WO2015053510A1 - 이종 시스템에서 (-)-α-비사보롤을 생산하는 방법 - Google Patents

이종 시스템에서 (-)-α-비사보롤을 생산하는 방법 Download PDF

Info

Publication number
WO2015053510A1
WO2015053510A1 PCT/KR2014/009326 KR2014009326W WO2015053510A1 WO 2015053510 A1 WO2015053510 A1 WO 2015053510A1 KR 2014009326 W KR2014009326 W KR 2014009326W WO 2015053510 A1 WO2015053510 A1 WO 2015053510A1
Authority
WO
WIPO (PCT)
Prior art keywords
bisabolol
acid sequence
mrtps1
chamomile
cell
Prior art date
Application number
PCT/KR2014/009326
Other languages
English (en)
French (fr)
Inventor
김수언
손영진
노대균
권문혁
Original Assignee
서울대학교산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020140129750A external-priority patent/KR101735697B1/ko
Application filed by 서울대학교산학협력단 filed Critical 서울대학교산학협력단
Publication of WO2015053510A1 publication Critical patent/WO2015053510A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P7/00Preparation of oxygen-containing organic compounds
    • C12P7/02Preparation of oxygen-containing organic compounds containing a hydroxy group
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/10Transferases (2.)
    • C12N9/1085Transferases (2.) transferring alkyl or aryl groups other than methyl groups (2.5)
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P5/00Preparation of hydrocarbons or halogenated hydrocarbons
    • C12P5/007Preparation of hydrocarbons or halogenated hydrocarbons containing one or more isoprene units, i.e. terpenes

Definitions

  • (-)- ⁇ -bisabolol, terpenoid natural products have various pharmacological activities (eg anti-bacterial, anti-septic, anti-pain, and anti-inflammatory) and skin soothing and moisturizing It has been reported to exhibit properties [1-4]. Due to these properties, the chemical industry has recently included (-)- ⁇ -bisabolol as a major component in more than 1,000 health products and cosmetics [4].
  • (-)- ⁇ bisabolol is naturally synthesized in the Candeia tree (known as Eremanthus erythropappus or Vanillosmopsis erythoropappa ) and chamomile ( Matricaria recutita ) in Brazil [5-7].
  • Commercially, most of the (-)- ⁇ -bisabolol marketed as “natural ⁇ -bisabolol” is prepared by distillation of the Candeia bark, but recently there is a debate about the ongoing maintenance of plants of origin in Brazil. [8]. From a chemical point of view, four possible stereo-isomers may be formed according to the stereo-configuration of C1 and C7 (see Figure 1 for carbon numbers).
  • (-)- ⁇ -bisabolol belongs to the class of sesquiterpenoids of 15 carbons and is synthesized in the usual precursor, farnesyl pyrophosphate (FPP).
  • FPP farnesyl pyrophosphate
  • FPP is a common metabolic intermediate in all living organisms and is the primary precursor for the synthesis of many essential steroids.
  • plants have acquired a unique synthetic ability to change FPP with various acyclic or cyclic C15 terpene hydrocarbons called sesquiterpenoids [11].
  • This biochemical modification is catalyzed by a family of enzymes called sesquiterpene synthase (Sesqui-TPS).
  • Sesqui-TPS cDNA which plays a role in the biosynthesis of many important perfumes, aromas and pharmacological substances, has been identified from plants. Examples include amorphadiene synthase [12] from Artemisia annua , Valensen synthase [13] from Citrus spp , and Valeriana officinalis . Valerenadine synthase [14].
  • a method for producing (-)- ⁇ -bisabolol in a host cell which method is sesquiterpene synthase under conditions effective for (-)- ⁇ -bisabolol production.
  • the present invention is industrial for the production of (-)- ⁇ -bisabolol, including host cells expressing homologues, fragments or variants thereof having chamomile sesquiterpene synthase MrTPS1 or sesquiterpene synthase activity. To provide a composition.
  • (-)-a-bisabolol synthase or chamomile seskifen synthase TPS1 of the present invention
  • (-)-a-bisabolol can be synthesized by biotechnological methods in various hosts including microorganisms and plants. Can produce.
  • This bisabolol is not only suitable for environmental preservation but also has high optical purity compared to bisabolol, which is extracted from Candida trees or manufactured by chemical synthesis, so that it can be used immediately in the manufacture of cosmetics and medical products.
  • Figure 3 shows the results of in vivo screening of sesquiterpene synthase isolated from chamomile ( Matricaria recutita ).
  • Total ion chromatograms of culture extracts of MrTPS -expressing yeast are indicated with the (-)- ⁇ -bisabolol standard identified.
  • peak 1, ⁇ -bisabolol; 2, bicyclogermacrene; 3, ⁇ -farnesene; 4, farnesol The retention times of the (-)- ⁇ -bisabolol standard and MrTPS1 product were 65.63 minutes and 65.83 minutes, respectively.
  • the structure of the terpene product is represented by MrTPS1 / 4/6.
  • Farnesol is the product of the dephosphorylation of farnesyl pyrophosphate, and thus appears in the empty vector control.
  • Figure 6 shows the in vitro properties of MrTPS1 recombinase: A, GC-MS results show in vitro synthesis of (-)- ⁇ -bisabolol by MrTPS1 with the standard identified; B, mass fragmentation of MrTPS1 enzymatic products and standards; C, MrTPS1 purified on SDS-PAGE gels; D, Results of kinetic analysis of purified MrTPS1.
  • DNA constructs for yeast expression 6 sesqui-TPS candidates were amplified in 20 ng of cDNA using primer pairs shown in Table 1. The amplified PCR product was cloned into pMD-20 (Takara, Japan), and the cDNA sequence was confirmed by digestion and sequencing. The fragment was then digested using the restriction enzymes shown in Table 1 and ligated into each restriction enzyme site of the pESC-Leu2d vector. To characterize each sesqui-TPS, the pESC-Leu2d-MrTPS construct and bin-vector were transformed into EPY300 yeast strains respectively by the LiAC-PEG method (Gietz et al., 2007).
  • Transformed yeast was inoculated in 2 mL of SC medium (2% glucose supplemented, Met, His, Leu deficient) and incubated overnight at 200 rpm 30 ° C.
  • Transgenic yeasts cultured overnight were diluted 50-fold with 30 mL SC medium (2% galactose, 0.2% glucose, 2 mM Met supplement and lack of His and Leu).
  • SC medium 2% galactose, 0.2% glucose, 2 mM Met supplement and lack of His and Leu
  • 3 mL of dodecane was placed on the culture and then incubated at 30 ° C. at 200 rpm for 3 days. Cultures were transferred to 50 mL-Falcon tubes and centrifuged at 3000 ⁇ g for 5 minutes.
  • the dodecane layer was separated and diluted 100-fold with hexanes. Diluted samples were injected into a GC-MS (Perkin-Elmer Clarus 680 GC system connected to a Perkin-Elmer 600T mass spectrometer) and analyzed according to the following temperature program: Initial temperature 50 ° C. (5 min hold), 2 ° C. min ⁇ Rising to 200 ° C. at 1 speed, ramping up to 300 ° C. at 50 ° C. min ⁇ 1 rate (maintain 15 minutes). The GC-MS column used was TG-5MS (0.25 ⁇ m film thickness, 0.25 mm id, 30 m length, Thermo Scientific).
  • the retention time of the product was compared to a known standard (-)- ⁇ -bisabolol (Sigma-Aldrich), and fragmentation patterns were searched against the NIST11 database.
  • a known standard (-)- ⁇ -bisabolol (Sigma-Aldrich)
  • fragmentation patterns were searched against the NIST11 database.
  • the medium was extracted with ethanol, a calibration curve was obtained from commercially available ( ⁇ )- ⁇ -bisabolol and analyzed by GC-FID.
  • MrTPS1-6 ⁇ His the ORF of MrTPS1 was determined using the primer 13/14 (Table 1) using the Gibson Assembly Kit (NEB, UK). Cloned into.
  • Recombinant pET21 / 6 ⁇ His-MrTPS1 construct was transformed into Escherichia coli BL21 codon plus cells (Stratagene) and LB-agar plates supplemented with antibiotics (Ampicillin 100 ⁇ g ml ⁇ 1 , chloramphenicol 36 ⁇ g ml ⁇ 1 ) Screened on. A single flora of transformed E. coli cells was incubated at 37 ° C.
  • the recovered pentane was analyzed by GC-MS (Agilent 6890 N Gas Chromatography System and Agilent 5975 B Mass Spectrometer) along with (-)- ⁇ -bisabolol (Fluka) as standard. 2 ⁇ L of each sample was injected at 250 ° C. and the temperature was raised from 40 ° C. to 250 ° C. at a rate of 10 ° C. min ⁇ 1 .
  • the bisabolol containing fractions were extracted with ethanol. Silica powder in the ethanol extract was removed by filtration. The solvent was evaporated and bisabolol was spectroscopically analyzed. NMR measurements in CDCl 3 were performed on a JNM-LA 400 spectrometer (JEOL) operating at 100.5 MHz for 13 C and 400 MHz for 1 H. Optical rotation was measured using a Jasco P-1020 polarimeter (Jasco Co., Japan). Standard ( ⁇ )- ⁇ -bisabolol was purchased from Sigma.
  • Illumina sequencing was performed using RNA samples isolated from young flower tissues of chamomile ( Matricaria recutita ). Approximately 150 million pairs of end reads were generated, which were newly assembled by the velvet algorithm. The assembled data is publicly accessible at www.phytometasyn.ca by the PhytoMetaSyn project [19, 20].
  • Terpene synthase (TPS) was screened from the assembled data set using tBLASTn to generate eight TPS transcripts encoding full length proteins. The deduced amino acid sequence of the protein encoded by this transcript is shown in FIG. 2. These eight TPS clones were named MrTPS1-8 respectively.
  • the product purified from yeast expressing MrTPS1 is (-)- ⁇ -bisabolol, which is the most commonly used ⁇ -bisabolol isomer in the health industry. (Known as ”).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Molecular Biology (AREA)
  • Biomedical Technology (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

본 발명은 (-)-α-비사보롤(bisabolol)을 생산하는 방법에 관한 것이다. 구체적으로, 본 발명에 따른 방법은 (-)-α-비사보롤 생산에 효과적인 조건 하에서, 세스퀴테르펜 신타아제 활성을 갖는 카모마일 세스퀴테르펜 신타아제 MrTPS1 또는 이것의 상동체, 단편 또는 변이체를 발현하는 숙주 세포를 배양하는 단계; 배양된 숙주 세포에서 (-)-α-비사보롤을 추출하는 단계; 및 추출물로부터 (-)-α-비사보롤을 선택적으로 정제함으로써 정제된 (-)-α-비사보롤을 생산하는 단계를 포함한다.

Description

이종 시스템에서 (-)-α-비사보롤을 생산하는 방법
본 발명은 (-)-α-비사보롤(bisabolol)을 생산하는 방법에 관한 것이다. 구체적으로 본 발명은 카모마일(Matricaria recutita)에서 유래한 세스퀴테르펜 신타아제(sesquiterpene synthase)를 이용하여 (-)-α-비사보롤을 생산하는 방법에 관한 것이다.
(-)-α-비사보롤, 테르페노이드(terpenoid) 천연 생성물은 다양한 약학적 활성(예, 항-박테리아, 항-패혈성, 항-통증성, 및 항-염증성) 및 피부 진정 및 보습 성질을 나타내는 것으로 보고되었다[1-4]. 이러한 성질에 기인하여, 최근 화학 업계에서는 1,000개 이상의 건강용품 및 화장품에서 주요 성분으로 (-)-α-비사보롤을 포함하고 있다[4].
(-)-α 비사보롤은 브라질에서 칸데이아 나무(Eremanthus erythropappus 또는 Vanillosmopsis erythoropappa로 알려짐) 및 카모마일(Matricaria recutita)에서 천연적으로 합성된다[5-7]. 상업적으로, “천연 α-비사보롤”로 시판되는 대부분의 (-)-α-비사보롤은 칸데이아 나무 껍질의 증류에 의하여 제조되지만, 최근, 브라질에서 원산지 식물의 지속적 유지에 대하여 논란이 되고 있다[8]. 화학적 관점에서, C1 및 C7의 입체-배열에 따라 4종의 가능한 입체-이성체가 형성될 수 있다(탄소 번호는 도 1 참조). 이들은 (+/-)-α-비사보롤 및 (+/-)-epi-α-비사보롤로 명명되며, 이들의 구조는 도 1에 도시된 바와 같다[9,10]. (-)-α-비사보롤이 화학적으로 합성될 수 있으나, 합성 물질은 (+/-)-α-비사보롤의 라세믹 혼합물이므로, 합성 중간체로부터 생성되는 불순물이 문제가 된다. 따라서, 천연물과 동일한 (-)-α-비사보롤을 인공적으로 생산할 수 있지만, 경제적으로 바람직하지 않은 정제 과정이 필요하다. 그러나, (-)-α-비사보롤 또는 (+/-)-α-비사보롤의 혼합물의 합성적 공급이 브라질의 칸데이아 나무의 천연 (-)-α-비사보롤 생산을 대체하고 있다.
(-)-α-비사보롤은 탄소 15개의 세스퀴테르페노이드의 부류에 속하고, 통상적 전구체, 파네실 피로포스페이트(farnesyl pyrophosphate: FPP)에서 합성된다. FPP는 모든 살아있는 유기체에서 일반적인 대사 중간체이고, 다수의 필수 스테로이드의 합성을 위한 일차 전구체이다. 그러나, 식물은 세스퀴테르페노이드로 불리는 다양한 비환형 또는 환형 C15 테르펜 탄화수소로 FPP를 변화시키는 독특한 합성 능력을 획득하였다[11]. 이 생화학적 변형은 세스퀴테르펜 신타아제(Sesqui-TPS)라는 효소군에 의하여 촉매된다. 다수의 중요한 향료, 아로마 및 약리 물질의 생합성에 역할을 하는 Sesqui-TPS cDNA는 식물로부터 동정되었다. 그 예들로서, 개똥쑥(Artemisia annua)에서 유래한 아모르파디엔 신타아제[12], 감귤속 종(Citrus spp)에서 유래한 발렌센 신타아제[13], 발레리아나 오피시날리스(Valeriana officinalis)에서 유래한 발레레나디엔 신타아제[14]가 있다. α-비사보롤 신타아제는 아즈텍 감미식물(Lippia dulcis) 및 박테리아 스트렙토마이세스 시트리컬러(Streptomyces citricolor)에서 이미 동정되었으나, 이 생성물들은 화학적 구조가 (+)-epi-α-비사보롤 및 (-)-epi-α-비사보롤인 것으로 동정되어[9,15], 화장품 시장에서 상업적으로 사용되는 입체-이성체와는 상이하다[16]. 또한, 다른 α-비사보롤 신타아제는 개똥쑥(Artemisia annua)에서 발견되었고[16], 2개의 이중 기능성 비사볼렌/비사보롤 신타아제가 산타롤럼속의 종(Santalolum spp)에서 동정되었다[17]. 그러나, 이들 α-비사보롤의 입체-배열에 대해서는 규명되지 않고 있다. 이러한 효소를 이용할 수 있다면 다양한 생명공학 수단에 의하여 천연물과 동일한 (-)-α-비사보롤을 생산할 수 있겠으나, 현재까지 (-)-α-비사보롤을 암호화하는 sesqui-TPS 클론은 동정되지 않았다[18].
본 발명의 목적은 (-)-α-비사보롤을 생산하는 방법을 제공하는 것이다.
본 발명에 따르면, 숙주 세포에서 (-)-α-비사보롤을 생산하는 방법을 제공할 수 있으며, 이 방법은 (-)-α-비사보롤 생산에 효과적인 조건 하에서, 세스퀴테르펜 신타아제 활성을 갖는 카모마일 세스퀴테르펜 신타아제 MrTPS1 또는 이것의 상동체, 단편 또는 변이체를 발현하는 숙주 세포를 배양하는 단계; 배양된 숙주 세포에서 (-)-α-비사보롤을 추출하는 단계; 및 추출물로부터 (-)-α-비사보롤을 선택적으로 정제함으로써 정제된 (-)-α-비사보롤을 생산하는 단계를 포함한다.
본 발명의 비제한적 구체예에 따르면, 상기 숙주 세포는 진핵 세포 또는 원핵 세포일 수 있다. 예를 들면, 진핵 세포는 효모, 식물 또는 조류(algae) 세포일 수 있고, 원핵 세포는 대장균(Escherichia coli)일 수 있으며, 이에 한정되는 것은 아니다.
또한 비제한적인 구체예로서, 상기 카모마일 세스퀴테르펜 신타아제 MrTPS1은 서열번호 2의 아미노산 서열과 적어도 약 80, 85, 90, 95 또는 100% 아미노산 서열 동일성을 갖거나, 또는 세스퀴테르펜 신타아제 활성을 갖는 서열번호 2의 폴리펩티드의 상동체, 단편 또는 변이체를 가질 수 있다.
상기 숙주 세포는 또한 서열번호 1로 표시되는 핵산 서열과 적어도 약 80, 85, 90, 95 또는 100% 핵산 서열 동일성을 갖는 핵산 서열 또는 이것의 상보체(complement), 또는 상기 세스퀴테르펜 신타아제 활성을 갖는 폴리펩티드를 암호화하는 단편을 포함하며, 상기 핵산은 상기 카모마일 세스퀴테르펜 신타아제 MrTPS1 (더 구체적으로는 카모마일 (-)-a-비사보롤 신타아제)을 발현하기에 효과적인 프로모터 및 전사 인자에 작동적으로 연결되어 있다.
또한, 본 발명은 카모마일 세스퀴테르펜 신타아제 MrTPS1 또는 세스퀴테르펜 신타아제 활성을 갖는 이것의 상동체, 단편 또는 변이체를 발현하는 숙주 세포를 포함하는, (-)-α-비사보롤 생산용 산업적 조성물을 제공한다.
또한, 본 발명은 카모마일 세스퀴테르펜 신타아제 MrTPS1 또는 세스퀴테르펜 신타아제 활성을 갖는 이것의 상동체, 단편 또는 변이체를 발현하는 숙주 세포를 포함하는, (-)-α-비사보롤 생산용 산업적 효소를 제공한다.
본 발명의 (-)-a-비사보롤 신타아제(또는 카모마일 세스키펜 신타아제 TPS1)를 이용하여 미생물 및 식물을 비롯한 다양한 숙주에서 생명공학적인 방법으로 (-)-a-비사보롤을 생산할 수 있다. 이 비사보롤은 칸데이아 나무에서 추출되거나 화학합성으로 제조되는 비사보롤에 비하여 환경보전에 적합할 뿐아니라 높은 광학순도를 가지므로 이들을 대체하여 즉시 화장품 및 의학적 제품의 제조에 사용할 수 있다.
본 발명의 특징은 첨부되는 도면에 의하여 더욱 명확하게 설명될 것이다:
도 1은 4개의 α-비사보롤 이성체의 화학적 구조를 나타낸다.
도 2는 8개의 카모마일 테르펜 신타아제의 배열을 나타낸다.
도 3은 카모마일(Matricaria recutita)에서 분리한 세스퀴테르펜 신타아제의 in vivo 스크리닝의 결과를 나타낸다. MrTPS-발현 효모의 배양 추출물의 총 이온 크로마토그램이 확인된 (-)-α-비사보롤 표준물과 함께 표시되었다. NIST 라이브러리의 질량 단편화 패턴의 비교를 통해, 다음과 같은 생성물을 확인하였다: 피크 1, α-비사보롤; 2, 바이시클로제르마크렌; 3, β-파르네센; 4, 파르네솔. (-)-α-비사보롤 스탠다드 및 MrTPS1 생성물의 머무름 시간은 각각 65.63분 및 65.83분이었다. 테르펜 생성물의 구조는 MrTPS1/4/6으로 표시된다. 파르네솔은 파르네실 피로포스페이트의 탈인산화 반응의 생성물이고, 따라서 빈-벡터(empty vector) 대조군에서 나타난다.
도 4는 MrTPS1을 발현하는 효모의 α-비사보롤(위) 및 확인된 표준 (-)-α-비사보롤(아래)의 질량 단편화 패턴을 나타낸다.
도 5는 형질전환 효모에서 (-)-α-비사보롤의 in vivo 생산의 결과를 나타낸다.
도 6는 MrTPS1 재조합 효소의 in vitro 특성을 보여준다: A, GC-MS 결과는 확인된 표준품과 함께 MrTPS1에 의한 (-)-α-비사보롤의 in vitro 합성을 나타낸다; B, MrTPS1 효소적 생성물 및 표준의 질량 단편화; C, SDS-PAGE 젤 상에서 정제된 MrTPS1; D, 정제된 MrTPS1의 효소반응속도론적 분석(kinetic analysis) 결과.
본 발명은 카모마일로부터 (-)-α-비사보롤에 대한 sesqui-TPS의 분리 및 특성규명에 관한 것이다.
일루미나 트랜스크립토믹(Illumina transcriptomics) 데이터는 카모마일에서 생성되었고, 6개의 테르펜 신타아제는 효모에서 동정되고 발현되었다. 이들 연구된 6개의 테르펜 신타아제 중에서, 하나의 클론이 α-비사보롤의 합성을 촉매하는 효소를 암호화하였다. 합성된 생성물을 정제하였고, 이것의 구조는 화학업계에서 현재 사용되는 천연물과 동일한 비사보롤인 (-)-α-비사보롤인 것으로 규명되었다.
이것은 미생물을 이용한 (-)-α-비사보롤의 de novo 합성에 대한 최초의 보고이다.
[실시예]
방법 및 물질
효모 발현을 위한 DNA 구성체: 표 1에 나타난 시발체(primer) 쌍을 이용하여 cDNA 20 ng에서 6개의 sesqui-TPS 후보를 증폭시켰다. 증폭된 PCR 생성물을 pMD-20(Takara, Japan)으로 클로닝하고, cDNA 서열을 분해(digestion) 및 염기서열분석에 의하여 확인하였다. 그리고, 상기 단편을 표 1에 나타난 제한 효소를 이용하여 분해시키고, pESC-Leu2d 벡터의 각 제한 효소 부위 내로 라이게이트시켰다. 각 sesqui-TPS를 특성 규명하기 위하여, pESC- Leu2d-MrTPS 구성체 및 빈-벡터를 각각 LiAC-PEG 방법(Gietz et al., 2007)에 의하여 EPY300 효모 균주내로 형질변형시켰다.
[표 1] 시발체(primer) 목록
Figure PCTKR2014009326-appb-I000001
효모의 in vivo 특성 규명 및 비사보롤 정량화: 형질전환 효모를 SC 배지 2 mL (2%글루코즈 보충, Met, His, Leu 결핍)에 접종시키고, 200 rpm 30 ℃에서 밤새 배양하였다. 밤새 배양한 형질전환 효모를 30 mL SC 배지(2% 갈락토오즈, 0.2% 글루코즈, 2 mM Met의 보충 및 His와 Leu의 결핍)로 50-배 희석하였다. 휘발성 세스퀴테르펜(sesquiterpene) 생성물을 격리시키기 위하여, 도데칸 3 mL를 배양물 위에 얹고, 이어서 3일동안 30℃에서 200 rpm으로 항온배양하였다. 배양물을 50 mL-Falcon 튜브로 옮기고, 3000×g 에서 5분간 원심분리하였다. 도데칸 층을 분리하고 헥산으로 100-배 희석시켰다. 희석된 샘플을 GC-MS(Perkin-Elmer 600T 질량 분광계에 연결된 Perkin-Elmer Clarus 680 GC system)에 주입하였으며, 다음 온도 프로그램을 따라 분석하였다: 초기 온도 50℃(5분 유지), 2℃ min-1 속도로 200℃로 상승, 50℃ min-1 속도로 300℃ 급상승(15분 유지). 사용된 GC-MS 컬럼은 TG-5MS이었다(0.25 μm 필름 두께, 0.25 mm id, 30 m 길이, Thermo Scientific). 생성물의 머무름 시간은 알려진 표준 (-)-α-비사보롤 (Sigma-Aldrich)와 비교하였고, 단편화 패턴은 NIST11데이터베이스에 대하여 탐색하였다. 형질전환 효모에 의하여 생산된 비사보롤의 정량화를 위하여, 배지를 에탄올로 추출하고, 시판되는 (-)-α-비사보롤로부터 보정 커브를 얻고 GC-FID에 의하여 분석하였다.
E.coli 에서 단백질 발현 및 정제 및 활성 분석: 재조합 MrTPS1-6×His을 얻기 위하여, MrTPS1의 ORF는 시발체 13/14를 이용하여(표 1) Gibson 어셈블리 키트(NEB, 영국)를 이용하여 pET21 벡터내로 클로닝하였다. 재조합 pET21/6×His-MrTPS1 구성체는 대장균(Escherichia coli) BL21 코돈 플러스 셀(Stratagene) 내로 형질전환시키고, 항생제(Ampicillin 100 μg ml-1, 클로람페니콜 36 μg ml-1 )를 보충한 LB-한천 평판상에서 선별하였다. 형질전환된 E. coli 세포의 단일 균총을 상술된 액체 LB 배지 37℃ 에서, 600 nm에서의 흡광도가 0.5에 도달할 때까지 배양하였다. 이후, 이소프로필-β-티오갈락토피라노시드(IPTG) 0.4 mM를 가하여 pET21/6×His-MrTPS1 구성체로부터 재조합 단백질을 유도하고, 17℃에서 16시간 동안 항온배양하였다. 세포는 원심분리에 의하여 수확하고, 용해완충액(20 mM HEPES, pH=7.6, 10 mM MgCl2, 500 mM NaCl, 5 mM β-머캅토에탄올, 20 mM 이미다졸, 10% 글리세롤, 1mM PMSF)에 재현탁시켰다. 초음파발생기를 이용하여 세포를 용해하고 Beckman C0650 로터에서 600 rpm의 원심분리(4℃, 10분) 후, 깨끗한 상층액을 얻어 1mL-HisTrap HP 컬럼 상에 로딩하였다(GE Healthcare, USA). 상기 컬럼은 용리완충액(20 mm 소디움 포스페이트, pH=7.4, 10 mM MgCl2, 500 mM NaCl, 5 mM β-머캅토에탄올, 20 mM 이미다졸, 15%(w/v) 글리세롤)으로 미리 평형화시켰다. 컬럼은 10-배 컬럼 부피의 용리완충액로 세척한 후, 결합된 단백질은 이미다졸 농도를 500 mM까지 선형 기울기로 올려 용리시켰다. 각 분획에서 단백질은 SDS-PAGE에 의하여 확인하였다. Sesqui-TPS를 함유하는 분획을 모으고, 4℃에서 24시간 동안 투석하여 이미다졸을 제거하였다.
in vitro 효소 분석을 위하여, 정제된 재조합 단백질 20 μg, FPP 100 μM(Echelon Biosciences), Tris 50 mM(pH7.5) 및 MgCl2 10 mM을 함유하는 반응 혼합물 500 μL을 제조하였다. 혼합물에 펜탄 500 μL를 얹은 후, 2시간 동안 30℃에서 항온처리하였다. 반응 혼합물을 볼텍싱하고 원심분리하였다(4,000 g, 2분). 상층부를 추출하고, 펜탄 500 μL로 2번 더 추출을 반복하였다. 표준물질로서 (-)-α-비사보롤(Fluka)과 함께, 회수된 펜탄을 GC-MS(Agilent 6890 N 가스 크로마토그래피 시스템 및 Agilent 5975 B 매스 스펙트로미터)에 의하여 분석하였다. 각 시료를 250℃에서 2 μL 주입하고, 온도를 10℃ min -1 속도로 40℃에서 250℃까지 상승시켰다.
상기 샘플은 1 mL min-1 속도로 헬륨 가스를 담체로 이용하여 DBI-MS 컬럼(30 m×250 μm i.d×0.25 μm 필름 두께)에서 분리하였다.
효소반응속도론적 분석(kinetic assay)을 위하여, 단백질 1 μg을 사용하여 25 mM HEPES(pH 7.4), 10 mM MgCl2 및 0.5-25 μM FPP를 함유하는 반응 혼합물 100 μL에서 분석하였다. FPP는 [1-3H]-FPP(Perkin Elmer, 23 Ci mmol-1)를 표지하지 않은 FPP에 1% 가하여 사용하였다. 혼합물을 10분 동안 30℃에서 항온처리하였고, 즉시 반응 정지용액(4 M NaOH, 1M EDTA) 100 μL와 혼합하였다. 10분간 반응을 중지시킨 후, 펜탄 900 μL를 추가하고, 10분간 볼텍싱하고, 원심분리(1,5000 g 1분)하였다. 400 μL 펜탄을 액체 신틸레이션 칵테일 3.5 mL와 혼합하였다. 반응은 액체 신틸레이션 계수기(Beckman LS6500)로 3H-표지된 생성물의 총 방사성을 계측하여 모니터링되었다. Michaelis-Menten 플롯을 그리고, 반응속도 상수를 Sigmaplot 12의 Enzyme Kinetics module에 의하여 계산하였다.
비사보롤 정제 및 구조 분석: 비사보롤 정제를 위하여, MrTPS1-발현 형질전환 효모를 도데칸을 얹지 않고 각 500 ml 배지를 함유하는 10개의 2-L 플라스크로부터 총 5L를 배양하였다. 30℃ 및 200 rpm에서 3일 배양 후, 배양 배지를 분액 깔대기를 이용하여 1L 에틸아세테이트로 2회 추출하였다. 에틸아세테이트 분획물을 합하여 회전식 증류기에서 2 mL로 농축하고, 최종적으로 질소 가스를 부드럽게 흘려 용매를 제거하였다. 농축된 추출물은 5-컬럼 부피의 헥산으로 미리 세척한 실리카 컬럼(24 mm×225 mm, 15 g 실리카 젤 60으로 충전됨)에 얹었다. 이어서 컬럼을 각 0%, 5% 및 10% 에탄올을 함유한 헥산으로 순차적으로 용리시켰다. 각 분획물은 박막 크로로마토그래피에서 헥산과 에탄올(90:10)로 전개 하여 분석하였고, 요오드 증기로 가시화하었다. 비사보롤을 함유하는 분획을 이와 같이 확인하고, 분획들을 합하여 미리-코팅된 실리카 겔 60 F254(Merck, Germany) 에 로딩하고 헥산과 에탄올(90:10)의 용리액으로 분리하였다. 비사보롤 함유 분획물은 에탄올로 추출하였다. 에탄올 추출물중의 실리카 분말은 여과하여 제거하였다. 용매를 증발시키고, 비사보롤을 분광분석하였다. CDCl3에서 NMR 측정은 13C에 대하여 100.5 MHz 그리고 1H에 대하여 400 MHz에서 작동하는 JNM-LA 400 분광분석기(JEOL)에서 수행하였다. 광학 회전은 Jasco P-1020 편광계(Jasco Co., Japan)를 이용하여 측정하였다. 표준 (-)-α-비사보롤은 Sigma에서 구입하였다.
결과
일루미나 서열분석은 카모마일(Matricaria recutita)의 어린 꽃 조직에서 분리된 RNA 샘플을 사용하여 수행하였다. 약 1억5천만 쌍의 엔드 리드가 생성되었고, 이 리드를 벨벳 알고리즘에 의하여 새롭게 어셈블하였다. 어셈블된 데이터는 PhytoMetaSyn 프로젝트에 의하여 www.phytometasyn.ca 에서 공개적으로 접근가능하다[19, 20]. 테르펜 신타아제(TPS)는 tBLASTn을 이용하여 어셈블된 데이터 세트로부터 스크리닝하어 전장 단백질을 암호화하는 8개의 TPS 전사체를 생성하였다. 이 전사체가 암호화하는 단백질의 추론된 아미노산 서열이 도 2에 개시되었다. 이 8개의 TPS 클론은 각각 MrTPS1~8로 명명되었다. 이 중 2개의 TPS 클론(MrTPS3MrTPS5)은 이전에 보고된 카모마일 TPS와 >98% 서열 동일성을 보여주었고 각각 (-) 제르마크렌 D 신타아제 및 제르마크렌 A 신타아제를 암호화하는 것으로 알려졌다[21]. 따라서, 이들 2개의 클론은 추가적 특성규명을 하지 않았다. 6개의 다른 클론들(MrTPS1/2/4/6/7/8)의 오픈 리딩 프레임(ORF)은 PCR-증폭하고, pESC-Leu2d 효모 발현 플라스미드에서 Gal10 프로모터 뒤에 클로닝되었다[22].
이 연구의 목적은 기질로 FPP를 이용하는 (-)-α-비사보롤 신타아제를 동정하는 것이다. 따라서, 각 TPS cNDA가 들어있는 플라스미드를 각각 FPP를 과생산하도록 변형된 EPY300 효모 종에 형질변환시켰다[22]. 휘발성 세스퀴테르펜(sesquiterpene)을 포집시키기 위하여, 도데칸을 효모 배양물에 얹고, 72-시간 항온처리 후 도데탄에 용해된 화합물을 분광분석기 GC-MS로 분석하였다. 벡터-형질전환된 효모는 대조군으로 사용하였다.
GC-MS 결과는 MrTPS1, 4, 또는 6을 발현하는 효모가 벡터-대조군과 상이한 휘발성 물질 프로파일을 갖는 것을 보여주었다(도 3). 그러나, MrTPS2/7/8를 발현하는 효모로부터 도데칸에 포집된 휘발성 물질의 프로파일은 대조군과 동일하였다. 전자충격(EI) 데이타베이스에서 신규 휘발성 물질의 스펙트럼 매치는 MrTPS1/4/6이 주요 생성물로서 α-비사보롤, 비시클로제르마크렌 및 β-파르네센을 각각 합성함을 보여주었다(도 3, 크로마토그램에 나타낸 구조 참조). 특히, 관심 대상은 휘발성 화합물을 생산하는 MrTPS1-발현 효모이고, 이것의 머무름 시간 및 질량 단편화 패턴은 (-)-α-비사보롤 표준품과 동일하였다(도 4). 생성물은 [M]+ 피크 m/z 222를 갖지 않으나, 상당한 크기의 알코올에 전형적인 [M-H2O]+ 피크는 m/z 204에서 나타났다. 그러나, α-비사보롤 및 이것의 부분이성질체 epi-α-비사보롤은 매우 유사한 단편화 패턴을 갖고 있으므로, 질량 스펙트럼 분석만으로는 생성물의 입체화학을 충분히 제공할 수 없었다.
더 구체적인 화학 분석을 목적으로 충분한 양의 α-비사보롤을 획득하기 위하여, MrTPS1-발현 효모로부터 α-비사보롤의 역가(titer)를 시간경과 실험(time-course experiment)에 의하여 조사하였다. 유도 배양 96시간에 걸쳐서, 배양물 mL당 비사보롤 8.10±0.42 μg (n=3)을 획득하였다. 효모 배양물을 5 리터까지 스케일 업하였고, 실리카 크로마토그래피에 의한 정제로 α-비사보롤 34 mg을 얻었다. 정제된 생성물 및 표준품 (-)-α-비사보롤의 13C-NMR 분석에서 정제된 시료와 표준품은 완전히 동일한 화학적 이동 값을 나타내는 15개의 13C 신호를 보여주었다(표 2). 이전의 연구에 의하면, α-비사보롤과 epi-α-비사보롤이 매우 유사한 13C-NMR 시그날을 나타내지만, C2, C4, C6, C8 및 C14에서의 분별가능한 화학적 이동 값을 갖는 것으로 알려졌다[9]. 정제된 생성물과 (-)-α-비사보롤 표준품에서의 13C 시그날을 비교하는 경우 이러한 차이를 발견할 수 없었다. 1H-NMR 분석에서 또한 생성물의 1H 신호는 (-)-α-비사보롤 표준품의 신호와 동일하였다. 특히, H-3 및 H-15의 δH 값은 α-비사보롤과 epi-α-비사보롤 간에 상이하다[23, 24]. 그러나, (-)-α-비사보롤 표준품과 정제된 샘플의 δH 값은 동일하였다(H-3, δH 5.35; H-15 δH 1.08). 따라서, NMR 데이터에 기초하여, 본 발명자들은 정제된 α-비사보롤 생성물이 α-비사보롤 거울상이성질체 중 하나이나, epi-α-비사보롤 골격구조는 아니라고 결론지었다.
[표 2] 본 실험 및 문헌 값의 비사보롤 입체이성질체의 13C-NMR 화학이동 값(CDCl3)
Figure PCTKR2014009326-appb-I000002
주의: 획득된 1H-NMR 데이터는 (-)-α-비사보롤 및 (-)-α-비사보롤 표준품에 대하여 공개된 데이터와 동일하다(Schhwartz et al., 1979). 1H-NMR(400 HMz, CDCl3): 5.35(1H, bs), 5.1(1H, bt), 1.66(1H, s), 1.62(3H, s), 1.59(3H, s) 및 1.08(3H, s).
NMR 분석 만으로는 거울상입체이성질체인 (R,R)-(+)- 와 (S,S)-(-)-α- α-비사보롤을 구별할 수 없기 때문에, 정제된 α-비사보롤의 입체화학을 결정하기 위하여 생성물의 광회전을 측정할 필요가 있었다. 생성물의 고유광회전도는 [α]25-65.8(EtOH) 이었다. (-)-α-비사보롤 표준품의 [α]25-67.6과 이 값을 비교하면 (S,S)-(-)- α-비사보롤로서 생성물의 입체 화학을 확인할 수 있었다. 모든 데이터를 고려하여 보면, 본 발명자들은 MrTPS1을 발현하는 효모로부터 정제된 생성물은 (-)-α-비사보롤로서, 건강산업 업계에서 가장 일반적으로 사용되는 α-비사보롤 이성질체(”natural identical”로 알려짐)로 결론지었다.
MrTPS1 효소 활성을 조사하기 위하여, 6×HIS를 MrTPS1 클론의 N-말단에 부착하고 대장균에서 발현시켰다. 닉켈-NTA 친화 컬럼을 이용하여, 도 6C의 염색된 SDS-PAGE 젤에 나타난 바와 같이 MrTPS1 재조합 효소를 거의 순수하게 정제할 수 있었다. 정제된 효소는를 기질 FPP와 반응하였을 때 (-)-α-비사보롤을 합성하였으나, 끓여 비활성화한 대조군은 어떠한 테르펜도 생성하지 않았다(도 6A/B). 이러한 in vitro 활성 데이터는 클로닝된 MrTPS1가 (-)-α-비사보롤 신타아제를 암호화한다는 것을 입증하였다. 효소적 효율을 확인하기 위하여, (-)-α-비사보롤 신타아제의 효소반응속도론적 특성을 3H-표지된 FPP를 이용하여 결정하였다. 결과적으로, MrTPS1 재조합 효소의 Km 및 Kcat 값은 3.6(±1.2) μM 및 4.6×10-3(±0.5×10-3)s-1(n=3)이라고 결정되었다(도 6D).
요약하자면, 생화학 및 화학적 분석에 의하여 MrTPS1에서 암호화되는 효소는 (-)-α-비사보롤 신타아제임을 확인하였다. (-)-α-비사보롤의 in vivo 생산은 처음에는 효모에서 증명하였으며, 이는 천연의 동일한 (-)-α-비사보롤을 생산할 수 있는 다른 생명공학적 수단으로서도 이 cDNA를 이용할 수 있는 기회를 제공한다.
하나 또는 그 이상의 바람직한 구체예로서 실시예가 제시되어왔다. 본업에 익숙한 동종 업자에게는 이러한 다양한 변형 또는 개량이 청구항에서 정의된 본 발명의 범위에서 벗어나지 않음이 자명할 것이다.
본 발명의 (-)-a-비사보롤 신타아제(또는 카모마일 세스키펜 신타아제 TPS1)를 이용하여 미생물 및 식물을 비롯한 다양한 숙주에서 생명공학적인 방법으로 (-)-a-비사보롤을 생산함으로써, 상기 비사보롤은 높은 광학순도를 가지므로 이들을 대체하여 즉시 화장품 및 의학적 제품의 제조에 사용할 수 있다.

Claims (15)

  1. (-)-α-비사보롤 생산에 효과적인 조건 하에서, 카모마일 세스퀴테르펜 신타아제 MrTPS1, 또는 이것의 상동체, 단편 또는 변이체를 발현하는 숙주 세포를 배양하는 단계;
    배양된 숙주 세포에서 (-)-α-비사보롤을 추출하는 단계; 및
    추출액에서 (-)-α-비사보롤을 선택적으로 정제함으로써, 정제된 (-)-α-비사보롤을 생산하는 단계를 포함하는, 숙주 세포에서 (-)-α-비사보롤을 생산하는 방법.
  2. 제1항에 있어서, 상기 숙주 세포는 진핵세포 또는 원핵 세포인 방법.
  3. 제2항에 있어서, 상기 진핵 세포는 효모, 식물 또는 알지 세포이고, 상기 원핵 세포는 대장균(Escherichia coli)인 방법.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 카모마일 세스퀴테르펜 신타아제 MrTPS1은 서열번호 2의 아미노산 서열과 적어도 약 90% 아미노산 서열 동일성을 갖거나, 또는 세스퀴테르펜 신타아제 활성을 갖는 서열번호 2의 폴리펩티드의 상동체, 단편 또는 변이체인 방법.
  5. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 숙주 세포는 서열번호 1로 표시되는 핵산 서열과 적어도 약 90% 핵산 서열 동일성을 갖는 핵산 서열 또는 이것의 상보체(complement) 또는 세스퀴테르펜 신타아제 활성을 갖는 폴리펩티드를 암호화하는 이것의 단편을 포함하며, 상기 핵산들은 상기 카모마일 세스퀴테르펜 신타아제 MrTPS1을 발현하기에 효과적인 프로모터 및 전사 인자와 작동하도록 연결되는 방법.
  6. 카모마일 세스퀴테르펜 신타아제 MrTPS1 또는 세스퀴테르펜 신타아제 활성을 갖는 이것의 상동체, 단편 또는 변이체를 발현하는 숙주세포를 포함하는, (-)-α-비사보롤 생산용 산업적 조성물.
  7. 제6항에 있어서, 상기 숙주 세포는 진핵 세포 또는 원핵 세포인 산업적 조성물.
  8. 제7항에 있어서, 상기 진핵 세포는 효모, 식물 또는 알지 세포이고, 상기 원핵 세포는 대장균(Escherichia coli)인 산업적 조성물.
  9. 제6항 내지 제8항 중 어느 한 항에 있어서, 상기 카모마일 세스퀴테르펜 신타아제 MrTPS1은 서열번호 2의 아미노산 서열과 적어도 약 90% 아미노산 서열 동일성을 갖거나, 또는 세스퀴테르펜 신타아제 활성을 갖는 서열번호 2의 폴리펩티드의 상동체, 단편 또는 변이체인 산업적 조성물.
  10. 제6항 내지 제8항 중 어느 한 항에 있어서, 상기 숙주 세포는 서열번호 1로 표시되는 핵산 서열과 적어도 약 90% 핵산 서열 동일성을 갖는 핵산 서열 또는 이것의 상보체(complement) 또는 세스퀴테르펜 신타아제 활성을 갖는 폴리펩티드를 암호화하는 이것의 단편을 포함하며, 상기 핵산은 상기 카모마일 세스퀴테르펜 신타아제 MrTPS1을 발현하기에 효과적인 프로모터 및 전사 인자에 작동적으로 연결되는 산업적 조성물.
  11. 세스퀴테르펜 신타아제 활성을 갖는 카모마일 세스퀴테르펜 신타아제 MrTPS1 또는 이것의 상동체, 단편 또는 변이체를 발현하는 숙주세포를 포함하는, (-)-α-비사보롤 생산용 산업적 효소.
  12. 제11항에 있어서, 상기 숙주 세포는 진핵 세포 또는 원핵 세포인 산업적 효소.
  13. 제12항에 있어서, 상기 진핵 세포는 효모, 식물 또는 알지 세포이고, 상기 원핵 세포는 대장균(Escherichia coli)인 산업적 효소.
  14. 제11항 내지 제13항 중 어느 한 항에 있어서, 상기 카모마일 세스퀴테르펜 신타아제 MrTPS1은 서열번호 2의 아미노산 서열과 적어도 약 90% 아미노산 서열 동일성을 갖거나, 또는 세스퀴테르펜 신타아제 활성을 갖는 서열번호 2의 폴리펩티드의 상동체, 단편 또는 변이체인 산업적 효소.
  15. 제11항 내지 제13항 중 어느 한 항에 있어서, 상기 숙주 세포는 서열번호 1로 표시되는 핵산 서열과 적어도 약 90% 핵산 서열 동일성을 갖는 핵산 서열 또는 이것의 상보체(complement) 또는 세스퀴테르펜 신타아제 활성을 갖는 폴리펩티드를 암호화하는 이것의 단편을 포함하며, 상기 핵산은 상기 카모마일 세스퀴테르펜 신타아제 MrTPS1을 발현하기에 효과적인 프로모터 및 전사 인자에 작동적으로 연결되는 산업적 효소.
PCT/KR2014/009326 2013-10-07 2014-10-02 이종 시스템에서 (-)-α-비사보롤을 생산하는 방법 WO2015053510A1 (ko)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US201361887689P 2013-10-07 2013-10-07
US61/887,689 2013-10-07
KR10-2014-0129750 2014-09-29
KR1020140129750A KR101735697B1 (ko) 2013-10-07 2014-09-29 이종 시스템에서 (-)-α-비사보롤을 생산하는 방법

Publications (1)

Publication Number Publication Date
WO2015053510A1 true WO2015053510A1 (ko) 2015-04-16

Family

ID=52813288

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/009326 WO2015053510A1 (ko) 2013-10-07 2014-10-02 이종 시스템에서 (-)-α-비사보롤을 생산하는 방법

Country Status (1)

Country Link
WO (1) WO2015053510A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023242403A1 (en) * 2022-06-16 2023-12-21 Danmarks Tekniske Universitet Microbial cells and methods for production of hernandulcin

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050210549A1 (en) * 2002-10-04 2005-09-22 Michel Schalk Sesquiterpene synthases and methods of use
US20120277120A1 (en) * 2011-04-27 2012-11-01 Amyris, Inc. Methods for genomic modification
WO2013000660A1 (en) * 2011-06-27 2013-01-03 Firmenich Sa Modified microorganisms and use thereof for terpene production

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050210549A1 (en) * 2002-10-04 2005-09-22 Michel Schalk Sesquiterpene synthases and methods of use
US20120277120A1 (en) * 2011-04-27 2012-11-01 Amyris, Inc. Methods for genomic modification
WO2013000660A1 (en) * 2011-06-27 2013-01-03 Firmenich Sa Modified microorganisms and use thereof for terpene production

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ATTIA, MOHAMED ET AL.: "Molecular cloning and characterization of (+)-epi-a-bisabolol synthase, catalyzing the first step in the biosynthesis of the natural sweetener, hernandulcin, in Lippia dulcis", ARCH. BIOCHEM. BIOPHYS., vol. 527, no. 1, 31 July 2012 (2012-07-31), pages 37 - 44 *
LI, JIAN-XU ET AL.: "Rational engineering of plasticity residues of sesquiterpene synthases from Artemisia annua: product specificity and catalytic efficiency", BIOCHEM. J., vol. 451, no. 3, 1 May 2013 (2013-05-01), pages 417 - 426 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023242403A1 (en) * 2022-06-16 2023-12-21 Danmarks Tekniske Universitet Microbial cells and methods for production of hernandulcin

Similar Documents

Publication Publication Date Title
Vaughan et al. Formation of the unusual semivolatile diterpene rhizathalene by the Arabidopsis class I terpene synthase TPS08 in the root stele is involved in defense against belowground herbivory
EP2449107B1 (en) Terpene synthases from santalum
Gandía-Herrero et al. Characterization of recombinant Beta vulgaris 4, 5-DOPA-extradiol-dioxygenase active in the biosynthesis of betalains
US20220396802A1 (en) Cinnamomum Burmannii Monoterpene Synthase CBTPS1, Related Biomaterial Thereof And Application Thereof
d'Ippolito et al. Detection of short-chain aldehydes in marine organisms: the diatom Thalassiosira rotula
Toporkova et al. Epoxyalcohol synthase of Ectocarpus siliculosus. First CYP74-related enzyme of oxylipin biosynthesis in brown algae
Mori et al. Phytohormones in red seaweeds: a technical review of methods for analysis and a consideration of genomic data
Moniodis et al. The transcriptome of sesquiterpenoid biosynthesis in heartwood xylem of Western Australian sandalwood (Santalum spicatum)
López et al. Geranylation of benzoic acid derivatives by enzymatic extracts from Piper crassinervium (Piperaceae)
DK3083975T3 (en) Stereospecific synthesis of (13R) -manoyloxide
Abbas et al. Cloning, functional characterization and expression analysis of LoTPS5 from Lilium ‘Siberia’
Fähnrich et al. Synthesis of ‘cineole cassette’monoterpenes in Nicotiana section Alatae: gene isolation, expression, functional characterization and phylogenetic analysis
Luo et al. Characterization of a sesquiterpene cyclase from the glandular trichomes of Leucosceptrum canum for sole production of cedrol in Escherichia coli and Nicotiana benthamiana
Piechulla et al. The α-terpineol to 1, 8-cineole cyclization reaction of tobacco terpene synthases
Schlesinger et al. Alkaloid chemodiversity in Mandragora spp. is associated with loss-of-functionality of MoH6H, a hyoscyamine 6β-hydroxylase gene
JP6399315B2 (ja) テルペン合成酵素遺伝子、アセト酢酸エステル加水分解酵素遺伝子、及びテルペンの製造方法
Tong et al. Eudesmane-type sesquiterpene diols directly synthesized by a sesquiterpene cyclase in Tripterygium wilfordii
KR101735697B1 (ko) 이종 시스템에서 (-)-α-비사보롤을 생산하는 방법
WO2015053510A1 (ko) 이종 시스템에서 (-)-α-비사보롤을 생산하는 방법
Li et al. A new sesquiterpene synthase catalyzing the formation of (R)-β-bisabolene from medicinal plant Colquhounia coccinea var. mollis and its anti-adipogenic and antibacterial activities
JP6754930B2 (ja) テルペン合成酵素遺伝子、アセト酢酸エステル加水分解酵素遺伝子、及びテルペンの製造方法
Jiang et al. Volatile squalene from a nonseed plant Selaginella moellendorffii: emission and biosynthesis
Grechkin et al. Hydroperoxide bicyclase CYP50918A1 of Plasmodiophora brassicae (Rhizaria, SAR): Detection of novel enzyme of oxylipin biosynthesis
Ramos-Valdivia et al. Isopentenyl diphosphate isomerase and prenyltransferase activities in rubiaceous and apocynaceous cultures
EP2886647A1 (en) Polypeptides with diterpene synthase activity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14852141

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14852141

Country of ref document: EP

Kind code of ref document: A1