WO2015059771A1 - Power conversion device and power conversion method for power conversion device - Google Patents

Power conversion device and power conversion method for power conversion device Download PDF

Info

Publication number
WO2015059771A1
WO2015059771A1 PCT/JP2013/078600 JP2013078600W WO2015059771A1 WO 2015059771 A1 WO2015059771 A1 WO 2015059771A1 JP 2013078600 W JP2013078600 W JP 2013078600W WO 2015059771 A1 WO2015059771 A1 WO 2015059771A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
converter
capacitor
power conversion
initial charging
Prior art date
Application number
PCT/JP2013/078600
Other languages
French (fr)
Japanese (ja)
Inventor
大輔 松元
修治 加藤
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/078600 priority Critical patent/WO2015059771A1/en
Publication of WO2015059771A1 publication Critical patent/WO2015059771A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/36Means for starting or stopping converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/32Means for protecting converters other than automatic disconnection
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a power conversion device using a smoothing capacitor and a power conversion method of the power conversion device.
  • the power conversion device includes a converter and a smoothing capacitor connected to the DC output terminal of the converter. Due to the operation of the switching element of the converter, the DC voltage output from the power conversion device has a waveform disturbance called a ripple voltage.
  • a smoothing capacitor By connecting a smoothing capacitor to the converter, electric energy is stored in the smoothing capacitor. Thereby, a ripple voltage can be suppressed, a DC voltage can be smoothed, and the load connected to a power converter device can function normally.
  • the smoothing capacitor is an indispensable part of the power converter.
  • Patent Document 1 discloses a power conversion device using a nonlinear composite film capacitor composed of an antiferroelectric polymer particle composite as an energy storage component.
  • the smoothing capacitor When the power converter is started, the smoothing capacitor is discharged, which is equivalent to a resistor having a resistance value of 0 [ ⁇ ]. Therefore, since a large current called an inrush current flows into the smoothing capacitor, each element constituting the power conversion device may be damaged. Therefore, a predetermined amount of charge must be charged to the smoothing capacitor when starting up the power converter. This operation is called initial charge. If the initial charging is completed, the power conversion device switches to steady operation. The power conversion device connects a resistor having a predetermined resistance value between the smoothing capacitor and the power source, and suppresses an inrush current flowing into the smoothing capacitor during the initial charge. This resistor is called the initial charge resistor.
  • the resistance value of the initial charging resistor needs to be determined according to the desired inrush current. At this time, the magnitude of the inrush current and the resistance value and dimension of the initial charging resistance are in a proportional relationship. By increasing the resistance value of the initial charging resistance, a larger inrush current can be suppressed, but there is a possibility that the component size becomes large, the power converter becomes large, and the component cost increases.
  • the smoothing capacitor capacity By reducing the smoothing capacitor capacity, the inrush current is reduced, and the resistance value of the initial charging resistor and its component dimensions can be reduced. However, if the smoothing capacitor capacity is reduced, the ripple voltage may increase during steady operation.
  • an object of the present invention is to provide a power conversion device and a power conversion method for the power conversion device that have a small resistance value of the initial charging resistance and can suppress a ripple voltage during steady operation.
  • the converter that outputs a DC voltage that is equal to or higher than the first voltage and equal to or lower than the second voltage;
  • the capacitance is larger when the applied voltage is greater than or equal to the first voltage and less than or equal to the second voltage than the capacitance when the voltage is less than the first voltage, and the converter outputs during steady operation.
  • a non-linear capacitor for smoothing the DC voltage, an initial charging resistor for limiting a current flowing through the non-linear capacitor at the time of initial charging, and an output during steady operation of the converter by the non-linear capacitor
  • a control circuit unit for controlling the switch.
  • the power conversion device includes a converter that outputs a direct current voltage that is equal to or higher than the first voltage and equal to or lower than the second voltage during steady operation,
  • the electrostatic capacity when the applied voltage is higher than the first voltage and lower than the second voltage is larger than the electrostatic capacity when the voltage is lower than the first voltage, and the converter outputs during steady operation.
  • the control circuit unit controls the switch so as to perform initial charging to the nonlinear capacitor during initial charging, and to smooth the output of the converter by the nonlinear capacitor during steady operation, and during initial charging. Furthermore, control is performed so that the voltage applied to the nonlinear capacitor is a DC voltage lower than the first voltage. Other means will be described in the embodiment for carrying out the invention.
  • the present invention it is possible to provide a power conversion device and a power conversion method for the power conversion device that have a low initial charge resistance and can suppress a ripple voltage during steady operation.
  • FIG. 1 is a configuration diagram illustrating an outline of a power conversion device 1 according to the first embodiment.
  • the power conversion device 1 includes a converter 3, a smoothing capacitor Cn, and an initial charging circuit 2.
  • the output side of the converter 3 is connected to the initial charging circuit 2.
  • the power conversion device 1 converts input power and supplies it to a connected load (not shown).
  • the converter 3 converts AC power into DC power and outputs it, and is connected to the smoothing capacitor Cn via the initial charging circuit 2.
  • the smoothing capacitor Cn smoothes the DC voltage output by the converter 3 during steady operation.
  • the smoothing capacitor Cn is a capacitor having nonlinear characteristics (hereinafter referred to as “nonlinear capacitor”).
  • the initial charging circuit 2 includes a charging power source Vd, an initial charging resistor Ri, a switch 4, and a control circuit unit 5, and is connected to the converter 3 and the smoothing capacitor Cn.
  • the smoothing capacitor Cn, the charging power supply Vd, and the initial charging resistor Ri are electrically connected via a metal plate called a bus bar or a metal cable to form a series circuit.
  • the initial charging circuit 2 performs an initial charging process for charging the smoothing capacitor Cn. This initial charging process will be described in detail with reference to FIG.
  • the charging power source Vd is a power source that supplies DC power, and applies a voltage V1 (first voltage) between a positive electrode and a negative electrode.
  • the switch 4 includes terminals 41 to 43, and switches between conduction between the terminals 41 and 42 or conduction between the terminals 41 and 43 according to a control signal. The switch 4 is controlled by the control circuit unit 5.
  • the control circuit unit 5 controls the initial charging circuit 2.
  • the control circuit unit 5 outputs a control signal to the switch 4.
  • the positive side of the charging power source Vd is electrically connected to the terminal 42 of the switch 4 via the initial charging resistor Ri.
  • a terminal 41 of the switch 4 is electrically connected to one end of the smoothing capacitor Cn.
  • a terminal 43 of the switch 4 is electrically connected to the positive electrode side of the converter 3.
  • the negative electrode side of charging power supply Vd is electrically connected to the other end of smoothing capacitor Cn and the negative electrode side of converter 3.
  • FIG. 2 is a flowchart showing the initial charging process in the first embodiment.
  • the control circuit unit 5 of the initial charging circuit 2 starts the initial charging process, for example, immediately after the power is supplied to the initial charging circuit 2.
  • the smoothing capacitor Cn is in a discharged state.
  • the control circuit unit 5 switches the switch 4 to the initial charge resistance Ri side. That is, the control circuit unit 5 controls the switch 4 so that the terminals 41 and 42 are electrically connected.
  • the charging power source Vd can be charged by passing a current through the smoothing capacitor Cn via the initial charging resistor Ri.
  • step S11 the control circuit unit 5 waits for a predetermined time.
  • the predetermined time is a time sufficiently longer than the time constants of the initial charging resistor Ri and the smoothing capacitor Cn of the initial charging circuit 2. Thereby, the control circuit unit 5 can charge the smoothing capacitor Cn with the voltage V1.
  • step S12 the control circuit unit 5 switches the switch 4 to the converter 3 side. That is, the control circuit unit 5 controls the switch 4 so that the terminals 41 and 43 are electrically connected.
  • step S12 ends, converter 3 ends the initial charging process and performs steady operation.
  • the smoothing capacitor Cn can smooth the output voltage between the positive electrode side and the negative electrode side during the steady operation of the converter 3 and remove the ripple voltage of the converter 3.
  • FIG. 3 is a graph showing characteristics of the accumulated charge amount with respect to the applied voltage Vc of the linear capacitor and the first to third nonlinear capacitors.
  • the vertical axis in FIG. 3 indicates the amount of charge [C] accumulated on the dielectric surface of each capacitor.
  • the horizontal axis in FIG. 3 indicates the applied voltage Vc [V] of each capacitor.
  • a solid line La indicates a characteristic of a capacitor having a conventional linear characteristic (hereinafter referred to as “linear capacitor”).
  • a solid line N1a indicates the characteristics of the first nonlinear capacitor used for the smoothing capacitor Cn of FIG. 1, for example.
  • a broken line N2a indicates the characteristic of the second nonlinear capacitor.
  • An alternate long and short dash line N3a indicates the characteristics of the third nonlinear capacitor.
  • the linear capacitor and the first to third nonlinear capacitors are configured with the same volume.
  • the first to third nonlinear capacitors have different characteristics.
  • the correspondence between each line and each capacitor is common in FIGS. 3 and 4.
  • the increase amount of the accumulated charge amount with respect to the increase of the applied voltage Vc maintains a predetermined value regardless of the applied voltage Vc.
  • the first nonlinear capacitor indicated by the solid line N1a when the applied voltage Vc increases and exceeds the voltage V1, the increase in the amount of accumulated charge with respect to the increase in the applied voltage Vc increases rapidly.
  • the increase amount of the accumulated charge with respect to the increase of the applied voltage Vc decreases rapidly.
  • the amount of increase in the accumulated charge amount with respect to the increase in the applied voltage Vc of the first nonlinear capacitor becomes the largest when the applied voltage Vc is between the voltage V1 and the voltage V2.
  • the characteristic curve of the accumulated charge amount of the second nonlinear capacitor indicated by the broken line N2a exists slightly on the lower voltage side than the characteristic curve of the accumulated charge amount of the first nonlinear capacitor.
  • the characteristic curve of the accumulated charge amount of the third nonlinear capacitor indicated by the one-dot chain line N3a is further on the constant voltage side than the characteristic curve of the accumulated charge amount of the second nonlinear capacitor indicated by the broken line N2a.
  • the characteristics of the stored charge amount of the second and third nonlinear capacitors are the same as those of the first nonlinear capacitor.
  • the characteristics of the first to third nonlinear capacitors will be described in comparison with a linear capacitor.
  • the capacitor includes a dielectric and two electrodes separated by the dielectric.
  • the dielectric used for the linear capacitor has a characteristic that the amount of charge accumulated on the surface thereof increases linearly with respect to the change of the applied voltage Vc.
  • the first to third nonlinear capacitors use an antiferroelectric material between the electrodes.
  • the antiferroelectric material has a characteristic that the amount of charge accumulated on its surface changes nonlinearly with respect to the change of the applied voltage Vc.
  • the voltage V1 is set to be approximately equal to or lower than the coercive electric field of the dielectric of the first nonlinear capacitor.
  • the increase amount of the accumulated charge amount with respect to the increase of the applied voltage Vc is smaller than the increase amount of the charge amount of the linear capacitor.
  • the increase in the accumulated charge amount with respect to the increase in the applied voltage Vc is an increase in the charge amount of the linear capacitor. Greater than the amount.
  • FIG. 4 is a graph showing the characteristics of the capacitance with respect to the applied voltage Vc of the linear capacitor and the first to third nonlinear capacitors.
  • the vertical axis in FIG. 4 indicates the capacitance [ ⁇ F] of each capacitor.
  • the horizontal axis in FIG. 4 indicates the applied voltage Vc [V] of each capacitor.
  • a solid line Lb indicates the characteristics of the linear capacitor.
  • a solid line N1b indicates the characteristic of the first nonlinear capacitor.
  • a broken line N2b indicates the characteristic of the second nonlinear capacitor.
  • An alternate long and short dash line N3b indicates the characteristics of the third nonlinear capacitor.
  • the capacitance is proportional to the quotient of the accumulated charge amount by the applied voltage Vc. Therefore, the slope of the accumulated charge amount shown in FIG. 3 is proportional to the capacitance shown in FIG.
  • the applied voltage Vc at which the electrostatic capacitances of the first to third nonlinear capacitors shown in FIG. 4 reach the peak is the same as the applied voltage Vc that maximizes the slope of the accumulated charge amount shown in FIG. Regardless of the applied voltage Vc, the linear capacitors have substantially the same capacitance.
  • the capacitances of the first to third nonlinear capacitors vary depending on the applied voltage Vc.
  • the capacitance of the first nonlinear capacitor is less than the capacitance of the linear capacitor.
  • the capacitance of the first nonlinear capacitor exceeds the capacitance of the linear capacitor.
  • the capacitance of the first nonlinear capacitor is larger than the capacitance of the linear capacitor.
  • the capacitance of the first nonlinear capacitor is larger when the applied voltage Vc is between the voltage V1 and the voltage V2 than when the applied voltage Vc is from 0 [V] to the voltage V1.
  • the initial charging circuit 2 (Difference between linear capacitor and nonlinear capacitor) performs an initial charging process when the applied voltage Vc is lower than the voltage V1, and charges the smoothing capacitor Cn.
  • the capacitance of the first nonlinear capacitor at the initial charge is smaller than the capacitance of the linear capacitor having the same volume. Therefore, since the inrush current at the start of the initial charge can be suppressed, the resistance value of the initial charge resistance Ri can be reduced. Therefore, it is possible to suppress the component size and the component cost related to the initial charging resistance Ri.
  • the converter 3 smoothes the DC voltage output during the steady operation with the smoothing capacitor Cn.
  • the capacitance of the first nonlinear capacitor during steady operation is larger than the capacitance of the linear capacitor having the same volume as this. Therefore, the smoothing capacitor Cn can effectively suppress the ripple voltage of the converter 3.
  • the electrostatic capacity at the initial charge is smaller than the electrostatic capacity at the steady operation and the impedance is large.
  • a large current called an inrush current flows through the smoothing capacitor Cn.
  • the magnitude of the inrush current is inversely proportional to the sum of the impedance of the initial charging resistor Ri and the impedance of the smoothing capacitor Cn.
  • the initial charging circuit 2 of the first embodiment outputs a DC voltage V1 from the charging power supply Vd, and controls so that the impedance of the smoothing capacitor Cn at the initial charging is larger than that at the steady operation. Therefore, the resistance value of the initial charging resistor Ri can be reduced, and the component size and component cost related to the initial charging resistor Ri can be suppressed.
  • converter 3 outputs a DC voltage not lower than voltage V1 and not higher than voltage V2.
  • the smoothing capacitor Cn can effectively suppress the ripple voltage of the converter 3.
  • the second and third nonlinear capacitors having different characteristics are used as the smoothing capacitor Cn, and the charging power supply Vd is output in conjunction therewith. Adjust the DC voltage. As a result, the resistance value of the initial charging resistor Ri can be reduced, and the component dimensions and component costs associated with the initial charging resistor Ri can be suppressed.
  • FIG. 5 is a configuration diagram illustrating an outline of a power conversion device 1A according to the second embodiment.
  • symbol is provided to the element same as the power converter device 1 of 1st Embodiment shown in FIG.
  • the initial charging circuit 2 ⁇ / b> A of the second embodiment includes a charging power source Vd ⁇ b> 2 that is different from the initial charging circuit 2 of the first embodiment, and further includes a voltage sensor 9.
  • the charging power source Vd2 is a power source that supplies DC power, and applies a voltage Vx between the positive electrode and the negative electrode.
  • the voltage Vx is a voltage not lower than the voltage V1 and not higher than the voltage V2.
  • the voltage sensor 9 is connected between both terminals of the smoothing capacitor Cn, and the output side is connected to the control circuit unit 5. The voltage sensor 9 measures the applied voltage Vc to the smoothing capacitor Cn and notifies the control circuit unit 5 of applied voltage information.
  • FIG. 6 is a flowchart showing the initial charging process in the second embodiment.
  • the control circuit unit 5 of the initial charging circuit 2A starts the initial charging process, for example, immediately after the power is turned on to the initial charging circuit 2A.
  • the smoothing capacitor Cn is in a discharged state.
  • the control circuit unit 5 switches the switch 4 to the initial charge resistance Ri side. That is, the control circuit unit 5 controls the switch 4 so that the terminals 41 and 42 are electrically connected.
  • the charging power source Vd2 can be charged by passing a current through the smoothing capacitor Cn via the initial charging resistor Ri.
  • step S21 the control circuit unit 5 measures the applied voltage Vc with the voltage sensor 9, and determines whether or not the applied voltage Vc is equal to or higher than the voltage V1. If the determination condition is not satisfied (No), the control circuit unit 5 repeats the process of step S21. If the determination condition is satisfied (Yes), the control circuit unit 5 performs the process of step S22. As described above, the initial charging circuit 2A initially charges the smoothing capacitor Cn with the voltage Vx exceeding the voltage V1, and determines whether or not the applied voltage Vc exceeds the voltage V1, and thus the initial charging process is terminated. The first charge can be completed quickly. In step S22, the control circuit unit 5 switches the switch 4 to the converter 3 side.
  • control circuit unit 5 controls the switch 4 so that the terminals 41 and 43 are electrically connected.
  • step S22 ends, converter 3 ends the initial charging process and performs steady operation.
  • the smoothing capacitor Cn can smooth the output voltage between the positive electrode side and the negative electrode side during the steady operation of the converter 3 and remove the ripple voltage of the converter 3.
  • FIG. 7 is a schematic configuration diagram illustrating a power conversion device 1B according to the third embodiment.
  • the power conversion device 1B includes an initial charging resistor array Ri2, a switch array 4B, a converter 3B, a smoothing capacitor Cn, and an inverter 7, and is connected to a power supply unit 6 and a load 8.
  • the power supply unit 6 is a commercial power supply, for example, and is a three-phase AC power supply.
  • the voltage of the power supply unit 6 is, for example, in the range of 10 to 1000 [V].
  • the AC frequency of the power supply unit 6 is, for example, in the range of 10 to 100 [Hz].
  • the initial charging resistor array Ri2 is composed of three resistors.
  • the switch array 4B is composed of three switches. The three resistors of the initial charging resistor array Ri2 and the three switches of the switch array 4B are respectively connected in parallel between the three-phase AC terminal of the power supply unit 6 and the three-phase AC terminal of the converter 3B. It is connected.
  • the initial charging resistor array Ri2 is a resistor that limits the inrush current that flows through the smoothing capacitor Cn during the initial charging.
  • Switch array 4B is a switch that electrically connects the three-phase AC terminal of power supply unit 6 and the three-phase AC terminal of converter 3B during the steady operation of converter 3B.
  • the converter 3B is a two-level, three-phase PWM (Pulse Width Modulation) converter that converts AC power into DC power.
  • Converter 3B includes an R-phase leg, an S-phase leg, and a T-phase leg, and the output side is connected to smoothing capacitor Cn.
  • R-phase leg an R-phase upper arm in which the switching element QR1 and the rectifying element DR1 are connected in antiparallel and an R-phase lower arm in which the switching element QR2 and the rectifying element DR2 are connected in antiparallel are connected in series.
  • the R phase of the three-phase alternating current of the power supply unit 6 is connected to a node R that connects the R phase upper arm and the R phase lower arm.
  • an S-phase upper arm in which the switching element QS1 and the rectifying element DS1 are connected in antiparallel and an S phase lower arm in which the switching element QS2 and the rectifying element DS2 are connected in antiparallel are connected in series.
  • the S phase of the three-phase alternating current of the power supply unit 6 is connected to a node S that connects the S phase upper arm and the S phase lower arm.
  • a T-phase upper arm in which the switching element QT1 and the rectifying element DT1 are connected in anti-parallel and a T-phase lower arm in which the switching element QT2 and the rectifying element DT2 are connected in anti-parallel are connected in series.
  • the T phase of the three-phase alternating current of the power supply unit 6 is connected to a node T that connects the T-phase upper arm and the T-phase lower arm.
  • the smoothing capacitor Cn smoothes the DC voltage output by the converter 3B during steady operation.
  • the characteristic of the smoothing capacitor Cn is the first nonlinear capacitor indicated by the solid line in FIGS.
  • the DC voltage output from the converter 3B includes a ripple voltage.
  • the smoothing capacitor Cn is for smoothing the DC voltage by suppressing the ripple voltage.
  • Inverter 7 is connected to the output side of converter 3 ⁇ / b> B, and its own AC output side is connected to load 8.
  • the inverter 7 includes a U-phase leg, a V-phase leg, and a W-phase leg.
  • a U-phase upper arm in which switching element QU1 and rectifying element DU1 are connected in antiparallel and a U-phase lower arm in which switching element QU2 and rectifying element DU2 are connected in antiparallel are connected in series.
  • a node U that connects the U-phase upper arm and the U-phase lower arm is connected to the U-phase among the three phases that drive the load 8.
  • a V-phase upper arm in which the switching element QV1 and the rectifying element DV1 are connected in antiparallel and a V-phase lower arm in which the switching element QV2 and the rectifying element DV2 are connected in antiparallel are connected in series.
  • a node V that connects the V-phase upper arm and the V-phase lower arm is connected to the V phase of the three phases that drive the load 8.
  • a W-phase upper arm in which switching element QW1 and rectifying element DW1 are connected in antiparallel and a W-phase lower arm in which switching element QW2 and rectifying element DW2 are connected in antiparallel are connected in series.
  • a node W that connects the W-phase upper arm and the W-phase lower arm is connected to the W-phase of the three phases that drive the load 8.
  • the control circuit unit 5B outputs a control signal to the gates of the respective switching elements QR1, QR2,... Of the converter 3B to switch between a conductive state (on state) and a non-conductive state (off state). Converts AC power to DC power. During steady operation, the DC power output from the converter 3B is smoothed by the smoothing capacitor Cn and input to the inverter 7 on the right side of FIG. The control circuit unit 5B outputs a control signal to the gates of the switching elements QU1, QU2,... Of the inverter 7, switches between the conductive state and the non-conductive state, and converts the DC power supplied by the converter 3B into AC power. , Supplied to the load 8. The control circuit unit 5B further outputs a control signal to the switch array 4B to switch between steady operation and initial charge.
  • each switching element QR1, QR2,... Each switching element QU1, QU2,... Is, for example, GTO (Gate Turn-Off), IGBT manufactured using silicon, silicon carbide, gallium nitride, diamond or the like as a main material.
  • GTO Gate Turn-Off
  • IGBT Insulated Gate Bipolar Transistor
  • MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
  • JFET Joint Field Effect Transistor
  • each rectifying element DU1, DU2,... for example, a pn diode or Schottky barrier diode manufactured using the same material as the switching elements QR1, QR2,. Or a single structure of a semiconductor element such as a Schottky barrier diode in which these are mixed, or a structure in which two or more of these semiconductor elements are connected in series or in parallel.
  • the power converter 1B of the third embodiment is configured to output the output voltage of the converter 3B, which is a PWM converter connected to a three-phase AC power source such as a commercial power source, instead of the initial charging with the charging power source Vd of the first embodiment.
  • the smoothing capacitor Cn is charged for the first time.
  • the control circuit unit 5B controls the converter 3B so that the capacitance of the smoothing capacitor Cn is smaller than the capacitance of the linear capacitor having the same volume. That is, the control circuit unit 5B controls the converter 3B to output the voltage V1 from the voltage 0 [V].
  • the control circuit unit 5B controls the converter 3B so that the capacitance of the smoothing capacitor Cn is larger than the capacitance of the linear capacitor having the same volume. That is, the control circuit unit 5B performs control so that the converter 3B outputs the voltage V1 [V] or higher and the voltage V2 or lower.
  • the control circuit unit 5B since the smoothing capacitor Cn is initially charged by the PWM converter, the applied voltage Vc of the smoothing capacitor Cn can be adjusted appropriately. Therefore, the initial charge resistance array Ri2 can be further reduced in size. Furthermore, the power conversion device 1B can smooth the ripple voltage more than the comparative example during steady operation.
  • FIG. 8 is a flowchart showing the initial charging process in the third embodiment.
  • the control circuit unit 5B starts the initial charging process, for example, immediately after the power conversion device 1B is turned on. At this time, the smoothing capacitor Cn is in a discharged state.
  • control circuit unit 5B sets the DC voltage output from converter 3B to voltage V1.
  • control circuit unit 5B turns off all the switch arrays 4B.
  • the converter 3B can be charged by passing a current through the smoothing capacitor Cn via the initial charging resistor array Ri2.
  • step S32 the control circuit unit 5B waits for a predetermined time. This predetermined time is sufficiently longer than the time constants of the initial charging resistor array Ri2 and the smoothing capacitor Cn. Thereby, the control circuit unit 5B can charge the smoothing capacitor Cn with the voltage V1.
  • step S33 the control circuit unit 5B turns on all the switch arrays 4B.
  • step S34 control circuit unit 5B sets the DC voltage output from converter 3B to an arbitrary value not lower than voltage V1 and not higher than voltage V2, ends the initial charging process, and starts steady operation. Thereby, the smoothing capacitor Cn can smooth the output voltage between the positive electrode side and the negative electrode side during the steady operation of the converter 3B, and can remove the ripple voltage of the converter 3B.
  • the converter 3B outputs a DC voltage not lower than the voltage V1 and not higher than the voltage V2, and applies it to the smoothing capacitor Cn which is a non-linear capacitor.
  • the smoothing capacitor Cn which is a non-linear capacitor.
  • the present invention is not limited to the embodiments described above, and includes various modifications.
  • the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment.
  • the number of elements including the number, numerical value, quantity, range, etc.
  • the constituent elements are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. This also applies to the above numbers (including the number, numerical value, quantity, range, etc.). Inductors, capacitances, resistance components, etc. that are parasitic on the circuit of the embodiment described above, and inductors, resistance components, capacitors, etc. that are arbitrarily arranged in circuit design, or a combination of inductors, resistors, capacitors, etc.
  • the description of a general-purpose accessory device for providing an additional function such as a snubber circuit and a fuse is omitted.
  • the above-described configurations, functions, processing units, processing means, etc. may be partially or entirely realized by hardware such as an integrated circuit.
  • Each of the above-described configurations, functions, and the like may be realized by software by a processor interpreting and executing a program that realizes each function.
  • Information such as programs, tables, and files for realizing each function may be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as a flash memory card or a DVD (Digital Versatile Disk). it can.
  • control lines and information lines indicate what is considered necessary for the explanation, and not all control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all the components are connected to each other. Examples of modifications of the present invention include the following (a) to (e).
  • the voltage which the power supply part 6 outputs may be arbitrary voltages which are more than voltage V1 and less than voltage V2.
  • the power conversion device 1 charges the smoothing capacitor Cn to a sufficient voltage, and further reduces the inrush current to the smoothing capacitor Cn when switching from the initial charging state to the steady operation state. Can do.
  • the minimum configuration in the third embodiment is only required to include the power supply unit 6, the initial charge resistor array Ri2, the converter 3B, and the smoothing capacitor Cn, and the inverter 7 is not an essential component.
  • the power conversion device 1B of the third embodiment may further include a charging power source for charging the smoothing capacitor Cn, an initial charging resistor Ri, and the switch 4.
  • the charging power supply Vd2 for charging the smoothing capacitor Cn may be configured to be able to output an arbitrary voltage by external control. As a result, the smoothing capacitor Cn can be initially charged more rapidly.
  • the nonlinear capacitor and the initial charging method of the above embodiment can be applied to a power conversion device equipped with an MMC (ModularModMultilevel Converter). Particularly, it is suitable for a ZC (Zero-Sequence Canceling) type MMC-mounted power conversion device that transfers power to and from a load device connected to an output terminal or a power source by controlling a common mode (zero phase) component. .
  • MMC ModularModMultilevel Converter

Abstract

The present invention addresses the problem of reducing the size of an initial charging resistor and suppressing ripple voltage in a power conversion device. A power conversion device (1) comprises: a converter (3) for, during a steady operation, outputting a DC voltage that is more than or equal to a first voltage (V1) and less than or equal to a second voltage; a smoothing capacitor (Cn) having nonlinear characteristics and smoothing the DC voltage output from the converter (3) during the steady operation, said nonlinear characteristics being such that a capacitance obtained when a voltage of the first voltage (V1) to the second voltage, inclusive, is applied to the smoothing capacitor (Cn) is larger than a capacitance obtained when a voltage of zero volts or more to less than the first voltage (V1) is applied to the smoothing capacitor (Cn); an initial charging resistor (Ri) for limiting the current flowing through the smoothing capacitor (Cn) during initial charging; a switch (4) for switching whether to perform initial charging to the smoothing capacitor (Cn) or to perform smoothing on the output of the converter (3) by the smoothing capacitor (Cn) during the steady operation; and a control circuit unit (5) for controlling the switch (4).

Description

電力変換装置および電力変換装置の電力変換方法Power conversion device and power conversion method for power conversion device
 本発明は、平滑コンデンサを用いた電力変換装置および電力変換装置の電力変換方法に関する。 The present invention relates to a power conversion device using a smoothing capacitor and a power conversion method of the power conversion device.
 電力変換装置は、コンバータと、このコンバータの直流出力端子に接続された平滑コンデンサとを含んで構成される。このコンバータのスイッチング素子の動作に起因して、電力変換装置が出力する直流電圧には、リップル電圧という波形の乱れが生じる。コンバータに平滑コンデンサを接続することにより、平滑コンデンサに電気エネルギが蓄積される。これにより、リップル電圧を抑制して直流電圧を平滑化させ、電力変換装置に接続される負荷を正常に機能させることができる。このように平滑コンデンサは、電力変換装置の必須の部品である。 The power conversion device includes a converter and a smoothing capacitor connected to the DC output terminal of the converter. Due to the operation of the switching element of the converter, the DC voltage output from the power conversion device has a waveform disturbance called a ripple voltage. By connecting a smoothing capacitor to the converter, electric energy is stored in the smoothing capacitor. Thereby, a ripple voltage can be suppressed, a DC voltage can be smoothed, and the load connected to a power converter device can function normally. Thus, the smoothing capacitor is an indispensable part of the power converter.
 特許文献1には、エネルギ蓄積コンポーネントとして反強誘電性ポリマ粒子複合体で構成される非線形複合フィルムコンデンサを用いた電力変換装置が開示されている。 Patent Document 1 discloses a power conversion device using a nonlinear composite film capacitor composed of an antiferroelectric polymer particle composite as an energy storage component.
 電力変換装置の起動時において、平滑コンデンサは放電されており、抵抗値0[Ω]の抵抗器と等価である。よって、平滑コンデンサには、突入電流と呼ばれる大電流が流れ込むため、電力変換装置を構成する各素子が破損する虞がある。よって、電力変換装置の起動時には、この平滑コンデンサに対して所定量の電荷を充電しなければならない。この操作は、初充電と呼ばれている。初充電が完了したならば、電力変換装置は、定常運転に切り替わる。
 電力変換装置は、所定の抵抗値の抵抗器を、平滑コンデンサと電源との間に接続して、初充電時に平滑コンデンサに流れ込む突入電流を抑制する。この抵抗器は、初充電抵抗と呼ばれている。
When the power converter is started, the smoothing capacitor is discharged, which is equivalent to a resistor having a resistance value of 0 [Ω]. Therefore, since a large current called an inrush current flows into the smoothing capacitor, each element constituting the power conversion device may be damaged. Therefore, a predetermined amount of charge must be charged to the smoothing capacitor when starting up the power converter. This operation is called initial charge. If the initial charging is completed, the power conversion device switches to steady operation.
The power conversion device connects a resistor having a predetermined resistance value between the smoothing capacitor and the power source, and suppresses an inrush current flowing into the smoothing capacitor during the initial charge. This resistor is called the initial charge resistor.
米国特許出願公開2011/0074361号明細書US Patent Application Publication No. 2011/0074361
 初充電抵抗の抵抗値は、所望の突入電流に応じて決定する必要がある。このとき、突入電流の大きさと初充電抵抗の抵抗値と寸法とは、比例関係にある。初充電抵抗の抵抗値を大きくすることで、より大きな突入電流を抑制できるが、部品寸法が大きくなって電力変換装置が大型化し、部品コストが増大する虞がある。 The resistance value of the initial charging resistor needs to be determined according to the desired inrush current. At this time, the magnitude of the inrush current and the resistance value and dimension of the initial charging resistance are in a proportional relationship. By increasing the resistance value of the initial charging resistance, a larger inrush current can be suppressed, but there is a possibility that the component size becomes large, the power converter becomes large, and the component cost increases.
 平滑コンデンサ容量を小さくすることにより突入電流が小さくなり、初充電抵抗の抵抗値と、その部品寸法と小さくすることができる。しかし、平滑コンデンサ容量を小さくすると、定常運転時にリップル電圧が大きくなる虞がある。 By reducing the smoothing capacitor capacity, the inrush current is reduced, and the resistance value of the initial charging resistor and its component dimensions can be reduced. However, if the smoothing capacitor capacity is reduced, the ripple voltage may increase during steady operation.
 そこで、本発明では、初充電抵抗の抵抗値が小さく、定常運転時のリップル電圧を抑制可能な電力変換装置および電力変換装置の電力変換方法を提供することを課題とする。 Therefore, an object of the present invention is to provide a power conversion device and a power conversion method for the power conversion device that have a small resistance value of the initial charging resistance and can suppress a ripple voltage during steady operation.
 前記した課題を解決するため、本発明の電力変換装置の発明では、定常運転時に、第1電圧以上かつ第2電圧以下の直流電圧を出力するコンバータと、自身の印加電圧が0ボルト以上かつ前記第1電圧未満の場合の静電容量よりも、自身の印加電圧が前記第1電圧以上かつ前記第2電圧以下の場合の静電容量の方が大きく、かつ、定常運転時には前記コンバータが出力する直流電圧を平滑化する非線形コンデンサと、初充電時に前記非線形コンデンサに流れる電流を制限する初充電抵抗と、前記非線形コンデンサへの初充電を行うか、前記非線形コンデンサによる前記コンバータの定常運転時の出力の平滑化を行うか切りを替えるスイッチと、前記スイッチを制御する制御回路部とを備える。 In order to solve the above-described problem, in the invention of the power conversion device of the present invention, during steady operation, the converter that outputs a DC voltage that is equal to or higher than the first voltage and equal to or lower than the second voltage; The capacitance is larger when the applied voltage is greater than or equal to the first voltage and less than or equal to the second voltage than the capacitance when the voltage is less than the first voltage, and the converter outputs during steady operation. A non-linear capacitor for smoothing the DC voltage, an initial charging resistor for limiting a current flowing through the non-linear capacitor at the time of initial charging, and an output during steady operation of the converter by the non-linear capacitor And a control circuit unit for controlling the switch.
 本発明の電力変換装置の電力変換方法の発明では、電力変換装置は、定常運転時に、第1電圧以上かつ第2電圧以下の直流電圧を出力するコンバータと、自身の印加電圧が0ボルト以上かつ前記第1電圧未満の場合の静電容量よりも、自身の印加電圧が前記第1電圧以上かつ前記第2電圧以下の場合の静電容量の方が大きく、かつ、定常運転時には前記コンバータが出力する直流電圧を平滑化する非線形コンデンサと、初充電時に前記非線形コンデンサに流れる電流を制限する初充電抵抗と、スイッチと、制御回路部とを備える。前記制御回路部は、初充電時には、前記非線形コンデンサへの初充電を行い、かつ、定常運転時には、前記非線形コンデンサによる前記コンバータの出力の平滑化を行うように前記スイッチを制御し、初充電時には更に、前記非線形コンデンサへの印加電圧が前記第1電圧未満の直流電圧となるように制御する。
 その他の手段については、発明を実施するための形態のなかで説明する。
In the invention of the power conversion method of the power conversion device of the present invention, the power conversion device includes a converter that outputs a direct current voltage that is equal to or higher than the first voltage and equal to or lower than the second voltage during steady operation, The electrostatic capacity when the applied voltage is higher than the first voltage and lower than the second voltage is larger than the electrostatic capacity when the voltage is lower than the first voltage, and the converter outputs during steady operation. A non-linear capacitor for smoothing the direct current voltage, an initial charging resistor for limiting a current flowing in the non-linear capacitor at the time of initial charging, a switch, and a control circuit unit. The control circuit unit controls the switch so as to perform initial charging to the nonlinear capacitor during initial charging, and to smooth the output of the converter by the nonlinear capacitor during steady operation, and during initial charging. Furthermore, control is performed so that the voltage applied to the nonlinear capacitor is a DC voltage lower than the first voltage.
Other means will be described in the embodiment for carrying out the invention.
 本発明によれば、初充電抵抗が小さく、定常運転時のリップル電圧を抑制可能な電力変換装置および電力変換装置の電力変換方法を提供することが可能となる。 According to the present invention, it is possible to provide a power conversion device and a power conversion method for the power conversion device that have a low initial charge resistance and can suppress a ripple voltage during steady operation.
第1の実施形態における電力変換装置の初充電回路を示す概略の構成図である。It is a schematic block diagram which shows the initial charging circuit of the power converter device in 1st Embodiment. 第1の実施形態における初充電処理を示すフローチャートである。It is a flowchart which shows the initial charging process in 1st Embodiment. 線形コンデンサおよび各非線形コンデンサの印加電圧に対する蓄積電荷量の特性を示すグラフである。It is a graph which shows the characteristic of the accumulation charge amount with respect to the applied voltage of a linear capacitor and each nonlinear capacitor. 線形コンデンサと非線形コンデンサの印加電圧に対する静電容量の特性を示すグラフである。It is a graph which shows the characteristic of the electrostatic capacitance with respect to the applied voltage of a linear capacitor and a nonlinear capacitor. 第2の実施形態における電力変換装置の初充電回路を示す概略の構成図である。It is a schematic block diagram which shows the initial charging circuit of the power converter device in 2nd Embodiment. 第2の実施形態における初充電処理を示すフローチャートである。It is a flowchart which shows the initial charging process in 2nd Embodiment. 第3の実施形態における電力変換装置を示す概略の構成図である。It is a schematic block diagram which shows the power converter device in 3rd Embodiment. 第3の実施形態における初充電処理を示すフローチャートである。It is a flowchart which shows the initial charging process in 3rd Embodiment.
 以降、本発明を実施するための形態(以下、「実施形態」という。)を、各図を参照して詳細に説明する。実施形態を説明するため、各図において、同一の要素には、同一または関連する符号を付与している。各実施形態において、同一要素の説明は、原則として繰り返さずに省略している。 Hereinafter, modes for carrying out the present invention (hereinafter referred to as “embodiments”) will be described in detail with reference to the drawings. In order to describe the embodiments, the same or related reference numerals are given to the same elements in the respective drawings. In each embodiment, the description of the same element is omitted without being repeated in principle.
(第1の実施形態)
 図1は、第1の実施形態における電力変換装置1の概略を示す構成図である。
 図1に示すように、電力変換装置1は、コンバータ3と、平滑コンデンサCnと、初充電回路2とを備えている。コンバータ3の出力側は、初充電回路2に接続されている。電力変換装置1は、入力された電力を変換して、接続される負荷(不図示)に供給するものである。
 コンバータ3は、交流電力を直流電力に変換して出力するものであり、初充電回路2を介して平滑コンデンサCnに接続される。
 平滑コンデンサCnは、コンバータ3が定常運転時に出力する直流電圧を平滑化するものである。平滑コンデンサCnは、非線形の特性を有するコンデンサ(以下、「非線形コンデンサ」という。)である。この非線形コンデンサの特性は、後記する図3と図4とで詳細に説明する。
 初充電回路2は、充電用電源Vdと、初充電抵抗Riと、スイッチ4と、制御回路部5とを備え、コンバータ3と平滑コンデンサCnとに接続されている。平滑コンデンサCnと、充電用電源Vdと、初充電抵抗Riとは、バスバー(Bus Bar)と呼ばれる金属板や金属製のケーブルを介して電気的に接続され、直列回路を形成する。初充電回路2は、平滑コンデンサCnを充電する初充電処理を行う。この初充電処理は、後記する図2で詳細に説明する。
 充電用電源Vdは、直流電力を供給する電源であり、正極と負極との間に電圧V1(第1電圧)を印加する。
 スイッチ4は、端子41~43を備え、制御信号によって、端子41,42の間の導通または端子41,43の間の導通に切り替える。このスイッチ4は、制御回路部5によって制御される。
(First embodiment)
FIG. 1 is a configuration diagram illustrating an outline of a power conversion device 1 according to the first embodiment.
As shown in FIG. 1, the power conversion device 1 includes a converter 3, a smoothing capacitor Cn, and an initial charging circuit 2. The output side of the converter 3 is connected to the initial charging circuit 2. The power conversion device 1 converts input power and supplies it to a connected load (not shown).
The converter 3 converts AC power into DC power and outputs it, and is connected to the smoothing capacitor Cn via the initial charging circuit 2.
The smoothing capacitor Cn smoothes the DC voltage output by the converter 3 during steady operation. The smoothing capacitor Cn is a capacitor having nonlinear characteristics (hereinafter referred to as “nonlinear capacitor”). The characteristics of this nonlinear capacitor will be described in detail with reference to FIGS.
The initial charging circuit 2 includes a charging power source Vd, an initial charging resistor Ri, a switch 4, and a control circuit unit 5, and is connected to the converter 3 and the smoothing capacitor Cn. The smoothing capacitor Cn, the charging power supply Vd, and the initial charging resistor Ri are electrically connected via a metal plate called a bus bar or a metal cable to form a series circuit. The initial charging circuit 2 performs an initial charging process for charging the smoothing capacitor Cn. This initial charging process will be described in detail with reference to FIG.
The charging power source Vd is a power source that supplies DC power, and applies a voltage V1 (first voltage) between a positive electrode and a negative electrode.
The switch 4 includes terminals 41 to 43, and switches between conduction between the terminals 41 and 42 or conduction between the terminals 41 and 43 according to a control signal. The switch 4 is controlled by the control circuit unit 5.
 制御回路部5は、この初充電回路2を制御するものである。制御回路部5は、スイッチ4に制御信号を出力する。
 充電用電源Vdの正極側は、初充電抵抗Riを介してスイッチ4の端子42に電気的に接続される。スイッチ4の端子41は、平滑コンデンサCnの一端に電気的に接続される。スイッチ4の端子43は、コンバータ3の正極側に電気的に接続される。充電用電源Vdの負極側は、平滑コンデンサCnの他端とコンバータ3の負極側とに電気的に接続される。
The control circuit unit 5 controls the initial charging circuit 2. The control circuit unit 5 outputs a control signal to the switch 4.
The positive side of the charging power source Vd is electrically connected to the terminal 42 of the switch 4 via the initial charging resistor Ri. A terminal 41 of the switch 4 is electrically connected to one end of the smoothing capacitor Cn. A terminal 43 of the switch 4 is electrically connected to the positive electrode side of the converter 3. The negative electrode side of charging power supply Vd is electrically connected to the other end of smoothing capacitor Cn and the negative electrode side of converter 3.
 図2は、第1の実施形態における初充電処理を示すフローチャートである。ここでは適宜、図1の各部を参照して説明する。
 初充電回路2の制御回路部5が初充電処理を開始するのは、例えば、初充電回路2に電源が投入された直後である。このとき平滑コンデンサCnは、放電状態である。
 ステップS10において、制御回路部5は、スイッチ4を初充電抵抗Ri側に切り替える。すなわち、制御回路部5は、端子41,42の間が導通するようにスイッチ4を制御する。これにより、充電用電源Vdは、初充電抵抗Riを介して平滑コンデンサCnに電流を流して充電できる。
FIG. 2 is a flowchart showing the initial charging process in the first embodiment. Here, description will be made with reference to each part of FIG.
The control circuit unit 5 of the initial charging circuit 2 starts the initial charging process, for example, immediately after the power is supplied to the initial charging circuit 2. At this time, the smoothing capacitor Cn is in a discharged state.
In step S10, the control circuit unit 5 switches the switch 4 to the initial charge resistance Ri side. That is, the control circuit unit 5 controls the switch 4 so that the terminals 41 and 42 are electrically connected. As a result, the charging power source Vd can be charged by passing a current through the smoothing capacitor Cn via the initial charging resistor Ri.
 ステップS11において、制御回路部5は、所定時間だけ待つ。この所定時間は、この初充電回路2の初充電抵抗Riと平滑コンデンサCnの時定数よりも充分に長い時間である。これにより、制御回路部5は、電圧V1で平滑コンデンサCnを充電することができる。
 ステップS12において、制御回路部5は、スイッチ4をコンバータ3側に切り替える。すなわち、制御回路部5は、端子41,43の間が導通するようにスイッチ4を制御する。ステップS12の処理が終了すると、コンバータ3は、初充電処理を終了して、定常運転を行う。
 これにより、平滑コンデンサCnは、コンバータ3の定常運転時に正極側と負極側との間の出力電圧を平滑化して、このコンバータ3のリップル電圧を除去することができる。
In step S11, the control circuit unit 5 waits for a predetermined time. The predetermined time is a time sufficiently longer than the time constants of the initial charging resistor Ri and the smoothing capacitor Cn of the initial charging circuit 2. Thereby, the control circuit unit 5 can charge the smoothing capacitor Cn with the voltage V1.
In step S12, the control circuit unit 5 switches the switch 4 to the converter 3 side. That is, the control circuit unit 5 controls the switch 4 so that the terminals 41 and 43 are electrically connected. When the process of step S12 ends, converter 3 ends the initial charging process and performs steady operation.
As a result, the smoothing capacitor Cn can smooth the output voltage between the positive electrode side and the negative electrode side during the steady operation of the converter 3 and remove the ripple voltage of the converter 3.
 図3は、線形コンデンサおよび第1~第3の非線形コンデンサの印加電圧Vcに対する蓄積電荷量の特性を示すグラフである。図3の縦軸は、各コンデンサの誘電体の表面に蓄積される電荷量[C]を示している。図3の横軸は、各コンデンサの印加電圧Vc[V]を示している。
 実線Laは、従来の線形特性を有するコンデンサ(以下、「線形コンデンサ」という。)の特性を示している。実線N1aは、例えば図1の平滑コンデンサCnに用いられている第1の非線形コンデンサの特性を示している。破線N2aは、第2の非線形コンデンサの特性を示している。一点鎖線N3aは、第3の非線形コンデンサの特性を示している。この線形コンデンサと、第1~第3の非線形コンデンサとは、同一の体積で構成されている。第1~第3の非線形コンデンサは、それぞれ特性が異なっている。なお、各線と各コンデンサとの対応関係は、図3と図4とにおいて共通である。
 実線Laで示す線形コンデンサの場合、印加電圧Vcの増加に対する蓄積電荷量の増加量は、印加電圧Vcによらず所定値を保つ。
 実線N1aで示す第1の非線形コンデンサの場合、印加電圧Vcが増大して電圧V1を超えたとき、印加電圧Vcの増加に対する蓄積電荷量の増加量は、急激に大きくなる。印加電圧Vcが更に増大して電圧V2(第2電圧)を超えたとき、印加電圧Vcの増加に対する蓄積電荷量の増加量は、急激に小さくなる。第1の非線形コンデンサの印加電圧Vcの増加に対する蓄積電荷量の増加量は、印加電圧Vcが電圧V1と電圧V2との間で、最も大きくなる。
 破線N2aで示す第2の非線形コンデンサの蓄積電荷量の特性曲線は、第1の非線形コンデンサの蓄積電荷量の特性曲線よりも、やや低電圧側に存在している。一点鎖線N3aで示す第3の非線形コンデンサの蓄積電荷量の特性曲線は、破線N2aで示す第2の非線形コンデンサの蓄積電荷量の特性曲線よりも、更に定電圧側に存在している。それ以外は、第2、第3の非線形コンデンサの蓄積電荷量の特性は、第1の非線形コンデンサと同様である。
FIG. 3 is a graph showing characteristics of the accumulated charge amount with respect to the applied voltage Vc of the linear capacitor and the first to third nonlinear capacitors. The vertical axis in FIG. 3 indicates the amount of charge [C] accumulated on the dielectric surface of each capacitor. The horizontal axis in FIG. 3 indicates the applied voltage Vc [V] of each capacitor.
A solid line La indicates a characteristic of a capacitor having a conventional linear characteristic (hereinafter referred to as “linear capacitor”). A solid line N1a indicates the characteristics of the first nonlinear capacitor used for the smoothing capacitor Cn of FIG. 1, for example. A broken line N2a indicates the characteristic of the second nonlinear capacitor. An alternate long and short dash line N3a indicates the characteristics of the third nonlinear capacitor. The linear capacitor and the first to third nonlinear capacitors are configured with the same volume. The first to third nonlinear capacitors have different characteristics. The correspondence between each line and each capacitor is common in FIGS. 3 and 4.
In the case of the linear capacitor indicated by the solid line La, the increase amount of the accumulated charge amount with respect to the increase of the applied voltage Vc maintains a predetermined value regardless of the applied voltage Vc.
In the case of the first nonlinear capacitor indicated by the solid line N1a, when the applied voltage Vc increases and exceeds the voltage V1, the increase in the amount of accumulated charge with respect to the increase in the applied voltage Vc increases rapidly. When the applied voltage Vc further increases and exceeds the voltage V2 (second voltage), the increase amount of the accumulated charge with respect to the increase of the applied voltage Vc decreases rapidly. The amount of increase in the accumulated charge amount with respect to the increase in the applied voltage Vc of the first nonlinear capacitor becomes the largest when the applied voltage Vc is between the voltage V1 and the voltage V2.
The characteristic curve of the accumulated charge amount of the second nonlinear capacitor indicated by the broken line N2a exists slightly on the lower voltage side than the characteristic curve of the accumulated charge amount of the first nonlinear capacitor. The characteristic curve of the accumulated charge amount of the third nonlinear capacitor indicated by the one-dot chain line N3a is further on the constant voltage side than the characteristic curve of the accumulated charge amount of the second nonlinear capacitor indicated by the broken line N2a. Other than that, the characteristics of the stored charge amount of the second and third nonlinear capacitors are the same as those of the first nonlinear capacitor.
 これら第1~第3の非線形コンデンサの特性を、線形コンデンサと比較しながら説明する。
 コンデンサは、誘電体と、この誘電体によって分離された2枚の電極とによって構成される。線形コンデンサに用いられる誘電体は、図3で示すように、印加電圧Vcの変化に対して、その表面に蓄積される電荷量は、線形に増大する特性を有する。
 これに対して、第1~第3の非線形コンデンサは、電極間に反強誘電体を用いている。この反強誘電体は、印加電圧Vcの変化に対して、図3で示すように、その表面に蓄積される電荷量が非線形に変化する特性を有する。ここで、電圧V1は、第1の非線形コンデンサの誘電体の抗電界とほぼ等しいか、または、抗電界よりも低い電圧に設定されている。これにより、第1の非線形コンデンサにおいて、印加電圧Vcの絶対値が電圧V1未満の場合、印加電圧Vcの増加に対する蓄積電荷量の増加量は、線形コンデンサの電荷量の増加量よりも小さい。これに対して、第1の非線形コンデンサにおいて、印加電圧Vcの絶対値が電圧V1以上かつ電圧V2以下の場合、印加電圧Vcの増加に対する蓄積電荷量の増加量は、線形コンデンサの電荷量の増加量よりも大きい。
The characteristics of the first to third nonlinear capacitors will be described in comparison with a linear capacitor.
The capacitor includes a dielectric and two electrodes separated by the dielectric. As shown in FIG. 3, the dielectric used for the linear capacitor has a characteristic that the amount of charge accumulated on the surface thereof increases linearly with respect to the change of the applied voltage Vc.
On the other hand, the first to third nonlinear capacitors use an antiferroelectric material between the electrodes. As shown in FIG. 3, the antiferroelectric material has a characteristic that the amount of charge accumulated on its surface changes nonlinearly with respect to the change of the applied voltage Vc. Here, the voltage V1 is set to be approximately equal to or lower than the coercive electric field of the dielectric of the first nonlinear capacitor. Thereby, in the first nonlinear capacitor, when the absolute value of the applied voltage Vc is less than the voltage V1, the increase amount of the accumulated charge amount with respect to the increase of the applied voltage Vc is smaller than the increase amount of the charge amount of the linear capacitor. On the other hand, in the first nonlinear capacitor, when the absolute value of the applied voltage Vc is not less than the voltage V1 and not more than the voltage V2, the increase in the accumulated charge amount with respect to the increase in the applied voltage Vc is an increase in the charge amount of the linear capacitor. Greater than the amount.
 図4は、線形コンデンサおよび第1~第3の非線形コンデンサの印加電圧Vcに対する静電容量の特性を示すグラフである。図4の縦軸は、各コンデンサの静電容量[μF]を示している。図4の横軸は、各コンデンサの印加電圧Vc[V]を示している。
 実線Lbは、線形コンデンサの特性を示している。実線N1bは、第1の非線形コンデンサの特性を示している。破線N2bは、第2の非線形コンデンサの特性を示している。一点鎖線N3bは、第3の非線形コンデンサの特性を示している。
FIG. 4 is a graph showing the characteristics of the capacitance with respect to the applied voltage Vc of the linear capacitor and the first to third nonlinear capacitors. The vertical axis in FIG. 4 indicates the capacitance [μF] of each capacitor. The horizontal axis in FIG. 4 indicates the applied voltage Vc [V] of each capacitor.
A solid line Lb indicates the characteristics of the linear capacitor. A solid line N1b indicates the characteristic of the first nonlinear capacitor. A broken line N2b indicates the characteristic of the second nonlinear capacitor. An alternate long and short dash line N3b indicates the characteristics of the third nonlinear capacitor.
 静電容量は、蓄積電荷量の印加電圧Vcによる商に比例する。よって、図3に示す蓄積電荷量の傾きは、図4に示す静電容量に比例する。図4に示す第1~第3の非線形コンデンサの静電容量がピークとなる印加電圧Vcは、図3に示す蓄積電荷量の傾きが最大になる印加電圧Vcと同一である。
 印加電圧Vcによらず、線形コンデンサの静電容量は、ほぼ同一である。これに対して、第1~第3の非線形コンデンサの静電容量は、印加電圧Vcによって変化する。
The capacitance is proportional to the quotient of the accumulated charge amount by the applied voltage Vc. Therefore, the slope of the accumulated charge amount shown in FIG. 3 is proportional to the capacitance shown in FIG. The applied voltage Vc at which the electrostatic capacitances of the first to third nonlinear capacitors shown in FIG. 4 reach the peak is the same as the applied voltage Vc that maximizes the slope of the accumulated charge amount shown in FIG.
Regardless of the applied voltage Vc, the linear capacitors have substantially the same capacitance. On the other hand, the capacitances of the first to third nonlinear capacitors vary depending on the applied voltage Vc.
 印加電圧Vcが0[V]から電圧V1のとき、第1の非線形コンデンサの静電容量は、いずれも線形コンデンサの静電容量よりも少ない。
 印加電圧Vcが増大して、電圧V1を超えたとき、第1の非線形コンデンサの静電容量は、線形コンデンサの静電容量を超える。
 印加電圧Vcが電圧V1から電圧V2の間のとき、第1の非線形コンデンサの静電容量は、線形コンデンサの静電容量よりも大きい。
 この第1の非線形コンデンサの静電容量は、印加電圧Vcが0[V]から電圧V1のときよりも、印加電圧Vcが電圧V1から電圧V2の間のときの方が大きくなる。
When the applied voltage Vc is 0 [V] to the voltage V1, the capacitance of the first nonlinear capacitor is less than the capacitance of the linear capacitor.
When the applied voltage Vc increases and exceeds the voltage V1, the capacitance of the first nonlinear capacitor exceeds the capacitance of the linear capacitor.
When the applied voltage Vc is between the voltage V1 and the voltage V2, the capacitance of the first nonlinear capacitor is larger than the capacitance of the linear capacitor.
The capacitance of the first nonlinear capacitor is larger when the applied voltage Vc is between the voltage V1 and the voltage V2 than when the applied voltage Vc is from 0 [V] to the voltage V1.
(線形コンデンサと非線形コンデンサとの相違)
 初充電回路2(図1参照)は、印加電圧Vcが電圧V1よりも低いときに初充電処理を行い、平滑コンデンサCnを充電する。平滑コンデンサCnとして第1の非線形コンデンサを使用すると、初充電時の第1の非線形コンデンサの静電容量は、これと同一体積の線形コンデンサの静電容量よりも小さい。よって、初充電開始時の突入電流を抑制できるので、初充電抵抗Riの抵抗値を小さくすることができる。よって、初充電抵抗Riに係る部品寸法や部品コストを抑制することができる。
(Difference between linear capacitor and nonlinear capacitor)
The initial charging circuit 2 (see FIG. 1) performs an initial charging process when the applied voltage Vc is lower than the voltage V1, and charges the smoothing capacitor Cn. When the first nonlinear capacitor is used as the smoothing capacitor Cn, the capacitance of the first nonlinear capacitor at the initial charge is smaller than the capacitance of the linear capacitor having the same volume. Therefore, since the inrush current at the start of the initial charge can be suppressed, the resistance value of the initial charge resistance Ri can be reduced. Therefore, it is possible to suppress the component size and the component cost related to the initial charging resistance Ri.
 更に、コンバータ3(図1参照)は、定常運転時には出力する直流電圧を平滑コンデンサCnで平滑化する。平滑コンデンサCnとして第1の非線形コンデンサを使用すると、定常運転時の第1の非線形コンデンサの静電容量は、これと同一体積の線形コンデンサの静電容量よりも大きい。よって、平滑コンデンサCnは、コンバータ3のリップル電圧を効果的に抑制できる。 Furthermore, the converter 3 (see FIG. 1) smoothes the DC voltage output during the steady operation with the smoothing capacitor Cn. When the first nonlinear capacitor is used as the smoothing capacitor Cn, the capacitance of the first nonlinear capacitor during steady operation is larger than the capacitance of the linear capacitor having the same volume as this. Therefore, the smoothing capacitor Cn can effectively suppress the ripple voltage of the converter 3.
(非線形コンデンサの初充電時の静電容量と、定常運転時の静電容量との相違)
 また、平滑コンデンサCnとして第1の非線形コンデンサを使用すると、初充電時の静電容量は、定常運転時の静電容量よりも小さく、インピーダンスが大きい。初充電時、平滑コンデンサCnには、突入電流と呼ばれる大電流が流れる。突入電流の大きさは、初充電抵抗Riのインピーダンスと平滑コンデンサCnのインピーダンスとの和に反比例する。第1の実施形態の初充電回路2は、充電用電源Vdから直流電圧V1を出力しており、初充電時における平滑コンデンサCnのインピーダンスが定常運転時よりも大きくなるように制御している。よって、初充電抵抗Riの抵抗値を小さくすることができ、初充電抵抗Riに係る部品寸法や部品コストを抑制することができる。
 定常運転時には、コンバータ3は、電圧V1以上かつ電圧V2以下の直流電圧を出力する。この直流電圧を平滑コンデンサCnで平滑化するとき、平滑コンデンサCnの静電容量は、初充電時の静電容量よりも大きい。よって、平滑コンデンサCnは、コンバータ3のリップル電圧を効果的に抑制できる。
(Difference between the capacitance of the non-linear capacitor during the initial charge and the capacitance during steady operation)
Further, when the first nonlinear capacitor is used as the smoothing capacitor Cn, the electrostatic capacity at the initial charge is smaller than the electrostatic capacity at the steady operation and the impedance is large. During the initial charge, a large current called an inrush current flows through the smoothing capacitor Cn. The magnitude of the inrush current is inversely proportional to the sum of the impedance of the initial charging resistor Ri and the impedance of the smoothing capacitor Cn. The initial charging circuit 2 of the first embodiment outputs a DC voltage V1 from the charging power supply Vd, and controls so that the impedance of the smoothing capacitor Cn at the initial charging is larger than that at the steady operation. Therefore, the resistance value of the initial charging resistor Ri can be reduced, and the component size and component cost related to the initial charging resistor Ri can be suppressed.
During steady operation, converter 3 outputs a DC voltage not lower than voltage V1 and not higher than voltage V2. When this DC voltage is smoothed by the smoothing capacitor Cn, the capacitance of the smoothing capacitor Cn is larger than the capacitance at the time of initial charge. Therefore, the smoothing capacitor Cn can effectively suppress the ripple voltage of the converter 3.
 また、第1の実施形態とは異なる出力電圧特性の電力変換装置の場合には、異なる特性の第2、第3の非線形コンデンサを平滑コンデンサCnとして使用し、それに併せて充電用電源Vdが出力する直流電圧を調整する。これにより、初充電抵抗Riの抵抗値を小さくすることができ、初充電抵抗Riに係る部品寸法や部品コストを抑制することができる。 In the case of a power converter having an output voltage characteristic different from that of the first embodiment, the second and third nonlinear capacitors having different characteristics are used as the smoothing capacitor Cn, and the charging power supply Vd is output in conjunction therewith. Adjust the DC voltage. As a result, the resistance value of the initial charging resistor Ri can be reduced, and the component dimensions and component costs associated with the initial charging resistor Ri can be suppressed.
(第2の実施形態)
 第1の実施形態の初充電回路2は、充電用電源Vdが電圧V1を出力するものに限られ、任意の電源電圧のものを使用できないという問題がある。第2の実施形態は、これを解決するものである。
 図5は、第2の実施形態における電力変換装置1Aの概略を示す構成図である。図1に示す第1の実施形態の電力変換装置1と同一の要素には同一の符号を付与している。
 図5に示すように、第2の実施形態の初充電回路2Aは、第1の実施形態の初充電回路2とは異なる充電用電源Vd2を備え、更に、電圧センサ9を備えている。
 充電用電源Vd2は、直流電力を供給する電源であり、正極と負極との間に電圧Vxを印加する。電圧Vxは、電圧V1以上かつ電圧V2以下の電圧である。
 電圧センサ9は、平滑コンデンサCnの両端子間に接続され、出力側が制御回路部5に接続されている。電圧センサ9は、平滑コンデンサCnへの印加電圧Vcを測定して、印加電圧情報を制御回路部5に通知する。
(Second Embodiment)
The first charging circuit 2 of the first embodiment is limited to the one in which the charging power supply Vd outputs the voltage V1, and there is a problem that a circuit having an arbitrary power supply voltage cannot be used. The second embodiment solves this.
FIG. 5 is a configuration diagram illustrating an outline of a power conversion device 1A according to the second embodiment. The same code | symbol is provided to the element same as the power converter device 1 of 1st Embodiment shown in FIG.
As shown in FIG. 5, the initial charging circuit 2 </ b> A of the second embodiment includes a charging power source Vd <b> 2 that is different from the initial charging circuit 2 of the first embodiment, and further includes a voltage sensor 9.
The charging power source Vd2 is a power source that supplies DC power, and applies a voltage Vx between the positive electrode and the negative electrode. The voltage Vx is a voltage not lower than the voltage V1 and not higher than the voltage V2.
The voltage sensor 9 is connected between both terminals of the smoothing capacitor Cn, and the output side is connected to the control circuit unit 5. The voltage sensor 9 measures the applied voltage Vc to the smoothing capacitor Cn and notifies the control circuit unit 5 of applied voltage information.
 図6は、第2の実施形態における初充電処理を示すフローチャートである。ここでは適宜、図5の各部を参照して説明する。
 初充電回路2Aの制御回路部5が初充電処理を開始するのは、例えば、初充電回路2Aに電源が投入された直後である。このとき平滑コンデンサCnは、放電状態である。
 ステップS20において、制御回路部5は、スイッチ4を初充電抵抗Ri側に切り替える。すなわち、制御回路部5は、端子41,42の間が導通するようにスイッチ4を制御する。これにより、充電用電源Vd2は、初充電抵抗Riを介して平滑コンデンサCnに電流を流して充電できる。
FIG. 6 is a flowchart showing the initial charging process in the second embodiment. Here, description will be made with reference to each part of FIG.
The control circuit unit 5 of the initial charging circuit 2A starts the initial charging process, for example, immediately after the power is turned on to the initial charging circuit 2A. At this time, the smoothing capacitor Cn is in a discharged state.
In step S20, the control circuit unit 5 switches the switch 4 to the initial charge resistance Ri side. That is, the control circuit unit 5 controls the switch 4 so that the terminals 41 and 42 are electrically connected. As a result, the charging power source Vd2 can be charged by passing a current through the smoothing capacitor Cn via the initial charging resistor Ri.
 ステップS21において、制御回路部5は、電圧センサ9によって印加電圧Vcを測定し、この印加電圧Vcが電圧V1以上であるか否かを判断する。制御回路部5は、当該判断条件が成立しなかったならば(No)、ステップS21の処理を繰り返し、当該判断条件が成立したならば(Yes)、ステップS22の処理を行う。このように、初充電回路2Aは、電圧V1を超えた電圧Vxで平滑コンデンサCnを初充電し、印加電圧Vcが電圧V1を超えたか否かを判断して初充電処理を終了されているので、迅速に初充電を完了することができる。
 ステップS22において、制御回路部5は、スイッチ4をコンバータ3側に切り替える。すなわち、制御回路部5は、端子41,43の間が導通するようにスイッチ4を制御する。ステップS22の処理が終了すると、コンバータ3は、初充電処理を終了して、定常運転を行う。
 これにより、平滑コンデンサCnは、コンバータ3の定常運転時に正極側と負極側との間の出力電圧を平滑化して、このコンバータ3のリップル電圧を除去することができる。
In step S21, the control circuit unit 5 measures the applied voltage Vc with the voltage sensor 9, and determines whether or not the applied voltage Vc is equal to or higher than the voltage V1. If the determination condition is not satisfied (No), the control circuit unit 5 repeats the process of step S21. If the determination condition is satisfied (Yes), the control circuit unit 5 performs the process of step S22. As described above, the initial charging circuit 2A initially charges the smoothing capacitor Cn with the voltage Vx exceeding the voltage V1, and determines whether or not the applied voltage Vc exceeds the voltage V1, and thus the initial charging process is terminated. The first charge can be completed quickly.
In step S22, the control circuit unit 5 switches the switch 4 to the converter 3 side. That is, the control circuit unit 5 controls the switch 4 so that the terminals 41 and 43 are electrically connected. When the process of step S22 ends, converter 3 ends the initial charging process and performs steady operation.
As a result, the smoothing capacitor Cn can smooth the output voltage between the positive electrode side and the negative electrode side during the steady operation of the converter 3 and remove the ripple voltage of the converter 3.
(第3の実施形態)
 第3の実施形態の電力変換装置1Bは、第1の実施形態の充電用電源Vdを備えていない。第3の実施形態では、代わりにコンバータの制御を、初充電時と定常運転時とで切り替えている。
 図7は、第3の実施形態における電力変換装置1Bを示す概略の構成図である。
 電力変換装置1Bは、初充電抵抗アレイRi2と、スイッチアレイ4Bと、コンバータ3Bと、平滑コンデンサCnと、インバータ7とを備え、電源部6と負荷8とに接続されている。
(Third embodiment)
The power conversion device 1B of the third embodiment does not include the charging power source Vd of the first embodiment. In the third embodiment, the control of the converter is switched between the initial charging and the steady operation instead.
FIG. 7 is a schematic configuration diagram illustrating a power conversion device 1B according to the third embodiment.
The power conversion device 1B includes an initial charging resistor array Ri2, a switch array 4B, a converter 3B, a smoothing capacitor Cn, and an inverter 7, and is connected to a power supply unit 6 and a load 8.
 電源部6は、例えば商用電源であり、三相の交流電源である。電源部6の電圧は、例えば、10~1000[V]の範囲である。電源部6の交流周波数は、例えば、10~100[Hz]の範囲である。
 初充電抵抗アレイRi2は、3個の抵抗からなる。スイッチアレイ4Bは、3個のスイッチからなる。この初充電抵抗アレイRi2の3個の抵抗と、スイッチアレイ4Bの3個のスイッチとは、電源部6の三相交流端子と、コンバータ3Bとの三相交流端子との間に、それぞれ並列に接続されている。
 初充電抵抗アレイRi2は、初充電時に平滑コンデンサCnに流れる突入電流を制限する抵抗である。
The power supply unit 6 is a commercial power supply, for example, and is a three-phase AC power supply. The voltage of the power supply unit 6 is, for example, in the range of 10 to 1000 [V]. The AC frequency of the power supply unit 6 is, for example, in the range of 10 to 100 [Hz].
The initial charging resistor array Ri2 is composed of three resistors. The switch array 4B is composed of three switches. The three resistors of the initial charging resistor array Ri2 and the three switches of the switch array 4B are respectively connected in parallel between the three-phase AC terminal of the power supply unit 6 and the three-phase AC terminal of the converter 3B. It is connected.
The initial charging resistor array Ri2 is a resistor that limits the inrush current that flows through the smoothing capacitor Cn during the initial charging.
 スイッチアレイ4Bは、コンバータ3Bの定常運転時に、電源部6の三相交流端子とコンバータ3Bとの三相交流端子とを、それぞれ電気的に接続するスイッチである。
 コンバータ3Bは、2レベル3相PWM(Pulse Width Modulation)コンバータであり、交流電力を直流電力に変換するものである。コンバータ3Bは、R相レグと、S相レグと、T相レグとを備え、出力側が平滑コンデンサCnに接続される。
 R相レグは、スイッチング素子QR1と整流素子DR1とが逆並列接続されたR相上アームと、スイッチング素子QR2と整流素子DR2とが逆並列接続されたR相下アームとが直列に接続される。電源部6の三相交流のうちのR相は、R相上アームとR相下アームとを接続するノードRに接続される。
Switch array 4B is a switch that electrically connects the three-phase AC terminal of power supply unit 6 and the three-phase AC terminal of converter 3B during the steady operation of converter 3B.
The converter 3B is a two-level, three-phase PWM (Pulse Width Modulation) converter that converts AC power into DC power. Converter 3B includes an R-phase leg, an S-phase leg, and a T-phase leg, and the output side is connected to smoothing capacitor Cn.
In the R-phase leg, an R-phase upper arm in which the switching element QR1 and the rectifying element DR1 are connected in antiparallel and an R-phase lower arm in which the switching element QR2 and the rectifying element DR2 are connected in antiparallel are connected in series. . The R phase of the three-phase alternating current of the power supply unit 6 is connected to a node R that connects the R phase upper arm and the R phase lower arm.
 S相レグは、スイッチング素子QS1と整流素子DS1とが逆並列接続されたS相上アームと、スイッチング素子QS2と整流素子DS2とが逆並列接続されたS相下アームとが直列に接続される。電源部6の三相交流のうちのS相は、S相上アームとS相下アームとを接続するノードSに接続される。
 T相レグは、スイッチング素子QT1と整流素子DT1とが逆並列接続されたT相上アームと、スイッチング素子QT2と整流素子DT2とが逆並列接続されたT相下アームとが直列に接続される。電源部6の三相交流のうちのT相は、T相上アームとT相下アームとを接続するノードTに接続される。
In the S-phase leg, an S-phase upper arm in which the switching element QS1 and the rectifying element DS1 are connected in antiparallel and an S phase lower arm in which the switching element QS2 and the rectifying element DS2 are connected in antiparallel are connected in series. . The S phase of the three-phase alternating current of the power supply unit 6 is connected to a node S that connects the S phase upper arm and the S phase lower arm.
In the T-phase leg, a T-phase upper arm in which the switching element QT1 and the rectifying element DT1 are connected in anti-parallel and a T-phase lower arm in which the switching element QT2 and the rectifying element DT2 are connected in anti-parallel are connected in series. . The T phase of the three-phase alternating current of the power supply unit 6 is connected to a node T that connects the T-phase upper arm and the T-phase lower arm.
 平滑コンデンサCnは、コンバータ3Bが定常運転時に出力する直流電圧を平滑化するものである。この平滑コンデンサCnの特性は、図3と図4に、実線で示される第1の非線形コンデンサである。コンバータ3Bが出力する直流電圧には、リップル電圧が含まれる。平滑コンデンサCnは、このリップル電圧を抑制して、直流電圧を平滑化するためのものである。 The smoothing capacitor Cn smoothes the DC voltage output by the converter 3B during steady operation. The characteristic of the smoothing capacitor Cn is the first nonlinear capacitor indicated by the solid line in FIGS. The DC voltage output from the converter 3B includes a ripple voltage. The smoothing capacitor Cn is for smoothing the DC voltage by suppressing the ripple voltage.
 インバータ7は、コンバータ3Bの出力側に接続され、自身の交流出力側が負荷8に接続される。インバータ7は、U相レグと、V相レグと、W相レグとを備えている。
 U相レグは、スイッチング素子QU1と整流素子DU1とが逆並列接続されたU相上アームと、スイッチング素子QU2と整流素子DU2とが逆並列接続されたU相下アームとが直列に接続される。U相上アームとU相下アームとを接続するノードUは、負荷8を駆動する三相のうちのU相に接続される。
Inverter 7 is connected to the output side of converter 3 </ b> B, and its own AC output side is connected to load 8. The inverter 7 includes a U-phase leg, a V-phase leg, and a W-phase leg.
In the U-phase leg, a U-phase upper arm in which switching element QU1 and rectifying element DU1 are connected in antiparallel and a U-phase lower arm in which switching element QU2 and rectifying element DU2 are connected in antiparallel are connected in series. . A node U that connects the U-phase upper arm and the U-phase lower arm is connected to the U-phase among the three phases that drive the load 8.
 V相レグは、スイッチング素子QV1と整流素子DV1とが逆並列接続されたV相上アームと、スイッチング素子QV2と整流素子DV2とが逆並列接続されたV相下アームとが直列に接続される。V相上アームとV相下アームとを接続するノードVは、負荷8を駆動する三相のうちのV相に接続される。
 W相レグは、スイッチング素子QW1と整流素子DW1とが逆並列接続されたW相上アームと、スイッチング素子QW2と整流素子DW2とが逆並列接続されたW相下アームとが直列に接続される。W相上アームとW相下アームとを接続するノードWは、負荷8を駆動する三相のうちのW相に接続される。
In the V-phase leg, a V-phase upper arm in which the switching element QV1 and the rectifying element DV1 are connected in antiparallel and a V-phase lower arm in which the switching element QV2 and the rectifying element DV2 are connected in antiparallel are connected in series. . A node V that connects the V-phase upper arm and the V-phase lower arm is connected to the V phase of the three phases that drive the load 8.
In the W-phase leg, a W-phase upper arm in which switching element QW1 and rectifying element DW1 are connected in antiparallel and a W-phase lower arm in which switching element QW2 and rectifying element DW2 are connected in antiparallel are connected in series. . A node W that connects the W-phase upper arm and the W-phase lower arm is connected to the W-phase of the three phases that drive the load 8.
 制御回路部5Bは、コンバータ3Bの各スイッチング素子QR1,QR2,…のゲートに制御信号を出力して、導通状態(オン状態)と非導通状態(オフ状態)とを切り替え、電源部6が供給する交流電力を直流電力に変換する。定常運転時において、コンバータ3Bより出力される直流電力は、平滑コンデンサCnによって平滑化され、図7右側のインバータ7に入力される。
 制御回路部5Bは、インバータ7の各スイッチング素子QU1,QU2,…のゲートに制御信号を出力して、導通状態と非導通状態とを切り替え、コンバータ3Bが供給する直流電力を交流電力に変換し、負荷8に供給する。制御回路部5Bは更に、スイッチアレイ4Bに制御信号を出力して、定常運転と初充電とを切り替える。
The control circuit unit 5B outputs a control signal to the gates of the respective switching elements QR1, QR2,... Of the converter 3B to switch between a conductive state (on state) and a non-conductive state (off state). Converts AC power to DC power. During steady operation, the DC power output from the converter 3B is smoothed by the smoothing capacitor Cn and input to the inverter 7 on the right side of FIG.
The control circuit unit 5B outputs a control signal to the gates of the switching elements QU1, QU2,... Of the inverter 7, switches between the conductive state and the non-conductive state, and converts the DC power supplied by the converter 3B into AC power. , Supplied to the load 8. The control circuit unit 5B further outputs a control signal to the switch array 4B to switch between steady operation and initial charge.
 ここで、各スイッチング素子QR1,QR2,…や、各スイッチング素子QU1,QU2,…は、例えばケイ素、炭化ケイ素、窒化ガリウム、ダイヤモンドなどを主原料に製造されたGTO(Gate Turn-Off)、IGBT(Insulated Gate Bipolar Transistor)、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)、JFET(Junction Field Effect Transistor)などの半導体素子の単体構成、または、これら半導体素子が2個以上直列または並列に接続した構成である。
 各整流素子DR1,DR2,…や、各整流素子DU1,DU2,…には、例えば、各スイッチング素子QR1,QR2,…などと同様な物質を主原料に製造されたpnダイオード、ショットキーバリアダイオード、またはこれらを混載したショットキーバリアダイオードなどの半導体素子の単体構造、または、これら半導体素子が2個以上直列または並列に接続した構成である。
Here, each switching element QR1, QR2,..., Each switching element QU1, QU2,... Is, for example, GTO (Gate Turn-Off), IGBT manufactured using silicon, silicon carbide, gallium nitride, diamond or the like as a main material. (Insulated Gate Bipolar Transistor), MOSFET (Metal-Oxide-Semiconductor Field Effect Transistor), JFET (Junction Field Effect Transistor) and other single-element structures, or two or more of these semiconductor elements connected in series or in parallel It is.
For each rectifying element DR1, DR2,... And each rectifying element DU1, DU2,..., For example, a pn diode or Schottky barrier diode manufactured using the same material as the switching elements QR1, QR2,. Or a single structure of a semiconductor element such as a Schottky barrier diode in which these are mixed, or a structure in which two or more of these semiconductor elements are connected in series or in parallel.
 第3の実施形態の電力変換装置1Bは、第1の実施形態の充電用電源Vdで初充電する代わりに、商用電源などの三相交流電源に接続されたPWMコンバータであるコンバータ3Bの出力電圧で、平滑コンデンサCnを初充電している。
 初充電時に、制御回路部5Bは、同体積の線形コンデンサの静電容量よりも、この平滑コンデンサCnの静電容量が小さくなるようにコンバータ3Bを制御する。すなわち、制御回路部5Bは、コンバータ3Bが電圧0[V]から電圧V1を出力するように制御する。
 定常運転時に、制御回路部5Bは、同体積の線形コンデンサの静電容量よりも、この平滑コンデンサCnの静電容量が大きくなるようにコンバータ3Bを制御する。すなわち、制御回路部5Bは、コンバータ3Bが電圧V1[V]以上かつ電圧V2以下を出力するように制御する。
 第3の実施形態の電力変換装置1Bによれば、PWMコンバータで平滑コンデンサCnを初充電するので、平滑コンデンサCnの印加電圧Vcを適切に調整することができる。よって、初充電抵抗アレイRi2は、更に小型化することができる。更に、電力変換装置1Bは、定常運転時には、比較例よりもリップル電圧を平滑化することができる。
The power converter 1B of the third embodiment is configured to output the output voltage of the converter 3B, which is a PWM converter connected to a three-phase AC power source such as a commercial power source, instead of the initial charging with the charging power source Vd of the first embodiment. Thus, the smoothing capacitor Cn is charged for the first time.
At the time of initial charging, the control circuit unit 5B controls the converter 3B so that the capacitance of the smoothing capacitor Cn is smaller than the capacitance of the linear capacitor having the same volume. That is, the control circuit unit 5B controls the converter 3B to output the voltage V1 from the voltage 0 [V].
During steady operation, the control circuit unit 5B controls the converter 3B so that the capacitance of the smoothing capacitor Cn is larger than the capacitance of the linear capacitor having the same volume. That is, the control circuit unit 5B performs control so that the converter 3B outputs the voltage V1 [V] or higher and the voltage V2 or lower.
According to the power conversion device 1B of the third embodiment, since the smoothing capacitor Cn is initially charged by the PWM converter, the applied voltage Vc of the smoothing capacitor Cn can be adjusted appropriately. Therefore, the initial charge resistance array Ri2 can be further reduced in size. Furthermore, the power conversion device 1B can smooth the ripple voltage more than the comparative example during steady operation.
 図8は、第3の実施形態における初充電処理を示すフローチャートである。ここでは適宜、図7の各部を参照して説明する。
 制御回路部5Bが初充電処理を開始するのは、例えば、電力変換装置1Bに電源が投入された直後である。このとき平滑コンデンサCnは、放電状態である。
FIG. 8 is a flowchart showing the initial charging process in the third embodiment. Here, description will be given with reference to each part of FIG.
The control circuit unit 5B starts the initial charging process, for example, immediately after the power conversion device 1B is turned on. At this time, the smoothing capacitor Cn is in a discharged state.
 ステップS30において、制御回路部5Bは、コンバータ3Bが出力する直流電圧を、電圧V1に設定する。
 ステップS31において、制御回路部5Bは、スイッチアレイ4Bを、すべてオフする。これらによりコンバータ3Bは、初充電抵抗アレイRi2を介して平滑コンデンサCnに電流を流して充電できる。
In step S30, control circuit unit 5B sets the DC voltage output from converter 3B to voltage V1.
In step S31, the control circuit unit 5B turns off all the switch arrays 4B. Thus, the converter 3B can be charged by passing a current through the smoothing capacitor Cn via the initial charging resistor array Ri2.
 ステップS32において、制御回路部5Bは、所定時間だけ待つ。この所定時間は、この初充電抵抗アレイRi2と平滑コンデンサCnの時定数よりも充分に長い時間である。これにより、制御回路部5Bは、電圧V1で平滑コンデンサCnを充電することができる。
 ステップS33において、制御回路部5Bは、スイッチアレイ4Bを、すべてオンする。
 ステップS34において、制御回路部5Bは、コンバータ3Bが出力する直流電圧を、電圧V1以上かつ電圧V2以下の任意の値に設定し、初充電処理を終了して定常運転を開始する。
 これにより、平滑コンデンサCnは、コンバータ3Bの定常運転時に正極側と負極側との間の出力電圧を平滑化して、このコンバータ3Bのリップル電圧を除去することができる。
In step S32, the control circuit unit 5B waits for a predetermined time. This predetermined time is sufficiently longer than the time constants of the initial charging resistor array Ri2 and the smoothing capacitor Cn. Thereby, the control circuit unit 5B can charge the smoothing capacitor Cn with the voltage V1.
In step S33, the control circuit unit 5B turns on all the switch arrays 4B.
In step S34, control circuit unit 5B sets the DC voltage output from converter 3B to an arbitrary value not lower than voltage V1 and not higher than voltage V2, ends the initial charging process, and starts steady operation.
Thereby, the smoothing capacitor Cn can smooth the output voltage between the positive electrode side and the negative electrode side during the steady operation of the converter 3B, and can remove the ripple voltage of the converter 3B.
 定常運転時において、コンバータ3Bは、電圧V1以上かつ電圧V2以下の直流電圧を出力して、非線形コンデンサである平滑コンデンサCnに印加する。これにより、第3の実施形態では、平滑コンデンサCnとして線形コンデンサを使用した場合に比べて、静電容量が大きくなり、リップル電圧を抑制することができる。 During steady operation, the converter 3B outputs a DC voltage not lower than the voltage V1 and not higher than the voltage V2, and applies it to the smoothing capacitor Cn which is a non-linear capacitor. Thereby, in 3rd Embodiment, compared with the case where a linear capacitor is used as the smoothing capacitor Cn, an electrostatic capacitance becomes large and it can suppress a ripple voltage.
(変形例)
 本発明は上記した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば上記した実施形態は、本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明したすべての構成を備えるものに限定されるものではない。ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることも可能である。
 また、上記した実施形態において、要素の数など(個数、数値、量、範囲などを含む。)に言及する場合、特に明示した場合および原理的に明らかに特定の数に限定される場合などを除き、その特定の数に限定されるものではなく、特定の数以上でも以下でもよい。
(Modification)
The present invention is not limited to the embodiments described above, and includes various modifications. For example, the above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described. A part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and the configuration of another embodiment can be added to the configuration of one embodiment. Moreover, it is also possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
In the above-described embodiments, when referring to the number of elements (including the number, numerical value, quantity, range, etc.), particularly when clearly indicated and when clearly limited to a specific number in principle. Except, it is not limited to the specific number, and may be more or less than the specific number.
 さらに、上記した実施形態において、その構成要素(要素ステップなども含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合などを除き、必ずしも必須のものではない。このことは、上記数など(個数、数値、量、範囲などを含む)についても同様である。上記した実施形態の回路に寄生するインダクタ、静電容量、抵抗成分など、さらには回路設計上、恣意的に配置するインダクタ、抵抗成分、コンデンサなど、またはインダクタ、抵抗、コンデンサなどを複合的に用いて構成されるスナバ回路、ヒューズなどの付加的機能を持たせるための汎用的な付随装置についてはその表記を省略している。 Furthermore, in the above-described embodiment, the constituent elements (including element steps and the like) are not necessarily indispensable unless otherwise specified and clearly considered essential in principle. This also applies to the above numbers (including the number, numerical value, quantity, range, etc.). Inductors, capacitances, resistance components, etc. that are parasitic on the circuit of the embodiment described above, and inductors, resistance components, capacitors, etc. that are arbitrarily arranged in circuit design, or a combination of inductors, resistors, capacitors, etc. The description of a general-purpose accessory device for providing an additional function such as a snubber circuit and a fuse is omitted.
 上記の各構成、機能、処理部、処理手段などは、それらの一部または全部を、例えば集積回路などのハードウェアで実現してもよい。上記の各構成、機能などは、プロセッサがそれぞれの機能を実現するプログラムを解釈して実行することにより、ソフトウェアで実現してもよい。各機能を実現するプログラム、テーブル、ファイルなどの情報は、メモリ、ハードディスク、SSD(Solid State Drive)などの記録装置、または、フラッシュメモリカード、DVD(Digital Versatile Disk)などの記録媒体に置くことができる。 The above-described configurations, functions, processing units, processing means, etc. may be partially or entirely realized by hardware such as an integrated circuit. Each of the above-described configurations, functions, and the like may be realized by software by a processor interpreting and executing a program that realizes each function. Information such as programs, tables, and files for realizing each function may be stored in a recording device such as a memory, a hard disk, an SSD (Solid State Drive), or a recording medium such as a flash memory card or a DVD (Digital Versatile Disk). it can.
 各実施形態に於いて、制御線や情報線は、説明上必要と考えられるものを示しており、製品上必ずしもすべての制御線や情報線を示しているとは限らない。実際には、殆どすべての構成が相互に接続されていると考えてもよい。
 本発明の変形例として、例えば、次の(a)~(e)のようなものがある。
In each embodiment, the control lines and information lines indicate what is considered necessary for the explanation, and not all control lines and information lines on the product are necessarily shown. In practice, it may be considered that almost all the components are connected to each other.
Examples of modifications of the present invention include the following (a) to (e).
(a) 第1の実施形態において、電源部6が出力する電圧は、電圧V1以上かつ電圧V2未満の任意の電圧であってもよい。これにより、電力変換装置1は、平滑コンデンサCnを充分な電圧になるまで充電して、初充電の状態から定常運転の状態に切り替えたときの平滑コンデンサCnへの突入電流を、更に低減することができる。 (A) In 1st Embodiment, the voltage which the power supply part 6 outputs may be arbitrary voltages which are more than voltage V1 and less than voltage V2. As a result, the power conversion device 1 charges the smoothing capacitor Cn to a sufficient voltage, and further reduces the inrush current to the smoothing capacitor Cn when switching from the initial charging state to the steady operation state. Can do.
(b) 第3の実施形態における最小の構成は、電源部6と、初充電抵抗アレイRi2と、コンバータ3Bと、平滑コンデンサCnがあればよく、インバータ7は必須の構成要素ではない。 (B) The minimum configuration in the third embodiment is only required to include the power supply unit 6, the initial charge resistor array Ri2, the converter 3B, and the smoothing capacitor Cn, and the inverter 7 is not an essential component.
(c) 第3の実施形態の電力変換装置1Bは更に、平滑コンデンサCnを充電するための充電用電源と、初充電抵抗Riと、スイッチ4とを備えていてもよい。 (C) The power conversion device 1B of the third embodiment may further include a charging power source for charging the smoothing capacitor Cn, an initial charging resistor Ri, and the switch 4.
(d) 第2の実施形態の電力変換装置1Aにおいて、平滑コンデンサCnを充電するための充電用電源Vd2は、外部制御により任意の電圧を出力可能に構成されていてもよい。これにより、平滑コンデンサCnを更に迅速に初充電することができる。 (D) In the power conversion device 1A of the second embodiment, the charging power supply Vd2 for charging the smoothing capacitor Cn may be configured to be able to output an arbitrary voltage by external control. As a result, the smoothing capacitor Cn can be initially charged more rapidly.
(e) 上記実施形態の非線形コンデンサおよびその初充電方法は、MMC(Modular Multilevel Converter)を搭載した電力変換装置に適用することができる。特に、コモンモード(零相)成分を制御することで、出力端子に接続された負荷装置または電源と電力の授受を行うZC(Zero-Sequence Canceling)型のMMC搭載の電力変換装置に好適である。 (E) The nonlinear capacitor and the initial charging method of the above embodiment can be applied to a power conversion device equipped with an MMC (ModularModMultilevel Converter). Particularly, it is suitable for a ZC (Zero-Sequence Canceling) type MMC-mounted power conversion device that transfers power to and from a load device connected to an output terminal or a power source by controlling a common mode (zero phase) component. .
1,1A,1B 電力変換装置
2,2A 初充電回路
3,3B コンバータ
4 スイッチ
4B スイッチアレイ
Ri 初充電抵抗
Ri2 初充電抵抗アレイ
5,5B 制御回路部
6 電源部
7 インバータ
8 負荷
9 電圧センサ
Cn 平滑コンデンサ
Vc 印加電圧
V1 電圧 (第1電圧)
V2 電圧 (第2電圧)
Vd,Vd2 充電用電源
1, 1A, 1B Power converter 2, 2A Initial charging circuit 3, 3B Converter 4 Switch 4B Switch array Ri Initial charging resistor Ri2 Initial charging resistor array 5, 5B Control circuit unit 6 Power supply unit 7 Inverter 8 Load 9 Voltage sensor Cn Smoothing Capacitor Vc Applied voltage V1 Voltage (first voltage)
V2 voltage (second voltage)
Vd, Vd2 Charging power supply

Claims (10)

  1.  定常運転時に、第1電圧以上かつ第2電圧以下の直流電圧を出力するコンバータと、
     自身の印加電圧が0ボルト以上かつ前記第1電圧未満の場合の静電容量よりも、自身の印加電圧が前記第1電圧以上かつ前記第2電圧以下の場合の静電容量の方が大きく、かつ、定常運転時には前記コンバータが出力する直流電圧を平滑化する非線形コンデンサと、
     初充電時に前記非線形コンデンサに流れる電流を制限する初充電抵抗と、
     前記非線形コンデンサへの初充電を行うか、前記非線形コンデンサによる前記コンバータの定常運転時の出力の平滑化を行うかを切り替えるスイッチと、
     前記スイッチを制御する制御回路部と、
     を備えることを特徴とする電力変換装置。
    A converter that outputs a DC voltage not less than the first voltage and not more than the second voltage during steady operation;
    Capacitance when the applied voltage is greater than or equal to the first voltage and less than or equal to the second voltage is greater than the capacitance when the applied voltage is greater than or equal to 0 volts and less than the first voltage, And a non-linear capacitor for smoothing the DC voltage output by the converter during steady operation;
    An initial charging resistor that limits the current flowing through the nonlinear capacitor during initial charging; and
    A switch for switching whether to perform initial charge to the nonlinear capacitor or to smooth the output during steady operation of the converter by the nonlinear capacitor;
    A control circuit unit for controlling the switch;
    A power conversion device comprising:
  2.  前記制御回路部は更に、
     初充電時に、前記非線形コンデンサへの印加電圧が、少なくとも前記第1電圧未満の直流電圧となるように制御する、
     ことを特徴とする請求項1に記載の電力変換装置。
    The control circuit unit further includes
    At the time of initial charge, control is performed so that the voltage applied to the nonlinear capacitor is at least a DC voltage less than the first voltage.
    The power conversion apparatus according to claim 1.
  3.  前記制御回路部は更に、
     初充電時に、前記非線形コンデンサへの印加電圧が前記第1電圧以上であることを検知したならば、前記非線形コンデンサによる前記コンバータの定常運転時の出力の平滑化を行うように前記スイッチを制御する、
     ことを特徴とする請求項1に記載の電力変換装置。
    The control circuit unit further includes
    If it is detected during initial charging that the voltage applied to the nonlinear capacitor is equal to or higher than the first voltage, the switch is controlled so as to smooth the output during steady operation of the converter by the nonlinear capacitor. ,
    The power conversion apparatus according to claim 1.
  4.  前記第1電圧は、前記非線形コンデンサの誘電体の抗電界よりも低い、
     ことを特徴とする請求項1に記載の電力変換装置。
    The first voltage is lower than the coercive field of the dielectric of the nonlinear capacitor;
    The power conversion apparatus according to claim 1.
  5.  初充電用の直流電源を更に備え、
     前記スイッチは、前記非線形コンデンサを、前記直流電源に接続された前記初充電抵抗に接続するか、前記コンバータに接続するかを切り替える、
     ことを特徴とする請求項1に記載の電力変換装置。
    It is further equipped with a direct current power supply for initial charging,
    The switch switches whether the non-linear capacitor is connected to the initial charging resistor connected to the DC power source or to the converter.
    The power conversion apparatus according to claim 1.
  6.  前記直流電源は、前記第1電圧未満の直流電圧を出力する、
     ことを特徴とする請求項5に記載の電力変換装置。
    The DC power supply outputs a DC voltage less than the first voltage;
    The power conversion device according to claim 5.
  7.  前記初充電抵抗と前記スイッチとは、前記コンバータの交流側に並列接続される、
     ことを特徴とする請求項1に記載の電力変換装置。
    The initial charging resistor and the switch are connected in parallel to the AC side of the converter,
    The power conversion apparatus according to claim 1.
  8.  初充電時において、前記非線形コンデンサの静電容量は、同体積の線形コンデンサの静電容量よりも小さい、
     ことを特徴とする請求項1ないし請求項7のいずれか1項に記載の電力変換装置。
    At the time of initial charge, the capacitance of the nonlinear capacitor is smaller than the capacitance of a linear capacitor of the same volume,
    The power conversion device according to claim 1, wherein the power conversion device is a power conversion device.
  9.  初充電時において、前記コンバータは、前記第1電圧未満の直流電圧を出力する、
     ことを特徴とする請求項7に記載の電力変換装置。
    At the time of initial charge, the converter outputs a DC voltage less than the first voltage.
    The power conversion device according to claim 7.
  10.  定常運転時に、第1電圧以上かつ第2電圧以下の直流電圧を出力するコンバータと、
     自身の印加電圧が0ボルト以上かつ前記第1電圧未満の場合の静電容量よりも、自身の印加電圧が前記第1電圧以上かつ前記第2電圧以下の場合の静電容量の方が大きく、かつ、定常運転時には前記コンバータが出力する直流電圧を平滑化する非線形コンデンサと、
     初充電時に前記非線形コンデンサに流れる電流を制限する初充電抵抗と、
     スイッチと、
     制御回路部と、
     を備え、
     前記制御回路部は、
     初充電時には、前記非線形コンデンサへの初充電を行い、かつ、定常運転時には、前記非線形コンデンサによる前記コンバータの出力の平滑化を行うように前記スイッチを制御し、
     初充電時には更に、前記非線形コンデンサへの印加電圧が前記第1電圧未満の直流電圧となるように制御する、
     ことを特徴とするに記載の電力変換装置の電力変換方法。
    A converter that outputs a DC voltage not less than the first voltage and not more than the second voltage during steady operation;
    Capacitance when the applied voltage is greater than or equal to the first voltage and less than or equal to the second voltage is greater than the capacitance when the applied voltage is greater than or equal to 0 volts and less than the first voltage, And a non-linear capacitor for smoothing the DC voltage output by the converter during steady operation;
    An initial charging resistor that limits the current flowing through the nonlinear capacitor during initial charging; and
    A switch,
    A control circuit unit;
    With
    The control circuit unit is
    At the time of initial charge, the first charge to the nonlinear capacitor is performed, and at the time of steady operation, the switch is controlled so as to smooth the output of the converter by the nonlinear capacitor,
    Further, at the time of initial charge, control is performed so that the voltage applied to the non-linear capacitor becomes a DC voltage less than the first voltage.
    A power conversion method of the power conversion device according to claim.
PCT/JP2013/078600 2013-10-22 2013-10-22 Power conversion device and power conversion method for power conversion device WO2015059771A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078600 WO2015059771A1 (en) 2013-10-22 2013-10-22 Power conversion device and power conversion method for power conversion device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078600 WO2015059771A1 (en) 2013-10-22 2013-10-22 Power conversion device and power conversion method for power conversion device

Publications (1)

Publication Number Publication Date
WO2015059771A1 true WO2015059771A1 (en) 2015-04-30

Family

ID=52992410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078600 WO2015059771A1 (en) 2013-10-22 2013-10-22 Power conversion device and power conversion method for power conversion device

Country Status (1)

Country Link
WO (1) WO2015059771A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015274A1 (en) * 2018-07-17 2020-01-23 中兴通讯股份有限公司 Methods for adjusting power supply output signal and power supply input signal, charger and terminal

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173356A (en) * 1989-11-29 1991-07-26 Yaskawa Electric Mfg Co Ltd Converter device
JPH11289766A (en) * 1998-04-03 1999-10-19 Toshiba Ave Co Ltd Power supply
JP2004140969A (en) * 2002-10-21 2004-05-13 Fuji Electric Fa Components & Systems Co Ltd Charging method of smoothing capacitor for power converter
JP2005080456A (en) * 2003-09-02 2005-03-24 Toyota Motor Corp Power supply
US20110074361A1 (en) * 2009-09-30 2011-03-31 General Electric Company Antiferroelectric capacitor-enabled power converter

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03173356A (en) * 1989-11-29 1991-07-26 Yaskawa Electric Mfg Co Ltd Converter device
JPH11289766A (en) * 1998-04-03 1999-10-19 Toshiba Ave Co Ltd Power supply
JP2004140969A (en) * 2002-10-21 2004-05-13 Fuji Electric Fa Components & Systems Co Ltd Charging method of smoothing capacitor for power converter
JP2005080456A (en) * 2003-09-02 2005-03-24 Toyota Motor Corp Power supply
US20110074361A1 (en) * 2009-09-30 2011-03-31 General Electric Company Antiferroelectric capacitor-enabled power converter

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020015274A1 (en) * 2018-07-17 2020-01-23 中兴通讯股份有限公司 Methods for adjusting power supply output signal and power supply input signal, charger and terminal

Similar Documents

Publication Publication Date Title
US5841645A (en) Multi-level inverter with low loss snubbing circuits
AU2008284672B2 (en) Direct power converting apparatus
JP5049964B2 (en) Power converter
JP5493902B2 (en) Power converter
AU2008310358B2 (en) Direct AC power converting apparatus
KR101189352B1 (en) Power converter
JP6232944B2 (en) Multi-level power converter
US9214878B2 (en) Multilevel power converter circuit
KR100337035B1 (en) Passive auxiliary circuit for series connection of IGBTs
KR101567750B1 (en) Single-phase inverter
AU2013227754B2 (en) Indirect matrix converter
JP2014217079A5 (en)
WO1997001214A1 (en) Bridge power converter
JP7244378B2 (en) Power conversion device and its control method
JP4052152B2 (en) AC-AC direct conversion power converter
WO2015059771A1 (en) Power conversion device and power conversion method for power conversion device
CN110366814B (en) Power supply control device, power conversion system, and power supply control method
WO2021090522A1 (en) Power conversion device and press apparatus
JP3356783B2 (en) Power conversion device and motor control device
EP2822172B1 (en) Power conversion device
JP6808471B2 (en) Initial charging device and load drive system
KR101960610B1 (en) Apparatus for stabilizing DC distribution system
JP5811806B2 (en) Multi-level power converter
JPWO2018180275A1 (en) AC / DC conversion circuit and power factor correction circuit
WO2022269662A1 (en) Power conversion device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895957

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP