WO2015055711A1 - Procédé et dispositif permettant de produire des particules dans un plasma à pression atmosphérique - Google Patents

Procédé et dispositif permettant de produire des particules dans un plasma à pression atmosphérique Download PDF

Info

Publication number
WO2015055711A1
WO2015055711A1 PCT/EP2014/072106 EP2014072106W WO2015055711A1 WO 2015055711 A1 WO2015055711 A1 WO 2015055711A1 EP 2014072106 W EP2014072106 W EP 2014072106W WO 2015055711 A1 WO2015055711 A1 WO 2015055711A1
Authority
WO
WIPO (PCT)
Prior art keywords
sacrificial electrode
discharge
region
particles
electrode
Prior art date
Application number
PCT/EP2014/072106
Other languages
German (de)
English (en)
Inventor
Jörg IHDE
Ralph Wilken
Jost Degenhardt
Sergey Stepanov
Original Assignee
Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. filed Critical Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V.
Publication of WO2015055711A1 publication Critical patent/WO2015055711A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/228Gas flow assisted PVD deposition
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/48Generating plasma using an arc
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation
    • C23C14/32Vacuum evaporation by explosion; by evaporation and subsequent ionisation of the vapours, e.g. ion-plating
    • C23C14/325Electric arc evaporation
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H1/00Generating plasma; Handling plasma
    • H05H1/24Generating plasma
    • H05H1/26Plasma torches
    • H05H1/32Plasma torches using an arc
    • H05H1/42Plasma torches using an arc with provisions for introducing materials into the plasma, e.g. powder, liquid
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H2240/00Testing
    • H05H2240/10Testing at atmospheric pressure

Definitions

  • a precursor material is fed into the plasma jet so as to coat surfaces.
  • the precursor material may contain solid, for example pulverulent constituents. This allows particles to be embedded in the deposited layers.
  • DE-B-102 23 865 relates to a process for the plasma coating of workpieces, in which with the aid of a plasma nozzle by electric high-frequency discharge, a beam of atmospheric plasma is generated, with which the workpiece surface to be coated is painted over.
  • the method is characterized in that at least one component of the coating material is contained as a solid in an electrode of the plasma nozzle and is sputtered off the electrode by the high-frequency discharge,
  • the sputtered material is present predominantly in the form of very reactive ions or radicals.
  • these species form homogeneous coatings, for example of metals or metal compounds.
  • DE-B-10 2009 031 857 discloses a plasma torch for cutting a material by means of a high-energy plasma jet. Since the high energy density of the plasma jet leads to a thermal load on a nozzle of the plasma torch, it is cooled in order to extend its service life. A production of particles does not occur in the plasma torch.
  • DE-A-10 2009 048 397 relates to a process for the preparation of surface-modified particles in an atmospheric pressure plasma using a sputtering electrode from which particles are sputtered by a discharge.
  • DE-A-10 2009 048 397 teaches to limit a discharge induced power input to the sputtering electrode by pulsing or driving a discharge generating voltage generator
  • Sputter electrode is rotated or oscillated.
  • the invention has for its object to provide a method and apparatus for the production of particles using an atmospheric pressure plasma, which allow efficient production of particles, in particular of microparticles and nanoparticles, with high production rate and controlled particle size distribution.
  • the present invention provides a method of producing particles using an atmospheric pressure plasma, wherein the plasma is generated by a discharge between electrodes in a process gas, at least one of the electrodes is a sacrificial electrode or
  • sacrificial electrode and “target electrode” are used interchangeably herein.
  • Atmospheric pressure plasma can be achieved by increasing the path length in the relaxing region of the
  • An “active" plasma region is generally understood to mean a plasma region which is within the volume delimited by the electrodes between which a voltage is applied, by which the plasma is generated.In the active plasma region, free electrons and ions are present separately ,
  • the relaxing region of the plasma is outside the excitation zone, which is delimited by said electrodes.
  • the relaxant region of the plasma is sometimes referred to as an "after-gtow.” There are no more free electrons and ions in the relaxing region of the plasma, but rather excited atoms or molecules.
  • a plurality of electrodes in particular electrodes made of the same or different electrode materials, may be sacrificial electrodes. However, exactly one of the electrodes may also be a sacrificial electrode.
  • particle refers to particles of a particular material, in particular macroscopic particles, as distinct from individual atoms or molecules or clusters thereof.
  • the portion of the sacrificial electrode is actively cooled such that the average temperature of the sacrificial electrode in the region of the sacrificial electrode is outside the discharge area of the sacrificial electrode
  • the discharge area of the sacrificial electrode may be a geometrically excellent area of the sacrificial electrode.
  • a geometrically excellent region is understood to mean a region in which the discharge concentrates due to the high field strength prevailing there.
  • Typical examples of such geometrically marked regions in electrodes are points, corners and edges.
  • the cooling medium only comes into contact with the area of the sacrificial electrode outside the discharge area of the sacrificial electrode or only with part of the area of the sacrificial electrode outside the discharge area of the sacrificial electrode.
  • the area of the sacrificial electrode outside the discharge area can be efficiently cooled, whereby deterioration of the discharge in the discharge area by the cooling process is particularly reliably avoided.
  • a rapid temperature difference occurs
  • the discharge TE2 caused by the discharge can increase the average temperature of the sacrificial electrode at the entry point after the discharge is turned off within a period of not more than 4 minutes, preferably not more than 3 minutes, more preferably not more than 2 min, more preferably not more than 1 min, and most preferably not more than 40 s, fall to a value of 1 / e ⁇ TE2.
  • the sacrificial electrode may be at least partially disposed in a channel of a housing.
  • the housing may be the housing of a plasma nozzle.
  • the channel can be traversed by the process gas.
  • a portion of the sacrificial electrode may be disposed in the housing outside the channel and / or outside the housing.
  • the thermal or indirect contact is made by a secondary medium, such as a tageieitCloude wall or wall, which is arranged between the cooling medium and the part or region of the sacrificial electrode.
  • a secondary medium such as a tageieitCloude wall or wall
  • the sacrificial electrode can be guided at least in regions through a heat-conductive tube or the like.
  • An active cooling of a portion of the sacrificial electrode can be done by direct contact of this tube with the cooling medium.
  • temperatures of the sacrificial electrode at the point of entry may be the difference between the mean temperature of the sacrificial electrode within the discharge area of the sacrificial electrode and the average temperature of the sacrificial electrode at the entry point in the range of Ts-393K to Ts-77K, preferably Ts-373K to Ts-77K, more preferably from Ts-323K to Ts-77K, and most preferably from Ts-293K to Ts-77K.
  • the sacrificial electrode may be introduced into the plasma nozzle in a direction parallel to a flow direction of the process gas in the plasma nozzle or in a direction perpendicular to the flow direction of the process gas in the plasma nozzle.
  • the longitudinal axis of the sacrificial electrode can be parallel to the flow direction of the process gas in the plasma nozzle or perpendicular to the flow direction of the
  • the sacrificial or sacrificial electrodes are metals such as copper, aluminum, indium, zinc, titanium and magnesium, especially noble metals such as gold, silver, platinum and palladium, but also metal alloys, metal oxides (e.g., BaO, zinc oxide, tin oxide) and carbon.
  • the sacrificial electrode may be made of aluminum bronze.
  • position of the discharge area of the sacrificial electrode herein denotes the position of the
  • the sacrificial electrode may be a traceable sacrificial electrode, in particular a traceable wire sacrificial electrode.
  • traceable in connection with an electrode means that the position of the discharge region of the sacrificial electrode by Nachschieben or
  • the discharge may be a pulsed or pulsating discharge.
  • the pulsed or pulsating discharge may be provided by pulsed or pulsed operation of a voltage source, such as a voltage source.
  • a generator adapted to apply a voltage (e.g., DC voltage), in particular a high voltage, between the electrodes, and with which the discharge, which is preferably one
  • the particles are micro- and / or nanoparticles.
  • micro- and nanoparticles are understood as meaning particles whose diameter is in the range of microns or nanometers.
  • the particles can have a particle size or a particle diameter in the range from 2 nm to 20 ⁇ m, preferably from 5 nm to 10 ⁇ m, more preferably from 10 nm to 5 ⁇ m, even more preferably from 10 nm to 1 ⁇ m and most preferably from 10 nm to 200 ⁇ m nm.
  • the particle size or the particle diameter of the particles can also be in a range from 2 nm to 10 ⁇ m, 2 nm to 5 ⁇ m, 5 nm to 5 ⁇ m, 2 nm to 1 ⁇ m, 5 nm to 1 ⁇ m, 2 nm to 200 nm, 5 nm to 200 nm, 20 nm to 200 nm or 50 nm to 200 nm.
  • the average (volume-averaged) particle diameter of the particles is preferably in the range of nanometers or micrometers, more preferably in the range of 2 nm to 20 ⁇ m, very particularly preferably in the range of 2 to 100 nm.
  • the determination of the particle size of very small particles, such as nanoparticles, is for example with
  • the present invention relates to an apparatus for the production of particles using an atmospheric pressure plasma, in particular in an atmospheric pressure plasma.
  • the device comprises a housing with a channel, at least two electrodes, which are arranged at least partially in the channel, and a voltage source, which is adapted to apply a voltage (eg DC voltage), in particular a high voltage, between the at least two electrodes the at least two electrodes are adapted to generate the plasma by a discharge between the electrodes in a process gas in the channel, and at least one of the electrodes is a sacrificial electrode from which material is removed by the discharge, and the abraded material is particles and / or arise from the removed material particles.
  • a voltage eg DC voltage
  • Sacrificial electrode does not exceed the melting temperature of the material of the sacrificial electrode.
  • Embodiment of the present invention is.
  • a discharge in particular an arc discharge, from the sacrificial electrode 16 to the part of the housing not covered by the insulating tube 14, in this case the nozzle head 32, is ignited ,
  • the discharge region 17 of the sacrificial electrode 16, that is to say the region of the sacrificial electrode 16 in which the discharge predominantly takes place, is the tip thereof, as is illustrated schematically in FIG. 1,
  • a plasma is generated in the process gas 18 by a discharge between the sacrificial electrode 16 and the housing 5 / nozzle head 32.
  • material is removed from the sacrificial electrode 16, from which particles 30 are formed on the substrate surface prior to deposition.
  • the particles 30 are transported further by the vortex-shaped gas flow 28 and pass out of the plasma nozzle 10 through an outlet 36 of the nozzle head 32.
  • the precipitated particles 30 can be selectively applied to the surface of a substrate 50 via the outlet 36, as shown schematically in FIG. As indicated by the arrow 52 in FIG. 1, in this case the substrate 50 can be moved relative to the plasma nozzle 10, thereby enabling a controlled local application of the particles 30 on the surface of the substrate 50,
  • the cooling device 2 comprises a housing 23, in the interior of which a chamber 24 is formed, and two lines 13 'which are in fluid communication with the chamber 24.
  • the sacrificial electrode 16 ' is passed through the chamber 24 via two seals 19 and is held movable by the seals 19 so that it can be moved in the direction perpendicular to the wall 9 of the channel 7'.
  • Discharge area 17 " an efficient and rapid heat removal from the discharge area 17"
  • FIG. 4 shows scanning electron micrographs of glass slides as substrate surfaces on which silver particles have been deposited.
  • the deposition of the particles was carried out by means of a device as shown in Figure 2 with a sacrificial electrode 16 'made of silver, wherein the silver particles shown in Figure 4 (a) without cooling the sacrificial electrode 16 and the silver particles shown in Figure 4 (b) with active cooling Sacrificial electrode 16 'were deposited by the cooling device 2'.
  • the scanning electron micrographs shown in Figure 4 were each at a
  • the method and device according to the invention can be used for depositing layers, in particular dense nanoparticulate layers, on substrate surfaces.
  • particles can be incorporated into layers, such as plasma polymer layers.
  • the produced particles can also be collected, for example by a powder separator, and subsequently supplied to further uses,
  • the sacrificial electrode enters a cooling region at an entrance portion of the sacrificial electrode, in which the portion of the sacrificial electrode is actively cooled, the entry point being at a side of the cooling region opposite the discharge area of the sacrificial electrode, and the median temperature of the sacrificial electrode at the entrance portion 393K 373K, more preferably 323K, and most preferably 293K.
  • Sacrificial electrode does not exceed the melting temperature of the material of the sacrificial electrode.

Abstract

L'invention concerne un procédé permettant de produire des particules (30) au moyen d'un plasma à pression atmosphérique. Selon ce procédé, le plasma est produit par une décharge (15, 15') entre des électrodes (16, 16', 16" ; 5, 32) dans un gaz de traitement (18), et au moins une des électrodes est une électrode sacrificielle (16, 16', 16") de laquelle du matériau est éliminé du fait de la décharge, le matériau éliminé étant des particules et/ou les particules résultant du matériau éliminé. Une partie de l'électrode sacrificielle est refroidie activement, de sorte que la température moyenne de l'électrode sacrificielle dans une zone de l'électrode sacrificielle à l'extérieur de la zone de décharge (17, 17', 17") de l'électrode sacrificielle est plus basse qu'à l'intérieur de la zone de décharge de l'électrode sacrificielle. L'invention concerne en outre un dispositif permettant de produire des particules (30) au moyen d'un plasma à pression atmosphérique, le dispositif comprenant : un boîtier (5) pourvu d'un canal (7, 7', 7"), au moins deux électrodes (16, 16', 16" ; 5, 32), lesquelles sont disposées au moins en partie dans le canal, et une source de tension (22), laquelle est mise au point pour appliquer une tension entre les deux électrodes ou plus. Les deux électrodes ou plus sont mises au point pour produire dans le canal le plasma du fait d'une décharge (15, 15') entre les électrodes dans un gaz de traitement (18), et au moins une des électrodes est une électrode sacrificielle (16, 16', 16") de laquelle du matériau est éliminé du fait de la décharge, le matériau éliminé étant des particules et/ou les particules résultant du matériau éliminé. Le dispositif comprend en outre un système de refroidissement (2), lequel est mis au point pour refroidir activement une partie de l'électrode sacrificielle, de sorte que la température moyenne de l'électrode sacrificielle dans une zone de l'électrode sacrificielle à l'extérieur de la zone de décharge (17, 17', 17") de l'électrode sacrificielle est inférieure à celle présente à l'intérieur de la zone de décharge de l'électrode sacrificielle.
PCT/EP2014/072106 2013-10-15 2014-10-15 Procédé et dispositif permettant de produire des particules dans un plasma à pression atmosphérique WO2015055711A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE201310017109 DE102013017109A1 (de) 2013-10-15 2013-10-15 Verfahren und Vorrichtung zur Herstellung von Partikeln in einem Atmosphärendruckplasma
DE102013017109.1 2013-10-15

Publications (1)

Publication Number Publication Date
WO2015055711A1 true WO2015055711A1 (fr) 2015-04-23

Family

ID=51743425

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2014/072106 WO2015055711A1 (fr) 2013-10-15 2014-10-15 Procédé et dispositif permettant de produire des particules dans un plasma à pression atmosphérique

Country Status (2)

Country Link
DE (1) DE102013017109A1 (fr)
WO (1) WO2015055711A1 (fr)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808270A (en) 1997-02-14 1998-09-15 Ford Global Technologies, Inc. Plasma transferred wire arc thermal spray apparatus and method
DE19807086A1 (de) 1998-02-20 1999-08-26 Fraunhofer Ges Forschung Verfahren zum Beschichten von Oberflächen eines Substrates, Vorrichtung zur Durchführung des Verfahrens, Schichtsystem sowie beschichtetes Substrat
DE19824364A1 (de) 1998-05-30 1999-12-02 Bosch Gmbh Robert Verfahren zum Aufbringen eines Verschleißschutz-Schichtsystems mit optischen Eigenschaften auf Oberflächen
WO2001032949A1 (fr) 1999-10-30 2001-05-10 Agrodyn Hochspannungstechnik Gmbh Procede et dispositif servant au revetement par plasma de surfaces
DE19958473A1 (de) 1999-12-04 2001-06-07 Bosch Gmbh Robert Verfahren zur Herstellung von Kompositschichten mit einer Plasmastrahlquelle
WO2005048708A1 (fr) 2003-11-17 2005-06-02 Bio-Gate Ag Matiere de revetement antimicrobienne
WO2005061754A1 (fr) 2003-12-21 2005-07-07 Otb Group B.V. Procede et appareil pour produire une couche fonctionnelle constituee d'au moins deux composants
DE10223865B4 (de) 2002-05-29 2007-08-16 Plasmatreat Gmbh Verfahren zur Plasmabeschichtung von Werkstücken
DE102009048397A1 (de) 2009-10-06 2011-04-07 Plasmatreat Gmbh Atmosphärendruckplasmaverfahren zur Herstellung oberflächenmodifizierter Partikel und von Beschichtungen
DE102009031857B4 (de) 2009-07-03 2011-07-07 Kjellberg Finsterwalde Plasma und Maschinen GmbH, 03238 Düse für einen flüssigkeitsgekühlten Plasmabrenner sowie Plasmabrennerkopf mit derselben
JP4905129B2 (ja) * 2004-02-26 2012-03-28 コニカミノルタホールディングス株式会社 ナノ粒子付着基板の製造方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006015591B3 (de) * 2006-03-31 2007-11-29 Technische Universität Clausthal Organischer Werkstoff mit katalytisch beschichteter Oberfläche und Verfahren zu dessen Herstellung
DE102007032496B3 (de) * 2007-07-12 2009-01-29 Maschinenfabrik Reinhausen Gmbh Vorrichtung zur Erzeugung eines Plasma-Jets
DE102012104224A1 (de) * 2012-05-15 2013-11-21 Plasmatreat Gmbh Vorrichtung und Verfahren zur Behandlung eines Drahts aus leitfähigem Material

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5808270A (en) 1997-02-14 1998-09-15 Ford Global Technologies, Inc. Plasma transferred wire arc thermal spray apparatus and method
DE19807086A1 (de) 1998-02-20 1999-08-26 Fraunhofer Ges Forschung Verfahren zum Beschichten von Oberflächen eines Substrates, Vorrichtung zur Durchführung des Verfahrens, Schichtsystem sowie beschichtetes Substrat
DE19824364A1 (de) 1998-05-30 1999-12-02 Bosch Gmbh Robert Verfahren zum Aufbringen eines Verschleißschutz-Schichtsystems mit optischen Eigenschaften auf Oberflächen
WO2001032949A1 (fr) 1999-10-30 2001-05-10 Agrodyn Hochspannungstechnik Gmbh Procede et dispositif servant au revetement par plasma de surfaces
DE19958473A1 (de) 1999-12-04 2001-06-07 Bosch Gmbh Robert Verfahren zur Herstellung von Kompositschichten mit einer Plasmastrahlquelle
DE10223865B4 (de) 2002-05-29 2007-08-16 Plasmatreat Gmbh Verfahren zur Plasmabeschichtung von Werkstücken
WO2005048708A1 (fr) 2003-11-17 2005-06-02 Bio-Gate Ag Matiere de revetement antimicrobienne
WO2005061754A1 (fr) 2003-12-21 2005-07-07 Otb Group B.V. Procede et appareil pour produire une couche fonctionnelle constituee d'au moins deux composants
JP4905129B2 (ja) * 2004-02-26 2012-03-28 コニカミノルタホールディングス株式会社 ナノ粒子付着基板の製造方法
DE102009031857B4 (de) 2009-07-03 2011-07-07 Kjellberg Finsterwalde Plasma und Maschinen GmbH, 03238 Düse für einen flüssigkeitsgekühlten Plasmabrenner sowie Plasmabrennerkopf mit derselben
DE102009048397A1 (de) 2009-10-06 2011-04-07 Plasmatreat Gmbh Atmosphärendruckplasmaverfahren zur Herstellung oberflächenmodifizierter Partikel und von Beschichtungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
C. TENDERO ET AL.: "Atmospheric pressure plasmas: A review", SPECTROCHIMICA ACTA PART B: ATOMIC SPECTROSCOPY, 2006, pages 2 - 30, XP028004295, DOI: doi:10.1016/j.sab.2005.10.003

Also Published As

Publication number Publication date
DE102013017109A1 (de) 2015-04-16

Similar Documents

Publication Publication Date Title
EP2486163B1 (fr) Procédé à plasma à pression atmosphérique pour fabriquer des particules modifiées en surface et des revêtements
EP3194635B1 (fr) Dispositif de formation de revêtements de surfaces d'un élément, d'un matériau en forme de bande ou d'un outil
EP1675971B1 (fr) Procede de revetement de la surface d'un substrat avec utilisation d'un jet de plasma
DE3610295C2 (de) Verfahren und Vorrichtung zur Umsetzung von Rohmaterialien
DE3043830C2 (fr)
WO2015092008A1 (fr) Dispositif et procédé de fusion en zone flottante d'un matériau et d'atomisation du matériau fondu pour fabriquer de la poudre
DE19807086A1 (de) Verfahren zum Beschichten von Oberflächen eines Substrates, Vorrichtung zur Durchführung des Verfahrens, Schichtsystem sowie beschichtetes Substrat
DE112017001370T5 (de) Plasmaerzeugungsvorrichtung
EP2054166A1 (fr) Procédé et dispositif pour la fabrication d'un revêtement
DE10223865B4 (de) Verfahren zur Plasmabeschichtung von Werkstücken
WO2015055711A1 (fr) Procédé et dispositif permettant de produire des particules dans un plasma à pression atmosphérique
EP3943277B1 (fr) Procédé et dispositif de fabrication additive de composants
DE102018113643A1 (de) Vorrichtung zur Beschichtung einer Oberfläche
EP2468914A1 (fr) Procédé et dispositif destinés à l'injection à arc électrique
EP3250731B1 (fr) Procédé de revêtement au laser et dispositif pour sa mise en uvre
EP2387456B1 (fr) Procédé pour modifier la surface de particules et dispositif correspondant
WO2017080815A1 (fr) Dispositif et procédé d'application d'un revêtement
EP2622111B1 (fr) Procédé et dispositif de projection thermique
DE102005029155B4 (de) Verfahren zur Herstellung von Partikeln
DE102016105462A1 (de) Ionenstrahlquelle, Prozessieranordnung und Verfahren
WO2022018133A1 (fr) Procédé de dépôt de matériaux métalliques
WO2022152932A1 (fr) Unité de pulvérisation et procédé de pulvérisation d'une matière extraite d'un solide
WO2022229170A1 (fr) Dispositif de revêtement thermique par projection à l'arc électrique
Sahu et al. Electrical Discharge Machining (EDM): Nanoparticle Generation
EP2294599A1 (fr) Poinçon à plasma, dispositif de traitement au plasma, procédé de traitement au plasma et procédé de fabrication d'un poinçon à plasma

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14786165

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14786165

Country of ref document: EP

Kind code of ref document: A1