WO2015056308A1 - Fastening member for fitted structure, fitted structure, and structural body comprising fastening member for fitted structure - Google Patents

Fastening member for fitted structure, fitted structure, and structural body comprising fastening member for fitted structure Download PDF

Info

Publication number
WO2015056308A1
WO2015056308A1 PCT/JP2013/078010 JP2013078010W WO2015056308A1 WO 2015056308 A1 WO2015056308 A1 WO 2015056308A1 JP 2013078010 W JP2013078010 W JP 2013078010W WO 2015056308 A1 WO2015056308 A1 WO 2015056308A1
Authority
WO
WIPO (PCT)
Prior art keywords
wedge
frp
penetrating
ring
fastening
Prior art date
Application number
PCT/JP2013/078010
Other languages
French (fr)
Japanese (ja)
Inventor
博 青山
泰樹 北
Original Assignee
株式会社日立製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立製作所 filed Critical 株式会社日立製作所
Priority to PCT/JP2013/078010 priority Critical patent/WO2015056308A1/en
Priority to JP2015542435A priority patent/JPWO2015056308A1/en
Publication of WO2015056308A1 publication Critical patent/WO2015056308A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B2/00Friction-grip releasable fastenings
    • F16B2/02Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening
    • F16B2/14Clamps, i.e. with gripping action effected by positive means other than the inherent resistance to deformation of the material of the fastening using wedges
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16BDEVICES FOR FASTENING OR SECURING CONSTRUCTIONAL ELEMENTS OR MACHINE PARTS TOGETHER, e.g. NAILS, BOLTS, CIRCLIPS, CLAMPS, CLIPS OR WEDGES; JOINTS OR JOINTING
    • F16B7/00Connections of rods or tubes, e.g. of non-circular section, mutually, including resilient connections
    • F16B7/18Connections of rods or tubes, e.g. of non-circular section, mutually, including resilient connections using screw-thread elements
    • F16B7/182Connections of rods or tubes, e.g. of non-circular section, mutually, including resilient connections using screw-thread elements for coaxial connections of two rods or tubes

Definitions

  • the present invention relates to a fastening member for a fitting structure, a fitting structure, and a structure including a fastening member for the fitting structure.
  • FRP Fiber Reinforced
  • CFRP carbon fiber reinforced resin
  • CFRP carbon fiber reinforced resin
  • specific gravity is about 1/4 and the specific strength (mass specific strength) is about 10 times as excellent.
  • the weight is only 1/4 if it is the same volume, and only 10% if it is the same strength, and the strength can be 10 times stronger if it is the same weight.
  • FRP members are regarded as promising as an initiator (strategic resource) for strengthening not only the competitiveness of the product itself but also the industrial competitiveness of Japan, and consequently the competitiveness of the entire Japanese economy.
  • the bolt axial force is devised so as not to relax through a spring member in addition to the tapered washer.
  • the position of the bolt hole when the FRP member is bolted with a metal plate is selected to a dimension that does not cause destruction of the FRP member.
  • Patent Document 5 when bolts that are easily damaged such as FRP members are bolted, the nuts have a double structure and are free to rotate with each other. Is high.
  • the present invention solves the above-mentioned conventional problem, when an arbitrary hole is processed in the FRP structure, a pin or a bolt is passed through the hole, and a load is input in a direction perpendicular to the axis of the bolt Even in the case, the fastening member for the fitting structure, the fitting structure, and the fastening for the fitting structure are such that a force that compresses the member to be fastened is applied and the fastening state becomes stronger and the FRP hole portion is not destroyed. It aims at providing the structure which comprised the member.
  • a fitting member for a fitting structure to which the present invention is applied a fitting structure, and a structure including a fastening member for the fitting structure are inserted into a first member having an insertion portion.
  • a penetrating member to which load is input / transmitted a wedge member and a pressing member are inserted into the penetrating member as a set, and the insertion portion of the first member is sandwiched between the one set and the other set
  • the pressing member is directly or indirectly fixed to the penetrating member
  • the wedge member is interposed between the pressing member and the first member,
  • the contact surfaces of the pressing member and the wedge member are arranged so as to be in contact with each other, and are configured to form a predetermined angle other than 90 degrees with respect to the axis of the penetrating member in a cross-sectional view.
  • a fastening member for a fitting structure, a fitting structure, and a structure including a fastening member for the fitting structure can be provided.
  • FIG. 2 is a cross-sectional view taken along the line XX in FIG. 1 and is a cross-sectional view of the FRP fitting structure according to the first embodiment of the present invention. It is a schematic diagram explaining the dynamic mechanism based on 1st Embodiment of this invention. It is sectional drawing of the FRP fitting structure based on 2nd Embodiment of this invention. It is sectional drawing of the FRP fitting structure based on 3rd Embodiment of this invention.
  • FIG. 13 is a cross-sectional view taken along line YY in FIG. 12. It is sectional drawing of the FRP fitting structure based on 9th Embodiment of this invention.
  • the FRP fitting structure in which the first member is an FRP member is illustrated as an example of the fastening member for the fitting structure, the fitting structure, and the structure including the fastening member for the fitting structure according to the embodiment of the present invention. Will be described in detail.
  • FRP may be carbon fiber CFRP, glass fiber GFRP, silicon carbide fiber SiCFRP, alumina fiber Al 2 O 3 FRP, and aramid fiber AFRP, but is not limited thereto.
  • the present invention can also be applied to members other than the FRP, or fastening that combines the FRP member and the metal member.
  • FIG. 1 is an overall perspective view of the FRP fitting structure according to the present invention
  • FIG. 2 is an exploded view of an A part and a B part which are the main parts of FIG. Details of the application example of this structure will be described later with reference to FIG. 22 and subsequent figures.
  • a lattice structure grating
  • the FRP plate-like body 1 and the FRP pipe 16 having (C part and D part in FIG. 22), and it is applicable to such a part.
  • a hole (insertion portion) 2 through which a pin or bolt having a circular shape in cross section as the penetrating member 11 passes is formed in the FRP plate 1 that is a fitting type plate.
  • the shape of the hole (insertion portion) 2 may be any shape that allows the penetrating member 11 to pass therethrough, and is not particularly limited. That is, the cross-sectional view may be circular, or the cross-sectional view may have a U-shaped cutout groove.
  • a sleeve 7 is inserted on the outer periphery of the penetrating member 11 as a buffer protection material.
  • the penetrating member 11 may be considered as a component formed by sheathing a separate sleeve 7.
  • 3 is a case where a load acts on the penetrating member 11 in a direction perpendicular to the central axis of the penetrating member 11, for example, the FRP plate 1 is damaged, and fiber breakage has occurred. It is a schematic diagram.
  • the sleeve 7 prevents the penetrating member 11 and the hole 2 of the FRP plate-like body 1 from coming into direct contact and makes it difficult to cause such destruction.
  • the case where a load is applied to the penetrating member 11 in a direction perpendicular to the central axis of the penetrating member 11 is considered.
  • the reason is that the FRP pipe 16 is point-connected to a pin that is the penetrating member 11, for example. This is because the load / load F is first input to the pin which is the penetrating member 11 as shown in FIG.
  • a case where the load is transmitted in the order from the FRP plate 1 to the penetrating member 11 can be considered, but even in that case, a mechanism after the load F is transmitted to the penetrating member 11. Can be considered in exactly the same manner as described in the present embodiment.
  • the sleeve 7 is processed with a thread groove 8 (not shown; details will be described later), and a pressing ring 10 can be fitted therein.
  • the wedge ring 9 can be sandwiched between the holding ring 10.
  • the holding ring 10 is fitted into the thread groove 8 of the sleeve 7, and the wedge ring 9 is sandwiched and inserted into the hole 2 of the FRP plate 1.
  • the FRP plate 1 is sandwiched in the order of the wedge ring 9 and the pressing ring 10, and the pressing ring 10 is fitted into the thread groove 8 of the sleeve 7.
  • Part B of FIG. 1 is a schematic diagram when assembled in this manner.
  • FIG. 4 is a cross-sectional view taken along the line XX of FIG.
  • a circular hole 2 is formed in the FRP plate-like body 1, and a cylindrical sleeve 7 passes therethrough. Therefore, the radius of the cylindrical outer peripheral surface of the sleeve 7 is smaller than the radius of the hole 2.
  • a penetration member 11 having a circular cross section penetrates the sleeve 7.
  • a thread groove 8 is formed on the outer peripheral surface of the sleeve 7.
  • the wedge ring 9 and the pressing ring 10 are arranged in contact with each other so as to sandwich the FRP plate 1. That is, when the wedge member 9 and the pressing member 10 are used as a pair and two sets of annular members are considered, the annular member is inserted into the penetrating member, and the insertion in the FRP plate-like body (first member) 1 is performed. The part is disposed so as to be sandwiched between the pair on one side and the pair on the other side.
  • a thread groove 8 that fits into the screw groove 8 carved on the outer peripheral surface of the sleeve 7 is processed, so that the sleeve 7 and the holding ring 10 are completely fitted to each other. The position of is fixed.
  • the central axis of the penetrating member 11 is M
  • the central axis of the thickness of the FRP plate 1 is N
  • the regions corresponding to the first quadrant to the fourth quadrant when the coordinate axes are taken in this way are the I regions.
  • ⁇ IV region That is, the right front region is the I region, the left front region is the II region, the left rear region is the III region, and the right rear region is the IV region.
  • the I region has a line-symmetric structure with the II region with respect to the axis N, and similarly has a line-symmetric structure with the IV region with respect to the axis M.
  • the II region has a line symmetric structure with the I region with respect to the axis N, and similarly has a line symmetric structure with the III region with respect to the axis M.
  • the III region has a line symmetric structure with the IV region with respect to the axis N, and similarly has a line symmetric structure with the II region with respect to the axis M.
  • the IV region has a line symmetric structure with the region III with respect to the axis N, and is similarly formed so as to have a line symmetric structure with the I region with respect to the axis M.
  • the I region will be described in detail. Other areas will be described later, but they can be understood in sequence as the I area and the left and right line symmetrical structures.
  • the contact surface (tapered surface) between the wedge ring 9 and the pressing ring 10 makes a predetermined angle ⁇ greater than 0 ° and smaller than 90 ° with respect to the central axis M of the sleeve 7 or the penetrating member 11. Configured (ie, 0 ° ⁇ ⁇ 90 °).
  • the holding ring 10 is fixed so as to fit into the thread groove 8 of the sleeve 7. That is, when the penetrating member 11 and the sleeve 7 receive a load in a direction perpendicular to the axis M and attempt to move in the load direction, the pressing ring 10 is completely interlocked with the movement, and similarly the load direction Configured to move to.
  • FIG. 5 is a schematic diagram for explaining a mechanical mechanism when, for example, a load F11 is input to the penetrating member 11 of FIG. 4 in a direction perpendicular to the axis M (rearward).
  • the penetrating member 11 receives a load F11 that is a load and moves in the load direction.
  • the outer peripheral surface of the penetrating member 11 comes into contact with the inner peripheral surface of the sleeve 7 soon after.
  • This gap is a convenient gap for inserting the sleeve 7 into the penetrating member 11.
  • the penetrating member 11 pushes the entire sleeve 7 backward in the load direction according to the load F11. Furthermore, since the pressing ring 10 is fixed to the sleeve 7 via the screw groove 8, the pressing ring 10 is also pushed down in the load direction in conjunction with the movement of the sleeve 7.
  • the holding ring 10 fixed to the sleeve 7 tries to move in the direction of the load F11 input in a direction perpendicular to the axis M of the penetrating member 11 (F12).
  • the contact surface of the holding ring 10 and the wedge ring 9 is formed to be an inclined surface having an inclination angle ⁇ (an angle ⁇ formed with the axis M)
  • the wedge ring 9 is FRP as a component force of the force F12.
  • the component force F13 in a direction that compresses the plate-like body 1 can be generated.
  • the II region is formed into a line-symmetric structure via the I region and the axis N. Therefore, for example, when the load F11 is continuously input to the penetrating member 11 in the direction perpendicular to the axis M (rearward), the penetrating member 11 moves the entire sleeve 7 rearward in the load direction according to the load F11. Press down. Furthermore, since the pressing ring 10 is fixed to the sleeve 7 via the screw groove 8, the pressing ring 10 is also pushed down in the load direction in conjunction with the movement of the sleeve 7.
  • the holding ring 10 fixed to the sleeve 7 tries to move in the direction of the load F11 input in a direction perpendicular to the axis M of the penetrating member 11 (F12).
  • the contact surface of the holding ring 10 and the wedge ring 9 is formed to be an inclined surface having an inclination angle ⁇ (an angle ⁇ formed with the axis M), so that the wedge ring is used as a component force of the force F12. It is possible to generate a component force F13 in such a direction that 9 compresses the FRP plate 1.
  • the III and IV regions have a point symmetry and a line symmetry, respectively, from the I region.
  • the acting direction of the force F12 received by the holding ring 10 fixed to the thread groove 8 of the sleeve 7 is, for example, that the load F11 is continuously applied to the penetrating member 11 in a direction perpendicular to the axis M (rearward).
  • the direction is exactly the same as F12 in the I region.
  • the F12 in the III region and the IV region have the same size as the F12 in the I region, but the orientation is not symmetric and is asymmetric.
  • the contact surface (tapered surface) between the wedge ring 9 and the pressing ring 10 is a predetermined angle ⁇ (ie, greater than 0 ° and smaller than 90 ° with respect to the central axis M of the sleeve 7 or the penetrating member 11). Even if it is formed so that 0 ° ⁇ ⁇ 90 °), the force F12 acting on the holding ring 10 generates the component force F13 that compresses the FRP plate-like body 1 through the wedge ring 9. I will not let you.
  • the direction of the load F11 is A component force F13 in a direction that compresses the FRP plate-like body 1 is applied to the wedge ring 9 at the opposite position as a component force of the force F12.
  • FRP generally shows excellent characteristic values.
  • the compressive strength with respect to the fiber lamination direction is very large, the fiber is brittle with respect to the load in the fiber non-lamination direction, which is a direction orthogonal to the fiber lamination direction, and easily breaks.
  • the FRP plate-like body 1 having such properties, it is unavoidable that the FRP plate-like body 1 is not integrally formed, and even when one or a plurality of FRPs or different members are fastened, if the invention of this embodiment is applied, A part of the load F11 input in the fiber non-stacking direction via the penetrating member 11 may be converted into a component force F13, which is a compressive force in the fiber stacking direction of the FRP plate-like body 1, and transferred. it can.
  • the component force F13 increases as the load displacement amount of the penetrating member 11 increases because the tapered surfaces of the pressing ring 10 and the wedge ring 9 have the inclination angle ⁇ .
  • the wedge ring 9 strengthens the FRP plate-like bodies 1 with each other so that the penetrating member 11 or the sleeve 7 is not displaced further in the direction of the load F11. It will be sandwiched by force and will function as a stopper.
  • the FRP member was divided into the invention of the present embodiment even in situations where the FRP member was actively hesitant to use due to various restrictions such as size increase and cost increase.
  • the fitting and fastening shown there is a possibility of becoming an initiating agent that promotes the conversion of the material to the FRP member.
  • the strength of the fastening force can be controlled by adjusting the fastening torque at the time of screw fastening. .
  • FIG. 6 is a cross-sectional view of the FRP fitting structure according to the second embodiment.
  • the difference from the first embodiment is that the sleeve 7 is eliminated or the penetrating member 12 is integrated with the sleeve 7 and the penetrating member 11. That is, the thread groove 8 is processed in a part or all of the outer peripheral surface of 12.
  • Other configurations are the same as those in the first embodiment.
  • the screw groove 8 fitted into the screw groove 8 on the outer peripheral surface of the penetrating member 12 is processed on the inner peripheral surface of the pressing ring 10. Note that the cylindrical shape of the penetrating member 12 is depicted in FIG. 6 in which the portion of the fitting region with the holding ring 10 by the thread groove 8 is expanded in diameter compared to the diameter of both end portions of the penetrating member 12. .
  • the thread groove 8 may be carved from both ends of the penetrating member 12 to a position (predetermined fixed position) where the pressing ring 10 is to be mounted. .
  • the distance to cut the thread groove 8 can be made shorter than this.
  • the manufacturing time can be shortened and the working efficiency can be improved, and the wear rate of the blade that engraves the thread groove 8 can be reduced and the life of the blade replacement can be extended, thereby contributing to the suppression of capital investment costs. It becomes possible to do.
  • the contact surface (tapered surface) between the wedge ring 9 and the pressing ring 10 is configured to form a predetermined angle ⁇ greater than 0 ° and smaller than 90 ° with respect to the axis of the penetrating member 12. (That is, 0 ° ⁇ ⁇ 90 °).
  • the holding ring 10 is fixed so as to be fitted into the thread groove 8 carved in the penetrating member 12. That is, when the penetrating member 12 receives a load in a direction perpendicular to the axis and tries to move in the load direction, the pressing ring 10 is completely interlocked with the movement and similarly moves in the load direction. It is configured as follows.
  • a part of the load acting in the direction perpendicular to the axis of the penetrating member 12 with the thread groove 8 is converted into a compressive force in the fiber lamination direction of the FRP plate 1 as a component force. Is done. For this reason, destruction at the hole 2 can be prevented, and the strength reliability is improved.
  • the penetrating member 12 and the pressing ring 10 are screw-fastened, there is an effect that the fastening force can be easily controlled and maintained. Further, since the penetrating member 12 is directly fixed to the pressing ring 10 without using the sleeve 7, the number of parts can be reduced to reduce the cost, the assembly man-hour can be reduced, and the work efficiency can be improved. Can do.
  • FIG. 7 is a cross-sectional view of the FRP fitting structure according to the third embodiment.
  • the difference from the second embodiment (FIG. 6) is that the penetrating member 12 has a columnar shape, but the penetrating member 13 has a hollow cylindrical shape around its central axis, and has a cylindrical shape.
  • Different parts. Other parts are the same as in the second embodiment.
  • the thread groove 8 is processed in part or all of the outer peripheral surface of the penetrating member 13.
  • a wedge ring 9 and a holding ring 10 are arranged so as to sandwich the FRP plate 1.
  • the inner circumferential surface of the pressing ring 10 is processed with the thread grooves 8 that fit into the thread grooves 8 on the outer circumferential surface of the penetrating member 13.
  • the tapered surface where the wedge ring 9 and the pressing ring 10 are in contact is configured to form a predetermined angle ⁇ greater than 0 ° and smaller than 90 ° with respect to the axis of the penetrating member 13 (that is, 0 ° ⁇ ⁇ 90). °).
  • the holding ring 10 is fixed so as to be fitted into the thread groove 8 carved in the penetrating member 13. That is, when the penetrating member 13 receives a load in a direction perpendicular to the axis and tries to move in the load direction, the pressing ring 10 is completely interlocked with the movement and similarly moves in the load direction. It is configured as follows.
  • a part of the load acting in the direction perpendicular to the axis of the penetrating member 13 with the thread groove 8 is converted into a compressive force in the fiber lamination direction of the FRP plate 1 as a component force. Is done. For this reason, destruction at the hole 2 can be prevented, and the strength reliability is improved.
  • the penetrating member 13 and the pressing ring 10 are screw-fastened, there is an effect that the fastening force can be easily controlled and maintained.
  • the penetrating member 13 is directly fixed to the holding ring 10 without the sleeve 7, the number of parts can be reduced to reduce the cost, the assembly man-hour can be reduced, and the work efficiency can be improved. Can do.
  • the penetrating member 13 is hollow around the central axis, the penetrating member 13 itself can be reduced in weight. Thereby, while being able to reduce the material cost of the penetration member 13, it can contribute to the weight reduction of the whole structure.
  • FIG. 8 is an enlarged cross-sectional view of the wedge ring 94 in the fourth embodiment.
  • the wedge ring 9 in FIG. 4 first embodiment
  • FIG. 6 second embodiment
  • FIG. 7 third embodiment
  • the same components as those in the first to third embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the wedge ring 94 of the present embodiment is provided with a plurality of protrusions 14 on the surface side in contact with the FRP plate 1 along the circumferential surface of the ring.
  • This wedge ring 94 is used in exchange for the wedge ring 9 of FIG. 4 (first embodiment), FIG. 6 (second embodiment), and FIG. 7 (third embodiment), for example.
  • the wedge ring 9 on only one side may be replaced. However, if it is replaced, it is more preferable to replace both sides because the component force for compressing the FRP plate 1 is equally applied. is there.
  • the load resistance until the penetrating members 11, 12, 13 or the sleeve 7 directly contact the inner peripheral surface of the hole 2 of the FRP plate-like body 1 can be further increased.
  • the greater the load resistance the greater the magnitude of the compressive component force F13 in the fiber lamination direction depending on the inclination angle ⁇ of the tapered surface.
  • the wedge rings 94 further function as anti-slip stoppers, can suitably prevent local breakage in the hole 2, and further improve the strength reliability of the FRP plate 1. Give birth.
  • FIG. 9 is an enlarged cross-sectional view of the wedge ring 95 according to the fifth embodiment.
  • FIG. 8 (fourth embodiment) differs from FIG. 8 in that there is no plurality of protrusions 14 provided on the ring peripheral surface, and a friction plate 15 is provided instead. All other parts are the same as in the fourth embodiment. Note that the same components as those in the first to fourth embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • the wedge ring 95 of the present embodiment is impregnated with an epoxy resin in a cloth woven with orthogonal organic fibers on the surface side in contact with the FRP plate 1 along the circumferential surface of the ring, and heated and pressed. A molded friction plate 15 is fixed.
  • organic fiber for example, a fiber manufactured from polybenzimidazole, polyparaphenylenebenzobisoxazole, aromatic polyamide, polyarylate, aromatic polyester, or the like can be used.
  • These organic fibers may be long fibers or may be cut as short as about 1 mm to 10 mm.
  • the load resistance until the penetrating members 11, 12, 13 or the sleeve 7 directly contact the inner peripheral surface of the hole 2 of the FRP plate-like body 1 can be further increased.
  • the greater the load resistance the greater the magnitude of the compressive component force F13 in the fiber lamination direction depending on the inclination angle ⁇ of the tapered surface.
  • the wedge ring 94 according to the fourth embodiment when used in a state in which the excess weight F11 is repeatedly and periodically applied to the penetrating members 11, 12, and 13, the FRP plate-like body 1 in the fiber lamination direction is used. Synchronously with the force F13 which is a compression (surface pressure) component force, ON / OFF of the input is periodically repeated, so that a strong frictional force by the protrusion 14 causes the contact surface between the wedge ring 94 and the FRP plate-like body 1 There is a risk that it will eventually wear out and eventually break down.
  • F13 which is a compression (surface pressure) component force
  • the organic fiber has a smaller friction coefficient than the protrusion 14 and has a stable friction coefficient for a long time.
  • FRP friction plate 15 it is possible to suitably prevent wear destruction of the holes 2.
  • the friction coefficient of the smooth plate of the wedge ring 9 in the first to third embodiments is ⁇ 1
  • the friction coefficient of the protrusion 14 of the wedge ring 94 in the fourth embodiment is ⁇ 4
  • the wedge ring 95 in the present embodiment is Assuming that the friction coefficient by the friction plate 15 is ⁇ 5, a friction coefficient having a magnitude relationship satisfying ⁇ 1 ⁇ 5 ⁇ 4 is ideal.
  • the friction coefficient of the smooth plate of the wedge ring 9 in the first to third embodiments is ⁇ 1
  • the friction coefficient of the projection 14 of the wedge ring 94 in the fourth embodiment is ⁇ 4
  • the friction plate 15 of the wedge ring 95 in the present embodiment Assuming that the coefficient of friction is ⁇ 5, the FRP friction plate 15 having a size relationship satisfying ⁇ 1 ⁇ 5 ⁇ 4 is used.
  • the first member in the first embodiment is composed of a second member and a third member that both have the insertion portion 2 and are overlapped so that the insertion portions of each other coincide with each other.
  • a case is considered where the load input is performed not from the through member but from the peripheral surface of the pipe.
  • the pipes are not limited to different types but may be the same type.
  • any one of the pipes is an FRP pipe will be described, but the FRP pipe is not necessarily included.
  • the same components as those in the first to fifth embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 10 is a cross-sectional view of the joint between the FRP pipe 16 and the metal pipe 17.
  • the FRP pipe (second member) 16 is fitted so as to overlap the outer peripheral portion of the metal pipe (third member) 17. That is, the FRP pipe (second member) 16 and the metal pipe (third member) 17 are arranged so that the axial directions thereof coincide.
  • a plurality of bolt holes 18 are machined in the circumferential direction in the overlapping portion between the two. It should be noted that the bolt hole 18 is formed in the overlapping portion of the FRP pipe 16 and the metal pipe 17 so as to follow the hoop shapes of an outer ring wedge hoop 21 and an outer ring holding hoop 19 as described later, and an inner ring wedge hoop 22 and an inner ring holding hoop 20. Is to be processed.
  • the outer ring holding hoop 19 is provided on the outer peripheral side of the FRP pipe 16, and the inner ring holding hoop 20 is provided on the inner peripheral side of the metal pipe 17.
  • An outer ring wedge hoop 21 is inserted between the outer ring holding hoop 19 and the FRP pipe 16, and the contact surface (tapered surface) between the outer ring wedge hoop 21 and the outer ring holding hoop 19 is relative to the axis of the penetrating member 23.
  • the predetermined angle ⁇ is larger than 0 ° and smaller than 90 ° (that is, 0 ° ⁇ ⁇ 90 °).
  • an inner ring wedge hoop 22 is inserted between the inner ring holding hoop 20 and the metal pipe 17, and the contact surface (tapered surface) between the inner ring wedge hoop 22 and the inner ring holding hoop 20 is the axis of the penetrating member 23.
  • a predetermined angle ⁇ greater than 0 ° and smaller than 90 ° is formed (that is, 0 ° ⁇ ⁇ 90 °).
  • the penetrating member 23 in the present embodiment is, for example, a surface pressure imparting bolt 23 provided so as to penetrate the bolt hole 18.
  • the surface pressure imparting bolt 23 is cut with a thread groove 8 so that the nut 24 can be fitted thereto, whereby the surface pressure imparting bolt 23 and the nut 24 are fixed.
  • the diameters of the FRP pipe 16 and the metal pipe 17 with respect to the outer ring pressing hoop 19 the outer ring wedge hoop 21, the FRP pipe 16, the metal pipe 17, the inner ring wedge hoop 22, and the inner ring pressing hoop 20. It is fastened and fixed so that a surface pressure is applied outward in the direction.
  • the pressing member (pressing ring 10) and the penetrating members 11 to 13 are fitted through the screw grooves 8, respectively, and their mutual positions are completely fixed.
  • the contact portion between the pressing member (outer ring pressing hoop 19 and inner ring pressing hoop 20) and the penetrating member (surface pressure applying bolt 23) may or may not be fixed. Also good.
  • the force which compresses the pipe 16 and the metal pipe 17 also becomes large. As a result, the FRP pipe 16 and the metal pipe 17 are hardly displaced.
  • a seventh embodiment of the present invention will be described with reference to FIG. Also in this embodiment, the pipes are not limited to different types, but may be the same type. In the following, a case where any one of the pipes is an FRP pipe will be described, but the FRP pipe is not necessarily included.
  • the same components as those in the first to sixth embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 11 is a cross-sectional view of the joint between the FRP pipe 16 and the metal pipe 17.
  • the present embodiment is different from the sixth embodiment in that a pressing member and a nut are integrated, and a tapered nut 25 is fitted to a penetrating member (surface pressure applying bolt) 23 via a thread groove 8.
  • the wedge member is not a hoop shape but a ring shape. That is, the wedge ring 9 is arranged so as to surround the penetrating member 23. Other points are the same as in the sixth embodiment.
  • the FRP pipe (second member) 16 is fitted so as to overlap the outer peripheral portion of the metal pipe (third member) 17. That is, the FRP pipe (second member) 16 and the metal pipe (third member) 17 are arranged so that the axial directions thereof coincide. Further, a plurality of bolt holes 18 are machined in the circumferential direction in the overlapping portion between the two. A surface pressure applying bolt 23 is passed through the bolt hole 18, and a tapered nut 25 is fastened to the surface pressure applying bolt 23 via the wedge ring 9.
  • the wedge ring 9 is about to move in the axial direction, so that the FRP pipe 16 and the metal pipe 17 are pressed against the wedge ring 9 by the inclined surface applied to the tapered nut 25.
  • the reaction force received from the tapered nut acts.
  • the FRP pipe 16 has an effect that it is difficult to pull out from the metal pipe 17. Further, even if the cross section of the FRP pipe 16 is unavoidably not completely circular due to thermal deformation or restrictions at the time of manufacture, a compression surface pressure is generated at each portion where the surface pressure applying bolt 23 is locally fastened. Therefore, the effect that the fastening of a large-sized structure becomes easy is also produced.
  • the holding members 19 and 20 and the wedge members 21 and 22 have a hoop shape along the peripheral surfaces of the FRP pipe 16 and the metal pipe 17, the FRP pipe 16 and the metal pipe 17 can be cut.
  • the pressing member 25 and the wedge member 9 have a ring shape surrounding the penetrating member 23. For this reason, the FRP pipe 16 and the metal pipe 17 have an advantage that there is no problem even if they are cut.
  • FIG. 12 is a plan view (top view) of the FRP plate 1 according to the present embodiment
  • FIG. 13 is a cross-sectional view taken along arrow YY in FIG.
  • the FRP plate 1 is provided with a hole 2 having an arbitrary shape.
  • the wedge plate 3 is in contact with the hole 2 in between.
  • the wedge plate 3 is a wedge member and is also an annular member that surrounds a penetrating member 5 described later.
  • the surface of the wedge plate 3 that is not in contact with the FRP plate 1 has a predetermined inclination angle ⁇ greater than 0 ° and smaller than 90 ° with respect to the axis of a penetrating member (polygonal pin) 5 described later ( Taper surface). (That is, 0 ° ⁇ ⁇ 90 °).
  • the wedge plate 3 is in contact with the holding plate 4.
  • the contact surface of the pressing plate 4 is processed so as to be in uniform contact with the tapered surface of the wedge plate 3.
  • the pressing plate 4 is a pressing member and is also an annular member that surrounds a penetrating member 5 described later.
  • Two holding plates 4 are prepared in the vertical direction so as to sandwich the FRP plate 1 and are fastened to each other by the heads of bolts 6 or nuts.
  • a hole is processed in the vicinity of the center portion of the holding plate 4 and a polygonal pin 5 penetrates the hole.
  • a case is considered where a load is applied to the penetrating member (polygonal pin) 5 in a direction perpendicular to the axis of the penetrating member (polygonal pin) 5, for example.
  • the pressing plate 4 receives the load F from the penetrating member 5, the pressing plate 4 tends to slip.
  • the pressing plate 4 as a pressing member is restricted in movement in the vertical direction by the head or nut of the bolt 6 and is firmly fixed to the penetrating member 5 indirectly by the bolt 6 in the load direction.
  • the holding plate 4 is displaced following the direction of the load F by the movement of the polygonal pin 5 that is the penetrating member.
  • part of the load acting on the penetrating member 5 is converted into a compressive force in the fiber lamination direction of the FRP plate 1 and divided. For this reason, destruction at the hole 2 can be prevented, and the strength reliability is improved.
  • the penetration member 5 should just be arbitrary polygonal shapes.
  • the hole 2 through which the penetrating member 5 is passed may be an arbitrary shaped hole as long as the penetrating member penetrates the hole 2, and it is not necessarily required to be formed in a circular shape in a sectional view. Absent. Thereby, the fitting fastening structure of the FRP plate-shaped body 1 corresponding to the penetration member of various shapes can be provided.
  • the inclination angle ⁇ which is the angle formed by the tapered surfaces (contact surfaces) of the pressing ring 10 and the wedge ring 9 with the axis of the penetrating member 11, is opposite to that of the first embodiment shown in FIG. 90 ° ⁇ ⁇ 180 °), which is a so-called reverse taper type.
  • Other configurations are the same as those in the first embodiment.
  • the wedge ring 9 is provided in two sets on one side so as to contact the FRP plate 1 with the FRP plate 1 as a boundary, and the contact surface with the pressing ring 10 is the FRP plate. It is different in that it has a substantially mountain-shaped or umbrella-shaped tapered surface as viewed from 1. Other configurations are the same as those in the first embodiment.
  • the arrows in FIGS. 15 to 21 indicate, for example, when the load F acts on the penetrating member 11 in the Up direction or the Down direction, for example, the I region in the first embodiment of FIG.
  • the force acting on the wedge ring 9 and the holding ring 10 existing in the region corresponding to the region II is schematically drawn for reference. Actually, the force acts in the same manner on the wedge ring 9 and the pressing ring 10 existing in the region corresponding to the region III and the region IV in the first embodiment of FIG.
  • the Up direction means any one of 360 degrees
  • the Down direction means a direction opposite to the Up direction, that is, a direction opposite to the Up direction by 180 degrees.
  • the wedge rings 9 are drawn separately so that it can be seen that there are two pairs of wedge rings 9 per side with the FRP plate 1 as a boundary, but the contact surface with the holding ring 10 does not change. If so, two sets of wedge rings 9 may be combined and an integrated taper ring may be used.
  • a component force that compresses the FRP plate-like body 1 acts on the wedge ring 9 positioned on the opposite side to the load direction F applied in the direction perpendicular to the axis of the penetrating member 11. It was only. However, if configured as in this embodiment, regardless of the direction of the load applied to the penetrating member 11 in the direction perpendicular to the axis, the FRP plate-like body 1 is always attached to one of the two sets of wedge rings 9. It becomes possible to generate a component force that compresses.
  • FIG. 16 is a modification of FIG. Note that the same components as those in the first to tenth embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 16 is different from FIG. 15 in that the contact surface between the wedge ring 9 and the retaining ring 10 is configured to be a substantially valley-shaped or Y-shaped tapered surface when viewed from the FRP plate-like body 1. Is different. Other configurations are the same as those in FIG.
  • the wedge rings 9 are drawn separately so that it can be seen that there are two pairs of wedge rings 9 per side with the FRP plate 1 as the boundary, but the contact surface with the holding ring 10 is As long as it does not change, two sets of wedge rings 9 may be combined and an integrated taper ring may be used.
  • component forces that compress the FRP plate-like body 1 from each other can be applied from both the front and rear directions of the load F, and the FRP plate-like body 1 can be made stronger than in the first embodiment.
  • the special effect that it can restrain can be show
  • two sets of wedge rings 9 having the same cross-sectional shape and different diameters on one side so that the FRP plate-like body 1 is in contact with the FRP plate-like body 1 are bordered. (Or two stages if the vertical relationship is called a stage) is different. Other configurations are the same as those of the first embodiment.
  • wedge rings 9 is not limited to two as in this example.
  • FIG. 18 is a modification of FIG. Note that the same components as those in the first to tenth embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • FIG. 18 is different from FIG. 17 in that the inclination of the contact surface (taper surface) between the wedge ring 9 and the pressing ring 10 is formed in the opposite direction (that is, 90 ° ⁇ ⁇ 180 °).
  • Other configurations are the same as those in FIG.
  • the number of wedge rings 9 is not limited to two such sets.
  • the wedge ring 9 is provided with two sets (two steps) of rings having the same cross-sectional shape and different diameters on one side with the FRP plate 1 as a boundary. You can also see it.
  • the component force by which the wedge ring 9 compresses the FRP plate 1 can also be input from two locations per side, and the FRP plate 1 can be restrained more firmly than in FIG. There is an effect.
  • the press ring 10 can be separated from the eleventh embodiment of FIG. 17 corresponding to two sets of wedge rings per side with the FRP plate 1 as a boundary. It is different in the configuration. A thread groove 8 is carved in the separation portion so that it can be completely fitted. That is, each pressing ring 10 of the present embodiment is fixed directly or indirectly to the penetrating member 11. Other configurations are the same as those in the eleventh embodiment.
  • the number of the wedge ring 9 and the holding ring 10 is not limited to two sets per side as in this example.
  • the wedge ring 9 in the vicinity of the hole 2 of the FRP plate-like body 1 has a slightly larger inclination angle ⁇ 2, which is the angle formed by the tapered surface with the penetrating member, and the other annular member (ring) 9,
  • ⁇ 1 of the contact surface (taper surface) 10 is designed to be slightly smaller ( ⁇ 1 ⁇ 2)
  • the wedge ring 9 in the vicinity of the hole 2 of the FRP plate 1 is compressed by the FRP plate 1. It is possible to control the magnitude of the acting component force, such that the force works slightly weaker and the other wedge ring 9 has a slightly stronger component force.
  • FIG. 20 is a modification of FIG. Note that the same components as those in the first to eleventh embodiments are denoted by the same reference numerals, and redundant description is omitted.
  • angles ⁇ 1 and ⁇ 2 formed between the inclined surface (tapered surface) of the wedge ring 9 and the pressing ring 10 and the penetrating member 11 are in opposite directions (that is, 90 ° ⁇ 1 ⁇ 180 °). , 90 ° ⁇ 2 ⁇ 180 °).
  • Other configurations are the same as those in FIG.
  • the number of the wedge rings 9 and the holding rings 10 is not limited to two sets per side as in this example.
  • the wedge ring 9 in the vicinity of the hole 2 of the FRP plate-like body 1 has a slightly smaller inclination angle ⁇ 2, which is an angle formed by the tapered surface with the penetrating member, and the other annular member (ring) 9,
  • ⁇ 1 of the contact surface (taper surface) 10 is designed to be slightly larger ( ⁇ 1> ⁇ 2), the wedge ring 9 in the vicinity of the hole 2 of the FRP plate 1 is compressed by the FRP plate 1. It is possible to control the magnitude of the acting component force, such that the force works slightly weaker and the other wedge ring 9 has a slightly stronger component force.
  • This embodiment has a configuration in which the combination of the wedge ring 9 and the pressing ring 10 of the tenth embodiment (FIG. 15) is multi-staged through the thread groove 8 and provided with N stages (multiple sets). That is, each pressing ring 10 of the present embodiment is fixed directly or indirectly to the penetrating member 11. Other portions are the same as those in the tenth embodiment (FIG. 15).
  • FIG. 22 is a perspective view of the excavator 100.
  • the excavator 100 is an all-FRP electric excavator using the FRP pipe 16 and the FRP plate 1, and the material is the FRP pipe 16 and the metal plate, the metal pipe and the FRP plate 1, the metal pipe and the metal plate. Or a combination of the above.
  • a conventional hydraulic excavator may be used instead of the electric excavator.
  • the wheels may be rubber tires instead of the caterpillar 104.
  • the boom 101 portion corresponding to the working arm and the end portion (connection portion) of the arm 102 portion have a structure in which the FRP pipe 16 and the FRP plate 1 are combined.
  • the connecting portion between the boom 101 and the arm 102 has a grating (lattice structure) of the FRP plate 1 for weight reduction (see FIGS. 1 and 2 and FIG. 22 as appropriate). 22) As shown in part C of FIG. 22, the penetrating member 11 is passed through the hole 2, and the FRP pipe 16 extending to the boom 101 side or the arm 102 side is point-connected to the penetrating member 11. Yes. Thus, when the excavator 100 is in operation, the load F is input to the penetrating member 11 via the FRP pipe 16.
  • the connecting portion of the arm 102 and the tip basket 103 has a grating (lattice structure) of the FRP plate 1 for weight reduction, and penetrates the hole 2 as shown in part D of FIG.
  • the member 11 is passed through, and the FRP pipe 16 extending to the arm 102 side is connected to the penetrating member 11 by point connection.
  • the load F is input to the penetrating member 11 via the FRP pipe 16.
  • the gratings in which the FRP plate-like bodies 1 are combined in a lattice shape are provided at the connecting portion between the boom 101 and the arm 102 and the connecting portion between the tip bucket 103 and the arm 102. This is because the deformation is expected to be complicated, so that the grating is used to increase the rigidity by using the high strength characteristics of the FRP plate 1 in the fiber lamination direction.
  • the FRP pipe 16 is used in a portion where the deformation state is relatively uniform, and the weight reduction characteristics of the FRP are utilized to reduce the weight as much as possible.
  • FRP carbon fiber reinforced resin
  • GFRP glass fiber reinforced resin
  • SiCFRP silicon carbide fiber reinforced resin
  • Al 2 O 3 FRP alumina fiber reinforced resin
  • AFRP aramide fiber reinforced resin
  • the FRP fitting structure according to the first to third and eighth to thirteenth embodiments can be applied to such a part.
  • the FRP fitting structures according to the first to third and eighth to thirteenth embodiments may be applied in appropriate combination.
  • the wedge rings 94 and 95 described in the fourth or fifth embodiment may be used.
  • the weight reduction can reduce power consumption and extend battery consumption time. Thereby, for example, the operation time of the aircraft per day can be estimated long, and the working efficiency can be improved.
  • the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied, the large FRP member is divided, or the FRP member is manufactured as a small part from the beginning, and the assembly process ensures that Since it can be fastened, it has the potential to provide overwhelming portability.
  • the FRP member is built in as a small part in advance, only the part to be remodeled can be removed and replaced, so that the business opportunity can be captured while maintaining high rigidity at low cost. It is possible to respond to quick cuts and ad-hoc changes.
  • FIG. 23A is a perspective view of a wind turbine blade 200 of a conventional wind turbine for wind power generation
  • FIG. 23B is a perspective view of the wind turbine blade 200 of the wind turbine for wind power generation when the present invention is applied.
  • the wind turbine blade 200 mounted with the FRP blade 201 has already been put into practical use.
  • the connecting portion between the hub 202 and the FRP blade 201 uses a combination of flange fastening by a flange (not shown) provided on the hub 202 and bolt fastening by a blade mounting bolt 203 provided on the FRP blade 201. .
  • the blade mounting bolt 203 is unavoidable in order to prevent a case where the load is applied in the non-lamination direction of the FRP blade 201 fibers and breaks from the vicinity of the hole 2 for passing the penetrating member. At present, it is attached so as to be parallel to a direction orthogonal to the rotation direction of 201.
  • the centrifugal force acting on the FRP blade 201 and the direction of the blade mounting bolt 203 become the same direction.
  • the blade mounting bolt 203 is embedded and used in the same direction as the direction in which the FRP blade 201 is pulled out by centrifugal force, and the bolt fastening portion has little meaning with respect to the centrifugal force. It can be said that only the flange is fastened.
  • the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied to the connecting portion between the FRP blade 201 and the hub 202.
  • the FRP fitting structure according to the sixth or seventh embodiment can be applied.
  • the wedge rings 94 and 95 described in the fourth or fifth embodiment may be used.
  • the flange can be designed and the hub 202 itself can be reduced in weight.
  • the magnitude of the centrifugal force acting on the wind turbine blade 200 including the hub 202 and the FRP blade 201 can be reduced, and the FRP blade 201 can be protected.
  • FIGS. 24A and 24B are illustrations of the present invention.
  • 24A is a perspective view of the FRP blade 201 of the wind turbine for wind power generator to which the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied
  • FIG. 24B is a ZZ of FIG. 24A. It is a schematic diagram of an arrow cross section.
  • the outer surface of the wind turbine blade 200 for wind power generation is an FRP outer shell 204, and a metal support 205 is incorporated on the inner side to supplement the blade rigidity.
  • the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied as a method of fastening the metal support 205 and the FRP jacket 204.
  • the FRP fitting structure according to the first to third and eighth to thirteenth embodiments can be applied.
  • the FRP fitting structures according to the first to third and eighth to thirteenth embodiments may be applied in appropriate combination.
  • the wedge rings 94 and 95 described in the fourth or fifth embodiment may be used.
  • the wedge members 9, 21, 22, 94, 95, the pressing members 10, 19, 20, and the penetrating members 11, 12, 13, 23 corresponding to the embodiment of the present invention are fastened by appropriately selecting or combining them. be able to.
  • This configuration facilitates maintenance because it is easy to remove. Further, since no adhesive is used, the possibility of peeling off can be greatly reduced.
  • the windmill blade 200 can be made light and highly rigid, there is also an advantage that, for example, the diameter size of the windmill can be increased to capture the wind more reliably and increase the power generation efficiency.
  • FIG. 25A is a cross-sectional view illustrating a conventional schematic structure of centrifuge 300.
  • FIG. 25B is a schematic diagram when the FRP cylinder 310 is used in the rotary drum 305 portion of the centrifuge 300 and the FRP fitting structures according to the first to thirteenth embodiments of the present invention are applied.
  • the centrifuge 300 generally includes a bearing 301, an upper extraction pipe 302, a partition plate 303, a supply pipe 304, a rotary drum 305, a lower extraction pipe 306, a motor 307, and the like. It is configured to be covered with a so-called exterior member (for details, see the Atomic Energy Society of Japan HP: http://www.aesj.or.jp/ ⁇ recycle/nfctxt/nfctxt_3-2.pdf, page 4).
  • Centrifugal separation is performed by supplying a mixed gas such as UF 6 composed of a heavy component and a light component from a supply pipe 304, and rotating the rotating drum 305 through the upper and lower bearings 301 by a motor 307 as fast as possible. Let At this time, while the flow of the circulating countercurrent 309 generated inside the rotary drum 305 is restricted by the partition plate 303, the mixed gas is separated into light components and heavy components by centrifugal force, and extracted at the upper and lower portions, respectively. The separated gas is extracted from the tubes 302 and 306.
  • a mixed gas such as UF 6 composed of a heavy component and a light component from a supply pipe 304
  • the rotating drum 305 portion is divided into an FRP cylinder 310 and a metal rotating portion 311.
  • the metal rotating part 311 is made of metal from the viewpoint of reliability because it is a part to which a load is applied.
  • the FRP fitting structure according to the first to thirteenth embodiments of the present invention at this connecting portion.
  • the FRP fitting structure according to the sixth or seventh embodiment can be applied.
  • the wedge rings 94 and 95 described in the fourth or fifth embodiment may be used.
  • the wedge members 9, 21, 22, 94, 95, the pressing members 10, 19, 20, and the penetrating members 11, 12, 13, 23 corresponding to the embodiment of the present invention are fastened by appropriately selecting or combining them. be able to.
  • the rotational cylinder can be further increased in speed by replacing the cylindrical cylinder portion of the rotary cylinder 305 with the lightweight and rigid FRP cylinder 310.
  • the separation performance of the mixed gas can be improved, and a separated product concentrated to an extremely high concentration can be obtained.
  • FIG. 26 shows an application example when the roof of the automobile 400 is FRP and the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied.
  • the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied.
  • the FRP fitting structure according to the first to third and eighth to thirteenth embodiments can be applied.
  • the FRP fitting structures according to the first to third and eighth to thirteenth embodiments may be applied in appropriate combination.
  • the wedge ring 9 described in the fourth or fifth embodiment may be used.
  • the wedge members 9, 21, 22, 94, 95, the pressing members 10, 19, 20, and the penetrating members 11, 12, 13, 23 corresponding to the embodiment of the present invention are fastened by appropriately selecting or combining them. be able to.
  • This configuration can reduce the weight of the vehicle body, so that the torque weight ratio and the power weight ratio can be visibly improved.
  • the vehicle's motion performance such as acceleration / deceleration performance and cornering performance can be dramatically improved.
  • fuel consumption per km can be reduced and fuel efficiency can be improved.
  • the roof bends due to the high-strength rigidity so that the space in the vehicle interior is reduced. It can also prevent pressure. At this time, there is also an effect that the more the lateral displacement is caused by the impact load, the more the fastening part is tightened.
  • FIG. 27A is a perspective view of a ship according to this application example.
  • FIG. 27B is a schematic view when the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied to a ship in which FRP is used for the hull part.
  • a ship 500 shown in FIG. 27A is configured to be divided into three parts such as a bow part, a center part, and a stern part, for example, such as a bow part, a center part, and a stern part, and each is modularized so as to be easily assembled.
  • These main hull parts are formed of all FRP, and are configured to take advantage of the light weight and high rigidity ability inherent to the FRP member and the demagnetization performance that prevents the hull from being magnetized by the earth's geomagnetism.
  • the main hull is constituted by an FRP module and the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied to the fastening portion.
  • the FRP fitting structures according to the first to third and eighth to thirteenth embodiments can be applied to the fastening portions of the bow module 501, the center module 502, and the stern module 503. .
  • the FRP fitting structures according to the first to third and eighth to thirteenth embodiments may be applied in appropriate combination.
  • the wedge rings 94 and 95 described in the fourth or fifth embodiment may be used.
  • the wedge members 9, 21, 22, 94, 95, the pressing members 10, 19, 20, and the penetrating members 11, 12, 13, 23 corresponding to the embodiment of the present invention are appropriately selected or combined and fastened.
  • the number of module divisions that is, the size of each module can be arbitrarily designed, and the degree of freedom in design is dramatically increased. Further, the basic characteristics inherent to the FRP member by actively introducing the FRP member instead of wood can be fully enjoyed.
  • the ship to which the present invention is applied does not ask the hull size from a small ship to a large ship.
  • the input of buoyancy (external force) received by the bottom of the ship becomes large, and there is a merit of weight saving by using FRP members over a wide area. Since it tends to be easy, it is more preferable.
  • the FRP modules tend to shift from each other.
  • the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied, the FRP module tends to shift.
  • the more you do it the more conspicuous the fastening part is.
  • the contribution rate to fuel efficiency improvement increases by weight reduction by positive introduction of FRP members.
  • demagnetization performance can also be enjoyed at the same time. As a result, for example, it is possible to prevent a situation where the hull emits a weak magnetic field and is detected by the opponent.
  • FIG. 28 is a schematic diagram when the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied to an aircraft in which FRP is used for the fuselage.
  • the fuselage portion of the fuselage of the aircraft 600 is configured by fitting a plurality of divided FRP modules together.
  • the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied to the module and the fastening portion of the module.
  • the FRP fitting structure according to the first to third and eighth to thirteenth embodiments can be applied.
  • the FRP fitting structures according to the first to third and eighth to thirteenth embodiments may be applied in appropriate combination.
  • the wedge rings 94 and 95 described in the fourth or fifth embodiment may be used.
  • the wedge members 9, 21, 22, 94, 95, the pressing members 10, 19, 20, and the penetrating members 11, 12, 13, 23 corresponding to the embodiment of the present invention are appropriately selected or combined and fastened.
  • This configuration makes it possible to achieve weight reduction while maintaining the high rigidity required for aircraft. Thereby, for example, the cruising distance can be dramatically increased or the oil supply span can be extended.
  • a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and a part or all of the configuration of another embodiment can be added to the configuration of one embodiment. It is.
  • the penetrating member 13 of the third embodiment is configured such that the penetrating member 12 of the second embodiment is hollow, but the penetrating member 11 of the first embodiment can also be configured to be hollow. .
  • any of the configurations of the eighth to thirteenth embodiments can be combined with, for example, the first embodiment, the second embodiment, and the third embodiment, respectively, and further added to each of them.
  • the wedge member may be provided with the protrusion or the friction plate described in the fourth or fifth embodiment.
  • any of the tenth to thirteenth embodiments can be combined with the sixth embodiment or the seventh embodiment, and further, the fourth or fifth configuration can be added to each of them. It can also be set as the structure which equips a wedge member with the permite
  • the second member 16 is an FRP pipe and the third member 17 is a metal pipe.
  • the second member 16 is a metal pipe and the third member 17 is an FRP pipe. Even in this case, it can be discussed in the same way as in this paper.
  • the FRP pipe (second member) 16 is fitted in a form that overlaps with the outer peripheral part of the metal pipe (third member) 17, even when it overlaps with the inner peripheral part, it can be discussed in the same manner as in this paper. .

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Connection Of Plates (AREA)
  • Clamps And Clips (AREA)
  • Mutual Connection Of Rods And Tubes (AREA)

Abstract

 Provided are a fastening member for a fitted structure, a fitted structure, and a structural body comprising a fastening member for a fitted structure, whereby members including FRP members and the like can be firmly fastened together. A fastening member is provided with: a through-member (11, 12, 13) inserted through a first member (1) having an insertion part (2), a load (F) being inputted or transmitted to the through-member; and at least two annular members inserted into the through-member with a wedge member (9, 21, 22, 94, 95) and a hold-down member (10, 19, 20) as one set, and arranged so that the insertion part in the first member is sandwiched by a set on one side and a set on the other side. The fastening member is configured such that the hold-down member is secured directly or indirectly to the through-member, the wedge member is arranged between the hold-down member and the first member so as to be in contact with both, and the surface of the wedge member that is in contact with the hold-down member forms a prescribed angle (θ) other than 90 degrees with the axis of the through-member as viewed in cross section.

Description

嵌合構造用の締結部材、嵌合構造、および嵌合構造用の締結部材を具備した構造体Fastening member for fitting structure, fitting structure, and structure provided with fastening member for fitting structure
 本発明は、嵌合構造用の締結部材、嵌合構造、および嵌合構造用の締結部材を具備した構造体に関する。 The present invention relates to a fastening member for a fitting structure, a fitting structure, and a structure including a fastening member for the fitting structure.
 近年の国際的な流れとして、各種大型構造体などに使用される金属鋼鈑に代わりうる資材に、高剛性・軽量・高強度の各諸元特性を備えた繊維強化樹脂材(FRP:Fiber Reinforced Plastics)が注目されている。 As an international trend in recent years, a fiber reinforced resin material (FRP: Fiber Reinforced) with various characteristics such as high rigidity, light weight, and high strength is used as a material that can replace metal steel plates used for various large structures. (Plastics) is drawing attention.
 なかでも、例えば炭素繊維強化樹脂材(CFRP)は、わが国の主要企業が、高度な一体成形技術と組み合わせて、世界全体の生産能力で長年トップシェアを維持するなど、高い国際競争力を有する素材であるが、例えば鉄との比較では、比重は約1/4、比強度(質量比強度)は約10倍という優れた特性を示す。 Among them, carbon fiber reinforced resin (CFRP), for example, is a material with high international competitiveness, such as a major Japanese company that maintains a top share in the world's production capacity for many years in combination with advanced integrated molding technology. However, in comparison with iron, for example, the specific gravity is about 1/4 and the specific strength (mass specific strength) is about 10 times as excellent.
 つまり鉄との対比では、重量は、同じ体積ならわずか1/4・同じ強度ならわずか1割の重さで済み、また強度は、同じ重量なら10倍の強さを確保できる。このためFRP部材は、製品自体の競争力のみならず、日本の産業競争力、ひいては日本経済全体の競争力を強化するための起爆剤(戦略資源)として、大いに有望視されている。 In other words, in comparison with iron, the weight is only 1/4 if it is the same volume, and only 10% if it is the same strength, and the strength can be 10 times stronger if it is the same weight. For this reason, FRP members are regarded as promising as an initiator (strategic resource) for strengthening not only the competitiveness of the product itself but also the industrial competitiveness of Japan, and consequently the competitiveness of the entire Japanese economy.
 ゆえに、産業・社会インフラを支える企業活動においても、国内外で規模の大小を問わず、FRPの積極的な利活用が経営上の戦略として急速に浸透しつつあり、各種製品の部材に使用・採用される潮流にある。 Therefore, in corporate activities that support industrial and social infrastructures, the active utilization of FRP is rapidly spreading as a management strategy regardless of the size of domestic and overseas. It is in the trend to be adopted.
 そのようなFRP構造物は、一体成形して本来の強度・効用を発揮するものと理解されている。しかし、一般には成形のための大型の金型を作るのに数億円オーダーの巨額の費用を要し、例え製作したとしても、その形状のモデルチェンジ(含マイナーチェンジ)など、顧客ニーズに臨機応変に対応することが難しく、金型をいちから作り直さなければならない場合がある。 It is understood that such an FRP structure is integrally molded to exhibit its original strength and utility. However, in general, it takes a huge amount of money on the order of several hundred million yen to make a large mold for molding, and even if it is manufactured, it changes according to customer needs such as model changes (including minor changes). In some cases, it is difficult to cope with this, and it is necessary to recreate the mold from scratch.
 このため、現実には、一体成形ではなく、一部を金属鋼鈑と代替させて、金属部材とFRP構造物を締結させて使用する場面が非常に多い。締結方法としては接着による締結のほかに、ボルトなどによる機械締結の方法がある。 For this reason, in reality, there are very many scenes in which metal parts and FRP structures are fastened and used instead of integral molding, instead of metal steel plates. As a fastening method, in addition to fastening by adhesion, there is a method of mechanical fastening using a bolt or the like.
 特許文献1の締結方法では、板状体同士をボルト締結するにあたり、ボルト孔にテーパ状のワッシャを介してボルトの軸力が均一に板材に伝わるように工夫している。 In the fastening method of Patent Document 1, when bolting plate-like bodies together, the bolt axial force is devised to be uniformly transmitted to the plate material through a tapered washer in the bolt hole.
 特許文献2の締結方法では、テーパ状のワッシャに加えてばね部材を介してボルト軸力が緩和しないように工夫している。 In the fastening method of Patent Document 2, the bolt axial force is devised so as not to relax through a spring member in addition to the tapered washer.
 特許文献3の締結方法では、FRP部材同士を締結する際に、FRP部材を鋼製の板材で挟み、FRP部材との接触面に多数の突起を設けることで、摩擦係数を上げてすべり変形を防止しながらボルトで締結している。 In the fastening method of Patent Document 3, when FRP members are fastened together, the FRP member is sandwiched between steel plates, and a large number of protrusions are provided on the contact surface with the FRP member, thereby increasing the friction coefficient and causing slip deformation. It is fastened with bolts while preventing.
 特許文献4の締結方法では、FRP部材を金属製の板でボルト締結する場合のボルト孔の位置を、FRP部材の破壊が起きないような寸法に選択している。 In the fastening method of Patent Document 4, the position of the bolt hole when the FRP member is bolted with a metal plate is selected to a dimension that does not cause destruction of the FRP member.
 特許文献5では、FRP部材のように傷つきやすいものをボルト締結する場合に、ナットを二重構造にし、互いに回動自由とすることで、締結時にナットが供回りすることを防ぎ、強度信頼性を高くさせている。 In Patent Document 5, when bolts that are easily damaged such as FRP members are bolted, the nuts have a double structure and are free to rotate with each other. Is high.
特開2004-108497号公報JP 2004-108497 A 特開2007-303570号公報JP 2007-303570 A 特開平6-026109号公報JP-A-6-026109 特開平6-017487号公報JP-A-6-017487 特開2012-062984号公報JP 2012-062984 A
 しかしながら、特許文献1~5のいずれの締結構造によっても、ボルトの軸に直角方向の負荷が加わった場合に、被締結部材間の面圧が増加してより強固な締結状態になることはない。 However, in any of the fastening structures of Patent Documents 1 to 5, when a load in a direction perpendicular to the bolt axis is applied, the surface pressure between the fastened members does not increase and a firm fastening state is not obtained. .
 本発明は、前記従来の問題を解決するものであり、FRP構造物に任意の孔を加工し、その孔にピンあるいはボルトを貫通させてボルトの軸に垂直な方向に荷重が入力された場合においても、被締結部材を圧縮するような力が作用してより強固な締結状態となり、FRP孔部が破壊しないような嵌合構造用の締結部材、嵌合構造、および嵌合構造用の締結部材を具備した構造体を提供することを目的とする。 The present invention solves the above-mentioned conventional problem, when an arbitrary hole is processed in the FRP structure, a pin or a bolt is passed through the hole, and a load is input in a direction perpendicular to the axis of the bolt Even in the case, the fastening member for the fitting structure, the fitting structure, and the fastening for the fitting structure are such that a force that compresses the member to be fastened is applied and the fastening state becomes stronger and the FRP hole portion is not destroyed. It aims at providing the structure which comprised the member.
 上記課題を解決するために本発明を適用した嵌合構造用の締結部材、嵌合構造、および嵌合構造用の締結部材を具備した構造体は、挿通部を有する第1部材に挿通されるとともに、荷重が入力・伝達される貫通部材と、くさび部材と押さえ部材とを組として前記貫通部材に挿通され、前記第1部材における前記挿通部を一方側の組と他方側の組とで挟むように配設される、少なくとも2組の環状部材と、を備え、前記押さえ部材は前記貫通部材に直接または間接に固定され、前記くさび部材は前記押さえ部材と前記第1部材との間に、それぞれに接するように配設され、前記押さえ部材と前記くさび部材の接触面は、断面視して、前記貫通部材の軸に対して90度以外の所定の角度をなすように構成されることを特徴とする。 In order to solve the above-described problems, a fitting member for a fitting structure to which the present invention is applied, a fitting structure, and a structure including a fastening member for the fitting structure are inserted into a first member having an insertion portion. In addition, a penetrating member to which load is input / transmitted, a wedge member and a pressing member are inserted into the penetrating member as a set, and the insertion portion of the first member is sandwiched between the one set and the other set At least two sets of annular members, the pressing member is directly or indirectly fixed to the penetrating member, and the wedge member is interposed between the pressing member and the first member, The contact surfaces of the pressing member and the wedge member are arranged so as to be in contact with each other, and are configured to form a predetermined angle other than 90 degrees with respect to the axis of the penetrating member in a cross-sectional view. Features.
 本発明によれば、ピンあるいはボルトなどの貫通部材に、軸垂直方向の荷重が作用した場合でも、所定のテーパ角を有した環状部材にFRP部材(第1部材)を強く圧する分力が作用する嵌合構造用の締結部材、嵌合構造、および嵌合構造用の締結部材を具備した構造体を提供できる。 According to the present invention, even when a load in the direction perpendicular to the axis acts on a penetrating member such as a pin or bolt, a component force that strongly presses the FRP member (first member) acts on the annular member having a predetermined taper angle. A fastening member for a fitting structure, a fitting structure, and a structure including a fastening member for the fitting structure can be provided.
本発明のFRP嵌合構造体の全体斜視図である。It is a whole perspective view of the FRP fitting structure of the present invention. 図1の要部であるA部およびB部の分解図である。It is an exploded view of the A part and B part which are the principal parts of FIG. 貫通部材に荷重が伝達されたときの様子を模式的に表した図である。It is the figure which represented typically a mode when a load was transmitted to the penetration member. 図1のX-X矢視断面図であり、本発明の第1実施形態に係る、FRP嵌合構造の断面図である。FIG. 2 is a cross-sectional view taken along the line XX in FIG. 1 and is a cross-sectional view of the FRP fitting structure according to the first embodiment of the present invention. 本発明の第1実施形態に係る、力学的なメカニズムを説明する模式図である。It is a schematic diagram explaining the dynamic mechanism based on 1st Embodiment of this invention. 本発明の第2実施形態に係る、FRP嵌合構造の断面図である。It is sectional drawing of the FRP fitting structure based on 2nd Embodiment of this invention. 本発明の第3実施形態に係る、FRP嵌合構造の断面図である。It is sectional drawing of the FRP fitting structure based on 3rd Embodiment of this invention. 本発明の第4実施形態に係る、くさびリングの拡大断面図である。It is an expanded sectional view of the wedge ring based on 4th Embodiment of this invention. 本発明の第5実施形態に係る、くさびリングの拡大断面図である。It is an expanded sectional view of the wedge ring based on 5th Embodiment of this invention. 本発明の第6実施形態に係る、FRPパイプと金属パイプとの接合部の断面図である。It is sectional drawing of the junction part of the FRP pipe and metal pipe based on 6th Embodiment of this invention. 本発明の第7実施形態に係る、FRPパイプと金属パイプとの接合部の断面図である。It is sectional drawing of the junction part of the FRP pipe and metal pipe based on 7th Embodiment of this invention. 本発明の第8実施形態に係る、FRP板1の平面図(上面図)である。It is a top view (top view) of FRP board 1 concerning an 8th embodiment of the present invention. 図12のY-Y矢視断面図である。FIG. 13 is a cross-sectional view taken along line YY in FIG. 12. 本発明の第9実施形態に係る、FRP嵌合構造の断面図である。It is sectional drawing of the FRP fitting structure based on 9th Embodiment of this invention. 本発明の第10実施形態に係る、FRP嵌合構造の断面図である。It is sectional drawing of the FRP fitting structure based on 10th Embodiment of this invention. 本発明の第10実施形態の変形例に係る、FRP嵌合構造の断面図である。It is sectional drawing of the FRP fitting structure based on the modification of 10th Embodiment of this invention. 本発明の第11実施形態に係る、FRP嵌合構造の断面図である。It is sectional drawing of the FRP fitting structure based on 11th Embodiment of this invention. 本発明の第11実施形態の変形例に係る、FRP嵌合構造の断面図である。It is sectional drawing of the FRP fitting structure based on the modification of 11th Embodiment of this invention. 本発明の第12実施形態に係る、FRP嵌合構造の断面図である。It is sectional drawing of the FRP fitting structure based on 12th Embodiment of this invention. 本発明の第12実施形態の変形例に係る、FRP嵌合構造の断面図である。It is sectional drawing of the FRP fitting structure based on the modification of 12th Embodiment of this invention. 本発明の第13実施形態に係る、FRP嵌合構造の断面図である。It is sectional drawing of the FRP fitting structure based on 13th Embodiment of this invention. 本発明の適用例に係る、パワーショベル100の模式図である。It is a mimetic diagram of power shovel 100 concerning an example of application of the present invention. 従来の風力発電用風車ブレードを説明する図である。It is a figure explaining the conventional windmill blade for wind power generation. 本発明の適用例に係る、風力発電用風車ブレードの模式図である。It is a schematic diagram of the windmill blade for wind power generation concerning the example of application of this invention. 本発明の適用例に係る、風力発電用風車ブレードの斜視図である。It is a perspective view of the windmill blade for wind power generation concerning the example of application of the present invention. 本発明の適用例に係る、風力発電用風車ブレード内部を説明する模式図であり、図24AのZ-Z矢視断面図である。It is a schematic diagram explaining the inside of a wind turbine blade for wind power generation according to an application example of the present invention, and is a cross-sectional view taken along the line ZZ in FIG. 24A. 本発明の適用例に係る、遠心分離機の構成図である。It is a block diagram of the centrifuge based on the application example of this invention. 本発明の適用例に係る、遠心分離機の模式図である。It is a schematic diagram of the centrifuge based on the application example of this invention. 本発明の適用例に係る、自動車の模式図である。It is a schematic diagram of the motor vehicle based on the application example of this invention. 本発明の適用例に係る、船舶の斜視図である。It is a perspective view of a ship concerning the example of application of the present invention. 本発明の適用例に係る、船舶の模式図である。It is a schematic diagram of the ship based on the application example of this invention. 本発明の適用例に係る、航空機の模式図である。It is a schematic diagram of an aircraft according to an application example of the present invention.
 以下、本発明の実施形態に係る嵌合構造用の締結部材、嵌合構造、および嵌合構造用の締結部材を具備した構造体について、第1部材がFRP部材であるFRP嵌合構造を例に挙げて詳細に説明する。 Hereinafter, the FRP fitting structure in which the first member is an FRP member is illustrated as an example of the fastening member for the fitting structure, the fitting structure, and the structure including the fastening member for the fitting structure according to the embodiment of the present invention. Will be described in detail.
 ここで、FRPの種類は特に問わない。つまり、FRPは炭素繊維CFRP,ガラス繊維GFRP,炭化ケイ素繊維SiCFRP,アルミナ繊維AlFRP,アラミド繊維AFRPであってもよく、これらに限定するものではない。 Here, the type of FRP is not particularly limited. That is, FRP may be carbon fiber CFRP, glass fiber GFRP, silicon carbide fiber SiCFRP, alumina fiber Al 2 O 3 FRP, and aramid fiber AFRP, but is not limited thereto.
 また、FRP以外の部材同士や、FRP部材と金属部材を組み合わせた締結に関しても、本発明が適用できることは言うまでもない。 It goes without saying that the present invention can also be applied to members other than the FRP, or fastening that combines the FRP member and the metal member.
 説明の便宜上、各図面で共通する部材には同一の符号を付し、重複する説明を省略する場合がある。模式図は、特徴部分を抜き出して分かりやすく描いたものであり、細かな構成の描写は適宜捨象する場合がある。前後上下左右などの方向軸については、各図の記載によるものとする。 For convenience of explanation, members common to the drawings are denoted by the same reference numerals, and redundant explanations may be omitted. The schematic diagram is drawn in an easy-to-understand manner by extracting the characteristic part, and the description of the detailed configuration may be discarded as appropriate. The direction axes such as front and rear, up and down, left and right are as described in each figure.
(第1実施形態)
 図1は本発明のFRP嵌合構造体の全体斜視図、図2は図1の要部であるA部およびB部の分解図である。この構造体の適用例としての詳細は図22以降で後記するが、例えば、図22に示すパワーショベルであれば、作業腕に相当するブーム101やアーム102の連結部分において、格子構造(グレーチング)を有するFRP板状体1やFRPパイプ16を連結させたい(図22のC部やD部)需要があり、このような部位に対して適用可能である。
(First embodiment)
FIG. 1 is an overall perspective view of the FRP fitting structure according to the present invention, and FIG. 2 is an exploded view of an A part and a B part which are the main parts of FIG. Details of the application example of this structure will be described later with reference to FIG. 22 and subsequent figures. For example, in the case of the power shovel shown in FIG. 22, a lattice structure (grating) is provided at the connecting portion of the boom 101 and the arm 102 corresponding to the work arm. There is a demand to connect the FRP plate-like body 1 and the FRP pipe 16 having (C part and D part in FIG. 22), and it is applicable to such a part.
 まず、図2のA部の構成について説明する(適宜、図1と相互参照)。この部分は、嵌込式の板状体であるFRP板状体1に、貫通部材11である断面視円形状のピンやボルトを通す孔(挿通部)2があけられている。なお、孔(挿通部)2の形状は貫通部材11が貫通可能な任意の形状であればよく、特に限定するものではない。つまり、断面視円形状であってもよいし、断面視U字状の切り欠き溝を有した形状であってもよい。貫通部材11の外周には緩衝保護材としてスリーブ7が挿入される。もしくは、貫通部材11は別体のスリーブ7を外装してなる構成物と考えてもよい。図3のE部は、貫通部材11に、例えば貫通部材11の中心軸に対して垂直方向に荷重が作用して、FRP板状体1が傷つけられ、繊維の破壊が起きてしまった場合の模式図である。スリーブ7は、貫通部材11とFRP板状体1の孔2とが直接接触することを防止し、こうした破壊を起きにくくさせるものである。 First, the configuration of part A in FIG. 2 will be described (as appropriate, cross-reference with FIG. 1). In this portion, a hole (insertion portion) 2 through which a pin or bolt having a circular shape in cross section as the penetrating member 11 passes is formed in the FRP plate 1 that is a fitting type plate. The shape of the hole (insertion portion) 2 may be any shape that allows the penetrating member 11 to pass therethrough, and is not particularly limited. That is, the cross-sectional view may be circular, or the cross-sectional view may have a U-shaped cutout groove. A sleeve 7 is inserted on the outer periphery of the penetrating member 11 as a buffer protection material. Alternatively, the penetrating member 11 may be considered as a component formed by sheathing a separate sleeve 7. 3 is a case where a load acts on the penetrating member 11 in a direction perpendicular to the central axis of the penetrating member 11, for example, the FRP plate 1 is damaged, and fiber breakage has occurred. It is a schematic diagram. The sleeve 7 prevents the penetrating member 11 and the hole 2 of the FRP plate-like body 1 from coming into direct contact and makes it difficult to cause such destruction.
 ここで、貫通部材11に、貫通部材11の中心軸に対して垂直方向へ荷重が作用する場合を考えたが、その理由は、FRPパイプ16は、例えば貫通部材11であるピンに点接続されており、負荷/荷重Fの入力は、まず第一に、図3に示すように、貫通部材11であるピンへ行われることになるためである。また、その他の形態として、FRP板状体1から貫通部材11の順で荷重が伝達されるケースも考えられるが、その場合であっても、貫通部材11に荷重Fが伝達されたあとのメカニズムは、本実施形態で説明する内容と全く同様にして考えることができる。 Here, the case where a load is applied to the penetrating member 11 in a direction perpendicular to the central axis of the penetrating member 11 is considered. The reason is that the FRP pipe 16 is point-connected to a pin that is the penetrating member 11, for example. This is because the load / load F is first input to the pin which is the penetrating member 11 as shown in FIG. Further, as another form, a case where the load is transmitted in the order from the FRP plate 1 to the penetrating member 11 can be considered, but even in that case, a mechanism after the load F is transmitted to the penetrating member 11. Can be considered in exactly the same manner as described in the present embodiment.
 引き続き、図2のA部の説明に戻る。スリーブ7にはネジ溝8(不図示。詳細は後記)が加工され、押さえリング10が嵌合可能となっている。また、押さえリング10はくさびリング9が挟み込み可能となっている。 Subsequently, the description returns to the part A in FIG. The sleeve 7 is processed with a thread groove 8 (not shown; details will be described later), and a pressing ring 10 can be fitted therein. In addition, the wedge ring 9 can be sandwiched between the holding ring 10.
 ここで、例えばスリーブ7のネジ溝8に押さえリング10を嵌合させ、くさびリング9を挟み込んだ状態でFRP板状体1の孔2に挿入する。そして、反対側からも同様に、くさびリング9、押さえリング10の順でFRP板状体1を挟み込み、スリーブ7のネジ溝8に押さえリング10を嵌合させる。そして、最後に貫通部材11を挿入すると、図1のA部に示す組立状態となる。 Here, for example, the holding ring 10 is fitted into the thread groove 8 of the sleeve 7, and the wedge ring 9 is sandwiched and inserted into the hole 2 of the FRP plate 1. Similarly, from the opposite side, the FRP plate 1 is sandwiched in the order of the wedge ring 9 and the pressing ring 10, and the pressing ring 10 is fitted into the thread groove 8 of the sleeve 7. When the penetrating member 11 is finally inserted, the assembled state shown in part A of FIG. 1 is obtained.
 次に、図2のB部についてであるが、FRPパイプ16の外周面に対して外輪くさびフープ21がはめ込まれ、その上から外輪押さえフープ19が挟み込み可能になっている。図1のB部は、この様にして組み立てた場合の模式図である。 Next, as for part B in FIG. 2, the outer ring wedge hoop 21 is fitted to the outer peripheral surface of the FRP pipe 16, and the outer ring pressing hoop 19 can be sandwiched from above. Part B of FIG. 1 is a schematic diagram when assembled in this manner.
 図4は図1のX-X矢視断面図である。
 FRP板状体1には円形の孔2があけられ、円筒形状をしたスリーブ7が貫通している。ゆえに、スリーブ7の円筒外周面の半径は、孔2の半径よりも小さなものとなっている。
4 is a cross-sectional view taken along the line XX of FIG.
A circular hole 2 is formed in the FRP plate-like body 1, and a cylindrical sleeve 7 passes therethrough. Therefore, the radius of the cylindrical outer peripheral surface of the sleeve 7 is smaller than the radius of the hole 2.
 また、スリーブ7には円形断面をした貫通部材11が貫通している。更に、スリーブ7の外周面にはネジ溝8が加工されている。また、FRP板状体1を挟む形でくさびリング9と押さえリング10が互いに接触して配置されている。つまり、くさび部材9と押さえ部材10とを組として、2組の環状部材を考えたとき、前記環状部材は、前記貫通部材に挿通され、前記FRP板状体(第1部材)1における前記挿通部を一方側の組と他方側の組とで挟むように配設されてなる。 Further, a penetration member 11 having a circular cross section penetrates the sleeve 7. Further, a thread groove 8 is formed on the outer peripheral surface of the sleeve 7. Further, the wedge ring 9 and the pressing ring 10 are arranged in contact with each other so as to sandwich the FRP plate 1. That is, when the wedge member 9 and the pressing member 10 are used as a pair and two sets of annular members are considered, the annular member is inserted into the penetrating member, and the insertion in the FRP plate-like body (first member) 1 is performed. The part is disposed so as to be sandwiched between the pair on one side and the pair on the other side.
 押さえリング10の内周面には、スリーブ7の外周面に彫られたネジ溝8に嵌合するネジ溝8が加工され、これにより、スリーブ7と押さえリング10が完全に嵌合され、相互の位置が固定されている。 On the inner peripheral surface of the holding ring 10, a thread groove 8 that fits into the screw groove 8 carved on the outer peripheral surface of the sleeve 7 is processed, so that the sleeve 7 and the holding ring 10 are completely fitted to each other. The position of is fixed.
 また、貫通部材11の中心軸をM、FRP板状体1の厚みの中心軸をNとし、このように座標軸を取った場合の第1象限~第4象限に対応する領域をそれぞれ、I領域~IV領域とする。すなわち、右前領域をI領域、左前領域をII領域、左後領域をIII領域、右後領域をIV領域とする。 Further, the central axis of the penetrating member 11 is M, the central axis of the thickness of the FRP plate 1 is N, and the regions corresponding to the first quadrant to the fourth quadrant when the coordinate axes are taken in this way are the I regions. ~ IV region. That is, the right front region is the I region, the left front region is the II region, the left rear region is the III region, and the right rear region is the IV region.
 このとき、I領域は軸Nに対してII領域と線対称構造となっており、同様にして、軸Mに対してIV領域と線対称構造となっている。II領域は軸Nに対してI領域と線対称構造となっており、同様にして、軸Mに対してIII領域と線対称構造となっている。III領域は軸Nに対してIV領域と線対称構造となっており、同様にして、軸Mに対してII領域と線対称構造となっている。IV領域は軸Nに対してIII領域と線対称構造となっており、同様にして、軸Mに対してI領域と線対称構造となるようにして形成される。 At this time, the I region has a line-symmetric structure with the II region with respect to the axis N, and similarly has a line-symmetric structure with the IV region with respect to the axis M. The II region has a line symmetric structure with the I region with respect to the axis N, and similarly has a line symmetric structure with the III region with respect to the axis M. The III region has a line symmetric structure with the IV region with respect to the axis N, and similarly has a line symmetric structure with the II region with respect to the axis M. The IV region has a line symmetric structure with the region III with respect to the axis N, and is similarly formed so as to have a line symmetric structure with the I region with respect to the axis M.
 以下、I領域について詳述する。その他の領域は別途後述するが、I領域と、左右前後の線対称構造として、順次理解してゆけばよい。
 まず、くさびリング9と押さえリング10との接触面(テーパ面)は、スリーブ7、もしくは貫通部材11の中心軸Mに対して、0°より大きく90゜より小さい所定の角度θをなすように構成される(すなわち、0°<θ<90°)。
Hereinafter, the I region will be described in detail. Other areas will be described later, but they can be understood in sequence as the I area and the left and right line symmetrical structures.
First, the contact surface (tapered surface) between the wedge ring 9 and the pressing ring 10 makes a predetermined angle θ greater than 0 ° and smaller than 90 ° with respect to the central axis M of the sleeve 7 or the penetrating member 11. Configured (ie, 0 ° <θ <90 °).
 また、押さえリング10はスリーブ7のネジ溝8に嵌合する形で固定されている。つまり、貫通部材11やスリーブ7が、軸Mに対して直角方向の荷重を受け、その荷重方向に移動しようとする場合に、押さえリング10が、その動きに完全に連動し、同様に荷重方向に移動するように構成されている。 Further, the holding ring 10 is fixed so as to fit into the thread groove 8 of the sleeve 7. That is, when the penetrating member 11 and the sleeve 7 receive a load in a direction perpendicular to the axis M and attempt to move in the load direction, the pressing ring 10 is completely interlocked with the movement, and similarly the load direction Configured to move to.
 以下、貫通部材11に、例えば、後方へ荷重が入力された例をもとに説明する。しかし、これはあくまで一例であって、環状部材9,10はリング形状であるし、スリーブ7は円筒形状、貫通部材11も円柱形状である。ゆえに、荷重の入力方向に関しては、360°全方位において、構造上の対称性を有していることは言うまでもない。 Hereinafter, description will be made based on an example in which a load is input to the penetrating member 11 backward, for example. However, this is only an example, and the annular members 9 and 10 have a ring shape, the sleeve 7 has a cylindrical shape, and the penetrating member 11 also has a columnar shape. Therefore, it goes without saying that the input direction of the load has structural symmetry in all 360 ° directions.
 図5は、例えば図4の貫通部材11に、その軸Mに対して直角方向(後方)に荷重F11が入力された場合の、力学的なメカニズムを説明する模式図である。
 このとき、貫通部材11は、荷重である負荷F11を受けて、荷重方向に移動する。すると、貫通部材11の外周面が、ほどなくしてスリーブ7の内周面と当接する。ここで、ほどなくと表現したのは、スリーブ7と貫通部材11の間にある程度の隙間がある場合であって、隙間がほとんどない場合は、荷重とほぼ同時に当接することになるからである。なお、この隙間はスリーブ7を貫通部材11に挿入するための、便宜上の隙間である。
FIG. 5 is a schematic diagram for explaining a mechanical mechanism when, for example, a load F11 is input to the penetrating member 11 of FIG. 4 in a direction perpendicular to the axis M (rearward).
At this time, the penetrating member 11 receives a load F11 that is a load and moves in the load direction. Then, the outer peripheral surface of the penetrating member 11 comes into contact with the inner peripheral surface of the sleeve 7 soon after. Here, shortly expressed is that there is a certain gap between the sleeve 7 and the penetrating member 11, and when there is almost no gap, the contact is made almost simultaneously with the load. This gap is a convenient gap for inserting the sleeve 7 into the penetrating member 11.
 さらに荷重F11の入力が継続すると、貫通部材11は荷重F11に従って、スリーブ7全体を荷重方向である後方に押し下げる。さらに、押さえリング10がネジ溝8を介してスリーブ7に固定されているため、スリーブ7の動きに連動して、押さえリング10も、荷重方向である後方に押し下げられる。 Further, when the input of the load F11 is continued, the penetrating member 11 pushes the entire sleeve 7 backward in the load direction according to the load F11. Furthermore, since the pressing ring 10 is fixed to the sleeve 7 via the screw groove 8, the pressing ring 10 is also pushed down in the load direction in conjunction with the movement of the sleeve 7.
 つまり、スリーブ7に固定された押さえリング10は、貫通部材11の軸Mに対して直角方向に入力された荷重F11の向きに移動しようとする(F12)。その際、押さえリング10とくさびリング9の接触面が、傾斜角θ(軸Mとのなす角度θ)を有する傾斜面となるように形成すると、力F12の分力として、くさびリング9がFRP板状体1を圧縮するような方向の分力F13を発生させることが出来るようになる。 That is, the holding ring 10 fixed to the sleeve 7 tries to move in the direction of the load F11 input in a direction perpendicular to the axis M of the penetrating member 11 (F12). At this time, if the contact surface of the holding ring 10 and the wedge ring 9 is formed to be an inclined surface having an inclination angle θ (an angle θ formed with the axis M), the wedge ring 9 is FRP as a component force of the force F12. The component force F13 in a direction that compresses the plate-like body 1 can be generated.
 次に、II領域について説明する。
 II領域は、I領域と軸Nを介して線対称構造に成形されている。ゆえに、例えば貫通部材11に、その軸Mに対して直角方向(後方)に、荷重F11が継続的に入力されると、貫通部材11は荷重F11に従って、スリーブ7全体を荷重方向である後方に押し下げる。さらに、押さえリング10がネジ溝8を介してスリーブ7に固定されているため、スリーブ7の動きに連動して、押さえリング10も、荷重方向である後方に押し下げられる。
Next, the II region will be described.
The II region is formed into a line-symmetric structure via the I region and the axis N. Therefore, for example, when the load F11 is continuously input to the penetrating member 11 in the direction perpendicular to the axis M (rearward), the penetrating member 11 moves the entire sleeve 7 rearward in the load direction according to the load F11. Press down. Furthermore, since the pressing ring 10 is fixed to the sleeve 7 via the screw groove 8, the pressing ring 10 is also pushed down in the load direction in conjunction with the movement of the sleeve 7.
 つまり、スリーブ7に固定された押さえリング10は、貫通部材11の軸Mに対して直角方向に入力された荷重F11の向きに、移動しようとする(F12)。その際、押さえリング10とくさびリング9の接触面は、傾斜角θ(軸Mとのなす角度θ)を有する傾斜面となるように形成されているので、力F12の分力として、くさびリング9がFRP板状体1を圧縮するような方向の分力F13を発生させることが出来る。 That is, the holding ring 10 fixed to the sleeve 7 tries to move in the direction of the load F11 input in a direction perpendicular to the axis M of the penetrating member 11 (F12). At this time, the contact surface of the holding ring 10 and the wedge ring 9 is formed to be an inclined surface having an inclination angle θ (an angle θ formed with the axis M), so that the wedge ring is used as a component force of the force F12. It is possible to generate a component force F13 in such a direction that 9 compresses the FRP plate 1.
 次に、III領域とIV領域について、まとめて説明する。
 III,IV領域は、構造上はI領域とそれぞれ点対称性、線対称性を有している。しかし、スリーブ7のネジ溝8に固定されている押さえリング10が受ける力F12の作用方向は、例えば貫通部材11に、その軸Mに対して直角方向(後方)に、荷重F11が継続的に入力される場合は、I領域のF12とまったく同じ向きとなる。
Next, the III region and the IV region will be described together.
The III and IV regions have a point symmetry and a line symmetry, respectively, from the I region. However, the acting direction of the force F12 received by the holding ring 10 fixed to the thread groove 8 of the sleeve 7 is, for example, that the load F11 is continuously applied to the penetrating member 11 in a direction perpendicular to the axis M (rearward). When input, the direction is exactly the same as F12 in the I region.
 つまり、III領域とIV領域のF12は、I領域のF12とは大きさが等しいのに対して、向きが対称性を有さず、非対称となる。このため、くさびリング9と押さえリング10との接触面(テーパ面)が、スリーブ7、もしくは貫通部材11の中心軸Mに対して、0°より大きく90゜より小さい所定の角度θ(すなわち、0°<θ<90°)をなすように形成されていたとしても、押さえリング10に作用する力F12が、くさびリング9を介して、FRP板状体1を互いに圧縮する分力F13を発生させることはない。 That is, the F12 in the III region and the IV region have the same size as the F12 in the I region, but the orientation is not symmetric and is asymmetric. For this reason, the contact surface (tapered surface) between the wedge ring 9 and the pressing ring 10 is a predetermined angle θ (ie, greater than 0 ° and smaller than 90 ° with respect to the central axis M of the sleeve 7 or the penetrating member 11). Even if it is formed so that 0 ° <θ <90 °), the force F12 acting on the holding ring 10 generates the component force F13 that compresses the FRP plate-like body 1 through the wedge ring 9. I will not let you.
(作用・効果)
 第1実施形態の作用・効果を改めてまとめると、以下のようになる。
 貫通部材11に、貫通部材11の軸Mに対して直角方向に荷重F11が入力された場合、スリーブ7に固定された押さえリング10は、荷重F11の向きに移動しようとする(F12)。その際、押さえリング10とくさびリング9の接触面(テーパ面)が、傾斜角θ(軸Mとのなす角度θ)を有する傾斜面となるように形成することにより、荷重F11の方向とは逆側の位置にあたるくさびリング9には、力F12の分力として、FRP板状体1を互いに圧縮するような方向の分力F13が作用する。
(Action / Effect)
The actions and effects of the first embodiment are summarized as follows.
When a load F11 is input to the penetrating member 11 in a direction perpendicular to the axis M of the penetrating member 11, the pressing ring 10 fixed to the sleeve 7 tries to move in the direction of the load F11 (F12). At that time, by forming the contact surface (tapered surface) of the holding ring 10 and the wedge ring 9 to be an inclined surface having an inclination angle θ (an angle θ formed with the axis M), the direction of the load F11 is A component force F13 in a direction that compresses the FRP plate-like body 1 is applied to the wedge ring 9 at the opposite position as a component force of the force F12.
 背景技術で説明した通り、一般にFRPは優れた特性値を示す。しかし、繊維の積層方向に対する圧縮強度は非常に大きいが、繊維の積層方向に直交する方向である、繊維の非積層方向の荷重に対しては脆く、破壊に至りやすい性質を持つ。 As explained in the background art, FRP generally shows excellent characteristic values. However, although the compressive strength with respect to the fiber lamination direction is very large, the fiber is brittle with respect to the load in the fiber non-lamination direction, which is a direction orthogonal to the fiber lamination direction, and easily breaks.
 それゆえに、なるべくなら一体成形で接合点数を減らしたいが、大規模になればなるほど金型の製作にかかるコストの増加や、モデルチェンジへの柔軟性に欠けるなどのデメリットが表面化し、くしくも使いづらい側面があったことは否定できない。 Therefore, if possible, we want to reduce the number of joints by integral molding, but the larger the scale, the higher the cost of manufacturing the mold and the lack of flexibility in changing the model, which makes it difficult to use. It cannot be denied that there was a side.
 しかし、そのような性質を持つFRP板状体1に関し、やむを得ず一体成形でなく、1または複数からなるFRPもしくは異種部材同士を締結させる場合であっても、本実施形態の発明を適用すれば、貫通部材11を介して、繊維の非積層方向に入力される荷重F11の一部を、FRP板状体1の繊維の積層方向への圧縮力である、分力F13に変換し、振り替えることができる。 However, regarding the FRP plate-like body 1 having such properties, it is unavoidable that the FRP plate-like body 1 is not integrally formed, and even when one or a plurality of FRPs or different members are fastened, if the invention of this embodiment is applied, A part of the load F11 input in the fiber non-stacking direction via the penetrating member 11 may be converted into a component force F13, which is a compressive force in the fiber stacking direction of the FRP plate-like body 1, and transferred. it can.
 この分力F13は、押さえリング10とくさびリング9とのテーパ面が傾斜角θを有しているために、貫通部材11の荷重変位量が大きくなればなるほど、大きくなる。 The component force F13 increases as the load displacement amount of the penetrating member 11 increases because the tapered surfaces of the pressing ring 10 and the wedge ring 9 have the inclination angle θ.
 このため、貫通部材11の荷重変位量が大きくなればなるほど、くさびリング9は、貫通部材11もしくはスリーブ7が、それ以上荷重F11の方向に変位しないように、互いにFRP板状体1を強力な力で挟み込み、ストッパの機能を果たすようになる。 For this reason, as the load displacement amount of the penetrating member 11 increases, the wedge ring 9 strengthens the FRP plate-like bodies 1 with each other so that the penetrating member 11 or the sleeve 7 is not displaced further in the direction of the load F11. It will be sandwiched by force and will function as a stopper.
 これにより、FRP板状体1の孔2での、貫通部材11(スリーブ7を挿入するときはスリーブ7)が過度に接触することによる、内周面の破壊を防止でき、より一層、強度の信頼性を向上させることができるという効果を生む。 Thereby, destruction of an inner peripheral surface by the penetrating member 11 (sleeve 7 when inserting the sleeve 7) in the hole 2 of the FRP plate-like body 1 due to excessive contact can be prevented, and the strength is further increased. It produces the effect that reliability can be improved.
 また、従来はサイズの大型化やコスト増などの諸制約によって、積極的にはFRP部材を用いることがためらわれてきた様な場面においても、FRP部材を分割して、本実施形態の発明に示す嵌合締結とすることにより、素材のFRP部材への転換を促す、起爆剤となる可能性を秘めるものである。 Also, in the past, the FRP member was divided into the invention of the present embodiment even in situations where the FRP member was actively hesitant to use due to various restrictions such as size increase and cost increase. By having the fitting and fastening shown, there is a possibility of becoming an initiating agent that promotes the conversion of the material to the FRP member.
 また、スリーブ7と押さえリング10とは、ネジ溝8によるネジ締結の嵌合構造となっているため、ネジ締めの際の締結トルクを調整することにより、締結力の強弱を制御することが出来る。 Moreover, since the sleeve 7 and the holding ring 10 have a screw fastening fitting structure by the screw groove 8, the strength of the fastening force can be controlled by adjusting the fastening torque at the time of screw fastening. .
 また、不具合箇所が発生した場合には、従来の溶接による接合では、一端はがして交換しなければならず、大変な作業であったが、締結部分に本実施形態の発明を用いれば、ネジ締結のため、不具合箇所がある部材のみを取り外して交換するといったメインテナンスを、容易に行うことができるという効果も奏する。 In addition, when a defective part occurs, in the conventional welding joining, one end has to be removed and replaced, which is a difficult work, but if the invention of this embodiment is used for the fastening part, screw fastening Therefore, there is an effect that maintenance such as removing and replacing only a member having a defective portion can be easily performed.
(第2実施形態)
 本発明の第2の実施形態につき、図6を用いて説明する。なお、第1実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
(Second Embodiment)
A second embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to 1st Embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
 図6は第2実施形態に係る、FRP嵌合構造の断面図である。
 図6において、第1実施形態(図4)との相違点は、スリーブ7が廃され、もしくは貫通部材12がスリーブ7と貫通部材11とを一体化するように成っており、さらに、貫通部材12の外周面の一部もしくは全部に、ネジ溝8が加工されていることである。それ以外の構成については第1実施形態と同様である。
FIG. 6 is a cross-sectional view of the FRP fitting structure according to the second embodiment.
In FIG. 6, the difference from the first embodiment (FIG. 4) is that the sleeve 7 is eliminated or the penetrating member 12 is integrated with the sleeve 7 and the penetrating member 11. That is, the thread groove 8 is processed in a part or all of the outer peripheral surface of 12. Other configurations are the same as those in the first embodiment.
 押さえリング10の内周面には、貫通部材12の外周面のネジ溝8に嵌合するネジ溝8が加工されている。なお、貫通部材12の円柱形状は、図6ではネジ溝8による押さえリング10との嵌合領域の部分が、貫通部材12の両端部分の径と比較して、拡径されて描かれている。 The screw groove 8 fitted into the screw groove 8 on the outer peripheral surface of the penetrating member 12 is processed on the inner peripheral surface of the pressing ring 10. Note that the cylindrical shape of the penetrating member 12 is depicted in FIG. 6 in which the portion of the fitting region with the holding ring 10 by the thread groove 8 is expanded in diameter compared to the diameter of both end portions of the penetrating member 12. .
 これは、押さえリング10の貫通部材12への組み込みの便宜上の都合であって、径を変径させる必要性は必ずしもない。貫通部材12を、径を変径しないで作成する場合は、ネジ溝8を、貫通部材12の両端から、それぞれ押さえリング10を装着させたい位置(所定の定位置)まで、彫り進めればよい。変径させる場合は、ネジ溝8を切る距離を、これよりも短くすることができる。これにより、製作時間を短縮して、作業効率を向上させることができるとともに、ネジ溝8を彫る刃の摩耗速度を低減させ、刃の交換周期を延命させることで、設備投資費用の抑制に貢献することが可能になる。 This is for the convenience of assembling the holding ring 10 into the penetrating member 12, and there is no need to change the diameter. When the penetrating member 12 is formed without changing the diameter, the thread groove 8 may be carved from both ends of the penetrating member 12 to a position (predetermined fixed position) where the pressing ring 10 is to be mounted. . When changing the diameter, the distance to cut the thread groove 8 can be made shorter than this. As a result, the manufacturing time can be shortened and the working efficiency can be improved, and the wear rate of the blade that engraves the thread groove 8 can be reduced and the life of the blade replacement can be extended, thereby contributing to the suppression of capital investment costs. It becomes possible to do.
 本実施形態においても、くさびリング9と押さえリング10との接触面(テーパ面)は、貫通部材12の軸に対して、0°より大きく90゜より小さい所定の角度θをなすように構成される(すなわち、0°<θ<90°)。 Also in this embodiment, the contact surface (tapered surface) between the wedge ring 9 and the pressing ring 10 is configured to form a predetermined angle θ greater than 0 ° and smaller than 90 ° with respect to the axis of the penetrating member 12. (That is, 0 ° <θ <90 °).
 また、押さえリング10は貫通部材12に彫られたネジ溝8に嵌合する形で固定されている。つまり、貫通部材12が、その軸に対して直角方向の荷重を受け、その荷重方向に移動しようとする場合に、押さえリング10が、その動きに完全に連動し、同様に荷重方向に移動するように構成されている。 Further, the holding ring 10 is fixed so as to be fitted into the thread groove 8 carved in the penetrating member 12. That is, when the penetrating member 12 receives a load in a direction perpendicular to the axis and tries to move in the load direction, the pressing ring 10 is completely interlocked with the movement and similarly moves in the load direction. It is configured as follows.
(作用・効果)
 このように構成しても、第1実施形態と同様のメカニズムによって、同様の作用・効果を奏することが出来る。
 つまり、貫通部材12に、貫通部材12の軸に対して垂直方向に荷重が作用した場合、これに固定された押さえリング10は、貫通部材12の動きに連動して、貫通部材12の軸に対して直角方向である、荷重方向に移動しようとする。
(Action / Effect)
Even if comprised in this way, there can exist the same effect | action and effect with the mechanism similar to 1st Embodiment.
In other words, when a load is applied to the penetrating member 12 in a direction perpendicular to the axis of the penetrating member 12, the holding ring 10 fixed to the penetrating member 12 moves to the axis of the penetrating member 12 in conjunction with the movement of the penetrating member 12. Attempts to move in the load direction, which is perpendicular to the direction.
 その際、押さえリング10とくさびリング9の間のテーパ面によって、荷重方向と逆側に位置するくさびリング9の間には、互いにFRP板状体1を圧縮するような分力が作用する。 At that time, due to the tapered surface between the holding ring 10 and the wedge ring 9, a component force that compresses the FRP plate-like body 1 acts between the wedge rings 9 located on the opposite side to the load direction.
 このようにして、本実施形態によっても、ネジ溝8加工付きの貫通部材12の軸垂直方向に作用する荷重の一部が、分力としてFRP板状体1の繊維積層方向の圧縮力に変換される。このため、孔2での破壊が防止でき、強度信頼性が向上する効果を生む。 Thus, also in this embodiment, a part of the load acting in the direction perpendicular to the axis of the penetrating member 12 with the thread groove 8 is converted into a compressive force in the fiber lamination direction of the FRP plate 1 as a component force. Is done. For this reason, destruction at the hole 2 can be prevented, and the strength reliability is improved.
 また、貫通部材12と押さえリング10とは、ネジ締結となっているために、締結力の制御や、メインテナンスを容易に行えるという効果も生む。また、貫通部材12がスリーブ7を介さず、直接押さえリング10に固定されることになるため、部品点数を減らしてコストを低減させるとともに、組立工数を減らし、作業効率を向上させる効果も奏することができる。 In addition, since the penetrating member 12 and the pressing ring 10 are screw-fastened, there is an effect that the fastening force can be easily controlled and maintained. Further, since the penetrating member 12 is directly fixed to the pressing ring 10 without using the sleeve 7, the number of parts can be reduced to reduce the cost, the assembly man-hour can be reduced, and the work efficiency can be improved. Can do.
(第3実施形態)
 本発明の第3の実施形態につき、図7を用いて説明する。なお、第1、第2実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
(Third embodiment)
A third embodiment of the present invention will be described with reference to FIG. In addition, about the structure similar to 1st, 2nd embodiment, the same code | symbol is attached | subjected and the overlapping description is abbreviate | omitted.
 図7は第3実施形態に係る、FRP嵌合構造の断面図である。
 図7において、第2実施形態(図6)との相違点は、貫通部材12は円柱形状であったが、貫通部材13は、その中心軸回りが中空として軽量化され、円筒形状となっている部分が異なる。それ以外の部分は、第2実施形態と同様である。
FIG. 7 is a cross-sectional view of the FRP fitting structure according to the third embodiment.
In FIG. 7, the difference from the second embodiment (FIG. 6) is that the penetrating member 12 has a columnar shape, but the penetrating member 13 has a hollow cylindrical shape around its central axis, and has a cylindrical shape. Different parts. Other parts are the same as in the second embodiment.
 つまり、貫通部材13の外周面の一部もしくは全部には、ネジ溝8が加工されている。そして、FRP板状体1を挟む形でくさびリング9と押さえリング10が配されている。 That is, the thread groove 8 is processed in part or all of the outer peripheral surface of the penetrating member 13. A wedge ring 9 and a holding ring 10 are arranged so as to sandwich the FRP plate 1.
 また、押さえリング10の内周面にはそれぞれ、貫通部材13の外周面のネジ溝8に嵌合するネジ溝8の加工が施される。くさびリング9と押さえリング10が接するテーパ面は、貫通部材13の軸に対して、0°より大きく90゜より小さい所定の角度θをなすように構成される(すなわち、0°<θ<90°)。 Further, the inner circumferential surface of the pressing ring 10 is processed with the thread grooves 8 that fit into the thread grooves 8 on the outer circumferential surface of the penetrating member 13. The tapered surface where the wedge ring 9 and the pressing ring 10 are in contact is configured to form a predetermined angle θ greater than 0 ° and smaller than 90 ° with respect to the axis of the penetrating member 13 (that is, 0 ° <θ <90). °).
 また、押さえリング10は貫通部材13に彫られたネジ溝8に嵌合する形で固定されている。つまり、貫通部材13が、その軸に対して直角方向の荷重を受け、その荷重方向に移動しようとする場合に、押さえリング10が、その動きに完全に連動し、同様に荷重方向に移動するように構成されている。 Further, the holding ring 10 is fixed so as to be fitted into the thread groove 8 carved in the penetrating member 13. That is, when the penetrating member 13 receives a load in a direction perpendicular to the axis and tries to move in the load direction, the pressing ring 10 is completely interlocked with the movement and similarly moves in the load direction. It is configured as follows.
(作用・効果)
 このように構成しても、第2実施形態と同様のメカニズムによって、同様の作用・効果を奏することが出来る。
 つまり、貫通部材13に、貫通部材13の軸に対して垂直方向に荷重が作用した場合、これに固定された押さえリング10は、貫通部材13の動きに連動して、貫通部材13の軸に対して直角方向である、荷重方向に移動しようとする。
(Action / Effect)
Even if comprised in this way, there can exist the same effect | action and effect with the mechanism similar to 2nd Embodiment.
In other words, when a load is applied to the penetrating member 13 in a direction perpendicular to the axis of the penetrating member 13, the holding ring 10 fixed to the penetrating member 13 moves to the axis of the penetrating member 13 in conjunction with the movement of the penetrating member 13. Attempts to move in the load direction, which is perpendicular to the direction.
 その際、押さえリング10とくさびリング9の間のテーパ面によって、荷重方向と逆側に位置するくさびリング9の間には、互いにFRP板状体1を圧縮するような分力が作用する。 At that time, due to the tapered surface between the holding ring 10 and the wedge ring 9, a component force that compresses the FRP plate-like body 1 acts between the wedge rings 9 located on the opposite side to the load direction.
 このようにして、本実施形態によっても、ネジ溝8加工付きの貫通部材13の軸垂直方向に作用する荷重の一部が、分力としてFRP板状体1の繊維積層方向の圧縮力に変換される。このため、孔2での破壊が防止でき、強度信頼性が向上する効果を生む。 Thus, also in this embodiment, a part of the load acting in the direction perpendicular to the axis of the penetrating member 13 with the thread groove 8 is converted into a compressive force in the fiber lamination direction of the FRP plate 1 as a component force. Is done. For this reason, destruction at the hole 2 can be prevented, and the strength reliability is improved.
 また、貫通部材13と押さえリング10とは、ネジ締結となっているために、締結力の制御や、メインテナンスを容易に行えるという効果も生む。また、貫通部材13がスリーブ7を介さず、直接押さえリング10に固定されることになるため、部品点数を減らしてコストを低減させるとともに、組立工数を減らし、作業効率を向上させる効果も奏することができる。 In addition, since the penetrating member 13 and the pressing ring 10 are screw-fastened, there is an effect that the fastening force can be easily controlled and maintained. In addition, since the penetrating member 13 is directly fixed to the holding ring 10 without the sleeve 7, the number of parts can be reduced to reduce the cost, the assembly man-hour can be reduced, and the work efficiency can be improved. Can do.
 更には、貫通部材13は中心軸まわりが中空とされているため、貫通部材13自体の軽量化についても、企図することが出来る。これにより、貫通部材13の材料費を削減することが出来るとともに、構造物全体の重量低減に寄与することが出来る。 Furthermore, since the penetrating member 13 is hollow around the central axis, the penetrating member 13 itself can be reduced in weight. Thereby, while being able to reduce the material cost of the penetration member 13, it can contribute to the weight reduction of the whole structure.
(第4実施形態)
本発明の第4の実施形態につき、図8を用いて説明する。
 図8は、第4実施形態におけるくさびリング94の断面拡大図であり、例えば図4(第1実施形態)、図6(第2実施形態)、図7(第3実施形態)のくさびリング9などの部分に適用可能となっている。なお、第1~第3実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
(Fourth embodiment)
A fourth embodiment of the present invention will be described with reference to FIG.
FIG. 8 is an enlarged cross-sectional view of the wedge ring 94 in the fourth embodiment. For example, the wedge ring 9 in FIG. 4 (first embodiment), FIG. 6 (second embodiment), and FIG. 7 (third embodiment). It can be applied to such parts. The same components as those in the first to third embodiments are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態のくさびリング94には、リング周面に沿って、FRP板状体1に接する面側に、複数の突起14が備えられている。このくさびリング94を、例えば図4(第1実施形態)、図6(第2実施形態)、図7(第3実施形態)のくさびリング9と交換して使用する。この際、片側のみのくさびリング9を交換してもよいが、交換するのであれば、両側を交換したほうが、FRP板状体1を圧縮する分力が等しくかかるようになるため、より好適である。 The wedge ring 94 of the present embodiment is provided with a plurality of protrusions 14 on the surface side in contact with the FRP plate 1 along the circumferential surface of the ring. This wedge ring 94 is used in exchange for the wedge ring 9 of FIG. 4 (first embodiment), FIG. 6 (second embodiment), and FIG. 7 (third embodiment), for example. At this time, the wedge ring 9 on only one side may be replaced. However, if it is replaced, it is more preferable to replace both sides because the component force for compressing the FRP plate 1 is equally applied. is there.
(作用・効果)
 本実施形態のくさびリング94を備えた嵌合構造体によっても、貫通部材11,12,13の軸垂直方向にそれぞれ荷重が作用した場合、荷重の一部は、くさびリング94に施された傾きを有するテーパ面によって、FRP板状体1の繊維積層方向への圧縮力に分力される。
(Action / Effect)
Even in the fitting structure provided with the wedge ring 94 according to the present embodiment, when a load is applied in the direction perpendicular to the axes of the penetrating members 11, 12, and 13, a part of the load is inclined to the wedge ring 94. Is divided by the compressive force in the fiber lamination direction of the FRP plate 1.
 このとき、くさびリング94がFRP板状体1の表面をわずかに滑ろうとする力に抗して摩擦力が生じるが、この複数の突起14が、この際の摩擦係数を大きく上昇させる効果を奏する。 At this time, a frictional force is generated against the force that the wedge ring 94 slightly slides on the surface of the FRP plate-like body 1, but the plurality of protrusions 14 have an effect of greatly increasing the friction coefficient at this time. .
 そのため、貫通部材11,12,13あるいはスリーブ7が直接FRP板状体1の孔2の内周面に接触するまでの耐荷重を一層大きくすることができる。耐荷重が大きくなればなるほど、テーパ面の傾斜角θによって、繊維積層方向への圧縮分力F13の大きさも大きくなる。 Therefore, the load resistance until the penetrating members 11, 12, 13 or the sleeve 7 directly contact the inner peripheral surface of the hole 2 of the FRP plate-like body 1 can be further increased. The greater the load resistance, the greater the magnitude of the compressive component force F13 in the fiber lamination direction depending on the inclination angle θ of the tapered surface.
 このため、くさびリング94同士がより一層、滑り止めストッパとしての機能を果たし、孔2での局所的な破壊を好適に防止でき、FRP板状体1の強度信頼性をより一層、向上させる効果を生む。 For this reason, the wedge rings 94 further function as anti-slip stoppers, can suitably prevent local breakage in the hole 2, and further improve the strength reliability of the FRP plate 1. Give birth.
(第5実施形態)
 本発明の第5の実施形態につき、図9を用いて説明する。
 図9は、第5実施形態におけるくさびリング95の断面拡大図である。図8(第4実施形態)とは、リング周面に備えられた複数の突起14がなく、代わりに摩擦板15が配設されている点が異なる。それ以外の部分については、全て第4実施形態と同様である。なお、第1~第4実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
(Fifth embodiment)
A fifth embodiment of the present invention will be described with reference to FIG.
FIG. 9 is an enlarged cross-sectional view of the wedge ring 95 according to the fifth embodiment. FIG. 8 (fourth embodiment) differs from FIG. 8 in that there is no plurality of protrusions 14 provided on the ring peripheral surface, and a friction plate 15 is provided instead. All other parts are the same as in the fourth embodiment. Note that the same components as those in the first to fourth embodiments are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態のくさびリング95には、リング周面に沿って、FRP板状体1に接する面側に、有機繊維を直交させて織られた布に、エポキシ樹脂を含浸させ、加熱加圧して成形された摩擦板15が固定されている。 The wedge ring 95 of the present embodiment is impregnated with an epoxy resin in a cloth woven with orthogonal organic fibers on the surface side in contact with the FRP plate 1 along the circumferential surface of the ring, and heated and pressed. A molded friction plate 15 is fixed.
 有機繊維としては、例えばポリベンゾイミダゾール、ポリパラフェニレンベンゾビスオキサゾール、芳香族ポリアミド、ポリアリレート、芳香族ポリエステルなどで製造される繊維を用いることができる。 As the organic fiber, for example, a fiber manufactured from polybenzimidazole, polyparaphenylenebenzobisoxazole, aromatic polyamide, polyarylate, aromatic polyester, or the like can be used.
 これらの有機繊維は、長めの繊維であってもよく、1mmから10mm程度に短く切断したものであってもよい。 These organic fibers may be long fibers or may be cut as short as about 1 mm to 10 mm.
 第4実施形態と同様に、本実施形態においても、くさびリング95がFRP板状体1の表面をわずかに滑ろうとする力に抗して摩擦力が生じるが、この摩擦板15が、この際の摩擦係数を大きく上昇させる効果を奏する。 Similar to the fourth embodiment, in this embodiment, a frictional force is generated against the force that the wedge ring 95 slightly slides on the surface of the FRP plate-like body 1. There is an effect of greatly increasing the friction coefficient.
 そのため、貫通部材11,12,13あるいはスリーブ7が直接FRP板状体1の孔2の内周面に接触するまでの耐荷重を一層大きくすることができる。耐荷重が大きくなればなるほど、テーパ面の傾斜角θによって、繊維積層方向への圧縮分力F13の大きさも大きくなる。 Therefore, the load resistance until the penetrating members 11, 12, 13 or the sleeve 7 directly contact the inner peripheral surface of the hole 2 of the FRP plate-like body 1 can be further increased. The greater the load resistance, the greater the magnitude of the compressive component force F13 in the fiber lamination direction depending on the inclination angle θ of the tapered surface.
 ところで、貫通部材11,12,13に繰返し周期的に過重F11が加わるような状態で、第4実施形態に係るくさびリング94が使用される場合には、FRP板状体1の繊維積層方向の圧縮(面圧)分力である力F13も同期して、周期的に入力のON/OFFが繰り返されることで、突起14による強い摩擦力が、くさびリング94とFRP板状体1の接触面を徐々に摩耗させ、最終的には破壊に至ってしまうおそれがある。 By the way, when the wedge ring 94 according to the fourth embodiment is used in a state in which the excess weight F11 is repeatedly and periodically applied to the penetrating members 11, 12, and 13, the FRP plate-like body 1 in the fiber lamination direction is used. Synchronously with the force F13 which is a compression (surface pressure) component force, ON / OFF of the input is periodically repeated, so that a strong frictional force by the protrusion 14 causes the contact surface between the wedge ring 94 and the FRP plate-like body 1 There is a risk that it will eventually wear out and eventually break down.
 本実施形態によれば、高面圧分力F13作用下で、繰り返し周期的に荷重が加わるような場合においても、突起14よりは摩擦係数が小さく、かつ長期間摩擦係数が安定する有機繊維のFRP摩擦板15を用いることによって、孔2の摩耗破壊を好適に防ぐことができるようになる。 According to this embodiment, even when a load is repeatedly applied periodically under the action of the high surface pressure component force F13, the organic fiber has a smaller friction coefficient than the protrusion 14 and has a stable friction coefficient for a long time. By using the FRP friction plate 15, it is possible to suitably prevent wear destruction of the holes 2.
 具体的には、第1~第3実施形態におけるくさびリング9の平滑板の摩擦係数をμ1、第4実施形態におけるくさびリング94の突起14による摩擦係数をμ4、本実施形態におけるくさびリング95の摩擦板15による摩擦係数をμ5とすれば、μ1<μ5<μ4を満たす大小関係にある摩擦係数が理想的である。 Specifically, the friction coefficient of the smooth plate of the wedge ring 9 in the first to third embodiments is μ1, the friction coefficient of the protrusion 14 of the wedge ring 94 in the fourth embodiment is μ4, and the wedge ring 95 in the present embodiment is Assuming that the friction coefficient by the friction plate 15 is μ5, a friction coefficient having a magnitude relationship satisfying μ1 <μ5 <μ4 is ideal.
 このような場合には、くさびリング95同士に作用する圧縮分力F13、およびこれに比例して生ずる摩擦力が強すぎることに起因する、孔2でのFRP板状体1の局所的な破壊をさらに一層、好適に防止でき、FRP板状体1の強度信頼性をより一層、向上させる効果を生む。 In such a case, the local fracture of the FRP plate-like body 1 in the hole 2 due to the compressive component force F13 acting between the wedge rings 95 and the friction force generated in proportion thereto is too strong. Can be more suitably prevented, and the strength reliability of the FRP plate-like body 1 can be further improved.
(作用・効果)
 本実施形態の作用効果について改めてまとめる。本実施形態では、突起14よりは摩擦係数が小さく、かつ長期間摩擦係数が安定する有機繊維のFRP摩擦板15を用いる。
(Action / Effect)
The operational effects of this embodiment will be summarized again. In the present embodiment, an organic fiber FRP friction plate 15 having a friction coefficient smaller than that of the protrusion 14 and having a stable friction coefficient for a long period of time is used.
 すなわち、第1~第3実施形態におけるくさびリング9の平滑板の摩擦係数をμ1、第4実施形態におけるくさびリング94の突起14による摩擦係数をμ4、本実施形態におけるくさびリング95の摩擦板15による摩擦係数をμ5とすれば、μ1<μ5<μ4を満たす大小関係にあるFRP摩擦板15を用いる。 That is, the friction coefficient of the smooth plate of the wedge ring 9 in the first to third embodiments is μ1, the friction coefficient of the projection 14 of the wedge ring 94 in the fourth embodiment is μ4, and the friction plate 15 of the wedge ring 95 in the present embodiment. Assuming that the coefficient of friction is μ5, the FRP friction plate 15 having a size relationship satisfying μ1 <μ5 <μ4 is used.
 これにより、高面圧分力F13作用下で、繰り返し周期的に荷重が加わるような場合においても、孔2の摩耗破壊を好適に防ぐことができるという効果を奏する。 Thereby, even when a load is repeatedly applied periodically under the action of the high surface pressure component force F13, there is an effect that it is possible to suitably prevent the wear destruction of the hole 2.
(第6実施形態)
 本発明の第6の実施形態につき、図10を用いて説明する。
 本実施形態では、例えば第1実施形態における第1部材が、ともに挿通部2を有して互いの前記挿通部が一致するように重ねられた第2部材と第3部材とからなり、貫通部材にはその外周の所定位置に雄ネジが設けられており、押さえ部材と貫通部材との固定部分は、少なくとも一方側が、前記雄ネジに螺合する雌ネジが設けられたナットによりなされるような場合を考える。そこで、例えば第2部材および第3部材が異種同士のパイプ材で、これらを締結するような場合に、荷重入力が貫通部材からではなく、パイプの周面から行われる場合を考える。
(Sixth embodiment)
A sixth embodiment of the present invention will be described with reference to FIG.
In the present embodiment, for example, the first member in the first embodiment is composed of a second member and a third member that both have the insertion portion 2 and are overlapped so that the insertion portions of each other coincide with each other. Is provided with a male screw at a predetermined position on its outer periphery, and at least one side of the fixing portion between the pressing member and the penetrating member is formed by a nut provided with a female screw that is screwed to the male screw. Think about the case. Therefore, for example, when the second member and the third member are different pipe materials and are fastened together, a case is considered where the load input is performed not from the through member but from the peripheral surface of the pipe.
 なお、パイプは異種同士に限らず、同種同士でもよい。以下ではいずれかのパイプがFRPパイプである場合で説明するが、必ずFRPパイプを含んでいなければならないわけではない。また、第1~第5実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。 Note that the pipes are not limited to different types but may be the same type. In the following, a case where any one of the pipes is an FRP pipe will be described, but the FRP pipe is not necessarily included. The same components as those in the first to fifth embodiments are denoted by the same reference numerals, and redundant description is omitted.
 図10はFRPパイプ16と金属パイプ17との接合部の断面図である。FRPパイプ(第2部材)16は金属パイプ(第3部材)17の外周部に重なる形ではめ合わされている。つまり、FRPパイプ(第2部材)16と金属パイプ(第3部材)17は軸方向が一致するように配設されている。両者の重なり部にはボルト孔18が複数個所、周方向に加工されている。なお、このボルト孔18は後述する外輪くさびフープ21と外輪押さえフープ19、および内輪くさびフープ22と内輪押さえフープ20の各フープ形状に沿うようにして、FRPパイプ16および金属パイプ17の重なり部に、加工されるものである。 FIG. 10 is a cross-sectional view of the joint between the FRP pipe 16 and the metal pipe 17. The FRP pipe (second member) 16 is fitted so as to overlap the outer peripheral portion of the metal pipe (third member) 17. That is, the FRP pipe (second member) 16 and the metal pipe (third member) 17 are arranged so that the axial directions thereof coincide. A plurality of bolt holes 18 are machined in the circumferential direction in the overlapping portion between the two. It should be noted that the bolt hole 18 is formed in the overlapping portion of the FRP pipe 16 and the metal pipe 17 so as to follow the hoop shapes of an outer ring wedge hoop 21 and an outer ring holding hoop 19 as described later, and an inner ring wedge hoop 22 and an inner ring holding hoop 20. Is to be processed.
 FRPパイプ16の外周側には外輪押さえフープ19が設けられ、金属パイプ17の内周側には内輪押さえフープ20がそれぞれ設けられる。 The outer ring holding hoop 19 is provided on the outer peripheral side of the FRP pipe 16, and the inner ring holding hoop 20 is provided on the inner peripheral side of the metal pipe 17.
 外輪押さえフープ19とFRPパイプ16の間には、外輪くさびフープ21が挿入されており、外輪くさびフープ21と外輪押さえフープ19の接触面(テーパ面)は、貫通部材23の軸に対して、0°より大きく90゜より小さい所定の角度θをなすように構成される(すなわち、0°<θ<90°)。 An outer ring wedge hoop 21 is inserted between the outer ring holding hoop 19 and the FRP pipe 16, and the contact surface (tapered surface) between the outer ring wedge hoop 21 and the outer ring holding hoop 19 is relative to the axis of the penetrating member 23. The predetermined angle θ is larger than 0 ° and smaller than 90 ° (that is, 0 ° <θ <90 °).
 同様にして、内輪押さえフープ20と金属パイプ17の間には、内輪くさびフープ22が挿入されており、内輪くさびフープ22と内輪押さえフープ20の接触面(テーパ面)は、貫通部材23の軸に対して、0°より大きく90゜より小さい所定の角度θをなすように構成される(すなわち、0°<θ<90°)。 Similarly, an inner ring wedge hoop 22 is inserted between the inner ring holding hoop 20 and the metal pipe 17, and the contact surface (tapered surface) between the inner ring wedge hoop 22 and the inner ring holding hoop 20 is the axis of the penetrating member 23. On the other hand, a predetermined angle θ greater than 0 ° and smaller than 90 ° is formed (that is, 0 ° <θ <90 °).
 ここで、本実施形態における貫通部材23とは、ボルト孔18に貫通するように設けられている、例えば面圧付与ボルト23のことである。面圧付与ボルト23には、ナット24が嵌合可能にネジ溝8が切られており、これによって、面圧付与ボルト23とナット24が固定されている。また、ナット24を締め上げることにより、外輪押さえフープ19、外輪くさびフープ21、FRPパイプ16、金属パイプ17、内輪くさびフープ22、内輪押さえフープ20に対して、FRPパイプ16や金属パイプ17の径方向外側への、面圧が付与されるように、締結固定されている。 Here, the penetrating member 23 in the present embodiment is, for example, a surface pressure imparting bolt 23 provided so as to penetrate the bolt hole 18. The surface pressure imparting bolt 23 is cut with a thread groove 8 so that the nut 24 can be fitted thereto, whereby the surface pressure imparting bolt 23 and the nut 24 are fixed. Further, by tightening the nut 24, the diameters of the FRP pipe 16 and the metal pipe 17 with respect to the outer ring pressing hoop 19, the outer ring wedge hoop 21, the FRP pipe 16, the metal pipe 17, the inner ring wedge hoop 22, and the inner ring pressing hoop 20. It is fastened and fixed so that a surface pressure is applied outward in the direction.
 ところで、第1~第5実施形態においては、押さえ部材(押さえリング10)と貫通部材11~13は、それぞれ、ネジ溝8を介して嵌合され、相互の位置が完全に固定されていた。しかし、本実施形態においては、押さえ部材(外輪押さえフープ19、内輪押さえフープ20)と貫通部材(面圧付与ボルト23)の接触部分については、固定されていてもよいし、固定されていなくてもよい。 Incidentally, in the first to fifth embodiments, the pressing member (pressing ring 10) and the penetrating members 11 to 13 are fitted through the screw grooves 8, respectively, and their mutual positions are completely fixed. However, in the present embodiment, the contact portion between the pressing member (outer ring pressing hoop 19 and inner ring pressing hoop 20) and the penetrating member (surface pressure applying bolt 23) may or may not be fixed. Also good.
 ここで、外力(荷重F)によって、FRPパイプ16と金属パイプ17とが、互いに離れるように、FRPパイプ16,金属パイプ17の軸方向に抜け出るような変形をした場合を考える。このとき、III領域の外輪くさびフープ21とI領域の内輪くさびフープ22がFRPパイプ16,金属パイプ17に作用する荷重に応じて移動しようとする。このとき、傾斜角θを有する接触面(テーパ面)によって、III領域の外輪押さえフープ19には径方向外側への分力が、I領域の内輪押さえフープ20には径方向内側への分力が作用する。 Here, a case is considered in which the FRP pipe 16 and the metal pipe 17 are deformed so as to be pulled out in the axial direction of the FRP pipe 16 and the metal pipe 17 by an external force (load F). At this time, the outer ring wedge hoop 21 in the III region and the inner ring wedge hoop 22 in the I region try to move according to the load acting on the FRP pipe 16 and the metal pipe 17. At this time, due to the contact surface (tapered surface) having the inclination angle θ, the outer ring pressing hoop 19 in the region III has a component force radially outward, and the inner ring pressing hoop 20 in the region I has a component force radially inward. Act.
 このとき、押さえ部材19,20は、面圧付与ボルト23に嵌合されたナット24によって、それぞれ径方向外側、径方向内側への動きが規制されているため、これらの分力がそのままくさび部材21,22への反力となる。この反力は、FRPパイプ16,金属パイプ17を相互に圧縮する方向に作用する。 At this time, since the pressing members 19 and 20 are regulated to move radially outward and radially inward by the nuts 24 fitted to the surface pressure imparting bolts 23, these component forces remain as they are as wedge members. It becomes the reaction force to 21 and 22. This reaction force acts in the direction in which the FRP pipe 16 and the metal pipe 17 are compressed together.
(作用・効果)
 このように構成しても、第1~第5実施形態と同様にして、くさび部材21,22に挟まれたFRPパイプ16,金属パイプ17は圧縮力を受け、互いに引き抜けづらくなるという効果を生む。
(Action / Effect)
Even with this configuration, the FRP pipe 16 and the metal pipe 17 sandwiched between the wedge members 21 and 22 receive a compressive force and are difficult to pull out from each other, as in the first to fifth embodiments. Born.
 また、本実施形態の場合は、FRPパイプ16、もしくは金属パイプ17の荷重変位量が大きくなれば大きくなるほど、くさびフープ21,22の追従変位量も大きくなり、傾斜角θのテーパ面によって、FRPパイプ16,金属パイプ17を圧縮する力も大きくなる。その結果、FRPパイプ16,金属パイプ17をずれにくくさせる結果を生む。 In the case of the present embodiment, the larger the load displacement amount of the FRP pipe 16 or the metal pipe 17 is, the larger the follow displacement amount of the wedge hoops 21 and 22 is. The force which compresses the pipe 16 and the metal pipe 17 also becomes large. As a result, the FRP pipe 16 and the metal pipe 17 are hardly displaced.
(第7実施形態)
 本発明の第7の実施形態につき、図11を用いて説明する。
 本実施形態においても、パイプは異種同士に限らず、同種同士でもよい。以下ではいずれかのパイプがFRPパイプである場合で説明するが、必ずFRPパイプを含んでいなければならないわけではない。第1~第6実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
(Seventh embodiment)
A seventh embodiment of the present invention will be described with reference to FIG.
Also in this embodiment, the pipes are not limited to different types, but may be the same type. In the following, a case where any one of the pipes is an FRP pipe will be described, but the FRP pipe is not necessarily included. The same components as those in the first to sixth embodiments are denoted by the same reference numerals, and redundant description is omitted.
 図11はFRPパイプ16と金属パイプ17との接合部の断面図である。本実施形態と第6実施形態とは、押さえ部材とナットが一体化され、テーパ付ナット25が貫通部材(面圧付与ボルト)23にネジ溝8を介して嵌合されている点が異なる。また、くさび部材がフープ形状ではなく、リング形状となっている。つまり、貫通部材23を取り巻くようにくさびリング9が配されている。その他の点は第6実施形態と同様である。 FIG. 11 is a cross-sectional view of the joint between the FRP pipe 16 and the metal pipe 17. The present embodiment is different from the sixth embodiment in that a pressing member and a nut are integrated, and a tapered nut 25 is fitted to a penetrating member (surface pressure applying bolt) 23 via a thread groove 8. Moreover, the wedge member is not a hoop shape but a ring shape. That is, the wedge ring 9 is arranged so as to surround the penetrating member 23. Other points are the same as in the sixth embodiment.
 つまり、FRPパイプ(第2部材)16は金属パイプ(第3部材)17の外周部に重なる形ではめ合わされている。すなわち、FRPパイプ(第2部材)16と金属パイプ(第3部材)17は軸方向が一致するように配設されている。また、両者の重なり部にはボルト孔18が複数周方向に加工されている。ボルト孔18には面圧付与ボルト23が貫通され、テーパ付ナット25がくさびリング9を介して、面圧付与ボルト23に締結される。 That is, the FRP pipe (second member) 16 is fitted so as to overlap the outer peripheral portion of the metal pipe (third member) 17. That is, the FRP pipe (second member) 16 and the metal pipe (third member) 17 are arranged so that the axial directions thereof coincide. Further, a plurality of bolt holes 18 are machined in the circumferential direction in the overlapping portion between the two. A surface pressure applying bolt 23 is passed through the bolt hole 18, and a tapered nut 25 is fastened to the surface pressure applying bolt 23 via the wedge ring 9.
(作用・効果)
 本実施形態のように構成しても、第6実施形態と全く同様の効果を奏することが出来る。つまり、例えば外力(荷重F)によって、FRPパイプ16が金属パイプ17から抜けるような変形をした際を考える。
(Action / Effect)
Even when configured as in the present embodiment, the same effects as in the sixth embodiment can be obtained. In other words, for example, a case where the FRP pipe 16 is deformed so as to come out of the metal pipe 17 due to an external force (load F) is considered.
 このとき、くさびリング9が軸方向に移動しようとすることで、テーパ付ナット25に施された傾斜面により、くさびリング9に、FRPパイプ16、金属パイプ17を押し付けようとする圧縮力、すなわち、テーパ付ナットから受ける反力が作用する。 At this time, the wedge ring 9 is about to move in the axial direction, so that the FRP pipe 16 and the metal pipe 17 are pressed against the wedge ring 9 by the inclined surface applied to the tapered nut 25. The reaction force received from the tapered nut acts.
 これにより、FRPパイプ16は金属パイプ17から引き抜けづらくなるという効果を生む。また、FRPパイプ16の断面が、熱変形や製作時の制約によって、やむを得ず完全な円形でない場合でも、局所的に面圧付与ボルト23で締結している個所には、それぞれ圧縮面圧が発生するため、大型構造物の締結が容易になるという効果も生む。 Thus, the FRP pipe 16 has an effect that it is difficult to pull out from the metal pipe 17. Further, even if the cross section of the FRP pipe 16 is unavoidably not completely circular due to thermal deformation or restrictions at the time of manufacture, a compression surface pressure is generated at each portion where the surface pressure applying bolt 23 is locally fastened. Therefore, the effect that the fastening of a large-sized structure becomes easy is also produced.
 また、第6実施形態では押さえ部材19,20やくさび部材21,22が、FRPパイプ16,金属パイプ17の周面に沿うフープ形状であったため、FRPパイプ16や金属パイプ17は切断することが出来ず、構造物が大型になればなるほど、運搬などの面で支障があったが、本実施形態の方法によれば、押さえ部材25やくさび部材9は、貫通部材23を取り巻くリング形状であるため、FRPパイプ16,金属パイプ17に関してはやむを得ず切断しても支障が生じないというメリットもある。 Further, in the sixth embodiment, since the holding members 19 and 20 and the wedge members 21 and 22 have a hoop shape along the peripheral surfaces of the FRP pipe 16 and the metal pipe 17, the FRP pipe 16 and the metal pipe 17 can be cut. However, according to the method of this embodiment, the pressing member 25 and the wedge member 9 have a ring shape surrounding the penetrating member 23. For this reason, the FRP pipe 16 and the metal pipe 17 have an advantage that there is no problem even if they are cut.
(第8実施形態)
 本発明の第8の実施形態につき、図12、図13を用いて説明する。なお、第1~第7実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
 図12は、本実施形態に係るFRP板状体1の平面図(上面図)であり、図13は、図12のY-Y矢視断面図である(適宜、相互参照)。
(Eighth embodiment)
An eighth embodiment of the present invention will be described with reference to FIGS. Note that the same components as those in the first to seventh embodiments are denoted by the same reference numerals, and redundant description is omitted.
FIG. 12 is a plan view (top view) of the FRP plate 1 according to the present embodiment, and FIG. 13 is a cross-sectional view taken along arrow YY in FIG.
 本実施形態においては、FRP板状体1には任意の形状の孔2があけられている。孔2を挟む形でくさびプレート3が接している。なお、くさびプレート3はくさび部材であり、かつ後記する貫通部材5のまわりを取り囲む環状部材でもある。 In the present embodiment, the FRP plate 1 is provided with a hole 2 having an arbitrary shape. The wedge plate 3 is in contact with the hole 2 in between. The wedge plate 3 is a wedge member and is also an annular member that surrounds a penetrating member 5 described later.
 くさびプレート3のFRP板状体1に接していない面は、後記する貫通部材(多角形ピン)5の軸に対して、0°より大きく90゜より小さい所定の傾斜角θをなした面(テーパ面)を有するように加工されている。(すなわち、0°<θ<90°)。 The surface of the wedge plate 3 that is not in contact with the FRP plate 1 has a predetermined inclination angle θ greater than 0 ° and smaller than 90 ° with respect to the axis of a penetrating member (polygonal pin) 5 described later ( Taper surface). (That is, 0 ° <θ <90 °).
 くさびプレート3には押さえプレート4が接している。押さえプレート4の接触面は、くさびプレート3のテーパ面に均一に接するように加工されている。なお、押さえプレート4は押さえ部材であり、かつ後記する貫通部材5のまわりを取り囲む環状部材でもある。 The wedge plate 3 is in contact with the holding plate 4. The contact surface of the pressing plate 4 is processed so as to be in uniform contact with the tapered surface of the wedge plate 3. The pressing plate 4 is a pressing member and is also an annular member that surrounds a penetrating member 5 described later.
 押さえプレート4はFRP板状体1を挟む形で上下方向に二枚用意されており、互いにボルト6の頭部またはナットによって締結されている。 Two holding plates 4 are prepared in the vertical direction so as to sandwich the FRP plate 1 and are fastened to each other by the heads of bolts 6 or nuts.
 また、押さえプレート4にはその中心部付近に孔が加工され、多角形ピン5がその孔に貫通している。 Further, a hole is processed in the vicinity of the center portion of the holding plate 4 and a polygonal pin 5 penetrates the hole.
 ここで、貫通部材(多角形ピン)5に、例えば貫通部材(多角形ピン)5の軸に対して垂直方向に荷重が作用した場合を考える。押さえプレート4が貫通部材5から荷重Fを受けることで、押さえプレート4はすべり変形を起こそうとする。つまり、この場合には押さえ部材である押さえプレート4は、上下方向はボルト6の頭部またはナットによって動きが規制されるとともに、荷重方向へはボルト6によって間接的に貫通部材5にきつく固定されているとみなすこともでき、貫通部材である多角形ピン5の動きによって、押さえプレート4が荷重Fの方向に追従して変位する。 Here, a case is considered where a load is applied to the penetrating member (polygonal pin) 5 in a direction perpendicular to the axis of the penetrating member (polygonal pin) 5, for example. When the pressing plate 4 receives the load F from the penetrating member 5, the pressing plate 4 tends to slip. In other words, in this case, the pressing plate 4 as a pressing member is restricted in movement in the vertical direction by the head or nut of the bolt 6 and is firmly fixed to the penetrating member 5 indirectly by the bolt 6 in the load direction. The holding plate 4 is displaced following the direction of the load F by the movement of the polygonal pin 5 that is the penetrating member.
 この際、III領域とIV領域の押さえプレート4は、上下方向はボルト6の締結によって動きが規制されており、押さえプレート4とくさびプレート3の接触面がテーパにより傾いているため、くさびプレート3を圧縮するような分力が発生する。この分力によって、FRP板状体1が圧縮される。 At this time, the movement of the holding plates 4 in the III region and the IV region is restricted by fastening bolts 6 in the vertical direction, and the contact surface between the pressing plate 4 and the wedge plate 3 is inclined by a taper. The component force that compresses is generated. The FRP plate 1 is compressed by this component force.
(作用・効果)
 本実施形態によっても、第1~7実施形態と同様に、貫通部材5に作用する荷重の一部がFRP板状体1の繊維積層方向への圧縮力に変換され、分力される。このため、孔2での破壊が防止でき、強度信頼性が向上する効果を生む。
(Action / Effect)
Also in the present embodiment, as in the first to seventh embodiments, part of the load acting on the penetrating member 5 is converted into a compressive force in the fiber lamination direction of the FRP plate 1 and divided. For this reason, destruction at the hole 2 can be prevented, and the strength reliability is improved.
 また、本実施形態によれば、貫通部材5は任意の多角形状であればよい。また、貫通部材5を通す孔2についても、貫通部材が貫通する程度の大きさの孔であれば、任意の形状の孔でよく、必ずしも断面視で正円形になるように成形される必要はない。これにより、多様な形状の貫通部材に対応したFRP板状体1の嵌合締結構造を提供できる。 Moreover, according to this embodiment, the penetration member 5 should just be arbitrary polygonal shapes. Further, the hole 2 through which the penetrating member 5 is passed may be an arbitrary shaped hole as long as the penetrating member penetrates the hole 2, and it is not necessarily required to be formed in a circular shape in a sectional view. Absent. Thereby, the fitting fastening structure of the FRP plate-shaped body 1 corresponding to the penetration member of various shapes can be provided.
(第9実施形態)
 本発明の第9の実施形態につき、図14を用いて説明する。なお、第1~第8実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
(Ninth embodiment)
A ninth embodiment of the present invention will be described with reference to FIG. Note that the same components as those in the first to eighth embodiments are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態においては、図4に示す第1実施形態とは、押さえリング10とくさびリング9のテーパ面(接触面)が、貫通部材11の軸となす角度である傾斜角θが逆(すなわち、90°<θ<180°)となっており、いわゆる逆テーパ型となっている点が異なる。その他の構成は第1実施形態と共通である。 In the present embodiment, the inclination angle θ, which is the angle formed by the tapered surfaces (contact surfaces) of the pressing ring 10 and the wedge ring 9 with the axis of the penetrating member 11, is opposite to that of the first embodiment shown in FIG. 90 ° <θ <180 °), which is a so-called reverse taper type. Other configurations are the same as those in the first embodiment.
(作用・効果)
 このように構成しても、第1実施形態と同様の効果を奏することが出来る。但し、図14に示すように、FRP板状体1を互いに圧縮するような分力は、貫通部材11の荷重方向の先にあるくさびリング9に発生する。この点は、第1実施形態とは逆側となる。
(Action / Effect)
Even if comprised in this way, there can exist an effect similar to 1st Embodiment. However, as shown in FIG. 14, a component force that compresses the FRP plates 1 is generated in the wedge ring 9 at the tip of the penetrating member 11 in the load direction. This point is on the opposite side of the first embodiment.
(第10実施形態)
 本発明の第10の実施形態につき、図15を用いて説明する。なお、第1~第9実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
(10th Embodiment)
A tenth embodiment of the present invention will be described with reference to FIG. Note that the same components as those in the first to ninth embodiments are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態においては、くさびリング9が、FRP板状体1を境に、FRP板状体1に接するようにして片側2組ずつ設けられ、押さえリング10との接触面は、FRP板状体1から見て略山型、あるいは傘型のテーパ面を有して構成されている点が異なる。その他の構成は第1実施形態と共通である。 In this embodiment, the wedge ring 9 is provided in two sets on one side so as to contact the FRP plate 1 with the FRP plate 1 as a boundary, and the contact surface with the pressing ring 10 is the FRP plate. It is different in that it has a substantially mountain-shaped or umbrella-shaped tapered surface as viewed from 1. Other configurations are the same as those in the first embodiment.
 なお、これ以降、図15~図21までの図中の矢印は、貫通部材11に例えばUp方向またはDown方向に荷重Fが作用した場合に、例えば図4の第1実施形態でのI領域およびII領域に相当する領域に存在するくさびリング9、押さえリング10に作用する力を、参考として模式的に描いたものである。実際には、図4の第1実施形態でのIII領域およびIV領域に相当する領域に存在するくさびリング9、押さえリング10にも、同様にして力が作用している。また、Up方向とは、360°のうちでいずれか任意の一方向を意味し、Down方向とは、前記Up方向と逆方向、すなわち前記Up方向と180°反対方向を意味するものとする。 From now on, the arrows in FIGS. 15 to 21 indicate, for example, when the load F acts on the penetrating member 11 in the Up direction or the Down direction, for example, the I region in the first embodiment of FIG. The force acting on the wedge ring 9 and the holding ring 10 existing in the region corresponding to the region II is schematically drawn for reference. Actually, the force acts in the same manner on the wedge ring 9 and the pressing ring 10 existing in the region corresponding to the region III and the region IV in the first embodiment of FIG. Further, the Up direction means any one of 360 degrees, and the Down direction means a direction opposite to the Up direction, that is, a direction opposite to the Up direction by 180 degrees.
 なお、図15ではくさびリング9がFRP板状体1を境に片側あたり2組存在する様子が分かるように、くさびリング9を別々に描いているが、押さえリング10との接触面が変わらないようになっていれば、2組のくさびリング9を合体させて、一体化したテーパリングを用いてもよい。 In FIG. 15, the wedge rings 9 are drawn separately so that it can be seen that there are two pairs of wedge rings 9 per side with the FRP plate 1 as a boundary, but the contact surface with the holding ring 10 does not change. If so, two sets of wedge rings 9 may be combined and an integrated taper ring may be used.
 第1実施形態においては、貫通部材11の軸垂直方向にかかる荷重方向Fとは、逆側に位置するくさびリング9に対して、FRP板状体1を互いに圧縮するような分力が作用するのみであった。しかし、本実施形態のように構成すれば、貫通部材11の軸垂直方向にかかる荷重の向きに関係なく、常に2組のくさびリング9のうち、どちらかには、FRP板状体1を互いに圧縮するような分力を発生させることが出来るようになる。 In the first embodiment, a component force that compresses the FRP plate-like body 1 acts on the wedge ring 9 positioned on the opposite side to the load direction F applied in the direction perpendicular to the axis of the penetrating member 11. It was only. However, if configured as in this embodiment, regardless of the direction of the load applied to the penetrating member 11 in the direction perpendicular to the axis, the FRP plate-like body 1 is always attached to one of the two sets of wedge rings 9. It becomes possible to generate a component force that compresses.
(作用・効果)
 この様に構成することで、荷重Fの両側から、FRP板状体1を互いに圧縮するような分力を作用させることができ、第1実施形態よりも強固に、FRP板状体1を拘束することが出来るという格別の効果を奏することができる。
(Action / Effect)
By configuring in this way, component forces that compress the FRP plate-like body 1 from each other can be applied from both sides of the load F, and the FRP plate-like body 1 is restrained more firmly than in the first embodiment. The special effect of being able to do it can be produced.
 また、図16は図15の変形例である。
 なお、第1~第10実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
FIG. 16 is a modification of FIG.
Note that the same components as those in the first to tenth embodiments are denoted by the same reference numerals, and redundant description is omitted.
 図16は、図15とは、くさびリング9と押さえリング10との接触面が、FRP板状体1から見て略谷型、あるいはY型のテーパ面となるようにして構成されている点が異なる。その他の構成は図15と共通である。 FIG. 16 is different from FIG. 15 in that the contact surface between the wedge ring 9 and the retaining ring 10 is configured to be a substantially valley-shaped or Y-shaped tapered surface when viewed from the FRP plate-like body 1. Is different. Other configurations are the same as those in FIG.
 なお、図16においても、くさびリング9がFRP板状体1を境に片側あたり2組存在する様子が分かるように、くさびリング9を別々に描いているが、押さえリング10との接触面が変わらないようになっていれば、2組のくさびリング9を合体させて、一体化したテーパリングを用いてもよい。 Also in FIG. 16, the wedge rings 9 are drawn separately so that it can be seen that there are two pairs of wedge rings 9 per side with the FRP plate 1 as the boundary, but the contact surface with the holding ring 10 is As long as it does not change, two sets of wedge rings 9 may be combined and an integrated taper ring may be used.
(作用・効果)
 このように構成しても、図15と全く同様の作用・効果を奏することが出来る。つまり、第1実施形態においては、貫通部材11の軸垂直方向にかかる荷重方向Fとは、逆側に位置するくさびリング9に対して、FRP板状体1を互いに圧縮するような分力が作用するのみであった。しかし、本実施形態のように構成すれば、貫通部材11の軸垂直方向にかかる荷重の向きに関係なく、常に2組のくさびリング9のうち、どちらか一方には必ず、FRP板状体1を互いに圧縮するような分力を発生させることが出来るようになる。
(Action / Effect)
Even if comprised in this way, there can exist an effect | action and effect completely the same as FIG. That is, in the first embodiment, a component force that compresses the FRP plate-like body 1 with respect to the wedge ring 9 positioned on the opposite side to the load direction F applied in the direction perpendicular to the axis of the penetrating member 11 is obtained. It only worked. However, if configured as in the present embodiment, regardless of the direction of the load applied to the penetrating member 11 in the direction perpendicular to the axis, the FRP plate 1 is always attached to one of the two sets of wedge rings 9. It is possible to generate a component force that compresses each other.
 この様に構成することで、荷重Fの先後両方向から、FRP板状体1を互いに圧縮するような分力を作用させることができ、第1実施形態よりも強固に、FRP板状体1を拘束することが出来るという格別の効果を奏することができる。 By configuring in this manner, component forces that compress the FRP plate-like body 1 from each other can be applied from both the front and rear directions of the load F, and the FRP plate-like body 1 can be made stronger than in the first embodiment. The special effect that it can restrain can be show | played.
(第11実施形態)
 本発明の第11の実施形態につき、図17を用いて説明する。なお、第1~第10実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
(Eleventh embodiment)
An eleventh embodiment of the present invention will be described with reference to FIG. Note that the same components as those in the first to tenth embodiments are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態においては、図4と比較して、FRP板状体1を境に、片側あたり、断面の形状が等しく径のみが異なるくさびリング9が、FRP板状体1に接するように2組(もしくは、縦の関係を段と呼ぶとすれば2段)備えられている点が異なる。その他の構成は第1実施形態と同様である。 In this embodiment, compared with FIG. 4, two sets of wedge rings 9 having the same cross-sectional shape and different diameters on one side so that the FRP plate-like body 1 is in contact with the FRP plate-like body 1 are bordered. (Or two stages if the vertical relationship is called a stage) is different. Other configurations are the same as those of the first embodiment.
 なお、くさびリング9の数は、この例のように2組に限らない。例えば、N段(複数組)備えるように構成してもよい。 Note that the number of wedge rings 9 is not limited to two as in this example. For example, you may comprise so that N stage (plural sets) may be provided.
(作用・効果)
 この様に構成しても、第1実施形態と同様の効果を奏することができる。更に解説すれば、くさびリングが2段式になったことで、押さえリング10との接触面であるテーパ面も片側あたり2箇所に増える。この結果、くさびリング9がFRP板状体1を圧縮する分力も、片側あたり2箇所から入力(すなわち、2点支持)することができるので、くさびリング9ひとつあたりの面圧を小さくでき、第1実施形態よりも、FRP板状体1の圧縮破壊を防止することができる。
(Action / Effect)
Even if comprised in this way, there can exist an effect similar to 1st Embodiment. More specifically, since the wedge ring is a two-stage type, the taper surface that is a contact surface with the holding ring 10 is also increased to two locations per side. As a result, the component force by which the wedge ring 9 compresses the FRP plate 1 can also be input from two locations per side (that is, supported at two points), so that the surface pressure per wedge ring 9 can be reduced, and the first The FRP plate-like body 1 can be prevented from being compressed and fractured as compared with the first embodiment.
 また、図18は図17の変形例である。
 なお、第1~第10実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
FIG. 18 is a modification of FIG.
Note that the same components as those in the first to tenth embodiments are denoted by the same reference numerals, and redundant description is omitted.
 図18は、図17とは、くさびリング9と押さえリング10との接触面(テーパ面)の傾斜が、逆向き(すなわち、90°<θ<180°)に形成されている点が異なる。その他の構成は図17と共通である。 FIG. 18 is different from FIG. 17 in that the inclination of the contact surface (taper surface) between the wedge ring 9 and the pressing ring 10 is formed in the opposite direction (that is, 90 ° <θ <180 °). Other configurations are the same as those in FIG.
 なお、本変形例においても、くさびリング9の数は、このような2組に限らない。例えば、N組(複数組)備えるように構成してもよい。 In this modification, the number of wedge rings 9 is not limited to two such sets. For example, you may comprise so that N sets (plural sets) may be provided.
 なお、これは図14の変形例であって、くさびリング9を、FRP板状体1を境に、片側あたり、断面の形状が等しく径が異なるリング2組(2段)を備えるようにされたものとも見ることができる。 This is a modification of FIG. 14, and the wedge ring 9 is provided with two sets (two steps) of rings having the same cross-sectional shape and different diameters on one side with the FRP plate 1 as a boundary. You can also see it.
(作用・効果)
 このように構成しても、図17や図14と全く同様の作用・効果を奏することが出来る。つまり、くさびリングが2段式になったことで、押さえリング10との接触面であるテーパ面も片側あたり2箇所に増える。
(Action / Effect)
Even if comprised in this way, there can exist an effect | action and effect completely the same as FIG.17 and FIG.14. That is, since the wedge ring is a two-stage type, the taper surface that is a contact surface with the pressing ring 10 is also increased to two locations per side.
 この結果、くさびリング9がFRP板状体1を圧縮する分力も、片側あたり2箇所から入力することができ、図14よりも強固に、FRP板状体1を拘束することが出来るという格別の効果を奏することができる。 As a result, the component force by which the wedge ring 9 compresses the FRP plate 1 can also be input from two locations per side, and the FRP plate 1 can be restrained more firmly than in FIG. There is an effect.
(第12実施形態)
 本発明の第12の実施形態につき、図19を用いて説明する。なお、第1~第11実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
(Twelfth embodiment)
A twelfth embodiment of the present invention will be described with reference to FIG. Note that the same components as those in the first to eleventh embodiments are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態(図19)においては、図17の第11実施形態とは、FRP板状体1を境に、片側あたり2組のくさびリングに対応して、押さえリング10が、互いに切り離し可能に構成されている点が異なる。切り離し部分には、ネジ溝8が彫られており、完全に嵌合するようになっている。つまり、本実施形態のそれぞれの押さえリング10は、貫通部材11と直接または間接に固定されている。その他の構成は第11実施形態と同様である。 In the present embodiment (FIG. 19), the press ring 10 can be separated from the eleventh embodiment of FIG. 17 corresponding to two sets of wedge rings per side with the FRP plate 1 as a boundary. It is different in the configuration. A thread groove 8 is carved in the separation portion so that it can be completely fitted. That is, each pressing ring 10 of the present embodiment is fixed directly or indirectly to the penetrating member 11. Other configurations are the same as those in the eleventh embodiment.
 なお、このくさびリング9、および押さえリング10の数は、この例のように片側あたり2組に限らない。例えば、N段(複数組)備えるように構成してもよい。 Note that the number of the wedge ring 9 and the holding ring 10 is not limited to two sets per side as in this example. For example, you may comprise so that N stage (plural sets) may be provided.
(作用・効果)
 この様に構成しても、第11実施形態と同様の作用・効果を奏することができる。更に解説すれば、ネジ溝8によって片側あたり2組のくさびリング9と押さえリング10を切り離し可能にしたことで、テーパ面の傾斜角をそれぞれ別の角度になるように変えて構成してもよい。
(Action / Effect)
Even if comprised in this way, there can exist an effect | action and effect similar to 11th Embodiment. To further explain, by making it possible to separate the two sets of the wedge ring 9 and the holding ring 10 per side by the thread groove 8, the inclination angle of the tapered surface may be changed to be different from each other. .
 この場合、例えばFRP板状体1の孔2近傍にあるくさびリング9には、貫通部材とのテーパ面のなす角度である傾斜角θ2をやや大きめにし、もう一方の環状部材(リング)9,10の接触面(テーパ面)の傾斜角θ1はやや小さめに設計すれば(θ1<θ2)、FRP板状体1の孔2近傍にあるくさびリング9にはFRP板状体1を圧縮する分力がやや弱く働き、もう一方のくさびリング9には分力がやや強めに作用する、というように、作用する分力の大きさをコントロールすることができるようになる。 In this case, for example, the wedge ring 9 in the vicinity of the hole 2 of the FRP plate-like body 1 has a slightly larger inclination angle θ2, which is the angle formed by the tapered surface with the penetrating member, and the other annular member (ring) 9, If the inclination angle θ1 of the contact surface (taper surface) 10 is designed to be slightly smaller (θ1 <θ2), the wedge ring 9 in the vicinity of the hole 2 of the FRP plate 1 is compressed by the FRP plate 1. It is possible to control the magnitude of the acting component force, such that the force works slightly weaker and the other wedge ring 9 has a slightly stronger component force.
 このように製作すると、FRP板状体1の孔2近傍からの破壊を起きにくくさせるという効果を奏することができる。この場合、他方のくさびリング9ではFRP板状体1に対して強固な面圧を付与可能な構成となっているため、締結強度が足りなくなることはない。 If manufactured in this way, an effect of making it difficult for the FRP plate 1 to break from the vicinity of the hole 2 can be obtained. In this case, since the other wedge ring 9 is configured to be able to apply a strong surface pressure to the FRP plate-like body 1, the fastening strength does not become insufficient.
 なお、テーパ面の傾斜角θをそれぞれ同じ角度(θ1=θ2)で製作した場合は、第1実施形態(図4)のくさびリング9と押さえリング10をセットでもう一段追加した状態と同じと見ることもできる。また、この場合は、第11実施形態(図17)とまったく同一である。 In addition, when the inclination angle θ of the taper surface is manufactured at the same angle (θ1 = θ2), it is the same as the state in which the wedge ring 9 and the holding ring 10 of the first embodiment (FIG. 4) are further added as a set. You can also see it. In this case, it is exactly the same as the eleventh embodiment (FIG. 17).
 図20は図19の変形例である。
 なお、第1~第11実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
FIG. 20 is a modification of FIG.
Note that the same components as those in the first to eleventh embodiments are denoted by the same reference numerals, and redundant description is omitted.
 図20は、図19とは、くさびリング9と押さえリング10との傾斜面(テーパ面)と貫通部材11と、のなす角θ1,θ2が、逆向き(すなわち、90°<θ1<180°、90°<θ2<180°)に形成されている点が異なる。その他の構成は図19と共通である。 20 is different from FIG. 19 in that the angles θ1 and θ2 formed between the inclined surface (tapered surface) of the wedge ring 9 and the pressing ring 10 and the penetrating member 11 are in opposite directions (that is, 90 ° <θ1 <180 °). , 90 ° <θ2 <180 °). Other configurations are the same as those in FIG.
 なお、このくさびリング9、および押さえリング10の数についても、この例のように片側あたり2組に限らない。例えば、N段(複数組)備えるように構成してもよい。 Note that the number of the wedge rings 9 and the holding rings 10 is not limited to two sets per side as in this example. For example, you may comprise so that N stage (plural sets) may be provided.
(作用・効果)
 この様に構成しても、図19と同様の作用・効果を奏することができる。つまり、ネジ溝8によって片側あたり2組のくさびリング9と押さえリング10を切り離し可能にしたことで、テーパ面の傾斜角をそれぞれ別の角度になるように変えて構成してもよい。
(Action / Effect)
Even if configured in this manner, the same operations and effects as in FIG. 19 can be obtained. That is, two sets of the wedge ring 9 and the holding ring 10 can be separated per one side by the thread groove 8, so that the inclination angle of the tapered surface may be changed to be different from each other.
 この場合、例えばFRP板状体1の孔2近傍にあるくさびリング9には、貫通部材とのテーパ面のなす角度である傾斜角θ2をやや小さめにし、もう一方の環状部材(リング)9,10の接触面(テーパ面)の傾斜角θ1はやや大きめに設計すれば(θ1>θ2)、FRP板状体1の孔2近傍にあるくさびリング9にはFRP板状体1を圧縮する分力がやや弱く働き、もう一方のくさびリング9には分力がやや強めに作用する、というように、作用する分力の大きさをコントロールすることができるようになる。 In this case, for example, the wedge ring 9 in the vicinity of the hole 2 of the FRP plate-like body 1 has a slightly smaller inclination angle θ2, which is an angle formed by the tapered surface with the penetrating member, and the other annular member (ring) 9, If the inclination angle θ1 of the contact surface (taper surface) 10 is designed to be slightly larger (θ1> θ2), the wedge ring 9 in the vicinity of the hole 2 of the FRP plate 1 is compressed by the FRP plate 1. It is possible to control the magnitude of the acting component force, such that the force works slightly weaker and the other wedge ring 9 has a slightly stronger component force.
 このように製作すると、FRP板状体1の孔2近傍からの破壊を起きにくくさせるという効果を奏することができる。この場合、他方のくさびリング9ではFRP板状体1に対して強固な面圧を付与可能な構成となっているため、締結強度が足りなくなることはない。 If manufactured in this way, an effect of making it difficult for the FRP plate 1 to break from the vicinity of the hole 2 can be obtained. In this case, since the other wedge ring 9 is configured to be able to apply a strong surface pressure to the FRP plate-like body 1, the fastening strength does not become insufficient.
 なお、テーパ面の傾斜角θをそれぞれ同じ角度で製作した場合は、第9実施形態(図14)のくさびリング9と押さえリング10をセットでもう一段追加した状態と同じと見ることもできる。また、この場合は、第11実施形態(図18)とまったく同一である。 In addition, when the inclination angle θ of the taper surface is manufactured at the same angle, it can be seen that the wedge ring 9 and the pressing ring 10 of the ninth embodiment (FIG. 14) are further added as a set. In this case, it is exactly the same as the eleventh embodiment (FIG. 18).
(第13実施形態)
 本発明の第13の実施形態につき、図21を用いて説明する。なお、第1~第12実施形態と同様の構成については同一の符号を付して、重複する説明を省略する。
(13th Embodiment)
A thirteenth embodiment of the present invention will be described with reference to FIG. Note that the same components as those in the first to twelfth embodiments are denoted by the same reference numerals, and redundant description is omitted.
 本実施形態は、第10実施形態(図15)のくさびリング9と押さえリング10の組み合わせを、ネジ溝8を介して多段化し、N段(複数組)設けた構成となっている。つまり、本実施形態のそれぞれの押さえリング10は、貫通部材11と直接または間接に固定されている。その他の部分は第10実施形態(図15)と同様である。 This embodiment has a configuration in which the combination of the wedge ring 9 and the pressing ring 10 of the tenth embodiment (FIG. 15) is multi-staged through the thread groove 8 and provided with N stages (multiple sets). That is, each pressing ring 10 of the present embodiment is fixed directly or indirectly to the penetrating member 11. Other portions are the same as those in the tenth embodiment (FIG. 15).
(作用・効果)
 このように構成しても、第10実施形態と同様の効果を奏することができる。更には、本実施形態の場合はネジ嵌合により多段化しているため、第12実施形態(図19、図20)と同様に、テーパ面の傾斜角をおのおの独立に設定することも容易である。この場合、例えばくさびリング9の位置が、FRP板状体1の孔2近傍から、徐々に距離が離れるに従って、FRP板状体1を圧縮する面圧分力が、グラデーション状に徐々に強くなっていくように設計することも可能である。
(Action / Effect)
Even if comprised in this way, there can exist an effect similar to 10th Embodiment. Furthermore, in the case of this embodiment, since it is multi-staged by screw fitting, it is easy to set the inclination angle of the tapered surface independently as in the twelfth embodiment (FIGS. 19 and 20). . In this case, for example, as the position of the wedge ring 9 gradually increases from the vicinity of the hole 2 of the FRP plate-like body 1, the surface pressure component force compressing the FRP plate-like body 1 gradually increases in a gradation. It is also possible to design to follow.
 また、本実施形態では貫通部材11の軸垂直方向にかかる荷重Fの方向を問わず、荷重Fの手前側、後ろ側両方に、常にFRP板状体1を圧縮する分力がかかる。このため、例えばFRP板状体1の孔2近傍のような破壊に弱いポイントはやさしく労わりつつ、孔2から離れるに従い、破壊に強い部分は徐々に強めにFRP板状体1を圧縮する分力が作用するようにすることが容易である。 Moreover, in this embodiment, regardless of the direction of the load F applied in the direction perpendicular to the axis of the penetrating member 11, a component force that always compresses the FRP plate 1 is applied to both the front side and the rear side of the load F. For this reason, for example, the point that is vulnerable to breakage such as the vicinity of the hole 2 of the FRP plate-like body 1 is easily worked, while the portion that is resistant to breakage gradually compresses the FRP plate-like body 1 as the distance from the hole 2 increases. It is easy to make the force act.
 このようにすれば、例えばFRP板状体1の特殊形状などの事情に合わせて、きめ細やかな分力制御により、FRP板状体1などの部材をいたわりながら、より一層、強固に確実に、拘束することができる。 In this way, for example, according to the circumstances such as the special shape of the FRP plate-like body 1, by carefully controlling the component force, while maintaining the members such as the FRP plate-like body 1, more firmly and securely, Can be restrained.
(適用例)
 以下、本発明の第1~第13実施形態の適用例につき、具体的な作用・効果を交えながら説明する。なお、以下は少なくとも本発明が適用可能と考えられる構造体のうち、具体的な適用部位に関する例示の一部に過ぎず、本発明の適用範囲を、これらの例示の構造体の範囲に限定するものでないことは言うまでもない。
 すなわち、本発明の第1~第13実施形態に記載の嵌合構造用の締結部材、嵌合構造、および嵌合構造用の締結部材を具備した構造体とは、少なくとも、以下で説明するパワーショベル、風力発電用風車ブレード、遠心分離機、自動車、船舶、航空機に関する嵌合構造用の締結部材、嵌合構造、および嵌合構造用の締結部材を具備した構造体を全て含むものである。
 つまり、以下の例示は、本発明の権利範囲が非常に広範囲に及ぶことを示す一例である。本発明の適用範囲を、これらの例示の範囲に限定的に解することはあってはならない。
(Application example)
Hereinafter, application examples of the first to thirteenth embodiments of the present invention will be described with specific actions and effects. In addition, the following is only a part of an example regarding a specific application part among the structures considered to be applicable to the present invention, and the scope of the present invention is limited to the range of these illustrated structures. It goes without saying that it is not a thing.
That is, the fastening member for the fitting structure, the fitting structure, and the structure including the fastening member for the fitting structure described in the first to thirteenth embodiments of the present invention are at least the power described below. It includes all structures including a shovel, a wind turbine blade for wind power generation, a centrifuge, a fastening member for a fitting structure relating to an automobile, a ship, and an aircraft, a fitting structure, and a fastening member for the fitting structure.
In other words, the following illustration is an example showing that the scope of rights of the present invention is very wide. The scope of the present invention should not be construed as being limited to these exemplary ranges.
(適用例1)
 図22はパワーショベル100の斜視図である。
 パワーショベル100は、FRPパイプ16やFRP板状体1を用いたオールFRP製の電動ショベルであるが、素材はFRPパイプ16や金属板、金属パイプやFRP板状体1、金属パイプや金属板などの組み合わせから成っていてもよい。また、電動ショベルでなく、従来の油圧ショベルであってもよいことは言うまでもない。また、車輪はキャタピラ104でなく、ゴム製のタイヤであってもよい。
(Application example 1)
FIG. 22 is a perspective view of the excavator 100.
The excavator 100 is an all-FRP electric excavator using the FRP pipe 16 and the FRP plate 1, and the material is the FRP pipe 16 and the metal plate, the metal pipe and the FRP plate 1, the metal pipe and the metal plate. Or a combination of the above. Needless to say, a conventional hydraulic excavator may be used instead of the electric excavator. The wheels may be rubber tires instead of the caterpillar 104.
 本適用例において、例えば作業腕に相当するブーム101部分やアーム102部分の端部(連結部分)が、それぞれFRPパイプ16とFRP板状体1を組合せた構造になっている。 In this application example, for example, the boom 101 portion corresponding to the working arm and the end portion (connection portion) of the arm 102 portion have a structure in which the FRP pipe 16 and the FRP plate 1 are combined.
 具体的には、例えばブーム101とアーム102の連結部分は軽量化のためにFRP板状体1のグレーチング(格子構造)を有して成り(適宜、図1・図2や、図22を参照)、図22のC部に示すとおり、孔2に貫通部材11が通され、貫通部材11に、ブーム101側やアーム102側へ延設されたFRPパイプ16が点接続される構造となっている。これにより、パワーショベル100の稼動時には、FRPパイプ16を介して、貫通部材11に荷重Fが入力されることになる。 Specifically, for example, the connecting portion between the boom 101 and the arm 102 has a grating (lattice structure) of the FRP plate 1 for weight reduction (see FIGS. 1 and 2 and FIG. 22 as appropriate). 22) As shown in part C of FIG. 22, the penetrating member 11 is passed through the hole 2, and the FRP pipe 16 extending to the boom 101 side or the arm 102 side is point-connected to the penetrating member 11. Yes. Thus, when the excavator 100 is in operation, the load F is input to the penetrating member 11 via the FRP pipe 16.
 同様に、例えばアーム102と先端バスケット103の連結部分は、軽量化のためにFRP板状体1のグレーチング(格子構造)を有して成り、図22のD部に示すとおり、孔2に貫通部材11が通され、貫通部材11に、アーム102側へ延設されたFRPパイプ16が点接続される構造となっている。これにより、パワーショベル100の稼動時には、FRPパイプ16を介して、貫通部材11に荷重Fが入力されることになる。 Similarly, for example, the connecting portion of the arm 102 and the tip basket 103 has a grating (lattice structure) of the FRP plate 1 for weight reduction, and penetrates the hole 2 as shown in part D of FIG. The member 11 is passed through, and the FRP pipe 16 extending to the arm 102 side is connected to the penetrating member 11 by point connection. Thus, when the excavator 100 is in operation, the load F is input to the penetrating member 11 via the FRP pipe 16.
 ここで、ブーム101とアーム102の連結部分や、先端バケット103とアーム102の連結部分にFRP板状体1を格子状に組み合わせたグレーチングを設けているのは、これらの部位は荷重Fの入力によって、変形が複雑になることが予想されるため、グレーチングとすることで、FRP板状体1の繊維積層方向の高強度特性を利用し、剛性を上げるためである。 Here, the gratings in which the FRP plate-like bodies 1 are combined in a lattice shape are provided at the connecting portion between the boom 101 and the arm 102 and the connecting portion between the tip bucket 103 and the arm 102. This is because the deformation is expected to be complicated, so that the grating is used to increase the rigidity by using the high strength characteristics of the FRP plate 1 in the fiber lamination direction.
 また、変形状態が比較的均一な部分には、例えばFRPパイプ16を使用するなどして、FRPの軽量化特性を活かし、極力軽量化を図っている。 Further, for example, the FRP pipe 16 is used in a portion where the deformation state is relatively uniform, and the weight reduction characteristics of the FRP are utilized to reduce the weight as much as possible.
 また、パワーショベル100の機体に使用されるFRPの種類については、荷重条件や腐食環境条件に合わせて、例えば炭素繊維強化樹脂(CFRP)、ガラス繊維強化樹脂(GFRP)、炭化ケイ素繊維強化樹脂(SiCFRP)、アルミナ繊維強化樹脂(AlFRP)、アラミド繊維強化樹脂(AFRP)などから適宜選択すればよい。何らこれらに限定するものでもない。 In addition, regarding the type of FRP used in the body of the power shovel 100, for example, carbon fiber reinforced resin (CFRP), glass fiber reinforced resin (GFRP), silicon carbide fiber reinforced resin ( SiCFRP), alumina fiber reinforced resin (Al 2 O 3 FRP), may be suitably selected from aramide fiber reinforced resin (AFRP). It is not limited to these.
 例えば、このような部位に、第1~第3、第8~13実施形態に係るFRP嵌合構造を適用することができる。もしくは、第1~第3、第8~13実施形態に係るFRP嵌合構造を、適宜組み合わせて適用してもよい。このとき、第4もしくは第5実施形態に記載のくさびリング94,95を用いてもよい。 For example, the FRP fitting structure according to the first to third and eighth to thirteenth embodiments can be applied to such a part. Alternatively, the FRP fitting structures according to the first to third and eighth to thirteenth embodiments may be applied in appropriate combination. At this time, the wedge rings 94 and 95 described in the fourth or fifth embodiment may be used.
 本適用例によれば、パワーショベル100の剛性を上げながら、軽量化を図ることができる。また、軽量化によって、消費電力を低減し、バッテリーの消耗時間を延ばすことができる。これにより、例えば1日あたりの機体の稼働時間を長く見積もることができ、作業効率を向上させることができるという効果を奏する。 According to this application example, it is possible to reduce the weight while increasing the rigidity of the excavator 100. In addition, the weight reduction can reduce power consumption and extend battery consumption time. Thereby, for example, the operation time of the aircraft per day can be estimated long, and the working efficiency can be improved.
 また、電動式のパワーショベル100ではなく、内燃機関を有する従来の油圧ショベルであったとしても、高剛性化とともに、軽量化されているため、低燃費稼動が可能となり、燃料代を節約し、また、給油スパンを長く見積もることができるなどの効果を奏する。 Moreover, even if it is a conventional hydraulic excavator having an internal combustion engine instead of the electric excavator 100, since it is lightened with high rigidity, low fuel consumption operation is possible, fuel cost is saved, In addition, there is an effect that the refueling span can be estimated long.
 また、従来であれば、オールFRP製にしようとすれば一体成形のための金型製作だけで数億円という巨額の費用を要し、パワーショベル100をモデルチェンジしようにも、巨大な金型をいちから作り直さなければならず、臨機応変に変えることができなかった。 Also, in the past, if it was going to be made of all-FRP, it would cost a huge amount of hundreds of millions of yen just to produce a die for integral molding. Had to be recreated from scratch and could not be changed flexibly.
 しかし、本発明の第1~第13実施形態に係るFRP嵌合構造を適用すれば、大型のFRP部材を分割し、もしくは最初から小パーツとしてFRP部材を製作し、組立工程でそれらを確実に締結することができるので、圧倒的な可搬性を提供できる可能性を秘める。 However, if the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied, the large FRP member is divided, or the FRP member is manufactured as a small part from the beginning, and the assembly process ensures that Since it can be fastened, it has the potential to provide overwhelming portability.
 また、予め小パーツとしてFRP部材を組み込む形にしておけば、モデルチェンジしたい部位のみを取り外し、交換することができるので、モデルチェンジ需要にも、低コストで高剛性を堅持しながら、商機を捉えて、迅速果断・臨機応変に対応することができる。 In addition, if the FRP member is built in as a small part in advance, only the part to be remodeled can be removed and replaced, so that the business opportunity can be captured while maintaining high rigidity at low cost. It is possible to respond to quick cuts and ad-hoc changes.
 更には、産業機械であるため、稼働中に損傷を負い、修理が必要になる場合があるが、この場合においても、従来のショベルであれば、まず損傷を追った部位の溶接を溶かし、剥がして修理して再溶接するといった作業工程が必要となり、膨大な時間と設備を要し、修理やメインテナンスが容易ならざる作業となっていた。 Furthermore, because it is an industrial machine, it may be damaged during operation and repair may be required. In this case, however, with a conventional excavator, the weld at the site following the damage is first melted and peeled off. This requires a work process such as repairing and re-welding, requiring an enormous amount of time and equipment, and making repairs and maintenance difficult.
 しかし、本発明の第1~第13実施形態に係るFRP嵌合構造を適用すれば、損傷が発生した部位のみの部材の交換が可能であり、接着剤や溶接などを用いた結合ではないため、これらの修理やメインテナンスを容易に行うことができるという効果も奏する。 However, if the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied, it is possible to replace only the part where the damage has occurred, and it is not a connection using an adhesive or welding. Also, there is an effect that these repairs and maintenance can be easily performed.
(適用例2)
 本発明の他の適用例につき、図23A、図23Bを用いて説明する。
 図23Aは従来の風力発電用風車の風車ブレード200の斜視図、図23Bは本発明を適用した場合の、風力発電用風車の風車ブレード200の斜視図である。
(Application example 2)
Another application example of the present invention will be described with reference to FIGS. 23A and 23B.
FIG. 23A is a perspective view of a wind turbine blade 200 of a conventional wind turbine for wind power generation, and FIG. 23B is a perspective view of the wind turbine blade 200 of the wind turbine for wind power generation when the present invention is applied.
 図23Aに示す通り、これまでにも風車ブレード200にFRPブレード201を搭載したものは既に実用化されている。ハブ202と、FRPブレード201との連結部分は、ハブ202に設けられたフランジ(不図示)によるフランジ締結と、FRPブレード201に設けられたブレード取り付けボルト203によるボルト締結を組み合わせて使用している。 As shown in FIG. 23A, the wind turbine blade 200 mounted with the FRP blade 201 has already been put into practical use. The connecting portion between the hub 202 and the FRP blade 201 uses a combination of flange fastening by a flange (not shown) provided on the hub 202 and bolt fastening by a blade mounting bolt 203 provided on the FRP blade 201. .
 しかし、従前例によれば、ブレード取り付けボルト203は、FRPブレード201繊維の非積層方向に荷重がかかって、貫通部材を通すための孔2近傍から破壊に至るケースを防ぐため、やむを得ず、FRPブレード201の回転方向と直交する方向に平行になるように、取り付けされているのが現状である。 However, according to the conventional example, the blade mounting bolt 203 is unavoidable in order to prevent a case where the load is applied in the non-lamination direction of the FRP blade 201 fibers and breaks from the vicinity of the hole 2 for passing the penetrating member. At present, it is attached so as to be parallel to a direction orthogonal to the rotation direction of 201.
 しかし、これでは、FRPブレード201の回転時に、FRPブレード201に作用する遠心力と、ブレード取り付けボルト203の向きが同じ方向となってしまう。つまり、遠心力でFRPブレード201が引き抜ける方向と同じ方向に、ブレード取り付けボルト203を埋め込んで使用していることになり、ボルト締結部分は遠心力に対してほとんど意味を成さず、事実上はフランジ締結のみとなっていると言える。 However, in this case, when the FRP blade 201 rotates, the centrifugal force acting on the FRP blade 201 and the direction of the blade mounting bolt 203 become the same direction. In other words, the blade mounting bolt 203 is embedded and used in the same direction as the direction in which the FRP blade 201 is pulled out by centrifugal force, and the bolt fastening portion has little meaning with respect to the centrifugal force. It can be said that only the flange is fastened.
 そこで、図23Bに示す通り、FRPブレード201と、ハブ202との連結部分において、本発明の第1~第13実施形態に係るFRP嵌合構造を適用する。例えば、第6もしくは第7実施形態に係るFRP嵌合構造を適用することができる。このとき、第4もしくは第5実施形態に記載のくさびリング94,95を用いてもよい。 Therefore, as shown in FIG. 23B, the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied to the connecting portion between the FRP blade 201 and the hub 202. For example, the FRP fitting structure according to the sixth or seventh embodiment can be applied. At this time, the wedge rings 94 and 95 described in the fourth or fifth embodiment may be used.
 すなわち、例えば本発明の外輪押さえフープ19、外輪くさびフープ21、貫通部材23を用いるなどして締結すれば、フランジレスに設計でき、ハブ202自体を軽量化することができる。 That is, for example, if the outer ring holding hoop 19, the outer ring wedge hoop 21, and the penetrating member 23 of the present invention are used for fastening, the flange can be designed and the hub 202 itself can be reduced in weight.
 これにより、ハブ202とFRPブレード201からなる風車ブレード200に作用する遠心力の大きさを低減し、FRPブレード201を保護することができるようになる。 Thereby, the magnitude of the centrifugal force acting on the wind turbine blade 200 including the hub 202 and the FRP blade 201 can be reduced, and the FRP blade 201 can be protected.
 また、貫通部材23に、遠心力による引き抜き負荷が作用しないので、従前例よりもより強固に締結することができるようになる。また、強度が必要なハブ202部分には、強度の高い金属部材を用いるなど、異種部材を適宜組み合わせて用いることも容易である。 Further, since the drawing load due to the centrifugal force does not act on the penetrating member 23, it can be tightened more firmly than the conventional example. In addition, it is easy to use different members appropriately in combination, such as using a high strength metal member for the hub 202 portion that requires strength.
 更には、稼動中にFRPブレード201が、例えば強風や落雷、洋上風力であれば潮風による腐食、波浪、津波などの自然界の外的営力(不可抗力)を受け、損傷してしまった場合においても、その交換は接着剤などを用いた接合ではないために、容易に行うことができるという効果を奏する。 Furthermore, even when the FRP blade 201 is damaged during operation due to external forces (force majeure) in the natural world such as strong winds, lightning strikes, and offshore winds, corrosion caused by sea breezes, waves, and tsunamis. Since the replacement is not a joining using an adhesive or the like, there is an effect that it can be easily performed.
(適用例3)
 本発明の他の適用例につき、図24A、図24Bを用いて説明する。
 図24Aは、本発明の第1~第13実施形態に係るFRP嵌合構造を適用した、風力発電機用風車のFRPブレード201の斜視図であり、図24Bは、図24Aの、Z-Z矢視断面の模式図である。
(Application example 3)
Another application example of the present invention will be described with reference to FIGS. 24A and 24B.
24A is a perspective view of the FRP blade 201 of the wind turbine for wind power generator to which the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied, and FIG. 24B is a ZZ of FIG. 24A. It is a schematic diagram of an arrow cross section.
 本適用例においては、風力発電用風車ブレード200の外表面をFRP外皮204とし、内側に金属製の支柱205を組み込み、ブレード剛性を補う構成となっている。 In this application example, the outer surface of the wind turbine blade 200 for wind power generation is an FRP outer shell 204, and a metal support 205 is incorporated on the inner side to supplement the blade rigidity.
 このとき、金属製の支柱205と、FRP外被204を締結する方法として、従来は接着剤を用いて、両者を接着させていた。このため、太陽熱の日較差(日差)や、洋上や沿岸地域に設置された風車群は潮風などの影響も受け、徐々に接着力が弱くなったり、腐食がおきたりし、最終的にははがれてしまうという問題があった。 At this time, as a method of fastening the metal support 205 and the FRP jacket 204, conventionally, an adhesive is used to bond the two. For this reason, the solar heat range (day difference) and the windmills installed on the ocean and coastal areas are also affected by sea breezes, etc., and the adhesive force gradually weakens or corrodes. There was a problem of peeling off.
 また、ハブ202とFRPブレード201とのフランジ締結などの影響で、取り外しが難しく、このため事前検査が困難で、ブレードが吹き飛ぶなどの事故が起きてはじめて、内部の劣化状態が判明することがあり、社会問題となっていた。 In addition, due to the flange fastening between the hub 202 and the FRP blade 201, it is difficult to remove it. Therefore, it is difficult to perform preliminary inspection, and the internal deterioration state may be revealed only after an accident such as a blade blowing off occurs. It was a social problem.
 ここで、金属製の支柱205と、FRP外被204を締結する方法として、本発明の第1~第13実施形態に係るFRP嵌合構造を適用する。例えば、第1~第3、第8~13実施形態に係るFRP嵌合構造を適用することができる。もしくは、第1~第3、第8~13実施形態に係るFRP嵌合構造を、適宜組み合わせて適用してもよい。このとき、第4もしくは第5実施形態に記載のくさびリング94,95を用いてもよい。 Here, the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied as a method of fastening the metal support 205 and the FRP jacket 204. For example, the FRP fitting structure according to the first to third and eighth to thirteenth embodiments can be applied. Alternatively, the FRP fitting structures according to the first to third and eighth to thirteenth embodiments may be applied in appropriate combination. At this time, the wedge rings 94 and 95 described in the fourth or fifth embodiment may be used.
 すなわち、本発明の実施形態に対応するくさび部材9,21,22,94,95、押さえ部材10,19,20、貫通部材11,12,13,23を適宜選択、もしくは組み合わせることにより、締結することができる。 That is, the wedge members 9, 21, 22, 94, 95, the pressing members 10, 19, 20, and the penetrating members 11, 12, 13, 23 corresponding to the embodiment of the present invention are fastened by appropriately selecting or combining them. be able to.
 このように構成すると、取り外しが容易となるため、メインテナンスがしやすくなる。また、接着剤を用いないので、はがれる可能性を圧倒的に減らすことができる。 This configuration facilitates maintenance because it is easy to remove. Further, since no adhesive is used, the possibility of peeling off can be greatly reduced.
 また、風車ブレード200を軽量高剛性にすることができるので、例えば風車の直径サイズを大型化して、より確実に風を捕らえ、発電効率を上げることが可能になるというメリットもある。 Moreover, since the windmill blade 200 can be made light and highly rigid, there is also an advantage that, for example, the diameter size of the windmill can be increased to capture the wind more reliably and increase the power generation efficiency.
(適用例4)
 本発明の他の適用例につき、図25A、図25Bを用いて説明する。
 図25Aは、遠心分離機300の従来の概略構造を説明する断面図である。また、図25Bは、遠心分離機300の回転胴305部分にFRP円筒310を用い、本発明の第1~第13実施形態に係るFRP嵌合構造を適用した場合の模式図である。
(Application example 4)
Another application example of the present invention will be described with reference to FIGS. 25A and 25B.
FIG. 25A is a cross-sectional view illustrating a conventional schematic structure of centrifuge 300. FIG. 25B is a schematic diagram when the FRP cylinder 310 is used in the rotary drum 305 portion of the centrifuge 300 and the FRP fitting structures according to the first to thirteenth embodiments of the present invention are applied.
 図25Aに示すように、一般に遠心分離機300は、軸受301、上部抜出管302、仕切板303、供給管304、回転胴305、下部抜出管306、モータ307などから成り、ケーシング308と呼ばれる外装部材で覆う構成となっている(詳しくは、日本原子力学会HP:http://www.aesj.or.jp/~recycle/nfctxt/nfctxt_3-2.pdf第4頁参照)。 As shown in FIG. 25A, the centrifuge 300 generally includes a bearing 301, an upper extraction pipe 302, a partition plate 303, a supply pipe 304, a rotary drum 305, a lower extraction pipe 306, a motor 307, and the like. It is configured to be covered with a so-called exterior member (for details, see the Atomic Energy Society of Japan HP: http://www.aesj.or.jp/~recycle/nfctxt/nfctxt_3-2.pdf, page 4).
 遠心分離の仕組みは、重い成分と軽い成分からなる、例えばUFなどの混合ガスを供給管304から供給し、モータ307によって、上下の軸受301を介して回転胴305を可能な限り高速で回転させる。このとき回転胴305内部で生じる循環向流309の流れを仕切板303で規制するなどしながら、遠心力で混合ガスを軽い成分と重い成分に分離し、それぞれ上部および下部に設けられた抜出管302,306から分離されたガスを抜出す。 Centrifugal separation is performed by supplying a mixed gas such as UF 6 composed of a heavy component and a light component from a supply pipe 304, and rotating the rotating drum 305 through the upper and lower bearings 301 by a motor 307 as fast as possible. Let At this time, while the flow of the circulating countercurrent 309 generated inside the rotary drum 305 is restricted by the partition plate 303, the mixed gas is separated into light components and heavy components by centrifugal force, and extracted at the upper and lower portions, respectively. The separated gas is extracted from the tubes 302 and 306.
 ここで、図25Bに示すように、回転胴305部分をFRP円筒310と金属製回転部311に分けることを考える。その理由は、FRP部材を用いて回転胴305自体を軽量化したいため、また、金属製回転部311は荷重がかかる部分のために、信頼性の観点から金属製としたいためである。 Here, as shown in FIG. 25B, it is considered that the rotating drum 305 portion is divided into an FRP cylinder 310 and a metal rotating portion 311. The reason is that it is desired to reduce the weight of the rotating drum 305 itself using the FRP member, and the metal rotating part 311 is made of metal from the viewpoint of reliability because it is a part to which a load is applied.
 すると、この連結部分において、本発明の第1~第13実施形態に係るFRP嵌合構造を適用することが可能である。例えば、第6もしくは第7実施形態に係るFRP嵌合構造を適用することができる。このとき、第4もしくは第5実施形態に記載のくさびリング94,95を用いてもよい。 Then, it is possible to apply the FRP fitting structure according to the first to thirteenth embodiments of the present invention at this connecting portion. For example, the FRP fitting structure according to the sixth or seventh embodiment can be applied. At this time, the wedge rings 94 and 95 described in the fourth or fifth embodiment may be used.
 つまり、本発明の実施形態に対応するくさび部材9,21,22,94,95、押さえ部材10,19,20、貫通部材11,12,13,23を適宜選択、もしくは組み合わせることにより、締結することができる。 That is, the wedge members 9, 21, 22, 94, 95, the pressing members 10, 19, 20, and the penetrating members 11, 12, 13, 23 corresponding to the embodiment of the present invention are fastened by appropriately selecting or combining them. be able to.
 このように構成すると、回転胴305の胴円筒部分が軽量高剛性のFRP円筒310に代わることで、回転速度をより一層、高速化することができる。これにより、混合ガスの分離性能を上げ、極めて高い濃度に濃縮された分離生成物を得ることができる。 With this configuration, the rotational cylinder can be further increased in speed by replacing the cylindrical cylinder portion of the rotary cylinder 305 with the lightweight and rigid FRP cylinder 310. Thereby, the separation performance of the mixed gas can be improved, and a separated product concentrated to an extremely high concentration can be obtained.
 また、FRP円筒310を高速回転させようとすればする程、イナーシャと呼ばれる慣性モーメントが生じ、締結部分で互いにずれようとする現象が見られるが、本発明の第1~第13実施形態に係るFRP嵌合構造を適用していれば、互いにずれようとすればするほど、逆に円筒面をきつく圧縮する分力が作用し、きつく締まるため、より一層、好適にホールドすることができる。 Further, as the FRP cylinder 310 is rotated at a higher speed, an inertia moment called inertia is generated, and a phenomenon of shifting from each other at the fastening portion is observed. However, according to the first to thirteenth embodiments of the present invention. If the FRP fitting structure is applied, the more the components are displaced from each other, the more the component force that compresses the cylindrical surface acts on the contrary, and the more tightly held.
(適用例5)
 本発明の他の適用例につき、図26を用いて説明する。
 図26は、自動車400の屋根(ルーフ)をFRP化し、本発明の第1~第13実施形態に係るFRP嵌合構造を適用した場合の適用例である。
(Application example 5)
Another application example of the present invention will be described with reference to FIG.
FIG. 26 shows an application example when the roof of the automobile 400 is FRP and the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied.
 図26に示す通り、従来の金属製のルーフと代えて、FRPルーフ401をシャシ402のフレーム403と締結する場合にも、本発明の第1~第13実施形態に係るFRP嵌合構造を適用することが可能である。例えば、第1~第3、第8~13実施形態に係るFRP嵌合構造を適用することができる。もしくは、第1~第3、第8~13実施形態に係るFRP嵌合構造を、適宜組み合わせて適用してもよい。このとき、第4もしくは第5実施形態に記載のくさびリング9を用いてもよい。 As shown in FIG. 26, when the FRP roof 401 is fastened to the frame 403 of the chassis 402 instead of the conventional metal roof, the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied. Is possible. For example, the FRP fitting structure according to the first to third and eighth to thirteenth embodiments can be applied. Alternatively, the FRP fitting structures according to the first to third and eighth to thirteenth embodiments may be applied in appropriate combination. At this time, the wedge ring 9 described in the fourth or fifth embodiment may be used.
 つまり、本発明の実施形態に対応するくさび部材9,21,22,94,95、押さえ部材10,19,20、貫通部材11,12,13,23を適宜選択、もしくは組み合わせることにより、締結することができる。 That is, the wedge members 9, 21, 22, 94, 95, the pressing members 10, 19, 20, and the penetrating members 11, 12, 13, 23 corresponding to the embodiment of the present invention are fastened by appropriately selecting or combining them. be able to.
 このように構成すると、車体重量を軽量化できるので、トルクウェイトレシオやパワーウェイトレシオの各数値を目に見えて向上させることになる。その結果、加減速性能やコーナリング性能といったクルマの運動性能を、飛躍的に高めることができるという効果を奏する。また、1kmあたりの燃料消費量を低減させ、好燃費化を達成できる。 This configuration can reduce the weight of the vehicle body, so that the torque weight ratio and the power weight ratio can be visibly improved. As a result, the vehicle's motion performance such as acceleration / deceleration performance and cornering performance can be dramatically improved. In addition, fuel consumption per km can be reduced and fuel efficiency can be improved.
 また、万が一操縦者が運転操作を誤るなどして、車両が180°横転し、FRPルーフ401に、車体402の荷重がかかったとしても、高強度剛性により、ルーフが曲がって車室内の空間を圧迫するといった事態も防ぐことができる。このとき、衝撃荷重で横ずれしようとすればするほど逆に締結部分が締まるという効果も奏する。 In addition, even if the driver makes a mistake in driving operation and the vehicle rolls over 180 ° and the load of the vehicle body 402 is applied to the FRP roof 401, the roof bends due to the high-strength rigidity so that the space in the vehicle interior is reduced. It can also prevent pressure. At this time, there is also an effect that the more the lateral displacement is caused by the impact load, the more the fastening part is tightened.
(適用例6)
 本発明の他の適用例につき、図27A、図27Bを用いて説明する。
 図27Aは、本適用例に係る、船舶の斜視図である。図27Bは、船体部にFRPが用いられている船舶について、本発明の第1~第13実施形態に係るFRP嵌合構造を適用した場合の模式図である。
(Application example 6)
Another application example of the present invention will be described with reference to FIGS. 27A and 27B.
FIG. 27A is a perspective view of a ship according to this application example. FIG. 27B is a schematic view when the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied to a ship in which FRP is used for the hull part.
 図27Aに示す船舶500は、主船体部が例えば船首部分、中央部分、船尾部分などのように、3分割に分割可能に構成され、組み立てやすいように、それぞれがモジュール化されてなる。これら主船体部はオールFRPで成形され、FRP部材が本来有する軽量かつ高剛性能や、地球の地磁気によって船体が磁化しないようにする消磁性能などを、活かす構成となっている。 A ship 500 shown in FIG. 27A is configured to be divided into three parts such as a bow part, a center part, and a stern part, for example, such as a bow part, a center part, and a stern part, and each is modularized so as to be easily assembled. These main hull parts are formed of all FRP, and are configured to take advantage of the light weight and high rigidity ability inherent to the FRP member and the demagnetization performance that prevents the hull from being magnetized by the earth's geomagnetism.
 従来であれば、このような大きな艦船であって、例えば掃海活動を目的とするものは、FRP一体成形用の金型が大型化して高コスト化するなどの理由で、FRP部材を積極的には使用しづらい側面があった。このため、消磁性能を優先させるために、敢えて鋼鈑製ではなく木製として建造されたものもあった。 Conventionally, such a large ship, for example, for the purpose of minesweeping, actively uses the FRP member because the die for FRP integral molding is enlarged and the cost is increased. There was a side that was difficult to use. For this reason, in order to give priority to the demagnetization performance, there were some which were purposely constructed as wooden instead of steel.
 しかし、ここで、主船体部をFRPモジュールで構成し、締結部分に、本発明の第1~第13実施形態に係るFRP嵌合構造を適用することを考える。例えば、図27Bに示すように、船首モジュール501、中央モジュール502、船尾モジュール503の各締結部分において、第1~第3、第8~13実施形態に係るFRP嵌合構造を適用することができる。もしくは、第1~第3、第8~13実施形態に係るFRP嵌合構造を、適宜組み合わせて適用してもよい。このとき、第4もしくは第5実施形態に記載のくさびリング94,95を用いてもよい。 However, here, it is considered that the main hull is constituted by an FRP module and the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied to the fastening portion. For example, as shown in FIG. 27B, the FRP fitting structures according to the first to third and eighth to thirteenth embodiments can be applied to the fastening portions of the bow module 501, the center module 502, and the stern module 503. . Alternatively, the FRP fitting structures according to the first to third and eighth to thirteenth embodiments may be applied in appropriate combination. At this time, the wedge rings 94 and 95 described in the fourth or fifth embodiment may be used.
 つまり、本発明の実施形態に対応するくさび部材9,21,22,94,95、押さえ部材10,19,20、貫通部材11,12,13,23を適宜選択、もしくは組み合わせて締結させる。 That is, the wedge members 9, 21, 22, 94, 95, the pressing members 10, 19, 20, and the penetrating members 11, 12, 13, 23 corresponding to the embodiment of the present invention are appropriately selected or combined and fastened.
 すると、金型サイズの制約を設計段階で考慮しなくてよくなるため、モジュールの分割数、すなわち各モジュールサイズを任意に設計できるなど、設計の自由度が飛躍的に高まる。また、木材に代えてFRP部材を積極的に導入することによる、FRP部材が本来有している基本特性を存分に享受することができる。 Then, since the mold size constraint does not have to be taken into consideration at the design stage, the number of module divisions, that is, the size of each module can be arbitrarily designed, and the degree of freedom in design is dramatically increased. Further, the basic characteristics inherent to the FRP member by actively introducing the FRP member instead of wood can be fully enjoyed.
 また、メインテナンスに関しても、例えば外洋の公海上で活動中に船体を修理する必要性が生じた場合には、ネジ締結のため、損傷を受けたモジュールのみを取り外し、新たなモジュールを装着するなどして、機動性の高い応急修理が可能となる。 As for maintenance, for example, when it becomes necessary to repair the hull during activities on the open seas of the open ocean, only the damaged module is removed and a new module is installed to tighten the screws. Therefore, emergency repair with high mobility is possible.
 なお、本発明の適用対象となる船舶は、小型船から大型船にいたるまで、その船体サイズを問うものではない。但し、図27Aに示すような大型艦であれば、排水量が大きくなるため、船底部分が受ける浮力(外力)の入力が大きくなったり、広範囲にFRP部材を用いることによる軽量化のスケールメリットが出やすくなったりする傾向があるため、なお一層、好適である。 It should be noted that the ship to which the present invention is applied does not ask the hull size from a small ship to a large ship. However, in the case of a large ship as shown in FIG. 27A, since the amount of drainage becomes large, the input of buoyancy (external force) received by the bottom of the ship becomes large, and there is a merit of weight saving by using FRP members over a wide area. Since it tends to be easy, it is more preferable.
 つまり、より大型船で外力の入力が大きくなればなるほど、FRPモジュール同士が互いにずれようとするが、本発明の第1~第13実施形態に係るFRP嵌合構造を適用すれば、ずれようとすればするほど、逆に締結部分が締まるという効果を奏する。また、FRP部材の積極導入による軽量化で、燃費性能向上への寄与率が高まる。また、消磁性能が求められる船舶に対しては、消磁性能も同時に享受することができる。これにより、例えば船体が微弱な磁場を発して相手に探知されてしまうといった事態を防ぐことができる。 That is, as the input of external force increases in a larger ship, the FRP modules tend to shift from each other. However, if the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied, the FRP module tends to shift. The more you do it, the more conspicuous the fastening part is. Moreover, the contribution rate to fuel efficiency improvement increases by weight reduction by positive introduction of FRP members. In addition, for ships that require demagnetization performance, demagnetization performance can also be enjoyed at the same time. As a result, for example, it is possible to prevent a situation where the hull emits a weak magnetic field and is detected by the opponent.
(適用例7)
 本発明の他の適用例につき、図28を用いて説明する。
 図28は、胴体部にFRPが用いられている航空機について、本発明の第1~第13実施形態に係るFRP嵌合構造を適用する場合の模式図である。
(Application example 7)
Another application example of the present invention will be described with reference to FIG.
FIG. 28 is a schematic diagram when the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied to an aircraft in which FRP is used for the fuselage.
 図28に示すように、航空機600の機体の胴体部分は、複数に分割されたFRPモジュールを互いに嵌合することで構成されている。 As shown in FIG. 28, the fuselage portion of the fuselage of the aircraft 600 is configured by fitting a plurality of divided FRP modules together.
 ここで、モジュールとモジュールの締結部分に、本発明の第1~第13実施形態に係るFRP嵌合構造を適用することを考える。例えば、第1~第3、第8~13実施形態に係るFRP嵌合構造を適用することができる。もしくは、第1~第3、第8~13実施形態に係るFRP嵌合構造を、適宜組み合わせて適用してもよい。このとき、第4もしくは第5実施形態に記載のくさびリング94,95を用いてもよい。 Here, it is considered that the FRP fitting structure according to the first to thirteenth embodiments of the present invention is applied to the module and the fastening portion of the module. For example, the FRP fitting structure according to the first to third and eighth to thirteenth embodiments can be applied. Alternatively, the FRP fitting structures according to the first to third and eighth to thirteenth embodiments may be applied in appropriate combination. At this time, the wedge rings 94 and 95 described in the fourth or fifth embodiment may be used.
 つまり、本発明の実施形態に対応するくさび部材9,21,22,94,95、押さえ部材10,19,20、貫通部材11,12,13,23を適宜選択、もしくは組み合わせて締結させる。 That is, the wedge members 9, 21, 22, 94, 95, the pressing members 10, 19, 20, and the penetrating members 11, 12, 13, 23 corresponding to the embodiment of the present invention are appropriately selected or combined and fastened.
 このように構成すると、航空機に求められる高い剛性を維持しながら、軽量化を達成できる。これにより、例えば航続距離を飛躍的に伸ばしたり、給油スパンを伸ばしたりすることができる。 This configuration makes it possible to achieve weight reduction while maintaining the high rigidity required for aircraft. Thereby, for example, the cruising distance can be dramatically increased or the oil supply span can be extended.
 また、非常に姿勢制御が困難な飛行状態、すなわち、機体がきりもみ状態などの異常姿勢下にある場合であっても、機体が横G(外力)を受ければ受けるほど、逆に締結部分が締まるという効果を奏する。また、船舶同様に設計の自由度が高まり、FRP部材の積極導入による、FRP部材が本来有する基本性能を存分に享受することができるようになる。 In addition, even when the flight control is extremely difficult to control, that is, when the aircraft is in an abnormal posture such as a drilling state, the more the aircraft receives lateral G (external force), the more the fastening portion Has the effect of tightening. In addition, the degree of freedom in design is increased as in the case of a ship, and the basic performance inherent in the FRP member by actively introducing the FRP member can be fully enjoyed.
 上記した実施形態は本発明を分かりやすくするために詳細に説明したものであり、必ずしも、説明した全ての構成を備えるものに限定されるものではない。 The above-described embodiment has been described in detail for easy understanding of the present invention, and is not necessarily limited to the one having all the configurations described.
 また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に、他の実施形態の構成の一部もしくは全てを加えることも可能である。 In addition, a part of the configuration of one embodiment can be replaced with the configuration of another embodiment, and a part or all of the configuration of another embodiment can be added to the configuration of one embodiment. It is.
 また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。 Further, it is possible to add, delete, and replace other configurations for a part of the configuration of each embodiment.
 具体的には、例えば第3実施形態の貫通部材13は、第2実施形態の貫通部材12を中空として構成したものであるが、第1実施形態の貫通部材11を中空として構成することもできる。 Specifically, for example, the penetrating member 13 of the third embodiment is configured such that the penetrating member 12 of the second embodiment is hollow, but the penetrating member 11 of the first embodiment can also be configured to be hollow. .
 同様にして、例えば第1実施形態、第2実施形態、第3実施形態それぞれに、第8~第13実施形態のいずれかの構成を組み合わせることが可能であり、更には、そのそれぞれに追加して、第4もしくは第5実施形態に記載の突起や摩擦板をくさび部材に備える構成とすることも可能である。 Similarly, any of the configurations of the eighth to thirteenth embodiments can be combined with, for example, the first embodiment, the second embodiment, and the third embodiment, respectively, and further added to each of them. In addition, the wedge member may be provided with the protrusion or the friction plate described in the fourth or fifth embodiment.
 また、例えば第6実施形態、または第7実施形態に、第10~第13実施形態のいずれかの構成を組み合わせることが可能であり、更には、そのそれぞれに追加して、第4もしくは第5実施形態に記載の突起や摩擦板をくさび部材に備える構成とすることもできる。 Further, for example, the configuration of any of the tenth to thirteenth embodiments can be combined with the sixth embodiment or the seventh embodiment, and further, the fourth or fifth configuration can be added to each of them. It can also be set as the structure which equips a wedge member with the processus | protrusion and friction plate as described in embodiment.
 また、第6実施形態および第7実施形態は、第2部材16がFRPパイプ、第3部材17が金属パイプの場合で説明したが、第2部材16が金属パイプ、第3部材17がFRPパイプの場合であっても、本論と同様にして議論ができる。また、FRPパイプ(第2部材)16は金属パイプ(第3部材)17の外周部に重なる形ではめ合わされているとしたが、内周部に重なる場合でも、本論と同様にして議論ができる。 In the sixth embodiment and the seventh embodiment, the second member 16 is an FRP pipe and the third member 17 is a metal pipe. However, the second member 16 is a metal pipe and the third member 17 is an FRP pipe. Even in this case, it can be discussed in the same way as in this paper. In addition, although the FRP pipe (second member) 16 is fitted in a form that overlaps with the outer peripheral part of the metal pipe (third member) 17, even when it overlaps with the inner peripheral part, it can be discussed in the same manner as in this paper. .
1 FRP板状体、FRP、FRP部材、第1部材
2 孔,挿通部
3 くさびプレート,くさび部材,環状部材
4 押さえプレート,押さえ部材,環状部材
5 多角形ピン,貫通部材
7 スリーブ
8 ネジ溝
9 くさびリング、環状部材、くさび部材
10 押さえリング、環状部材、押さえ部材
11 ピン、貫通部材
12 ピン、貫通部材
13 ピン、貫通部材
14 突起
15 摩擦板
16 FRPパイプ、FRP部材、第2部材、第3部材
17 金属パイプ、第2部材、第3部材
19 外輪押さえフープ、押さえ部材
20 内輪押さえフープ、押さえ部材
21 外輪くさびフープ、くさび部材
22 内輪くさびフープ、くさび部材
23 面圧付与ボルト、貫通部材
24 ナット
25 テーパつきナット、押さえ部材
94 くさびリング、環状部材、くさび部材
95 くさびリング、環状部材、くさび部材
100 パワーショベル
101 ブーム
102 アーム
103 先端バスケット
104 キャタピラ
200 風車ブレード
201 FRPブレード
202 ハブ
203 ブレード取付ボルト
204 FRP外皮
205 金属製の支柱
300 遠心分離機
301 軸受
302 上部抜出管
303 仕切板
304 供給管
305 回転胴
306 下部抜出管
307 モータ
308 ケーシング
309 循環向流
310 FRP円筒
311 金属製回転部
400 自動車
401 FRPルーフ
402 シャシ、車体
403 フレーム
500 船舶
501 船首モジュール
502 中央モジュール
503 船尾モジュール
600 航空機
A~E、G 要部
M、N 対称軸
θ、θ1、θ2 角度、傾斜角、テーパ角
F、F11~F13 荷重、負荷、力、外力、横G
DESCRIPTION OF SYMBOLS 1 FRP plate-like body, FRP, FRP member, 1st member 2 Hole, insertion part 3 Wedge plate, wedge member, annular member 4 Holding plate, holding member, annular member 5 Polygon pin, penetrating member 7 Sleeve 8 Screw groove 9 Wedge ring, annular member, wedge member 10 holding ring, annular member, holding member 11 pin, penetrating member 12 pin, penetrating member 13 pin, penetrating member 14 protrusion 15 friction plate 16 FRP pipe, FRP member, second member, third Member 17 Metal pipe, second member, third member 19 Outer ring holding hoop, holding member 20 Inner ring holding hoop, holding member 21 Outer ring wedge hoop, wedge member 22 Inner ring wedge hoop, wedge member 23 Surface pressure applying bolt, penetrating member 24 Nut 25 Tapered nut, holding member 94 wedge ring, annular member, wedge member 95 wedge ring , Ring member, wedge member 100 excavator 101 boom 102 arm 103 tip basket 104 caterpillar 200 windmill blade 201 FRP blade 202 hub 203 blade mounting bolt 204 FRP outer shell 205 metal post 300 centrifuge 301 bearing 302 upper extraction pipe 303 Partition plate 304 Supply pipe 305 Rotating drum 306 Lower extraction pipe 307 Motor 308 Casing 309 Circulating counterflow 310 FRP cylinder 311 Metal rotating part 400 Automobile 401 FRP roof 402 Chassis, car body 403 Frame 500 Ship 501 Bow module 502 Central module 503 Stern module 600 Aircraft A to E, G Main part M, N Axis of symmetry θ, θ1, θ2 Angle, tilt angle, taper angle F, F11 to F13 Load, load, force, external force, lateral G

Claims (15)

  1.  挿通部を有する第1部材に挿通されるとともに、荷重が入力・伝達される貫通部材と、
     くさび部材と押さえ部材とを組として前記貫通部材に挿通され、前記第1部材における前記挿通部を一方側の組と他方側の組とで挟むように配設される、少なくとも2組の環状部材と、
    を備え、
     前記押さえ部材は前記貫通部材に直接または間接に固定され、
     前記くさび部材は前記押さえ部材と前記第1部材との間に、それぞれに接するように配設され、
     前記押さえ部材と前記くさび部材の接触面は、断面視して、前記貫通部材の軸に対して90度以外の所定の角度をなすように構成される
    ことを特徴とする、嵌合構造用の締結部材。
    A penetrating member that is inserted through a first member having an insertion portion and through which a load is input and transmitted;
    At least two sets of annular members that are inserted into the penetrating member as a pair of a wedge member and a pressing member, and are disposed so as to sandwich the insertion portion of the first member between the one set and the other set. When,
    With
    The pressing member is fixed directly or indirectly to the penetrating member,
    The wedge member is disposed between and in contact with the pressing member and the first member,
    The contact surface of the pressing member and the wedge member is configured to form a predetermined angle other than 90 degrees with respect to the axis of the penetrating member in a cross-sectional view. Fastening member.
  2.  前記第1部材の面方向の強度は、前記貫通部材および前記環状部材の強度よりも小さいことを特徴とする、請求項1に記載の嵌合構造用の締結部材。 The fastening member for a fitting structure according to claim 1, wherein the strength in the surface direction of the first member is smaller than the strength of the penetrating member and the annular member.
  3.  前記第1部材は、繊維強化複合樹脂材(FRP部材)であることを特徴とする、請求項1に記載の嵌合構造用の締結部材。 The fastening member for a fitting structure according to claim 1, wherein the first member is a fiber reinforced composite resin material (FRP member).
  4.  前記貫通部材は、軸方向に垂直な断面が円形であり、円柱形状を有してなることを特徴とする、請求項1に記載の嵌合構造用の締結部材。 The fastening member for a fitting structure according to claim 1, wherein the penetrating member has a circular cross section perpendicular to the axial direction and a cylindrical shape.
  5.  前記貫通部材は、別体のスリーブを外装して、またはスリーブと一体化されて構成され、前記第1部材に挿通されることを特徴とする、請求項1に記載の嵌合構造用の締結部材。 2. The fastening for a fitting structure according to claim 1, wherein the penetrating member is configured by covering a separate sleeve or being integrated with the sleeve, and is inserted into the first member. Element.
  6.  前記貫通部材は、中心軸まわりが中空として軽量化され、円筒形状を有してなることを特徴とする、請求項1に記載の嵌合構造用の締結部材。 The fastening member for a fitting structure according to claim 1, wherein the penetrating member is light in weight with a hollow around the central axis and has a cylindrical shape.
  7.  前記第1部材は、ともに前記挿通部を有する第2部材と第3部材とが互いの前記挿通部が一致するように重ねられた部材であり、
     前記貫通部材は、その外周の所定位置に雄ネジが設けられており、
     前記固定は、少なくとも一方側が、前記雄ネジに螺合する雌ネジが設けられたナットによりなされること
    を特徴とする、請求項1に記載の嵌合構造用の締結部材。
    The first member is a member in which the second member and the third member both having the insertion portion are overlapped so that the insertion portions of each other coincide with each other.
    The penetrating member is provided with a male screw at a predetermined position on the outer periphery thereof,
    2. The fastening member for a fitting structure according to claim 1, wherein the fixing is performed by a nut at least one side of which is provided with a female screw that is screwed into the male screw.
  8.  前記第2部材および前記第3部材は軸方向が一致するように配設された円筒部材であり、
     前記くさび部材は前記第2部材または前記第3部材の外周、および内周にそれぞれ接する外輪、および内輪のくさびフープまたはくさびリングであり、
     前記押さえ部材は前記ナットと一体または別体で構成され、前記くさび部材と接するように配設された外輪、および内輪の押さえフープまたは押さえリングである
    ことを特徴とする、請求項7に記載の嵌合構造用の締結部材。
    The second member and the third member are cylindrical members disposed so that the axial directions thereof coincide with each other,
    The wedge member is an outer ring contacting the outer periphery and inner periphery of the second member or the third member, respectively, and a wedge hoop or wedge ring of the inner ring;
    The said holding member is comprised by the said nut integrally or separately, and is the outer ring | wheel arrange | positioned so that the said wedge member may be contact | connected, and the holding hoop or pressing ring of an inner ring | wheel, It is characterized by the above-mentioned. Fastening member for fitting structure.
  9.  前記第2部材および前記第3部材のいずれか一方は、繊維強化複合樹脂パイプ(FRPパイプ)であることを特徴とする、請求項8に記載の嵌合構造用の締結部材。 The fastening member for a fitting structure according to claim 8, wherein one of the second member and the third member is a fiber reinforced composite resin pipe (FRP pipe).
  10.  前記くさび部材、および前記押さえ部材は、それぞれ板状のくさびプレート、および押さえプレートであることを特徴とする、請求項1に記載の嵌合構造用の締結部材。 The fastening member for a fitting structure according to claim 1, wherein the wedge member and the pressing member are a plate-shaped wedge plate and a pressing plate, respectively.
  11.  前記くさび部材は、前記第1部材を境に、前記第1部材に接するように片側あたり2組ずつ設けられ、前記押さえ部材との接触面は、前記第1部材から見て略山型、あるいは略谷型のテーパ面を有して構成されることを特徴とする、請求項1に記載の嵌合構造用の締結部材。 Two sets of the wedge members are provided per one side so as to contact the first member with the first member as a boundary, and the contact surface with the pressing member has a substantially mountain shape as viewed from the first member, or The fastening member for a fitting structure according to claim 1, wherein the fastening member has a substantially valley-shaped tapered surface.
  12.  前記くさび部材には、複数の突起が設けられていることを特徴とする、請求項1ないし請求項11のいずれか1項に記載の嵌合構造用の締結部材。 The fastening member for a fitting structure according to any one of claims 1 to 11, wherein the wedge member is provided with a plurality of protrusions.
  13.  前記くさび部材には、有機繊維を含んでなる樹脂製の摩擦板が固定されていることを特徴とする、請求項1ないし請求項11のいずれか1項に記載の嵌合構造用の締結部材。 The fastening member for a fitting structure according to any one of claims 1 to 11, wherein a resin friction plate containing organic fibers is fixed to the wedge member. .
  14.  荷重が入力・伝達される貫通部材と、
     前記貫通部材が挿通される挿通部を有する第1部材と、
     くさび部材と押さえ部材とを組として前記貫通部材に挿通され、前記第1部材における前記挿通部を一方側の組と他方側の組とで挟むように配設される、少なくとも2組の環状部材と、
    を備え、
     前記押さえ部材は前記貫通部材に直接または間接に固定され、
     前記くさび部材は前記押さえ部材と前記第1部材との間に、それぞれに接するように配設され、
     前記押さえ部材と前記くさび部材の接触面は、断面視して、前記貫通部材の軸に対して90度以外の所定の角度をなして構成される
    ことを特徴とする嵌合構造。
    A penetrating member that receives and transmits a load;
    A first member having an insertion portion through which the penetrating member is inserted;
    At least two sets of annular members that are inserted into the penetrating member as a pair of a wedge member and a pressing member, and are disposed so as to sandwich the insertion portion of the first member between the one set and the other set. When,
    With
    The pressing member is fixed directly or indirectly to the penetrating member,
    The wedge member is disposed between and in contact with the pressing member and the first member,
    The contact structure between the pressing member and the wedge member is configured to form a predetermined angle other than 90 degrees with respect to the axis of the penetrating member in a cross-sectional view.
  15.  1または複数の箇所に、
     挿通部を有する第1部材に挿通されるとともに、荷重が入力・伝達される貫通部材と、
     くさび部材と押さえ部材とを組として前記貫通部材に挿通され、前記第1部材における前記挿通部を一方側の組と他方側の組とで挟むように配設される、少なくとも2組の環状部材と、
    を備え、
     前記押さえ部材は前記貫通部材に直接または間接に固定され、
     前記くさび部材は前記押さえ部材と前記第1部材との間に、それぞれに接するように配設され、
     前記押さえ部材と前記くさび部材の接触面は、断面視して、前記貫通部材の軸に対して90度以外の所定の角度をなすように構成される嵌合構造用の締結部材
    を具備したことを特徴とする構造体。
    In one or more locations,
    A penetrating member that is inserted through a first member having an insertion portion and through which a load is input and transmitted;
    At least two sets of annular members that are inserted into the penetrating member as a pair of a wedge member and a pressing member, and are disposed so as to sandwich the insertion portion of the first member between the one set and the other set. When,
    With
    The pressing member is fixed directly or indirectly to the penetrating member,
    The wedge member is disposed between and in contact with the pressing member and the first member,
    The contact surface of the pressing member and the wedge member includes a fastening member for a fitting structure configured to form a predetermined angle other than 90 degrees with respect to the axis of the penetrating member in a cross-sectional view. A structure characterized by
PCT/JP2013/078010 2013-10-15 2013-10-15 Fastening member for fitted structure, fitted structure, and structural body comprising fastening member for fitted structure WO2015056308A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2013/078010 WO2015056308A1 (en) 2013-10-15 2013-10-15 Fastening member for fitted structure, fitted structure, and structural body comprising fastening member for fitted structure
JP2015542435A JPWO2015056308A1 (en) 2013-10-15 2013-10-15 Fastening member for mating structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2013/078010 WO2015056308A1 (en) 2013-10-15 2013-10-15 Fastening member for fitted structure, fitted structure, and structural body comprising fastening member for fitted structure

Publications (1)

Publication Number Publication Date
WO2015056308A1 true WO2015056308A1 (en) 2015-04-23

Family

ID=52827781

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2013/078010 WO2015056308A1 (en) 2013-10-15 2013-10-15 Fastening member for fitted structure, fitted structure, and structural body comprising fastening member for fitted structure

Country Status (2)

Country Link
JP (1) JPWO2015056308A1 (en)
WO (1) WO2015056308A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110630038A (en) * 2019-10-25 2019-12-31 青岛晟立朗金属制品有限公司 Steel pipe supports quick unloading device
US11111938B2 (en) * 2018-03-06 2021-09-07 Sikorsky Aircraft Corporation Axial preloading device
JP7441674B2 (en) 2020-02-21 2024-03-01 三光合成株式会社 robot arm

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513133U (en) * 1978-07-11 1980-01-28
JPH0626109A (en) * 1992-07-03 1994-02-01 Nippon Steel Corp Bolt joining structure for fiber-reinforced resin member
JP2004108497A (en) * 2002-09-18 2004-04-08 Toyota Motor Corp Bolt fastening structure
JP2007303570A (en) * 2006-05-11 2007-11-22 Toyota Motor Corp Fastening device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5513133U (en) * 1978-07-11 1980-01-28
JPH0626109A (en) * 1992-07-03 1994-02-01 Nippon Steel Corp Bolt joining structure for fiber-reinforced resin member
JP2004108497A (en) * 2002-09-18 2004-04-08 Toyota Motor Corp Bolt fastening structure
JP2007303570A (en) * 2006-05-11 2007-11-22 Toyota Motor Corp Fastening device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11111938B2 (en) * 2018-03-06 2021-09-07 Sikorsky Aircraft Corporation Axial preloading device
CN110630038A (en) * 2019-10-25 2019-12-31 青岛晟立朗金属制品有限公司 Steel pipe supports quick unloading device
JP7441674B2 (en) 2020-02-21 2024-03-01 三光合成株式会社 robot arm

Also Published As

Publication number Publication date
JPWO2015056308A1 (en) 2017-03-09

Similar Documents

Publication Publication Date Title
US20070105431A1 (en) Modular blades and methods for making same
US7993103B2 (en) Wind turbine blades and methods of attaching such blades to a hub
CN102575635B (en) There is wind-force or the hydroelectric turbine blade of connection set
JP4738027B2 (en) Wind power generator shaft coupling structure
EP2691635B1 (en) Water-turbine blade and an elongate spar therefor
WO2015056308A1 (en) Fastening member for fitted structure, fitted structure, and structural body comprising fastening member for fitted structure
US8500407B1 (en) Composite blade root-end drill-through lug and attachment method
EP3369948B1 (en) Centering fastener, methods for manufacturing and using same, and wind turbine
CN102076957A (en) Reinforced wind turbine blade
KR20150128665A (en) Triaxial fiber-reinforced composite laminate
CN108442325A (en) The anti-ship collision device of shot filled-type thin-walled software
CN103753833A (en) Method for reinforcing connecting pipe or opening of fibrous composite material pressure-bearing shell
WO2014096100A1 (en) Turbine blade
EP2922696B1 (en) Multi-axial fabrics, polymer-fiber laminates, and bodies incorporating same for connecting applications
CN201228609Y (en) Elastic support element for wind power plant
CN210622996U (en) Main beam and blade of wind generating set and wind generating set
CN111088749A (en) Railway bridge passive anti-collision device and design method thereof
CN102734058A (en) Methods of manufacturing wind turbine blades
KR102168942B1 (en) Propulsion System of Ship
CN111502908B (en) Hub for a wind turbine, wind turbine and method for upgrading a hub of a wind turbine
CN211772765U (en) Railway bridge anti-collision structure
CN203514233U (en) Composite material energy dissipater
US20200307304A1 (en) Bolted joint for wheel assemblies
KR102572253B1 (en) Wind-propelled System and Ship having the same
CN104005375B (en) A kind of anticollision energy eliminating circle being convenient to install

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13895533

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2015542435

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13895533

Country of ref document: EP

Kind code of ref document: A1