JP7441674B2 - robot arm - Google Patents

robot arm Download PDF

Info

Publication number
JP7441674B2
JP7441674B2 JP2020028516A JP2020028516A JP7441674B2 JP 7441674 B2 JP7441674 B2 JP 7441674B2 JP 2020028516 A JP2020028516 A JP 2020028516A JP 2020028516 A JP2020028516 A JP 2020028516A JP 7441674 B2 JP7441674 B2 JP 7441674B2
Authority
JP
Japan
Prior art keywords
metal
frp cylinder
robot arm
frp
cylinder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020028516A
Other languages
Japanese (ja)
Other versions
JP2021133427A (en
Inventor
満雄 安田
勉 小西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanko Gosei Ltd
Original Assignee
Sanko Gosei Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanko Gosei Ltd filed Critical Sanko Gosei Ltd
Priority to JP2020028516A priority Critical patent/JP7441674B2/en
Publication of JP2021133427A publication Critical patent/JP2021133427A/en
Application granted granted Critical
Publication of JP7441674B2 publication Critical patent/JP7441674B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、FRP(繊維強化プラスチックス)製の筒体を金属製フランジと接合してなるロボットアームに関する。 The present invention relates to a robot arm formed by joining a cylindrical body made of FRP (fiber reinforced plastics) to a metal flange.

一般に例えばレーザー加工等に用いる工業用ロボットは1/100mm程度の先端精度が必要であり、そのためには高い剛性が必要であった。これに対して近年、少子高齢化の進展と共に人間の間で、人間と共にあるいは人間を補助して動作する工業用ロボットの必要性が高まって来ている。この様な工業用ロボットには従来の工業用ロボットの様な高い剛性は必要ではなくむしろ省エネルギーの観点や地球環境保全の観点等から、軽量化が強く望まれている。その一つの手段としてロボットアームの本体部分をFRP製筒体に代替させることが検討されてきた。その際、使用する強化繊維にも種々あり、例えば、炭素繊維、ガラス繊維、アラミド繊維等が検討されているが、この中で特に、比強度、比弾性率の面で優れた炭素繊維を強化繊維とするCFRP(炭素繊維強化プラスチックス)が有力とされている。 Generally, industrial robots used for laser processing, etc., require a tip precision of about 1/100 mm, and for this purpose, high rigidity is required. In contrast, in recent years, with the progress of the declining birthrate and aging of the population, there has been an increasing need among humans for industrial robots that operate together with or assisting humans. Such industrial robots do not need to have the same high rigidity as conventional industrial robots, but rather are strongly desired to be lightweight from the viewpoint of energy conservation and global environmental conservation. As one means of achieving this, it has been considered to replace the main body portion of the robot arm with an FRP cylinder. At that time, there are various types of reinforcing fibers to be used, such as carbon fiber, glass fiber, aramid fiber, etc., but among these, carbon fiber, which is particularly excellent in terms of specific strength and specific modulus, is used for reinforcing. CFRP (carbon fiber reinforced plastics), which is made of fiber, is considered to be a promising choice.

この本体部分をFRP製筒体としてなるロボットアームは本体部分に機能部分を装着して各種機能を果たすことが可能となるようにする必要がある。このFRP製筒体からなる本体部分への機能部分の装着には、FRP製筒体の捩り強度とバランスが採れた接合法が必要とされている。 A robot arm whose main body is a cylinder made of FRP needs to have functional parts attached to the main body so that it can perform various functions. Attaching the functional parts to the main body made of the FRP cylinder requires a joining method that balances the torsional strength of the FRP cylinder.

特許文献1にはFRP製円筒体の端部に金属製の継ぎ手が圧入される機械装置部品において、必要とされる高い捩り強度を確保しつつ、金属製継ぎ手の圧入接合操作に伴うFRP製円筒体端部からの損傷の発生を防止し、かつ、その部分の劣化進行も防止し得る構造を提供することを課題としてFRP製円筒体と、該FRP製円筒体の端部に圧入された金属製継ぎ手との機械装置部品であって、FRP製円筒体の端面から軸方向にスリット加工が施されていることを特徴とする機械装置部品が開示された。 Patent Document 1 discloses that, in a mechanical device part in which a metal joint is press-fitted into the end of an FRP cylinder, the FRP cylinder can be used to press-fit the metal joint while ensuring the required high torsional strength. Our goal is to provide a structure that can prevent damage from occurring at the end of the body and also prevent the progression of deterioration at that part. A mechanical device part with a manufactured joint is disclosed, which is characterized in that a slit is formed in the axial direction from the end face of an FRP cylindrical body.

特開2006-103032号公報Japanese Patent Application Publication No. 2006-103032

しかし特許文献1に開示された機械装置部品はFRP製円筒体の端部に金属製継ぎ手と一体な凸起リングを圧入してなるものであり、十分な接合強度が得られないという問題がある。また十分な接合強度を得るためにはFRP製円筒体に圧入される凸起リングの長さを大きくする必要がありその場合には金属製継ぎ手全体の重量が過大になり十分に軽量化できないという問題もある。
本発明は以上の従来技術における問題点に鑑み、必要とされる高い捩り強度を確保しつつ、本体部分をFRP製筒体としてなるロボットアームの本体部分に機能部分を装着して充分に軽量でしかも人間の間で、人間と共にあるいは人間を補助して動作するロボットアームとして安全性が高いロボットアームを提供することにある。
However, the mechanical device component disclosed in Patent Document 1 is made by press-fitting a convex ring integral with a metal joint into the end of an FRP cylinder, and there is a problem that sufficient joint strength cannot be obtained. . In addition, in order to obtain sufficient joint strength, it is necessary to increase the length of the convex ring that is press-fitted into the FRP cylinder, and in that case, the weight of the entire metal joint becomes excessive, making it impossible to reduce the weight sufficiently. There are also problems.
In view of the above-mentioned problems in the conventional technology, the present invention has been developed by attaching a functional part to the main body part of a robot arm whose main body part is a cylinder made of FRP, while ensuring the required high torsional strength. Moreover, it is an object of the present invention to provide a robot arm that is highly safe as a robot arm that operates among humans, together with humans, or while assisting humans.

すなわち本発明に係るロボットアームは、FRP製筒体と金属製フランジとの接合部の前記FRP製筒体内側に、前記FRP製筒体と圧縮弾性率が同等以上である金属製リングを装着し、金属製フランジで前記FRP製筒体外周を締め付けて、前記FRP製筒体と前記金属製フランジとが接合されてなることを特徴とする。
このように金属製フランジをFRP製筒体外周部で締結すると、金属製フランジのFRP製筒体軸方向の長さを小さくすることができ、軽量化することができる。
That is, in the robot arm according to the present invention, a metal ring having a compression elastic modulus equal to or higher than that of the FRP cylinder is attached to the inside of the FRP cylinder at the joint between the FRP cylinder and the metal flange. , the FRP cylinder and the metal flange are joined by tightening the outer periphery of the FRP cylinder with a metal flange.
When the metal flange is fastened to the outer periphery of the FRP cylinder in this manner, the length of the metal flange in the axial direction of the FRP cylinder can be reduced, and the weight can be reduced.

前記金属製フランジと前記FRP製筒体間に接着材を塗布して金属製フランジをFRP製筒体外周部で締結することによって相互の締結力を強化することができる。 By applying an adhesive between the metal flange and the FRP cylinder and fastening the metal flange to the outer periphery of the FRP cylinder, the mutual fastening force can be strengthened.

前記金属製リングの常温における外径が前記FRP製筒体内径より大であるようにすることによりFRP製筒体外周方向に作用する応力大きくすることができ結果としてFRP製筒体と金属製フランジとの締結力が大きくなる。 By making the outer diameter of the metal ring at room temperature larger than the inner diameter of the FRP cylinder, it is possible to increase the stress acting on the outer circumferential direction of the FRP cylinder, and as a result, the stress between the FRP cylinder and the metal flange can be increased. The tightening force will be increased.

さらに前記金属製リングが冷却して装着されてなる様にすることによって大きな圧力で機械的に圧入する場合のようなFRP製筒体の損傷を防ぐことができる。 Furthermore, by cooling the metal ring and attaching it, it is possible to prevent damage to the FRP cylindrical body that would otherwise occur when mechanically press-fitting with a large pressure.

前記FRP製筒体と前記金属製フランジと前記金属製リングとが貫通ネジで締結されることにより捩り強度を大きくすることができる。 The torsional strength can be increased by fastening the FRP cylinder, the metal flange, and the metal ring with a through screw.

FRP製筒体としては、とくに強化繊維が少なくとも比強度、比弾性率に優れた炭素繊維を含むものであることが、高い強度や捩りトルク伝達特性発現の点から好ましい。 For the FRP cylinder, it is particularly preferable that the reinforcing fibers include at least carbon fibers having excellent specific strength and specific modulus from the viewpoint of high strength and torsional torque transmission characteristics.

本発明のロボットアームによれば、必要とされる高い捩り強度を確保しつつ、充分に軽量でしかも人間の間で、人間と共にあるいは人間を補助して動作する機械装置として安全性が高いロボットアームとすることができる。 According to the robot arm of the present invention, the robot arm is sufficiently lightweight while ensuring the required high torsional strength, and is highly safe as a mechanical device that operates between, with, or assisting humans. It can be done.

本発明の一実施の形態のロボットアームの斜視図である。FIG. 1 is a perspective view of a robot arm according to an embodiment of the present invention. 図1のロボットアームの部分断面図である。FIG. 2 is a partial cross-sectional view of the robot arm of FIG. 1; 図2の部分断面図におけるA-A断面図である。3 is a sectional view taken along line AA in the partial sectional view of FIG. 2. FIG. 図1のロボットアームの部分分解斜視図である。FIG. 2 is a partially exploded perspective view of the robot arm of FIG. 1; 図1のロボットアームの他の部分分解斜視図である。FIG. 2 is another partially exploded perspective view of the robot arm of FIG. 1; 図1のロボットアームの別の部分分解斜視図である。FIG. 2 is another partially exploded perspective view of the robot arm of FIG. 1; 図1のロボットアームのさらに別の部分分解斜視図である。FIG. 2 is yet another partially exploded perspective view of the robot arm of FIG. 1;

以下に、本発明の実施の形態を、図面を参照しながら説明する。
図1は、本発明の一実施の形態のロボットアーム1を示す。
ロボットアーム1はFRP製筒体の一態様であるFRP製円筒体2にアルミ合金よりなる相互にネジで締結されて分離可能な一対の金属製フランジ3a、3bを装着して成る。この分離可能な一対の金属製フランジの各々は一の円を2分割した内側周縁を有する。この金属製フランジ3a、3bは例えば図示しない動作部、把持部、関節部等との継ぎ手として機能する。
Embodiments of the present invention will be described below with reference to the drawings.
FIG. 1 shows a robot arm 1 according to an embodiment of the present invention.
The robot arm 1 is constructed by attaching a pair of separable metal flanges 3a and 3b made of aluminum alloy to an FRP cylinder body 2, which is one embodiment of an FRP cylinder body. Each of the pair of separable metal flanges has an inner periphery that divides a circle into two. The metal flanges 3a, 3b function as joints with, for example, an operating part, a grip part, a joint part, etc. (not shown).

図2~図7に示されるようにFRP製円筒体2と金属製フランジ3a、3bとの接合部のFRP製円筒体2内側には、FRP製円筒体2と圧縮弾性率が同等以上である金属製リング4が装着される。その状態で金属製フランジ3a、3bでFRP製円筒体2外周を締め付ける。これによって、FRP製円筒体2の側壁が金属製フランジ3a、3bと金属製リング4との間に挟持される態様でFRP製円筒体2と金属製フランジ3a、3bとが接合される。その際、予め金属製フランジ3a、3bとFRP製円筒体2外周間に市販の接着材を介在させて金属製フランジ3a、3bによってFRP製円筒体2外周部を締め付けて締結することによって相互の締結力を強化することができる。接着材を介在させる態様としては流動性のある接着剤を塗布する、あるいはシート状の接着剤を配置するなどが可能である。
このように金属製フランジ3a、3bをFRP製円筒体2外周部で締結すると、従来の特許文献1に示すFRP製円筒体2の端部に金属製継ぎ手と一体な凸起リングを圧入する接合態様に比し、金属製フランジ3a、3bのFRP製円筒体2軸方向の長さを小さくすることができ、軽量化することができる。
As shown in FIGS. 2 to 7, the inside of the FRP cylinder 2 at the joint between the FRP cylinder 2 and the metal flanges 3a and 3b has a compressive elastic modulus equal to or higher than that of the FRP cylinder 2. A metal ring 4 is attached. In this state, the outer periphery of the FRP cylindrical body 2 is tightened using metal flanges 3a and 3b. As a result, the FRP cylindrical body 2 and the metal flanges 3a, 3b are joined in such a manner that the side wall of the FRP cylindrical body 2 is sandwiched between the metal flanges 3a, 3b and the metal ring 4. At that time, a commercially available adhesive is interposed in advance between the metal flanges 3a, 3b and the outer circumference of the FRP cylinder 2, and the outer circumference of the FRP cylinder 2 is tightened and fastened by the metal flanges 3a, 3b. The fastening force can be strengthened. As a mode of interposing the adhesive material, it is possible to apply a fluid adhesive or arrange a sheet-like adhesive.
When the metal flanges 3a and 3b are fastened at the outer circumferential portion of the FRP cylinder 2 in this way, a convex ring integrated with a metal joint is press-fitted into the end of the FRP cylinder 2 as shown in the conventional patent document 1. Compared to the embodiment, the lengths of the metal flanges 3a and 3b in the two axial directions of the FRP cylinder can be made smaller, and the weight can be reduced.

金属製リング4の常温における外径はFRP製円筒体2内径より大であるようにする。これにより金属製リング4からFRP製円筒体2外周方向に作用する応力を大きくすることができ、結果としてFRP製円筒体2と金属製フランジ3a、3bとの締結力が大きくなる。 The outer diameter of the metal ring 4 at room temperature is set to be larger than the inner diameter of the FRP cylindrical body 2. As a result, the stress acting from the metal ring 4 toward the outer circumferential direction of the FRP cylinder 2 can be increased, and as a result, the fastening force between the FRP cylinder 2 and the metal flanges 3a and 3b is increased.

また金属製リング4の常温における外径をFRP製円筒体2内径より大であるようにしても金属製リング4を冷却してFRP製円筒体2内側に装着する様にすることによって大きな圧力で機械的に圧入する場合に生じるFRP製円筒体2の損傷を防ぐことができる。 Furthermore, even if the outer diameter of the metal ring 4 at room temperature is made larger than the inner diameter of the FRP cylinder 2, the metal ring 4 can be cooled and attached to the inside of the FRP cylinder 2 so that large pressure can be applied. Damage to the FRP cylindrical body 2 that occurs when mechanically press-fitting can be prevented.

FRP製円筒体2と金属製フランジ3a、3bと記金属製リング4とは貫通ネジ5、5・・・で締結される。これにより捩り強度を大きくすることができる。 The FRP cylindrical body 2, the metal flanges 3a, 3b, and the metal ring 4 are fastened with through screws 5, 5, . . . . This allows the torsional strength to be increased.

FRP製円筒体2としては、とくに強化繊維が少なくとも比強度、比弾性率に優れた炭素繊維を含むものであることが、高い強度や捩りトルク伝達特性発現の点から好ましい。 For the FRP cylinder 2, it is particularly preferable that the reinforcing fibers include at least carbon fibers having excellent specific strength and specific modulus, from the viewpoint of high strength and torsional torque transmission characteristics.

なお以上の実施の形態ではFRP製円筒体2を用いる場合を説明したが、FRP製筒体は円筒体に限られず実施の態様によって楕円筒体、角筒の角頂部を面取りする態様等を採用することができる。 In addition, although the case where the FRP cylinder body 2 is used has been described in the above embodiment, the FRP cylinder body is not limited to a cylinder body, and depending on the embodiment, an elliptical cylinder body, a mode in which the top of the corner of a square cylinder is chamfered, etc. are adopted. can do.

1・・・ロボットアーム、2・・・FRP製円筒体、3a、3b・・・金属製フランジ、4・・・金属製リング。 DESCRIPTION OF SYMBOLS 1... Robot arm, 2... FRP cylindrical body, 3a, 3b... Metal flange, 4... Metal ring.

Claims (4)

FRP製円筒体の端部に装着される金属製継ぎ手であり、相互にネジで締結されて分離可能な一対の金属製フランジとFRP製筒体との接合部の前記FRP製筒体の内側に、前記FRP製筒体と圧縮弾性率が同等以上である金属製リングを装着し、前記一対の金属製フランジで前記FRP製筒体の外周を締め付けて、前記FRP製筒体と前記一対の金属製フランジとが接合されてなり、前記FRP製筒体と前記金属製フランジと前記金属製リングとが貫通ネジで締結されることを特徴とするロボットアーム。 It is a metal joint that is attached to the end of the FRP cylinder, and is attached to the inside of the FRP cylinder at the joint between the FRP cylinder and a pair of separable metal flanges that are mutually fastened with screws. , a metal ring having a compressive elastic modulus equal to or higher than that of the FRP cylinder is attached, and the pair of metal flanges is tightened around the outer periphery of the FRP cylinder, so that the FRP cylinder and the pair of metal A robot arm, characterized in that the FRP cylinder body, the metal flange, and the metal ring are fastened together with a through-screw . 前記分離可能な一対の金属製フランジの各々が一の円を2分割した内側周縁を有する請求項1に記載のロボットアーム。 The robot arm according to claim 1, wherein each of the pair of separable metal flanges has an inner periphery that divides a circle into two. 前記金属製リングの常温における外径が前記FRP製筒体の内径より大である請求項1又は請求項2に記載のロボットアーム。 The robot arm according to claim 1 or 2, wherein the outer diameter of the metal ring at room temperature is larger than the inner diameter of the FRP cylinder. 前記金属製リングが冷却して装着されてなる請求項3に記載のロボットアーム。 4. The robot arm according to claim 3, wherein the metal ring is cooled and mounted.
JP2020028516A 2020-02-21 2020-02-21 robot arm Active JP7441674B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020028516A JP7441674B2 (en) 2020-02-21 2020-02-21 robot arm

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020028516A JP7441674B2 (en) 2020-02-21 2020-02-21 robot arm

Publications (2)

Publication Number Publication Date
JP2021133427A JP2021133427A (en) 2021-09-13
JP7441674B2 true JP7441674B2 (en) 2024-03-01

Family

ID=77659710

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020028516A Active JP7441674B2 (en) 2020-02-21 2020-02-21 robot arm

Country Status (1)

Country Link
JP (1) JP7441674B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140975A (en) 2010-01-06 2011-07-21 Mitsubishi Plastics Inc Tubular connection body and method of manufacturing the same
WO2015056308A1 (en) 2013-10-15 2015-04-23 株式会社日立製作所 Fastening member for fitted structure, fitted structure, and structural body comprising fastening member for fitted structure
US20160091029A1 (en) 2014-09-26 2016-03-31 Siemens Aktiengesellschaft Overload coupling
JP2020015127A (en) 2018-07-25 2020-01-30 ファナック株式会社 Robot arm and method for manufacturing the same, and robot

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011140975A (en) 2010-01-06 2011-07-21 Mitsubishi Plastics Inc Tubular connection body and method of manufacturing the same
WO2015056308A1 (en) 2013-10-15 2015-04-23 株式会社日立製作所 Fastening member for fitted structure, fitted structure, and structural body comprising fastening member for fitted structure
US20160091029A1 (en) 2014-09-26 2016-03-31 Siemens Aktiengesellschaft Overload coupling
JP2020015127A (en) 2018-07-25 2020-01-30 ファナック株式会社 Robot arm and method for manufacturing the same, and robot

Also Published As

Publication number Publication date
JP2021133427A (en) 2021-09-13

Similar Documents

Publication Publication Date Title
JP2896019B2 (en) Elastic joint having axial play and vibration damping ability controlled by a built-in stopper and its use
JP6595539B2 (en) Robot and parallel link robot
US10618185B2 (en) Connection structure
WO2014192081A1 (en) Vehicle link component, and manufacturing method therefor
US5188474A (en) Yoke for universal joint
WO2016113792A1 (en) Anti-vibration device
JP7441674B2 (en) robot arm
JPH0155699B2 (en)
JP6987691B2 (en) Manufacturing method of split type motor case
US20220356900A1 (en) Composite drive shafts
US20070129153A1 (en) Coupling for compensating axle misalignment
JP4890397B2 (en) Shaft coupling and its fixing method and manufacturing method
JP6985192B2 (en) Composite assembly
JP6522356B2 (en) Power transmission shaft
JP2019052700A (en) Torque transmission shaft
JP2591965Y2 (en) Sealing device
KR102377660B1 (en) torque sensor
JP2023074666A (en) Welding structure of cylinder member
JPH06213247A (en) Flexible coupling
JP2006029563A (en) Member-to-member connection device
JP5983812B2 (en) Cross shaft type universal joint
KR20210002719A (en) Torque sensor
JP2020094648A (en) Boot attachment structure
JP2005201418A (en) Grommet
JP2006103032A (en) Joined body of cylindrical body made of frp with metal joint

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231019

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231102

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240105

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240208

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240219

R150 Certificate of patent or registration of utility model

Ref document number: 7441674

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150