号する
     画像復号方法。
    An image decoding method for decoding an encoded bitstream generated by the image encoding method according to any one of claims 7 to 9.
  11.  処理回路と、
     前記処理回路からアクセス可能な記憶装置とを備え、
     前記処理回路は、前記記憶装置を用いて、
     請求項1記載の動き補償方法を実行する
     画像符号化装置。
    A processing circuit;
    A storage device accessible from the processing circuit,
    The processing circuit uses the storage device,
    An image encoding apparatus for executing the motion compensation method according to claim 1.
  12.  処理回路と、
     前記処理回路からアクセス可能な記憶装置とを備え、
     前記処理回路は、前記記憶装置を用いて、
     請求項1記載の動き補償方法を実行する
     画像復号装置。
    A processing circuit;
    A storage device accessible from the processing circuit,
    The processing circuit uses the storage device,
    An image decoding apparatus that executes the motion compensation method according to claim 1.
  13.  処理回路と、
     前記処理回路からアクセス可能な記憶装置とを備え、
     前記処理回路は、前記記憶装置を用いて、
     請求項7記載の画像符号化方法を実行する
     画像符号化装置。
    A processing circuit;
    A storage device accessible from the processing circuit,
    The processing circuit uses the storage device,
    An image encoding apparatus that executes the image encoding method according to claim 7.
  14.  処理回路と、
     前記処理回路からアクセス可能な記憶装置とを備え、
     前記処理回路は、前記記憶装置を用いて、
     請求項10記載の画像復号方法を実行する
     画像復号装置。
    A processing circuit;
    A storage device accessible from the processing circuit,
    The processing circuit uses the storage device,
    An image decoding apparatus that executes the image decoding method according to claim 10.
PCT/JP2014/005072 2013-10-22 2014-10-06 Motion compensation method, image encoding method, image decoding method, image encoding device and image decoding device WO2015059880A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361894109P 2013-10-22 2013-10-22
US61/894,109 2013-10-22
JP2014180546A JP2015082839A (en) 2013-10-22 2014-09-04 Motion compensation method, image coding method, image decoding method, image encoder, and image decoder
JP2014-180546 2014-09-04

Publications (1)

Publication Number Publication Date
WO2015059880A1 true WO2015059880A1 (en) 2015-04-30

Family

ID=52992502

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2014/005072 WO2015059880A1 (en) 2013-10-22 2014-10-06 Motion compensation method, image encoding method, image decoding method, image encoding device and image decoding device

Country Status (1)

Country Link
WO (1) WO2015059880A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108540799A (en) * 2018-05-16 2018-09-14 重庆堂堂网络科技有限公司 It is a kind of can be with the compression method of difference between one video file two field pictures of Precise Representation
EP3873094A1 (en) * 2020-02-26 2021-09-01 INTEL Corporation Reduction of visual artifacts in parallel video coding

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351001A (en) * 1993-06-08 1994-12-22 Matsushita Electric Ind Co Ltd Motion vector detecting method and movement compensation predicting method and device therefor
JP2008278490A (en) * 2007-05-04 2008-11-13 Thomson Licensing Method and device for retrieving test block from blockwise stored reference image
WO2010052838A1 (en) * 2008-11-07 2010-05-14 三菱電機株式会社 Dynamic image encoding device and dynamic image decoding device
JP2010206664A (en) * 2009-03-05 2010-09-16 Fujitsu Ltd Image encoding device, image encoding control method, and program
WO2013150943A1 (en) * 2012-04-06 2013-10-10 ソニー株式会社 Decoder and decoding method, as well as encoder and encoding method

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06351001A (en) * 1993-06-08 1994-12-22 Matsushita Electric Ind Co Ltd Motion vector detecting method and movement compensation predicting method and device therefor
JP2008278490A (en) * 2007-05-04 2008-11-13 Thomson Licensing Method and device for retrieving test block from blockwise stored reference image
WO2010052838A1 (en) * 2008-11-07 2010-05-14 三菱電機株式会社 Dynamic image encoding device and dynamic image decoding device
JP2010206664A (en) * 2009-03-05 2010-09-16 Fujitsu Ltd Image encoding device, image encoding control method, and program
WO2013150943A1 (en) * 2012-04-06 2013-10-10 ソニー株式会社 Decoder and decoding method, as well as encoder and encoding method

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108540799A (en) * 2018-05-16 2018-09-14 重庆堂堂网络科技有限公司 It is a kind of can be with the compression method of difference between one video file two field pictures of Precise Representation
CN108540799B (en) * 2018-05-16 2022-06-03 重庆堂堂网络科技有限公司 Compression method capable of accurately representing difference between two frames of images of video file
EP3873094A1 (en) * 2020-02-26 2021-09-01 INTEL Corporation Reduction of visual artifacts in parallel video coding
US11902570B2 (en) 2020-02-26 2024-02-13 Intel Corporation Reduction of visual artifacts in parallel video coding

Similar Documents

Publication Publication Date Title
JP6222589B2 (en) Decoding method and decoding apparatus
CA2876567C (en) Image coding and decoding of slice boundaries wherein loop filtering of top and left slice boundaries is controlled by a boundary control flag
JP6384690B2 (en) Image encoding method, image encoding device, image decoding method, and image decoding device
WO2012108205A1 (en) Picture encoding method, picture encoding device, picture decoding method, picture decoding device and picture encoding decoding device
JP6090625B2 (en) Image decoding method and image decoding apparatus
JP6629690B2 (en) Image coding method
JP6587046B2 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
JP2013526199A (en) Predictive coding using block shapes derived from prediction errors
EP4156690A1 (en) Image decoding method
JP6399433B2 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
JP5873029B2 (en) Video encoding method and video decoding method
JP6365924B2 (en) Image decoding method and image decoding apparatus
JP6187887B2 (en) Encoding method and encoding apparatus
WO2015059880A1 (en) Motion compensation method, image encoding method, image decoding method, image encoding device and image decoding device
JP2015082839A (en) Motion compensation method, image coding method, image decoding method, image encoder, and image decoder
WO2013014884A1 (en) Moving image encoding method, moving image encoding device, moving image decoding method, and moving image decoding device
WO2013136678A1 (en) Image decoding device and image decoding method
WO2015098020A1 (en) Image coding method, image decoding method, image coding apparatus, and image decoding apparatus
WO2015004884A1 (en) Image coding method, image decoding method, image coding device, and image decoding device
WO2012042810A1 (en) Image encoding method, image decoding method, image encoding device, image decoding device, and image processing system
WO2013046616A1 (en) Image encoding apparatus, image decoding apparatus, image encoding method and image decoding method
JP2018050085A (en) Image encoding method, image decoding method, image encoder and image decoder
WO2012095930A1 (en) Image encoding method, image decoding method, image encoding device, and image decoding device
WO2012086166A1 (en) Image encoding method and image decoding method
WO2012120876A1 (en) Image decoding method, image coding method, image decoder, and image encoder

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14856066

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14856066

Country of ref document: EP

Kind code of ref document: A1