WO2015056950A1 - 광학 필름, 이를 포함하는 액정 표시 장치 및 이에 사용되는 보호필름의 제조방법 - Google Patents

광학 필름, 이를 포함하는 액정 표시 장치 및 이에 사용되는 보호필름의 제조방법 Download PDF

Info

Publication number
WO2015056950A1
WO2015056950A1 PCT/KR2014/009623 KR2014009623W WO2015056950A1 WO 2015056950 A1 WO2015056950 A1 WO 2015056950A1 KR 2014009623 W KR2014009623 W KR 2014009623W WO 2015056950 A1 WO2015056950 A1 WO 2015056950A1
Authority
WO
WIPO (PCT)
Prior art keywords
protective film
film
range
liquid crystal
optical film
Prior art date
Application number
PCT/KR2014/009623
Other languages
English (en)
French (fr)
Inventor
유소희
김란
이범덕
이승규
이정규
은종혁
Original Assignee
삼성에스디아이 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 삼성에스디아이 주식회사 filed Critical 삼성에스디아이 주식회사
Publication of WO2015056950A1 publication Critical patent/WO2015056950A1/ko

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/14Protective coatings, e.g. hard coatings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements

Definitions

  • the present invention relates to an optical film, a liquid crystal display including the same, and a manufacturing method of a protective film used therefor.
  • a flat panel display examples include a liquid crystal display (LCD), a plasma display panel (PDP), a field emission display device (FED), and an organic light emitting display device ( Organic Electroluminescence Device).
  • LCD liquid crystal display
  • PDP plasma display panel
  • FED field emission display device
  • organic light emitting display device Organic Electroluminescence Device
  • liquid crystal displays are one of the most widely used flat panel displays at present.
  • a liquid crystal display has a structure in which a liquid crystal layer is enclosed between a TFT (Thin Film Transistor) array substrate and a color filter substrate.
  • TFT Thin Film Transistor
  • the technical problem to be solved by the present invention is to provide an optical film for preventing the above-mentioned rainbow stain, and to provide a liquid crystal display device including the optical film.
  • to provide a manufacturing method for easily manufacturing the optical film is to provide a manufacturing method for easily manufacturing the optical film.
  • Optical film according to an embodiment of the present invention for achieving the above object includes at least one polarizer and a protective film laminated on the polarizer, the in-plane retardation (Re) of the protective film is in the range of 0 to 500 nm, Thickness direction retardation (Rth) of the protective film may range from 1,000 nm to 7,000 nm.
  • Thickness direction retardation (Rth) of the protective film may be in the range of 1,000 nm to 2,500 nm.
  • In-plane retardation (Re) of the protective film may be in the range of 5 nm to 500 nm.
  • the protective film may include a polyester-based material.
  • the protective film may be polyethylene terephthalate-based, polyethylene naphthalate-based, or a copolymer including them.
  • the protective film may have a thickness in the range of 10 ⁇ m to 80 ⁇ m.
  • a liquid crystal display device includes a liquid crystal cell, a backlight unit, a lower polarizer disposed between the liquid crystal cell and the backlight unit, and an upper polarizer disposed at a viewing side of the liquid crystal cell.
  • the upper polarizer may include the optical film.
  • a protective film having a phase retardation (Re) in a range of 0 to 500 nm and a thickness retardation (Rth) in a range of 1,000 nm to 7,000 nm may be located at the viewing side of the upper polarizing plate.
  • the lower polarizer may include the optical film.
  • a protective film having an in-plane retardation (Re) in a range of 0 to 500 nm and a thickness retardation (Rth) in a range of 1,000 nm to 7,000 nm may be located at the light source side of the lower polarizing plate.
  • a method of manufacturing a protective film according to an embodiment of the present invention for achieving the above object may include preparing a non-stretched polyester film and stretching the non-stretched polyester film.
  • the stretching may be performed by a simultaneous biaxial stretching method.
  • the stretching ratio (MD: TD) of the stretching step may range from 2: 1.5-2.5 to 3: 2.5-3.5.
  • the optical film of the present invention can be applied to the liquid crystal display to prevent rainbow stains, thereby improving the visibility.
  • FIG. 1 is a cross-sectional view schematically showing an optical film according to an embodiment of the present invention.
  • FIG. 2 is a cross-sectional view schematically illustrating a liquid crystal display according to an exemplary embodiment of the present invention.
  • FIG 3 is a cross-sectional view schematically illustrating a liquid crystal cell of a liquid crystal display according to an exemplary embodiment of the present invention.
  • FIG. 4 is a schematic process flowchart of a protective film manufacturing method according to an embodiment of the present invention.
  • references to elements or layers "on" other elements or layers include all instances where another layer or other element is directly over or in the middle of another element. Like reference numerals refer to like elements throughout.
  • first, second, etc. are used to describe various components, these components are of course not limited by these terms. These terms are only used to distinguish one component from another. Therefore, of course, the first component mentioned below may be a second component within the technical spirit of the present invention.
  • FIG. 1 is a cross-sectional view schematically showing an optical film according to an embodiment of the present invention.
  • the optical film 100 is the first protective film 101 and the second protective film 103, and the first protective film (located on both surfaces in the thickness direction)
  • the polarizer 102 may be interposed between the 101 and the second protective film 103.
  • one of the first protective film 101 and the second protective film 103 may be omitted.
  • At least one of the first protective film 101 and the second protective film 103 may have an in-plane phase difference Re in a range of 0 to 500 nm, and a thickness direction phase difference Rth in a range of 1,000 nm to 7,000 nm. At this time, it may be useful for the protective film having the phase difference range to be located on the upper side of the display device to prevent the rainbow stain.
  • In-plane retardation (Re) and thickness direction retardation (Rth) is the thickness of the protective film (101, 103) d, the refractive index of the slow axis in the plane nx, the refractive index of the in-plane fast axis direction ny, the refractive index of the thickness direction
  • nz each can be defined by the following formula.
  • the retardation value may be defined as a positive value as an absolute value.
  • the slow axis may be defined as a direction in which the in-plane refractive indexes of the protective films 101 and 103 are maximized, and the fast axis may be defined as a direction perpendicular to the slow axis in the plane.
  • ⁇ r-p when the value of ⁇ r-p is not 90 or 0, that is, when the slow axis r of the protective films 101 and 103 and the absorption axis p of the polarizer are not vertical (90) or parallel (0).
  • the rainbow spots are visually recognized by the influence of the phase difference birefringence.
  • the protective film of the present invention is located at the end of the viewing direction, the rainbow stain may not be visualized without being affected by the ⁇ r-p value.
  • the in-plane retardation Re may be in a range of 5 nm to 500 nm, and the thickness direction retardation Rth may be in a range of 1,000 nm to 2,500 nm.
  • the in-plane retardation (Re) of the protective film may be in the range of 5nm to 200nm, within this range can further reduce the rainbow mura visibility.
  • the polarizer 102 is a film that can be converted from natural light or polarized light into arbitrary polarized light, and can generally be converted to specific linearly polarized light.
  • a dichroic substance such as iodine or dichroic dye is adsorbed and stretched onto a hydrophilic polymer film such as a polyvinyl alcohol-based film, a partially formalized polyvinyl alcohol-based film, and an ethylene-vinyl acetate copolymer-based partially saponified film.
  • polyene type oriented films such as the thing of the dehydration process of filivinyl alcohol, and the dehydrochlorination process of polyvinyl chloride, etc. are mentioned, it is not limited only to these.
  • a polyvinyl alcohol-based film containing iodine which may have a high degree of polarization and has excellent adhesion with the protective films 101 and 103, may be mentioned, but is not limited thereto.
  • the first protective film 101 and / or the second protective film having the above retardation value may include a polyester-based material.
  • polyester for example, terephthalic acid, isophthalic acid, orthophthalic acid, 2,5-naphthalenedicarboxylic acid, 2,6-naphthalenedicarboxylic acid, 1,4-naphthalenedicarboxylic acid, 1,5- Naphthalenedicarboxylic acid, diphenylcarboxylic acid, diphenoxyethanedicarboxylic acid, diphenylsulfoncarboxylic acid, anthracenedicarboxylic acid, 1,3-cyclopentanedicarboxylic acid, 1,3-cyclo Hexanedicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, hexahydroterephthalic acid, hexahydroisophthalic acid, malonic acid, dimethylmalonic acid, succinic acid, 3,3-diethylsuccinic acid, glutaric acid, 2,2 Dicarboxylic acids such as dimethyl glutaric acid, adipic acid, 2-
  • the polyester resin in any one of the copolymer and the blend resin which blends 2 or more types of these homopolymers and copolymers is mentioned.
  • aromatic polyesters in view of the polyester exhibiting crystallinity, aromatic polyesters can be used, for example, polyethylene terephthalate (PET) -based, polyethylene naphthalate (PEN) -based, or copolymers containing them. Although these are mentioned, It is not limited only to these.
  • a polyester film is obtained by the method etc. which melt-extrude the above-mentioned polyester resin into a film form, for example, cool-solidify with a casting drum, and form a film.
  • a stretched polyester film especially a biaxially stretched polyester film can be used suitably from a viewpoint of providing crystallinity to a polyester film and achieving the said characteristic.
  • such a film may contain resin, additives, etc. other than aromatic polyester.
  • an optical isotropy having substantially no birefringence, or even having birefringence may have an extremely low retardation value or excellent in-plane uniformity in the optical axis direction.
  • a transparent polymer with a uniform optical characteristic can be used, and an amorphous polymer can be used from a transparency viewpoint.
  • cellulose resin, cyclic polyolefin resin (norbornene resin), polycarbonate resin, polyarylate resin, amorphous polyester resin, polyvinyl alcohol resin, polysulfone resin, polyimide type Although resin etc. are mentioned, It is not limited only to these.
  • the stretching method is not particularly limited, and a longitudinal uniaxial stretching method, a transverse uniaxial stretching method, a longitudinal transverse biaxial stretching method, a longitudinal transverse simultaneous biaxial stretching method, and the like can be adopted. In an exemplary embodiment, it may be by the simultaneous biaxial stretching method, but is not limited thereto.
  • any suitable stretching machine such as a roll stretching machine, a tenter stretching machine, or a biaxial stretching machine of a pantograph type or a linear motor type can be used.
  • the thickness thereof is not particularly limited, but may be in the range of 10 ⁇ m to 80 ⁇ m for thinning. In an exemplary embodiment, the thickness can range from 15 ⁇ m to 60 ⁇ m, but is not limited to such.
  • FIG. 2 is a cross-sectional view schematically showing a liquid crystal display according to an exemplary embodiment of the present invention
  • FIG. 3 is a cross-sectional view schematically showing a liquid crystal cell included in the liquid crystal display.
  • the liquid crystal display 10 may include a liquid crystal cell 200, a backlight unit 300, and a lower polarizer disposed between the liquid crystal cell 200 and the backlight unit 300. 120 and the upper polarizer 110 disposed on the viewing side of the liquid crystal cell 200.
  • the liquid crystal cell 200 includes a liquid crystal panel including a liquid crystal layer 220 encapsulated between the first substrate 210, the second substrate 230, the first substrate 210, and the second substrate 230.
  • the upper polarizer 110 may be stacked on one surface (upper surface) of the first substrate 210.
  • the upper polarizer 110 may be composed of the optical film 100 of the present invention.
  • the protective film having a specific phase difference described above may be disposed on the upper surface of the upper polarizer 110, that is, the viewer side.
  • the lower polarizer 120 may be stacked on the lower surface of the second substrate 230, and when the two polarizers 110 and 120 are positioned above and below the liquid crystal cell 200, the transmission axes of the polarizers of the respective polarizers are mutually different. It can be orthogonal or parallel.
  • the lower polarizing plate 110 may also be composed of the polarizing film 100 of the present invention, in which case, the protective film having a specific phase difference described above is a lower surface of the lower polarizing plate 120, that is, the light source side. Can be placed in.
  • the first substrate 210 may be a color filter CF substrate.
  • a black matrix for preventing light leakage and a color filter of red, green, and blue, and transparent such as ITO or IZO may be provided on a lower surface of a substrate made of a transparent insulating material such as glass or plastic.
  • the common electrode which is an electric field generating electrode formed of a conductive oxide, may be included.
  • the second substrate 230 may be a thin film transistor (TFT) substrate.
  • TFT thin film transistor
  • a thin film transistor including a gate electrode, a gate insulating film, a semiconductor layer, an ohmic contact layer, and a source / drain electrode on a substrate made of a transparent insulating material such as glass or plastic, and an ITO.
  • a pixel electrode which is an electric field generating electrode formed of a transparent conductive oxide such as IZO.
  • Plastic substrates that can be used for the first substrate 210 and the second substrate 230 include polyethylene terephthalate (PET), polycarbonate (PC), polyimide (PI), polyethylene naphthalate (PEN), and polyether (PES) that can be used for displays. It may be a plastic substrate such as sulfone), PAR (polyarylate) and COC (cycloolefin copolymer), but the present invention is not limited thereto.
  • the first substrate 210 and the second substrate 230 may be made of a flexible material.
  • the liquid crystal layer 220 may be a twisted nematic (TN) mode, a vertical alignment (VA) mode, a horizontal alignment (IPS, FFS) mode, or the like having positive dielectric anisotropy.
  • TN twisted nematic
  • VA vertical alignment
  • IPS horizontal alignment
  • FFS horizontal alignment
  • FIG. 3 the TN mode will be described as an example.
  • the liquid crystal of the liquid crystal layer 220 has a first long axis direction. It is arranged parallel to the surface of the substrate 210 and the second substrate 230, has a structure twisted 90 ° in a spiral from the first substrate 210 to the second substrate 230.
  • the polarization of the linearly polarized light changes due to retardation due to the refractive anisotropy of the liquid crystal while passing through the liquid crystal layer 220.
  • the dielectric anisotropy ( ⁇ ) and chiral pitch of the liquid crystal and the thickness of the liquid crystal layer 220, that is, the cell gap are adjusted, the linearly polarized light direction of the light passing through the liquid crystal layer 220 is changed. Can be rotated 90 °.
  • the backlight unit 300 may generally include a light source, a light guide plate, a reflective film, and the like. According to the configuration of the backlight can be arbitrarily divided into a direct method, a side light method, a planar light source method.
  • FIG. 4 is a schematic process flowchart of a protective film manufacturing method according to an embodiment of the present invention.
  • the method of manufacturing the protective films 101 and 103 includes preparing a non-stretched polyester film (S10) and stretching the non-stretched polyester film (S20). do.
  • Step (S10) of preparing the non-stretched polyester film is not particularly limited, but for example, a melt extrusion method may be used. After melting above the melting temperature of the polyester-based material, it can be discharged out of the extrusion facility to form a non-stretched film.
  • a melt extrusion method will be described in more detail.
  • the form of the dryer is not particularly limited, and examples thereof include a dehumidifying dryer and a hot air dryer, but are not limited thereto.
  • the drying temperature may be carried out below the glass transition temperature of the film raw material. However, the drying temperature can be appropriately selected according to the type of resin and the glass transition temperature used. If the drying temperature is too low, there is no drying effect, on the contrary, if the drying temperature is higher than necessary, the properties of the raw material are changed, which is not appropriate.
  • the drying time of the raw material may range from 0.5 to 5 hours, but may be easily selected in consideration of the ambient humidity.
  • the dried raw material may be fed to a raw material reservoir (hopper) located at the inlet of the extrusion facility.
  • the filter may be passed with air circulated primarily in the reservoir to primarily remove impurities that may be included in the raw material.
  • the input raw material is filled in the first section of the screw inside the extrusion plant.
  • the first section serves to transfer the raw material to the extrusion plant cylinder.
  • the second section is a section in which melting of the raw material starts, preferably set to a temperature higher than the glass transition temperature of the film raw material.
  • the third section is the section in which the raw material is completely converted into the melt, and the temperature setting can be maintained in the same range as the second section.
  • the fourth section increases the density of the melt by increasing the pressure of the molten raw material, thereby ensuring a stable discharge amount.
  • the temperature condition may be maintained in the same range as the second and third sections so that the melt discharged is not cured.
  • the gear pump can store the raw material irregularly injected from the extrusion equipment cylinder in a certain space and stably supply a certain amount of melt to the T-die to minimize the change in pressure distribution.
  • the section in which the melt is finally discharged out of the extrusion facility is the T-die section.
  • the shape and manufacturing thickness of the film are determined by the shape of the tea die.
  • the die die may be classified into a “T” die, a coat hanger die, a fish tail die, and the like, but is not limited thereto.
  • the type of Ti die can be selectively used depending on the flowability of the melt.
  • Stretching the non-stretched polyester film (S20) may use a general wet stretching method and / or dry stretching method in the art.
  • Non-limiting examples of the dry stretching method include an inter-roll stretching method, a heating roll stretching method, a compression stretching method, a tenter stretching method, and the like.
  • Non-limiting examples include a tenter stretching method, an inter-roll stretching method, and the like.
  • stretching may be performed in alcohols, water or boric acid aqueous solution, and for example, a solvent such as methyl alcohol or propyl alcohol may be used, but is not limited thereto.
  • the extending step (S20) may employ a longitudinal uniaxial stretching method, a lateral uniaxial stretching method, a longitudinal lateral difference biaxial stretching method, a longitudinal lateral simultaneous biaxial stretching method, and the like.
  • a biaxial stretching method may be used to have the above phase difference value, and for the same reason, a biaxial stretching method may be used, but is not limited thereto.
  • the stretching ratio (MD: TD) of the stretching step (S20) may vary depending on the desired thickness range and the like, but is not particularly limited.
  • the stretching ratio (MD: TD) may be stretched in a range of 2: 1.5-2.5 to 3: 2.5-3.5. . That is, the TD direction elongation may be set in a range of ⁇ 0.5 times the MD direction elongation. At this time, the MD direction elongation may be in the range of 2 to 3 times.
  • Comparative Examples 1 to 10 are all unevenly visible due to rainbow stains.
  • Comparative Examples 2, 4, 5, and 6 although the ⁇ r-p values are close to 0, respectively, 0.5, 1.0, 1.0, and 0.5, rainbow stains are visually recognized and are not applicable.
  • the optical films of Preparation Examples 1 to 8 may be confirmed that the rainbow spots are not visually recognized, or even to some extent, the degree is weak and applicable.
  • the degree is weak and applicable.
  • Example 4 even though the ⁇ r-p value was shifted to 45.0, rainbow spots were not recognized.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Polarising Elements (AREA)

Abstract

광학 필름, 이를 포함하는 액정 표시 장치, 및 이에 사용되는 보호필름의 제조방법이 제공된다. 본 발명의 광학 필름은 편광자 및 상기 편광자에 적층되는 보호필름을 적어도 하나 포함하고, 상기 보호필름의 면내 위상차(Re)가 0 내지 500 nm 범위이고, 상기 보호필름의 두께방향 위상차(Rth)가 1,000 nm 내지 7,000 nm 범위이다.

Description

광학 필름, 이를 포함하는 액정 표시 장치 및 이에 사용되는 보호필름의 제조방법
본 발명은 광학 필름, 이를 포함하는 액정 표시 장치 및 이에 사용되는 보호필름의 제조방법에 관한 것이다.
최근, 디스플레이(display) 분야가 급속도로 발전해 왔고, 이에 부응하여 박형화, 경량화, 저소비전력화의 우수한 성능을 지닌 여러 가지 다양한 평판 표시장치가 개발되어 기존의 브라운관(Cathode Ray Tube: CRT)을 대체하고 있다.
이러한 평판 표시장치의 구체적인 예로는 액정표시장치(Liquid Crystal Display Device: LCD), 플라즈마 표시장치(Plasma Display Panel Device: PDP), 전계방출표시장치(Field Emission Display Device: FED), 유기전계 발광장치(Organic Electroluminescence Device) 등을 들 수 있다.
이 중, 액정 디스플레이는 현재 가장 널리 사용되고 있는 평판 디스플레이 중 하나이다. 일반적으로 액정 디스플레이는 TFT(Thin Film Transistor) 어레이 기판과 컬러 필터 기판 사이에 액정층이 봉입된 구조를 취한다.
하지만, 액정 디스플레이에는 편광자와 보호필름으로 구성된 광학 필름이 사용되고, 보호필름의 복굴절로 인하여 무지개 얼룩이 시인되고, 이로 인하여 시인성이 떨어지는 문제가 있다.
이에, 본 발명이 해결하고자 하는 기술적 과제는 상기와 같은 무지개 얼룩을 방지하는 광학 필름을 제공하고, 상기 광학 필름을 포함하는 액정 표시 장치를 제공하는 것이다. 또한, 상기 광학 필름을 용이하게 제조하기 위한 제조방법을 제공하는 것이다.
본 발명의 과제들은 이상에서 언급한 기술적 과제로 제한되지 않으며, 언급되지 않은 또 다른 기술적 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기 과제를 달성하기 위한 본 발명의 일 실시예에 따른 광학 필름은 편광자 및 상기 편광자에 적층되는 보호필름을 적어도 하나 포함하고, 상기 보호필름의 면내 위상차(Re)가 0 내지 500 nm 범위이고, 상기 보호필름의 두께방향 위상차(Rth)가 1,000 nm 내지 7,000 nm 범위일 수 있다.
상기 보호필름의 두께방향 위상차(Rth)가 1,000 nm 내지 2,500 nm 범위일 수 있다.
상기 보호필름의 면내 위상차(Re)가 5 nm 내지 500 nm 범위일 수 있다.
상기 보호필름이 폴리에스테르계 물질을 포함할 수 있다.
상기 보호필름은 폴리에틸렌 테레프탈레이트계, 폴레에틸렌 나프탈레이트계, 또는 이들을 포함하는 공중합체일 수 있다.
상기 보호필름의 두께가 10 ㎛ 내지 80 ㎛ 범위일 수 있다.
상기 과제를 달성하기 위한 본 발명의 일 실시예에 따른 액정 표시 장치는 액정 셀, 백라이트 유닛, 상기 액정 셀과 백라이트 유닛 사이에 배치되는 하부 편광판, 및 상기 액정 셀의 시인측에 배치되는 상부 편광판을 포함하고, 상기 상부 편광판이 상기 광학 필름을 포함할 수 있다.
상기 광학 필름 중 면태 위상차(Re)가 0 내지 500 nm 범위이고, 두께방향 위상차(Rth)가 1,000 nm 내지 7,000 nm 범위인 보호필름이 상기 상부 편광판의 시인측에 위치할 수 있다.
상기 하부 편광판이 상기 광학 필름을 포함할 수 있다.
상기 광학 필름 중 면내 위상차(Re)가 0 내지 500 nm 범위이고, 두께방향 위상차(Rth)가 1,000 nm 내지 7,000 nm 범위인 보호필름이 상기 하부 편광판의 광원측에 위치할 수 있다.
상기 과제를 달성하기 위한 본 발명의 일 실시예에 따른 보호필름의 제조방법은 비연신 폴리에스테르계 필름을 제조하는 단계 및 상기 비연신 폴리에스테르계 필름을 연신하는 단계를 포함할 수 있다.
상기 연신하는 단계는 동시 이축 연신법으로 연신할 수 있다.
상기 연신 단계의 연신비(MD:TD)는 2 : 1.5-2.5 내지 3 : 2.5-3.5 범위일 수 있다.
기타 실시예들의 구체적인 사항들은 상세한 설명 및 도면들에 포함되어 있다.
본 발명의 실시예들에 의하면 적어도 다음과 같은 효과가 있다.
즉, 본 발명의 광학 필름은 액정 디스플레이에 적용되어 무지개 얼룩을 방지할 수 있고, 이로 인하여 시인성을 개선할 수 있다.
본 발명에 따른 효과는 이상에서 예시된 내용에 의해 제한되지 않으며, 더욱 다양한 효과들이 본 명세서 내에 포함되어 있다.
도 1은 본 발명의 일 실시예에 따른 광학 필름을 개략적으로 나타낸 단면도이다.
도 2는 본 발명의 일 실시예에 따른 액정 표시 장치를 개략적으로 나타낸 단면도이다.
도 3은 본 발명의 일 실시예에 따른 액정 표시 장치의 액정 셀을 개략적으로 나타낸 단면도이다.
도 4는 본 발명의 일 실시예에 따른 보호 필름 제조방법의 개략적인 공정 순서도이다.
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 것이며, 단지 본 실시예들은 본 발명의 개시가 완전하도록 하며, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다.
소자(elements) 또는 층이 다른 소자 또는 층"위(on)"로 지칭되는 것은 다른 소자 바로 위에 또는 중간에 다른 층 또는 다른 소자를 개재한 경우를 모두 포함한다. 명세서 전체에 걸쳐 동일 참조 부호는 동일 구성 요소를 지칭한다.
비록 제1, 제2 등이 다양한 구성요소들을 서술하기 위해서 사용되나, 이들 구성요소들은 이들 용어에 의해 제한되지 않음은 물론이다. 이들 용어들은 단지 하나의 구성요소를 다른 구성요소와 구별하기 위하여 사용하는 것이다. 따라서, 이하에서 언급되는 제1 구성요소는 본 발명의 기술적 사상 내에서 제2 구성요소일 수도 있음은 물론이다.
또한, 본 명세서에서 기술하는 제조 방법을 구성하는 단계들은 순차적 또는 연속적임을 명시하거나 다른 특별한 언급이 있는 경우가 아니면, 하나의 제조 방법을 구성하는 하나의 단계와 다른 단계가 명세서 상에 기술된 순서로 제한되어 해석되지 않는다. 따라서 당업자가 용이하게 이해될 수 있는 범위 내에서 제조 방법의 구성 단계의 순서를 변화시킬 수 있으며, 이 경우 그에 부수하는 당업자에게 자명한 변화는 본 발명의 범위에 포함되는 것이다.
광학 필름
이하, 본 발명의 일 실시예에 따른 광학 필름을 도 1을 참조하여 설명한다. 도 1은 본 발명의 일 실시예에 따른 광학 필름을 개략적으로 나타낸 단면도이다.
도 1을 참조하면, 본 발명의 일 실시예에 따른 광학 필름(100)은 두께 방향으로 양 표면에 위치하는 제1 보호필름(101) 및 제2 보호필름(103), 및 제1 보호필름(101) 및 제2 보호필름(103) 사이에 개재되어 있는 편광자(102)를 포함할 수 있다.
예시적인 실시예에서, 제1 보호필름(101) 및 제2 보호필름(103) 중 하나는 생략될 수도 있다.
제1 보호필름(101) 및 제2 보호필름(103) 중 적어도 하나는 면내 위상차(Re)가 0 내지 500 nm 범위이고, 두께방향 위상차(Rth)가 1,000 nm 내지 7,000 nm 범위일 수 있다. 이 때, 상기 위상차 범위를 가지는 보호필름이 표시장치의 상부 측에 위치하는 것이 무지개 얼룩을 방지에 유용할 수 있다.
면내 위상차(Re) 및 두께방향 위상차(Rth)는 보호필름(101, 103)의 두께를 d, 면내의 지상축 방향의 굴절률을 nx, 면내의 진상축 방향의 굴절률을 ny, 두께 방향의 굴절률을 nz라고 정의할 경우에, 각각 하기 식으로 정의될 수 있다.
Re = (nx-ny)*d
Rth = (nx-nz)*d
또한, 상기 위상차 값은 절대값으로 양수로 정의할 수 있다.
상기 지상축은 보호필름(101, 103)의 면내 굴절률이 최대가 되는 방향으로, 상기 진상축은 면내에서 상기 지상축에 수직인 방향으로 정의할 수 있다.
일반적으로, Θr-p 값이 90 또는 0이 아닐 경우, 즉 보호필름(101, 103)의 지상축(r)과 편광자의 흡수축(p)이 수직(90) 또는 평행(0)이 아닐 경우, 위상차 복굴절의 영향으로 무지개 얼룩을 눈으로 시인하게 된다. 본 발명의 보호필름이 시인 방향의 말단에 위치할 경우, Θr-p 값의 영향을 받지 않고 무지개 얼룩이 시인되지 않을 수 있다.
예시적인 실시예에서, 상기와 같은 이유로, 상기 면내 위상차(Re)가 5 nm 내지 500 nm 범위일 수 있고, 상기 두께방향 위상차(Rth)가 1,000 nm 내지 2,500 nm 범위일 수 있다. 또한, 상기 보호필름의 면내 위상차(Re)가 5nm 내지 200nm 범위일수 있으며, 이 범위 내에서 무지개 무라 시인성을 더욱 저감시킬 수 있다.
편광자(102)는 자연광이나 편광으로부터 임의의 편광으로 변환할 수 있는 필름으로, 일반적으로는 특정 직선 편광으로 변환할 수 있다. 편광자(102)로는 폴리비닐알코올계 필름, 부분 포르말화 폴리비닐알코올계 필름, 에틸렌-아세트산 비닐 공중합체계 부분 비누화 필름 등의 친수성 고분자 필름에, 요오드나 이색성 염료 등의 이색성 물질을 흡착시켜 연신한 것, 필리비닐알코올의 탈수 처리물이나 폴리염화비닐의 탈염산 처리물 등의 폴리엔계 배향 필름 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 예시적인 실시에에서, 높은 편광도를 가질 수 있고 보호필름(101, 103)과의 접착성이 우수한 요오드를 함유하는 폴리비닐알코올계 필름을 들 수 있지만, 이것만으로 한정되는 것은 아니다.
상기의 위상차 값을 가지는 제1 보호필름(101) 및/또는 제2 보호필름은 폴리에스테르계 물질을 포함할 수 있다.
상기 폴리에스테르로서는, 예를 들어 테레프탈산, 이소프탈산, 오르토프탈산, 2,5-나프탈렌디카르복실산, 2,6-나프탈렌디카르복실산, 1,4-나프탈렌디카르복실산, 1,5-나프탈렌디카르복실산, 디페닐카르복실산, 디페녹시에탄디카르복실산, 디페닐술폰카르복실산, 안트라센디카르복실산, 1,3-시클로펜탄디카르복실산, 1,3-시클로헥산디카르복실산, 1,4-시클로헥산디카르복실산, 헥사히드로테레프탈산, 헥사히드로이소프탈산, 말론산, 디메틸말론산, 숙신산, 3,3-디에틸숙신산, 글루타르산, 2,2-디메틸글루타르산, 아디프산, 2-메틸아디프산, 트리메틸아디프산, 피멜산, 아젤라산, 다이머산, 세박산, 수베르산, 도데카디카르복실산 등의 디카르복실산과, 에틸렌글리콜, 프로필렌글리콜, 헥사메틸렌글리콜, 네오펜틸글리콜, 1,2-시클로헥산디메탄올, 1,4-시클로헥산디메탄올, 데카메틸렌글리콜, 1,3-프로판디올, 1,4-부탄디올, 1,5-펜탄디올, 1,6-헥사디올, 2,2-비스(4-히드록시페닐)프로판, 비스(4-히드록시페닐)술폰 등의 디올을 들 수 있지만, 이들만으로 한정되는 것은 아니다. 상기 물질들 각각 1종을 중축합하여 이루어지는 단독 중합체, 또는 디카르복실산 1종 이상과 디올 2종 이상을 중축합하여 이루어지는 공중합체, 또는 디카르복실산 2종 이상과 1종 이상의 디올을 중축합하여 이루어지는 공중합체 및 이들 단독 중합체나 공중합체를 2종 이상 블렌드하여 이루어지는 블렌드 수지 중 어느 한 폴리에스테르 수지를 들 수 있다.
예시적인 실시예에서, 폴리에스테르가 결정성을 나타내는 관점에서, 방향족 폴리에스테르를 사용할 수 있고, 예를 들어, 폴리에틸렌테레프탈레이트(PET)계, 폴리에틸렌나프탈레이트(PEN)계, 또는 이들을 포함하는 공중합체를 들 수 있지만, 이들만으로 한정되는 것은 아니다.
폴리에스테르 필름은, 예를 들어 상기한 폴리에스테르 수지를 필름 형상으로 용융 압출하고, 캐스팅 드럼으로 냉각 고화시켜 필름을 형성시키는 방법 등에 의해 얻어진다. 본 발명에 있어서는, 폴리에스테르 필름에 결정성을 부여하여 상기 특성을 달성하는 관점에서, 연신 폴리에스테르 필름, 그 중에서도 이축 연신 폴리에스테르 필름을 적절하게 사용할 수 있다. 또한, 제1 보호 필름으로서 방향족 폴리에스테르를 주성분으로 하는 것을 사용하는 경우, 이러한 필름은 방향족 폴리에스테르 이외의 수지나 첨가제 등을 함유하는 것이어도 된다.
보호필름(101, 103) 중 하나가 상기 위상차 범위를 가지지 않을 경우, 실질적으로 복굴절을 가지지 않는 광학 등방성이거나, 복굴절을 가지더라도 위상차 값이 극히 적거나 광축 방향의 면내 균일성이 우수한 것을 사용할 수 있다. 이러한 특성을 가지는 재료로는, 특별히 한정되지 않지만, 광학 특성이 균일한 투명 중합체를 사용할 수 있고, 투명성 관점에서는 비정질성 중합체가 사용될 수 있다. 예를 들어, 셀룰로오스계 수지, 환상 폴리올레핀 수지(노르보르넨계 수지), 폴리카르보네이트계 수지, 폴리아릴레이트계 수지, 비정질성 폴리에스테르 수지, 폴리비닐알코올계 수지, 폴리술폰계 수지, 폴리이미드계 수지 등을 들 수 있지만, 이들만으로 한정되는 것은 아니다.
보호필름(101, 103)이 연신 필름인 경우, 그 연신 방법은 특별히 한정되지 않고 세로 일축 연신법, 가로 일축 연신법, 종횡 축차 이축 연신법, 종횡 동시 이축 연신법 등을 채용할 수 있다. 예시적인 실시예에서, 동시 이축 연신법에 의할 수 있지만, 이것만으로 한정되는 것은 아니다. 연신 수단으로서는, 롤 연신기, 텐터 연신기, 또는 팬터그래프식 혹은 리니어 모터식의 이축 연신기 등, 임의의 적절한 연신기에 의할 수 있다.
제1 보호필름(101) 또는 제2 보호필름(102)은 상기와 같은 위상차 특성을 가지고 있으면, 그 두께는 특별히 한정되지 않지만, 박막화를 위하여 10 ㎛ 내지 80 ㎛ 범위일 수 있다. 예시적인 실시예에서, 15 ㎛ 내지 60 ㎛ 범위의 두께일 수 있지만, 이것으로 한정되는 것은 아니다.
액정 표시 장치
도 2는 본 발명의 일 실시예에 따른 액정 표시 장치를 개략적으로 도시한 단면도이고, 도 3은 액정 표시 장치에 포함되는 액정 셀을 개략적으로 도시한 단면도이다.
도 2 및 도 3을 도 1과 함께 참조하면, 액정 표시 장치(10)는 액정 셀(200), 백라이트 유닛(300), 액정 셀(200)과 백라이트 유닛(300) 사이에 배치되는 하부 편광판(120) 및 액정 셀(200)의 시인측에 배치되는 상부 편광판(110)을 포함할 수 있다.
액정 셀(200)은 제1 기판(210), 제2 기판(230), 제1 기판(210) 및 제2 기판(230) 사이에 봉입된 액정층(220)을 포함하는 액정 패널을 포함하며, 제1 기판(210)의 일면(상부면)에 상부 편광판(110)이 적층될 수 있다. 상부 편광판(110)은 본 발명의 광학 필름(100)으로 구성될 수 있다. 예시적인 실시예에서, 상기 설명한 특정 위상차를 가지는 보호필름이 상부 편광판(110)의 상부면, 즉 시인측에 배치될 수 있다.
제2 기판(230)의 하부면에도 하부 편광판(120)이 적층될 수 있고, 액정 셀(200)의 상하로 두 개의 편광판(110, 120)이 위치하는 경우, 각 편광판의 편광자의 투과축은 서로 직교 또는 평행일 수 있다. 예시적인 실시예에서, 하부 편광판(110)도 본 발명의 편광 필름(100)으로 구성될 수 있고, 이 경우, 상기 설명한 특정 위상차를 가지는 보호필름이 하부 편광판(120)의 하부면, 즉 광원 측에 배치될 수 있다.
제1 기판(210)은 컬러 필터(CF) 기판일 수 있다. 도 3에는 구체적으로 도시하지 않았지만, 예를 들면, 유리 또는 플라스틱 등의 투명한 절연 물질로 이루어진 기재의 아래 면에 빛샘을 방지하기 위한 블랙 매트릭스와 적, 녹, 청의 컬러 필터 및 ITO 또는 IZO 등의 투명 도전성 산화물로 형성되어 있는 전기장 생성 전극인 공통 전극을 포함할 수 있다.
제2 기판(230)은 TFT(Thin Film Transistor) 기판일 수 있다. 도 3에는 구체적으로 도시하지 않았지만, 예를 들면, 유리 또는 플라스틱 등의 투명한 절연 물질로 이루어진 기재 위에 게이트 전극, 게이트 절연막, 반도체층, 저항성 접촉층 및 소스/드레인 전극으로 구성되는 박막 트랜지스터, 및 ITO 또는 IZO 등의 투명 도전성 산화물로 형성되어 있는 전기장 생성 전극인 화소 전극을 포함할 수 있다.
제1 기판(210) 및 제2 기판(230)에 사용될 수 있는 플라스틱 기판은 디스플레이에 사용될 수 있는 PET(polyethylene terephthalate), PC(polycarbonate), PI(polyimide), PEN(polyethylene naphthalate), PES(polyether sulfone), PAR(polyarylate) 및 COC(cycloolefin copolymer) 등의 플라스틱 기판일 수 있으나 본 발명이 이에 제한되는 것은 아니다. 또한, 제1 기판(210) 및 제2 기판(230)은 플렉서블(flexible)한 물질로 이루어질 수 있다.
액정층(220)은 양의 유전율 이방성을 가지는 트위스티드 네마틱(twisted nematic; TN) 모드, 수직 배향(VA) 모드 또는 수평 배향(IPS, FFS) 모드 등일 수 있다. 도 3에서는 TN 모드를 예로 설명한다.
상기 화소 전극과 공통 전극, 즉 전기장 생성 전극 사이에 전압차가 없어서 액정층(220)에 전기장이 걸리지 않을 경우, 도 3에 도시한 바와 같이, 액정층(220)의 액정은 그 장축 방향이 제1 기판(210) 및 제2 기판(230)의 표면에 평행하게 배열되어 있으며, 제1 기판(210)으로부터 제2 기판(230)에 이르기까지 나선상으로 90° 비틀린 구조를 가진다.
선편광된 빛의 편광은 액정층(220)을 통과하면서 액정의 굴절율 이방성으로 인한 지연(retardation)에 의하여 변화한다. 액정의 유전율 이방성(△ε) 및 카이랄 피치(chiral pitch)나 액정층(220)의 두께, 즉 셀 갭(cell gap) 등을 조절하면, 액정층(220)을 통과한 빛의 선편광 방향이 90° 회전하도록 만들 수 있다.
백라이트 유닛(300)은 일반적으로 광원, 도광판 및 반사막 등을 포함할 수 있다. 백라이트의 구성에 따라 직하 방식, 사이드 라이트 방식, 면 형상 광원 방식 등으로 임의로 구분할 수 있다.
보호필름 제조방법
도 4는 본 발명의 일 실시예에 따른 보호필름 제조방법의 개략적인 공정 순서도이다.
도 4를 도 1과 함께 참조하면, 보호필름(101, 103)의 제조방법은 비연신 폴리에스테르계 필름을 제조하는 단계(S10) 및 비연신 폴리에스테르계 필름을 연신하는 단계(S20)를 포함한다.
비연신 폴리에스테르계 필름을 제조하는 단계(S10)는 특별히 제한되지는 않지만, 예를 들어 용융 압출법을 사용할 수 있다. 폴리에스테르계 물질의 용융 온도 이상에서 용융시킨 후, 압출 설비 밖으로 토출시켜 비연신 필름을 형성할 수 있다. 이하, 용융 압출법을 예로 들어, 보다 구체적으로 설명한다.
용융 압출 공정에서 원료에 존재하는 수분의 함량이 일정 수준 이상으로 포함되면 오렌지필 형태와 같은 기포 상태의 제품 불량이 발생할 수 있으므로, 일정 수준 이하의 수분 함유량으로 관리하여야 한다. 건조기의 형태는 별도로 제한되지 않으며, 예를 들어, 제습 건조기, 열풍 건조기 등이 있지만 이들만으로 한정되는 것은 아니다. 건조 온도는 필름 원료의 유리전이온도 미만에서 수행될 수 있다. 다만, 사용하는 수지의 종류 및 유리전이온도에 따라 건조 온도는 적절하게 선택할 수 있음은 물론이다. 상기 건조 온도가 너무 낮으면 건조 효과가 없으며, 반대로 건조 온도가 필요 이상으로 높으면 원료의 특성이 변화되어 적절하지 않다. 원료의 건조 시간은 0.5 내지 5 시간 범위일 수 있으나, 주변 습도 등을 고려하여 용이하게 선택할 수 있다.
건조된 원료는 압출 설비 입구부에 위치하는 원료 저장소(호퍼)로 원료 공급이 이루어질 수 있다. 경우에 따라서는, 원료에 포함될 수 있는 불순물을 일차적으로 제거하기 위하여 저장소에서 일차적으로 공기를 순환시키면서 여과장치를 거칠 수 있다.
투입된 원료가 압출 설비 내부의 스크류의 첫 번째 구간에 채워진다. 첫 번째 구간은 원료를 압출설비 실린더로 이송시키는 역할을 한다.
이후, 두 번째 구간은 원료의 용융이 시작되는 구간으로, 필름 원료의 유리전이온도 이상의 온도로 설정하는 것이 바람직하다.
세 번째 구간은 원료가 용융물로 완전히 전환되는 역할을 하는 구간으로 온도 설정은 두 번째 구간과 동일한 범위를 유지할 수 있다.
네 번째 구간은 용융된 원료를 압력을 높게 하여 용융물의 밀도를 높여, 안정적인 토출량을 확보하는 역할을 한다. 이 과정에서도 토출되는 용융물이 경화되지 않도록 온도 조건은 상기 두 번째 및 세 번째 구간과 동일한 범위를 유지할 수 있다.
경우에 따라서는, 용융물을 일정한 양씩 티다이로 이송해주는 기어펌프 구간을 통과한다. 압출 설비의 실린더 내부 스크류를 통하여 바로 티다이로 원료가 이송되면 순간적인 원료 이송량이 불규칙하여 우수한 품질의 제품을 얻을 수 없다. 따라서, 기어펌프는 압출 설비 실린더로부터 불규칙하게 투입되는 원료를 일정 공간에 저장하였다가 일정한 양의 용융물을 티다이로 안정적으로 공급하여 압력 분포의 변화를 최소화할 수 있다.
용융물이 최종적으로 압출 설비 밖으로 토출되는 구간이 티다이 구간이다. 티다이의 형태에 따라서 필름의 형상 및 제조 두께가 결정된다. 티다이의 형태는 "T자"형 다이, 옷걸이 형태(coat hanger) 다이, 물고기 꼬리형태(fish tail) 다이 등으로 구분할 수 있지만, 이들만으로 한정되는 것은 아니다. 티다이의 종류는 용융물의 흐름성 등에 따라 선택적으로 사용이 가능하다.
비연신 폴리에스테르계 필름을 연신하는 단계(S20)는 당업계의 일반적인 습식 연신법 및/또는 건식 연신법을 이용할 수 있다.
상기 건식 연신법의 비제한적인 예로는, 롤간(inter-roll) 연신법, 가열 롤(heating roll) 연신법, 압축 연신법, 텐터(tenter) 연신법 등을 들 수 있고, 상기 습식 연신법의 비제한적인 예로는, 텐터 연신법, 롤간 연신법 등을 들 수 있다.
상기 습식 연신법의 경우, 알코올류, 물 또는 붕산 수용액에서 연신할 수 있으며, 예를 들어, 메틸알코올, 프로필알코올 등의 용매를 사용할 수 있으나, 이들만으로 한정되는 것은 아니다.
또한, 연신하는 단계(S20)는 세로 일축 연신법, 가로 일축 연신법, 종횡 축차 이축 연신법, 종횡 동시 이축 연신법 등을 채용할 수 있다.
예시적인 실시예에서, 상기의 위상차 값을 가지기 위해서는 이축 연신법을 사용할 수 있고, 같은 이유로, 동시 이축 연신법을 사용할 수 있지만, 이것으로 한정되는 것은 아니다.
연신하는 단계(S20)의 연신비(MD:TD)는 소망하는 두께 범위 등에 따라 다를 수 있어 특별히 한정되는 것은 아니지만, 예를 들어, 2 : 1.5-2.5 내지 3 : 2.5-3.5 범위로 연신할 수 있다. 즉, MD 방향 연신율 대비 ±0.5배 범위로 TD 방향 연신율을 설정할 수 있다. 이 때, MD 방향 연신율은 2 내지 3배 범위일 수 있다.
이상 첨부된 도면을 참조하여 본 발명의 실시예들을 설명하였지만, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자는 본 발명의 그 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
제조예 1 내지 8 및 비교예 1 내지 10
폴리에틸렌 테레프탈레이트를 사용하여, 두께, 면내 위상차(Re), 두께방향 위상차(Rth) 및 Rth/Re(NZ)를 각각 하기 표 1의 수치로 각각 용융 압출 공정 및 동시 이축 연신법을 사용하여 제조하였고, 이를 요오드를 함유하는 폴리비닐알코올 편광자와 Θr-p 값을 하기 표 1의 수치로 접합하여 광학 필름을 제조하였다.
실험예 1
제조예 1 내지 8 및 비교예 1 내지 10에서 제조된 광학 필름에 무지개 얼룩이 시인되는지 여부를 파악하여 하기 표 1에 나타내었다.
표 1
두께 [㎛] Re [nm] Rth [nm] NZ Θr-p 값 무지개 얼룩 시인
제조예 1 30 18 2400 133.8 0.5 Level 0
제조예 2 25 76 2200 29.4 10.0 Level 0
제조예 3 28 80 2300 29.3 10.0 Level 0
제조예 4 30 80 2300 29.3 45.0 Level 0
제조예 5 30 80 2300 29.3 0.0 Level 0
제조예 6 30 300 2450 8.7 0.0 Level 1
제조예 7 25 150 2312 15.9 0.0 Level 0
제조예 8 33 450 2450 5.9 0.0 Level 1
비교예 1 38 1608 7146 4.9 7.8 Level 2
비교예 2 100 8200 12000 2.0 0.5 Level 2
비교예 3 38 1800 7146 4.5 10.0 Level 2
비교예 4 38 1570 7146 5.1 1.0 Level 2
비교예 5 38 550 2700 5.4 1.0 Level 2
비교예 6 90 7000 11000 2.1 0.5 Level 2
비교예 7 38 1608 7146 4.9 45.0 Level 2
비교예 8 48 2841 4100 1.9 45.0 Level 2
비교예 9 30 600 3500 6.3 5.0 Level 2
비교예 10 33 700 4000 6.2 6.0 Level 2
Level 0: 무지개 얼룩 미시인
Level 1: 무지개 얼룩 약하게 시인되나, 적용 가능 수준
Level 2: 무지개 얼룩 시인, 적용 불가 수준
상기 표 1을 참조하면, 비교예 1 내지 10의 광학 필름은 모두 무지개 얼룩이 시인되어 적용이 불가능한 수준인 것을 알 수 있다. 특히, 비교예 2, 4, 5 및 6의 경우에는 Θr-p 값이 각각 0.5, 1.0, 1.0 및 0.5로 0에 근접함에도 불구하고 무지개 얼룩이 시인되어 적용이 불가능한 상태이다.
이와 반대로, 제조예 1 내지 8의 광학 필름은 무지개 얼룩이 시인되지 않거나, 일부 시인되더라도 그 정도가 약하여 적용 가능한 수준인 것을 확인할 수 있다. 특히, 실시예 4의 경우에는, Θr-p 값이 45.0으로 어긋나 있음에도 불구하고, 무지개 얼룩이 시인되지 않았다.
따라서, 본 발명의 광학 필름을 표시 장치의 시인 방향에 사용할 경우, 무지개 얼룩을 방지하고, 시인성을 개선할 수 있음을 알 수 있다.
이상에서 설명한 실시예들은 모두 예시적인 것이며, 서로 다른 실시예들은 상호 조합되어 적용될 수 있음은 물론이다.

Claims (13)

  1. 편광자 및 상기 편광자에 적층되는 보호필름을 적어도 하나 포함하고,
    상기 일면 또는 양면에 적층된 보호필름의 면내 위상차(Re)가 0 내지 500 nm 범위이고, 상기 일면 또는 양면에 적층된 보호필름의 두께방향 위상차(Rth)가 1,000 nm 내지 7,000 nm 범위인 광학 필름.
  2. 제 1 항에 있어서,
    상기 보호필름의 두께방향 위상차(Rth)가 1,000 nm 내지 2,500 nm 범위인 광학 필름.
  3. 제 1 항에 있어서,
    상기 보호필름의 면내 위상차(Re)가 5 nm 내지 500 nm 범위인 광학 필름.
  4. 제 1 항에 있어서,
    상기 보호필름이 폴리에스테르계 물질을 포함하는 광학 필름.
  5. 제 4 항에 있어서,
    상기 보호필름은 폴리에틸렌 테레프탈레이트계, 폴레에틸렌 나프탈레이트계, 또는 이들을 포함하는 공중합체인 광학 필름.
  6. 제 1 항에 있어서,
    상기 보호필름의 두께가 10 ㎛ 내지 80 ㎛ 범위인 광학 필름.
  7. 액정 셀,
    백라이트 유닛,
    상기 액정 셀과 백라이트 유닛 사이에 배치되는 하부 편광판, 및
    상기 액정 셀의 시인측에 배치되는 상부 편광판을 포함하고,
    상기 상부 편광판이 제1항의 광학 필름을 포함하는 액정 표시 장치.
  8. 제 7 항에 있어서,
    상기 광학 필름 중 면내 위상차(Re)가 0 내지 500 nm 범위이고, 두께방향 위상차(Rth)가 1,000 nm 내지 7,000 nm 범위인 보호필름이 상기 상부 편광판의 시인측에 위치하는 액정 표시 장치.
  9. 제 7 항에 있어서,
    상기 하부 편광판이 제1항의 광학 필름을 포함하는 액정 표시 장치.
  10. 제 9 항에 있어서,
    상기 광학 필름 중 면내 위상차(Re)가 0 내지 500 nm 범위이고, 두께방향 위상차(Rth)가 1,000 nm 내지 7,000 nm 범위인 보호필름이 상기 하부 편광판의 광원측에 위치하는 액정 표시 장치.
  11. 비연신 폴리에스테르계 필름을 제조하는 단계; 및
    상기 비연신 폴리에스테르계 필름을 연신하는 단계를 포함하는 보호필름의 제조방법.
  12. 제 11 항에 있어서,
    상기 연신하는 단계는 동시 이축 연신법으로 연신하는 보호필름의 제조방법.
  13. 제 11 항에 있어서,
    상기 연신 단계의 연신비(MD:TD)는 2 : 1.5-2.5 내지 3 : 2.5-3.5 범위인 보호필름의 제조방법.
PCT/KR2014/009623 2013-10-14 2014-10-14 광학 필름, 이를 포함하는 액정 표시 장치 및 이에 사용되는 보호필름의 제조방법 WO2015056950A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20130121980A KR20150043641A (ko) 2013-10-14 2013-10-14 광학 필름, 이를 포함하는 액정 표시 장치 및 이에 사용되는 보호필름의 제조방법
KR10-2013-0121980 2013-10-14

Publications (1)

Publication Number Publication Date
WO2015056950A1 true WO2015056950A1 (ko) 2015-04-23

Family

ID=52828333

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009623 WO2015056950A1 (ko) 2013-10-14 2014-10-14 광학 필름, 이를 포함하는 액정 표시 장치 및 이에 사용되는 보호필름의 제조방법

Country Status (2)

Country Link
KR (1) KR20150043641A (ko)
WO (1) WO2015056950A1 (ko)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20170040899A (ko) * 2015-10-06 2017-04-14 삼성에스디아이 주식회사 편광판 및 이의 제조방법
KR101943692B1 (ko) * 2015-11-04 2019-01-29 삼성에스디아이 주식회사 편광판 및 이를 포함하는 액정 표시 장치
KR101943701B1 (ko) * 2016-04-25 2019-01-29 삼성에스디아이 주식회사 편광자 보호 필름, 이를 포함하는 편광판 및 편광판을 포함하는 액정 표시 장치
TWI649591B (zh) 2016-05-31 2019-02-01 南韓商Skc股份有限公司 偏光件用保護膜、包含該膜之偏光板及具有該偏光板之顯示裝置
TWI784150B (zh) * 2018-03-28 2022-11-21 大陸商杉金光電(蘇州)有限公司 偏光板以及顯示器裝置
KR102275734B1 (ko) 2018-09-21 2021-07-08 주식회사 엘지화학 액정 표시 장치

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101160013B1 (ko) * 2009-11-27 2012-06-25 닛토덴코 가부시키가이샤 화상 표시 장치
KR20130040227A (ko) * 2010-06-22 2013-04-23 도요보 가부시키가이샤 액정표시장치, 편광판 및 편광자 보호 필름
KR20130074665A (ko) * 2011-12-26 2013-07-04 제일모직주식회사 편광판 및 이를 포함하는 액정 표시 장치
KR101283238B1 (ko) * 2008-10-31 2013-07-11 닛토덴코 가부시키가이샤 액정 표시 장치 및 편광판
KR101315530B1 (ko) * 2011-09-30 2013-10-08 다이니폰 인사츠 가부시키가이샤 액정 표시 장치 및 편광판 보호 필름

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101283238B1 (ko) * 2008-10-31 2013-07-11 닛토덴코 가부시키가이샤 액정 표시 장치 및 편광판
KR101160013B1 (ko) * 2009-11-27 2012-06-25 닛토덴코 가부시키가이샤 화상 표시 장치
KR20130040227A (ko) * 2010-06-22 2013-04-23 도요보 가부시키가이샤 액정표시장치, 편광판 및 편광자 보호 필름
KR101315530B1 (ko) * 2011-09-30 2013-10-08 다이니폰 인사츠 가부시키가이샤 액정 표시 장치 및 편광판 보호 필름
KR20130074665A (ko) * 2011-12-26 2013-07-04 제일모직주식회사 편광판 및 이를 포함하는 액정 표시 장치

Also Published As

Publication number Publication date
KR20150043641A (ko) 2015-04-23

Similar Documents

Publication Publication Date Title
WO2015186880A1 (ko) 광학 필름, 이를 포함하는 액정 표시 장치 및 이에 사용되는 보호필름의 제조방법
WO2015056950A1 (ko) 광학 필름, 이를 포함하는 액정 표시 장치 및 이에 사용되는 보호필름의 제조방법
KR101665163B1 (ko) 광학 필름, 이를 포함하는 액정 표시 장치 및 이에 사용되는 보호필름의 제조방법
WO2017091031A1 (ko) 편광자 보호필름, 편광판 및 이를 포함하는 표시장치
WO2015030393A1 (ko) 편광판, 이의 제조방법 및 이를 포함하는 액정표시장치
WO2017188552A1 (ko) 편광자 보호 필름, 이를 포함하는 편광판 및 편광판을 포함하는 액정 표시 장치
KR20120107482A (ko) 액정 표시 장치
KR101882558B1 (ko) 광학 필름 및 이를 포함하는 유기 발광 표시 장치
KR101624008B1 (ko) Va 모드 액정 디스플레이 디바이스
KR20150054495A (ko) 결함 검사 장치 및 이를 이용한 결함 검사 방법
WO2017078290A1 (ko) 편광판 및 이를 포함하는 액정 표시 장치
KR20120070339A (ko) 액정 디스플레이 및 편광판 제조방법
WO2017188592A1 (ko) 편광판 및 이를 포함하는 곡면 액정표시장치 및 곡면 액정표시장치의 제조방법
KR101730854B1 (ko) 편광자 보호 필름, 이를 포함하는 편광판, 및 이를 구비한 표시 장치
KR20150100183A (ko) 광학 필름, 이를 포함하는 액정 표시 장치 및 이에 사용되는 보호필름의 제조방법
KR101730856B1 (ko) 편광자 보호 필름, 이를 포함하는 편광판, 및 이를 구비한 표시 장치
WO2017061696A1 (ko) 편광판 및 이의 제조방법
WO2020060263A1 (ko) 액정 표시 장치
KR101675124B1 (ko) 보호 필름 및 이를 사용하여 표시 장치를 제조하는 방법
KR101892333B1 (ko) 광학 필름, 이를 포함하는 표시 장치 및 광학 필름의 제조방법
WO2015046936A1 (ko) 광학 필름 및 그 제조방법
US9833983B2 (en) Polarizing plate comprising an external surface bonded to a glass substrate of a liquid crystal cell without aid of an additional member
KR20150093386A (ko) 광학 필름, 이를 포함하는 액정 표시 장치 및 이의 제조방법
KR102291819B1 (ko) 편광판 제조용 폴리에스테르 보호필름과 이를 이용한 편광판
KR101802869B1 (ko) 편광자 보호 필름, 이를 포함하는 편광판, 및 이를 구비한 표시 장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14853925

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14853925

Country of ref document: EP

Kind code of ref document: A1